1 AgentBreeder: Mitigating the AI Safety Impact of Multi-Agent Scaffolds Scaffolding Large Language Models (LLMs) into multi-agent systems often improves performance on complex tasks, but the safety impact of such scaffolds has not been as thoroughly explored. In this paper, we introduce AGENTBREEDER a framework for multi-objective evolutionary search over scaffolds. Our REDAGENTBREEDER evolves scaffolds towards jailbreaking the base LLM while achieving high task success, while BLUEAGENTBREEDER instead aims to combine safety with task reward. We evaluate the systems discovered by the different instances of AGENTBREEDER and popular baselines using widely recognized reasoning, mathematics, and safety benchmarks. Our work highlights and mitigates the safety risks due to multi-agent scaffolding. 2 authors · Feb 2
- SEC-bench: Automated Benchmarking of LLM Agents on Real-World Software Security Tasks Rigorous security-focused evaluation of large language model (LLM) agents is imperative for establishing trust in their safe deployment throughout the software development lifecycle. However, existing benchmarks largely rely on synthetic challenges or simplified vulnerability datasets that fail to capture the complexity and ambiguity encountered by security engineers in practice. We introduce SEC-bench, the first fully automated benchmarking framework for evaluating LLM agents on authentic security engineering tasks. SEC-bench employs a novel multi-agent scaffold that automatically constructs code repositories with harnesses, reproduces vulnerabilities in isolated environments, and generates gold patches for reliable evaluation. Our framework automatically creates high-quality software vulnerability datasets with reproducible artifacts at a cost of only $0.87 per instance. Using SEC-bench, we implement two critical software security tasks to rigorously evaluate LLM agents' capabilities: proof-of-concept (PoC) generation and vulnerability patching. A comprehensive evaluation of state-of-the-art LLM code agents reveals significant performance gaps, achieving at most 18.0% success in PoC generation and 34.0% in vulnerability patching on our complete dataset. These results highlight the crucial steps needed toward developing LLM agents that are more practical, intelligent, and autonomous for security engineering. 4 authors · Jun 13
- Hypothetical Minds: Scaffolding Theory of Mind for Multi-Agent Tasks with Large Language Models Multi-agent reinforcement learning (MARL) methods struggle with the non-stationarity of multi-agent systems and fail to adaptively learn online when tested with novel agents. Here, we leverage large language models (LLMs) to create an autonomous agent that can handle these challenges. Our agent, Hypothetical Minds, consists of a cognitively-inspired architecture, featuring modular components for perception, memory, and hierarchical planning over two levels of abstraction. We introduce the Theory of Mind module that scaffolds the high-level planning process by generating hypotheses about other agents' strategies in natural language. It then evaluates and iteratively refines these hypotheses by reinforcing hypotheses that make correct predictions about the other agents' behavior. Hypothetical Minds significantly improves performance over previous LLM-agent and RL baselines on a range of competitive, mixed motive, and collaborative domains in the Melting Pot benchmark, including both dyadic and population-based environments. Additionally, comparisons against LLM-agent baselines and ablations reveal the importance of hypothesis evaluation and refinement for succeeding on complex scenarios. 5 authors · Jul 9, 2024
55 Training Long-Context, Multi-Turn Software Engineering Agents with Reinforcement Learning Research on applications of Reinforcement Learning (RL) to Large Language Models (LLMs) has mostly been focused on single-turn problems, such as mathematical reasoning or single-shot code generation. While these problems can be viewed as token-level multi-turn MDPs, this view corresponds to a degenerate case of multi-turn interaction where the environment provides no feedback. This contrasts with many real-world domains, such as software engineering (SWE), which require rich multi-turn interactions with a stateful environment that responds to each action with a non-trivial observation. To bridge this gap, we demonstrate the successful application of RL to this general regime. Using a modified Decoupled Advantage Policy Optimization (DAPO) algorithm, we train an agent based on Qwen2.5-72B-Instruct to solve real-world software engineering tasks. Our approach increases the agent's success rate on the SWE-bench Verified benchmark from a 20% rejection fine-tuned baseline to 39%, without relying on any teacher models. On SWE-rebench, our agent matches or outperforms leading open-weight models such as DeepSeek-V3-0324 and Qwen3-235B-A22B using an identical scaffolding, offering a viable path toward building more capable autonomous agents for complex real-world problems based on open models. 12 authors · Aug 5 4