Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDETR Doesn't Need Multi-Scale or Locality Design
This paper presents an improved DETR detector that maintains a "plain" nature: using a single-scale feature map and global cross-attention calculations without specific locality constraints, in contrast to previous leading DETR-based detectors that reintroduce architectural inductive biases of multi-scale and locality into the decoder. We show that two simple technologies are surprisingly effective within a plain design to compensate for the lack of multi-scale feature maps and locality constraints. The first is a box-to-pixel relative position bias (BoxRPB) term added to the cross-attention formulation, which well guides each query to attend to the corresponding object region while also providing encoding flexibility. The second is masked image modeling (MIM)-based backbone pre-training which helps learn representation with fine-grained localization ability and proves crucial for remedying dependencies on the multi-scale feature maps. By incorporating these technologies and recent advancements in training and problem formation, the improved "plain" DETR showed exceptional improvements over the original DETR detector. By leveraging the Object365 dataset for pre-training, it achieved 63.9 mAP accuracy using a Swin-L backbone, which is highly competitive with state-of-the-art detectors which all heavily rely on multi-scale feature maps and region-based feature extraction. Code is available at https://github.com/impiga/Plain-DETR .
BlockLLM: Multi-tenant Finer-grained Serving for Large Language Models
The growing demand for Large Language Models (LLMs) across diverse applications has prompted a paradigm shift in the design of deep learning serving systems. Deploying LLMs, especially in multi-tenant environments, presents considerable challenges due to their high computational and memory demands. We present BlockLLM, a serving system that exploits the potential of sharing components among fine-tuned LLM models to offer an efficient and flexible solution for LLM workloads. BlockLLM partitions the models into finer-grained blocks to enable the reuse of model components and independent provisioning to improve the computation efficiency. BlockLLM consists of an offline block zoo, for storing the blocks, and an online system to serve the requests through chains of blocks. It offers multi-fold flexibility: (1) Adaptive assembly of block chains on-the-fly is achieved with the help of equivalence evaluation among blocks in the zoo. (2) We enable per-block batch size and configure best-effort KV cache coordination at individual block level. (3) We adopt speculative execution and locality-aware block placement to mitigate the communication costs from dynamic block resource allocation. Our evaluation demonstrates that BlockLLM reduces memory and storage footprints and improves computation efficiency, outperforming existing serving approach in 95\%ile latency and GPU utilization by 33.5\% and 20.1\%, respectively.
Locality-aware Parallel Decoding for Efficient Autoregressive Image Generation
We present Locality-aware Parallel Decoding (LPD) to accelerate autoregressive image generation. Traditional autoregressive image generation relies on next-patch prediction, a memory-bound process that leads to high latency. Existing works have tried to parallelize next-patch prediction by shifting to multi-patch prediction to accelerate the process, but only achieved limited parallelization. To achieve high parallelization while maintaining generation quality, we introduce two key techniques: (1) Flexible Parallelized Autoregressive Modeling, a novel architecture that enables arbitrary generation ordering and degrees of parallelization. It uses learnable position query tokens to guide generation at target positions while ensuring mutual visibility among concurrently generated tokens for consistent parallel decoding. (2) Locality-aware Generation Ordering, a novel schedule that forms groups to minimize intra-group dependencies and maximize contextual support, enhancing generation quality. With these designs, we reduce the generation steps from 256 to 20 (256times256 res.) and 1024 to 48 (512times512 res.) without compromising quality on the ImageNet class-conditional generation, and achieving at least 3.4times lower latency than previous parallelized autoregressive models.
Nautilus: Locality-aware Autoencoder for Scalable Mesh Generation
Triangle meshes are fundamental to 3D applications, enabling efficient modification and rasterization while maintaining compatibility with standard rendering pipelines. However, current automatic mesh generation methods typically rely on intermediate representations that lack the continuous surface quality inherent to meshes. Converting these representations into meshes produces dense, suboptimal outputs. Although recent autoregressive approaches demonstrate promise in directly modeling mesh vertices and faces, they are constrained by the limitation in face count, scalability, and structural fidelity. To address these challenges, we propose Nautilus, a locality-aware autoencoder for artist-like mesh generation that leverages the local properties of manifold meshes to achieve structural fidelity and efficient representation. Our approach introduces a novel tokenization algorithm that preserves face proximity relationships and compresses sequence length through locally shared vertices and edges, enabling the generation of meshes with an unprecedented scale of up to 5,000 faces. Furthermore, we develop a Dual-stream Point Conditioner that provides multi-scale geometric guidance, ensuring global consistency and local structural fidelity by capturing fine-grained geometric features. Extensive experiments demonstrate that Nautilus significantly outperforms state-of-the-art methods in both fidelity and scalability. The project page is at https://nautilusmeshgen.github.io.
Locality-aware Fair Scheduling in LLM Serving
Large language model (LLM) inference workload dominates a wide variety of modern AI applications, ranging from multi-turn conversation to document analysis. Balancing fairness and efficiency is critical for managing diverse client workloads with varying prefix patterns. Unfortunately, existing fair scheduling algorithms for LLM serving, such as Virtual Token Counter (VTC), fail to take prefix locality into consideration and thus suffer from poor performance. On the other hand, locality-aware scheduling algorithms in existing LLM serving frameworks tend to maximize the prefix cache hit rate without considering fair sharing among clients. This paper introduces the first locality-aware fair scheduling algorithm, Deficit Longest Prefix Match (DLPM), which can maintain a high degree of prefix locality with a fairness guarantee. We also introduce a novel algorithm, Double Deficit LPM (D^2LPM), extending DLPM for the distributed setup that can find a balance point among fairness, locality, and load-balancing. Our extensive evaluation demonstrates the superior performance of DLPM and D^2LPM in ensuring fairness while maintaining high throughput (up to 2.87times higher than VTC) and low per-client (up to 7.18times lower than state-of-the-art distributed LLM serving system) latency.
Multi-Dimensional Hyena for Spatial Inductive Bias
In recent years, Vision Transformers have attracted increasing interest from computer vision researchers. However, the advantage of these transformers over CNNs is only fully manifested when trained over a large dataset, mainly due to the reduced inductive bias towards spatial locality within the transformer's self-attention mechanism. In this work, we present a data-efficient vision transformer that does not rely on self-attention. Instead, it employs a novel generalization to multiple axes of the very recent Hyena layer. We propose several alternative approaches for obtaining this generalization and delve into their unique distinctions and considerations from both empirical and theoretical perspectives. Our empirical findings indicate that the proposed Hyena N-D layer boosts the performance of various Vision Transformer architectures, such as ViT, Swin, and DeiT across multiple datasets. Furthermore, in the small dataset regime, our Hyena-based ViT is favorable to ViT variants from the recent literature that are specifically designed for solving the same challenge, i.e., working with small datasets or incorporating image-specific inductive bias into the self-attention mechanism. Finally, we show that a hybrid approach that is based on Hyena N-D for the first layers in ViT, followed by layers that incorporate conventional attention, consistently boosts the performance of various vision transformer architectures.
ECViT: Efficient Convolutional Vision Transformer with Local-Attention and Multi-scale Stages
Vision Transformers (ViTs) have revolutionized computer vision by leveraging self-attention to model long-range dependencies. However, ViTs face challenges such as high computational costs due to the quadratic scaling of self-attention and the requirement of a large amount of training data. To address these limitations, we propose the Efficient Convolutional Vision Transformer (ECViT), a hybrid architecture that effectively combines the strengths of CNNs and Transformers. ECViT introduces inductive biases such as locality and translation invariance, inherent to Convolutional Neural Networks (CNNs) into the Transformer framework by extracting patches from low-level features and enhancing the encoder with convolutional operations. Additionally, it incorporates local-attention and a pyramid structure to enable efficient multi-scale feature extraction and representation. Experimental results demonstrate that ECViT achieves an optimal balance between performance and efficiency, outperforming state-of-the-art models on various image classification tasks while maintaining low computational and storage requirements. ECViT offers an ideal solution for applications that prioritize high efficiency without compromising performance.
Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light
Many sparse attention mechanisms such as Neighborhood Attention have typically failed to consistently deliver speedup over the self attention baseline. This is largely due to the level of complexity in attention infrastructure, and the rapid evolution of AI hardware architecture. At the same time, many state-of-the-art foundational models, particularly in computer vision, are heavily bound by attention, and need reliable sparsity to escape the O(n^2) complexity. In this paper, we study a class of promising sparse attention mechanisms that focus on locality, and aim to develop a better analytical model of their performance improvements. We first introduce Generalized Neighborhood Attention (GNA), which can describe sliding window, strided sliding window, and blocked attention. We then consider possible design choices in implementing these approaches, and create a simulator that can provide much more realistic speedup upper bounds for any given setting. Finally, we implement GNA on top of a state-of-the-art fused multi-headed attention (FMHA) kernel designed for the NVIDIA Blackwell architecture in CUTLASS. Our implementation can fully realize the maximum speedup theoretically possible in many perfectly block-sparse cases, and achieves an effective utilization of 1.3 petaFLOPs/second in FP16. In addition, we plug various GNA configurations into off-the-shelf generative models, such as Cosmos-7B, HunyuanVideo, and FLUX, and show that it can deliver 28% to 46% end-to-end speedup on B200 without any fine-tuning. We will open source our simulator and Blackwell kernels directly through the NATTEN project.
Disaggregated Multi-Tower: Topology-aware Modeling Technique for Efficient Large-Scale Recommendation
We study a mismatch between the deep learning recommendation models' flat architecture, common distributed training paradigm and hierarchical data center topology. To address the associated inefficiencies, we propose Disaggregated Multi-Tower (DMT), a modeling technique that consists of (1) Semantic-preserving Tower Transform (SPTT), a novel training paradigm that decomposes the monolithic global embedding lookup process into disjoint towers to exploit data center locality; (2) Tower Module (TM), a synergistic dense component attached to each tower to reduce model complexity and communication volume through hierarchical feature interaction; and (3) Tower Partitioner (TP), a feature partitioner to systematically create towers with meaningful feature interactions and load balanced assignments to preserve model quality and training throughput via learned embeddings. We show that DMT can achieve up to 1.9x speedup compared to the state-of-the-art baselines without losing accuracy across multiple generations of hardware at large data center scales.
MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection
Recent advancements in anomaly detection have seen the efficacy of CNN- and transformer-based approaches. However, CNNs struggle with long-range dependencies, while transformers are burdened by quadratic computational complexity. Mamba-based models, with their superior long-range modeling and linear efficiency, have garnered substantial attention. This study pioneers the application of Mamba to multi-class unsupervised anomaly detection, presenting MambaAD, which consists of a pre-trained encoder and a Mamba decoder featuring (Locality-Enhanced State Space) LSS modules at multi-scales. The proposed LSS module, integrating parallel cascaded (Hybrid State Space) HSS blocks and multi-kernel convolutions operations, effectively captures both long-range and local information. The HSS block, utilizing (Hybrid Scanning) HS encoders, encodes feature maps into five scanning methods and eight directions, thereby strengthening global connections through the (State Space Model) SSM. The use of Hilbert scanning and eight directions significantly improves feature sequence modeling. Comprehensive experiments on six diverse anomaly detection datasets and seven metrics demonstrate state-of-the-art performance, substantiating the method's effectiveness. The code and models are available at https://lewandofskee.github.io/projects/MambaAD.
Diverse Human Motion Prediction Guided by Multi-Level Spatial-Temporal Anchors
Predicting diverse human motions given a sequence of historical poses has received increasing attention. Despite rapid progress, existing work captures the multi-modal nature of human motions primarily through likelihood-based sampling, where the mode collapse has been widely observed. In this paper, we propose a simple yet effective approach that disentangles randomly sampled codes with a deterministic learnable component named anchors to promote sample precision and diversity. Anchors are further factorized into spatial anchors and temporal anchors, which provide attractively interpretable control over spatial-temporal disparity. In principle, our spatial-temporal anchor-based sampling (STARS) can be applied to different motion predictors. Here we propose an interaction-enhanced spatial-temporal graph convolutional network (IE-STGCN) that encodes prior knowledge of human motions (e.g., spatial locality), and incorporate the anchors into it. Extensive experiments demonstrate that our approach outperforms state of the art in both stochastic and deterministic prediction, suggesting it as a unified framework for modeling human motions. Our code and pretrained models are available at https://github.com/Sirui-Xu/STARS.
Effective control of two-dimensional Rayleigh--Bénard convection: invariant multi-agent reinforcement learning is all you need
Rayleigh-B\'enard convection (RBC) is a recurrent phenomenon in several industrial and geoscience flows and a well-studied system from a fundamental fluid-mechanics viewpoint. However, controlling RBC, for example by modulating the spatial distribution of the bottom-plate heating in the canonical RBC configuration, remains a challenging topic for classical control-theory methods. In the present work, we apply deep reinforcement learning (DRL) for controlling RBC. We show that effective RBC control can be obtained by leveraging invariant multi-agent reinforcement learning (MARL), which takes advantage of the locality and translational invariance inherent to RBC flows inside wide channels. The MARL framework applied to RBC allows for an increase in the number of control segments without encountering the curse of dimensionality that would result from a naive increase in the DRL action-size dimension. This is made possible by the MARL ability for re-using the knowledge generated in different parts of the RBC domain. We show in a case study that MARL DRL is able to discover an advanced control strategy that destabilizes the spontaneous RBC double-cell pattern, changes the topology of RBC by coalescing adjacent convection cells, and actively controls the resulting coalesced cell to bring it to a new stable configuration. This modified flow configuration results in reduced convective heat transfer, which is beneficial in several industrial processes. Therefore, our work both shows the potential of MARL DRL for controlling large RBC systems, as well as demonstrates the possibility for DRL to discover strategies that move the RBC configuration between different topological configurations, yielding desirable heat-transfer characteristics. These results are useful for both gaining further understanding of the intrinsic properties of RBC, as well as for developing industrial applications.
Multiverse: Your Language Models Secretly Decide How to Parallelize and Merge Generation
Autoregressive Large Language Models (AR-LLMs) frequently exhibit implicit parallelism in sequential generation. Inspired by this, we introduce Multiverse, a new generative model that enables natively parallel generation. Multiverse internalizes a MapReduce paradigm, generating automatically through three stages: (i) a Map stage for adaptive task decomposition, (ii) a Process stage for parallel subtask execution, and (iii) a Reduce stage for lossless result synthesis. Next, we build a real-world Multiverse reasoning model with co-design of data, algorithm, and system, enabling rapid and seamless transfer from frontier AR-LLMs. Starting from sequential reasoning chains, we create Multiverse 1K by converting them into structured training data using an automated LLM-assisted pipeline, avoiding costly human annotations. Algorithmically, we design Multiverse Attention to separate parallel reasoning steps while keeping compatibility with causal attention for efficient training. Systematically, we implement Multiverse Engine to enable parallel inference. It features a dedicated scheduler that dynamically switches between sequential and parallel generation, triggered directly by the model. After a 3-hour fine-tuning with 1K examples, our Multiverse-32B stands as the only open-sourced non-AR model achieving performance on par with leading AR-LLMs of the same scale, evidenced by AIME24 & 25 scores of 54% and 46%, respectively. Moreover, our budget control experiments show that Multiverse-32B exhibits superior scaling, outperforming AR-LLMs by 1.87% on average using the same context length. Such scaling further leads to practical efficiency gain, achieving up to 2x speedup across varying batch sizes. We have open-sourced the entire Multiverse ecosystem, including data, model weights, engine, supporting tools, as well as complete data curation prompts and detailed training and evaluation recipes.
Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation
Retrieval-augmented generation (RAG) has shown impressive capability in providing reliable answer predictions and addressing hallucination problems. A typical RAG implementation uses powerful retrieval models to extract external information and large language models (LLMs) to generate answers. In contrast, recent LLM-based retrieval has gained attention for its substantial improvements in information retrieval (IR) due to the LLMs' semantic understanding capability. However, directly applying LLM to RAG systems presents challenges. This may cause feature locality problems as massive parametric knowledge can hinder effective usage of global information across the corpus; for example, an LLM-based retriever often inputs document summaries instead of full documents. Moreover, various pre-trained tasks in LLMs introduce variance, further weakening performance as a retriever. To address these issues, we propose a novel two-stage fine-tuning architecture called Invar-RAG. In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning to tackle feature locality issues. To enhance retrieval performance, we develop two patterns (invariant and variant patterns) and an invariance loss to reduce LLM variance. In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information. Experimental results show that Invar-RAG significantly outperforms existing baselines across three open-domain question answering (ODQA) datasets. Code is available in the Supplementary Material for reproducibility.
Neural Locality Sensitive Hashing for Entity Blocking
Locality-sensitive hashing (LSH) is a fundamental algorithmic technique widely employed in large-scale data processing applications, such as nearest-neighbor search, entity resolution, and clustering. However, its applicability in some real-world scenarios is limited due to the need for careful design of hashing functions that align with specific metrics. Existing LSH-based Entity Blocking solutions primarily rely on generic similarity metrics such as Jaccard similarity, whereas practical use cases often demand complex and customized similarity rules surpassing the capabilities of generic similarity metrics. Consequently, designing LSH functions for these customized similarity rules presents considerable challenges. In this research, we propose a neuralization approach to enhance locality-sensitive hashing by training deep neural networks to serve as hashing functions for complex metrics. We assess the effectiveness of this approach within the context of the entity resolution problem, which frequently involves the use of task-specific metrics in real-world applications. Specifically, we introduce NLSHBlock (Neural-LSH Block), a novel blocking methodology that leverages pre-trained language models, fine-tuned with a novel LSH-based loss function. Through extensive evaluations conducted on a diverse range of real-world datasets, we demonstrate the superiority of NLSHBlock over existing methods, exhibiting significant performance improvements. Furthermore, we showcase the efficacy of NLSHBlock in enhancing the performance of the entity matching phase, particularly within the semi-supervised setting.
Rethinking Predictive Modeling for LLM Routing: When Simple kNN Beats Complex Learned Routers
As large language models (LLMs) grow in scale and specialization, routing--selecting the best model for a given input--has become essential for efficient and effective deployment. While recent methods rely on complex learned routing strategies, their dependence on disparate training data and evaluation setups makes comparison and generalization difficult. In this work, we revisit LLM routing through the lens of simplicity. We show that a well-tuned k-Nearest Neighbors (kNN) approach not only matches but often outperforms state-of-the-art learned routers across diverse tasks. To support systematic evaluation, we introduce a suite of standardized routing benchmarks spanning instruction-following, question-answering, and reasoning tasks, as well as the first multi-modal routing dataset involving visual inputs. Our findings reveal that the locality properties of model performance in embedding space enable simple non-parametric methods to achieve strong routing decisions with lower sample complexity than parametric approaches. This challenges the prevailing trend toward sophisticated architectures and highlights the importance of thoroughly evaluating simple baselines before investing in complex solutions. To support reproducibility and further exploration, we will release all benchmarks and code upon publication.
EraRAG: Efficient and Incremental Retrieval Augmented Generation for Growing Corpora
Graph-based Retrieval-Augmented Generation (Graph-RAG) enhances large language models (LLMs) by structuring retrieval over an external corpus. However, existing approaches typically assume a static corpus, requiring expensive full-graph reconstruction whenever new documents arrive, limiting their scalability in dynamic, evolving environments. To address these limitations, we introduce EraRAG, a novel multi-layered Graph-RAG framework that supports efficient and scalable dynamic updates. Our method leverages hyperplane-based Locality-Sensitive Hashing (LSH) to partition and organize the original corpus into hierarchical graph structures, enabling efficient and localized insertions of new data without disrupting the existing topology. The design eliminates the need for retraining or costly recomputation while preserving high retrieval accuracy and low latency. Experiments on large-scale benchmarks demonstrate that EraRag achieves up to an order of magnitude reduction in update time and token consumption compared to existing Graph-RAG systems, while providing superior accuracy performance. This work offers a practical path forward for RAG systems that must operate over continually growing corpora, bridging the gap between retrieval efficiency and adaptability. Our code and data are available at https://github.com/EverM0re/EraRAG-Official.
LocalMamba: Visual State Space Model with Windowed Selective Scan
Recent advancements in state space models, notably Mamba, have demonstrated significant progress in modeling long sequences for tasks like language understanding. Yet, their application in vision tasks has not markedly surpassed the performance of traditional Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). This paper posits that the key to enhancing Vision Mamba (ViM) lies in optimizing scan directions for sequence modeling. Traditional ViM approaches, which flatten spatial tokens, overlook the preservation of local 2D dependencies, thereby elongating the distance between adjacent tokens. We introduce a novel local scanning strategy that divides images into distinct windows, effectively capturing local dependencies while maintaining a global perspective. Additionally, acknowledging the varying preferences for scan patterns across different network layers, we propose a dynamic method to independently search for the optimal scan choices for each layer, substantially improving performance. Extensive experiments across both plain and hierarchical models underscore our approach's superiority in effectively capturing image representations. For example, our model significantly outperforms Vim-Ti by 3.1% on ImageNet with the same 1.5G FLOPs. Code is available at: https://github.com/hunto/LocalMamba.
UniEdit: A Unified Knowledge Editing Benchmark for Large Language Models
Model editing aims to enhance the accuracy and reliability of large language models (LLMs) by efficiently adjusting their internal parameters. Currently, most LLM editing datasets are confined to narrow knowledge domains and cover a limited range of editing evaluation. They often overlook the broad scope of editing demands and the diversity of ripple effects resulting from edits. In this context, we introduce UniEdit, a unified benchmark for LLM editing grounded in open-domain knowledge. First, we construct editing samples by selecting entities from 25 common domains across five major categories, utilizing the extensive triple knowledge available in open-domain knowledge graphs to ensure comprehensive coverage of the knowledge domains. To address the issues of generality and locality in editing, we design an Neighborhood Multi-hop Chain Sampling (NMCS) algorithm to sample subgraphs based on a given knowledge piece to entail comprehensive ripple effects to evaluate. Finally, we employ proprietary LLMs to convert the sampled knowledge subgraphs into natural language text, guaranteeing grammatical accuracy and syntactical diversity. Extensive statistical analysis confirms the scale, comprehensiveness, and diversity of our UniEdit benchmark. We conduct comprehensive experiments across multiple LLMs and editors, analyzing their performance to highlight strengths and weaknesses in editing across open knowledge domains and various evaluation criteria, thereby offering valuable insights for future research endeavors.
Efficient Localized Inference for Large Graphical Models
We propose a new localized inference algorithm for answering marginalization queries in large graphical models with the correlation decay property. Given a query variable and a large graphical model, we define a much smaller model in a local region around the query variable in the target model so that the marginal distribution of the query variable can be accurately approximated. We introduce two approximation error bounds based on the Dobrushin's comparison theorem and apply our bounds to derive a greedy expansion algorithm that efficiently guides the selection of neighbor nodes for localized inference. We verify our theoretical bounds on various datasets and demonstrate that our localized inference algorithm can provide fast and accurate approximation for large graphical models.
Overcoming Long-Context Limitations of State-Space Models via Context-Dependent Sparse Attention
Efficient long-context modeling remains a critical challenge for natural language processing (NLP), as the time complexity of the predominant Transformer architecture scales quadratically with the sequence length. While state-space models (SSMs) offer alternative sub-quadratic solutions, they struggle to capture long-range dependencies effectively. In this work, we focus on analyzing and improving the long-context modeling capabilities of SSMs. We show that the widely used synthetic task, associative recall, which requires a model to recall a value associated with a single key without context, insufficiently represents the complexities of real-world long-context modeling. To address this limitation, we extend the associative recall to a novel synthetic task, joint recall, which requires a model to recall the value associated with a key given in a specified context. Theoretically, we prove that SSMs do not have the expressiveness to solve multi-query joint recall in sub-quadratic time complexity. To resolve this issue, we propose a solution based on integrating SSMs with Context-Dependent Sparse Attention (CDSA), which has the expressiveness to solve multi-query joint recall with sub-quadratic computation. To bridge the gap between theoretical analysis and real-world applications, we propose locality-sensitive Hashing Attention with sparse Key Selection (HAX), which instantiates the theoretical solution and is further tailored to natural language domains. Extensive experiments on both synthetic and real-world long-context benchmarks show that HAX consistently outperforms SSM baselines and SSMs integrated with context-independent sparse attention (CISA).
Online hierarchical partitioning of the output space in extreme multi-label data stream
Mining data streams with multi-label outputs poses significant challenges due to evolving distributions, high-dimensional label spaces, sparse label occurrences, and complex label dependencies. Moreover, concept drift affects not only input distributions but also label correlations and imbalance ratios over time, complicating model adaptation. To address these challenges, structured learners are categorized into local and global methods. Local methods break down the task into simpler components, while global methods adapt the algorithm to the full output space, potentially yielding better predictions by exploiting label correlations. This work introduces iHOMER (Incremental Hierarchy Of Multi-label Classifiers), an online multi-label learning framework that incrementally partitions the label space into disjoint, correlated clusters without relying on predefined hierarchies. iHOMER leverages online divisive-agglomerative clustering based on Jaccard similarity and a global tree-based learner driven by a multivariate Bernoulli process to guide instance partitioning. To address non-stationarity, it integrates drift detection mechanisms at both global and local levels, enabling dynamic restructuring of label partitions and subtrees. Experiments across 23 real-world datasets show iHOMER outperforms 5 state-of-the-art global baselines, such as MLHAT, MLHT of Pruned Sets and iSOUPT, by 23\%, and 12 local baselines, such as binary relevance transformations of kNN, EFDT, ARF, and ADWIN bagging/boosting ensembles, by 32\%, establishing its robustness for online multi-label classification.
Locality-Aware Graph-Rewiring in GNNs
Graph Neural Networks (GNNs) are popular models for machine learning on graphs that typically follow the message-passing paradigm, whereby the feature of a node is updated recursively upon aggregating information over its neighbors. While exchanging messages over the input graph endows GNNs with a strong inductive bias, it can also make GNNs susceptible to over-squashing, thereby preventing them from capturing long-range interactions in the given graph. To rectify this issue, graph rewiring techniques have been proposed as a means of improving information flow by altering the graph connectivity. In this work, we identify three desiderata for graph-rewiring: (i) reduce over-squashing, (ii) respect the locality of the graph, and (iii) preserve the sparsity of the graph. We highlight fundamental trade-offs that occur between spatial and spectral rewiring techniques; while the former often satisfy (i) and (ii) but not (iii), the latter generally satisfy (i) and (iii) at the expense of (ii). We propose a novel rewiring framework that satisfies all of (i)--(iii) through a locality-aware sequence of rewiring operations. We then discuss a specific instance of such rewiring framework and validate its effectiveness on several real-world benchmarks, showing that it either matches or significantly outperforms existing rewiring approaches.
Hypercube-Based Retrieval-Augmented Generation for Scientific Question-Answering
Large language models (LLMs) often need to incorporate external knowledge to solve theme-specific problems. Retrieval-augmented generation (RAG) has shown its high promise, empowering LLMs to generate more qualified responses with retrieved external data and knowledge. However, most RAG methods retrieve relevant documents based on either sparse or dense retrieval methods or their combinations, which overlooks the essential, multi-dimensional, and structured semantic information present in documents. This structured information plays a critical role in finding concise yet highly relevant information for domain knowledge-intensive tasks, such as scientific question-answering (QA). In this work, we introduce a multi-dimensional (cube) structure, Hypercube, which can index and allocate documents in a pre-defined multi-dimensional space. Built on the hypercube, we further propose Hypercube-RAG, a novel RAG framework for precise and efficient retrieval. Given a query, Hypercube-RAG first decomposes it based on its entities, phrases, and topics along with pre-defined hypercube dimensions, and then retrieves relevant documents from cubes by aligning these decomposed components with corresponding dimensions. Experiments on three datasets across different domains demonstrate that our method improves response accuracy by 3.7% and retrieval accuracy by 5.3% over the strongest RAG baseline. It also boosts retrieval efficiency (speed) by one or two magnitudes faster than graph-based RAG. Notably, our Hypercube-RAG inherently offers explainability by revealing those underlying dimensions used for retrieval. The code and data are available at https://github.com/JimengShi/Hypercube-RAG.
Exploiting locality in high-dimensional factorial hidden Markov models
We propose algorithms for approximate filtering and smoothing in high-dimensional Factorial hidden Markov models. The approximation involves discarding, in a principled way, likelihood factors according to a notion of locality in a factor graph associated with the emission distribution. This allows the exponential-in-dimension cost of exact filtering and smoothing to be avoided. We prove that the approximation accuracy, measured in a local total variation norm, is "dimension-free" in the sense that as the overall dimension of the model increases the error bounds we derive do not necessarily degrade. A key step in the analysis is to quantify the error introduced by localizing the likelihood function in a Bayes' rule update. The factorial structure of the likelihood function which we exploit arises naturally when data have known spatial or network structure. We demonstrate the new algorithms on synthetic examples and a London Underground passenger flow problem, where the factor graph is effectively given by the train network.
TP-Aware Dequantization
In this paper, we present a novel method that reduces model inference latency during distributed deployment of Large Language Models (LLMs). Our contribution is an optimized inference deployment scheme that address the current limitations of state-of-the-art quantization kernels when used in conjunction with Tensor Parallel (TP). Our method preserves data locality in GPU memory access patterns and exploits a priori knowledge of TP to reduce global communication. We demonstrate an up to 1.81x speedup over existing methods for Llama-70B and up to 1.78x speedup for IBM WatsonX's Granite-20B MLP layer problem sizes on A100 and H100 NVIDIA DGX Systems for a variety of TP settings.
Multi-scale Attributed Node Embedding
We present network embedding algorithms that capture information about a node from the local distribution over node attributes around it, as observed over random walks following an approach similar to Skip-gram. Observations from neighborhoods of different sizes are either pooled (AE) or encoded distinctly in a multi-scale approach (MUSAE). Capturing attribute-neighborhood relationships over multiple scales is useful for a diverse range of applications, including latent feature identification across disconnected networks with similar attributes. We prove theoretically that matrices of node-feature pointwise mutual information are implicitly factorized by the embeddings. Experiments show that our algorithms are robust, computationally efficient and outperform comparable models on social networks and web graphs.
MultiHop-RAG: Benchmarking Retrieval-Augmented Generation for Multi-Hop Queries
Retrieval-augmented generation (RAG) augments large language models (LLM) by retrieving relevant knowledge, showing promising potential in mitigating LLM hallucinations and enhancing response quality, thereby facilitating the great adoption of LLMs in practice. However, we find that existing RAG systems are inadequate in answering multi-hop queries, which require retrieving and reasoning over multiple pieces of supporting evidence. Furthermore, to our knowledge, no existing RAG benchmarking dataset focuses on multi-hop queries. In this paper, we develop a novel dataset, MultiHop-RAG, which consists of a knowledge base, a large collection of multi-hop queries, their ground-truth answers, and the associated supporting evidence. We detail the procedure of building the dataset, utilizing an English news article dataset as the underlying RAG knowledge base. We demonstrate the benchmarking utility of MultiHop-RAG in two experiments. The first experiment compares different embedding models for retrieving evidence for multi-hop queries. In the second experiment, we examine the capabilities of various state-of-the-art LLMs, including GPT-4, PaLM, and Llama2-70B, in reasoning and answering multi-hop queries given the evidence. Both experiments reveal that existing RAG methods perform unsatisfactorily in retrieving and answering multi-hop queries. We hope MultiHop-RAG will be a valuable resource for the community in developing effective RAG systems, thereby facilitating greater adoption of LLMs in practice. The MultiHop-RAG and implemented RAG system is publicly available at https://github.com/yixuantt/MultiHop-RAG/.
Multi-head Spatial-Spectral Mamba for Hyperspectral Image Classification
Spatial-Spectral Mamba (SSM) improves computational efficiency and captures long-range dependencies, addressing Transformer limitations. However, traditional Mamba models overlook rich spectral information in HSIs and struggle with high dimensionality and sequential data. To address these issues, we propose the SSM with multi-head self-attention and token enhancement (MHSSMamba). This model integrates spectral and spatial information by enhancing spectral tokens and using multi-head attention to capture complex relationships between spectral bands and spatial locations. It also manages long-range dependencies and the sequential nature of HSI data, preserving contextual information across spectral bands. MHSSMamba achieved remarkable classification accuracies of 97.62\% on Pavia University, 96.92\% on the University of Houston, 96.85\% on Salinas, and 99.49\% on Wuhan-longKou datasets. The source code is available at https://github.com/MHassaanButt/MHA\_SS\_Mamba{GitHub}.
Finding Dori: Memorization in Text-to-Image Diffusion Models Is Less Local Than Assumed
Text-to-image diffusion models (DMs) have achieved remarkable success in image generation. However, concerns about data privacy and intellectual property remain due to their potential to inadvertently memorize and replicate training data. Recent mitigation efforts have focused on identifying and pruning weights responsible for triggering replication, based on the assumption that memorization can be localized. Our research assesses the robustness of these pruning-based approaches. We demonstrate that even after pruning, minor adjustments to text embeddings of input prompts are sufficient to re-trigger data replication, highlighting the fragility of these defenses. Furthermore, we challenge the fundamental assumption of memorization locality, by showing that replication can be triggered from diverse locations within the text embedding space, and follows different paths in the model. Our findings indicate that existing mitigation strategies are insufficient and underscore the need for methods that truly remove memorized content, rather than attempting to suppress its retrieval. As a first step in this direction, we introduce a novel adversarial fine-tuning method that iteratively searches for replication triggers and updates the model to increase robustness. Through our research, we provide fresh insights into the nature of memorization in text-to-image DMs and a foundation for building more trustworthy and compliant generative AI.
Towards White Box Deep Learning
Deep neural networks learn fragile "shortcut" features, rendering them difficult to interpret (black box) and vulnerable to adversarial attacks. This paper proposes semantic features as a general architectural solution to this problem. The main idea is to make features locality-sensitive in the adequate semantic topology of the domain, thus introducing a strong regularization. The proof of concept network is lightweight, inherently interpretable and achieves almost human-level adversarial test metrics - with no adversarial training! These results and the general nature of the approach warrant further research on semantic features. The code is available at https://github.com/314-Foundation/white-box-nn
Ewald-based Long-Range Message Passing for Molecular Graphs
Neural architectures that learn potential energy surfaces from molecular data have undergone fast improvement in recent years. A key driver of this success is the Message Passing Neural Network (MPNN) paradigm. Its favorable scaling with system size partly relies upon a spatial distance limit on messages. While this focus on locality is a useful inductive bias, it also impedes the learning of long-range interactions such as electrostatics and van der Waals forces. To address this drawback, we propose Ewald message passing: a nonlocal Fourier space scheme which limits interactions via a cutoff on frequency instead of distance, and is theoretically well-founded in the Ewald summation method. It can serve as an augmentation on top of existing MPNN architectures as it is computationally inexpensive and agnostic to architectural details. We test the approach with four baseline models and two datasets containing diverse periodic (OC20) and aperiodic structures (OE62). We observe robust improvements in energy mean absolute errors across all models and datasets, averaging 10% on OC20 and 16% on OE62. Our analysis shows an outsize impact of these improvements on structures with high long-range contributions to the ground truth energy.
Mix and Localize: Localizing Sound Sources in Mixtures
We present a method for simultaneously localizing multiple sound sources within a visual scene. This task requires a model to both group a sound mixture into individual sources, and to associate them with a visual signal. Our method jointly solves both tasks at once, using a formulation inspired by the contrastive random walk of Jabri et al. We create a graph in which images and separated sounds correspond to nodes, and train a random walker to transition between nodes from different modalities with high return probability. The transition probabilities for this walk are determined by an audio-visual similarity metric that is learned by our model. We show through experiments with musical instruments and human speech that our model can successfully localize multiple sounds, outperforming other self-supervised methods. Project site: https://hxixixh.github.io/mix-and-localize
MUVERA: Multi-Vector Retrieval via Fixed Dimensional Encodings
Neural embedding models have become a fundamental component of modern information retrieval (IR) pipelines. These models produce a single embedding x in R^d per data-point, allowing for fast retrieval via highly optimized maximum inner product search (MIPS) algorithms. Recently, beginning with the landmark ColBERT paper, multi-vector models, which produce a set of embedding per data point, have achieved markedly superior performance for IR tasks. Unfortunately, using these models for IR is computationally expensive due to the increased complexity of multi-vector retrieval and scoring. In this paper, we introduce MUVERA (MUlti-VEctor Retrieval Algorithm), a retrieval mechanism which reduces multi-vector similarity search to single-vector similarity search. This enables the usage of off-the-shelf MIPS solvers for multi-vector retrieval. MUVERA asymmetrically generates Fixed Dimensional Encodings (FDEs) of queries and documents, which are vectors whose inner product approximates multi-vector similarity. We prove that FDEs give high-quality epsilon-approximations, thus providing the first single-vector proxy for multi-vector similarity with theoretical guarantees. Empirically, we find that FDEs achieve the same recall as prior state-of-the-art heuristics while retrieving 2-5times fewer candidates. Compared to prior state of the art implementations, MUVERA achieves consistently good end-to-end recall and latency across a diverse set of the BEIR retrieval datasets, achieving an average of 10% improved recall with 90% lower latency.
pLSTM: parallelizable Linear Source Transition Mark networks
Modern recurrent architectures, such as xLSTM and Mamba, have recently challenged the Transformer in language modeling. However, their structure constrains their applicability to sequences only or requires processing multi-dimensional data structures, such as images or molecular graphs, in a pre-defined sequential order. In contrast, Multi-Dimensional RNNs (MDRNNs) are well suited for data with a higher level structure, like 2D grids, trees, and directed acyclic graphs (DAGs). In this work, we extend the notion of multi-dimensionality to linear RNNs. We introduce parallelizable Linear Source Transition Mark networks (pLSTMs) using Source, Transition, and Mark gates that act on the line graph of a general DAG. This enables parallelization in analogy to parallel associative scans and the chunkwise-recurrent form of sequential linear RNNs, but for DAGs. For regular grids (1D and 2D), like images, this scheme can be efficiently implemented using einsum operations, concatenations, and padding in logarithmic time. pLSTMs tackle the vanishing/exploding activation/gradient problem for long distances in DAGs via two distinct modes: a directed propagation mode (P-mode) and a diffusive distribution mode (D-mode). To showcase the long-range capabilities of pLSTM, we introduce arrow-pointing extrapolation as a synthetic computer vision task that contains long-distance directional information. We demonstrate that pLSTMs generalize well to larger image sizes, whereas Transformers struggle to extrapolate. On established molecular graph and computer vision benchmarks, pLSTMs also show strong performance. Code and Datasets are available at: https://github.com/ml-jku/plstm_experiments.
Preserving Modality Structure Improves Multi-Modal Learning
Self-supervised learning on large-scale multi-modal datasets allows learning semantically meaningful embeddings in a joint multi-modal representation space without relying on human annotations. These joint embeddings enable zero-shot cross-modal tasks like retrieval and classification. However, these methods often struggle to generalize well on out-of-domain data as they ignore the semantic structure present in modality-specific embeddings. In this context, we propose a novel Semantic-Structure-Preserving Consistency approach to improve generalizability by preserving the modality-specific relationships in the joint embedding space. To capture modality-specific semantic relationships between samples, we propose to learn multiple anchors and represent the multifaceted relationship between samples with respect to their relationship with these anchors. To assign multiple anchors to each sample, we propose a novel Multi-Assignment Sinkhorn-Knopp algorithm. Our experimentation demonstrates that our proposed approach learns semantically meaningful anchors in a self-supervised manner. Furthermore, our evaluation on MSR-VTT and YouCook2 datasets demonstrates that our proposed multi-anchor assignment based solution achieves state-of-the-art performance and generalizes to both inand out-of-domain datasets. Code: https://github.com/Swetha5/Multi_Sinkhorn_Knopp
LoRA-Contextualizing Adaptation of Large Multimodal Models for Long Document Understanding
Large multimodal models (LMMs) have recently shown great progress in text-rich image understanding, yet they still struggle with complex, multi-page, visually-rich documents. Traditional methods using document parsers for retrieval-augmented generation suffer from performance and efficiency limitations, while directly presenting all pages to LMMs leads to inefficiencies, especially with lengthy documents. In this work, we present a novel framework named LoRA-Contextualizing Adaptation of Large multimodal models (LoCAL), which broadens the capabilities of any LMM to support long-document understanding. We demonstrate that LMMs can effectively serve as multimodal retrievers, fetching relevant pages to answer user questions based on these pages. LoCAL is implemented with two specific LMM adapters: one for evidence page retrieval and another for question answering. Empirical results show state-of-the-art performance on public benchmarks, demonstrating the effectiveness of LoCAL.
Revisiting Link Prediction: A Data Perspective
Link prediction, a fundamental task on graphs, has proven indispensable in various applications, e.g., friend recommendation, protein analysis, and drug interaction prediction. However, since datasets span a multitude of domains, they could have distinct underlying mechanisms of link formation. Evidence in existing literature underscores the absence of a universally best algorithm suitable for all datasets. In this paper, we endeavor to explore principles of link prediction across diverse datasets from a data-centric perspective. We recognize three fundamental factors critical to link prediction: local structural proximity, global structural proximity, and feature proximity. We then unearth relationships among those factors where (i) global structural proximity only shows effectiveness when local structural proximity is deficient. (ii) The incompatibility can be found between feature and structural proximity. Such incompatibility leads to GNNs for Link Prediction (GNN4LP) consistently underperforming on edges where the feature proximity factor dominates. Inspired by these new insights from a data perspective, we offer practical instruction for GNN4LP model design and guidelines for selecting appropriate benchmark datasets for more comprehensive evaluations.
Spatial Mixture-of-Experts
Many data have an underlying dependence on spatial location; it may be weather on the Earth, a simulation on a mesh, or a registered image. Yet this feature is rarely taken advantage of, and violates common assumptions made by many neural network layers, such as translation equivariance. Further, many works that do incorporate locality fail to capture fine-grained structure. To address this, we introduce the Spatial Mixture-of-Experts (SMoE) layer, a sparsely-gated layer that learns spatial structure in the input domain and routes experts at a fine-grained level to utilize it. We also develop new techniques to train SMoEs, including a self-supervised routing loss and damping expert errors. Finally, we show strong results for SMoEs on numerous tasks, and set new state-of-the-art results for medium-range weather prediction and post-processing ensemble weather forecasts.
Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs
Recently, considerable efforts have been directed towards compressing Large Language Models (LLMs), which showcase groundbreaking capabilities across diverse applications but entail significant deployment costs due to their large sizes. Meanwhile, much less attention has been given to mitigating the costs associated with deploying multiple LLMs of varying sizes despite its practical significance. Thus, this paper introduces any-precision LLM, extending the concept of any-precision DNN to LLMs. Addressing challenges in any-precision LLM, we propose a lightweight method for any-precision quantization of LLMs, leveraging a post-training quantization framework, and develop a specialized software engine for its efficient serving. As a result, our solution significantly reduces the high costs of deploying multiple, different-sized LLMs by overlaying LLMs quantized to varying bit-widths, such as 3, 4, ..., n bits, into a memory footprint comparable to a single n-bit LLM. All the supported LLMs with varying bit-widths demonstrate state-of-the-art model quality and inference throughput, proving itself to be a compelling option for deployment of multiple, different-sized LLMs. The source code will be publicly available soon.
Graph-Mamba: Towards Long-Range Graph Sequence Modeling with Selective State Spaces
Attention mechanisms have been widely used to capture long-range dependencies among nodes in Graph Transformers. Bottlenecked by the quadratic computational cost, attention mechanisms fail to scale in large graphs. Recent improvements in computational efficiency are mainly achieved by attention sparsification with random or heuristic-based graph subsampling, which falls short in data-dependent context reasoning. State space models (SSMs), such as Mamba, have gained prominence for their effectiveness and efficiency in modeling long-range dependencies in sequential data. However, adapting SSMs to non-sequential graph data presents a notable challenge. In this work, we introduce Graph-Mamba, the first attempt to enhance long-range context modeling in graph networks by integrating a Mamba block with the input-dependent node selection mechanism. Specifically, we formulate graph-centric node prioritization and permutation strategies to enhance context-aware reasoning, leading to a substantial improvement in predictive performance. Extensive experiments on ten benchmark datasets demonstrate that Graph-Mamba outperforms state-of-the-art methods in long-range graph prediction tasks, with a fraction of the computational cost in both FLOPs and GPU memory consumption. The code and models are publicly available at https://github.com/bowang-lab/Graph-Mamba.
Neighborhood-aware Scalable Temporal Network Representation Learning
Temporal networks have been widely used to model real-world complex systems such as financial systems and e-commerce systems. In a temporal network, the joint neighborhood of a set of nodes often provides crucial structural information useful for predicting whether they may interact at a certain time. However, recent representation learning methods for temporal networks often fail to extract such information or depend on online construction of structural features, which is time-consuming. To address the issue, this work proposes Neighborhood-Aware Temporal network model (NAT). For each node in the network, NAT abandons the commonly-used one-single-vector-based representation while adopting a novel dictionary-type neighborhood representation. Such a dictionary representation records a downsampled set of the neighboring nodes as keys, and allows fast construction of structural features for a joint neighborhood of multiple nodes. We also design a dedicated data structure termed N-cache to support parallel access and update of those dictionary representations on GPUs. NAT gets evaluated over seven real-world large-scale temporal networks. NAT not only outperforms all cutting-edge baselines by averaged 1.2% and 4.2% in transductive and inductive link prediction accuracy, respectively, but also keeps scalable by achieving a speed-up of 4.1-76.7x against the baselines that adopt joint structural features and achieves a speed-up of 1.6-4.0x against the baselines that cannot adopt those features. The link to the code: https: //github.com/Graph-COM/Neighborhood-Aware-Temporal-Network.
Deep Multi-View Enhancement Hashing for Image Retrieval
Hashing is an efficient method for nearest neighbor search in large-scale data space by embedding high-dimensional feature descriptors into a similarity preserving Hamming space with a low dimension. However, large-scale high-speed retrieval through binary code has a certain degree of reduction in retrieval accuracy compared to traditional retrieval methods. We have noticed that multi-view methods can well preserve the diverse characteristics of data. Therefore, we try to introduce the multi-view deep neural network into the hash learning field, and design an efficient and innovative retrieval model, which has achieved a significant improvement in retrieval performance. In this paper, we propose a supervised multi-view hash model which can enhance the multi-view information through neural networks. This is a completely new hash learning method that combines multi-view and deep learning methods. The proposed method utilizes an effective view stability evaluation method to actively explore the relationship among views, which will affect the optimization direction of the entire network. We have also designed a variety of multi-data fusion methods in the Hamming space to preserve the advantages of both convolution and multi-view. In order to avoid excessive computing resources on the enhancement procedure during retrieval, we set up a separate structure called memory network which participates in training together. The proposed method is systematically evaluated on the CIFAR-10, NUS-WIDE and MS-COCO datasets, and the results show that our method significantly outperforms the state-of-the-art single-view and multi-view hashing methods.
LDReg: Local Dimensionality Regularized Self-Supervised Learning
Representations learned via self-supervised learning (SSL) can be susceptible to dimensional collapse, where the learned representation subspace is of extremely low dimensionality and thus fails to represent the full data distribution and modalities. Dimensional collapse also known as the "underfilling" phenomenon is one of the major causes of degraded performance on downstream tasks. Previous work has investigated the dimensional collapse problem of SSL at a global level. In this paper, we demonstrate that representations can span over high dimensional space globally, but collapse locally. To address this, we propose a method called local dimensionality regularization (LDReg). Our formulation is based on the derivation of the Fisher-Rao metric to compare and optimize local distance distributions at an asymptotically small radius for each data point. By increasing the local intrinsic dimensionality, we demonstrate through a range of experiments that LDReg improves the representation quality of SSL. The results also show that LDReg can regularize dimensionality at both local and global levels.
Subgraph Permutation Equivariant Networks
In this work we develop a new method, named Sub-graph Permutation Equivariant Networks (SPEN), which provides a framework for building graph neural networks that operate on sub-graphs, while using a base update function that is permutation equivariant, that are equivariant to a novel choice of automorphism group. Message passing neural networks have been shown to be limited in their expressive power and recent approaches to over come this either lack scalability or require structural information to be encoded into the feature space. The general framework presented here overcomes the scalability issues associated with global permutation equivariance by operating more locally on sub-graphs. In addition, through operating on sub-graphs the expressive power of higher-dimensional global permutation equivariant networks is improved; this is due to fact that two non-distinguishable graphs often contain distinguishable sub-graphs. Furthermore, the proposed framework only requires a choice of k-hops for creating ego-network sub-graphs and a choice of representation space to be used for each layer, which makes the method easily applicable across a range of graph based domains. We experimentally validate the method on a range of graph benchmark classification tasks, demonstrating statistically indistinguishable results from the state-of-the-art on six out of seven benchmarks. Further, we demonstrate that the use of local update functions offers a significant improvement in GPU memory over global methods.
MagicPIG: LSH Sampling for Efficient LLM Generation
Large language models (LLMs) with long context windows have gained significant attention. However, the KV cache, stored to avoid re-computation, becomes a bottleneck. Various dynamic sparse or TopK-based attention approximation methods have been proposed to leverage the common insight that attention is sparse. In this paper, we first show that TopK attention itself suffers from quality degradation in certain downstream tasks because attention is not always as sparse as expected. Rather than selecting the keys and values with the highest attention scores, sampling with theoretical guarantees can provide a better estimation for attention output. To make the sampling-based approximation practical in LLM generation, we propose MagicPIG, a heterogeneous system based on Locality Sensitive Hashing (LSH). MagicPIG significantly reduces the workload of attention computation while preserving high accuracy for diverse tasks. MagicPIG stores the LSH hash tables and runs the attention computation on the CPU, which allows it to serve longer contexts and larger batch sizes with high approximation accuracy. MagicPIG can improve decoding throughput by up to 5times across various GPU hardware and achieve 54ms decoding latency on a single RTX 4090 for Llama-3.1-8B-Instruct model with a context of 96k tokens. The code is available at https://github.com/Infini-AI-Lab/MagicPIG.
Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks
State-of-the-art parameter-efficient fine-tuning methods rely on introducing adapter modules between the layers of a pretrained language model. However, such modules are trained separately for each task and thus do not enable sharing information across tasks. In this paper, we show that we can learn adapter parameters for all layers and tasks by generating them using shared hypernetworks, which condition on task, adapter position, and layer id in a transformer model. This parameter-efficient multi-task learning framework allows us to achieve the best of both worlds by sharing knowledge across tasks via hypernetworks while enabling the model to adapt to each individual task through task-specific adapters. Experiments on the well-known GLUE benchmark show improved performance in multi-task learning while adding only 0.29% parameters per task. We additionally demonstrate substantial performance improvements in few-shot domain generalization across a variety of tasks. Our code is publicly available in https://github.com/rabeehk/hyperformer.
G3: An Effective and Adaptive Framework for Worldwide Geolocalization Using Large Multi-Modality Models
Worldwide geolocalization aims to locate the precise location at the coordinate level of photos taken anywhere on the Earth. It is very challenging due to 1) the difficulty of capturing subtle location-aware visual semantics, and 2) the heterogeneous geographical distribution of image data. As a result, existing studies have clear limitations when scaled to a worldwide context. They may easily confuse distant images with similar visual contents, or cannot adapt to various locations worldwide with different amounts of relevant data. To resolve these limitations, we propose G3, a novel framework based on Retrieval-Augmented Generation (RAG). In particular, G3 consists of three steps, i.e., Geo-alignment, Geo-diversification, and Geo-verification to optimize both retrieval and generation phases of worldwide geolocalization. During Geo-alignment, our solution jointly learns expressive multi-modal representations for images, GPS and textual descriptions, which allows us to capture location-aware semantics for retrieving nearby images for a given query. During Geo-diversification, we leverage a prompt ensembling method that is robust to inconsistent retrieval performance for different image queries. Finally, we combine both retrieved and generated GPS candidates in Geo-verification for location prediction. Experiments on two well-established datasets IM2GPS3k and YFCC4k verify the superiority of G3 compared to other state-of-the-art methods.
From Unaligned to Aligned: Scaling Multilingual LLMs with Multi-Way Parallel Corpora
Continued pretraining and instruction tuning on large-scale multilingual data have proven to be effective in scaling large language models (LLMs) to low-resource languages. However, the unaligned nature of such data limits its ability to effectively capture cross-lingual semantics. In contrast, multi-way parallel data, where identical content is aligned across multiple languages, provides stronger cross-lingual consistency and offers greater potential for improving multilingual performance. In this paper, we introduce a large-scale, high-quality multi-way parallel corpus, TED2025, based on TED Talks. The corpus spans 113 languages, with up to 50 languages aligned in parallel, ensuring extensive multilingual coverage. Using this dataset, we investigate best practices for leveraging multi-way parallel data to enhance LLMs, including strategies for continued pretraining, instruction tuning, and the analysis of key influencing factors. Experiments on six multilingual benchmarks show that models trained on multiway parallel data consistently outperform those trained on unaligned multilingual data.
Think-in-Memory: Recalling and Post-thinking Enable LLMs with Long-Term Memory
Memory-augmented Large Language Models (LLMs) have demonstrated remarkable performance in long-term human-machine interactions, which basically relies on iterative recalling and reasoning of history to generate high-quality responses. However, such repeated recall-reason steps easily produce biased thoughts, i.e., inconsistent reasoning results when recalling the same history for different questions. On the contrary, humans can keep thoughts in the memory and recall them without repeated reasoning. Motivated by this human capability, we propose a novel memory mechanism called TiM (Think-in-Memory) that enables LLMs to maintain an evolved memory for storing historical thoughts along the conversation stream. The TiM framework consists of two crucial stages: (1) before generating a response, a LLM agent recalls relevant thoughts from memory, and (2) after generating a response, the LLM agent post-thinks and incorporates both historical and new thoughts to update the memory. Thus, TiM can eliminate the issue of repeated reasoning by saving the post-thinking thoughts as the history. Besides, we formulate the basic principles to organize the thoughts in memory based on the well-established operations, (i.e., insert, forget, and merge operations), allowing for dynamic updates and evolution of the thoughts. Furthermore, we introduce Locality-Sensitive Hashing into TiM to achieve efficient retrieval for the long-term conversations. We conduct qualitative and quantitative experiments on real-world and simulated dialogues covering a wide range of topics, demonstrating that equipping existing LLMs with TiM significantly enhances their performance in generating responses for long-term interactions.
Weighted Flow Diffusion for Local Graph Clustering with Node Attributes: an Algorithm and Statistical Guarantees
Local graph clustering methods aim to detect small clusters in very large graphs without the need to process the whole graph. They are fundamental and scalable tools for a wide range of tasks such as local community detection, node ranking and node embedding. While prior work on local graph clustering mainly focuses on graphs without node attributes, modern real-world graph datasets typically come with node attributes that provide valuable additional information. We present a simple local graph clustering algorithm for graphs with node attributes, based on the idea of diffusing mass locally in the graph while accounting for both structural and attribute proximities. Using high-dimensional concentration results, we provide statistical guarantees on the performance of the algorithm for the recovery of a target cluster with a single seed node. We give conditions under which a target cluster generated from a fairly general contextual random graph model, which includes both the stochastic block model and the planted cluster model as special cases, can be fully recovered with bounded false positives. Empirically, we validate all theoretical claims using synthetic data, and we show that incorporating node attributes leads to superior local clustering performances using real-world graph datasets.
Fault-Tolerant Strassen-Like Matrix Multiplication
In this study, we propose a simple method for fault-tolerant Strassen-like matrix multiplications. The proposed method is based on using two distinct Strassen-like algorithms instead of replicating a given one. We have realized that using two different algorithms, new check relations arise resulting in more local computations. These local computations are found using computer aided search. To improve performance, special parity (extra) sub-matrix multiplications (PSMMs) are generated (two of them) at the expense of increasing communication/computation cost of the system. Our preliminary results demonstrate that the proposed method outperforms a Strassen-like algorithm with two copies and secures a very close performance to three copy version using only 2 PSMMs, reducing the total number of compute nodes by around 24\% i.e., from 21 to 16.
Multimodal Graph Learning for Generative Tasks
Multimodal learning combines multiple data modalities, broadening the types and complexity of data our models can utilize: for example, from plain text to image-caption pairs. Most multimodal learning algorithms focus on modeling simple one-to-one pairs of data from two modalities, such as image-caption pairs, or audio-text pairs. However, in most real-world settings, entities of different modalities interact with each other in more complex and multifaceted ways, going beyond one-to-one mappings. We propose to represent these complex relationships as graphs, allowing us to capture data with any number of modalities, and with complex relationships between modalities that can flexibly vary from one sample to another. Toward this goal, we propose Multimodal Graph Learning (MMGL), a general and systematic framework for capturing information from multiple multimodal neighbors with relational structures among them. In particular, we focus on MMGL for generative tasks, building upon pretrained Language Models (LMs), aiming to augment their text generation with multimodal neighbor contexts. We study three research questions raised by MMGL: (1) how can we infuse multiple neighbor information into the pretrained LMs, while avoiding scalability issues? (2) how can we infuse the graph structure information among multimodal neighbors into the LMs? and (3) how can we finetune the pretrained LMs to learn from the neighbor context in a parameter-efficient manner? We conduct extensive experiments to answer these three questions on MMGL and analyze the empirical results to pave the way for future MMGL research.
Fisher Information Embedding for Node and Graph Learning
Attention-based graph neural networks (GNNs), such as graph attention networks (GATs), have become popular neural architectures for processing graph-structured data and learning node embeddings. Despite their empirical success, these models rely on labeled data and the theoretical properties of these models have yet to be fully understood. In this work, we propose a novel attention-based node embedding framework for graphs. Our framework builds upon a hierarchical kernel for multisets of subgraphs around nodes (e.g. neighborhoods) and each kernel leverages the geometry of a smooth statistical manifold to compare pairs of multisets, by "projecting" the multisets onto the manifold. By explicitly computing node embeddings with a manifold of Gaussian mixtures, our method leads to a new attention mechanism for neighborhood aggregation. We provide theoretical insights into generalizability and expressivity of our embeddings, contributing to a deeper understanding of attention-based GNNs. We propose both efficient unsupervised and supervised methods for learning the embeddings. Through experiments on several node classification benchmarks, we demonstrate that our proposed method outperforms existing attention-based graph models like GATs. Our code is available at https://github.com/BorgwardtLab/fisher_information_embedding.
Global Proxy-based Hard Mining for Visual Place Recognition
Learning deep representations for visual place recognition is commonly performed using pairwise or triple loss functions that highly depend on the hardness of the examples sampled at each training iteration. Existing techniques address this by using computationally and memory expensive offline hard mining, which consists of identifying, at each iteration, the hardest samples from the training set. In this paper we introduce a new technique that performs global hard mini-batch sampling based on proxies. To do so, we add a new end-to-end trainable branch to the network, which generates efficient place descriptors (one proxy for each place). These proxy representations are thus used to construct a global index that encompasses the similarities between all places in the dataset, allowing for highly informative mini-batch sampling at each training iteration. Our method can be used in combination with all existing pairwise and triplet loss functions with negligible additional memory and computation cost. We run extensive ablation studies and show that our technique brings new state-of-the-art performance on multiple large-scale benchmarks such as Pittsburgh, Mapillary-SLS and SPED. In particular, our method provides more than 100% relative improvement on the challenging Nordland dataset. Our code is available at https://github.com/amaralibey/GPM
Parallel Learning by Multitasking Neural Networks
A modern challenge of Artificial Intelligence is learning multiple patterns at once (i.e.parallel learning). While this can not be accomplished by standard Hebbian associative neural networks, in this paper we show how the Multitasking Hebbian Network (a variation on theme of the Hopfield model working on sparse data-sets) is naturally able to perform this complex task. We focus on systems processing in parallel a finite (up to logarithmic growth in the size of the network) amount of patterns, mirroring the low-storage level of standard associative neural networks at work with pattern recognition. For mild dilution in the patterns, the network handles them hierarchically, distributing the amplitudes of their signals as power-laws w.r.t. their information content (hierarchical regime), while, for strong dilution, all the signals pertaining to all the patterns are raised with the same strength (parallel regime). Further, confined to the low-storage setting (i.e., far from the spin glass limit), the presence of a teacher neither alters the multitasking performances nor changes the thresholds for learning: the latter are the same whatever the training protocol is supervised or unsupervised. Results obtained through statistical mechanics, signal-to-noise technique and Monte Carlo simulations are overall in perfect agreement and carry interesting insights on multiple learning at once: for instance, whenever the cost-function of the model is minimized in parallel on several patterns (in its description via Statistical Mechanics), the same happens to the standard sum-squared error Loss function (typically used in Machine Learning).
1-bit AI Infra: Part 1.1, Fast and Lossless BitNet b1.58 Inference on CPUs
Recent advances in 1-bit Large Language Models (LLMs), such as BitNet and BitNet b1.58, present a promising approach to enhancing the efficiency of LLMs in terms of speed and energy consumption. These developments also enable local LLM deployment across a broad range of devices. In this work, we introduce bitnet.cpp, a tailored software stack designed to unlock the full potential of 1-bit LLMs. Specifically, we develop a set of kernels to support fast and lossless inference of ternary BitNet b1.58 LLMs on CPUs. Extensive experiments demonstrate that bitnet.cpp achieves significant speedups, ranging from 2.37x to 6.17x on x86 CPUs and from 1.37x to 5.07x on ARM CPUs, across various model sizes. The code is available at https://github.com/microsoft/BitNet.
Fast Transformer Decoding: One Write-Head is All You Need
Multi-head attention layers, as used in the Transformer neural sequence model, are a powerful alternative to RNNs for moving information across and between sequences. While training these layers is generally fast and simple, due to parallelizability across the length of the sequence, incremental inference (where such paralleization is impossible) is often slow, due to the memory-bandwidth cost of repeatedly loading the large "keys" and "values" tensors. We propose a variant called multi-query attention, where the keys and values are shared across all of the different attention "heads", greatly reducing the size of these tensors and hence the memory bandwidth requirements of incremental decoding. We verify experimentally that the resulting models can indeed be much faster to decode, and incur only minor quality degradation from the baseline.
MHS-VM: Multi-Head Scanning in Parallel Subspaces for Vision Mamba
Recently, State Space Models (SSMs), with Mamba as a prime example, have shown great promise for long-range dependency modeling with linear complexity. Then, Vision Mamba and the subsequent architectures are presented successively, and they perform well on visual tasks. The crucial step of applying Mamba to visual tasks is to construct 2D visual features in sequential manners. To effectively organize and construct visual features within the 2D image space through 1D selective scan, we propose a novel Multi-Head Scan (MHS) module. The embeddings extracted from the preceding layer are projected into multiple lower-dimensional subspaces. Subsequently, within each subspace, the selective scan is performed along distinct scan routes. The resulting sub-embeddings, obtained from the multi-head scan process, are then integrated and ultimately projected back into the high-dimensional space. Moreover, we incorporate a Scan Route Attention (SRA) mechanism to enhance the module's capability to discern complex structures. To validate the efficacy of our module, we exclusively substitute the 2D-Selective-Scan (SS2D) block in VM-UNet with our proposed module, and we train our models from scratch without using any pre-trained weights. The results indicate a significant improvement in performance while reducing the parameters of the original VM-UNet. The code for this study is publicly available at https://github.com/PixDeep/MHS-VM.
Local Augmentation for Graph Neural Networks
Graph Neural Networks (GNNs) have achieved remarkable performance on graph-based tasks. The key idea for GNNs is to obtain informative representation through aggregating information from local neighborhoods. However, it remains an open question whether the neighborhood information is adequately aggregated for learning representations of nodes with few neighbors. To address this, we propose a simple and efficient data augmentation strategy, local augmentation, to learn the distribution of the node features of the neighbors conditioned on the central node's feature and enhance GNN's expressive power with generated features. Local augmentation is a general framework that can be applied to any GNN model in a plug-and-play manner. It samples feature vectors associated with each node from the learned conditional distribution as additional input for the backbone model at each training iteration. Extensive experiments and analyses show that local augmentation consistently yields performance improvement when applied to various GNN architectures across a diverse set of benchmarks. For example, experiments show that plugging in local augmentation to GCN and GAT improves by an average of 3.4\% and 1.6\% in terms of test accuracy on Cora, Citeseer, and Pubmed. Besides, our experimental results on large graphs (OGB) show that our model consistently improves performance over backbones. Code is available at https://github.com/SongtaoLiu0823/LAGNN.
Not All Language Model Features Are Linear
Recent work has proposed the linear representation hypothesis: that language models perform computation by manipulating one-dimensional representations of concepts ("features") in activation space. In contrast, we explore whether some language model representations may be inherently multi-dimensional. We begin by developing a rigorous definition of irreducible multi-dimensional features based on whether they can be decomposed into either independent or non-co-occurring lower-dimensional features. Motivated by these definitions, we design a scalable method that uses sparse autoencoders to automatically find multi-dimensional features in GPT-2 and Mistral 7B. These auto-discovered features include strikingly interpretable examples, e.g. circular features representing days of the week and months of the year. We identify tasks where these exact circles are used to solve computational problems involving modular arithmetic in days of the week and months of the year. Finally, we provide evidence that these circular features are indeed the fundamental unit of computation in these tasks with intervention experiments on Mistral 7B and Llama 3 8B, and we find further circular representations by breaking down the hidden states for these tasks into interpretable components.
Tevatron 2.0: Unified Document Retrieval Toolkit across Scale, Language, and Modality
Recent advancements in large language models (LLMs) have driven interest in billion-scale retrieval models with strong generalization across retrieval tasks and languages. Additionally, progress in large vision-language models has created new opportunities for multimodal retrieval. In response, we have updated the Tevatron toolkit, introducing a unified pipeline that enables researchers to explore retriever models at different scales, across multiple languages, and with various modalities. This demo paper highlights the toolkit's key features, bridging academia and industry by supporting efficient training, inference, and evaluation of neural retrievers. We showcase a unified dense retriever achieving strong multilingual and multimodal effectiveness, and conduct a cross-modality zero-shot study to demonstrate its research potential. Alongside, we release OmniEmbed, to the best of our knowledge, the first embedding model that unifies text, image document, video, and audio retrieval, serving as a baseline for future research.
MultiConIR: Towards multi-condition Information Retrieval
In this paper, we introduce MultiConIR, the first benchmark designed to evaluate retrieval models in multi-condition scenarios. Unlike existing datasets that primarily focus on single-condition queries from search engines, MultiConIR captures real-world complexity by incorporating five diverse domains: books, movies, people, medical cases, and legal documents. We propose three tasks to systematically assess retrieval and reranking models on multi-condition robustness, monotonic relevance ranking, and query format sensitivity. Our findings reveal that existing retrieval and reranking models struggle with multi-condition retrieval, with rerankers suffering severe performance degradation as query complexity increases. We further investigate the performance gap between retrieval and reranking models, exploring potential reasons for these discrepancies, and analysis the impact of different pooling strategies on condition placement sensitivity. Finally, we highlight the strengths of GritLM and Nv-Embed, which demonstrate enhanced adaptability to multi-condition queries, offering insights for future retrieval models. The code and datasets are available at https://github.com/EIT-NLP/MultiConIR.
Beyond Nearest Neighbors: Semantic Compression and Graph-Augmented Retrieval for Enhanced Vector Search
Vector databases typically rely on approximate nearest neighbor (ANN) search to retrieve the top-k closest vectors to a query in embedding space. While effective, this approach often yields semantically redundant results, missing the diversity and contextual richness required by applications such as retrieval-augmented generation (RAG), multi-hop QA, and memory-augmented agents. We introduce a new retrieval paradigm: semantic compression, which aims to select a compact, representative set of vectors that captures the broader semantic structure around a query. We formalize this objective using principles from submodular optimization and information geometry, and show that it generalizes traditional top-k retrieval by prioritizing coverage and diversity. To operationalize this idea, we propose graph-augmented vector retrieval, which overlays semantic graphs (e.g., kNN or knowledge-based links) atop vector spaces to enable multi-hop, context-aware search. We theoretically analyze the limitations of proximity-based retrieval under high-dimensional concentration and highlight how graph structures can improve semantic coverage. Our work outlines a foundation for meaning-centric vector search systems, emphasizing hybrid indexing, diversity-aware querying, and structured semantic retrieval. We make our implementation publicly available to foster future research in this area.
Approximate Nearest Neighbor Search with Window Filters
We define and investigate the problem of c-approximate window search: approximate nearest neighbor search where each point in the dataset has a numeric label, and the goal is to find nearest neighbors to queries within arbitrary label ranges. Many semantic search problems, such as image and document search with timestamp filters, or product search with cost filters, are natural examples of this problem. We propose and theoretically analyze a modular tree-based framework for transforming an index that solves the traditional c-approximate nearest neighbor problem into a data structure that solves window search. On standard nearest neighbor benchmark datasets equipped with random label values, adversarially constructed embeddings, and image search embeddings with real timestamps, we obtain up to a 75times speedup over existing solutions at the same level of recall.
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling
Transformer-based models are widely used in natural language processing (NLP). Central to the transformer model is the self-attention mechanism, which captures the interactions of token pairs in the input sequences and depends quadratically on the sequence length. Training such models on longer sequences is expensive. In this paper, we show that a Bernoulli sampling attention mechanism based on Locality Sensitive Hashing (LSH), decreases the quadratic complexity of such models to linear. We bypass the quadratic cost by considering self-attention as a sum of individual tokens associated with Bernoulli random variables that can, in principle, be sampled at once by a single hash (although in practice, this number may be a small constant). This leads to an efficient sampling scheme to estimate self-attention which relies on specific modifications of LSH (to enable deployment on GPU architectures). We evaluate our algorithm on the GLUE benchmark with standard 512 sequence length where we see favorable performance relative to a standard pretrained Transformer. On the Long Range Arena (LRA) benchmark, for evaluating performance on long sequences, our method achieves results consistent with softmax self-attention but with sizable speed-ups and memory savings and often outperforms other efficient self-attention methods. Our code is available at https://github.com/mlpen/YOSO
Integrating Multi-scale Contextualized Information for Byte-based Neural Machine Translation
Subword tokenization is a common method for vocabulary building in Neural Machine Translation (NMT) models. However, increasingly complex tasks have revealed its disadvantages. First, a vocabulary cannot be modified once it is learned, making it hard to adapt to new words. Second, in multilingual translation, the imbalance in data volumes across different languages spreads to the vocabulary, exacerbating translations involving low-resource languages. While byte-based tokenization addresses these issues, byte-based models struggle with the low information density inherent in UTF-8 byte sequences. Previous works enhance token semantics through local contextualization but fail to select an appropriate contextualizing scope based on the input. Consequently, we propose the Multi-Scale Contextualization (MSC) method, which learns contextualized information of varying scales across different hidden state dimensions. It then leverages the attention module to dynamically integrate the multi-scale contextualized information. Experiments show that MSC significantly outperforms subword-based and other byte-based methods in both multilingual and out-of-domain scenarios. Code can be found in https://github.com/ictnlp/Multiscale-Contextualization.
Representation Tradeoffs for Hyperbolic Embeddings
Hyperbolic embeddings offer excellent quality with few dimensions when embedding hierarchical data structures like synonym or type hierarchies. Given a tree, we give a combinatorial construction that embeds the tree in hyperbolic space with arbitrarily low distortion without using optimization. On WordNet, our combinatorial embedding obtains a mean-average-precision of 0.989 with only two dimensions, while Nickel et al.'s recent construction obtains 0.87 using 200 dimensions. We provide upper and lower bounds that allow us to characterize the precision-dimensionality tradeoff inherent in any hyperbolic embedding. To embed general metric spaces, we propose a hyperbolic generalization of multidimensional scaling (h-MDS). We show how to perform exact recovery of hyperbolic points from distances, provide a perturbation analysis, and give a recovery result that allows us to reduce dimensionality. The h-MDS approach offers consistently low distortion even with few dimensions across several datasets. Finally, we extract lessons from the algorithms and theory above to design a PyTorch-based implementation that can handle incomplete information and is scalable.
Efficient Joint Prediction of Multiple Future Tokens
In this short report, we introduce joint multi-token prediction (JTP), a lightweight modification of standard next-token prediction designed to enrich hidden state representations by jointly predicting multiple future tokens. Unlike previous multi-token prediction approaches, JTP strategically employs teacher forcing of future-tokens through a carefully designed representation bottleneck, allowing the model to encode rich predictive information with minimal computational overhead during training. We show that the JTP approach achieves a short-horizon belief state representation, while popular alternatives for multi-token prediction fail to do so. We demonstrate the effectiveness of our method on the synthetic star graph navigation task from from Bachmann and Nagarajan [2024], highlighting a significant performance improvement over existing methods. This manuscript presents promising preliminary results intended to stimulate further research.
Superposed Episodic and Semantic Memory via Sparse Distributed Representation
The abilities to perceive, learn, and use generalities, similarities, classes, i.e., semantic memory (SM), is central to cognition. Machine learning (ML), neural network, and AI research has been primarily driven by tasks requiring such abilities. However, another central facet of cognition, single-trial formation of permanent memories of experiences, i.e., episodic memory (EM), has had relatively little focus. Only recently has EM-like functionality been added to Deep Learning (DL) models, e.g., Neural Turing Machine, Memory Networks. However, in these cases: a) EM is implemented as a separate module, which entails substantial data movement (and so, time and power) between the DL net itself and EM; and b) individual items are stored localistically within the EM, precluding realizing the exponential representational efficiency of distributed over localist coding. We describe Sparsey, an unsupervised, hierarchical, spatial/spatiotemporal associative memory model differing fundamentally from mainstream ML models, most crucially, in its use of sparse distributed representations (SDRs), or, cell assemblies, which admits an extremely efficient, single-trial learning algorithm that maps input similarity into code space similarity (measured as intersection). SDRs of individual inputs are stored in superposition and because similarity is preserved, the patterns of intersections over the assigned codes reflect the similarity, i.e., statistical, structure, of all orders, not simply pairwise, over the inputs. Thus, SM, i.e., a generative model, is built as a computationally free side effect of the act of storing episodic memory traces of individual inputs, either spatial patterns or sequences. We report initial results on MNIST and on the Weizmann video event recognition benchmarks. While we have not yet attained SOTA class accuracy, learning takes only minutes on a single CPU.
LD-SDM: Language-Driven Hierarchical Species Distribution Modeling
We focus on the problem of species distribution modeling using global-scale presence-only data. Most previous studies have mapped the range of a given species using geographical and environmental features alone. To capture a stronger implicit relationship between species, we encode the taxonomic hierarchy of species using a large language model. This enables range mapping for any taxonomic rank and unseen species without additional supervision. Further, we propose a novel proximity-aware evaluation metric that enables evaluating species distribution models using any pixel-level representation of ground-truth species range map. The proposed metric penalizes the predictions of a model based on its proximity to the ground truth. We describe the effectiveness of our model by systematically evaluating on the task of species range prediction, zero-shot prediction and geo-feature regression against the state-of-the-art. Results show our model outperforms the strong baselines when trained with a variety of multi-label learning losses.
MegaLoc: One Retrieval to Place Them All
Retrieving images from the same location as a given query is an important component of multiple computer vision tasks, like Visual Place Recognition, Landmark Retrieval, Visual Localization, 3D reconstruction, and SLAM. However, existing solutions are built to specifically work for one of these tasks, and are known to fail when the requirements slightly change or when they meet out-of-distribution data. In this paper we combine a variety of existing methods, training techniques, and datasets to train a retrieval model, called MegaLoc, that is performant on multiple tasks. We find that MegaLoc (1) achieves state of the art on a large number of Visual Place Recognition datasets, (2) impressive results on common Landmark Retrieval datasets, and (3) sets a new state of the art for Visual Localization on the LaMAR datasets, where we only changed the retrieval method to the existing localization pipeline. The code for MegaLoc is available at https://github.com/gmberton/MegaLoc
Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets
Recently, pre-trained foundation models have enabled significant advancements in multiple fields. In molecular machine learning, however, where datasets are often hand-curated, and hence typically small, the lack of datasets with labeled features, and codebases to manage those datasets, has hindered the development of foundation models. In this work, we present seven novel datasets categorized by size into three distinct categories: ToyMix, LargeMix and UltraLarge. These datasets push the boundaries in both the scale and the diversity of supervised labels for molecular learning. They cover nearly 100 million molecules and over 3000 sparsely defined tasks, totaling more than 13 billion individual labels of both quantum and biological nature. In comparison, our datasets contain 300 times more data points than the widely used OGB-LSC PCQM4Mv2 dataset, and 13 times more than the quantum-only QM1B dataset. In addition, to support the development of foundational models based on our proposed datasets, we present the Graphium graph machine learning library which simplifies the process of building and training molecular machine learning models for multi-task and multi-level molecular datasets. Finally, we present a range of baseline results as a starting point of multi-task and multi-level training on these datasets. Empirically, we observe that performance on low-resource biological datasets show improvement by also training on large amounts of quantum data. This indicates that there may be potential in multi-task and multi-level training of a foundation model and fine-tuning it to resource-constrained downstream tasks.
UrbanLLaVA: A Multi-modal Large Language Model for Urban Intelligence with Spatial Reasoning and Understanding
Urban research involves a wide range of scenarios and tasks that require the understanding of multi-modal data. Current methods often focus on specific data types and lack a unified framework in urban field for processing them comprehensively. The recent success of multi-modal large language models (MLLMs) presents a promising opportunity to overcome this limitation. In this paper, we introduce UrbanLLaVA, a multi-modal large language model designed to process these four types of data simultaneously and achieve strong performance across diverse urban tasks compared with general MLLMs. In UrbanLLaVA, we first curate a diverse urban instruction dataset encompassing both single-modal and cross-modal urban data, spanning from location view to global view of urban environment. Additionally, we propose a multi-stage training framework that decouples spatial reasoning enhancement from domain knowledge learning, thereby improving the compatibility and downstream performance of UrbanLLaVA across diverse urban tasks. Finally, we also extend existing benchmark for urban research to assess the performance of MLLMs across a wide range of urban tasks. Experimental results from three cities demonstrate that UrbanLLaVA outperforms open-source and proprietary MLLMs in both single-modal tasks and complex cross-modal tasks and shows robust generalization abilities across cities. Source codes and data are openly accessible to the research community via https://github.com/tsinghua-fib-lab/UrbanLLaVA.
Rethinking Memory in AI: Taxonomy, Operations, Topics, and Future Directions
Memory is a fundamental component of AI systems, underpinning large language models (LLMs) based agents. While prior surveys have focused on memory applications with LLMs, they often overlook the atomic operations that underlie memory dynamics. In this survey, we first categorize memory representations into parametric, contextual structured, and contextual unstructured and then introduce six fundamental memory operations: Consolidation, Updating, Indexing, Forgetting, Retrieval, and Compression. We systematically map these operations to the most relevant research topics across long-term, long-context, parametric modification, and multi-source memory. By reframing memory systems through the lens of atomic operations and representation types, this survey provides a structured and dynamic perspective on research, benchmark datasets, and tools related to memory in AI, clarifying the functional interplay in LLMs based agents while outlining promising directions for future researchThe paper list, datasets, methods and tools are available at \href{https://github.com/Elvin-Yiming-Du/Survey_Memory_in_AI{https://github.com/Elvin-Yiming-Du/Survey\_Memory\_in\_AI}.}.
ScaLearn: Simple and Highly Parameter-Efficient Task Transfer by Learning to Scale
Multi-task learning (MTL) has shown considerable practical benefits, particularly when using pre-trained language models (PLMs). While this is commonly achieved by simultaneously learning n tasks under a joint optimization procedure, recent methods such as AdapterFusion structure the problem into two distinct stages: (i) task learning, where knowledge specific to a task is encapsulated within sets of parameters (\eg adapters), and (ii) transfer, where this already learned knowledge is leveraged for a target task. This separation of concerns provides numerous benefits, such as promoting reusability, and addressing cases involving data privacy and societal concerns; on the flip side, current two-stage MTL methods come with the cost of introducing a substantial number of additional parameters. In this work, we address this issue by leveraging the usefulness of linearly scaling the output representations of source adapters for transfer learning. We introduce ScaLearn, a simple and highly parameter-efficient two-stage MTL method that capitalizes on the knowledge of the source tasks by learning a minimal set of scaling parameters that enable effective knowledge transfer to a target task. Our experiments on three benchmarks (GLUE, SuperGLUE, and HumSet) show that our ScaLearn, in addition to facilitating the benefits of two-stage MTL, consistently outperforms strong baselines with only a small number of transfer parameters - roughly 0.35% of those of AdapterFusion. Remarkably, we observe that ScaLearn maintains its strong abilities even when further reducing parameters through uniform scaling and layer-sharing, achieving similarly competitive results with only 8 transfer parameters for each target task. Our proposed approach thus demonstrates the power of simple scaling as a promise for more efficient task transfer.
MERIT: Multilingual Semantic Retrieval with Interleaved Multi-Condition Query
Semantic retrieval is crucial for modern applications yet remains underexplored in current research. Existing datasets are limited to single languages, single images, or singular retrieval conditions, often failing to fully exploit the expressive capacity of visual information as evidenced by maintained performance when images are replaced with captions. However, practical retrieval scenarios frequently involve interleaved multi-condition queries with multiple images. Hence, this paper introduces MERIT, the first multilingual dataset for interleaved multi-condition semantic retrieval, comprising 320,000 queries with 135,000 products in 5 languages, covering 7 distinct product categories. Extensive experiments on MERIT identify existing models's limitation: focusing solely on global semantic information while neglecting specific conditional elements in queries. Consequently, we propose Coral, a novel fine-tuning framework that adapts pre-trained MLLMs by integrating embedding reconstruction to preserve fine-grained conditional elements and contrastive learning to extract comprehensive global semantics. Experiments demonstrate that Coral achieves a 45.9% performance improvement over conventional approaches on MERIT, with strong generalization capabilities validated across 8 established retrieval benchmarks. Collectively, our contributions - a novel dataset, identification of critical limitations in existing approaches, and an innovative fine-tuning framework - establish a foundation for future research in interleaved multi-condition semantic retrieval.
GRITHopper: Decomposition-Free Multi-Hop Dense Retrieval
Decomposition-based multi-hop retrieval methods rely on many autoregressive steps to break down complex queries, which breaks end-to-end differentiability and is computationally expensive. Decomposition-free methods tackle this, but current decomposition-free approaches struggle with longer multi-hop problems and generalization to out-of-distribution data. To address these challenges, we introduce GRITHopper-7B, a novel multi-hop dense retrieval model that achieves state-of-the-art performance on both in-distribution and out-of-distribution benchmarks. GRITHopper combines generative and representational instruction tuning by integrating causal language modeling with dense retrieval training. Through controlled studies, we find that incorporating additional context after the retrieval process, referred to as post-retrieval language modeling, enhances dense retrieval performance. By including elements such as final answers during training, the model learns to better contextualize and retrieve relevant information. GRITHopper-7B offers a robust, scalable, and generalizable solution for multi-hop dense retrieval, and we release it to the community for future research and applications requiring multi-hop reasoning and retrieval capabilities.
Speech Representation Analysis based on Inter- and Intra-Model Similarities
Self-supervised models have revolutionized speech processing, achieving new levels of performance in a wide variety of tasks with limited resources. However, the inner workings of these models are still opaque. In this paper, we aim to analyze the encoded contextual representation of these foundation models based on their inter- and intra-model similarity, independent of any external annotation and task-specific constraint. We examine different SSL models varying their training paradigm -- Contrastive (Wav2Vec2.0) and Predictive models (HuBERT); and model sizes (base and large). We explore these models on different levels of localization/distributivity of information including (i) individual neurons; (ii) layer representation; (iii) attention weights and (iv) compare the representations with their finetuned counterparts.Our results highlight that these models converge to similar representation subspaces but not to similar neuron-localized concepts\footnote{A concept represents a coherent fragment of knowledge, such as ``a class containing certain objects as elements, where the objects have certain properties. We made the code publicly available for facilitating further research, we publicly released our code.
The Geometry of Concepts: Sparse Autoencoder Feature Structure
Sparse autoencoders have recently produced dictionaries of high-dimensional vectors corresponding to the universe of concepts represented by large language models. We find that this concept universe has interesting structure at three levels: 1) The "atomic" small-scale structure contains "crystals" whose faces are parallelograms or trapezoids, generalizing well-known examples such as (man-woman-king-queen). We find that the quality of such parallelograms and associated function vectors improves greatly when projecting out global distractor directions such as word length, which is efficiently done with linear discriminant analysis. 2) The "brain" intermediate-scale structure has significant spatial modularity; for example, math and code features form a "lobe" akin to functional lobes seen in neural fMRI images. We quantify the spatial locality of these lobes with multiple metrics and find that clusters of co-occurring features, at coarse enough scale, also cluster together spatially far more than one would expect if feature geometry were random. 3) The "galaxy" scale large-scale structure of the feature point cloud is not isotropic, but instead has a power law of eigenvalues with steepest slope in middle layers. We also quantify how the clustering entropy depends on the layer.
Beyond Fully-Connected Layers with Quaternions: Parameterization of Hypercomplex Multiplications with 1/n Parameters
Recent works have demonstrated reasonable success of representation learning in hypercomplex space. Specifically, "fully-connected layers with Quaternions" (4D hypercomplex numbers), which replace real-valued matrix multiplications in fully-connected layers with Hamilton products of Quaternions, both enjoy parameter savings with only 1/4 learnable parameters and achieve comparable performance in various applications. However, one key caveat is that hypercomplex space only exists at very few predefined dimensions (4D, 8D, and 16D). This restricts the flexibility of models that leverage hypercomplex multiplications. To this end, we propose parameterizing hypercomplex multiplications, allowing models to learn multiplication rules from data regardless of whether such rules are predefined. As a result, our method not only subsumes the Hamilton product, but also learns to operate on any arbitrary nD hypercomplex space, providing more architectural flexibility using arbitrarily 1/n learnable parameters compared with the fully-connected layer counterpart. Experiments of applications to the LSTM and Transformer models on natural language inference, machine translation, text style transfer, and subject verb agreement demonstrate architectural flexibility and effectiveness of the proposed approach.
Neighboring Autoregressive Modeling for Efficient Visual Generation
Visual autoregressive models typically adhere to a raster-order ``next-token prediction" paradigm, which overlooks the spatial and temporal locality inherent in visual content. Specifically, visual tokens exhibit significantly stronger correlations with their spatially or temporally adjacent tokens compared to those that are distant. In this paper, we propose Neighboring Autoregressive Modeling (NAR), a novel paradigm that formulates autoregressive visual generation as a progressive outpainting procedure, following a near-to-far ``next-neighbor prediction" mechanism. Starting from an initial token, the remaining tokens are decoded in ascending order of their Manhattan distance from the initial token in the spatial-temporal space, progressively expanding the boundary of the decoded region. To enable parallel prediction of multiple adjacent tokens in the spatial-temporal space, we introduce a set of dimension-oriented decoding heads, each predicting the next token along a mutually orthogonal dimension. During inference, all tokens adjacent to the decoded tokens are processed in parallel, substantially reducing the model forward steps for generation. Experiments on ImageNet256times 256 and UCF101 demonstrate that NAR achieves 2.4times and 8.6times higher throughput respectively, while obtaining superior FID/FVD scores for both image and video generation tasks compared to the PAR-4X approach. When evaluating on text-to-image generation benchmark GenEval, NAR with 0.8B parameters outperforms Chameleon-7B while using merely 0.4 of the training data. Code is available at https://github.com/ThisisBillhe/NAR.
Predictable Scale: Part I -- Optimal Hyperparameter Scaling Law in Large Language Model Pretraining
The impressive capabilities of Large Language Models (LLMs) across diverse tasks are now well-established, yet their effective deployment necessitates careful hyperparameter optimization. Through extensive empirical studies involving grid searches across diverse configurations, we discover universal scaling laws governing these hyperparameters: optimal learning rate follows a power-law relationship with both model parameters and data sizes, while optimal batch size scales primarily with data sizes. Our analysis reveals a convex optimization landscape for hyperparameters under fixed models and data size conditions. This convexity implies an optimal hyperparameter plateau. We contribute a universal, plug-and-play optimal hyperparameter tool for the community. Its estimated values on the test set are merely 0.07\% away from the globally optimal LLM performance found via an exhaustive search. These laws demonstrate remarkable robustness across variations in model sparsity, training data distribution, and model shape. To our best known, this is the first work that unifies different model shapes and structures, such as Mixture-of-Experts models and dense transformers, as well as establishes optimal hyperparameter scaling laws across diverse data distributions. This exhaustive optimization process demands substantial computational resources, utilizing nearly one million NVIDIA H800 GPU hours to train 3,700 LLMs of varying sizes and hyperparameters from scratch and consuming approximately 100 trillion tokens in total. To facilitate reproducibility and further research, we will progressively release all loss measurements and model checkpoints through our designated repository https://step-law.github.io/
Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs
We present a new approach for the approximate K-nearest neighbor search based on navigable small world graphs with controllable hierarchy (Hierarchical NSW, HNSW). The proposed solution is fully graph-based, without any need for additional search structures, which are typically used at the coarse search stage of the most proximity graph techniques. Hierarchical NSW incrementally builds a multi-layer structure consisting from hierarchical set of proximity graphs (layers) for nested subsets of the stored elements. The maximum layer in which an element is present is selected randomly with an exponentially decaying probability distribution. This allows producing graphs similar to the previously studied Navigable Small World (NSW) structures while additionally having the links separated by their characteristic distance scales. Starting search from the upper layer together with utilizing the scale separation boosts the performance compared to NSW and allows a logarithmic complexity scaling. Additional employment of a heuristic for selecting proximity graph neighbors significantly increases performance at high recall and in case of highly clustered data. Performance evaluation has demonstrated that the proposed general metric space search index is able to strongly outperform previous opensource state-of-the-art vector-only approaches. Similarity of the algorithm to the skip list structure allows straightforward balanced distributed implementation.
DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers
Scaling multi-dimensional transformers to long sequences is indispensable across various domains. However, the challenges of large memory requirements and slow speeds of such sequences necessitate sequence parallelism. All existing approaches fall under the category of embedded sequence parallelism, which are limited to shard along a single sequence dimension, thereby introducing significant communication overhead. However, the nature of multi-dimensional transformers involves independent calculations across multiple sequence dimensions. To this end, we propose Dynamic Sequence Parallelism (DSP) as a novel abstraction of sequence parallelism. DSP dynamically switches the parallel dimension among all sequences according to the computation stage with efficient resharding strategy. DSP offers significant reductions in communication costs, adaptability across modules, and ease of implementation with minimal constraints. Experimental evaluations demonstrate DSP's superiority over state-of-the-art embedded sequence parallelism methods by remarkable throughput improvements ranging from 32.2% to 10x, with less than 25% communication volume.
An Attention Free Transformer
We introduce Attention Free Transformer (AFT), an efficient variant of Transformers that eliminates the need for dot product self attention. In an AFT layer, the key and value are first combined with a set of learned position biases, the result of which is multiplied with the query in an element-wise fashion. This new operation has a memory complexity linear w.r.t. both the context size and the dimension of features, making it compatible to both large input and model sizes. We also introduce AFT-local and AFT-conv, two model variants that take advantage of the idea of locality and spatial weight sharing while maintaining global connectivity. We conduct extensive experiments on two autoregressive modeling tasks (CIFAR10 and Enwik8) as well as an image recognition task (ImageNet-1K classification). We show that AFT demonstrates competitive performance on all the benchmarks, while providing excellent efficiency at the same time.
Overflow Prevention Enhances Long-Context Recurrent LLMs
A recent trend in LLMs is developing recurrent sub-quadratic models that improve long-context processing efficiency. We investigate leading large long-context models, focusing on how their fixed-size recurrent memory affects their performance. Our experiments reveal that, even when these models are trained for extended contexts, their use of long contexts remains underutilized. Specifically, we demonstrate that a chunk-based inference procedure, which identifies and processes only the most relevant portion of the input can mitigate recurrent memory failures and be effective for many long-context tasks: On LongBench, our method improves the overall performance of Falcon3-Mamba-Inst-7B by 14%, Falcon-Mamba-Inst-7B by 28%, RecurrentGemma-IT-9B by 50%, and RWKV6-Finch-7B by 51%. Surprisingly, this simple approach also leads to state-of-the-art results in the challenging LongBench v2 benchmark, showing competitive performance with equivalent size Transformers. Furthermore, our findings raise questions about whether recurrent models genuinely exploit long-range dependencies, as our single-chunk strategy delivers stronger performance - even in tasks that presumably require cross-context relations.
Modeling the Machine Learning Multiverse
Amid mounting concern about the reliability and credibility of machine learning research, we present a principled framework for making robust and generalizable claims: the multiverse analysis. Our framework builds upon the multiverse analysis (Steegen et al., 2016) introduced in response to psychology's own reproducibility crisis. To efficiently explore high-dimensional and often continuous ML search spaces, we model the multiverse with a Gaussian Process surrogate and apply Bayesian experimental design. Our framework is designed to facilitate drawing robust scientific conclusions about model performance, and thus our approach focuses on exploration rather than conventional optimization. In the first of two case studies, we investigate disputed claims about the relative merit of adaptive optimizers. Second, we synthesize conflicting research on the effect of learning rate on the large batch training generalization gap. For the machine learning community, the multiverse analysis is a simple and effective technique for identifying robust claims, for increasing transparency, and a step toward improved reproducibility.
ESPN: Memory-Efficient Multi-Vector Information Retrieval
Recent advances in large language models have demonstrated remarkable effectiveness in information retrieval (IR) tasks. While many neural IR systems encode queries and documents into single-vector representations, multi-vector models elevate the retrieval quality by producing multi-vector representations and facilitating similarity searches at the granularity of individual tokens. However, these models significantly amplify memory and storage requirements for retrieval indices by an order of magnitude. This escalation in index size renders the scalability of multi-vector IR models progressively challenging due to their substantial memory demands. We introduce Embedding from Storage Pipelined Network (ESPN) where we offload the entire re-ranking embedding tables to SSDs and reduce the memory requirements by 5-16x. We design a software prefetcher with hit rates exceeding 90%, improving SSD based retrieval up to 6.4x, and demonstrate that we can maintain near memory levels of query latency even for large query batch sizes.
Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference
The auto-regressive decoding of Large Language Models (LLMs) results in significant overheads in their hardware performance. While recent research has investigated various speculative decoding techniques for multi-token generation, these efforts have primarily focused on improving processing speed such as throughput. Crucially, they often neglect other metrics essential for real-life deployments, such as memory consumption and training cost. To overcome these limitations, we propose a novel parallel prompt decoding that requires only 0.0002% trainable parameters, enabling efficient training on a single A100-40GB GPU in just 16 hours. Inspired by the human natural language generation process, PPD approximates outputs generated at future timesteps in parallel by using multiple prompt tokens. This approach partially recovers the missing conditional dependency information necessary for multi-token generation, resulting in up to a 28% higher acceptance rate for long-range predictions. Furthermore, we present a hardware-aware dynamic sparse tree technique that adaptively optimizes this decoding scheme to fully leverage the computational capacities on different GPUs. Through extensive experiments across LLMs ranging from MobileLlama to Vicuna-13B on a wide range of benchmarks, our approach demonstrates up to 2.49times speedup and maintains a minimal runtime memory overhead of just 0.0004%. More importantly, our parallel prompt decoding can serve as an orthogonal optimization for synergistic integration with existing speculative decoding, showing up to 1.22times further speed improvement. Our code is available at https://github.com/hmarkc/parallel-prompt-decoding.
LLaVA-ST: A Multimodal Large Language Model for Fine-Grained Spatial-Temporal Understanding
Recent advancements in multimodal large language models (MLLMs) have shown promising results, yet existing approaches struggle to effectively handle both temporal and spatial localization simultaneously. This challenge stems from two key issues: first, incorporating spatial-temporal localization introduces a vast number of coordinate combinations, complicating the alignment of linguistic and visual coordinate representations; second, encoding fine-grained temporal and spatial information during video feature compression is inherently difficult. To address these issues, we propose LLaVA-ST, a MLLM for fine-grained spatial-temporal multimodal understanding. In LLaVA-ST, we propose Language-Aligned Positional Embedding, which embeds the textual coordinate special token into the visual space, simplifying the alignment of fine-grained spatial-temporal correspondences. Additionally, we design the Spatial-Temporal Packer, which decouples the feature compression of temporal and spatial resolutions into two distinct point-to-region attention processing streams. Furthermore, we propose ST-Align dataset with 4.3M training samples for fine-grained spatial-temporal multimodal understanding. With ST-align, we present a progressive training pipeline that aligns the visual and textual feature through sequential coarse-to-fine stages.Additionally, we introduce an ST-Align benchmark to evaluate spatial-temporal interleaved fine-grained understanding tasks, which include Spatial-Temporal Video Grounding (STVG) , Event Localization and Captioning (ELC) and Spatial Video Grounding (SVG). LLaVA-ST achieves outstanding performance on 11 benchmarks requiring fine-grained temporal, spatial, or spatial-temporal interleaving multimodal understanding. Our code, data and benchmark will be released at Our code, data and benchmark will be released at https://github.com/appletea233/LLaVA-ST .
Monotonic Location Attention for Length Generalization
We explore different ways to utilize position-based cross-attention in seq2seq networks to enable length generalization in algorithmic tasks. We show that a simple approach of interpolating the original and reversed encoded representations combined with relative attention allows near-perfect length generalization for both forward and reverse lookup tasks or copy tasks that had been generally hard to tackle. We also devise harder diagnostic tasks where the relative distance of the ideal attention position varies with timestep. In such settings, the simple interpolation trick with relative attention is not sufficient. We introduce novel variants of location attention building on top of Dubois et al. (2020) to address the new diagnostic tasks. We also show the benefits of our approaches for length generalization in SCAN (Lake & Baroni, 2018) and CFQ (Keysers et al., 2020). Our code is available on GitHub.
Neurocache: Efficient Vector Retrieval for Long-range Language Modeling
This paper introduces Neurocache, an approach to extend the effective context size of large language models (LLMs) using an external vector cache to store its past states. Like recent vector retrieval approaches, Neurocache uses an efficient k-nearest-neighbor (kNN) algorithm to retrieve relevant past states and incorporate them into the attention process. Neurocache improves upon previous methods by (1) storing compressed states, which reduces cache size; (2) performing a single retrieval operation per token which increases inference speed; and (3) extending the retrieval window to neighboring states, which improves both language modeling and downstream task accuracy. Our experiments show the effectiveness of Neurocache both for models trained from scratch and for pre-trained models such as Llama2-7B and Mistral-7B when enhanced with the cache mechanism. We also compare Neurocache with text retrieval methods and show improvements in single-document question-answering and few-shot learning tasks. We made the source code available under: https://github.com/alisafaya/neurocache
Differentiability and Optimization of Multiparameter Persistent Homology
Real-valued functions on geometric data -- such as node attributes on a graph -- can be optimized using descriptors from persistent homology, allowing the user to incorporate topological terms in the loss function. When optimizing a single real-valued function (the one-parameter setting), there is a canonical choice of descriptor for persistent homology: the barcode. The operation mapping a real-valued function to its barcode is differentiable almost everywhere, and the convergence of gradient descent for losses using barcodes is relatively well understood. When optimizing a vector-valued function (the multiparameter setting), there is no unique choice of descriptor for multiparameter persistent homology, and many distinct descriptors have been proposed. This calls for the development of a general framework for differentiability and optimization that applies to a wide range of multiparameter homological descriptors. In this article, we develop such a framework and show that it encompasses well-known descriptors of different flavors, such as signed barcodes and the multiparameter persistence landscape. We complement the theory with numerical experiments supporting the idea that optimizing multiparameter homological descriptors can lead to improved performances compared to optimizing one-parameter descriptors, even when using the simplest and most efficiently computable multiparameter descriptors.
JointRank: Rank Large Set with Single Pass
Efficiently ranking relevant items from large candidate pools is a cornerstone of modern information retrieval systems -- such as web search, recommendation, and retrieval-augmented generation. Listwise rerankers, which improve relevance by jointly considering multiple candidates, are often limited in practice: either by model input size constraints, or by degraded quality when processing large sets. We propose a model-agnostic method for fast reranking large sets that exceed a model input limits. The method first partitions candidate items into overlapping blocks, each of which is ranked independently in parallel. Implicit pairwise comparisons are then derived from these local rankings. Finally, these comparisons are aggregated to construct a global ranking using algorithms such as Winrate or PageRank. Experiments on TREC DL-2019 show that our method achieves an nDCG@10 of 70.88 compared to the 57.68 for full-context listwise approach using gpt-4.1-mini as long-context model, while reducing latency from 21 to 8 seconds. The implementation of the algorithm and the experiments is available in the repository: https://github.com/V3RGANz/jointrank
Language Models Represent Space and Time
The capabilities of large language models (LLMs) have sparked debate over whether such systems just learn an enormous collection of superficial statistics or a coherent model of the data generating process -- a world model. We find evidence for the latter by analyzing the learned representations of three spatial datasets (world, US, NYC places) and three temporal datasets (historical figures, artworks, news headlines) in the Llama-2 family of models. We discover that LLMs learn linear representations of space and time across multiple scales. These representations are robust to prompting variations and unified across different entity types (e.g. cities and landmarks). In addition, we identify individual ``space neurons'' and ``time neurons'' that reliably encode spatial and temporal coordinates. Our analysis demonstrates that modern LLMs acquire structured knowledge about fundamental dimensions such as space and time, supporting the view that they learn not merely superficial statistics, but literal world models.
Emerging Properties in Unified Multimodal Pretraining
Unifying multimodal understanding and generation has shown impressive capabilities in cutting-edge proprietary systems. In this work, we introduce BAGEL, an open0source foundational model that natively supports multimodal understanding and generation. BAGEL is a unified, decoder0only model pretrained on trillions of tokens curated from large0scale interleaved text, image, video, and web data. When scaled with such diverse multimodal interleaved data, BAGEL exhibits emerging capabilities in complex multimodal reasoning. As a result, it significantly outperforms open-source unified models in both multimodal generation and understanding across standard benchmarks, while exhibiting advanced multimodal reasoning abilities such as free-form image manipulation, future frame prediction, 3D manipulation, and world navigation. In the hope of facilitating further opportunities for multimodal research, we share the key findings, pretraining details, data creation protocal, and release our code and checkpoints to the community. The project page is at https://bagel-ai.org/
Mamba2D: A Natively Multi-Dimensional State-Space Model for Vision Tasks
State-Space Models (SSMs) have recently emerged as a powerful and efficient alternative to the long-standing transformer architecture. However, existing SSM conceptualizations retain deeply rooted biases from their roots in natural language processing. This constrains their ability to appropriately model the spatially-dependent characteristics of visual inputs. In this paper, we address these limitations by re-deriving modern selective state-space techniques, starting from a natively multidimensional formulation. Currently, prior works attempt to apply natively 1D SSMs to 2D data (i.e. images) by relying on arbitrary combinations of 1D scan directions to capture spatial dependencies. In contrast, Mamba2D improves upon this with a single 2D scan direction that factors in both dimensions of the input natively, effectively modelling spatial dependencies when constructing hidden states. Mamba2D shows comparable performance to prior adaptations of SSMs for vision tasks, on standard image classification evaluations with the ImageNet-1K dataset. Source code is available at https://github.com/cocoalex00/Mamba2D.
Beyond Chunks and Graphs: Retrieval-Augmented Generation through Triplet-Driven Thinking
Retrieval-augmented generation (RAG) is critical for reducing hallucinations and incorporating external knowledge into Large Language Models (LLMs). However, advanced RAG systems face a trade-off between performance and efficiency. Multi-round RAG approaches achieve strong reasoning but incur excessive LLM calls and token costs, while Graph RAG methods suffer from computationally expensive, error-prone graph construction and retrieval redundancy. To address these challenges, we propose T^2RAG, a novel framework that operates on a simple, graph-free knowledge base of atomic triplets. T^2RAG leverages an LLM to decompose questions into searchable triplets with placeholders, which it then iteratively resolves by retrieving evidence from the triplet database. Empirical results show that T^2RAG significantly outperforms state-of-the-art multi-round and Graph RAG methods, achieving an average performance gain of up to 11\% across six datasets while reducing retrieval costs by up to 45\%. Our code is available at https://github.com/rockcor/T2RAG
Introducing Neural Bag of Whole-Words with ColBERTer: Contextualized Late Interactions using Enhanced Reduction
Recent progress in neural information retrieval has demonstrated large gains in effectiveness, while often sacrificing the efficiency and interpretability of the neural model compared to classical approaches. This paper proposes ColBERTer, a neural retrieval model using contextualized late interaction (ColBERT) with enhanced reduction. Along the effectiveness Pareto frontier, ColBERTer's reductions dramatically lower ColBERT's storage requirements while simultaneously improving the interpretability of its token-matching scores. To this end, ColBERTer fuses single-vector retrieval, multi-vector refinement, and optional lexical matching components into one model. For its multi-vector component, ColBERTer reduces the number of stored vectors per document by learning unique whole-word representations for the terms in each document and learning to identify and remove word representations that are not essential to effective scoring. We employ an explicit multi-task, multi-stage training to facilitate using very small vector dimensions. Results on the MS MARCO and TREC-DL collection show that ColBERTer can reduce the storage footprint by up to 2.5x, while maintaining effectiveness. With just one dimension per token in its smallest setting, ColBERTer achieves index storage parity with the plaintext size, with very strong effectiveness results. Finally, we demonstrate ColBERTer's robustness on seven high-quality out-of-domain collections, yielding statistically significant gains over traditional retrieval baselines.
S-LoRA: Serving Thousands of Concurrent LoRA Adapters
The "pretrain-then-finetune" paradigm is commonly adopted in the deployment of large language models. Low-Rank Adaptation (LoRA), a parameter-efficient fine-tuning method, is often employed to adapt a base model to a multitude of tasks, resulting in a substantial collection of LoRA adapters derived from one base model. We observe that this paradigm presents significant opportunities for batched inference during serving. To capitalize on these opportunities, we present S-LoRA, a system designed for the scalable serving of many LoRA adapters. S-LoRA stores all adapters in the main memory and fetches the adapters used by the currently running queries to the GPU memory. To efficiently use the GPU memory and reduce fragmentation, S-LoRA proposes Unified Paging. Unified Paging uses a unified memory pool to manage dynamic adapter weights with different ranks and KV cache tensors with varying sequence lengths. Additionally, S-LoRA employs a novel tensor parallelism strategy and highly optimized custom CUDA kernels for heterogeneous batching of LoRA computation. Collectively, these features enable S-LoRA to serve thousands of LoRA adapters on a single GPU or across multiple GPUs with a small overhead. Compared to state-of-the-art libraries such as HuggingFace PEFT and vLLM (with naive support of LoRA serving), S-LoRA can improve the throughput by up to 4 times and increase the number of served adapters by several orders of magnitude. As a result, S-LoRA enables scalable serving of many task-specific fine-tuned models and offers the potential for large-scale customized fine-tuning services.
NeighborRetr: Balancing Hub Centrality in Cross-Modal Retrieval
Cross-modal retrieval aims to bridge the semantic gap between different modalities, such as visual and textual data, enabling accurate retrieval across them. Despite significant advancements with models like CLIP that align cross-modal representations, a persistent challenge remains: the hubness problem, where a small subset of samples (hubs) dominate as nearest neighbors, leading to biased representations and degraded retrieval accuracy. Existing methods often mitigate hubness through post-hoc normalization techniques, relying on prior data distributions that may not be practical in real-world scenarios. In this paper, we directly mitigate hubness during training and introduce NeighborRetr, a novel method that effectively balances the learning of hubs and adaptively adjusts the relations of various kinds of neighbors. Our approach not only mitigates the hubness problem but also enhances retrieval performance, achieving state-of-the-art results on multiple cross-modal retrieval benchmarks. Furthermore, NeighborRetr demonstrates robust generalization to new domains with substantial distribution shifts, highlighting its effectiveness in real-world applications. We make our code publicly available at: https://github.com/zzezze/NeighborRetr .
Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval
Ad-hoc search calls for the selection of appropriate answers from a massive-scale corpus. Nowadays, the embedding-based retrieval (EBR) becomes a promising solution, where deep learning based document representation and ANN search techniques are allied to handle this task. However, a major challenge is that the ANN index can be too large to fit into memory, given the considerable size of answer corpus. In this work, we tackle this problem with Bi-Granular Document Representation, where the lightweight sparse embeddings are indexed and standby in memory for coarse-grained candidate search, and the heavyweight dense embeddings are hosted in disk for fine-grained post verification. For the best of retrieval accuracy, a Progressive Optimization framework is designed. The sparse embeddings are learned ahead for high-quality search of candidates. Conditioned on the candidate distribution induced by the sparse embeddings, the dense embeddings are continuously learned to optimize the discrimination of ground-truth from the shortlisted candidates. Besides, two techniques: the contrastive quantization and the locality-centric sampling are introduced for the learning of sparse and dense embeddings, which substantially contribute to their performances. Thanks to the above features, our method effectively handles massive-scale EBR with strong advantages in accuracy: with up to +4.3% recall gain on million-scale corpus, and up to +17.5% recall gain on billion-scale corpus. Besides, Our method is applied to a major sponsored search platform with substantial gains on revenue (+1.95%), Recall (+1.01%) and CTR (+0.49%). Our code is available at https://github.com/microsoft/BiDR.
MultiWay-Adapater: Adapting large-scale multi-modal models for scalable image-text retrieval
As the size of Large Multi-Modal Models (LMMs) increases consistently, the adaptation of these pre-trained models to specialized tasks has become a computationally and memory-intensive challenge. Traditional fine-tuning methods require isolated, exhaustive retuning for each new task, limiting the models' versatility. Moreover, current efficient adaptation techniques often overlook modality alignment, focusing only on the knowledge extraction of new tasks. To tackle these issues, we introduce Multiway-Adapter, an innovative framework incorporating an 'Alignment Enhancer' to deepen modality alignment, enabling high transferability without tuning pre-trained parameters. Our method adds fewer than 1.25\% of additional parameters to LMMs, exemplified by the BEiT-3 model in our study. This leads to superior zero-shot image-text retrieval performance compared to fully fine-tuned models, while achieving up to a 57\% reduction in fine-tuning time. Our approach offers a resource-efficient and effective adaptation pathway for LMMs, broadening their applicability. The source code is publicly available at: https://github.com/longkukuhi/MultiWay-Adapter.
Adversarial Attacks against Closed-Source MLLMs via Feature Optimal Alignment
Multimodal large language models (MLLMs) remain vulnerable to transferable adversarial examples. While existing methods typically achieve targeted attacks by aligning global features-such as CLIP's [CLS] token-between adversarial and target samples, they often overlook the rich local information encoded in patch tokens. This leads to suboptimal alignment and limited transferability, particularly for closed-source models. To address this limitation, we propose a targeted transferable adversarial attack method based on feature optimal alignment, called FOA-Attack, to improve adversarial transfer capability. Specifically, at the global level, we introduce a global feature loss based on cosine similarity to align the coarse-grained features of adversarial samples with those of target samples. At the local level, given the rich local representations within Transformers, we leverage clustering techniques to extract compact local patterns to alleviate redundant local features. We then formulate local feature alignment between adversarial and target samples as an optimal transport (OT) problem and propose a local clustering optimal transport loss to refine fine-grained feature alignment. Additionally, we propose a dynamic ensemble model weighting strategy to adaptively balance the influence of multiple models during adversarial example generation, thereby further improving transferability. Extensive experiments across various models demonstrate the superiority of the proposed method, outperforming state-of-the-art methods, especially in transferring to closed-source MLLMs. The code is released at https://github.com/jiaxiaojunQAQ/FOA-Attack.
Taming the Titans: A Survey of Efficient LLM Inference Serving
Large Language Models (LLMs) for Generative AI have achieved remarkable progress, evolving into sophisticated and versatile tools widely adopted across various domains and applications. However, the substantial memory overhead caused by their vast number of parameters, combined with the high computational demands of the attention mechanism, poses significant challenges in achieving low latency and high throughput for LLM inference services. Recent advancements, driven by groundbreaking research, have significantly accelerated progress in this field. This paper provides a comprehensive survey of these methods, covering fundamental instance-level approaches, in-depth cluster-level strategies, emerging scenario directions, and other miscellaneous but important areas. At the instance level, we review model placement, request scheduling, decoding length prediction, storage management, and the disaggregation paradigm. At the cluster level, we explore GPU cluster deployment, multi-instance load balancing, and cloud service solutions. For emerging scenarios, we organize the discussion around specific tasks, modules, and auxiliary methods. To ensure a holistic overview, we also highlight several niche yet critical areas. Finally, we outline potential research directions to further advance the field of LLM inference serving.
MultiKernelBench: A Multi-Platform Benchmark for Kernel Generation
The automatic generation of deep learning (DL) kernels using large language models (LLMs) has emerged as a promising approach to reduce the manual effort and hardware-specific expertise required for writing high-performance operator implementations. However, existing benchmarks for evaluating LLMs in this domain suffer from limited hardware support, coarse-grained kernel categorization, and imbalanced task coverage. To address these limitations, we introduce MultiKernelBench, the first comprehensive, multi-platform benchmark for LLM-based DL kernel generation. MultiKernelBench spans 285 tasks across 14 well-defined kernel categories and supports three major hardware platforms: Nvidia GPUs, Huawei NPUs, and Google TPUs. To enable future extensibility, we design a modular backend abstraction layer that decouples platform-specific logic from the core benchmarking infrastructure, allowing easy integration of new hardware platforms. We further propose a simple yet effective category-aware one-shot prompting method that improves generation quality by providing in-category exemplars. Through systematic evaluations of seven state-of-the-art LLMs, we reveal significant variation in task difficulty, poor generalization to platforms with less training exposure, and the effectiveness of targeted prompting strategies. MultiKernelBench is publicly available at https://github.com/wzzll123/MultiKernelBench.
Efficient and Scalable Graph Generation through Iterative Local Expansion
In the realm of generative models for graphs, extensive research has been conducted. However, most existing methods struggle with large graphs due to the complexity of representing the entire joint distribution across all node pairs and capturing both global and local graph structures simultaneously. To overcome these issues, we introduce a method that generates a graph by progressively expanding a single node to a target graph. In each step, nodes and edges are added in a localized manner through denoising diffusion, building first the global structure, and then refining the local details. The local generation avoids modeling the entire joint distribution over all node pairs, achieving substantial computational savings with subquadratic runtime relative to node count while maintaining high expressivity through multiscale generation. Our experiments show that our model achieves state-of-the-art performance on well-established benchmark datasets while successfully scaling to graphs with at least 5000 nodes. Our method is also the first to successfully extrapolate to graphs outside of the training distribution, showcasing a much better generalization capability over existing methods.
MambaLRP: Explaining Selective State Space Sequence Models
Recent sequence modeling approaches using selective state space sequence models, referred to as Mamba models, have seen a surge of interest. These models allow efficient processing of long sequences in linear time and are rapidly being adopted in a wide range of applications such as language modeling, demonstrating promising performance. To foster their reliable use in real-world scenarios, it is crucial to augment their transparency. Our work bridges this critical gap by bringing explainability, particularly Layer-wise Relevance Propagation (LRP), to the Mamba architecture. Guided by the axiom of relevance conservation, we identify specific components in the Mamba architecture, which cause unfaithful explanations. To remedy this issue, we propose MambaLRP, a novel algorithm within the LRP framework, which ensures a more stable and reliable relevance propagation through these components. Our proposed method is theoretically sound and excels in achieving state-of-the-art explanation performance across a diverse range of models and datasets. Moreover, MambaLRP facilitates a deeper inspection of Mamba architectures, uncovering various biases and evaluating their significance. It also enables the analysis of previous speculations regarding the long-range capabilities of Mamba models.
Recipe for a General, Powerful, Scalable Graph Transformer
We propose a recipe on how to build a general, powerful, scalable (GPS) graph Transformer with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph Transformers (GTs) have gained popularity in the field of graph representation learning with a variety of recent publications but they lack a common foundation about what constitutes a good positional or structural encoding, and what differentiates them. In this paper, we summarize the different types of encodings with a clearer definition and categorize them as being local, global or relative. The prior GTs are constrained to small graphs with a few hundred nodes, here we propose the first architecture with a complexity linear in the number of nodes and edges O(N+E) by decoupling the local real-edge aggregation from the fully-connected Transformer. We argue that this decoupling does not negatively affect the expressivity, with our architecture being a universal function approximator on graphs. Our GPS recipe consists of choosing 3 main ingredients: (i) positional/structural encoding, (ii) local message-passing mechanism, and (iii) global attention mechanism. We provide a modular framework GraphGPS that supports multiple types of encodings and that provides efficiency and scalability both in small and large graphs. We test our architecture on 16 benchmarks and show highly competitive results in all of them, show-casing the empirical benefits gained by the modularity and the combination of different strategies.
Efficiently Scaling Transformer Inference
We study the problem of efficient generative inference for Transformer models, in one of its most challenging settings: large deep models, with tight latency targets and long sequence lengths. Better understanding of the engineering tradeoffs for inference for large Transformer-based models is important as use cases of these models are growing rapidly throughout application areas. We develop a simple analytical model for inference efficiency to select the best multi-dimensional partitioning techniques optimized for TPU v4 slices based on the application requirements. We combine these with a suite of low-level optimizations to achieve a new Pareto frontier on the latency and model FLOPS utilization (MFU) tradeoffs on 500B+ parameter models that outperforms the FasterTransformer suite of benchmarks. We further show that with appropriate partitioning, the lower memory requirements of multiquery attention (i.e. multiple query heads share single key/value head) enables scaling up to 32x larger context lengths. Finally, we achieve a low-batch-size latency of 29ms per token during generation (using int8 weight quantization) and a 76% MFU during large-batch-size processing of input tokens, while supporting a long 2048-token context length on the PaLM 540B parameter model.
Convergent Learning: Do different neural networks learn the same representations?
Recent success in training deep neural networks have prompted active investigation into the features learned on their intermediate layers. Such research is difficult because it requires making sense of non-linear computations performed by millions of parameters, but valuable because it increases our ability to understand current models and create improved versions of them. In this paper we investigate the extent to which neural networks exhibit what we call convergent learning, which is when the representations learned by multiple nets converge to a set of features which are either individually similar between networks or where subsets of features span similar low-dimensional spaces. We propose a specific method of probing representations: training multiple networks and then comparing and contrasting their individual, learned representations at the level of neurons or groups of neurons. We begin research into this question using three techniques to approximately align different neural networks on a feature level: a bipartite matching approach that makes one-to-one assignments between neurons, a sparse prediction approach that finds one-to-many mappings, and a spectral clustering approach that finds many-to-many mappings. This initial investigation reveals a few previously unknown properties of neural networks, and we argue that future research into the question of convergent learning will yield many more. The insights described here include (1) that some features are learned reliably in multiple networks, yet other features are not consistently learned; (2) that units learn to span low-dimensional subspaces and, while these subspaces are common to multiple networks, the specific basis vectors learned are not; (3) that the representation codes show evidence of being a mix between a local code and slightly, but not fully, distributed codes across multiple units.
Sequence Parallelism: Long Sequence Training from System Perspective
Transformer achieves promising results on various tasks. However, self-attention suffers from quadratic memory requirements with respect to the sequence length. Existing work focuses on reducing time and space complexity from an algorithm perspective. In this work, we propose sequence parallelism, a memory-efficient parallelism method to help us break input sequence length limitation and train with longer sequences on GPUs efficiently. Our approach is compatible with most existing parallelisms (e.g. data parallelism, pipeline parallelism and tensor parallelism), which means our sequence parallelism makes 4D parallelism possible. More importantly, we no longer require a single device to hold the whole sequence. That is, with sparse attention, our sequence parallelism enables us to train transformer with infinite long sequence. Specifically, we split the input sequence into multiple chunks and feed each chunk into its corresponding device (i.e. GPU). To compute the attention output, we integrated ring-style communication with self-attention calculation and proposed Ring Self-Attention (RSA). Experiments show that sequence parallelism performs well when scaling with batch size and sequence length. Compared with tensor parallelism, our approach achieved 13.7times and 3.0times maximum batch size and sequence length respectively when scaling up to 64 NVIDIA P100 GPUs. With sparse attention, sequence can handle sequence with over 114K tokens, which is over 27times longer than existing sparse attention works holding the whole sequence on a single device.
Speed-Oblivious Online Scheduling: Knowing (Precise) Speeds is not Necessary
We consider online scheduling on unrelated (heterogeneous) machines in a speed-oblivious setting, where an algorithm is unaware of the exact job-dependent processing speeds. We show strong impossibility results for clairvoyant and non-clairvoyant algorithms and overcome them in models inspired by practical settings: (i) we provide competitive learning-augmented algorithms, assuming that (possibly erroneous) predictions on the speeds are given, and (ii) we provide competitive algorithms for the speed-ordered model, where a single global order of machines according to their unknown job-dependent speeds is known. We prove strong theoretical guarantees and evaluate our findings on a representative heterogeneous multi-core processor. These seem to be the first empirical results for scheduling algorithms with predictions that are evaluated in a non-synthetic hardware environment.
MAMBA: Multi-level Aggregation via Memory Bank for Video Object Detection
State-of-the-art video object detection methods maintain a memory structure, either a sliding window or a memory queue, to enhance the current frame using attention mechanisms. However, we argue that these memory structures are not efficient or sufficient because of two implied operations: (1) concatenating all features in memory for enhancement, leading to a heavy computational cost; (2) frame-wise memory updating, preventing the memory from capturing more temporal information. In this paper, we propose a multi-level aggregation architecture via memory bank called MAMBA. Specifically, our memory bank employs two novel operations to eliminate the disadvantages of existing methods: (1) light-weight key-set construction which can significantly reduce the computational cost; (2) fine-grained feature-wise updating strategy which enables our method to utilize knowledge from the whole video. To better enhance features from complementary levels, i.e., feature maps and proposals, we further propose a generalized enhancement operation (GEO) to aggregate multi-level features in a unified manner. We conduct extensive evaluations on the challenging ImageNetVID dataset. Compared with existing state-of-the-art methods, our method achieves superior performance in terms of both speed and accuracy. More remarkably, MAMBA achieves mAP of 83.7/84.6% at 12.6/9.1 FPS with ResNet-101. Code is available at https://github.com/guanxiongsun/video_feature_enhancement.
SpaGBOL: Spatial-Graph-Based Orientated Localisation
Cross-View Geo-Localisation within urban regions is challenging in part due to the lack of geo-spatial structuring within current datasets and techniques. We propose utilising graph representations to model sequences of local observations and the connectivity of the target location. Modelling as a graph enables generating previously unseen sequences by sampling with new parameter configurations. To leverage this newly available information, we propose a GNN-based architecture, producing spatially strong embeddings and improving discriminability over isolated image embeddings. We outline SpaGBOL, introducing three novel contributions. 1) The first graph-structured dataset for Cross-View Geo-Localisation, containing multiple streetview images per node to improve generalisation. 2) Introducing GNNs to the problem, we develop the first system that exploits the correlation between node proximity and feature similarity. 3) Leveraging the unique properties of the graph representation - we demonstrate a novel retrieval filtering approach based on neighbourhood bearings. SpaGBOL achieves state-of-the-art accuracies on the unseen test graph - with relative Top-1 retrieval improvements on previous techniques of 11%, and 50% when filtering with Bearing Vector Matching on the SpaGBOL dataset.
Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster
In this work, we propose FastCoT, a model-agnostic framework based on parallel decoding without any further training of an auxiliary model or modification to the LLM itself. FastCoT uses a size-varying context window whose size changes with position to conduct parallel decoding and auto-regressive decoding simultaneously, thus fully utilizing GPU computation resources. In FastCoT, the parallel decoding part provides the LLM with a quick glance of the future composed of approximate tokens, which could lead to faster answers compared to regular autoregressive decoding used by causal transformers. We also provide an implementation of parallel decoding within LLM, which supports KV-cache generation and batch processing. Through extensive experiments, we demonstrate that FastCoT saves inference time by nearly 20% with only a negligible performance drop compared to the regular approach. Additionally, we show that the context window size exhibits considerable robustness for different tasks.
Improving Retrieval-Augmented Large Language Models via Data Importance Learning
Retrieval augmentation enables large language models to take advantage of external knowledge, for example on tasks like question answering and data imputation. However, the performance of such retrieval-augmented models is limited by the data quality of their underlying retrieval corpus. In this paper, we propose an algorithm based on multilinear extension for evaluating the data importance of retrieved data points. There are exponentially many terms in the multilinear extension, and one key contribution of this paper is a polynomial time algorithm that computes exactly, given a retrieval-augmented model with an additive utility function and a validation set, the data importance of data points in the retrieval corpus using the multilinear extension of the model's utility function. We further proposed an even more efficient ({\epsilon}, {\delta})-approximation algorithm. Our experimental results illustrate that we can enhance the performance of large language models by only pruning or reweighting the retrieval corpus, without requiring further training. For some tasks, this even allows a small model (e.g., GPT-JT), augmented with a search engine API, to outperform GPT-3.5 (without retrieval augmentation). Moreover, we show that weights based on multilinear extension can be computed efficiently in practice (e.g., in less than ten minutes for a corpus with 100 million elements).
Mr. TyDi: A Multi-lingual Benchmark for Dense Retrieval
We present Mr. TyDi, a multi-lingual benchmark dataset for mono-lingual retrieval in eleven typologically diverse languages, designed to evaluate ranking with learned dense representations. The goal of this resource is to spur research in dense retrieval techniques in non-English languages, motivated by recent observations that existing techniques for representation learning perform poorly when applied to out-of-distribution data. As a starting point, we provide zero-shot baselines for this new dataset based on a multi-lingual adaptation of DPR that we call "mDPR". Experiments show that although the effectiveness of mDPR is much lower than BM25, dense representations nevertheless appear to provide valuable relevance signals, improving BM25 results in sparse-dense hybrids. In addition to analyses of our results, we also discuss future challenges and present a research agenda in multi-lingual dense retrieval. Mr. TyDi can be downloaded at https://github.com/castorini/mr.tydi.
LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning
Federated Learning (FL) typically involves a large-scale, distributed system with individual user devices/servers training models locally and then aggregating their model updates on a trusted central server. Existing systems for FL often use an always-on server for model aggregation, which can be inefficient in terms of resource utilization. They may also be inelastic in their resource management. This is particularly exacerbated when aggregating model updates at scale in a highly dynamic environment with varying numbers of heterogeneous user devices/servers. We present LIFL, a lightweight and elastic serverless cloud platform with fine-grained resource management for efficient FL aggregation at scale. LIFL is enhanced by a streamlined, event-driven serverless design that eliminates the individual heavy-weight message broker and replaces inefficient container-based sidecars with lightweight eBPF-based proxies. We leverage shared memory processing to achieve high-performance communication for hierarchical aggregation, which is commonly adopted to speed up FL aggregation at scale. We further introduce locality-aware placement in LIFL to maximize the benefits of shared memory processing. LIFL precisely scales and carefully reuses the resources for hierarchical aggregation to achieve the highest degree of parallelism while minimizing the aggregation time and resource consumption. Our experimental results show that LIFL achieves significant improvement in resource efficiency and aggregation speed for supporting FL at scale, compared to existing serverful and serverless FL systems.
STD-PLM: Understanding Both Spatial and Temporal Properties of Spatial-Temporal Data with PLM
Spatial-temporal forecasting and imputation are important for real-world intelligent systems. Most existing methods are tailored for individual forecasting or imputation tasks but are not designed for both. Additionally, they are less effective for zero-shot and few-shot learning. While pre-trained language model (PLM) have exhibited strong pattern recognition and reasoning abilities across various tasks, including few-shot and zero-shot learning, their applications in spatial-temporal data understanding has been constrained by insufficient modeling of complex correlations such as the temporal correlations, spatial connectivity, non-pairwise and high-order spatial-temporal correlations within data. In this paper, we propose STD-PLM for understanding both spatial and temporal properties of Spatial-Temporal Data with PLM, which is capable of implementing both spatial-temporal forecasting and imputation tasks. STD-PLM understands spatial-temporal correlations via explicitly designed spatial and temporal tokenizers. Topology-aware node embeddings are designed for PLM to comprehend and exploit the topology structure of data in inductive manner. Furthermore, to mitigate the efficiency issues introduced by the PLM, we design a sandglass attention module (SGA) combined with a specific constrained loss function, which significantly improves the model's efficiency while ensuring performance. Extensive experiments demonstrate that STD-PLM exhibits competitive performance and generalization capabilities across the forecasting and imputation tasks on various datasets. Moreover, STD-PLM achieves promising results on both few-shot and zero-shot tasks.The code is made available at https://anonymous.4open.science/r/STD-PLM-F3BA{https://anonymous.4open.science/r/STD-PLM-F3BA}
On Optimal Caching and Model Multiplexing for Large Model Inference
Large Language Models (LLMs) and other large foundation models have achieved noteworthy success, but their size exacerbates existing resource consumption and latency challenges. In particular, the large-scale deployment of these models is hindered by the significant resource requirements during inference. In this paper, we study two approaches for mitigating these challenges: employing a cache to store previous queries and learning a model multiplexer to choose from an ensemble of models for query processing. Theoretically, we provide an optimal algorithm for jointly optimizing both approaches to reduce the inference cost in both offline and online tabular settings. By combining a caching algorithm, namely Greedy Dual Size with Frequency (GDSF) or Least Expected Cost (LEC), with a model multiplexer, we achieve optimal rates in both offline and online settings. Empirically, simulations show that the combination of our caching and model multiplexing algorithms greatly improves over the baselines, with up to 50times improvement over the baseline when the ratio between the maximum cost and minimum cost is 100. Experiments on real datasets show a 4.3times improvement in FLOPs over the baseline when the ratio for FLOPs is 10, and a 1.8times improvement in latency when the ratio for average latency is 1.85.
Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix Factorization
Efficient k-nearest neighbor search is a fundamental task, foundational for many problems in NLP. When the similarity is measured by dot-product between dual-encoder vectors or ell_2-distance, there already exist many scalable and efficient search methods. But not so when similarity is measured by more accurate and expensive black-box neural similarity models, such as cross-encoders, which jointly encode the query and candidate neighbor. The cross-encoders' high computational cost typically limits their use to reranking candidates retrieved by a cheaper model, such as dual encoder or TF-IDF. However, the accuracy of such a two-stage approach is upper-bounded by the recall of the initial candidate set, and potentially requires additional training to align the auxiliary retrieval model with the cross-encoder model. In this paper, we present an approach that avoids the use of a dual-encoder for retrieval, relying solely on the cross-encoder. Retrieval is made efficient with CUR decomposition, a matrix decomposition approach that approximates all pairwise cross-encoder distances from a small subset of rows and columns of the distance matrix. Indexing items using our approach is computationally cheaper than training an auxiliary dual-encoder model through distillation. Empirically, for k > 10, our approach provides test-time recall-vs-computational cost trade-offs superior to the current widely-used methods that re-rank items retrieved using a dual-encoder or TF-IDF.
Is Fine-Tuning an Effective Solution? Reassessing Knowledge Editing for Unstructured Data
Unstructured Knowledge Editing (UKE) is crucial for updating the relevant knowledge of large language models (LLMs). It focuses on unstructured inputs, such as long or free-form texts, which are common forms of real-world knowledge. Although previous studies have proposed effective methods and tested them, some issues exist: (1) Lack of Locality evaluation for UKE, and (2) Abnormal failure of fine-tuning (FT) based methods for UKE. To address these issues, we first construct two datasets, UnKEBench-Loc and AKEW-Loc (CF), by extending two existing UKE datasets with locality test data from the unstructured and structured views. This enables a systematic evaluation of the Locality of post-edited models. Furthermore, we identify four factors that may affect the performance of FT-based methods. Based on these factors, we conduct experiments to determine how the well-performing FT-based methods should be trained for the UKE task, providing a training recipe for future research. Our experimental results indicate that the FT-based method with the optimal setting (FT-UKE) is surprisingly strong, outperforming the existing state-of-the-art (SOTA). In batch editing scenarios, FT-UKE shows strong performance as well, with its advantage over SOTA methods increasing as the batch size grows, expanding the average metric lead from +6.78% to +10.80%
MultiHal: Multilingual Dataset for Knowledge-Graph Grounded Evaluation of LLM Hallucinations
Large Language Models (LLMs) have inherent limitations of faithfulness and factuality, commonly referred to as hallucinations. Several benchmarks have been developed that provide a test bed for factuality evaluation within the context of English-centric datasets, while relying on supplementary informative context like web links or text passages but ignoring the available structured factual resources. To this end, Knowledge Graphs (KGs) have been identified as a useful aid for hallucination mitigation, as they provide a structured way to represent the facts about entities and their relations with minimal linguistic overhead. We bridge the lack of KG paths and multilinguality for factual language modeling within the existing hallucination evaluation benchmarks and propose a KG-based multilingual, multihop benchmark called MultiHal framed for generative text evaluation. As part of our data collection pipeline, we mined 140k KG-paths from open-domain KGs, from which we pruned noisy KG-paths, curating a high-quality subset of 25.9k. Our baseline evaluation shows an absolute scale increase by approximately 0.12 to 0.36 points for the semantic similarity score in KG-RAG over vanilla QA across multiple languages and multiple models, demonstrating the potential of KG integration. We anticipate MultiHal will foster future research towards several graph-based hallucination mitigation and fact-checking tasks.
You Only Scan Once: Efficient Multi-dimension Sequential Modeling with LightNet
Linear attention mechanisms have gained prominence in causal language models due to their linear computational complexity and enhanced speed. However, the inherent decay mechanism in linear attention presents challenges when applied to multi-dimensional sequence modeling tasks, such as image processing and multi-modal learning. In these scenarios, the utilization of sequential scanning to establish a global receptive field necessitates multiple scans for multi-dimensional data, thereby leading to inefficiencies. This paper identifies the inefficiency caused by a multiplicative linear recurrence and proposes an efficient alternative additive linear recurrence to avoid the issue, as it can handle multi-dimensional data within a single scan. We further develop an efficient multi-dimensional sequential modeling framework called LightNet based on the new recurrence. Moreover, we present two new multi-dimensional linear relative positional encoding methods, MD-TPE and MD-LRPE to enhance the model's ability to discern positional information in multi-dimensional scenarios. Our empirical evaluations across various tasks, including image classification, image generation, bidirectional language modeling, and autoregressive language modeling, demonstrate the efficacy of LightNet, showcasing its potential as a versatile and efficient solution for multi-dimensional sequential modeling.
Lossless Acceleration of Large Language Models with Hierarchical Drafting based on Temporal Locality in Speculative Decoding
Accelerating inference in Large Language Models (LLMs) is critical for real-time interactions, as they have been widely incorporated into real-world services. Speculative decoding, a fully algorithmic solution, has gained attention for improving inference speed by drafting and verifying tokens, thereby generating multiple tokens in a single forward pass. However, current drafting strategies usually require significant fine-tuning or have inconsistent performance across tasks. To address these challenges, we propose Hierarchy Drafting (HD), a novel lossless drafting approach that organizes various token sources into multiple databases in a hierarchical framework based on temporal locality. In the drafting step, HD sequentially accesses multiple databases to obtain draft tokens from the highest to the lowest locality, ensuring consistent acceleration across diverse tasks and minimizing drafting latency. Our experiments on Spec-Bench using LLMs with 7B and 13B parameters demonstrate that HD outperforms existing database drafting methods, achieving robust inference speedups across model sizes, tasks, and temperatures.
Accurate Block Quantization in LLMs with Outliers
The demand for inference on extremely large scale LLMs has seen enormous growth in the recent months. It made evident the colossal shortage of dedicated hardware capable of efficient and fast processing of the involved compute and memory movement. The problem is aggravated by the exploding raise in the lengths of the sequences being processed, since those require efficient on-chip storage of the KV-cache of size proportional to the sequence length. To make the required compute feasible and fit the involved data into available memory, numerous quantization techniques have been proposed that allow accurate quantization for both weights and activations. One of the main recent breakthroughs in this direction was introduction of the family of Block Floating Point (BFP) formats characterized by a block of mantissas with a shared scale factor. These enable memory- power-, and compute- efficient hardware support of the tensor operations and provide extremely good quantization accuracy. The main issues preventing widespread application of block formats is caused by the presence of outliers in weights and activations since those affect the accuracy of the other values in the same block. In this paper, we focus on the most critical problem of limited KV-cache storage. We propose a novel approach enabling usage of low precision BFP formats without compromising the resulting model accuracy. We exploit the common channel-wise patterns exhibited by the outliers to rearrange them in such a way, that their quantization quality is significantly improved. The methodology yields 2x savings in the memory footprint without significant degradation of the model's accuracy. Importantly, the rearrangement of channels happens at the compile time and thus has no impact on the inference latency.
FlashRNN: Optimizing Traditional RNNs on Modern Hardware
While Transformers and other sequence-parallelizable neural network architectures seem like the current state of the art in sequence modeling, they specifically lack state-tracking capabilities. These are important for time-series tasks and logical reasoning. Traditional RNNs like LSTMs and GRUs, as well as modern variants like sLSTM do have these capabilities at the cost of strictly sequential processing. While this is often seen as a strong limitation, we show how fast these networks can get with our hardware-optimization FlashRNN in Triton and CUDA, optimizing kernels to the register level on modern GPUs. We extend traditional RNNs with a parallelization variant that processes multiple RNNs of smaller hidden state in parallel, similar to the head-wise processing in Transformers. To enable flexibility on different GPU variants, we introduce a new optimization framework for hardware-internal cache sizes, memory and compute handling. It models the hardware in a setting using polyhedral-like constraints, including the notion of divisibility. This speeds up the solution process in our ConstrINT library for general integer constraint satisfaction problems (integer CSPs). We show that our kernels can achieve 50x speed-ups over a vanilla PyTorch implementation and allow 40x larger hidden sizes compared to our Triton implementation. Our open-source kernels and the optimization library are released here to boost research in the direction of state-tracking enabled RNNs and sequence modeling: https://github.com/NX-AI/flashrnn
EMS-SD: Efficient Multi-sample Speculative Decoding for Accelerating Large Language Models
Speculative decoding emerges as a pivotal technique for enhancing the inference speed of Large Language Models (LLMs). Despite recent research aiming to improve prediction efficiency, multi-sample speculative decoding has been overlooked due to varying numbers of accepted tokens within a batch in the verification phase. Vanilla method adds padding tokens in order to ensure that the number of new tokens remains consistent across samples. However, this increases the computational and memory access overhead, thereby reducing the speedup ratio. We propose a novel method that can resolve the issue of inconsistent tokens accepted by different samples without necessitating an increase in memory or computing overhead. Furthermore, our proposed method can handle the situation where the prediction tokens of different samples are inconsistent without the need to add padding tokens. Sufficient experiments demonstrate the efficacy of our method. Our code is available at https://github.com/niyunsheng/EMS-SD.
CritiPrefill: A Segment-wise Criticality-based Approach for Prefilling Acceleration in LLMs
Large language models have achieved notable success across various domains, yet efficient inference is still limited by the quadratic computation complexity of the attention mechanism. The inference consists of prefilling and decoding phases. Although several attempts have been made to accelerate decoding, the inefficiency of the prefilling phase, especially for long-context tasks, remains a challenge. In this paper, we observe a locality in query criticality during the prefilling phase of long-context processing: adjacent query tokens tend to focus on similar subsets of the past Key-Value (KV) cache. Based on this observation, we propose CritiPrefill, a criticality-based segment-wise prefilling method. This method partitions the input sequence's queries and KV cache into segments and blocks, utilizing a segment-wise algorithm to estimate the query criticality. By pruning non-critical computations between query segments and cache blocks in the self-attention mechanism, the prefilling process can be significantly accelerated. Extensive evaluations on multiple long-context datasets show up to 2.7x speedup on Llama3-8B and 3.0x speedup on Yi-9B for 128K context length on a single A100 GPU, with minimal quality degradation.
RAT: Bridging RNN Efficiency and Attention Accuracy in Language Modeling
Transformers have become the cornerstone of modern large-scale language models; however, their dependence on softmax attention poses a major computational bottleneck, particularly in long-context settings. In this work, rather than following prevalent approaches such as linear attention (or SSMs) and local attention, we introduce an intermediate design called \rat between recurrence and attention mechanisms. It partitions the input into chunks, applies a simple linear recurrence within each chunk to capture local dependencies, and then performs softmax attention across chunks to model long-range interactions. By adjusting the size of the chunk, \rat enables flexible trade-offs, combining the strengths of RNN and attention. Empirically, with a chunk size of 16, the \rat layer achieves a \(7\times\) improvement in training speed with 100K token sequences and \(9\times\) in generation at 4K sequence length, while maintaining similar or sometimes even better accuracy compared to standard attention. We demonstrate this by training 1.3B parameter models from scratch and performing large-scale evaluations, including short- and long-context benchmarks, as well as supervised fine-tuning~(SFT). We further propose a hybrid architecture that interleaves \rat with local attention. By combining efficient long-range modeling with strong local interactions, this hybrid design not only improves inference speed and reduces cache memory usage compared to attention, but also consistently enhances performance, for example, achieving an average 1 point gain in commonsense reasoning tasks, up to 4 points on code tasks, and a 1 point Rouge-L increase in a summarization SFT task. Code is available at https://github.com/CLAIRE-Labo/RAT
SCBench: A KV Cache-Centric Analysis of Long-Context Methods
Long-context LLMs have enabled numerous downstream applications but also introduced significant challenges related to computational and memory efficiency. To address these challenges, optimizations for long-context inference have been developed, centered around the KV cache. However, existing benchmarks often evaluate in single-request, neglecting the full lifecycle of the KV cache in real-world use. This oversight is particularly critical, as KV cache reuse has become widely adopted in LLMs inference frameworks, such as vLLM and SGLang, as well as by LLM providers, including OpenAI, Microsoft, Google, and Anthropic. To address this gap, we introduce SCBench(SharedContextBench), a comprehensive benchmark for evaluating long-context methods from a KV cachecentric perspective: 1) KV cache generation, 2) KV cache compression, 3) KV cache retrieval, 4) KV cache loading. Specifically, SCBench uses test examples with shared context, ranging 12 tasks with two shared context modes, covering four categories of long-context capabilities: string retrieval, semantic retrieval, global information, and multi-task. With it, we provide an extensive KV cache-centric analysis of eight categories long-context solutions, including Gated Linear RNNs, Mamba-Attention hybrids, and efficient methods such as sparse attention, KV cache dropping, quantization, retrieval, loading, and prompt compression. The evaluation is conducted on 8 long-context LLMs. Our findings show that sub-O(n) memory methods suffer in multi-turn scenarios, while sparse encoding with O(n) memory and sub-O(n^2) pre-filling computation perform robustly. Dynamic sparsity yields more expressive KV caches than static patterns, and layer-level sparsity in hybrid architectures reduces memory usage with strong performance. Additionally, we identify attention distribution shift issues in long-generation scenarios. https://aka.ms/SCBench.
Scaling Laws for Associative Memories
Learning arguably involves the discovery and memorization of abstract rules. The aim of this paper is to study associative memory mechanisms. Our model is based on high-dimensional matrices consisting of outer products of embeddings, which relates to the inner layers of transformer language models. We derive precise scaling laws with respect to sample size and parameter size, and discuss the statistical efficiency of different estimators, including optimization-based algorithms. We provide extensive numerical experiments to validate and interpret theoretical results, including fine-grained visualizations of the stored memory associations.
The Impacts of Data, Ordering, and Intrinsic Dimensionality on Recall in Hierarchical Navigable Small Worlds
Vector search systems, pivotal in AI applications, often rely on the Hierarchical Navigable Small Worlds (HNSW) algorithm. However, the behaviour of HNSW under real-world scenarios using vectors generated with deep learning models remains under-explored. Existing Approximate Nearest Neighbours (ANN) benchmarks and research typically has an over-reliance on simplistic datasets like MNIST or SIFT1M and fail to reflect the complexity of current use-cases. Our investigation focuses on HNSW's efficacy across a spectrum of datasets, including synthetic vectors tailored to mimic specific intrinsic dimensionalities, widely-used retrieval benchmarks with popular embedding models, and proprietary e-commerce image data with CLIP models. We survey the most popular HNSW vector databases and collate their default parameters to provide a realistic fixed parameterisation for the duration of the paper. We discover that the recall of approximate HNSW search, in comparison to exact K Nearest Neighbours (KNN) search, is linked to the vector space's intrinsic dimensionality and significantly influenced by the data insertion sequence. Our methodology highlights how insertion order, informed by measurable properties such as the pointwise Local Intrinsic Dimensionality (LID) or known categories, can shift recall by up to 12 percentage points. We also observe that running popular benchmark datasets with HNSW instead of KNN can shift rankings by up to three positions for some models. This work underscores the need for more nuanced benchmarks and design considerations in developing robust vector search systems using approximate vector search algorithms. This study presents a number of scenarios with varying real world applicability which aim to better increase understanding and future development of ANN algorithms and embedding
Beyond LLaVA-HD: Diving into High-Resolution Large Multimodal Models
Seeing clearly with high resolution is a foundation of Large Multimodal Models (LMMs), which has been proven to be vital for visual perception and reasoning. Existing works usually employ a straightforward resolution upscaling method, where the image consists of global and local branches, with the latter being the sliced image patches but resized to the same resolution as the former. This means that higher resolution requires more local patches, resulting in exorbitant computational expenses, and meanwhile, the dominance of local image tokens may diminish the global context. In this paper, we dive into the problems and propose a new framework as well as an elaborate optimization strategy. Specifically, we extract contextual information from the global view using a mixture of adapters, based on the observation that different adapters excel at different tasks. With regard to local patches, learnable query embeddings are introduced to reduce image tokens, the most important tokens accounting for the user question will be further selected by a similarity-based selector. Our empirical results demonstrate a `less is more' pattern, where utilizing fewer but more informative local image tokens leads to improved performance. Besides, a significant challenge lies in the training strategy, as simultaneous end-to-end training of the global mining block and local compression block does not yield optimal results. We thus advocate for an alternating training way, ensuring balanced learning between global and local aspects. Finally, we also introduce a challenging dataset with high requirements for image detail, enhancing the training of the local compression layer. The proposed method, termed LMM with Sophisticated Tasks, Local image compression, and Mixture of global Experts (SliME), achieves leading performance across various benchmarks with only 2 million training data.
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
The Non-Local Network (NLNet) presents a pioneering approach for capturing long-range dependencies, via aggregating query-specific global context to each query position. However, through a rigorous empirical analysis, we have found that the global contexts modeled by non-local network are almost the same for different query positions within an image. In this paper, we take advantage of this finding to create a simplified network based on a query-independent formulation, which maintains the accuracy of NLNet but with significantly less computation. We further observe that this simplified design shares similar structure with Squeeze-Excitation Network (SENet). Hence we unify them into a three-step general framework for global context modeling. Within the general framework, we design a better instantiation, called the global context (GC) block, which is lightweight and can effectively model the global context. The lightweight property allows us to apply it for multiple layers in a backbone network to construct a global context network (GCNet), which generally outperforms both simplified NLNet and SENet on major benchmarks for various recognition tasks. The code and configurations are released at https://github.com/xvjiarui/GCNet.
Learning to Route in Similarity Graphs
Recently similarity graphs became the leading paradigm for efficient nearest neighbor search, outperforming traditional tree-based and LSH-based methods. Similarity graphs perform the search via greedy routing: a query traverses the graph and in each vertex moves to the adjacent vertex that is the closest to this query. In practice, similarity graphs are often susceptible to local minima, when queries do not reach its nearest neighbors, getting stuck in suboptimal vertices. In this paper we propose to learn the routing function that overcomes local minima via incorporating information about the graph global structure. In particular, we augment the vertices of a given graph with additional representations that are learned to provide the optimal routing from the start vertex to the query nearest neighbor. By thorough experiments, we demonstrate that the proposed learnable routing successfully diminishes the local minima problem and significantly improves the overall search performance.
Asynchronous Local-SGD Training for Language Modeling
Local stochastic gradient descent (Local-SGD), also referred to as federated averaging, is an approach to distributed optimization where each device performs more than one SGD update per communication. This work presents an empirical study of {\it asynchronous} Local-SGD for training language models; that is, each worker updates the global parameters as soon as it has finished its SGD steps. We conduct a comprehensive investigation by examining how worker hardware heterogeneity, model size, number of workers, and optimizer could impact the learning performance. We find that with naive implementations, asynchronous Local-SGD takes more iterations to converge than its synchronous counterpart despite updating the (global) model parameters more frequently. We identify momentum acceleration on the global parameters when worker gradients are stale as a key challenge. We propose a novel method that utilizes a delayed Nesterov momentum update and adjusts the workers' local training steps based on their computation speed. This approach, evaluated with models up to 150M parameters on the C4 dataset, matches the performance of synchronous Local-SGD in terms of perplexity per update step, and significantly surpasses it in terms of wall clock time.
APB: Accelerating Distributed Long-Context Inference by Passing Compressed Context Blocks across GPUs
While long-context inference is crucial for advancing large language model (LLM) applications, its prefill speed remains a significant bottleneck. Current approaches, including sequence parallelism strategies and compute reduction through approximate attention mechanisms, still fall short of delivering optimal inference efficiency. This hinders scaling the inputs to longer sequences and processing long-context queries in a timely manner. To address this, we introduce APB, an efficient long-context inference framework that leverages multi-host approximate attention to enhance prefill speed by reducing compute and enhancing parallelism simultaneously. APB introduces a communication mechanism for essential key-value pairs within a sequence parallelism framework, enabling a faster inference speed while maintaining task performance. We implement APB by incorporating a tailored FlashAttn kernel alongside optimized distribution strategies, supporting diverse models and parallelism configurations. APB achieves speedups of up to 9.2x, 4.2x, and 1.6x compared with FlashAttn, RingAttn, and StarAttn, respectively, without any observable task performance degradation. We provide the implementation and experiment code of APB in https://github.com/thunlp/APB.
Localizing Paragraph Memorization in Language Models
Can we localize the weights and mechanisms used by a language model to memorize and recite entire paragraphs of its training data? In this paper, we show that while memorization is spread across multiple layers and model components, gradients of memorized paragraphs have a distinguishable spatial pattern, being larger in lower model layers than gradients of non-memorized examples. Moreover, the memorized examples can be unlearned by fine-tuning only the high-gradient weights. We localize a low-layer attention head that appears to be especially involved in paragraph memorization. This head is predominantly focusing its attention on distinctive, rare tokens that are least frequent in a corpus-level unigram distribution. Next, we study how localized memorization is across the tokens in the prefix by perturbing tokens and measuring the caused change in the decoding. A few distinctive tokens early in a prefix can often corrupt the entire continuation. Overall, memorized continuations are not only harder to unlearn, but also to corrupt than non-memorized ones.
Adapters: A Unified Library for Parameter-Efficient and Modular Transfer Learning
We introduce Adapters, an open-source library that unifies parameter-efficient and modular transfer learning in large language models. By integrating 10 diverse adapter methods into a unified interface, Adapters offers ease of use and flexible configuration. Our library allows researchers and practitioners to leverage adapter modularity through composition blocks, enabling the design of complex adapter setups. We demonstrate the library's efficacy by evaluating its performance against full fine-tuning on various NLP tasks. Adapters provides a powerful tool for addressing the challenges of conventional fine-tuning paradigms and promoting more efficient and modular transfer learning. The library is available via https://adapterhub.ml/adapters.
Graphlets correct for the topological information missed by random walks
Random walks are widely used for mining networks due to the computational efficiency of computing them. For instance, graph representation learning learns a d-dimensional embedding space, so that the nodes that tend to co-occur on random walks (a proxy of being in the same network neighborhood) are close in the embedding space. Specific local network topology (i.e., structure) influences the co-occurrence of nodes on random walks, so random walks of limited length capture only partial topological information, hence diminishing the performance of downstream methods. We explicitly capture all topological neighborhood information and improve performance by introducing orbit adjacencies that quantify the adjacencies of two nodes as co-occurring on a given pair of graphlet orbits, which are symmetric positions on graphlets (small, connected, non-isomorphic, induced subgraphs of a large network). Importantly, we mathematically prove that random walks on up to k nodes capture only a subset of all the possible orbit adjacencies for up to k-node graphlets. Furthermore, we enable orbit adjacency-based analysis of networks by developing an efficient GRaphlet-orbit ADjacency COunter (GRADCO), which exhaustively computes all 28 orbit adjacency matrices for up to four-node graphlets. Note that four-node graphlets suffice, because real networks are usually small-world. In large networks on around 20,000 nodes, GRADCOcomputesthe28matricesinminutes. Onsixrealnetworksfromvarious domains, we compare the performance of node-label predictors obtained by using the network embeddings based on our orbit adjacencies to those based on random walks. We find that orbit adjacencies, which include those unseen by random walks, outperform random walk-based adjacencies, demonstrating the importance of the inclusion of the topological neighborhood information that is unseen by random walks.
Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores
Large language models (LLMs) have been widely applied but face challenges in efficient inference. While quantization methods reduce computational demands, ultra-low bit quantization with arbitrary precision is hindered by limited GPU Tensor Core support and inefficient memory management, leading to suboptimal acceleration. To address these challenges, we propose a comprehensive acceleration scheme for arbitrary precision LLMs. At its core, we introduce a novel bipolar-INT data format that facilitates parallel computing and supports symmetric quantization, effectively reducing data redundancy. Building on this, we implement an arbitrary precision matrix multiplication scheme that decomposes and recovers matrices at the bit level, enabling flexible precision while maximizing GPU Tensor Core utilization. Furthermore, we develop an efficient matrix preprocessing method that optimizes data layout for subsequent computations. Finally, we design a data recovery-oriented memory management system that strategically utilizes fast shared memory, significantly enhancing kernel execution speed and minimizing memory access latency. Experimental results demonstrate our approach's effectiveness, with up to 2.4\times speedup in matrix multiplication compared to NVIDIA's CUTLASS. When integrated into LLMs, we achieve up to 6.7\times inference acceleration. These improvements significantly enhance LLM inference efficiency, enabling broader and more responsive applications of LLMs.
Multi-Head Adapter Routing for Cross-Task Generalization
Parameter-efficient fine-tuning (PEFT) for cross-task generalization consists in pre-training adapters on a multi-task training set before few-shot adaptation to test tasks. Polytropon [Ponti et al., 2023] (Poly) jointly learns an inventory of adapters and a routing function that selects a (variable-size) subset of adapters for each task during both pre-training and few-shot adaptation. In this paper, we investigate the role that adapter routing plays in its success and design new variants based on our findings. First, we build on the intuition that finer-grained routing provides more expressivity. Hence, we propose MHR (Multi-Head Routing), which combines subsets of adapter parameters and outperforms Poly under a comparable parameter budget; by only fine-tuning the routing function and not the adapters (MHR-z), we achieve competitive performance with extreme parameter efficiency. Second, we find that Poly/MHR performance is a result of better multi-task optimization, rather than modular inductive biases that facilitate adapter recombination and local adaptation, as previously hypothesized. In fact, we find that MHR exhibits higher gradient alignment between tasks than any other method. Since this implies that routing is only crucial during multi-task pre-training, we propose MHR-mu, which discards routing and fine-tunes the average of the pre-trained adapters during few-shot adaptation. This establishes MHR-mu as an effective method for single-adapter fine-tuning.
Token embeddings violate the manifold hypothesis
To fully understand the behavior of a large language model (LLM) requires our understanding of its input space. If this input space differs from our assumption, our understanding of and conclusions about the LLM is likely flawed, regardless of its architecture. Here, we elucidate the structure of the token embeddings, the input domain for LLMs, both empirically and theoretically. We present a generalized and statistically testable model where the neighborhood of each token splits into well-defined signal and noise dimensions. This model is based on a generalization of a manifold called a fiber bundle, so we denote our hypothesis test as the ``fiber bundle null.'' Failing to reject the null is uninformative, but rejecting it at a specific token indicates that token has a statistically significant local structure, and so is of interest to us. By running our test over several open-source LLMs, each with unique token embeddings, we find that the null is frequently rejected, and so the token subspace is provably not a fiber bundle and hence also not a manifold. As a consequence of our findings, when an LLM is presented with two semantically equivalent prompts, and if one prompt contains a token implicated by our test, that prompt will likely exhibit more output variability proportional to the local signal dimension of the token.
Hallucination is Inevitable: An Innate Limitation of Large Language Models
Hallucination has been widely recognized to be a significant drawback for large language models (LLMs). There have been many works that attempt to reduce the extent of hallucination. These efforts have mostly been empirical so far, which cannot answer the fundamental question whether it can be completely eliminated. In this paper, we formalize the problem and show that it is impossible to eliminate hallucination in LLMs. Specifically, we define a formal world where hallucination is defined as inconsistencies between a computable LLM and a computable ground truth function. By employing results from learning theory, we show that LLMs cannot learn all of the computable functions and will therefore always hallucinate. Since the formal world is a part of the real world which is much more complicated, hallucinations are also inevitable for real world LLMs. Furthermore, for real world LLMs constrained by provable time complexity, we describe the hallucination-prone tasks and empirically validate our claims. Finally, using the formal world framework, we discuss the possible mechanisms and efficacies of existing hallucination mitigators as well as the practical implications on the safe deployment of LLMs.
EIT: Enhanced Interactive Transformer
Two principles: the complementary principle and the consensus principle are widely acknowledged in the literature of multi-view learning. However, the current design of multi-head self-attention, an instance of multi-view learning, prioritizes the complementarity while ignoring the consensus. To address this problem, we propose an enhanced multi-head self-attention (EMHA). First, to satisfy the complementary principle, EMHA removes the one-to-one mapping constraint among queries and keys in multiple subspaces and allows each query to attend to multiple keys. On top of that, we develop a method to fully encourage consensus among heads by introducing two interaction models, namely inner-subspace interaction and cross-subspace interaction. Extensive experiments on a wide range of language tasks (e.g., machine translation, abstractive summarization and grammar correction, language modeling), show its superiority, with a very modest increase in model size. Our code would be available at: https://github.com/zhengkid/EIT-Enhanced-Interactive-Transformer.
Unified Embedding: Battle-Tested Feature Representations for Web-Scale ML Systems
Learning high-quality feature embeddings efficiently and effectively is critical for the performance of web-scale machine learning systems. A typical model ingests hundreds of features with vocabularies on the order of millions to billions of tokens. The standard approach is to represent each feature value as a d-dimensional embedding, introducing hundreds of billions of parameters for extremely high-cardinality features. This bottleneck has led to substantial progress in alternative embedding algorithms. Many of these methods, however, make the assumption that each feature uses an independent embedding table. This work introduces a simple yet highly effective framework, Feature Multiplexing, where one single representation space is used across many different categorical features. Our theoretical and empirical analysis reveals that multiplexed embeddings can be decomposed into components from each constituent feature, allowing models to distinguish between features. We show that multiplexed representations lead to Pareto-optimal parameter-accuracy tradeoffs for three public benchmark datasets. Further, we propose a highly practical approach called Unified Embedding with three major benefits: simplified feature configuration, strong adaptation to dynamic data distributions, and compatibility with modern hardware. Unified embedding gives significant improvements in offline and online metrics compared to highly competitive baselines across five web-scale search, ads, and recommender systems, where it serves billions of users across the world in industry-leading products.
MPAD: A New Dimension-Reduction Method for Preserving Nearest Neighbors in High-Dimensional Vector Search
High-dimensional vector embeddings are widely used in retrieval systems, yet dimensionality reduction (DR) is seldom applied due to its tendency to distort nearest-neighbor (NN) structure critical for search. Existing DR techniques such as PCA and UMAP optimize global or manifold-preserving criteria, rather than retrieval-specific objectives. We present MPAD: Maximum Pairwise Absolute Difference, an unsupervised DR method that explicitly preserves approximate NN relations by maximizing the margin between k-NNs and non-k-NNs under a soft orthogonality constraint. This design enables MPAD to retain ANN-relevant geometry without supervision or changes to the original embedding model. Experiments across multiple domains show that MPAD consistently outperforms standard DR methods in preserving neighborhood structure, enabling more accurate search in reduced dimensions.
Bitnet.cpp: Efficient Edge Inference for Ternary LLMs
The advent of 1-bit large language models (LLMs), led by BitNet b1.58, has spurred interest in ternary LLMs. Despite this, research and practical applications focusing on efficient edge inference for ternary LLMs remain scarce. To bridge this gap, we introduce Bitnet.cpp, an inference system optimized for BitNet b1.58 and ternary LLMs. Given that mixed-precision matrix multiplication (mpGEMM) constitutes the bulk of inference time in ternary LLMs, Bitnet.cpp incorporates a novel mpGEMM library to facilitate sub-2-bits-per-weight, efficient and lossless inference. The library features two core solutions: Ternary Lookup Table (TL), which addresses spatial inefficiencies of previous bit-wise methods, and Int2 with a Scale (I2_S), which ensures lossless edge inference, both enabling high-speed inference. Our experiments show that Bitnet.cpp achieves up to a 6.25x increase in speed over full-precision baselines and up to 2.32x over low-bit baselines, setting new benchmarks in the field. Additionally, we expand TL to element-wise lookup table (ELUT) for low-bit LLMs in the appendix, presenting both theoretical and empirical evidence of its considerable potential. Bitnet.cpp is publicly available at https://github.com/microsoft/BitNet/tree/paper , offering a sophisticated solution for the efficient and practical deployment of edge LLMs.
APE: Faster and Longer Context-Augmented Generation via Adaptive Parallel Encoding
Context-augmented generation (CAG) techniques, including RAG and ICL, require the efficient combination of multiple contexts to generate responses to user queries. Directly inputting these contexts as a sequence introduces a considerable computational burden by re-encoding the combined selection of contexts for every request. To address this, we explore the promising potential of parallel encoding to independently pre-compute and cache each context's KV states. This approach enables the direct loading of cached states during inference while accommodating more contexts through position reuse across contexts. However, due to misalignments in attention distribution, directly applying parallel encoding results in a significant performance drop. To enable effective and efficient CAG, we propose Adaptive Parallel Encoding (APE), which brings shared prefix, attention temperature, and scaling factor to align the distribution of parallel encoding with sequential encoding. Results on RAG and ICL tasks demonstrate that APE can preserve 98% and 93% sequential encoding performance using the same inputs while outperforming parallel encoding by 3.6% and 7.9%, respectively. It also scales to many-shot CAG, effectively encoding hundreds of contexts in parallel. Efficiency evaluation shows that APE can achieve an end-to-end 4.5times speedup by reducing 28times prefilling time for a 128K-length context.
Linear Cross-Lingual Mapping of Sentence Embeddings
Semantics of a sentence is defined with much less ambiguity than semantics of a single word, and it should be better preserved by translation to another language. If multilingual sentence embeddings intend to represent sentence semantics, then the similarity between embeddings of any two sentences must be invariant with respect to translation. Based on this suggestion, we consider a simple linear cross-lingual mapping as a possible improvement of the multilingual embeddings. We also consider deviation from orthogonality conditions as a measure of deficiency of the embeddings.
Quantum-Enhanced Conformal Methods for Multi-Output Uncertainty: A Holistic Exploration and Experimental Analysis
In this paper, we propose a unified approach to harness quantum conformal methods for multi-output distributions, with a particular emphasis on two experimental paradigms: (i) a standard 2-qubit circuit scenario producing a four-dimensional outcome distribution, and (ii) a multi-basis measurement setting that concatenates measurement probabilities in different bases (Z, X, Y) into a twelve-dimensional output space. By combining a multioutput regression model (e.g., random forests) with distributional conformal prediction, we validate coverage and interval-set sizes on both simulated quantum data and multi-basis measurement data. Our results confirm that classical conformal prediction can effectively provide coverage guarantees even when the target probabilities derive from inherently quantum processes. Such synergy opens the door to next-generation quantum-classical hybrid frameworks, providing both improved interpretability and rigorous coverage for quantum machine learning tasks. All codes and full reproducible Colab notebooks are made available at https://github.com/detasar/QECMMOU.
MINERS: Multilingual Language Models as Semantic Retrievers
Words have been represented in a high-dimensional vector space that encodes their semantic similarities, enabling downstream applications such as retrieving synonyms, antonyms, and relevant contexts. However, despite recent advances in multilingual language models (LMs), the effectiveness of these models' representations in semantic retrieval contexts has not been comprehensively explored. To fill this gap, this paper introduces the MINERS, a benchmark designed to evaluate the ability of multilingual LMs in semantic retrieval tasks, including bitext mining and classification via retrieval-augmented contexts. We create a comprehensive framework to assess the robustness of LMs in retrieving samples across over 200 diverse languages, including extremely low-resource languages in challenging cross-lingual and code-switching settings. Our results demonstrate that by solely retrieving semantically similar embeddings yields performance competitive with state-of-the-art approaches, without requiring any fine-tuning.
Real-Time Community Detection in Large Social Networks on a Laptop
For a broad range of research, governmental and commercial applications it is important to understand the allegiances, communities and structure of key players in society. One promising direction towards extracting this information is to exploit the rich relational data in digital social networks (the social graph). As social media data sets are very large, most approaches make use of distributed computing systems for this purpose. Distributing graph processing requires solving many difficult engineering problems, which has lead some researchers to look at single-machine solutions that are faster and easier to maintain. In this article, we present a single-machine real-time system for large-scale graph processing that allows analysts to interactively explore graph structures. The key idea is that the aggregate actions of large numbers of users can be compressed into a data structure that encapsulates user similarities while being robust to noise and queryable in real-time. We achieve single machine real-time performance by compressing the neighbourhood of each vertex using minhash signatures and facilitate rapid queries through Locality Sensitive Hashing. These techniques reduce query times from hours using industrial desktop machines operating on the full graph to milliseconds on standard laptops. Our method allows exploration of strongly associated regions (i.e. communities) of large graphs in real-time on a laptop. It has been deployed in software that is actively used by social network analysts and offers another channel for media owners to monetise their data, helping them to continue to provide free services that are valued by billions of people globally.
KERPLE: Kernelized Relative Positional Embedding for Length Extrapolation
Relative positional embeddings (RPE) have received considerable attention since RPEs effectively model the relative distance among tokens and enable length extrapolation. We propose KERPLE, a framework that generalizes relative position embedding for extrapolation by kernelizing positional differences. We achieve this goal using conditionally positive definite (CPD) kernels, a class of functions known for generalizing distance metrics. To maintain the inner product interpretation of self-attention, we show that a CPD kernel can be transformed into a PD kernel by adding a constant offset. This offset is implicitly absorbed in the Softmax normalization during self-attention. The diversity of CPD kernels allows us to derive various RPEs that enable length extrapolation in a principled way. Experiments demonstrate that the logarithmic variant achieves excellent extrapolation performance on three large language modeling datasets. Our implementation and pretrained checkpoints are released at https://github.com/chijames/KERPLE.git.
SMASH: One-Shot Model Architecture Search through HyperNetworks
Designing architectures for deep neural networks requires expert knowledge and substantial computation time. We propose a technique to accelerate architecture selection by learning an auxiliary HyperNet that generates the weights of a main model conditioned on that model's architecture. By comparing the relative validation performance of networks with HyperNet-generated weights, we can effectively search over a wide range of architectures at the cost of a single training run. To facilitate this search, we develop a flexible mechanism based on memory read-writes that allows us to define a wide range of network connectivity patterns, with ResNet, DenseNet, and FractalNet blocks as special cases. We validate our method (SMASH) on CIFAR-10 and CIFAR-100, STL-10, ModelNet10, and Imagenet32x32, achieving competitive performance with similarly-sized hand-designed networks. Our code is available at https://github.com/ajbrock/SMASH
Multi-Scale VMamba: Hierarchy in Hierarchy Visual State Space Model
Despite the significant achievements of Vision Transformers (ViTs) in various vision tasks, they are constrained by the quadratic complexity. Recently, State Space Models (SSMs) have garnered widespread attention due to their global receptive field and linear complexity with respect to the input length, demonstrating substantial potential across fields including natural language processing and computer vision. To improve the performance of SSMs in vision tasks, a multi-scan strategy is widely adopted, which leads to significant redundancy of SSMs. For a better trade-off between efficiency and performance, we analyze the underlying reasons behind the success of the multi-scan strategy, where long-range dependency plays an important role. Based on the analysis, we introduce Multi-Scale Vision Mamba (MSVMamba) to preserve the superiority of SSMs in vision tasks with limited parameters. It employs a multi-scale 2D scanning technique on both original and downsampled feature maps, which not only benefits long-range dependency learning but also reduces computational costs. Additionally, we integrate a Convolutional Feed-Forward Network (ConvFFN) to address the lack of channel mixing. Our experiments demonstrate that MSVMamba is highly competitive, with the MSVMamba-Tiny model achieving 82.8% top-1 accuracy on ImageNet, 46.9% box mAP, and 42.2% instance mAP with the Mask R-CNN framework, 1x training schedule on COCO, and 47.6% mIoU with single-scale testing on ADE20K.Code is available at https://github.com/YuHengsss/MSVMamba.
Linear Attention via Orthogonal Memory
Efficient attentions have greatly improved the computational efficiency of Transformers. However, most existing linear attention mechanisms suffer from an efficiency degradation problem, leading to inefficiencies in causal language modeling and hindering their application in long-range language models. This problem is more pronounced under language modeling with unbounded contexts. In this paper, we propose Linear Attention Via Orthogonal memory~(\shortname) to address these limitations, achieving strong performance while maintaining linear complexity. \shortname employs orthogonal decomposition to compress a context into a fixed-size orthogonal memory while effectively minimizing redundancy within the context. Given that orthogonal memory compresses global information, we further dissect the context to amplify fine-grained local information. Additionally, we embed the relative position encoding into \shortname to improve the extrapolation ability. Experimental results show that \shortname greatly improves the efficiency of the causal language model with the best extrapolation performance and outperforms other efficient baselines. Further, we endeavor to employ \shortname for unbounded language modeling and successfully scale the context length to 128K.
Fast, Stable and Efficient Approximation of Multi-parameter Persistence Modules with MMA
In this article, we introduce a new parameterized family of topological invariants, taking the form of candidate decompositions, for multi-parameter persistence modules. We prove that our candidate decompositions are controllable approximations: when restricting to modules that can be decomposed into interval summands, we establish theoretical results about the approximation error between our candidate decompositions and the true underlying module in terms of the standard interleaving and bottleneck distances. Moreover, even when the underlying module does not admit such a decomposition, our candidate decompositions are nonetheless stable invariants; small perturbations in the underlying module lead to small perturbations in the candidate decomposition. Then, we introduce MMA (Multipersistence Module Approximation): an algorithm for computing stable instances of such invariants, which is based on fibered barcodes and exact matchings, two constructions that stem from the theory of single-parameter persistence. By design, MMA can handle an arbitrary number of filtrations, and has bounded complexity and running time. Finally, we present empirical evidence validating the generalization capabilities and running time speed-ups of MMA on several data sets.
Pipette: Automatic Fine-grained Large Language Model Training Configurator for Real-World Clusters
Training large language models (LLMs) is known to be challenging because of the huge computational and memory capacity requirements. To address these issues, it is common to use a cluster of GPUs with 3D parallelism, which splits a model along the data batch, pipeline stage, and intra-layer tensor dimensions. However, the use of 3D parallelism produces the additional challenge of finding the optimal number of ways on each dimension and mapping the split models onto the GPUs. Several previous studies have attempted to automatically find the optimal configuration, but many of these lacked several important aspects. For instance, the heterogeneous nature of the interconnect speeds is often ignored. While the peak bandwidths for the interconnects are usually made equal, the actual attained bandwidth varies per link in real-world clusters. Combined with the critical path modeling that does not properly consider the communication, they easily fall into sub-optimal configurations. In addition, they often fail to consider the memory requirement per GPU, often recommending solutions that could not be executed. To address these challenges, we propose Pipette, which is an automatic fine-grained LLM training configurator for real-world clusters. By devising better performance models along with the memory estimator and fine-grained individual GPU assignment, Pipette achieves faster configurations that satisfy the memory constraints. We evaluated Pipette on large clusters to show that it provides a significant speedup over the prior art. The implementation of Pipette is available at https://github.com/yimjinkyu1/date2024_pipette.
ThunderKittens: Simple, Fast, and Adorable AI Kernels
The challenge of mapping AI architectures to GPU hardware is creating a critical bottleneck in AI progress. Despite substantial efforts, hand-written custom kernels fail to meet their theoretical performance thresholds, even on well-established operations like linear attention. The diverse hardware capabilities of GPUs might suggest that we need a wide variety of techniques to achieve high performance. However, our work explores whether a small number of key abstractions can drastically simplify the process. We present ThunderKittens (TK), a framework for writing performant AI kernels while remaining easy to use and maintain. Our abstractions map to the three levels of the GPU hierarchy: (1) at the warp-level, we provide 16x16 matrix tiles as basic data structures and PyTorch-like parallel compute operations over tiles, (2) at the thread-block level, we provide a template for overlapping asynchronous operations across parallel warps, and (3) at the grid-level, we provide support to help hide the block launch and tear-down, and memory costs. We show the value of TK by providing kernels that match or outperform prior kernels for a range of AI operations. We match CuBLAS and FlashAttention-3 on GEMM and attention inference performance and outperform the strongest baselines by 10-40% on attention backwards, 8times on state space models, and 14times on linear attention.
GSPMD: General and Scalable Parallelization for ML Computation Graphs
We present GSPMD, an automatic, compiler-based parallelization system for common machine learning computations. It allows users to write programs in the same way as for a single device, then give hints through a few annotations on how to distribute tensors, based on which GSPMD will parallelize the computation. Its representation of partitioning is simple yet general, allowing it to express different or mixed paradigms of parallelism on a wide variety of models. GSPMD infers the partitioning for every operator based on limited user annotations, making it convenient to scale existing single-device programs. It solves several technical challenges for production usage, allowing GSPMD to achieve 50% to 62% compute utilization on up to 2048 Cloud TPUv3 cores for models with up to one trillion parameters.
Unified Functional Hashing in Automatic Machine Learning
The field of Automatic Machine Learning (AutoML) has recently attained impressive results, including the discovery of state-of-the-art machine learning solutions, such as neural image classifiers. This is often done by applying an evolutionary search method, which samples multiple candidate solutions from a large space and evaluates the quality of each candidate through a long training process. As a result, the search tends to be slow. In this paper, we show that large efficiency gains can be obtained by employing a fast unified functional hash, especially through the functional equivalence caching technique, which we also present. The central idea is to detect by hashing when the search method produces equivalent candidates, which occurs very frequently, and this way avoid their costly re-evaluation. Our hash is "functional" in that it identifies equivalent candidates even if they were represented or coded differently, and it is "unified" in that the same algorithm can hash arbitrary representations; e.g. compute graphs, imperative code, or lambda functions. As evidence, we show dramatic improvements on multiple AutoML domains, including neural architecture search and algorithm discovery. Finally, we consider the effect of hash collisions, evaluation noise, and search distribution through empirical analysis. Altogether, we hope this paper may serve as a guide to hashing techniques in AutoML.
AdapterFusion: Non-Destructive Task Composition for Transfer Learning
Sequential fine-tuning and multi-task learning are methods aiming to incorporate knowledge from multiple tasks; however, they suffer from catastrophic forgetting and difficulties in dataset balancing. To address these shortcomings, we propose AdapterFusion, a new two stage learning algorithm that leverages knowledge from multiple tasks. First, in the knowledge extraction stage we learn task specific parameters called adapters, that encapsulate the task-specific information. We then combine the adapters in a separate knowledge composition step. We show that by separating the two stages, i.e., knowledge extraction and knowledge composition, the classifier can effectively exploit the representations learned from multiple tasks in a non-destructive manner. We empirically evaluate AdapterFusion on 16 diverse NLU tasks, and find that it effectively combines various types of knowledge at different layers of the model. We show that our approach outperforms traditional strategies such as full fine-tuning as well as multi-task learning. Our code and adapters are available at AdapterHub.ml.
Capacity Analysis of Vector Symbolic Architectures
Hyperdimensional computing (HDC) is a biologically-inspired framework which represents symbols with high-dimensional vectors, and uses vector operations to manipulate them. The ensemble of a particular vector space and a prescribed set of vector operations (including one addition-like for "bundling" and one outer-product-like for "binding") form a *vector symbolic architecture* (VSA). While VSAs have been employed in numerous applications and have been studied empirically, many theoretical questions about VSAs remain open. We analyze the *representation capacities* of four common VSAs: MAP-I, MAP-B, and two VSAs based on sparse binary vectors. "Representation capacity' here refers to bounds on the dimensions of the VSA vectors required to perform certain symbolic tasks, such as testing for set membership i in S and estimating set intersection sizes |X cap Y| for two sets of symbols X and Y, to a given degree of accuracy. We also analyze the ability of a novel variant of a Hopfield network (a simple model of associative memory) to perform some of the same tasks that are typically asked of VSAs. In addition to providing new bounds on VSA capacities, our analyses establish and leverage connections between VSAs, "sketching" (dimensionality reduction) algorithms, and Bloom filters.
CORAG: A Cost-Constrained Retrieval Optimization System for Retrieval-Augmented Generation
Large Language Models (LLMs) have demonstrated remarkable generation capabilities but often struggle to access up-to-date information, which can lead to hallucinations. Retrieval-Augmented Generation (RAG) addresses this issue by incorporating knowledge from external databases, enabling more accurate and relevant responses. Due to the context window constraints of LLMs, it is impractical to input the entire external database context directly into the model. Instead, only the most relevant information, referred to as chunks, is selectively retrieved. However, current RAG research faces three key challenges. First, existing solutions often select each chunk independently, overlooking potential correlations among them. Second, in practice the utility of chunks is non-monotonic, meaning that adding more chunks can decrease overall utility. Traditional methods emphasize maximizing the number of included chunks, which can inadvertently compromise performance. Third, each type of user query possesses unique characteristics that require tailored handling, an aspect that current approaches do not fully consider. To overcome these challenges, we propose a cost constrained retrieval optimization system CORAG for retrieval-augmented generation. We employ a Monte Carlo Tree Search (MCTS) based policy framework to find optimal chunk combinations sequentially, allowing for a comprehensive consideration of correlations among chunks. Additionally, rather than viewing budget exhaustion as a termination condition, we integrate budget constraints into the optimization of chunk combinations, effectively addressing the non-monotonicity of chunk utility.
HyperAttention: Long-context Attention in Near-Linear Time
We present an approximate attention mechanism named HyperAttention to address the computational challenges posed by the growing complexity of long contexts used in Large Language Models (LLMs). Recent work suggests that in the worst-case scenario, quadratic time is necessary unless the entries of the attention matrix are bounded or the matrix has low stable rank. We introduce two parameters which measure: (1) the max column norm in the normalized attention matrix, and (2) the ratio of row norms in the unnormalized attention matrix after detecting and removing large entries. We use these fine-grained parameters to capture the hardness of the problem. Despite previous lower bounds, we are able to achieve a linear time sampling algorithm even when the matrix has unbounded entries or a large stable rank, provided the above parameters are small. HyperAttention features a modular design that easily accommodates integration of other fast low-level implementations, particularly FlashAttention. Empirically, employing Locality Sensitive Hashing (LSH) to identify large entries, HyperAttention outperforms existing methods, giving significant speed improvements compared to state-of-the-art solutions like FlashAttention. We validate the empirical performance of HyperAttention on a variety of different long-context length datasets. For example, HyperAttention makes the inference time of ChatGLM2 50\% faster on 32k context length while perplexity increases from 5.6 to 6.3. On larger context length, e.g., 131k, with causal masking, HyperAttention offers 5-fold speedup on a single attention layer.
CRISP: Clustering Multi-Vector Representations for Denoising and Pruning
Multi-vector models, such as ColBERT, are a significant advancement in neural information retrieval (IR), delivering state-of-the-art performance by representing queries and documents by multiple contextualized token-level embeddings. However, this increased representation size introduces considerable storage and computational overheads which have hindered widespread adoption in practice. A common approach to mitigate this overhead is to cluster the model's frozen vectors, but this strategy's effectiveness is fundamentally limited by the intrinsic clusterability of these embeddings. In this work, we introduce CRISP (Clustered Representations with Intrinsic Structure Pruning), a novel multi-vector training method which learns inherently clusterable representations directly within the end-to-end training process. By integrating clustering into the training phase rather than imposing it post-hoc, CRISP significantly outperforms post-hoc clustering at all representation sizes, as well as other token pruning methods. On the BEIR retrieval benchmarks, CRISP achieves a significant rate of ~3x reduction in the number of vectors while outperforming the original unpruned model. This indicates that learned clustering effectively denoises the model by filtering irrelevant information, thereby generating more robust multi-vector representations. With more aggressive clustering, CRISP achieves an 11x reduction in the number of vectors with only a 3.6% quality loss.
Factorized Mutual Information Maximization
We investigate the sets of joint probability distributions that maximize the average multi-information over a collection of margins. These functionals serve as proxies for maximizing the multi-information of a set of variables or the mutual information of two subsets of variables, at a lower computation and estimation complexity. We describe the maximizers and their relations to the maximizers of the multi-information and the mutual information.
M+: Extending MemoryLLM with Scalable Long-Term Memory
Equipping large language models (LLMs) with latent-space memory has attracted increasing attention as they can extend the context window of existing language models. However, retaining information from the distant past remains a challenge. For example, MemoryLLM (Wang et al., 2024a), as a representative work with latent-space memory, compresses past information into hidden states across all layers, forming a memory pool of 1B parameters. While effective for sequence lengths up to 16k tokens, it struggles to retain knowledge beyond 20k tokens. In this work, we address this limitation by introducing M+, a memory-augmented model based on MemoryLLM that significantly enhances long-term information retention. M+ integrates a long-term memory mechanism with a co-trained retriever, dynamically retrieving relevant information during text generation. We evaluate M+ on diverse benchmarks, including long-context understanding and knowledge retention tasks. Experimental results show that M+ significantly outperforms MemoryLLM and recent strong baselines, extending knowledge retention from under 20k to over 160k tokens with similar GPU memory overhead.
MS-DPPs: Multi-Source Determinantal Point Processes for Contextual Diversity Refinement of Composite Attributes in Text to Image Retrieval
Result diversification (RD) is a crucial technique in Text-to-Image Retrieval for enhancing the efficiency of a practical application. Conventional methods focus solely on increasing the diversity metric of image appearances. However, the diversity metric and its desired value vary depending on the application, which limits the applications of RD. This paper proposes a novel task called CDR-CA (Contextual Diversity Refinement of Composite Attributes). CDR-CA aims to refine the diversities of multiple attributes, according to the application's context. To address this task, we propose Multi-Source DPPs, a simple yet strong baseline that extends the Determinantal Point Process (DPP) to multi-sources. We model MS-DPP as a single DPP model with a unified similarity matrix based on a manifold representation. We also introduce Tangent Normalization to reflect contexts. Extensive experiments demonstrate the effectiveness of the proposed method. Our code is publicly available at https://github.com/NEC-N-SOGI/msdpp.
Frustratingly Simple Retrieval Improves Challenging, Reasoning-Intensive Benchmarks
Retrieval-augmented Generation (RAG) has primarily been studied in limited settings, such as factoid question answering; more challenging, reasoning-intensive benchmarks have seen limited success from minimal RAG. In this work, we challenge this prevailing view on established, reasoning-intensive benchmarks: MMLU, MMLU Pro, AGI Eval, GPQA, and MATH. We identify a key missing component in prior work: a usable, web-scale datastore aligned with the breadth of pretraining data. To this end, we introduce CompactDS: a diverse, high-quality, web-scale datastore that achieves high retrieval accuracy and subsecond latency on a single-node. The key insights are (1) most web content can be filtered out without sacrificing coverage, and a compact, high-quality subset is sufficient; and (2) combining in-memory approximate nearest neighbor (ANN) retrieval and on-disk exact search balances speed and recall. Using CompactDS, we show that a minimal RAG pipeline achieves consistent accuracy improvements across all benchmarks and model sizes (8B--70B), with relative gains of 10% on MMLU, 33% on MMLU Pro, 14% on GPQA, and 19% on MATH. No single data source suffices alone, highlighting the importance of diversity of sources (web crawls, curated math, academic papers, textbooks). Finally, we show that our carefully designed in-house datastore matches or outperforms web search engines such as Google Search, as well as recently proposed, complex agent-based RAG systems--all while maintaining simplicity, reproducibility, and self-containment. We release CompactDS and our retrieval pipeline, supporting future research exploring retrieval-based AI systems.
Improving Factuality in Large Language Models via Decoding-Time Hallucinatory and Truthful Comparators
Despite their remarkable capabilities, Large Language Models (LLMs) are prone to generate responses that contradict verifiable facts, i.e., unfaithful hallucination content. Existing efforts generally focus on optimizing model parameters or editing semantic representations, which compromise the internal factual knowledge of target LLMs. In addition, hallucinations typically exhibit multifaceted patterns in downstream tasks, limiting the model's holistic performance across tasks. In this paper, we propose a Comparator-driven Decoding-Time (CDT) framework to alleviate the response hallucination. Firstly, we construct hallucinatory and truthful comparators with multi-task fine-tuning samples. In this case, we present an instruction prototype-guided mixture of experts strategy to enhance the ability of the corresponding comparators to capture different hallucination or truthfulness patterns in distinct task instructions. CDT constrains next-token predictions to factuality-robust distributions by contrasting the logit differences between the target LLMs and these comparators. Systematic experiments on multiple downstream tasks show that our framework can significantly improve the model performance and response factuality.
Multimodal Neural Databases
The rise in loosely-structured data available through text, images, and other modalities has called for new ways of querying them. Multimedia Information Retrieval has filled this gap and has witnessed exciting progress in recent years. Tasks such as search and retrieval of extensive multimedia archives have undergone massive performance improvements, driven to a large extent by recent developments in multimodal deep learning. However, methods in this field remain limited in the kinds of queries they support and, in particular, their inability to answer database-like queries. For this reason, inspired by recent work on neural databases, we propose a new framework, which we name Multimodal Neural Databases (MMNDBs). MMNDBs can answer complex database-like queries that involve reasoning over different input modalities, such as text and images, at scale. In this paper, we present the first architecture able to fulfill this set of requirements and test it with several baselines, showing the limitations of currently available models. The results show the potential of these new techniques to process unstructured data coming from different modalities, paving the way for future research in the area. Code to replicate the experiments will be released at https://github.com/GiovanniTRA/MultimodalNeuralDatabases
BASS: Batched Attention-optimized Speculative Sampling
Speculative decoding has emerged as a powerful method to improve latency and throughput in hosting large language models. However, most existing implementations focus on generating a single sequence. Real-world generative AI applications often require multiple responses and how to perform speculative decoding in a batched setting while preserving its latency benefits poses non-trivial challenges. This paper describes a system of batched speculative decoding that sets a new state of the art in multi-sequence generation latency and that demonstrates superior GPU utilization as well as quality of generations within a time budget. For example, for a 7.8B-size model on a single A100 GPU and with a batch size of 8, each sequence is generated at an average speed of 5.8ms per token, the overall throughput being 1.1K tokens per second. These results represent state-of-the-art latency and a 2.15X speed-up over optimized regular decoding. Within a time budget that regular decoding does not finish, our system is able to generate sequences with HumanEval Pass@First of 43% and Pass@All of 61%, far exceeding what's feasible with single-sequence speculative decoding. Our peak GPU utilization during decoding reaches as high as 15.8%, more than 3X the highest of that of regular decoding and around 10X of single-sequence speculative decoding.
ILRe: Intermediate Layer Retrieval for Context Compression in Causal Language Models
Large Language Models (LLMs) have demonstrated success across many benchmarks. However, they still exhibit limitations in long-context scenarios, primarily due to their short effective context length, quadratic computational complexity, and high memory overhead when processing lengthy inputs. To mitigate these issues, we introduce a novel context compression pipeline, called Intermediate Layer Retrieval (ILRe), which determines one intermediate decoder layer offline, encodes context by streaming chunked prefill only up to that layer, and recalls tokens by the attention scores between the input query and full key cache in that specified layer. In particular, we propose a multi-pooling kernels allocating strategy in the token recalling process to maintain the completeness of semantics. Our approach not only reduces the prefilling complexity from O(L^2) to O(L), but also achieves performance comparable to or better than the full context in the long context scenarios. Without additional post training or operator development, ILRe can process a single 1M tokens request in less than half a minute (speedup approx 180times) and scores RULER-1M benchmark of approx 79.8 with model Llama-3.1-UltraLong-8B-1M-Instruct on a Huawei Ascend 910B NPU.
Multimarginal generative modeling with stochastic interpolants
Given a set of K probability densities, we consider the multimarginal generative modeling problem of learning a joint distribution that recovers these densities as marginals. The structure of this joint distribution should identify multi-way correspondences among the prescribed marginals. We formalize an approach to this task within a generalization of the stochastic interpolant framework, leading to efficient learning algorithms built upon dynamical transport of measure. Our generative models are defined by velocity and score fields that can be characterized as the minimizers of simple quadratic objectives, and they are defined on a simplex that generalizes the time variable in the usual dynamical transport framework. The resulting transport on the simplex is influenced by all marginals, and we show that multi-way correspondences can be extracted. The identification of such correspondences has applications to style transfer, algorithmic fairness, and data decorruption. In addition, the multimarginal perspective enables an efficient algorithm for reducing the dynamical transport cost in the ordinary two-marginal setting. We demonstrate these capacities with several numerical examples.
Model-based Asynchronous Hyperparameter and Neural Architecture Search
We introduce a model-based asynchronous multi-fidelity method for hyperparameter and neural architecture search that combines the strengths of asynchronous Hyperband and Gaussian process-based Bayesian optimization. At the heart of our method is a probabilistic model that can simultaneously reason across hyperparameters and resource levels, and supports decision-making in the presence of pending evaluations. We demonstrate the effectiveness of our method on a wide range of challenging benchmarks, for tabular data, image classification and language modelling, and report substantial speed-ups over current state-of-the-art methods. Our new methods, along with asynchronous baselines, are implemented in a distributed framework which will be open sourced along with this publication.
HashEvict: A Pre-Attention KV Cache Eviction Strategy using Locality-Sensitive Hashing
Transformer-based large language models (LLMs) use the key-value (KV) cache to significantly accelerate inference by storing the key and value embeddings of past tokens. However, this cache consumes significant GPU memory. In this work, we introduce HashEvict, an algorithm that uses locality-sensitive hashing (LSH) to compress the KV cache. HashEvict quickly locates tokens in the cache that are cosine dissimilar to the current query token. This is achieved by computing the Hamming distance between binarized Gaussian projections of the current token query and cached token keys, with a projection length much smaller than the embedding dimension. We maintain a lightweight binary structure in GPU memory to facilitate these calculations. Unlike existing compression strategies that compute attention to determine token retention, HashEvict makes these decisions pre-attention, thereby reducing computational costs. Additionally, HashEvict is dynamic - at every decoding step, the key and value of the current token replace the embeddings of a token expected to produce the lowest attention score. We demonstrate that HashEvict can compress the KV cache by 30%-70% while maintaining high performance across reasoning, multiple-choice, long-context retrieval and summarization tasks.
Efficient Algorithms for t-distributed Stochastic Neighborhood Embedding
t-distributed Stochastic Neighborhood Embedding (t-SNE) is a method for dimensionality reduction and visualization that has become widely popular in recent years. Efficient implementations of t-SNE are available, but they scale poorly to datasets with hundreds of thousands to millions of high dimensional data-points. We present Fast Fourier Transform-accelerated Interpolation-based t-SNE (FIt-SNE), which dramatically accelerates the computation of t-SNE. The most time-consuming step of t-SNE is a convolution that we accelerate by interpolating onto an equispaced grid and subsequently using the fast Fourier transform to perform the convolution. We also optimize the computation of input similarities in high dimensions using multi-threaded approximate nearest neighbors. We further present a modification to t-SNE called "late exaggeration," which allows for easier identification of clusters in t-SNE embeddings. Finally, for datasets that cannot be loaded into the memory, we present out-of-core randomized principal component analysis (oocPCA), so that the top principal components of a dataset can be computed without ever fully loading the matrix, hence allowing for t-SNE of large datasets to be computed on resource-limited machines.
Multi-Label Knowledge Distillation
Existing knowledge distillation methods typically work by imparting the knowledge of output logits or intermediate feature maps from the teacher network to the student network, which is very successful in multi-class single-label learning. However, these methods can hardly be extended to the multi-label learning scenario, where each instance is associated with multiple semantic labels, because the prediction probabilities do not sum to one and feature maps of the whole example may ignore minor classes in such a scenario. In this paper, we propose a novel multi-label knowledge distillation method. On one hand, it exploits the informative semantic knowledge from the logits by dividing the multi-label learning problem into a set of binary classification problems; on the other hand, it enhances the distinctiveness of the learned feature representations by leveraging the structural information of label-wise embeddings. Experimental results on multiple benchmark datasets validate that the proposed method can avoid knowledge counteraction among labels, thus achieving superior performance against diverse comparing methods. Our code is available at: https://github.com/penghui-yang/L2D
Determination of Latent Dimensionality in International Trade Flow
Currently, high-dimensional data is ubiquitous in data science, which necessitates the development of techniques to decompose and interpret such multidimensional (aka tensor) datasets. Finding a low dimensional representation of the data, that is, its inherent structure, is one of the approaches that can serve to understand the dynamics of low dimensional latent features hidden in the data. Nonnegative RESCAL is one such technique, particularly well suited to analyze self-relational data, such as dynamic networks found in international trade flows. Nonnegative RESCAL computes a low dimensional tensor representation by finding the latent space containing multiple modalities. Estimating the dimensionality of this latent space is crucial for extracting meaningful latent features. Here, to determine the dimensionality of the latent space with nonnegative RESCAL, we propose a latent dimension determination method which is based on clustering of the solutions of multiple realizations of nonnegative RESCAL decompositions. We demonstrate the performance of our model selection method on synthetic data and then we apply our method to decompose a network of international trade flows data from International Monetary Fund and validate the resulting features against empirical facts from economic literature.
Endor: Hardware-Friendly Sparse Format for Offloaded LLM Inference
The increasing size of large language models (LLMs) challenges their usage on resource-constrained platforms. For example, memory on modern GPUs is insufficient to hold LLMs that are hundreds of Gigabytes in size. Offloading is a popular method to escape this constraint by storing weights of an LLM model to host CPU memory and SSD, then loading each weight to GPU before every use. In our case study of offloaded inference, we found that due to the low bandwidth between storage devices and GPU, the latency of transferring large model weights from its offloaded location to GPU memory becomes the critical bottleneck with actual compute taking nearly 0% of runtime. To effectively reduce the weight transfer latency, we propose a novel sparse format that compresses the unstructured sparse pattern of pruned LLM weights to non-zero values with high compression ratio and low decompression overhead. Endor achieves this by expressing the positions of non-zero elements with a bitmap. Compared to offloaded inference using the popular Huggingface Accelerate, applying Endor accelerates OPT-66B by 1.70x and Llama2-70B by 1.78x. When direct weight transfer from SSD to GPU is leveraged, Endor achieves 2.25x speedup on OPT-66B and 2.37x speedup on Llama2-70B.
Interpretable Meta-Learning of Physical Systems
Machine learning methods can be a valuable aid in the scientific process, but they need to face challenging settings where data come from inhomogeneous experimental conditions. Recent meta-learning methods have made significant progress in multi-task learning, but they rely on black-box neural networks, resulting in high computational costs and limited interpretability. Leveraging the structure of the learning problem, we argue that multi-environment generalization can be achieved using a simpler learning model, with an affine structure with respect to the learning task. Crucially, we prove that this architecture can identify the physical parameters of the system, enabling interpreable learning. We demonstrate the competitive generalization performance and the low computational cost of our method by comparing it to state-of-the-art algorithms on physical systems, ranging from toy models to complex, non-analytical systems. The interpretability of our method is illustrated with original applications to physical-parameter-induced adaptation and to adaptive control.
A Framework for Fast and Stable Representations of Multiparameter Persistent Homology Decompositions
Topological data analysis (TDA) is an area of data science that focuses on using invariants from algebraic topology to provide multiscale shape descriptors for geometric data sets such as point clouds. One of the most important such descriptors is {\em persistent homology}, which encodes the change in shape as a filtration parameter changes; a typical parameter is the feature scale. For many data sets, it is useful to simultaneously vary multiple filtration parameters, for example feature scale and density. While the theoretical properties of single parameter persistent homology are well understood, less is known about the multiparameter case. In particular, a central question is the problem of representing multiparameter persistent homology by elements of a vector space for integration with standard machine learning algorithms. Existing approaches to this problem either ignore most of the multiparameter information to reduce to the one-parameter case or are heuristic and potentially unstable in the face of noise. In this article, we introduce a new general representation framework that leverages recent results on {\em decompositions} of multiparameter persistent homology. This framework is rich in information, fast to compute, and encompasses previous approaches. Moreover, we establish theoretical stability guarantees under this framework as well as efficient algorithms for practical computation, making this framework an applicable and versatile tool for analyzing geometric and point cloud data. We validate our stability results and algorithms with numerical experiments that demonstrate statistical convergence, prediction accuracy, and fast running times on several real data sets.
MTMamba++: Enhancing Multi-Task Dense Scene Understanding via Mamba-Based Decoders
Multi-task dense scene understanding, which trains a model for multiple dense prediction tasks, has a wide range of application scenarios. Capturing long-range dependency and enhancing cross-task interactions are crucial to multi-task dense prediction. In this paper, we propose MTMamba++, a novel architecture for multi-task scene understanding featuring with a Mamba-based decoder. It contains two types of core blocks: self-task Mamba (STM) block and cross-task Mamba (CTM) block. STM handles long-range dependency by leveraging state-space models, while CTM explicitly models task interactions to facilitate information exchange across tasks. We design two types of CTM block, namely F-CTM and S-CTM, to enhance cross-task interaction from feature and semantic perspectives, respectively. Experiments on NYUDv2, PASCAL-Context, and Cityscapes datasets demonstrate the superior performance of MTMamba++ over CNN-based and Transformer-based methods. The code is available at https://github.com/EnVision-Research/MTMamba.
Loki: Low-Rank Keys for Efficient Sparse Attention
Inference on large language models can be expensive in terms of the compute and memory costs involved, especially when long sequence lengths are used. In particular, the self-attention mechanism used in such models contributes significantly to these costs, which has resulted in several recent works that propose sparse attention approximations for inference. In this work, we propose to approximate the self-attention computation by focusing on the dimensionality of key vectors computed in the attention block. Our analysis reveals that the key vectors lie in a significantly lower-dimensional space, consistently across several datasets and models. Exploiting this observation, we propose Loki, a novel sparse attention method that ranks and selects tokens in the KV-cache based on attention scores computed in low-dimensional space. Our evaluations show that Loki is able to maintain the efficacy of the models better than other popular approximation methods, while speeding up the attention computation due to reduced data movement (load/store) and compute costs.
MIG: Automatic Data Selection for Instruction Tuning by Maximizing Information Gain in Semantic Space
Data quality and diversity are key to the construction of effective instruction-tuning datasets. % With the increasing availability of open-source instruction-tuning datasets, it is advantageous to automatically select high-quality and diverse subsets from a vast amount of data. % Existing methods typically prioritize instance quality and use heuristic rules to maintain diversity. % However, this absence of a comprehensive view of the entire collection often leads to suboptimal results. % Moreover, heuristic rules generally focus on distance or clustering within the embedding space, which fails to accurately capture the intent of complex instructions in the semantic space. % To bridge this gap, we propose a unified method for quantifying the information content of datasets. This method models the semantic space by constructing a label graph and quantifies diversity based on the distribution of information within the graph. % Based on such a measurement, we further introduce an efficient sampling method that selects data samples iteratively to Maximize the Information Gain (MIG) in semantic space. % Experiments on various datasets and base models demonstrate that MIG consistently outperforms state-of-the-art methods. % Notably, the model fine-tuned with 5\% Tulu3 data sampled by MIG achieves comparable performance to the official SFT model trained on the full dataset, with improvements of +5.73\% on AlpacaEval and +6.89\% on Wildbench.
MultiModN- Multimodal, Multi-Task, Interpretable Modular Networks
Predicting multiple real-world tasks in a single model often requires a particularly diverse feature space. Multimodal (MM) models aim to extract the synergistic predictive potential of multiple data types to create a shared feature space with aligned semantic meaning across inputs of drastically varying sizes (i.e. images, text, sound). Most current MM architectures fuse these representations in parallel, which not only limits their interpretability but also creates a dependency on modality availability. We present MultiModN, a multimodal, modular network that fuses latent representations in a sequence of any number, combination, or type of modality while providing granular real-time predictive feedback on any number or combination of predictive tasks. MultiModN's composable pipeline is interpretable-by-design, as well as innately multi-task and robust to the fundamental issue of biased missingness. We perform four experiments on several benchmark MM datasets across 10 real-world tasks (predicting medical diagnoses, academic performance, and weather), and show that MultiModN's sequential MM fusion does not compromise performance compared with a baseline of parallel fusion. By simulating the challenging bias of missing not-at-random (MNAR), this work shows that, contrary to MultiModN, parallel fusion baselines erroneously learn MNAR and suffer catastrophic failure when faced with different patterns of MNAR at inference. To the best of our knowledge, this is the first inherently MNAR-resistant approach to MM modeling. In conclusion, MultiModN provides granular insights, robustness, and flexibility without compromising performance.
Minimizing FLOPs to Learn Efficient Sparse Representations
Deep representation learning has become one of the most widely adopted approaches for visual search, recommendation, and identification. Retrieval of such representations from a large database is however computationally challenging. Approximate methods based on learning compact representations, have been widely explored for this problem, such as locality sensitive hashing, product quantization, and PCA. In this work, in contrast to learning compact representations, we propose to learn high dimensional and sparse representations that have similar representational capacity as dense embeddings while being more efficient due to sparse matrix multiplication operations which can be much faster than dense multiplication. Following the key insight that the number of operations decreases quadratically with the sparsity of embeddings provided the non-zero entries are distributed uniformly across dimensions, we propose a novel approach to learn such distributed sparse embeddings via the use of a carefully constructed regularization function that directly minimizes a continuous relaxation of the number of floating-point operations (FLOPs) incurred during retrieval. Our experiments show that our approach is competitive to the other baselines and yields a similar or better speed-vs-accuracy tradeoff on practical datasets.
Hierarchical Patch Compression for ColPali: Efficient Multi-Vector Document Retrieval with Dynamic Pruning and Quantization
Multi-vector document retrieval systems, such as ColPali, excel in fine-grained matching for complex queries but incur significant storage and computational costs due to their reliance on high-dimensional patch embeddings and late-interaction scoring. To address these challenges, we propose HPC-ColPali, a Hierarchical Patch Compression framework that enhances the efficiency of ColPali while preserving its retrieval accuracy. Our approach integrates three innovative techniques: (1) K-Means quantization, which compresses patch embeddings into 1-byte centroid indices, achieving up to 32times storage reduction; (2) attention-guided dynamic pruning, utilizing Vision-Language Model attention weights to retain only the top-p% most salient patches, reducing late-interaction computation by up to 60\% with less than 2\% nDCG@10 loss; and (3) optional binary encoding of centroid indices into b-bit strings (b=lceillog_2 Krceil), enabling rapid Hamming distance-based similarity search for resource-constrained environments. Evaluated on the ViDoRe and SEC-Filings datasets, HPC-ColPali achieves 30--50\% lower query latency under HNSW indexing while maintaining high retrieval precision. When integrated into a Retrieval-Augmented Generation pipeline for legal summarization, it reduces hallucination rates by 30\% and halves end-to-end latency. These advancements establish HPC-ColPali as a scalable and efficient solution for multi-vector document retrieval across diverse applications. Code is available at https://github.com/DngBack/HPC-ColPali.
Billion-scale Similarity Search Using a Hybrid Indexing Approach with Advanced Filtering
This paper presents a novel approach for similarity search with complex filtering capabilities on billion-scale datasets, optimized for CPU inference. Our method extends the classical IVF-Flat index structure to integrate multi-dimensional filters. The proposed algorithm combines dense embeddings with discrete filtering attributes, enabling fast retrieval in high-dimensional spaces. Designed specifically for CPU-based systems, our disk-based approach offers a cost-effective solution for large-scale similarity search. We demonstrate the effectiveness of our method through a case study, showcasing its potential for various practical uses.
Neural Common Neighbor with Completion for Link Prediction
Despite its outstanding performance in various graph tasks, vanilla Message Passing Neural Network (MPNN) usually fails in link prediction tasks, as it only uses representations of two individual target nodes and ignores the pairwise relation between them. To capture the pairwise relations, some models add manual features to the input graph and use the output of MPNN to produce pairwise representations. In contrast, others directly use manual features as pairwise representations. Though this simplification avoids applying a GNN to each link individually and thus improves scalability, these models still have much room for performance improvement due to the hand-crafted and unlearnable pairwise features. To upgrade performance while maintaining scalability, we propose Neural Common Neighbor (NCN), which uses learnable pairwise representations. To further boost NCN, we study the unobserved link problem. The incompleteness of the graph is ubiquitous and leads to distribution shifts between the training and test set, loss of common neighbor information, and performance degradation of models. Therefore, we propose two intervention methods: common neighbor completion and target link removal. Combining the two methods with NCN, we propose Neural Common Neighbor with Completion (NCNC). NCN and NCNC outperform recent strong baselines by large margins. NCNC achieves state-of-the-art performance in link prediction tasks. Our code is available at https://github.com/GraphPKU/NeuralCommonNeighbor.
The Price of Freedom: Exploring Expressivity and Runtime Tradeoffs in Equivariant Tensor Products
E(3)-equivariant neural networks have demonstrated success across a wide range of 3D modelling tasks. A fundamental operation in these networks is the tensor product, which interacts two geometric features in an equivariant manner to create new features. Due to the high computational complexity of the tensor product, significant effort has been invested to optimize the runtime of this operation. For example, Luo et al. (2024) recently proposed the Gaunt tensor product (GTP) which promises a significant speedup. In this work, we provide a careful, systematic analysis of a number of tensor product operations. In particular, we emphasize that different tensor products are not performing the same operation. The reported speedups typically come at the cost of expressivity. We introduce measures of expressivity and interactability to characterize these differences. In addition, we realized the original implementation of GTP can be greatly simplified by directly using a spherical grid at no cost in asymptotic runtime. This spherical grid approach is faster on our benchmarks and in actual training of the MACE interatomic potential by 30%. Finally, we provide the first systematic microbenchmarks of the various tensor product operations. We find that the theoretical runtime guarantees can differ wildly from empirical performance, demonstrating the need for careful application-specific benchmarking. Code is available at https://github.com/atomicarchitects/PriceofFreedom.
Torchhd: An Open Source Python Library to Support Research on Hyperdimensional Computing and Vector Symbolic Architectures
Hyperdimensional computing (HD), also known as vector symbolic architectures (VSA), is a framework for computing with distributed representations by exploiting properties of random high-dimensional vector spaces. The commitment of the scientific community to aggregate and disseminate research in this particularly multidisciplinary area has been fundamental for its advancement. Joining these efforts, we present Torchhd, a high-performance open source Python library for HD/VSA. Torchhd seeks to make HD/VSA more accessible and serves as an efficient foundation for further research and application development. The easy-to-use library builds on top of PyTorch and features state-of-the-art HD/VSA functionality, clear documentation, and implementation examples from well-known publications. Comparing publicly available code with their corresponding Torchhd implementation shows that experiments can run up to 100x faster. Torchhd is available at: https://github.com/hyperdimensional-computing/torchhd.
Exploring Anisotropy and Outliers in Multilingual Language Models for Cross-Lingual Semantic Sentence Similarity
Previous work has shown that the representations output by contextual language models are more anisotropic than static type embeddings, and typically display outlier dimensions. This seems to be true for both monolingual and multilingual models, although much less work has been done on the multilingual context. Why these outliers occur and how they affect the representations is still an active area of research. We investigate outlier dimensions and their relationship to anisotropy in multiple pre-trained multilingual language models. We focus on cross-lingual semantic similarity tasks, as these are natural tasks for evaluating multilingual representations. Specifically, we examine sentence representations. Sentence transformers which are fine-tuned on parallel resources (that are not always available) perform better on this task, and we show that their representations are more isotropic. However, we aim to improve multilingual representations in general. We investigate how much of the performance difference can be made up by only transforming the embedding space without fine-tuning, and visualise the resulting spaces. We test different operations: Removing individual outlier dimensions, cluster-based isotropy enhancement, and ZCA whitening. We publish our code for reproducibility.
WARP: An Efficient Engine for Multi-Vector Retrieval
We study the efficiency of multi-vector retrieval methods like ColBERT and its recent variant XTR. We introduce WARP, a retrieval engine that drastically improves the efficiency of XTR-based ColBERT retrievers through three key innovations: (1) WARP_SELECT for dynamic similarity imputation, (2) implicit decompression to bypass costly vector reconstruction, and (3) a two-stage reduction process for efficient scoring. Combined with optimized C++ kernels and specialized inference runtimes, WARP reduces end-to-end latency by 41x compared to XTR's reference implementation and thereby achieves a 3x speedup over PLAID from the the official ColBERT implementation. We study the efficiency of multi-vector retrieval methods like ColBERT and its recent variant XTR. We introduce WARP, a retrieval engine that drastically improves the efficiency of XTR-based ColBERT retrievers through three key innovations: (1) WARP_SELECT for dynamic similarity imputation, (2) implicit decompression during retrieval, and (3) a two-stage reduction process for efficient scoring. Thanks also to highly-optimized C++ kernels and to the adoption of specialized inference runtimes, WARP can reduce end-to-end query latency relative to XTR's reference implementation by 41x. And it thereby achieves a 3x speedup over the official ColBERTv2 PLAID engine, while preserving retrieval quality.
TinyGPT-V: Efficient Multimodal Large Language Model via Small Backbones
In the era of advanced multimodel learning, multimodal large language models (MLLMs) such as GPT-4V have made remarkable strides towards bridging language and visual elements. However, the closed-source nature and considerable computational demand present notable challenges for universal usage and modifications. This is where open-source MLLMs like LLaVA and MiniGPT-4 come in, presenting groundbreaking achievements across tasks. Despite these accomplishments, computational efficiency remains an unresolved issue, as these models, like LLaVA-v1.5-13B, require substantial resources. Addressing these issues, we introduce TinyGPT-V, a new-wave model marrying impressive performance with commonplace computational capacity. It stands out by requiring merely a 24G GPU for training and an 8G GPU or CPU for inference. Built upon Phi-2, TinyGPT-V couples an effective language backbone with pre-trained vision modules from BLIP-2 or CLIP. TinyGPT-V's 2.8B parameters can undergo a unique quantisation process, suitable for local deployment and inference tasks on 8G various devices. Our work fosters further developments for designing cost-effective, efficient, and high-performing MLLMs, expanding their applicability in a broad array of real-world scenarios. Furthermore this paper proposed a new paradigm of Multimodal Large Language Model via small backbones. Our code and training weights are placed at: https://github.com/DLYuanGod/TinyGPT-V and https://huggingface.co/Tyrannosaurus/TinyGPT-V respectively.
Visual Position Prompt for MLLM based Visual Grounding
Although Multimodal Large Language Models (MLLMs) excel at various image-related tasks, they encounter challenges in precisely aligning coordinates with spatial information within images, particularly in position-aware tasks such as visual grounding. This limitation arises from two key factors. First, MLLMs lack explicit spatial references, making it difficult to associate textual descriptions with precise image locations. Second, their feature extraction processes prioritize global context over fine-grained spatial details, leading to weak localization capability. To address this issue, we introduce VPP-LLaVA, an MLLM equipped with Visual Position Prompt (VPP) to improve its grounding capability. VPP-LLaVA integrates two complementary mechanisms. The global VPP overlays learnable, axis-like embeddings onto the input image to provide structured spatial cues. The local VPP focuses on fine-grained localization by incorporating position-aware queries, which suggests probable object locations. We also introduce a VPP-SFT dataset with 0.6M samples, consolidating high-quality visual grounding data into a compact format for efficient model training. Training on this dataset with VPP enhances the model's performance, achieving state-of-the-art results on standard grounding benchmarks despite using fewer training samples compared to other MLLMs like MiniGPT-v2, which rely on much larger datasets (sim21M samples). The code and VPP-SFT dataset will be available at https://github.com/WayneTomas/VPP-LLaVA upon acceptance.
LoFT: Local Proxy Fine-tuning For Improving Transferability Of Adversarial Attacks Against Large Language Model
It has been shown that Large Language Model (LLM) alignments can be circumvented by appending specially crafted attack suffixes with harmful queries to elicit harmful responses. To conduct attacks against private target models whose characterization is unknown, public models can be used as proxies to fashion the attack, with successful attacks being transferred from public proxies to private target models. The success rate of attack depends on how closely the proxy model approximates the private model. We hypothesize that for attacks to be transferrable, it is sufficient if the proxy can approximate the target model in the neighborhood of the harmful query. Therefore, in this paper, we propose Local Fine-Tuning (LoFT), i.e., fine-tuning proxy models on similar queries that lie in the lexico-semantic neighborhood of harmful queries to decrease the divergence between the proxy and target models. First, we demonstrate three approaches to prompt private target models to obtain similar queries given harmful queries. Next, we obtain data for local fine-tuning by eliciting responses from target models for the generated similar queries. Then, we optimize attack suffixes to generate attack prompts and evaluate the impact of our local fine-tuning on the attack's success rate. Experiments show that local fine-tuning of proxy models improves attack transferability and increases attack success rate by 39%, 7%, and 0.5% (absolute) on target models ChatGPT, GPT-4, and Claude respectively.
EMS: Adaptive Evict-then-Merge Strategy for Head-wise KV Cache Compression Based on Global-Local Importance
As large language models (LLMs) continue to advance, the demand for higher quality and faster processing of long contexts across various applications is growing. KV cache is widely adopted as it stores previously generated key and value tokens, effectively reducing redundant computations during inference. However, as memory overhead becomes a significant concern, efficient compression of KV cache has gained increasing attention. Most existing methods perform compression from two perspectives: identifying important tokens and designing compression strategies. However, these approaches often produce biased distributions of important tokens due to the influence of accumulated attention scores or positional encoding. Furthermore, they overlook the sparsity and redundancy across different heads, which leads to difficulties in preserving the most effective information at the head level. To this end, we propose EMS to overcome these limitations, while achieving better KV cache compression under extreme compression ratios. Specifically, we introduce a Global-Local score that combines accumulated attention scores from both global and local KV tokens to better identify the token importance. For the compression strategy, we design an adaptive and unified Evict-then-Merge framework that accounts for the sparsity and redundancy of KV tokens across different heads. Additionally, we implement the head-wise parallel compression through a zero-class mechanism to enhance efficiency. Extensive experiments demonstrate our SOTA performance even under extreme compression ratios. EMS consistently achieves the lowest perplexity, improves scores by over 1.28 points across four LLMs on LongBench under a 256 cache budget, and preserves 95% retrieval accuracy with a cache budget less than 2% of the context length in the Needle-in-a-Haystack task.
Multiscale Byte Language Models -- A Hierarchical Architecture for Causal Million-Length Sequence Modeling
Bytes form the basis of the digital world and thus are a promising building block for multimodal foundation models. Recently, Byte Language Models (BLMs) have emerged to overcome tokenization, yet the excessive length of bytestreams requires new architectural paradigms. Therefore, we present the Multiscale Byte Language Model (MBLM), a model-agnostic hierarchical decoder stack that allows training with context windows of 5M bytes on single GPU in full model precision. We thoroughly examine MBLM's performance with Transformer and Mamba blocks on both unimodal and multimodal tasks. Our experiments demonstrate that hybrid architectures are efficient in handling extremely long byte sequences during training while achieving near-linear generational efficiency. To the best of our knowledge, we present the first evaluation of BLMs on visual Q\&A tasks and find that, despite serializing images and the absence of an encoder, a MBLM with pure next token prediction can match custom CNN-LSTM architectures with designated classification heads. We show that MBLMs exhibit strong adaptability in integrating diverse data representations, including pixel and image filestream bytes, underlining their potential toward omnimodal foundation models. Source code is publicly available at: https://github.com/ai4sd/multiscale-byte-lm
CHAI: Clustered Head Attention for Efficient LLM Inference
Large Language Models (LLMs) with hundreds of billions of parameters have transformed the field of machine learning. However, serving these models at inference time is both compute and memory intensive, where a single request can require multiple GPUs and tens of Gigabytes of memory. Multi-Head Attention is one of the key components of LLMs, which can account for over 50% of LLMs memory and compute requirement. We observe that there is a high amount of redundancy across heads on which tokens they pay attention to. Based on this insight, we propose Clustered Head Attention (CHAI). CHAI combines heads with a high amount of correlation for self-attention at runtime, thus reducing both memory and compute. In our experiments, we show that CHAI is able to reduce the memory requirements for storing K,V cache by up to 21.4% and inference time latency by up to 1.73x without any fine-tuning required. CHAI achieves this with a maximum 3.2% deviation in accuracy across 3 different models (i.e. OPT-66B, LLAMA-7B, LLAMA-33B) and 5 different evaluation datasets.
SpaCE-10: A Comprehensive Benchmark for Multimodal Large Language Models in Compositional Spatial Intelligence
Multimodal Large Language Models (MLLMs) have achieved remarkable progress in various multimodal tasks. To pursue higher intelligence in space, MLLMs require integrating multiple atomic spatial capabilities to handle complex and dynamic tasks. However, existing benchmarks struggle to comprehensively evaluate the spatial intelligence of common MLLMs from the atomic level to the compositional level. To fill this gap, we present SpaCE-10, a comprehensive benchmark for compositional spatial evaluations. In SpaCE-10, we define 10 atomic spatial capabilities, which are combined to form 8 compositional capabilities. Based on these definitions, we propose a novel hierarchical annotation pipeline to generate high-quality and diverse question-answer (QA) pairs. With over 150+ hours of human expert effort, we obtain over 5k QA pairs for 811 real indoor scenes in SpaCE-10, which covers various evaluation settings like point cloud input and multi-choice QA. We conduct an extensive evaluation of common MLLMs on SpaCE-10 and find that even the most advanced MLLM still lags behind humans by large margins. Through our careful study, we also draw several significant findings that benefit the MLLM community. For example, we reveal that the shortcoming of counting capability greatly limits the compositional spatial capabilities of existing MLLMs. The evaluation code and benchmark datasets are available at https://github.com/Cuzyoung/SpaCE-10.
CRUSH4SQL: Collective Retrieval Using Schema Hallucination For Text2SQL
Existing Text-to-SQL generators require the entire schema to be encoded with the user text. This is expensive or impractical for large databases with tens of thousands of columns. Standard dense retrieval techniques are inadequate for schema subsetting of a large structured database, where the correct semantics of retrieval demands that we rank sets of schema elements rather than individual elements. In response, we propose a two-stage process for effective coverage during retrieval. First, we instruct an LLM to hallucinate a minimal DB schema deemed adequate to answer the query. We use the hallucinated schema to retrieve a subset of the actual schema, by composing the results from multiple dense retrievals. Remarkably, hallucination x2013 generally considered a nuisance x2013 turns out to be actually useful as a bridging mechanism. Since no existing benchmarks exist for schema subsetting on large databases, we introduce three benchmarks. Two semi-synthetic datasets are derived from the union of schemas in two well-known datasets, SPIDER and BIRD, resulting in 4502 and 798 schema elements respectively. A real-life benchmark called SocialDB is sourced from an actual large data warehouse comprising 17844 schema elements. We show that our method1 leads to significantly higher recall than SOTA retrieval-based augmentation methods.
ODE: Open-Set Evaluation of Hallucinations in Multimodal Large Language Models
Hallucination poses a significant challenge for multimodal large language models (MLLMs). However, existing benchmarks for evaluating hallucinations are static, which can lead to potential data contamination. This paper introduces ODE, an open-set, dynamic protocol for evaluating object existence hallucinations in MLLMs. Our framework employs graph structures to model associations between real-word concepts and generates novel samples for both general and domain-specific scenarios. The dynamic combination of concepts, along with various combination principles, ensures a broad sample distribution. Experimental results show that MLLMs exhibit higher hallucination rates with ODE-generated samples, effectively avoiding data contamination. Moreover, these samples can also be used for fine-tuning to improve MLLM performance on existing benchmarks.
Accelerating Diffusion LLMs via Adaptive Parallel Decoding
The generation speed of LLMs are bottlenecked by autoregressive decoding, where tokens are predicted sequentially one by one. Alternatively, diffusion large language models (dLLMs) theoretically allow for parallel token generation, but in practice struggle to achieve the speed of autoregressive models without significantly sacrificing quality. We therefore introduce adaptive parallel decoding (APD), a novel method that dynamically adjusts the number of tokens sampled in parallel. We achieve this by defining a multiplicative mixture between the dLLM marginal probabilities and the joint probability of sequences under a small auxiliary autoregressive model. This inverts the standard setup of speculative decoding, where the goal is to sample from a large autoregressive verifier by drafting from a smaller model. We further optimize APD by enabling KV caching and limiting the size of the masked input. Altogether, our method puts forward three tunable parameters to flexibly tradeoff throughput and quality. We show that APD provides markedly higher throughput with minimal quality degradations on downstream benchmarks.
Constraining Linear-chain CRFs to Regular Languages
A major challenge in structured prediction is to represent the interdependencies within output structures. When outputs are structured as sequences, linear-chain conditional random fields (CRFs) are a widely used model class which can learn local dependencies in the output. However, the CRF's Markov assumption makes it impossible for CRFs to represent distributions with nonlocal dependencies, and standard CRFs are unable to respect nonlocal constraints of the data (such as global arity constraints on output labels). We present a generalization of CRFs that can enforce a broad class of constraints, including nonlocal ones, by specifying the space of possible output structures as a regular language L. The resulting regular-constrained CRF (RegCCRF) has the same formal properties as a standard CRF, but assigns zero probability to all label sequences not in L. Notably, RegCCRFs can incorporate their constraints during training, while related models only enforce constraints during decoding. We prove that constrained training is never worse than constrained decoding, and show empirically that it can be substantially better in practice. Additionally, we demonstrate a practical benefit on downstream tasks by incorporating a RegCCRF into a deep neural model for semantic role labeling, exceeding state-of-the-art results on a standard dataset.
Scalable Generative Modeling of Weighted Graphs
Weighted graphs are ubiquitous throughout biology, chemistry, and the social sciences, motivating the development of generative models for abstract weighted graph data using deep neural networks. However, most current deep generative models are either designed for unweighted graphs and are not easily extended to weighted topologies or incorporate edge weights without consideration of a joint distribution with topology. Furthermore, learning a distribution over weighted graphs must account for complex nonlocal dependencies between both the edges of the graph and corresponding weights of each edge. We develop an autoregressive model BiGG-E, a nontrivial extension of the BiGG model, that learns a joint distribution over weighted graphs while still exploiting sparsity to generate a weighted graph with n nodes and m edges in O((n + m)log n) time. Simulation studies and experiments on a variety of benchmark datasets demonstrate that BiGG-E best captures distributions over weighted graphs while remaining scalable and computationally efficient.
Multi-Scale Representations by Varying Window Attention for Semantic Segmentation
Multi-scale learning is central to semantic segmentation. We visualize the effective receptive field (ERF) of canonical multi-scale representations and point out two risks in learning them: scale inadequacy and field inactivation. A novel multi-scale learner, varying window attention (VWA), is presented to address these issues. VWA leverages the local window attention (LWA) and disentangles LWA into the query window and context window, allowing the context's scale to vary for the query to learn representations at multiple scales. However, varying the context to large-scale windows (enlarging ratio R) can significantly increase the memory footprint and computation cost (R^2 times larger than LWA). We propose a simple but professional re-scaling strategy to zero the extra induced cost without compromising performance. Consequently, VWA uses the same cost as LWA to overcome the receptive limitation of the local window. Furthermore, depending on VWA and employing various MLPs, we introduce a multi-scale decoder (MSD), VWFormer, to improve multi-scale representations for semantic segmentation. VWFormer achieves efficiency competitive with the most compute-friendly MSDs, like FPN and MLP decoder, but performs much better than any MSDs. For instance, using nearly half of UPerNet's computation, VWFormer outperforms it by 1.0%-2.5% mIoU on ADE20K. With little extra overhead, ~10G FLOPs, Mask2Former armed with VWFormer improves by 1.0%-1.3%. The code and models are available at https://github.com/yan-hao-tian/vw
Stable Vectorization of Multiparameter Persistent Homology using Signed Barcodes as Measures
Persistent homology (PH) provides topological descriptors for geometric data, such as weighted graphs, which are interpretable, stable to perturbations, and invariant under, e.g., relabeling. Most applications of PH focus on the one-parameter case -- where the descriptors summarize the changes in topology of data as it is filtered by a single quantity of interest -- and there is now a wide array of methods enabling the use of one-parameter PH descriptors in data science, which rely on the stable vectorization of these descriptors as elements of a Hilbert space. Although the multiparameter PH (MPH) of data that is filtered by several quantities of interest encodes much richer information than its one-parameter counterpart, the scarceness of stability results for MPH descriptors has so far limited the available options for the stable vectorization of MPH. In this paper, we aim to bring together the best of both worlds by showing how the interpretation of signed barcodes -- a recent family of MPH descriptors -- as signed measures leads to natural extensions of vectorization strategies from one parameter to multiple parameters. The resulting feature vectors are easy to define and to compute, and provably stable. While, as a proof of concept, we focus on simple choices of signed barcodes and vectorizations, we already see notable performance improvements when comparing our feature vectors to state-of-the-art topology-based methods on various types of data.
any4: Learned 4-bit Numeric Representation for LLMs
We present any4, a learned 4-bit weight quantization solution for large language models (LLMs) providing arbitrary numeric representations without requiring pre-processing of weights or activations. any4 yields higher accuracy compared to other related 4-bit numeric representation types: int4, fp4 and nf4, as evaluated on a range of model sizes, generations and families (Llama 2, Llama 3, Mistral and Mixtral). While any4 does not require preprocessing of weights or activations, it is also competitive with orthogonal techniques that require such preprocessing (e.g., AWQ and GPTQ). We also experiment with any3 and any2 and show competitiveness at lower bits. Additionally, we show that we can calibrate using a single curated diverse sample rather than hundreds of samples from a dataset as done in most quantization approaches. We also open source tinygemm, a latency optimized GPU matrix multiplication library for LLMs, that implements any4 using a GPU-efficient lookup table strategy along with other common quantization methods. We open source our code at https://github.com/facebookresearch/any4 .
S^{2}FT: Efficient, Scalable and Generalizable LLM Fine-tuning by Structured Sparsity
Current PEFT methods for LLMs can achieve either high quality, efficient training, or scalable serving, but not all three simultaneously. To address this limitation, we investigate sparse fine-tuning and observe a remarkable improvement in generalization ability. Utilizing this key insight, we propose a family of Structured Sparse Fine-Tuning (S^{2}FT) methods for LLMs, which concurrently achieve state-of-the-art fine-tuning performance, training efficiency, and inference scalability. S^{2}FT accomplishes this by "selecting sparsely and computing densely". It selects a few heads and channels in the MHA and FFN modules for each Transformer block, respectively. Next, it co-permutes weight matrices on both sides of the coupled structures in LLMs to connect the selected components in each layer into a dense submatrix. Finally, S^{2}FT performs in-place gradient updates on all submatrices. Through theoretical analysis and empirical results, our method prevents forgetting while simplifying optimization, delivers SOTA performance on both commonsense and arithmetic reasoning with 4.6% and 1.3% average improvements compared to LoRA, and surpasses full FT by 11.5% when generalizing to various domains after instruction tuning. Using our partial backpropagation algorithm, S^{2}FT saves training memory up to 3times and improves latency by 1.5-2.7times compared to full FT, while delivering an average 10% improvement over LoRA on both metrics. We further demonstrate that the weight updates in S^{2}FT can be decoupled into adapters, enabling effective fusion, fast switch, and efficient parallelism for serving multiple fine-tuned models.
Scalable Graph Attention-based Instance Selection via Mini-Batch Sampling and Hierarchical Hashing
Instance selection (IS) is important in machine learning for reducing dataset size while keeping key characteristics. Current IS methods often struggle with capturing complex relationships in high-dimensional spaces and scale with large datasets. This paper introduces a graph attention-based instance selection (GAIS) method that uses attention mechanisms to identify informative instances through their structural relationships in graph representations. We present two approaches for scalable graph construction: a distance-based mini-batch sampling technique that reduces computation through strategic batch processing, and a hierarchical hashing approach that allows for efficient similarity computation through random projections. The mini-batch approach keeps class distributions through stratified sampling, while the hierarchical hashing method captures relationships at multiple granularities through single-level, multi-level, and multi-view variants. Experiments across 39 datasets show that GAIS achieves reduction rates above 96\% while maintaining or improving model performance relative to state-of-the-art IS methods. The findings shows that the distance-based mini-batch approach offers an optimal balance of efficiency and effectiveness for large-scale datasets, while multi-view variants provide superior performance for complex, high-dimensional data, demonstrating that attention-based importance scoring can effectively identify instances crucial for maintaining decision boundaries without requiring exhaustive pairwise comparisons.
ByteScale: Efficient Scaling of LLM Training with a 2048K Context Length on More Than 12,000 GPUs
Scaling long-context ability is essential for Large Language Models (LLMs). To amortize the memory consumption across multiple devices in long-context training, inter-data partitioning (a.k.a. Data Parallelism) and intra-data partitioning (a.k.a. Context Parallelism) are commonly used. Current training frameworks predominantly treat the two techniques as orthogonal, and establish static communication groups to organize the devices as a static mesh (e.g., a 2D mesh). However, the sequences for LLM training typically vary in lengths, no matter for texts, multi-modalities or reinforcement learning. The mismatch between data heterogeneity and static mesh causes redundant communication and imbalanced computation, degrading the training efficiency. In this work, we introduce ByteScale, an efficient, flexible, and scalable LLM training framework for large-scale mixed training of long and short sequences. The core of ByteScale is a novel parallelism strategy, namely Hybrid Data Parallelism (HDP), which unifies the inter- and intra-data partitioning with a dynamic mesh design. In particular, we build a communication optimizer, which eliminates the redundant communication for short sequences by data-aware sharding and dynamic communication, and further compresses the communication cost for long sequences by selective offloading. Besides, we also develop a balance scheduler to mitigate the imbalanced computation by parallelism-aware data assignment. We evaluate ByteScale with the model sizes ranging from 7B to 141B, context lengths from 256K to 2048K, on a production cluster with more than 12,000 GPUs. Experiment results show that ByteScale outperforms the state-of-the-art training system by up to 7.89x.
LoRMA: Low-Rank Multiplicative Adaptation for LLMs
Large Language Models have shown remarkable capabilities in the NLP domain. Their effectiveness can mainly be attributed to their ability to adapt to an array of downstream tasks. However, generally, full fine-tuning is a computationally expensive job. To mitigate this, many techniques have been developed that prime efficiency, a prominent one being Low-Rank Adaptation (LoRA). However, LoRA and its variants employ re-parametrized additive updates. In this paper, we propose Low-Rank Multiplicative Adaptation (LoRMA), which shifts the paradigm of additive updates to a richer space of matrix multiplicative transformations. We tackle challenges such as computational complexity and rank bottleneck of matrix multiplication by effectively re-ordering operations and introducing rank inflation strategies. We conduct extensive experiments to demonstrate the effectiveness of our approach in terms of various evaluation metrics.
GAEA: A Geolocation Aware Conversational Model
Image geolocalization, in which, traditionally, an AI model predicts the precise GPS coordinates of an image is a challenging task with many downstream applications. However, the user cannot utilize the model to further their knowledge other than the GPS coordinate; the model lacks an understanding of the location and the conversational ability to communicate with the user. In recent days, with tremendous progress of large multimodal models (LMMs) proprietary and open-source researchers have attempted to geolocalize images via LMMs. However, the issues remain unaddressed; beyond general tasks, for more specialized downstream tasks, one of which is geolocalization, LMMs struggle. In this work, we propose to solve this problem by introducing a conversational model GAEA that can provide information regarding the location of an image, as required by a user. No large-scale dataset enabling the training of such a model exists. Thus we propose a comprehensive dataset GAEA with 800K images and around 1.6M question answer pairs constructed by leveraging OpenStreetMap (OSM) attributes and geographical context clues. For quantitative evaluation, we propose a diverse benchmark comprising 4K image-text pairs to evaluate conversational capabilities equipped with diverse question types. We consider 11 state-of-the-art open-source and proprietary LMMs and demonstrate that GAEA significantly outperforms the best open-source model, LLaVA-OneVision by 25.69% and the best proprietary model, GPT-4o by 8.28%. Our dataset, model and codes are available
Algorithms for Caching and MTS with reduced number of predictions
ML-augmented algorithms utilize predictions to achieve performance beyond their worst-case bounds. Producing these predictions might be a costly operation -- this motivated Im et al. '22 to introduce the study of algorithms which use predictions parsimoniously. We design parsimonious algorithms for caching and MTS with action predictions, proposed by Antoniadis et al. '20, focusing on the parameters of consistency (performance with perfect predictions) and smoothness (dependence of their performance on the prediction error). Our algorithm for caching is 1-consistent, robust, and its smoothness deteriorates with the decreasing number of available predictions. We propose an algorithm for general MTS whose consistency and smoothness both scale linearly with the decreasing number of predictions. Without the restriction on the number of available predictions, both algorithms match the earlier guarantees achieved by Antoniadis et al. '20.
Neural Attention Search
We present Neural Attention Search (NAtS), a framework that automatically evaluates the importance of each token within a sequence and determines if the corresponding token can be dropped after several steps. This approach can efficiently reduce the KV cache sizes required by transformer-based models during inference and thus reduce inference costs. In this paper, we design a search space that contains three token types: (i) Global Tokens will be preserved and queried by all the following tokens. (ii) Local Tokens survive until the next global token appears. (iii) Sliding Window Tokens have an impact on the inference of a fixed size of the next following tokens. Similar to the One-Shot Neural Architecture Search approach, this token-type information can be learned jointly with the architecture weights via a learnable attention mask. Experiments on both training a new transformer from scratch and fine-tuning existing large language models show that NAtS can efficiently reduce the KV cache size required for the models while maintaining the models' performance.
Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing
Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data. Previous work has primarily considered silver-standard data augmentation or zero-shot methods, however, exploiting few-shot gold data is comparatively unexplored. We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between probabilistic latent variables using Optimal Transport. We demonstrate how this direct guidance improves parsing from natural languages using fewer examples and less training. We evaluate our method on two datasets, MTOP and MultiATIS++SQL, establishing state-of-the-art results under a few-shot cross-lingual regime. Ablation studies further reveal that our method improves performance even without parallel input translations. In addition, we show that our model better captures cross-lingual structure in the latent space to improve semantic representation similarity.
Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval
Retrieval-based language models (R-LM) model the probability of natural language text by combining a standard language model (LM) with examples retrieved from an external datastore at test time. While effective, a major bottleneck of using these models in practice is the computationally costly datastore search, which can be performed as frequently as every time step. In this paper, we present RetoMaton - retrieval automaton - which approximates the datastore search, based on (1) saving pointers between consecutive datastore entries, and (2) clustering of entries into "states". This effectively results in a weighted finite automaton built on top of the datastore, instead of representing the datastore as a flat list. The creation of the automaton is unsupervised, and a RetoMaton can be constructed from any text collection: either the original training corpus or from another domain. Traversing this automaton at inference time, in parallel to the LM inference, reduces its perplexity by up to 1.85, or alternatively saves up to 83% of the nearest neighbor searches over kNN-LM (Khandelwal et al., 2020) without hurting perplexity. Our code and trained models are available at https://github.com/neulab/retomaton .
Amphista: Accelerate LLM Inference with Bi-directional Multiple Drafting Heads in a Non-autoregressive Style
Large Language Models (LLMs) inherently use autoregressive decoding, which lacks parallelism in inference and results in significantly slow inference speeds, especially when hardware parallel accelerators and memory bandwidth are not fully utilized. In this work, we propose Amphista, a speculative decoding algorithm that adheres to a non-autoregressive decoding paradigm. Owing to the increased parallelism, our method demonstrates higher efficiency in inference compared to autoregressive methods. Specifically, Amphista models an Auto-embedding Block capable of parallel inference, incorporating bi-directional attention to enable interaction between different drafting heads. Additionally, Amphista implements Staged Adaptation Layers to facilitate the transition of semantic information from the base model's autoregressive inference to the drafting heads' non-autoregressive speculation, thereby achieving paradigm transformation and feature fusion. We conduct a series of experiments on a suite of Vicuna models using MT-Bench and Spec-Bench. For the Vicuna 33B model, Amphista achieves up to 2.75times and 1.40times wall-clock acceleration compared to vanilla autoregressive decoding and Medusa, respectively, while preserving lossless generation quality.
Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models
Neural sequence models are widely used to model time-series data. Equally ubiquitous is the usage of beam search (BS) as an approximate inference algorithm to decode output sequences from these models. BS explores the search space in a greedy left-right fashion retaining only the top-B candidates - resulting in sequences that differ only slightly from each other. Producing lists of nearly identical sequences is not only computationally wasteful but also typically fails to capture the inherent ambiguity of complex AI tasks. To overcome this problem, we propose Diverse Beam Search (DBS), an alternative to BS that decodes a list of diverse outputs by optimizing for a diversity-augmented objective. We observe that our method finds better top-1 solutions by controlling for the exploration and exploitation of the search space - implying that DBS is a better search algorithm. Moreover, these gains are achieved with minimal computational or memory over- head as compared to beam search. To demonstrate the broad applicability of our method, we present results on image captioning, machine translation and visual question generation using both standard quantitative metrics and qualitative human studies. Further, we study the role of diversity for image-grounded language generation tasks as the complexity of the image changes. We observe that our method consistently outperforms BS and previously proposed techniques for diverse decoding from neural sequence models.
Matryoshka Representation Learning
Learned representations are a central component in modern ML systems, serving a multitude of downstream tasks. When training such representations, it is often the case that computational and statistical constraints for each downstream task are unknown. In this context rigid, fixed capacity representations can be either over or under-accommodating to the task at hand. This leads us to ask: can we design a flexible representation that can adapt to multiple downstream tasks with varying computational resources? Our main contribution is Matryoshka Representation Learning (MRL) which encodes information at different granularities and allows a single embedding to adapt to the computational constraints of downstream tasks. MRL minimally modifies existing representation learning pipelines and imposes no additional cost during inference and deployment. MRL learns coarse-to-fine representations that are at least as accurate and rich as independently trained low-dimensional representations. The flexibility within the learned Matryoshka Representations offer: (a) up to 14x smaller embedding size for ImageNet-1K classification at the same level of accuracy; (b) up to 14x real-world speed-ups for large-scale retrieval on ImageNet-1K and 4K; and (c) up to 2% accuracy improvements for long-tail few-shot classification, all while being as robust as the original representations. Finally, we show that MRL extends seamlessly to web-scale datasets (ImageNet, JFT) across various modalities -- vision (ViT, ResNet), vision + language (ALIGN) and language (BERT). MRL code and pretrained models are open-sourced at https://github.com/RAIVNLab/MRL.
HippoRAG: Neurobiologically Inspired Long-Term Memory for Large Language Models
In order to thrive in hostile and ever-changing natural environments, mammalian brains evolved to store large amounts of knowledge about the world and continually integrate new information while avoiding catastrophic forgetting. Despite the impressive accomplishments, large language models (LLMs), even with retrieval-augmented generation (RAG), still struggle to efficiently and effectively integrate a large amount of new experiences after pre-training. In this work, we introduce HippoRAG, a novel retrieval framework inspired by the hippocampal indexing theory of human long-term memory to enable deeper and more efficient knowledge integration over new experiences. HippoRAG synergistically orchestrates LLMs, knowledge graphs, and the Personalized PageRank algorithm to mimic the different roles of neocortex and hippocampus in human memory. We compare HippoRAG with existing RAG methods on multi-hop question answering and show that our method outperforms the state-of-the-art methods remarkably, by up to 20%. Single-step retrieval with HippoRAG achieves comparable or better performance than iterative retrieval like IRCoT while being 10-30 times cheaper and 6-13 times faster, and integrating HippoRAG into IRCoT brings further substantial gains. Finally, we show that our method can tackle new types of scenarios that are out of reach of existing methods. Code and data are available at https://github.com/OSU-NLP-Group/HippoRAG.
PaSS: Parallel Speculative Sampling
Scaling the size of language models to tens of billions of parameters has led to impressive performance on a wide range of tasks. At generation, these models are used auto-regressively, requiring a forward pass for each generated token, and thus reading the full set of parameters from memory. This memory access forms the primary bottleneck for generation and it worsens as the model size increases. Moreover, executing a forward pass for multiple tokens in parallel often takes nearly the same time as it does for just one token. These two observations lead to the development of speculative sampling, where a second smaller model is used to draft a few tokens, that are then validated or rejected using a single forward pass of the large model. Unfortunately, this method requires two models that share the same tokenizer and thus limits its adoption. As an alternative, we propose to use parallel decoding as a way to draft multiple tokens from a single model with no computational cost, nor the need for a second model. Our approach only requires an additional input token that marks the words that will be generated simultaneously. We show promising performance (up to 30% speed-up) while requiring only as few as O(d_{emb}) additional parameters.
PLDR-LLMs Learn A Generalizable Tensor Operator That Can Replace Its Own Deep Neural Net At Inference
We show that Large Language Model from Power Law Decoder Representations (PLDR-LLM) is a foundational model whose deductive outputs are invariant tensors up to a small perturbation. PLDR-LLM learns a singularity condition for the deductive outputs that enable the once-inferred energy-curvature tensor G_{LM} to replace the deep neural network of power law graph attention (PLGA) generating the deductive outputs at inference. We demonstrate that a cache for G_{LM} (G-cache) and KV-cache can be implemented in a straightforward manner to improve the inference time. The invariance and generalizable nature of deductive outputs is at a very high fidelity where deductive outputs have same RMSE and determinant values up to 15 decimal places after caching, and zero-shot benchmark scores remain unchanged. Ablation studies show that learned deductive outputs have distinct loss and accuracy characteristics from models pretrained with transferred, randomly initialized or identity tensors as a constant tensor operator and an LLM with scaled-dot product attention (SDPA) is a special case of PLDR-LLM where G_{LM} is predefined as identity. The observed invariance characteristic introduces a novel asymmetry between training and inference phases with caching. We outline observed common characteristics of the deductive outputs for the learned singularity condition. We provide an implementation of a training and inference framework for PLDR-LLM with KV-cache and G-cache.
MTMamba: Enhancing Multi-Task Dense Scene Understanding by Mamba-Based Decoders
Multi-task dense scene understanding, which learns a model for multiple dense prediction tasks, has a wide range of application scenarios. Modeling long-range dependency and enhancing cross-task interactions are crucial to multi-task dense prediction. In this paper, we propose MTMamba, a novel Mamba-based architecture for multi-task scene understanding. It contains two types of core blocks: self-task Mamba (STM) block and cross-task Mamba (CTM) block. STM handles long-range dependency by leveraging Mamba, while CTM explicitly models task interactions to facilitate information exchange across tasks. Experiments on NYUDv2 and PASCAL-Context datasets demonstrate the superior performance of MTMamba over Transformer-based and CNN-based methods. Notably, on the PASCAL-Context dataset, MTMamba achieves improvements of +2.08, +5.01, and +4.90 over the previous best methods in the tasks of semantic segmentation, human parsing, and object boundary detection, respectively. The code is available at https://github.com/EnVision-Research/MTMamba.
TLDR: Twin Learning for Dimensionality Reduction
Dimensionality reduction methods are unsupervised approaches which learn low-dimensional spaces where some properties of the initial space, typically the notion of "neighborhood", are preserved. Such methods usually require propagation on large k-NN graphs or complicated optimization solvers. On the other hand, self-supervised learning approaches, typically used to learn representations from scratch, rely on simple and more scalable frameworks for learning. In this paper, we propose TLDR, a dimensionality reduction method for generic input spaces that is porting the recent self-supervised learning framework of Zbontar et al. (2021) to the specific task of dimensionality reduction, over arbitrary representations. We propose to use nearest neighbors to build pairs from a training set and a redundancy reduction loss to learn an encoder that produces representations invariant across such pairs. TLDR is a method that is simple, easy to train, and of broad applicability; it consists of an offline nearest neighbor computation step that can be highly approximated, and a straightforward learning process. Aiming for scalability, we focus on improving linear dimensionality reduction, and show consistent gains on image and document retrieval tasks, e.g. gaining +4% mAP over PCA on ROxford for GeM- AP, improving the performance of DINO on ImageNet or retaining it with a 10x compression.
Faster Neighborhood Attention: Reducing the O(n^2) Cost of Self Attention at the Threadblock Level
Neighborhood attention reduces the cost of self attention by restricting each token's attention span to its nearest neighbors. This restriction, parameterized by a window size and dilation factor, draws a spectrum of possible attention patterns between linear projection and self attention. Neighborhood attention, and more generally sliding window attention patterns, have long been bounded by infrastructure, particularly in higher-rank spaces (2-D and 3-D), calling for the development of custom kernels, which have been limited in either functionality, or performance, if not both. In this work, we first show that neighborhood attention can be represented as a batched GEMM problem, similar to standard attention, and implement it for 1-D and 2-D neighborhood attention. These kernels on average provide 895% and 272% improvement in full precision latency compared to existing naive kernels for 1-D and 2-D neighborhood attention respectively. We find certain inherent inefficiencies in all unfused neighborhood attention kernels that bound their performance and lower-precision scalability. We also developed fused neighborhood attention; an adaptation of fused dot-product attention kernels that allow fine-grained control over attention across different spatial axes. Known for reducing the quadratic time complexity of self attention to a linear complexity, neighborhood attention can now enjoy a reduced and constant memory footprint, and record-breaking half precision latency. We observe that our fused kernels successfully circumvent some of the unavoidable inefficiencies in unfused implementations. While our unfused GEMM-based kernels only improve half precision performance compared to naive kernels by an average of 496% and 113% in 1-D and 2-D problems respectively, our fused kernels improve naive kernels by an average of 1607% and 581% in 1-D and 2-D problems respectively.
Accelerated Hierarchical Density Clustering
We present an accelerated algorithm for hierarchical density based clustering. Our new algorithm improves upon HDBSCAN*, which itself provided a significant qualitative improvement over the popular DBSCAN algorithm. The accelerated HDBSCAN* algorithm provides comparable performance to DBSCAN, while supporting variable density clusters, and eliminating the need for the difficult to tune distance scale parameter. This makes accelerated HDBSCAN* the default choice for density based clustering. Library available at: https://github.com/scikit-learn-contrib/hdbscan
Emergent Asymmetry of Precision and Recall for Measuring Fidelity and Diversity of Generative Models in High Dimensions
Precision and Recall are two prominent metrics of generative performance, which were proposed to separately measure the fidelity and diversity of generative models. Given their central role in comparing and improving generative models, understanding their limitations are crucially important. To that end, in this work, we identify a critical flaw in the common approximation of these metrics using k-nearest-neighbors, namely, that the very interpretations of fidelity and diversity that are assigned to Precision and Recall can fail in high dimensions, resulting in very misleading conclusions. Specifically, we empirically and theoretically show that as the number of dimensions grows, two model distributions with supports at equal point-wise distance from the support of the real distribution, can have vastly different Precision and Recall regardless of their respective distributions, hence an emergent asymmetry in high dimensions. Based on our theoretical insights, we then provide simple yet effective modifications to these metrics to construct symmetric metrics regardless of the number of dimensions. Finally, we provide experiments on real-world datasets to illustrate that the identified flaw is not merely a pathological case, and that our proposed metrics are effective in alleviating its impact.
Block Transformer: Global-to-Local Language Modeling for Fast Inference
This paper presents the Block Transformer architecture which adopts hierarchical global-to-local modeling to autoregressive transformers to mitigate the inference bottlenecks of self-attention. To apply self-attention, the key-value (KV) cache of all previous sequences must be retrieved from memory at every decoding step. Thereby, this KV cache IO becomes a significant bottleneck in batch inference. We notice that these costs stem from applying self-attention on the global context, therefore we isolate the expensive bottlenecks of global modeling to lower layers and apply fast local modeling in upper layers. To mitigate the remaining costs in the lower layers, we aggregate input tokens into fixed size blocks and then apply self-attention at this coarse level. Context information is aggregated into a single embedding to enable upper layers to decode the next block of tokens, without global attention. Free of global attention bottlenecks, the upper layers can fully utilize the compute hardware to maximize inference throughput. By leveraging global and local modules, the Block Transformer architecture demonstrates 10-20x gains in inference throughput compared to vanilla transformers with equivalent perplexity. Our work introduces a new approach to optimize language model inference through novel application of global-to-local modeling. Code is available at https://github.com/itsnamgyu/block-transformer.
Sequence Modeling with Multiresolution Convolutional Memory
Efficiently capturing the long-range patterns in sequential data sources salient to a given task -- such as classification and generative modeling -- poses a fundamental challenge. Popular approaches in the space tradeoff between the memory burden of brute-force enumeration and comparison, as in transformers, the computational burden of complicated sequential dependencies, as in recurrent neural networks, or the parameter burden of convolutional networks with many or large filters. We instead take inspiration from wavelet-based multiresolution analysis to define a new building block for sequence modeling, which we call a MultiresLayer. The key component of our model is the multiresolution convolution, capturing multiscale trends in the input sequence. Our MultiresConv can be implemented with shared filters across a dilated causal convolution tree. Thus it garners the computational advantages of convolutional networks and the principled theoretical motivation of wavelet decompositions. Our MultiresLayer is straightforward to implement, requires significantly fewer parameters, and maintains at most a O(Nlog N) memory footprint for a length N sequence. Yet, by stacking such layers, our model yields state-of-the-art performance on a number of sequence classification and autoregressive density estimation tasks using CIFAR-10, ListOps, and PTB-XL datasets.
EasyRAG: Efficient Retrieval-Augmented Generation Framework for Automated Network Operations
This paper presents EasyRAG, a simple, lightweight, and efficient retrieval-augmented generation framework for automated network operations. Our framework has three advantages. The first is accurate question answering. We designed a straightforward RAG scheme based on (1) a specific data processing workflow (2) dual-route sparse retrieval for coarse ranking (3) LLM Reranker for reranking (4) LLM answer generation and optimization. This approach achieved first place in the GLM4 track in the preliminary round and second place in the GLM4 track in the semifinals. The second is simple deployment. Our method primarily consists of BM25 retrieval and BGE-reranker reranking, requiring no fine-tuning of any models, occupying minimal VRAM, easy to deploy, and highly scalable; we provide a flexible code library with various search and generation strategies, facilitating custom process implementation. The last one is efficient inference. We designed an efficient inference acceleration scheme for the entire coarse ranking, reranking, and generation process that significantly reduces the inference latency of RAG while maintaining a good level of accuracy; each acceleration scheme can be plug-and-play into any component of the RAG process, consistently enhancing the efficiency of the RAG system. Our code and data are released at https://github.com/BUAADreamer/EasyRAG.
M3P: Learning Universal Representations via Multitask Multilingual Multimodal Pre-training
We present M3P, a Multitask Multilingual Multimodal Pre-trained model that combines multilingual pre-training and multimodal pre-training into a unified framework via multitask pre-training. Our goal is to learn universal representations that can map objects occurred in different modalities or texts expressed in different languages into a common semantic space. In addition, to explicitly encourage fine-grained alignment between images and non-English languages, we also propose Multimodal Code-switched Training (MCT) to combine monolingual pre-training and multimodal pre-training via a code-switch strategy. Experiments are performed on the multilingual image retrieval task across two benchmark datasets, including MSCOCO and Multi30K. M3P can achieve comparable results for English and new state-of-the-art results for non-English languages.
Tighter Information-Theoretic Generalization Bounds from Supersamples
In this work, we present a variety of novel information-theoretic generalization bounds for learning algorithms, from the supersample setting of Steinke & Zakynthinou (2020)-the setting of the "conditional mutual information" framework. Our development exploits projecting the loss pair (obtained from a training instance and a testing instance) down to a single number and correlating loss values with a Rademacher sequence (and its shifted variants). The presented bounds include square-root bounds, fast-rate bounds, including those based on variance and sharpness, and bounds for interpolating algorithms etc. We show theoretically or empirically that these bounds are tighter than all information-theoretic bounds known to date on the same supersample setting.
RetroInfer: A Vector-Storage Approach for Scalable Long-Context LLM Inference
The growing context lengths of large language models (LLMs) pose significant challenges for efficient inference, primarily due to GPU memory and bandwidth constraints. We present RetroInfer, a novel system that reconceptualizes the key-value (KV) cache as a vector storage system which exploits the inherent attention sparsity to accelerate long-context LLM inference. At its core is the wave index, an Attention-aWare VEctor index that enables efficient and accurate retrieval of critical tokens through techniques such as tripartite attention approximation, accuracy-bounded attention estimation, and segmented clustering. Complementing this is the wave buffer, which coordinates KV cache placement and overlaps computation and data transfer across GPU and CPU to sustain high throughput. Unlike prior sparsity-based methods that struggle with token selection and hardware coordination, RetroInfer delivers robust performance without compromising model accuracy. Experiments on long-context benchmarks show up to 4.5X speedup over full attention within GPU memory limits and up to 10.5X over sparse attention baselines when KV cache is extended to CPU memory, all while preserving full-attention-level accuracy.
TaxaBind: A Unified Embedding Space for Ecological Applications
We present TaxaBind, a unified embedding space for characterizing any species of interest. TaxaBind is a multimodal embedding space across six modalities: ground-level images of species, geographic location, satellite image, text, audio, and environmental features, useful for solving ecological problems. To learn this joint embedding space, we leverage ground-level images of species as a binding modality. We propose multimodal patching, a technique for effectively distilling the knowledge from various modalities into the binding modality. We construct two large datasets for pretraining: iSatNat with species images and satellite images, and iSoundNat with species images and audio. Additionally, we introduce TaxaBench-8k, a diverse multimodal dataset with six paired modalities for evaluating deep learning models on ecological tasks. Experiments with TaxaBind demonstrate its strong zero-shot and emergent capabilities on a range of tasks including species classification, cross-model retrieval, and audio classification. The datasets and models are made available at https://github.com/mvrl/TaxaBind.