Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDASB - Discrete Audio and Speech Benchmark
Discrete audio tokens have recently gained considerable attention for their potential to connect audio and language processing, enabling the creation of modern multimodal large language models. Ideal audio tokens must effectively preserve phonetic and semantic content along with paralinguistic information, speaker identity, and other details. While several types of audio tokens have been recently proposed, identifying the optimal tokenizer for various tasks is challenging due to the inconsistent evaluation settings in existing studies. To address this gap, we release the Discrete Audio and Speech Benchmark (DASB), a comprehensive leaderboard for benchmarking discrete audio tokens across a wide range of discriminative tasks, including speech recognition, speaker identification and verification, emotion recognition, keyword spotting, and intent classification, as well as generative tasks such as speech enhancement, separation, and text-to-speech. Our results show that, on average, semantic tokens outperform compression tokens across most discriminative and generative tasks. However, the performance gap between semantic tokens and standard continuous representations remains substantial, highlighting the need for further research in this field.
Benchmarking Trustworthiness of Multimodal Large Language Models: A Comprehensive Study
Despite the superior capabilities of Multimodal Large Language Models (MLLMs) across diverse tasks, they still face significant trustworthiness challenges. Yet, current literature on the assessment of trustworthy MLLMs remains limited, lacking a holistic evaluation to offer thorough insights into future improvements. In this work, we establish MultiTrust, the first comprehensive and unified benchmark on the trustworthiness of MLLMs across five primary aspects: truthfulness, safety, robustness, fairness, and privacy. Our benchmark employs a rigorous evaluation strategy that addresses both multimodal risks and cross-modal impacts, encompassing 32 diverse tasks with self-curated datasets. Extensive experiments with 21 modern MLLMs reveal some previously unexplored trustworthiness issues and risks, highlighting the complexities introduced by the multimodality and underscoring the necessity for advanced methodologies to enhance their reliability. For instance, typical proprietary models still struggle with the perception of visually confusing images and are vulnerable to multimodal jailbreaking and adversarial attacks; MLLMs are more inclined to disclose privacy in text and reveal ideological and cultural biases even when paired with irrelevant images in inference, indicating that the multimodality amplifies the internal risks from base LLMs. Additionally, we release a scalable toolbox for standardized trustworthiness research, aiming to facilitate future advancements in this important field. Code and resources are publicly available at: https://multi-trust.github.io/.
A Review of Modern Recommender Systems Using Generative Models (Gen-RecSys)
Traditional recommender systems (RS) have used user-item rating histories as their primary data source, with collaborative filtering being one of the principal methods. However, generative models have recently developed abilities to model and sample from complex data distributions, including not only user-item interaction histories but also text, images, and videos - unlocking this rich data for novel recommendation tasks. Through this comprehensive and multi-disciplinary survey, we aim to connect the key advancements in RS using Generative Models (Gen-RecSys), encompassing: a foundational overview of interaction-driven generative models; the application of large language models (LLM) for generative recommendation, retrieval, and conversational recommendation; and the integration of multimodal models for processing and generating image and video content in RS. Our holistic perspective allows us to highlight necessary paradigms for evaluating the impact and harm of Gen-RecSys and identify open challenges. A more up-to-date version of the papers is maintained at: https://github.com/yasdel/LLM-RecSys.
Toward a Holistic Evaluation of Robustness in CLIP Models
Contrastive Language-Image Pre-training (CLIP) models have shown significant potential, particularly in zero-shot classification across diverse distribution shifts. Building on existing evaluations of overall classification robustness, this work aims to provide a more comprehensive assessment of CLIP by introducing several new perspectives. First, we investigate their robustness to variations in specific visual factors. Second, we assess two critical safety objectives--confidence uncertainty and out-of-distribution detection--beyond mere classification accuracy. Third, we evaluate the finesse with which CLIP models bridge the image and text modalities. Fourth, we extend our examination to 3D awareness in CLIP models, moving beyond traditional 2D image understanding. Finally, we explore the interaction between vision and language encoders within modern large multimodal models (LMMs) that utilize CLIP as the visual backbone, focusing on how this interaction impacts classification robustness. In each aspect, we consider the impact of six factors on CLIP models: model architecture, training distribution, training set size, fine-tuning, contrastive loss, and test-time prompts. Our study uncovers several previously unknown insights into CLIP. For instance, the architecture of the visual encoder in CLIP plays a significant role in their robustness against 3D corruption. CLIP models tend to exhibit a bias towards shape when making predictions. Moreover, this bias tends to diminish after fine-tuning on ImageNet. Vision-language models like LLaVA, leveraging the CLIP vision encoder, could exhibit benefits in classification performance for challenging categories over CLIP alone. Our findings are poised to offer valuable guidance for enhancing the robustness and reliability of CLIP models.
Dallah: A Dialect-Aware Multimodal Large Language Model for Arabic
Recent advancements have significantly enhanced the capabilities of Multimodal Large Language Models (MLLMs) in generating and understanding image-to-text content. Despite these successes, progress is predominantly limited to English due to the scarcity of high quality multimodal resources in other languages. This limitation impedes the development of competitive models in languages such as Arabic. To alleviate this situation, we introduce an efficient Arabic multimodal assistant, dubbed Dallah, that utilizes an advanced language model based on LLaMA-2 to facilitate multimodal interactions. Dallah demonstrates state-of-the-art performance in Arabic MLLMs. Through fine-tuning six Arabic dialects, Dallah showcases its capability to handle complex dialectal interactions incorporating both textual and visual elements. The model excels in two benchmark tests: one evaluating its performance on Modern Standard Arabic (MSA) and another specifically designed to assess dialectal responses. Beyond its robust performance in multimodal interaction tasks, Dallah has the potential to pave the way for further development of dialect-aware Arabic MLLMs.
Mementos: A Comprehensive Benchmark for Multimodal Large Language Model Reasoning over Image Sequences
Multimodal Large Language Models (MLLMs) have demonstrated proficiency in handling a variety of visual-language tasks. However, current MLLM benchmarks are predominantly designed to evaluate reasoning based on static information about a single image, and the ability of modern MLLMs to extrapolate from image sequences, which is essential for understanding our ever-changing world, has been less investigated. To address this challenge, this paper introduces Mementos, a new benchmark designed to assess MLLMs' sequential image reasoning abilities. Mementos features 4,761 diverse image sequences with varying lengths. We also employ a GPT-4 assisted method to evaluate MLLM reasoning performance. Through a careful evaluation of nine recent MLLMs on Mementos, including GPT-4V and Gemini, we find that they struggle to accurately describe dynamic information about given image sequences, often leading to hallucinations/misrepresentations of objects and their corresponding behaviors. Our quantitative analysis and case studies identify three key factors impacting MLLMs' sequential image reasoning: the correlation between object and behavioral hallucinations, the influence of cooccurring behaviors, and the compounding impact of behavioral hallucinations. Our dataset is available at https://github.com/umd-huang-lab/Mementos.
HiP Attention: Sparse Sub-Quadratic Attention with Hierarchical Attention Pruning
In modern large language models (LLMs), increasing sequence lengths is a crucial challenge for enhancing their comprehension and coherence in handling complex tasks such as multi-modal question answering. However, handling long context sequences with LLMs is prohibitively costly due to the conventional attention mechanism's quadratic time and space complexity, and the context window size is limited by the GPU memory. Although recent works have proposed linear and sparse attention mechanisms to address this issue, their real-world applicability is often limited by the need to re-train pre-trained models. In response, we propose a novel approach, Hierarchically Pruned Attention (HiP), which simultaneously reduces the training and inference time complexity from O(T^2) to O(T log T) and the space complexity from O(T^2) to O(T). To this end, we devise a dynamic sparse attention mechanism that generates an attention mask through a novel tree-search-like algorithm for a given query on the fly. HiP is training-free as it only utilizes the pre-trained attention scores to spot the positions of the top-k most significant elements for each query. Moreover, it ensures that no token is overlooked, unlike the sliding window-based sub-quadratic attention methods, such as StreamingLLM. Extensive experiments on diverse real-world benchmarks demonstrate that HiP significantly reduces prompt (i.e., prefill) and decoding latency and memory usage while maintaining high generation performance with little or no degradation. As HiP allows pretrained LLMs to scale to millions of tokens on commodity GPUs with no additional engineering due to its easy plug-and-play deployment, we believe that our work will have a large practical impact, opening up the possibility to many long-context LLM applications previously infeasible.
Large Language Model Evaluation via Matrix Entropy
Large language models (LLMs) have revolutionized the field of natural language processing, extending their strong capabilities into multi-modal domains. Thus, it is vital to define proper and diversified metrics for the evaluation of LLMs. In this paper, we introduce matrix entropy, a novel metric rooted in information theory and geometry principles to quantify the data compression proficiency in LLMs. It reflects the model's ability to extract relevant information and eliminate unnecessary elements, thereby providing insight into the language model's intrinsic capability. Specifically, we demonstrate its applicability in both single-modal (language) and multi-modal settings. For language models, our findings reveal that the matrix entropy of representations follows a scaling law type reduction when the model scales up, serving as a complement to the traditional loss scaling law. For the multi-modal setting, we also propose an evaluation method based on matrix entropy for assessing alignment quality and we find that modern large multi-modal models exhibit great alignment performance.
MM-LLMs: Recent Advances in MultiModal Large Language Models
In the past year, MultiModal Large Language Models (MM-LLMs) have undergone substantial advancements, augmenting off-the-shelf LLMs to support MM inputs or outputs via cost-effective training strategies. The resulting models not only preserve the inherent reasoning and decision-making capabilities of LLMs but also empower a diverse range of MM tasks. In this paper, we provide a comprehensive survey aimed at facilitating further research of MM-LLMs. Specifically, we first outline general design formulations for model architecture and training pipeline. Subsequently, we provide brief introductions of 26 existing MM-LLMs, each characterized by its specific formulations. Additionally, we review the performance of MM-LLMs on mainstream benchmarks and summarize key training recipes to enhance the potency of MM-LLMs. Lastly, we explore promising directions for MM-LLMs while concurrently maintaining a real-time tracking website for the latest developments in the field. We hope that this survey contributes to the ongoing advancement of the MM-LLMs domain.
Model Composition for Multimodal Large Language Models
Recent developments in Multimodal Large Language Models (MLLMs) have shown rapid progress, moving towards the goal of creating versatile MLLMs that understand inputs from various modalities. However, existing methods typically rely on joint training with paired multimodal instruction data, which is resource-intensive and challenging to extend to new modalities. In this paper, we propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model. Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters. Furthermore, we introduce DAMC to address parameter interference and mismatch issues during the merging process, thereby enhancing the model performance. To facilitate research in this area, we propose MCUB, a benchmark for assessing ability of MLLMs to understand inputs from diverse modalities. Experiments on this benchmark and four other multimodal understanding tasks show significant improvements over baselines, proving that model composition can create a versatile model capable of processing inputs from multiple modalities.
MMMModal -- Multi-Images Multi-Audio Multi-turn Multi-Modal
Our contribution introduces a groundbreaking multimodal large language model designed to comprehend multi-images, multi-audio, and multi-images-multi-audio within a single multiturn session. Leveraging state-of-the-art models, we utilize the SigLIP encoder for visual inputs and the Whisper Encoder for audio inputs. Notably, this multimodal large language model is bilingual, proficient in understanding both English and Malay simultaneously. We proudly unveil two versions of this model: TinyLlama with 1.1B parameters, and Mistral with 7B parameters. With its ability to navigate diverse modalities and languages, our model represents a significant advancement for the Malaysian context and beyond. All models released at https://huggingface.co/collections/mesolitica/multimodal-malaysian-llm-65c6f893e03f78fa9e5c8859
UniRAG: Universal Retrieval Augmentation for Multi-Modal Large Language Models
Recently, Multi-Modal(MM) Large Language Models(LLMs) have unlocked many complex use-cases that require MM understanding (e.g., image captioning or visual question answering) and MM generation (e.g., text-guided image generation or editing) capabilities. To further improve the output fidelity of MM-LLMs we introduce the model-agnostic UniRAG technique that adds relevant retrieved information to prompts as few-shot examples during inference. Unlike the common belief that Retrieval Augmentation (RA) mainly improves generation or understanding of uncommon entities, our evaluation results on the MSCOCO dataset with common entities show that both proprietary models like GPT4 and Gemini-Pro and smaller open-source models like Llava, LaVIT, and Emu2 significantly enhance their generation quality when their input prompts are augmented with relevant information retrieved by MM retrievers like UniIR models.
Exploring the Limits of Language Modeling
In this work we explore recent advances in Recurrent Neural Networks for large scale Language Modeling, a task central to language understanding. We extend current models to deal with two key challenges present in this task: corpora and vocabulary sizes, and complex, long term structure of language. We perform an exhaustive study on techniques such as character Convolutional Neural Networks or Long-Short Term Memory, on the One Billion Word Benchmark. Our best single model significantly improves state-of-the-art perplexity from 51.3 down to 30.0 (whilst reducing the number of parameters by a factor of 20), while an ensemble of models sets a new record by improving perplexity from 41.0 down to 23.7. We also release these models for the NLP and ML community to study and improve upon.
The (R)Evolution of Multimodal Large Language Models: A Survey
Connecting text and visual modalities plays an essential role in generative intelligence. For this reason, inspired by the success of large language models, significant research efforts are being devoted to the development of Multimodal Large Language Models (MLLMs). These models can seamlessly integrate visual and textual modalities, both as input and output, while providing a dialogue-based interface and instruction-following capabilities. In this paper, we provide a comprehensive review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques. We also conduct a detailed analysis of these models across a wide range of tasks, including visual grounding, image generation and editing, visual understanding, and domain-specific applications. Additionally, we compile and describe training datasets and evaluation benchmarks, conducting comparisons among existing models in terms of performance and computational requirements. Overall, this survey offers a comprehensive overview of the current state of the art, laying the groundwork for future MLLMs.
Personalized Multimodal Large Language Models: A Survey
Multimodal Large Language Models (MLLMs) have become increasingly important due to their state-of-the-art performance and ability to integrate multiple data modalities, such as text, images, and audio, to perform complex tasks with high accuracy. This paper presents a comprehensive survey on personalized multimodal large language models, focusing on their architecture, training methods, and applications. We propose an intuitive taxonomy for categorizing the techniques used to personalize MLLMs to individual users, and discuss the techniques accordingly. Furthermore, we discuss how such techniques can be combined or adapted when appropriate, highlighting their advantages and underlying rationale. We also provide a succinct summary of personalization tasks investigated in existing research, along with the evaluation metrics commonly used. Additionally, we summarize the datasets that are useful for benchmarking personalized MLLMs. Finally, we outline critical open challenges. This survey aims to serve as a valuable resource for researchers and practitioners seeking to understand and advance the development of personalized multimodal large language models.
A Review of Multi-Modal Large Language and Vision Models
Large Language Models (LLMs) have recently emerged as a focal point of research and application, driven by their unprecedented ability to understand and generate text with human-like quality. Even more recently, LLMs have been extended into multi-modal large language models (MM-LLMs) which extends their capabilities to deal with image, video and audio information, in addition to text. This opens up applications like text-to-video generation, image captioning, text-to-speech, and more and is achieved either by retro-fitting an LLM with multi-modal capabilities, or building a MM-LLM from scratch. This paper provides an extensive review of the current state of those LLMs with multi-modal capabilities as well as the very recent MM-LLMs. It covers the historical development of LLMs especially the advances enabled by transformer-based architectures like OpenAI's GPT series and Google's BERT, as well as the role of attention mechanisms in enhancing model performance. The paper includes coverage of the major and most important of the LLMs and MM-LLMs and also covers the techniques of model tuning, including fine-tuning and prompt engineering, which tailor pre-trained models to specific tasks or domains. Ethical considerations and challenges, such as data bias and model misuse, are also analysed to underscore the importance of responsible AI development and deployment. Finally, we discuss the implications of open-source versus proprietary models in AI research. Through this review, we provide insights into the transformative potential of MM-LLMs in various applications.
Yi: Open Foundation Models by 01.AI
We introduce the Yi model family, a series of language and multimodal models that demonstrate strong multi-dimensional capabilities. The Yi model family is based on 6B and 34B pretrained language models, then we extend them to chat models, 200K long context models, depth-upscaled models, and vision-language models. Our base models achieve strong performance on a wide range of benchmarks like MMLU, and our finetuned chat models deliver strong human preference rate on major evaluation platforms like AlpacaEval and Chatbot Arena. Building upon our scalable super-computing infrastructure and the classical transformer architecture, we attribute the performance of Yi models primarily to its data quality resulting from our data-engineering efforts. For pretraining, we construct 3.1 trillion tokens of English and Chinese corpora using a cascaded data deduplication and quality filtering pipeline. For finetuning, we polish a small scale (less than 10K) instruction dataset over multiple iterations such that every single instance has been verified directly by our machine learning engineers. For vision-language, we combine the chat language model with a vision transformer encoder and train the model to align visual representations to the semantic space of the language model. We further extend the context length to 200K through lightweight continual pretraining and demonstrate strong needle-in-a-haystack retrieval performance. We show that extending the depth of the pretrained checkpoint through continual pretraining further improves performance. We believe that given our current results, continuing to scale up model parameters using thoroughly optimized data will lead to even stronger frontier models.
Generating Images with Multimodal Language Models
We propose a method to fuse frozen text-only large language models (LLMs) with pre-trained image encoder and decoder models, by mapping between their embedding spaces. Our model demonstrates a wide suite of multimodal capabilities: image retrieval, novel image generation, and multimodal dialogue. Ours is the first approach capable of conditioning on arbitrarily interleaved image and text inputs to generate coherent image (and text) outputs. To achieve strong performance on image generation, we propose an efficient mapping network to ground the LLM to an off-the-shelf text-to-image generation model. This mapping network translates hidden representations of text into the embedding space of the visual models, enabling us to leverage the strong text representations of the LLM for visual outputs. Our approach outperforms baseline generation models on tasks with longer and more complex language. In addition to novel image generation, our model is also capable of image retrieval from a prespecified dataset, and decides whether to retrieve or generate at inference time. This is done with a learnt decision module which conditions on the hidden representations of the LLM. Our model exhibits a wider range of capabilities compared to prior multimodal language models. It can process image-and-text inputs, and produce retrieved images, generated images, and generated text -- outperforming non-LLM based generation models across several text-to-image tasks that measure context dependence.
SwitchGPT: Adapting Large Language Models for Non-Text Outputs
Large Language Models (LLMs), primarily trained on text-based datasets, exhibit exceptional proficiencies in understanding and executing complex linguistic instructions via text outputs. However, they falter when requests to generate non-text ones. Concurrently, modality conversion models, such as text-to-image, despite generating high-quality images, suffer from a lack of extensive textual pretraining. As a result, these models are only capable of accommodating specific image descriptions rather than comprehending more complex instructions. To bridge this gap, we propose a novel approach, \methodname, from a modality conversion perspective that evolves a text-based LLM into a multi-modal one. We specifically employ a minimal dataset to instruct LLMs to recognize the intended output modality as directed by the instructions. Consequently, the adapted LLM can effectively summon various off-the-shelf modality conversion models from the model zoos to generate non-text responses. This circumvents the necessity for complicated pretraining that typically requires immense quantities of paired multi-modal data, while simultaneously inheriting the extensive knowledge of LLMs and the ability of high-quality generative models. To evaluate and compare the adapted multi-modal LLM with its traditional counterparts, we have constructed a multi-modal instruction benchmark that solicits diverse modality outputs. The experiment results reveal that, with minimal training, LLMs can be conveniently adapted to comprehend requests for non-text responses, thus achieving higher flexibility in multi-modal scenarios. Code and data will be made available at https://github.com/xinke-wang/SwitchGPT.
E5-V: Universal Embeddings with Multimodal Large Language Models
Multimodal large language models (MLLMs) have shown promising advancements in general visual and language understanding. However, the representation of multimodal information using MLLMs remains largely unexplored. In this work, we introduce a new framework, E5-V, designed to adapt MLLMs for achieving universal multimodal embeddings. Our findings highlight the significant potential of MLLMs in representing multimodal inputs compared to previous approaches. By leveraging MLLMs with prompts, E5-V effectively bridges the modality gap between different types of inputs, demonstrating strong performance in multimodal embeddings even without fine-tuning. We propose a single modality training approach for E5-V, where the model is trained exclusively on text pairs. This method demonstrates significant improvements over traditional multimodal training on image-text pairs, while reducing training costs by approximately 95%. Additionally, this approach eliminates the need for costly multimodal training data collection. Extensive experiments across four types of tasks demonstrate the effectiveness of E5-V. As a universal multimodal model, E5-V not only achieves but often surpasses state-of-the-art performance in each task, despite being trained on a single modality.
Tuning LayerNorm in Attention: Towards Efficient Multi-Modal LLM Finetuning
This paper introduces an efficient strategy to transform Large Language Models (LLMs) into Multi-Modal Large Language Models (MLLMs). By conceptualizing this transformation as a domain adaptation process, i.e., transitioning from text understanding to embracing multiple modalities, we intriguingly note that, within each attention block, tuning LayerNorm suffices to yield strong performance. Moreover, when benchmarked against other tuning approaches like full parameter finetuning or LoRA, its benefits on efficiency are substantial. For example, when compared to LoRA on a 13B model scale, performance can be enhanced by an average of over 20% across five multi-modal tasks, and meanwhile, results in a significant reduction of trainable parameters by 41.9% and a decrease in GPU memory usage by 17.6%. On top of this LayerNorm strategy, we showcase that selectively tuning only with conversational data can improve efficiency further. Beyond these empirical outcomes, we provide a comprehensive analysis to explore the role of LayerNorm in adapting LLMs to the multi-modal domain and improving the expressive power of the model.
Probing Representations Learned by Multimodal Recurrent and Transformer Models
Recent literature shows that large-scale language modeling provides excellent reusable sentence representations with both recurrent and self-attentive architectures. However, there has been less clarity on the commonalities and differences in the representational properties induced by the two architectures. It also has been shown that visual information serves as one of the means for grounding sentence representations. In this paper, we present a meta-study assessing the representational quality of models where the training signal is obtained from different modalities, in particular, language modeling, image features prediction, and both textual and multimodal machine translation. We evaluate textual and visual features of sentence representations obtained using predominant approaches on image retrieval and semantic textual similarity. Our experiments reveal that on moderate-sized datasets, a sentence counterpart in a target language or visual modality provides much stronger training signal for sentence representation than language modeling. Importantly, we observe that while the Transformer models achieve superior machine translation quality, representations from the recurrent neural network based models perform significantly better over tasks focused on semantic relevance.
Mipha: A Comprehensive Overhaul of Multimodal Assistant with Small Language Models
Multimodal Large Language Models (MLLMs) have showcased impressive skills in tasks related to visual understanding and reasoning. Yet, their widespread application faces obstacles due to the high computational demands during both the training and inference phases, restricting their use to a limited audience within the research and user communities. In this paper, we investigate the design aspects of Multimodal Small Language Models (MSLMs) and propose an efficient multimodal assistant named Mipha, which is designed to create synergy among various aspects: visual representation, language models, and optimization strategies. We show that without increasing the volume of training data, our Mipha-3B outperforms the state-of-the-art large MLLMs, especially LLaVA-1.5-13B, on multiple benchmarks. Through detailed discussion, we provide insights and guidelines for developing strong MSLMs that rival the capabilities of MLLMs. Our code is available at https://github.com/zhuyiche/llava-phi.
NoteLLM-2: Multimodal Large Representation Models for Recommendation
Large Language Models (LLMs) have demonstrated exceptional text understanding. Existing works explore their application in text embedding tasks. However, there are few works utilizing LLMs to assist multimodal representation tasks. In this work, we investigate the potential of LLMs to enhance multimodal representation in multimodal item-to-item (I2I) recommendations. One feasible method is the transfer of Multimodal Large Language Models (MLLMs) for representation tasks. However, pre-training MLLMs usually requires collecting high-quality, web-scale multimodal data, resulting in complex training procedures and high costs. This leads the community to rely heavily on open-source MLLMs, hindering customized training for representation scenarios. Therefore, we aim to design an end-to-end training method that customizes the integration of any existing LLMs and vision encoders to construct efficient multimodal representation models. Preliminary experiments show that fine-tuned LLMs in this end-to-end method tend to overlook image content. To overcome this challenge, we propose a novel training framework, NoteLLM-2, specifically designed for multimodal representation. We propose two ways to enhance the focus on visual information. The first method is based on the prompt viewpoint, which separates multimodal content into visual content and textual content. NoteLLM-2 adopts the multimodal In-Content Learning method to teach LLMs to focus on both modalities and aggregate key information. The second method is from the model architecture, utilizing a late fusion mechanism to directly fuse visual information into textual information. Extensive experiments have been conducted to validate the effectiveness of our method.
Large Multimodal Models: Notes on CVPR 2023 Tutorial
This tutorial note summarizes the presentation on ``Large Multimodal Models: Towards Building and Surpassing Multimodal GPT-4'', a part of CVPR 2023 tutorial on ``Recent Advances in Vision Foundation Models''. The tutorial consists of three parts. We first introduce the background on recent GPT-like large models for vision-and-language modeling to motivate the research in instruction-tuned large multimodal models (LMMs). As a pre-requisite, we describe the basics of instruction-tuning in large language models, which is further extended to the multimodal space. Lastly, we illustrate how to build the minimum prototype of multimodal GPT-4 like models with the open-source resource, and review the recently emerged topics.
MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training
In this work, we discuss building performant Multimodal Large Language Models (MLLMs). In particular, we study the importance of various architecture components and data choices. Through careful and comprehensive ablations of the image encoder, the vision language connector, and various pre-training data choices, we identified several crucial design lessons. For example, we demonstrate that for large-scale multimodal pre-training using a careful mix of image-caption, interleaved image-text, and text-only data is crucial for achieving state-of-the-art (SOTA) few-shot results across multiple benchmarks, compared to other published pre-training results. Further, we show that the image encoder together with image resolution and the image token count has substantial impact, while the vision-language connector design is of comparatively negligible importance. By scaling up the presented recipe, we build MM1, a family of multimodal models up to 30B parameters, consisting of both dense models and mixture-of-experts (MoE) variants, that are SOTA in pre-training metrics and achieve competitive performance after supervised fine-tuning on a range of established multimodal benchmarks. Thanks to large-scale pre-training, MM1 enjoys appealing properties such as enhanced in-context learning, and multi-image reasoning, enabling few-shot chain-of-thought prompting.
LEOPARD : A Vision Language Model For Text-Rich Multi-Image Tasks
Text-rich images, where text serves as the central visual element guiding the overall understanding, are prevalent in real-world applications, such as presentation slides, scanned documents, and webpage snapshots. Tasks involving multiple text-rich images are especially challenging, as they require not only understanding the content of individual images but reasoning about inter-relationships and logical flows across multiple visual inputs. Despite the importance of these scenarios, current multimodal large language models (MLLMs) struggle to handle such tasks due to two key challenges: (1) the scarcity of high-quality instruction tuning datasets for text-rich multi-image scenarios, and (2) the difficulty in balancing image resolution with visual feature sequence length. To address these challenges, we propose \OurMethod, a MLLM designed specifically for handling vision-language tasks involving multiple text-rich images. First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios. Second, we developed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length based on the original aspect ratios and resolutions of the input images. Experiments across a wide range of benchmarks demonstrate our model's superior capabilities in text-rich, multi-image evaluations and competitive performance in general domain evaluations.
AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning
Large language models (LLMs) have enabled the creation of multi-modal LLMs that exhibit strong comprehension of visual data such as images and videos. However, these models usually rely on extensive visual tokens from visual encoders, leading to high computational demands, which limits their applicability in resource-constrained environments and for long-context tasks. In this work, we propose a training-free adaptive inference method for multi-modal LLMs that can accommodate a broad range of efficiency requirements with a minimum performance drop. Our method consists of a) iterative token merging based on embedding similarity before LLMs, and b) progressive token pruning within LLM layers based on multi-modal importance. With a minimalist design, our method can be applied to both video and image LLMs. Extensive experiments on diverse video and image benchmarks demonstrate that, our method substantially reduces computation load (e.g., a 7-fold reduction in FLOPs) while preserving the performance of video and image LLMs. Further, under a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding (e.g., +4.6 on MLVU). Additionally, our in-depth analysis provides insights into token redundancy and LLM layer behaviors, offering guidance for future research in designing efficient multi-modal LLMs. Our code will be available at https://github.com/LaVi-Lab/AIM.
A Survey on Mixture of Experts
Large language models (LLMs) have garnered unprecedented advancements across diverse fields, ranging from natural language processing to computer vision and beyond. The prowess of LLMs is underpinned by their substantial model size, extensive and diverse datasets, and the vast computational power harnessed during training, all of which contribute to the emergent abilities of LLMs (e.g., in-context learning) that are not present in small models. Within this context, the mixture of experts (MoE) has emerged as an effective method for substantially scaling up model capacity with minimal computation overhead, gaining significant attention from academia and industry. Despite its growing prevalence, there lacks a systematic and comprehensive review of the literature on MoE. This survey seeks to bridge that gap, serving as an essential resource for researchers delving into the intricacies of MoE. We first briefly introduce the structure of the MoE layer, followed by proposing a new taxonomy of MoE. Next, we overview the core designs for various MoE models including both algorithmic and systemic aspects, alongside collections of available open-source implementations, hyperparameter configurations and empirical evaluations. Furthermore, we delineate the multifaceted applications of MoE in practice, and outline some potential directions for future research. To facilitate ongoing updates and the sharing of cutting-edge developments in MoE research, we have established a resource repository accessible at https://github.com/withinmiaov/A-Survey-on-Mixture-of-Experts.
MLLMs-Augmented Visual-Language Representation Learning
Visual-language pre-training (VLP) has achieved remarkable success in multi-modal tasks, largely attributed to the availability of large-scale image-text datasets. In this work, we demonstrate that multi-modal large language models (MLLMs) can enhance visual-language representation learning by improving data quality. Our approach is simple, utilizing MLLMs to extend multiple captions for each image. To prevent the bias introduced by MLLMs' hallucinations and intrinsic caption styles, we propose "text shearing" to maintain the same length for extended captions as that of the original captions. In image-text retrieval, our method consistently obtains 5.6 ~ 35.0% and 16.8 ~ 46.1% improvement on R@1 under the fine-tuning and zero-shot settings, respectively. Notably, we obtain zero-shot results that are comparable to fine-tuning on target datasets, which encourages more exploration of the versatile use of MLLMs.
Efficient Multimodal Learning from Data-centric Perspective
Multimodal Large Language Models (MLLMs) have demonstrated notable capabilities in general visual understanding and reasoning tasks. However, their deployment is hindered by substantial computational costs in both training and inference, limiting accessibility to the broader research and user communities. A straightforward solution is to leverage smaller pre-trained vision and language models, which inevitably causes significant performance drop. In this paper, we demonstrate the possibility to beat the scaling law and train a smaller but better MLLM by exploring more informative training data. Specifically, we introduce Bunny, a family of lightweight MLLMs with flexible vision and language backbones for efficient multimodal learning from condensed training data. Remarkably, our Bunny-3B outperforms the state-of-the-art large MLLMs, especially LLaVA-v1.5-13B, on multiple benchmarks. The code, models and data can be found in https://github.com/BAAI-DCAI/Bunny.
A Comprehensive Overview of Large Language Models
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks and beyond. This success of LLMs has led to a large influx of research contributions in this direction. These works encompass diverse topics such as architectural innovations of the underlying neural networks, context length improvements, model alignment, training datasets, benchmarking, efficiency and more. With the rapid development of techniques and regular breakthroughs in LLM research, it has become considerably challenging to perceive the bigger picture of the advances in this direction. Considering the rapidly emerging plethora of literature on LLMs, it is imperative that the research community is able to benefit from a concise yet comprehensive overview of the recent developments in this field. This article provides that overview to the research community. It not only focuses on a systematic treatment of the existing literature on a broad range of LLM related concept, but also pays special attention to providing comprehensive summaries with extensive details about the individual existing models, datasets and major insights. We also pay heed to aligning our overview with the emerging outlook of this research direction by accounting for the other recently materializing reviews of the broader research direction of LLMs. Our self-contained comprehensive overview of LLMs discusses relevant background concepts along with covering the advanced topics at the frontier of this research direction. This review article is intended to not only provide a systematic survey, but also a quick comprehensive reference for the researchers and practitioners to draw insights from extensive informative summaries of the existing works to advance the LLM research direction.
SPHINX-X: Scaling Data and Parameters for a Family of Multi-modal Large Language Models
We propose SPHINX-X, an extensive Multimodality Large Language Model (MLLM) series developed upon SPHINX. To improve the architecture and training efficiency, we modify the SPHINX framework by removing redundant visual encoders, bypassing fully-padded sub-images with skip tokens, and simplifying multi-stage training into a one-stage all-in-one paradigm. To fully unleash the potential of MLLMs, we assemble a comprehensive multi-domain and multimodal dataset covering publicly available resources in language, vision, and vision-language tasks. We further enrich this collection with our curated OCR intensive and Set-of-Mark datasets, extending the diversity and generality. By training over different base LLMs including TinyLlama1.1B, InternLM2-7B, LLaMA2-13B, and Mixtral8x7B, we obtain a spectrum of MLLMs that vary in parameter size and multilingual capabilities. Comprehensive benchmarking reveals a strong correlation between the multi-modal performance with the data and parameter scales. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
Multimodal Large Language Models for Text-rich Image Understanding: A Comprehensive Review
The recent emergence of Multi-modal Large Language Models (MLLMs) has introduced a new dimension to the Text-rich Image Understanding (TIU) field, with models demonstrating impressive and inspiring performance. However, their rapid evolution and widespread adoption have made it increasingly challenging to keep up with the latest advancements. To address this, we present a systematic and comprehensive survey to facilitate further research on TIU MLLMs. Initially, we outline the timeline, architecture, and pipeline of nearly all TIU MLLMs. Then, we review the performance of selected models on mainstream benchmarks. Finally, we explore promising directions, challenges, and limitations within the field.
UniDoc: A Universal Large Multimodal Model for Simultaneous Text Detection, Recognition, Spotting and Understanding
In the era of Large Language Models (LLMs), tremendous strides have been made in the field of multimodal understanding. However, existing advanced algorithms are limited to effectively utilizing the immense representation capabilities and rich world knowledge inherent to these large pre-trained models, and the beneficial connections among tasks within the context of text-rich scenarios have not been sufficiently explored. In this work, we introduce UniDoc, a novel multimodal model equipped with text detection and recognition capabilities, which are deficient in existing approaches. Moreover, UniDoc capitalizes on the beneficial interactions among tasks to enhance the performance of each individual task. To implement UniDoc, we perform unified multimodal instruct tuning on the contributed large-scale instruction following datasets. Quantitative and qualitative experimental results show that UniDoc sets state-of-the-art scores across multiple challenging benchmarks. To the best of our knowledge, this is the first large multimodal model capable of simultaneous text detection, recognition, spotting, and understanding.
ModaVerse: Efficiently Transforming Modalities with LLMs
Humans possess the capability to comprehend diverse modalities and seamlessly transfer information between them. In this work, we introduce ModaVerse, a Multi-modal Large Language Model (MLLM) capable of comprehending and transforming content across various modalities including images, videos, and audio. Predominant MLLM frameworks have largely relied on the alignment of latent spaces of textual and non-textual features. This alignment process, which synchronizes a language model trained on textual data with encoders and decoders trained on multi-modal data, often necessitates extensive training of several projection layers in multiple stages. Inspired by LLM-as-agent methodologies, we propose a novel Input/Output (I/O) alignment mechanism that operates directly at the level of natural language. It aligns the LLM's output with the input of generative models, avoiding the complexities associated with latent feature alignments, and simplifying the multiple training stages of existing MLLMs into a single, efficient process. This conceptual advancement leads to significant reductions in both data and computational costs. By conducting experiments on several benchmarks, we demonstrate that our approach attains comparable performance with the state of the art while achieving considerable efficiencies in data usage and training duration.
MM1.5: Methods, Analysis & Insights from Multimodal LLM Fine-tuning
We present MM1.5, a new family of multimodal large language models (MLLMs) designed to enhance capabilities in text-rich image understanding, visual referring and grounding, and multi-image reasoning. Building upon the MM1 architecture, MM1.5 adopts a data-centric approach to model training, systematically exploring the impact of diverse data mixtures across the entire model training lifecycle. This includes high-quality OCR data and synthetic captions for continual pre-training, as well as an optimized visual instruction-tuning data mixture for supervised fine-tuning. Our models range from 1B to 30B parameters, encompassing both dense and mixture-of-experts (MoE) variants, and demonstrate that careful data curation and training strategies can yield strong performance even at small scales (1B and 3B). Additionally, we introduce two specialized variants: MM1.5-Video, designed for video understanding, and MM1.5-UI, tailored for mobile UI understanding. Through extensive empirical studies and ablations, we provide detailed insights into the training processes and decisions that inform our final designs, offering valuable guidance for future research in MLLM development.
A Survey on Benchmarks of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) are gaining increasing popularity in both academia and industry due to their remarkable performance in various applications such as visual question answering, visual perception, understanding, and reasoning. Over the past few years, significant efforts have been made to examine MLLMs from multiple perspectives. This paper presents a comprehensive review of 180 benchmarks and evaluation for MLLMs, focusing on (1)perception and understanding, (2)cognition and reasoning, (3)specific domains, (4)key capabilities, and (5)other modalities. Finally, we discuss the limitations of the current evaluation methods for MLLMs and explore promising future directions. Our key argument is that evaluation should be regarded as a crucial discipline to better support the development of MLLMs. For more details, please visit our GitHub repository: https://github.com/swordlidev/Evaluation-Multimodal-LLMs-Survey.
LLMs are Also Effective Embedding Models: An In-depth Overview
Large language models (LLMs) have revolutionized natural language processing by achieving state-of-the-art performance across various tasks. Recently, their effectiveness as embedding models has gained attention, marking a paradigm shift from traditional encoder-only models like ELMo and BERT to decoder-only, large-scale LLMs such as GPT, LLaMA, and Mistral. This survey provides an in-depth overview of this transition, beginning with foundational techniques before the LLM era, followed by LLM-based embedding models through two main strategies to derive embeddings from LLMs. 1) Direct prompting: We mainly discuss the prompt designs and the underlying rationale for deriving competitive embeddings. 2) Data-centric tuning: We cover extensive aspects that affect tuning an embedding model, including model architecture, training objectives, data constructions, etc. Upon the above, we also cover advanced methods, such as handling longer texts, and multilingual and cross-modal data. Furthermore, we discuss factors affecting choices of embedding models, such as performance/efficiency comparisons, dense vs sparse embeddings, pooling strategies, and scaling law. Lastly, the survey highlights the limitations and challenges in adapting LLMs for embeddings, including cross-task embedding quality, trade-offs between efficiency and accuracy, low-resource, long-context, data bias, robustness, etc. This survey serves as a valuable resource for researchers and practitioners by synthesizing current advancements, highlighting key challenges, and offering a comprehensive framework for future work aimed at enhancing the effectiveness and efficiency of LLMs as embedding models.
LaVy: Vietnamese Multimodal Large Language Model
Large Language Models (LLMs) and Multimodal Large language models (MLLMs) have taken the world by storm with impressive abilities in complex reasoning and linguistic comprehension. Meanwhile there are plethora of works related to Vietnamese Large Language Models, the lack of high-quality resources in multimodality limits the progress of Vietnamese MLLMs. In this paper, we pioneer in address this by introducing LaVy, a state-of-the-art Vietnamese MLLM, and we also introduce LaVy-Bench benchmark designated for evaluating MLLMs's understanding on Vietnamese visual language tasks. Our project is public at https://github.com/baochi0212/LaVy
Speech-MASSIVE: A Multilingual Speech Dataset for SLU and Beyond
We present Speech-MASSIVE, a multilingual Spoken Language Understanding (SLU) dataset comprising the speech counterpart for a portion of the MASSIVE textual corpus. Speech-MASSIVE covers 12 languages from different families and inherits from MASSIVE the annotations for the intent prediction and slot-filling tasks. Our extension is prompted by the scarcity of massively multilingual SLU datasets and the growing need for versatile speech datasets to assess foundation models (LLMs, speech encoders) across languages and tasks. We provide a multimodal, multitask, multilingual dataset and report SLU baselines using both cascaded and end-to-end architectures in various training scenarios (zero-shot, few-shot, and full fine-tune). Furthermore, we demonstrate the suitability of Speech-MASSIVE for benchmarking other tasks such as speech transcription, language identification, and speech translation. The dataset, models, and code are publicly available at: https://github.com/hlt-mt/Speech-MASSIVE
REF-VLM: Triplet-Based Referring Paradigm for Unified Visual Decoding
Multimodal Large Language Models (MLLMs) demonstrate robust zero-shot capabilities across diverse vision-language tasks after training on mega-scale datasets. However, dense prediction tasks, such as semantic segmentation and keypoint detection, pose significant challenges for MLLMs when represented solely as text outputs. Simultaneously, current MLLMs utilizing latent embeddings for visual task decoding generally demonstrate limited adaptability to both multi-task learning and multi-granularity scenarios. In this work, we present REF-VLM, an end-to-end framework for unified training of various visual decoding tasks. To address complex visual decoding scenarios, we introduce the Triplet-Based Referring Paradigm (TRP), which explicitly decouples three critical dimensions in visual decoding tasks through a triplet structure: concepts, decoding types, and targets. TRP employs symbolic delimiters to enforce structured representation learning, enhancing the parsability and interpretability of model outputs. Additionally, we construct Visual-Task Instruction Following Dataset (VTInstruct), a large-scale multi-task dataset containing over 100 million multimodal dialogue samples across 25 task types. Beyond text inputs and outputs, VT-Instruct incorporates various visual prompts such as point, box, scribble, and mask, and generates outputs composed of text and visual units like box, keypoint, depth and mask. The combination of different visual prompts and visual units generates a wide variety of task types, expanding the applicability of REF-VLM significantly. Both qualitative and quantitative experiments demonstrate that our REF-VLM outperforms other MLLMs across a variety of standard benchmarks. The code, dataset, and demo available at https://github.com/MacavityT/REF-VLM.
Multi-modal Auto-regressive Modeling via Visual Words
Large Language Models (LLMs), benefiting from the auto-regressive modelling approach performed on massive unannotated texts corpora, demonstrates powerful perceptual and reasoning capabilities. However, as for extending auto-regressive modelling to multi-modal scenarios to build Large Multi-modal Models (LMMs), there lies a great difficulty that the image information is processed in the LMM as continuous visual embeddings, which cannot obtain discrete supervised labels for classification. In this paper, we successfully perform multi-modal auto-regressive modeling with a unified objective for the first time. Specifically, we propose the concept of visual words, which maps the visual features to probability distributions over LLM's vocabulary, providing supervision information for visual modelling. We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information. Experimental results and ablation studies on 5 VQA tasks and 4 benchmark toolkits validate the powerful performance of our proposed approach.
Ask in Any Modality: A Comprehensive Survey on Multimodal Retrieval-Augmented Generation
Large Language Models (LLMs) struggle with hallucinations and outdated knowledge due to their reliance on static training data. Retrieval-Augmented Generation (RAG) mitigates these issues by integrating external dynamic information enhancing factual and updated grounding. Recent advances in multimodal learning have led to the development of Multimodal RAG, incorporating multiple modalities such as text, images, audio, and video to enhance the generated outputs. However, cross-modal alignment and reasoning introduce unique challenges to Multimodal RAG, distinguishing it from traditional unimodal RAG. This survey offers a structured and comprehensive analysis of Multimodal RAG systems, covering datasets, metrics, benchmarks, evaluation, methodologies, and innovations in retrieval, fusion, augmentation, and generation. We precisely review training strategies, robustness enhancements, and loss functions, while also exploring the diverse Multimodal RAG scenarios. Furthermore, we discuss open challenges and future research directions to support advancements in this evolving field. This survey lays the foundation for developing more capable and reliable AI systems that effectively leverage multimodal dynamic external knowledge bases. Resources are available at https://github.com/llm-lab-org/Multimodal-RAG-Survey.
LlamaFusion: Adapting Pretrained Language Models for Multimodal Generation
We present LlamaFusion, a framework for empowering pretrained text-only large language models (LLMs) with multimodal generative capabilities, enabling them to understand and generate both text and images in arbitrary sequences. LlamaFusion leverages existing Llama-3's weights for processing texts autoregressively while introducing additional and parallel transformer modules for processing images with diffusion. During training, the data from each modality is routed to its dedicated modules: modality-specific feedforward layers, query-key-value projections, and normalization layers process each modality independently, while the shared self-attention layers allow interactions across text and image features. By freezing the text-specific modules and only training the image-specific modules, LlamaFusion preserves the language capabilities of text-only LLMs while developing strong visual understanding and generation abilities. Compared to methods that pretrain multimodal generative models from scratch, our experiments demonstrate that, LlamaFusion improves image understanding by 20% and image generation by 3.6% using only 50% of the FLOPs while maintaining Llama-3's language capabilities. We also demonstrate that this framework can adapt existing vision-language models with multimodal generation ability. Overall, this framework not only leverages existing computational investments in text-only LLMs but also enables the parallel development of language and vision capabilities, presenting a promising direction for efficient multimodal model development.
MMTEB: Massive Multilingual Text Embedding Benchmark
Text embeddings are typically evaluated on a limited set of tasks, which are constrained by language, domain, and task diversity. To address these limitations and provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) - a large-scale, community-driven expansion of MTEB, covering over 500 quality-controlled evaluation tasks across 250+ languages. MMTEB includes a diverse set of challenging, novel tasks such as instruction following, long-document retrieval, and code retrieval, representing the largest multilingual collection of evaluation tasks for embedding models to date. Using this collection, we develop several highly multilingual benchmarks, which we use to evaluate a representative set of models. We find that while large language models (LLMs) with billions of parameters can achieve state-of-the-art performance on certain language subsets and task categories, the best-performing publicly available model is multilingual-e5-large-instruct with only 560 million parameters. To facilitate accessibility and reduce computational cost, we introduce a novel downsampling method based on inter-task correlation, ensuring a diverse selection while preserving relative model rankings. Furthermore, we optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks that drastically reduce computational demands. For instance, our newly introduced zero-shot English benchmark maintains a ranking order similar to the full-scale version but at a fraction of the computational cost.
A Concept-Based Explainability Framework for Large Multimodal Models
Large multimodal models (LMMs) combine unimodal encoders and large language models (LLMs) to perform multimodal tasks. Despite recent advancements towards the interpretability of these models, understanding internal representations of LMMs remains largely a mystery. In this paper, we present a novel framework for the interpretation of LMMs. We propose a dictionary learning based approach, applied to the representation of tokens. The elements of the learned dictionary correspond to our proposed concepts. We show that these concepts are well semantically grounded in both vision and text. Thus we refer to these as ``multi-modal concepts''. We qualitatively and quantitatively evaluate the results of the learnt concepts. We show that the extracted multimodal concepts are useful to interpret representations of test samples. Finally, we evaluate the disentanglement between different concepts and the quality of grounding concepts visually and textually. Our code is publicly available at https://github.com/mshukor/xl-vlms
VL-Mamba: Exploring State Space Models for Multimodal Learning
Multimodal large language models (MLLMs) have attracted widespread interest and have rich applications. However, the inherent attention mechanism in its Transformer structure requires quadratic complexity and results in expensive computational overhead. Therefore, in this work, we propose VL-Mamba, a multimodal large language model based on state space models, which have been shown to have great potential for long-sequence modeling with fast inference and linear scaling in sequence length. Specifically, we first replace the transformer-based backbone language model such as LLama or Vicuna with the pre-trained Mamba language model. Then, we empirically explore how to effectively apply the 2D vision selective scan mechanism for multimodal learning and the combinations of different vision encoders and variants of pretrained Mamba language models. The extensive experiments on diverse multimodal benchmarks with competitive performance show the effectiveness of our proposed VL-Mamba and demonstrate the great potential of applying state space models for multimodal learning tasks.
Multilingual Sentence-T5: Scalable Sentence Encoders for Multilingual Applications
Prior work on multilingual sentence embedding has demonstrated that the efficient use of natural language inference (NLI) data to build high-performance models can outperform conventional methods. However, the potential benefits from the recent ``exponential'' growth of language models with billions of parameters have not yet been fully explored. In this paper, we introduce Multilingual Sentence T5 (m-ST5), as a larger model of NLI-based multilingual sentence embedding, by extending Sentence T5, an existing monolingual model. By employing the low-rank adaptation (LoRA) technique, we have achieved a successful scaling of the model's size to 5.7 billion parameters. We conducted experiments to evaluate the performance of sentence embedding and verified that the method outperforms the NLI-based prior approach. Furthermore, we also have confirmed a positive correlation between the size of the model and its performance. It was particularly noteworthy that languages with fewer resources or those with less linguistic similarity to English benefited more from the parameter increase. Our model is available at https://huggingface.co/pkshatech/m-ST5.
ULLME: A Unified Framework for Large Language Model Embeddings with Generation-Augmented Learning
Large Language Models (LLMs) excel in various natural language processing tasks, but leveraging them for dense passage embedding remains challenging. This is due to their causal attention mechanism and the misalignment between their pre-training objectives and the text ranking tasks. Despite some recent efforts to address these issues, existing frameworks for LLM-based text embeddings have been limited by their support for only a limited range of LLM architectures and fine-tuning strategies, limiting their practical application and versatility. In this work, we introduce the Unified framework for Large Language Model Embedding (ULLME), a flexible, plug-and-play implementation that enables bidirectional attention across various LLMs and supports a range of fine-tuning strategies. We also propose Generation-augmented Representation Learning (GRL), a novel fine-tuning method to boost LLMs for text embedding tasks. GRL enforces consistency between representation-based and generation-based relevance scores, leveraging LLMs' powerful generative abilities for learning passage embeddings. To showcase our framework's flexibility and effectiveness, we release three pre-trained models from ULLME with different backbone architectures, ranging from 1.5B to 8B parameters, all of which demonstrate strong performance on the Massive Text Embedding Benchmark. Our framework is publicly available at: https://github.com/nlp-uoregon/ullme. A demo video for ULLME can also be found at https://rb.gy/ws1ile.
Modality Plug-and-Play: Elastic Modality Adaptation in Multimodal LLMs for Embodied AI
Large Language Models (LLMs) are capable of reasoning over diverse input data modalities through pre-trained encoders. However, the growing diversity of input data modalities prevents incorporating all modalities into LLMs, especially when LLMs are deployed on resource-constrained edge devices for embodied AI applications. Instead, a better option is to adaptively involve only the useful modalities at runtime, depending on the current environmental contexts and task requirements. For such modality adaptation, existing work adopts fixed connections between encoders and the LLM's input layer, leading to high training cost at runtime and ineffective cross-modal interaction. In this paper, we address these limitations by presenting mPnP-LLM, a new technique that allows fully elastic, automated and prompt runtime modality adaptation, by connecting unimodal encoders to a flexible set of last LLM blocks and making such latent connections fully trainable at runtime. Experiments over the nuScenes-QA dataset show that mPnP-LLM can achieve up to 3.7x FLOPs reduction and 30% GPU memory usage reduction, while retaining on-par accuracy with the existing schemes. Under the same compute budget, mPnP-LLM improves the task accuracy by up to 4% compared to the best existing scheme.
LLaVaOLMoBitnet1B: Ternary LLM goes Multimodal!
Multimodal Large Language Models (MM-LLMs) have seen significant advancements in the last year, demonstrating impressive performance across tasks. However, to truly democratize AI, models must exhibit strong capabilities and be able to run efficiently on small compute footprints accessible by most. Part of this quest, we introduce LLaVaOLMoBitnet1B - the first Ternary Multimodal LLM capable of accepting Image(s)+Text inputs to produce coherent textual responses. The model is fully open-sourced along with training scripts to encourage further research in this space. This accompanying technical report highlights the training process, evaluation details, challenges associated with ternary models and future opportunities. Link to the model: https://huggingface.co/IntelLabs/LlavaOLMoBitnet1B
MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs
State-of-the-art retrieval models typically address a straightforward search scenario, where retrieval tasks are fixed (e.g., finding a passage to answer a specific question) and only a single modality is supported for both queries and retrieved results. This paper introduces techniques for advancing information retrieval with multimodal large language models (MLLMs), enabling a broader search scenario, termed universal multimodal retrieval, where multiple modalities and diverse retrieval tasks are accommodated. To this end, we first study fine-tuning an MLLM as a bi-encoder retriever on 10 datasets with 16 retrieval tasks. Our empirical results show that the fine-tuned MLLM retriever is capable of understanding challenging queries, composed of both text and image, but underperforms a smaller CLIP retriever in cross-modal retrieval tasks due to modality bias from MLLMs. To address the issue, we propose modality-aware hard negative mining to mitigate the modality bias exhibited by MLLM retrievers. Second, we propose to continually fine-tune the universal multimodal retriever to enhance its text retrieval capability while maintaining multimodal retrieval capability. As a result, our model, MM-Embed, achieves state-of-the-art performance on the multimodal retrieval benchmark M-BEIR, which spans multiple domains and tasks, while also surpassing the state-of-the-art text retrieval model, NV-Embed-v1, on MTEB retrieval benchmark. Finally, we explore to prompt the off-the-shelf MLLMs as the zero-shot rerankers to refine the ranking of the candidates from the multimodal retriever. We find that through prompt-and-reranking, MLLMs can further improve multimodal retrieval when the user queries (e.g., text-image composed queries) are more complex and challenging to understand. These findings also pave the way to advance universal multimodal retrieval in the future.
Incorporating Visual Experts to Resolve the Information Loss in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) are experiencing rapid growth, yielding a plethora of noteworthy contributions in recent months. The prevailing trend involves adopting data-driven methodologies, wherein diverse instruction-following datasets are collected. However, a prevailing challenge persists in these approaches, specifically in relation to the limited visual perception ability, as CLIP-like encoders employed for extracting visual information from inputs. Though these encoders are pre-trained on billions of image-text pairs, they still grapple with the information loss dilemma, given that textual captions only partially capture the contents depicted in images. To address this limitation, this paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism. Specifically, we introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline, aiming to provide a more comprehensive and accurate summarization of visual inputs. Extensive experiments have evaluated its effectiveness of advancing MLLMs, showcasing improved visual perception achieved through the integration of visual experts.
ML-Mamba: Efficient Multi-Modal Large Language Model Utilizing Mamba-2
Multimodal Large Language Models (MLLMs) have attracted much attention due to their multifunctionality. However, traditional Transformer architectures incur significant overhead due to their secondary computational complexity. To address this issue, we introduce ML-Mamba, a multimodal language model that utilizes the latest and efficient Mamba-2 model for inference. Mamba-2 is known for its linear extension and fast processing of long sequences. We replace the Transformer based backbone with a pre-trained Mamba-2 model and explore methods for integrating 2D visual selective scanning mechanisms into multimodal learning. We also try various visual encoders and Mamba-2 model variants. Our extensive experiments conducted in various multimodal benchmark tests have demonstrated the competitive performance of ML-Mamba and highlighted the potential of state space models in multimodal tasks. The experimental results show that: (1) ML-Mamba achieves performance comparable to state-of-the-art methods such as TinyLaVA and MobileVLM v2 through its linear sequential modeling, while also having faster inference speed; (2) ML-Mamba performs well in visual hallucinations and spatial relationship judgment in closed set benchmark tests; (3) ML-Mamba achieves performance comparable to LLaVA while reducing the number of parameters by 40\%.(4) Compared to the multimodal model using the original Mamba model, the Mamba-2 based large-scale multimodal language model has stronger inference performance and effectiveness.
VITA-1.5: Towards GPT-4o Level Real-Time Vision and Speech Interaction
Recent Multimodal Large Language Models (MLLMs) have typically focused on integrating visual and textual modalities, with less emphasis placed on the role of speech in enhancing interaction. However, speech plays a crucial role in multimodal dialogue systems, and implementing high-performance in both vision and speech tasks remains a significant challenge due to the fundamental modality differences. In this paper, we propose a carefully designed multi-stage training methodology that progressively trains LLM to understand both visual and speech information, ultimately enabling fluent vision and speech interaction. Our approach not only preserves strong vision-language capacity, but also enables efficient speech-to-speech dialogue capabilities without separate ASR and TTS modules, significantly accelerating multimodal end-to-end response speed. By comparing our method against state-of-the-art counterparts across benchmarks for image, video, and speech tasks, we demonstrate that our model is equipped with both strong visual and speech capabilities, making near real-time vision and speech interaction.
Reformulating Vision-Language Foundation Models and Datasets Towards Universal Multimodal Assistants
Recent Multimodal Large Language Models (MLLMs) exhibit impressive abilities to perceive images and follow open-ended instructions. The capabilities of MLLMs depend on two crucial factors: the model architecture to facilitate the feature alignment of visual modules and large language models; the multimodal instruction tuning datasets for human instruction following. (i) For the model architecture, most existing models introduce an external bridge module to connect vision encoders with language models, which needs an additional feature-alignment pre-training. In this work, we discover that compact pre-trained vision language models can inherently serve as ``out-of-the-box'' bridges between vision and language. Based on this, we propose Muffin framework, which directly employs pre-trained vision-language models to act as providers of visual signals. (ii) For the multimodal instruction tuning datasets, existing methods omit the complementary relationship between different datasets and simply mix datasets from different tasks. Instead, we propose UniMM-Chat dataset which explores the complementarities of datasets to generate 1.1M high-quality and diverse multimodal instructions. We merge information describing the same image from diverse datasets and transforms it into more knowledge-intensive conversation data. Experimental results demonstrate the effectiveness of the Muffin framework and UniMM-Chat dataset. Muffin achieves state-of-the-art performance on a wide range of vision-language tasks, significantly surpassing state-of-the-art models like LLaVA and InstructBLIP. Our model and dataset are all accessible at https://github.com/thunlp/muffin.
Multimodal Needle in a Haystack: Benchmarking Long-Context Capability of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have shown significant promise in various applications, leading to broad interest from researchers and practitioners alike. However, a comprehensive evaluation of their long-context capabilities remains underexplored. To address these gaps, we introduce the MultiModal Needle-in-a-haystack (MMNeedle) benchmark, specifically designed to assess the long-context capabilities of MLLMs. Besides multi-image input, we employ image stitching to further increase the input context length, and develop a protocol to automatically generate labels for sub-image level retrieval. Essentially, MMNeedle evaluates MLLMs by stress-testing their capability to locate a target sub-image (needle) within a set of images (haystack) based on textual instructions and descriptions of image contents. This setup necessitates an advanced understanding of extensive visual contexts and effective information retrieval within long-context image inputs. With this benchmark, we evaluate state-of-the-art MLLMs, encompassing both API-based and open-source models. The findings reveal that GPT-4o consistently surpasses other models in long-context scenarios, but suffers from hallucination problems in negative samples, i.e., when needles are not in the haystacks. Our comprehensive long-context evaluation of MLLMs also sheds lights on the considerable performance gap between API-based and open-source models. All the code, data, and instructions required to reproduce the main results are available at https://github.com/Wang-ML-Lab/multimodal-needle-in-a-haystack.
ILLUME: Illuminating Your LLMs to See, Draw, and Self-Enhance
In this paper, we introduce ILLUME, a unified multimodal large language model (MLLM) that seamlessly integrates multimodal understanding and generation capabilities within a single large language model through a unified next-token prediction formulation. To address the large dataset size typically required for image-text alignment, we propose to enhance data efficiency through the design of a vision tokenizer that incorporates semantic information and a progressive multi-stage training procedure. This approach reduces the dataset size to just 15M for pretraining -- over four times fewer than what is typically needed -- while achieving competitive or even superior performance with existing unified MLLMs, such as Janus. Additionally, to promote synergistic enhancement between understanding and generation capabilities, which is under-explored in previous works, we introduce a novel self-enhancing multimodal alignment scheme. This scheme supervises the MLLM to self-assess the consistency between text descriptions and self-generated images, facilitating the model to interpret images more accurately and avoid unrealistic and incorrect predictions caused by misalignment in image generation. Based on extensive experiments, our proposed ILLUME stands out and competes with state-of-the-art unified MLLMs and specialized models across various benchmarks for multimodal understanding, generation, and editing.
Large Language Models: A Survey
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks, since the release of ChatGPT in November 2022. LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data, as predicted by scaling laws kaplan2020scaling,hoffmann2022training. The research area of LLMs, while very recent, is evolving rapidly in many different ways. In this paper, we review some of the most prominent LLMs, including three popular LLM families (GPT, LLaMA, PaLM), and discuss their characteristics, contributions and limitations. We also give an overview of techniques developed to build, and augment LLMs. We then survey popular datasets prepared for LLM training, fine-tuning, and evaluation, review widely used LLM evaluation metrics, and compare the performance of several popular LLMs on a set of representative benchmarks. Finally, we conclude the paper by discussing open challenges and future research directions.
Can MLLMs Perform Text-to-Image In-Context Learning?
The evolution from Large Language Models (LLMs) to Multimodal Large Language Models (MLLMs) has spurred research into extending In-Context Learning (ICL) to its multimodal counterpart. Existing such studies have primarily concentrated on image-to-text ICL. However, the Text-to-Image ICL (T2I-ICL), with its unique characteristics and potential applications, remains underexplored. To address this gap, we formally define the task of T2I-ICL and present CoBSAT, the first T2I-ICL benchmark dataset, encompassing ten tasks. Utilizing our dataset to benchmark six state-of-the-art MLLMs, we uncover considerable difficulties MLLMs encounter in solving T2I-ICL. We identify the primary challenges as the inherent complexity of multimodality and image generation. To overcome these challenges, we explore strategies like fine-tuning and Chain-of-Thought prompting, demonstrating notable improvements. Our code and dataset are available at https://github.com/UW-Madison-Lee-Lab/CoBSAT.
Language Models Can See Better: Visual Contrastive Decoding For LLM Multimodal Reasoning
Although Large Language Models (LLMs) excel in reasoning and generation for language tasks, they are not specifically designed for multimodal challenges. Training Multimodal Large Language Models (MLLMs), however, is resource-intensive and constrained by various training limitations. In this paper, we propose the Modular-based Visual Contrastive Decoding (MVCD) framework to move this obstacle. Our framework leverages LLMs' In-Context Learning (ICL) capability and the proposed visual contrastive-example decoding (CED), specifically tailored for this framework, without requiring any additional training. By converting visual signals into text and focusing on contrastive output distributions during decoding, we can highlight the new information introduced by contextual examples, explore their connections, and avoid over-reliance on prior encoded knowledge. MVCD enhances LLMs' visual perception to make it see and reason over the input visuals. To demonstrate MVCD's effectiveness, we conduct experiments with four LLMs across five question answering datasets. Our results not only show consistent improvement in model accuracy but well explain the effective components inside our decoding strategy. Our code will be available at https://github.com/Pbhgit/MVCD.
SPHINX: The Joint Mixing of Weights, Tasks, and Visual Embeddings for Multi-modal Large Language Models
We present SPHINX, a versatile multi-modal large language model (MLLM) with a joint mixing of model weights, tuning tasks, and visual embeddings. First, for stronger vision-language alignment, we unfreeze the large language model (LLM) during pre-training, and introduce a weight mix strategy between LLMs trained by real-world and synthetic data. By directly integrating the weights from two domains, the mixed LLM can efficiently incorporate diverse semantics with favorable robustness. Then, to enable multi-purpose capabilities, we mix a variety of tasks for joint visual instruction tuning, and design task-specific instructions to avoid inter-task conflict. In addition to the basic visual question answering, we include more challenging tasks such as region-level understanding, caption grounding, document layout detection, and human pose estimation, contributing to mutual enhancement over different scenarios. Additionally, we propose to extract comprehensive visual embeddings from various network architectures, pre-training paradigms, and information granularity, providing language models with more robust image representations. Based on our proposed joint mixing, SPHINX exhibits superior multi-modal understanding capabilities on a wide range of applications. On top of this, we further propose an efficient strategy aiming to better capture fine-grained appearances of high-resolution images. With a mixing of different scales and high-resolution sub-images, SPHINX attains exceptional visual parsing and reasoning performance on existing evaluation benchmarks. We hope our work may cast a light on the exploration of joint mixing in future MLLM research. Code is released at https://github.com/Alpha-VLLM/LLaMA2-Accessory.
Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions
The advent of Large Language Models (LLMs) has significantly reshaped the trajectory of the AI revolution. Nevertheless, these LLMs exhibit a notable limitation, as they are primarily adept at processing textual information. To address this constraint, researchers have endeavored to integrate visual capabilities with LLMs, resulting in the emergence of Vision-Language Models (VLMs). These advanced models are instrumental in tackling more intricate tasks such as image captioning and visual question answering. In our comprehensive survey paper, we delve into the key advancements within the realm of VLMs. Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.This classification is based on their respective capabilities and functionalities in processing and generating various modalities of data.We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible, providing readers with a comprehensive understanding of its essential components. We also analyzed the performance of VLMs in various benchmark datasets. By doing so, we aim to offer a nuanced understanding of the diverse landscape of VLMs. Additionally, we underscore potential avenues for future research in this dynamic domain, anticipating further breakthroughs and advancements.
A Survey on Efficient Inference for Large Language Models
Large Language Models (LLMs) have attracted extensive attention due to their remarkable performance across various tasks. However, the substantial computational and memory requirements of LLM inference pose challenges for deployment in resource-constrained scenarios. Efforts within the field have been directed towards developing techniques aimed at enhancing the efficiency of LLM inference. This paper presents a comprehensive survey of the existing literature on efficient LLM inference. We start by analyzing the primary causes of the inefficient LLM inference, i.e., the large model size, the quadratic-complexity attention operation, and the auto-regressive decoding approach. Then, we introduce a comprehensive taxonomy that organizes the current literature into data-level, model-level, and system-level optimization. Moreover, the paper includes comparative experiments on representative methods within critical sub-fields to provide quantitative insights. Last but not least, we provide some knowledge summary and discuss future research directions.
MciteBench: A Benchmark for Multimodal Citation Text Generation in MLLMs
Multimodal Large Language Models (MLLMs) have advanced in integrating diverse modalities but frequently suffer from hallucination. A promising solution to mitigate this issue is to generate text with citations, providing a transparent chain for verification. However, existing work primarily focuses on generating citations for text-only content, overlooking the challenges and opportunities of multimodal contexts. To address this gap, we introduce MCiteBench, the first benchmark designed to evaluate and analyze the multimodal citation text generation ability of MLLMs. Our benchmark comprises data derived from academic papers and review-rebuttal interactions, featuring diverse information sources and multimodal content. We comprehensively evaluate models from multiple dimensions, including citation quality, source reliability, and answer accuracy. Through extensive experiments, we observe that MLLMs struggle with multimodal citation text generation. We also conduct deep analyses of models' performance, revealing that the bottleneck lies in attributing the correct sources rather than understanding the multimodal content.
What matters when building vision-language models?
The growing interest in vision-language models (VLMs) has been driven by improvements in large language models and vision transformers. Despite the abundance of literature on this subject, we observe that critical decisions regarding the design of VLMs are often not justified. We argue that these unsupported decisions impede progress in the field by making it difficult to identify which choices improve model performance. To address this issue, we conduct extensive experiments around pre-trained models, architecture choice, data, and training methods. Our consolidation of findings includes the development of Idefics2, an efficient foundational VLM of 8 billion parameters. Idefics2 achieves state-of-the-art performance within its size category across various multimodal benchmarks, and is often on par with models four times its size. We release the model (base, instructed, and chat) along with the datasets created for its training.
End-to-End Speech Recognition Contextualization with Large Language Models
In recent years, Large Language Models (LLMs) have garnered significant attention from the research community due to their exceptional performance and generalization capabilities. In this paper, we introduce a novel method for contextualizing speech recognition models incorporating LLMs. Our approach casts speech recognition as a mixed-modal language modeling task based on a pretrained LLM. We provide audio features, along with optional text tokens for context, to train the system to complete transcriptions in a decoder-only fashion. As a result, the system is implicitly incentivized to learn how to leverage unstructured contextual information during training. Our empirical results demonstrate a significant improvement in performance, with a 6% WER reduction when additional textual context is provided. Moreover, we find that our method performs competitively and improve by 7.5% WER overall and 17% WER on rare words against a baseline contextualized RNN-T system that has been trained on more than twenty five times larger speech dataset. Overall, we demonstrate that by only adding a handful number of trainable parameters via adapters, we can unlock contextualized speech recognition capability for the pretrained LLM while keeping the same text-only input functionality.
CoDi-2: In-Context, Interleaved, and Interactive Any-to-Any Generation
We present CoDi-2, a versatile and interactive Multimodal Large Language Model (MLLM) that can follow complex multimodal interleaved instructions, conduct in-context learning (ICL), reason, chat, edit, etc., in an any-to-any input-output modality paradigm. By aligning modalities with language for both encoding and generation, CoDi-2 empowers Large Language Models (LLMs) to not only understand complex modality-interleaved instructions and in-context examples, but also autoregressively generate grounded and coherent multimodal outputs in the continuous feature space. To train CoDi-2, we build a large-scale generation dataset encompassing in-context multimodal instructions across text, vision, and audio. CoDi-2 demonstrates a wide range of zero-shot capabilities for multimodal generation, such as in-context learning, reasoning, and compositionality of any-to-any modality generation through multi-round interactive conversation. CoDi-2 surpasses previous domain-specific models on tasks such as subject-driven image generation, vision transformation, and audio editing. CoDi-2 signifies a substantial breakthrough in developing a comprehensive multimodal foundation model adept at interpreting in-context language-vision-audio interleaved instructions and producing multimodal outputs.
Scaling TransNormer to 175 Billion Parameters
We present TransNormerLLM, the first linear attention-based Large Language Model (LLM) that outperforms conventional softmax attention-based models in terms of both accuracy and efficiency. TransNormerLLM evolves from the previous linear attention architecture TransNormer by making advanced modifications that include positional embedding, linear attention acceleration, gating mechanism, tensor normalization, inference acceleration and stabilization. Specifically, we use LRPE together with an exponential decay to avoid attention dilution issues while allowing the model to retain global interactions between tokens. Additionally, we propose Lightning Attention, a cutting-edge technique that accelerates linear attention by more than twice in runtime and reduces memory usage by a remarkable four times. To further enhance the performance of TransNormer, we leverage a gating mechanism to smooth training and a new tensor normalization scheme to accelerate the model, resulting in an impressive acceleration of over 20%. Furthermore, we have developed a robust inference algorithm that ensures numerical stability and consistent inference speed, regardless of the sequence length, showcasing superior efficiency during both training and inference stages. Scalability is at the heart of our model's design, enabling seamless deployment on large-scale clusters and facilitating expansion to even more extensive models, all while maintaining outstanding performance metrics. Rigorous validation of our model design is achieved through a series of comprehensive experiments on our self-collected corpus, boasting a size exceeding 6TB and containing over 2 trillion tokens. To ensure data quality and relevance, we implement a new self-cleaning strategy to filter our collected data. Our pre-trained models will be released to foster community advancements in efficient LLMs.
Taking a Deep Breath: Enhancing Language Modeling of Large Language Models with Sentinel Tokens
Large language models (LLMs) have shown promising efficacy across various tasks, becoming powerful tools in numerous aspects of human life. However, Transformer-based LLMs suffer a performance degradation when modeling long-term contexts due to they discard some information to reduce computational overhead. In this work, we propose a simple yet effective method to enable LLMs to take a deep breath, encouraging them to summarize information contained within discrete text chunks. Specifically, we segment the text into multiple chunks and insert special token <SR> at the end of each chunk. We then modify the attention mask to integrate the chunk's information into the corresponding <SR> token. This facilitates LLMs to interpret information not only from historical individual tokens but also from the <SR> token, aggregating the chunk's semantic information. Experiments on language modeling and out-of-domain downstream tasks validate the superiority of our approach.
A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks
In an era defined by the explosive growth of data and rapid technological advancements, Multimodal Large Language Models (MLLMs) stand at the forefront of artificial intelligence (AI) systems. Designed to seamlessly integrate diverse data types-including text, images, videos, audio, and physiological sequences-MLLMs address the complexities of real-world applications far beyond the capabilities of single-modality systems. In this paper, we systematically sort out the applications of MLLM in multimodal tasks such as natural language, vision, and audio. We also provide a comparative analysis of the focus of different MLLMs in the tasks, and provide insights into the shortcomings of current MLLMs, and suggest potential directions for future research. Through these discussions, this paper hopes to provide valuable insights for the further development and application of MLLM.
LibriSQA: Advancing Free-form and Open-ended Spoken Question Answering with a Novel Dataset and Framework
While Large Language Models (LLMs) have demonstrated commendable performance across a myriad of domains and tasks, existing LLMs still exhibit a palpable deficit in handling multimodal functionalities, especially for the Spoken Question Answering (SQA) task which necessitates precise alignment and deep interaction between speech and text features. To address the SQA challenge on LLMs, we initially curated the free-form and open-ended LibriSQA dataset from Librispeech, comprising Part I with natural conversational formats and Part II encompassing multiple-choice questions followed by answers and analytical segments. Both parts collectively include 107k SQA pairs that cover various topics. Given the evident paucity of existing speech-text LLMs, we propose a lightweight, end-to-end framework to execute the SQA task on the LibriSQA, witnessing significant results. By reforming ASR into the SQA format, we further substantiate our framework's capability in handling ASR tasks. Our empirical findings bolster the LLMs' aptitude for aligning and comprehending multimodal information, paving the way for the development of universal multimodal LLMs. The dataset and demo can be found at https://github.com/ZihanZhaoSJTU/LibriSQA.
Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception
Multimodal Large Language Model (MLLMs) leverages Large Language Models as a cognitive framework for diverse visual-language tasks. Recent efforts have been made to equip MLLMs with visual perceiving and grounding capabilities. However, there still remains a gap in providing fine-grained pixel-level perceptions and extending interactions beyond text-specific inputs. In this work, we propose {AnyRef}, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references, such as texts, boxes, images, or audio. This innovation empowers users with greater flexibility to engage with the model beyond textual and regional prompts, without modality-specific designs. Through our proposed refocusing mechanism, the generated grounding output is guided to better focus on the referenced object, implicitly incorporating additional pixel-level supervision. This simple modification utilizes attention scores generated during the inference of LLM, eliminating the need for extra computations while exhibiting performance enhancements in both grounding masks and referring expressions. With only publicly available training data, our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
OneLLM: One Framework to Align All Modalities with Language
Multimodal large language models (MLLMs) have gained significant attention due to their strong multimodal understanding capability. However, existing works rely heavily on modality-specific encoders, which usually differ in architecture and are limited to common modalities. In this paper, we present OneLLM, an MLLM that aligns eight modalities to language using a unified framework. We achieve this through a unified multimodal encoder and a progressive multimodal alignment pipeline. In detail, we first train an image projection module to connect a vision encoder with LLM. Then, we build a universal projection module (UPM) by mixing multiple image projection modules and dynamic routing. Finally, we progressively align more modalities to LLM with the UPM. To fully leverage the potential of OneLLM in following instructions, we also curated a comprehensive multimodal instruction dataset, including 2M items from image, audio, video, point cloud, depth/normal map, IMU and fMRI brain activity. OneLLM is evaluated on 25 diverse benchmarks, encompassing tasks such as multimodal captioning, question answering and reasoning, where it delivers excellent performance. Code, data, model and online demo are available at https://github.com/csuhan/OneLLM
Kosmos-G: Generating Images in Context with Multimodal Large Language Models
Recent advancements in text-to-image (T2I) and vision-language-to-image (VL2I) generation have made significant strides. However, the generation from generalized vision-language inputs, especially involving multiple images, remains under-explored. This paper presents Kosmos-G, a model that leverages the advanced perception capabilities of Multimodal Large Language Models (MLLMs) to tackle the aforementioned challenge. Our approach aligns the output space of MLLM with CLIP using the textual modality as an anchor and performs compositional instruction tuning on curated data. Kosmos-G demonstrates a unique capability of zero-shot multi-entity subject-driven generation. Notably, the score distillation instruction tuning requires no modifications to the image decoder. This allows for a seamless substitution of CLIP and effortless integration with a myriad of U-Net techniques ranging from fine-grained controls to personalized image decoder variants. We posit Kosmos-G as an initial attempt towards the goal of "image as a foreign language in image generation."
LLAVADI: What Matters For Multimodal Large Language Models Distillation
The recent surge in Multimodal Large Language Models (MLLMs) has showcased their remarkable potential for achieving generalized intelligence by integrating visual understanding into Large Language Models.Nevertheless, the sheer model size of MLLMs leads to substantial memory and computational demands that hinder their widespread deployment. In this work, we do not propose a new efficient model structure or train small-scale MLLMs from scratch. Instead, we focus on what matters for training small-scale MLLMs through knowledge distillation, which is the first step from the multimodal distillation perspective. Our extensive studies involve training strategies, model choices, and distillation algorithms in the knowledge distillation process. These results show that joint alignment for both tokens and logit alignment plays critical roles in teacher-student frameworks. In addition, we draw a series of intriguing observations from this study. By evaluating different benchmarks and proper strategy, even a 2.7B small-scale model can perform on par with larger models with 7B or 13B parameters. Our code and models will be publicly available for further research.
Kosmos-2.5: A Multimodal Literate Model
We present Kosmos-2.5, a multimodal literate model for machine reading of text-intensive images. Pre-trained on large-scale text-intensive images, Kosmos-2.5 excels in two distinct yet cooperative transcription tasks: (1) generating spatially-aware text blocks, where each block of text is assigned its spatial coordinates within the image, and (2) producing structured text output that captures styles and structures into the markdown format. This unified multimodal literate capability is achieved through a shared Transformer architecture, task-specific prompts, and flexible text representations. We evaluate Kosmos-2.5 on end-to-end document-level text recognition and image-to-markdown text generation. Furthermore, the model can be readily adapted for any text-intensive image understanding task with different prompts through supervised fine-tuning, making it a general-purpose tool for real-world applications involving text-rich images. This work also paves the way for the future scaling of multimodal large language models.
mPLUG-Owl3: Towards Long Image-Sequence Understanding in Multi-Modal Large Language Models
Multi-modal Large Language Models (MLLMs) have demonstrated remarkable capabilities in executing instructions for a variety of single-image tasks. Despite this progress, significant challenges remain in modeling long image sequences. In this work, we introduce the versatile multi-modal large language model, mPLUG-Owl3, which enhances the capability for long image-sequence understanding in scenarios that incorporate retrieved image-text knowledge, interleaved image-text, and lengthy videos. Specifically, we propose novel hyper attention blocks to efficiently integrate vision and language into a common language-guided semantic space, thereby facilitating the processing of extended multi-image scenarios. Extensive experimental results suggest that mPLUG-Owl3 achieves state-of-the-art performance among models with a similar size on single-image, multi-image, and video benchmarks. Moreover, we propose a challenging long visual sequence evaluation named Distractor Resistance to assess the ability of models to maintain focus amidst distractions. Finally, with the proposed architecture, mPLUG-Owl3 demonstrates outstanding performance on ultra-long visual sequence inputs. We hope that mPLUG-Owl3 can contribute to the development of more efficient and powerful multimodal large language models.
Language Models on a Diet: Cost-Efficient Development of Encoders for Closely-Related Languages via Additional Pretraining
The world of language models is going through turbulent times, better and ever larger models are coming out at an unprecedented speed. However, we argue that, especially for the scientific community, encoder models of up to 1 billion parameters are still very much needed, their primary usage being in enriching large collections of data with metadata necessary for downstream research. We investigate the best way to ensure the existence of such encoder models on the set of very closely related languages - Croatian, Serbian, Bosnian and Montenegrin, by setting up a diverse benchmark for these languages, and comparing the trained-from-scratch models with the new models constructed via additional pretraining of existing multilingual models. We show that comparable performance to dedicated from-scratch models can be obtained by additionally pretraining available multilingual models even with a limited amount of computation. We also show that neighboring languages, in our case Slovenian, can be included in the additional pretraining with little to no loss in the performance of the final model.
CLAMP: Contrastive LAnguage Model Prompt-tuning
Large language models (LLMs) have emerged as powerful general-purpose interfaces for many machine learning problems. Recent work has adapted LLMs to generative visual tasks like image captioning, visual question answering, and visual chat, using a relatively small amount of instruction-tuning data. In this paper, we explore whether modern LLMs can also be adapted to classifying an image into a set of categories. First, we evaluate multimodal LLMs that are tuned for generative tasks on zero-shot image classification and find that their performance is far below that of specialized models like CLIP. We then propose an approach for light fine-tuning of LLMs using the same contrastive image-caption matching objective as CLIP. Our results show that LLMs can, indeed, achieve good image classification performance when adapted this way. Our approach beats state-of-the-art mLLMs by 13% and slightly outperforms contrastive learning with a custom text model, while also retaining the LLM's generative abilities. LLM initialization appears to particularly help classification in domains under-represented in the visual pre-training data.
SEED-Bench-2: Benchmarking Multimodal Large Language Models
Multimodal large language models (MLLMs), building upon the foundation of powerful large language models (LLMs), have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs (acting like a combination of GPT-4V and DALL-E 3). However, existing MLLM benchmarks remain limited to assessing only models' comprehension ability of single image-text inputs, failing to keep up with the strides made in MLLMs. A comprehensive benchmark is imperative for investigating the progress and uncovering the limitations of current MLLMs. In this work, we categorize the capabilities of MLLMs into hierarchical levels from L_0 to L_4 based on the modalities they can accept and generate, and propose SEED-Bench-2, a comprehensive benchmark that evaluates the hierarchical capabilities of MLLMs. Specifically, SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions, including the evaluation of both text and image generation. Multiple-choice questions with groundtruth options derived from human annotation enables an objective and efficient assessment of model performance, eliminating the need for human or GPT intervention during evaluation. We further evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations. By revealing the limitations of existing MLLMs through extensive evaluations, we aim for SEED-Bench-2 to provide insights that will motivate future research towards the goal of General Artificial Intelligence. Dataset and evaluation code are available at https://github.com/AILab-CVC/SEED-Bench
The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only
Large language models are commonly trained on a mixture of filtered web data and curated high-quality corpora, such as social media conversations, books, or technical papers. This curation process is believed to be necessary to produce performant models with broad zero-shot generalization abilities. However, as larger models requiring pretraining on trillions of tokens are considered, it is unclear how scalable is curation and whether we will run out of unique high-quality data soon. At variance with previous beliefs, we show that properly filtered and deduplicated web data alone can lead to powerful models; even significantly outperforming models from the state-of-the-art trained on The Pile. Despite extensive filtering, the high-quality data we extract from the web is still plentiful, and we are able to obtain five trillion tokens from CommonCrawl. We publicly release an extract of 600 billion tokens from our RefinedWeb dataset, and 1.3/7.5B parameters language models trained on it.
Large-Scale Contextualised Language Modelling for Norwegian
We present the ongoing NorLM initiative to support the creation and use of very large contextualised language models for Norwegian (and in principle other Nordic languages), including a ready-to-use software environment, as well as an experience report for data preparation and training. This paper introduces the first large-scale monolingual language models for Norwegian, based on both the ELMo and BERT frameworks. In addition to detailing the training process, we present contrastive benchmark results on a suite of NLP tasks for Norwegian. For additional background and access to the data, models, and software, please see http://norlm.nlpl.eu
Croc: Pretraining Large Multimodal Models with Cross-Modal Comprehension
Recent advances in Large Language Models (LLMs) have catalyzed the development of Large Multimodal Models (LMMs). However, existing research primarily focuses on tuning language and image instructions, ignoring the critical pretraining phase where models learn to process textual and visual modalities jointly. In this paper, we propose a new pretraining paradigm for LMMs to enhance the visual comprehension capabilities of LLMs by introducing a novel cross-modal comprehension stage. Specifically, we design a dynamically learnable prompt token pool and employ the Hungarian algorithm to replace part of the original visual tokens with the most relevant prompt tokens. Then, we conceptualize visual tokens as analogous to a "foreign language" for the LLMs and propose a mixed attention mechanism with bidirectional visual attention and unidirectional textual attention to comprehensively enhance the understanding of visual tokens. Meanwhile, we integrate a detailed caption generation task, leveraging rich descriptions to further facilitate LLMs in understanding visual semantic information. After pretraining on 1.5 million publicly accessible data, we present a new foundation model called Croc. Experimental results demonstrate that Croc achieves new state-of-the-art performance on massive vision-language benchmarks. To support reproducibility and facilitate further research, we release the training code and pre-trained model weights at https://github.com/deepglint/Croc.
ToMoE: Converting Dense Large Language Models to Mixture-of-Experts through Dynamic Structural Pruning
Large Language Models (LLMs) have demonstrated remarkable abilities in tackling a wide range of complex tasks. However, their huge computational and memory costs raise significant challenges in deploying these models on resource-constrained devices or efficiently serving them. Prior approaches have attempted to alleviate these problems by permanently removing less important model structures, yet these methods often result in substantial performance degradation due to the permanent deletion of model parameters. In this work, we tried to mitigate this issue by reducing the number of active parameters without permanently removing them. Specifically, we introduce a differentiable dynamic pruning method that pushes dense models to maintain a fixed number of active parameters by converting their MLP layers into a Mixture of Experts (MoE) architecture. Our method, even without fine-tuning, consistently outperforms previous structural pruning techniques across diverse model families, including Phi-2, LLaMA-2, LLaMA-3, and Qwen-2.5.
One Billion Word Benchmark for Measuring Progress in Statistical Language Modeling
We propose a new benchmark corpus to be used for measuring progress in statistical language modeling. With almost one billion words of training data, we hope this benchmark will be useful to quickly evaluate novel language modeling techniques, and to compare their contribution when combined with other advanced techniques. We show performance of several well-known types of language models, with the best results achieved with a recurrent neural network based language model. The baseline unpruned Kneser-Ney 5-gram model achieves perplexity 67.6; a combination of techniques leads to 35% reduction in perplexity, or 10% reduction in cross-entropy (bits), over that baseline. The benchmark is available as a code.google.com project; besides the scripts needed to rebuild the training/held-out data, it also makes available log-probability values for each word in each of ten held-out data sets, for each of the baseline n-gram models.
MaLA-500: Massive Language Adaptation of Large Language Models
Large language models have advanced the state of the art in natural language processing. However, their predominant design for English or a limited set of languages creates a substantial gap in their effectiveness for low-resource languages. To bridge this gap, we introduce MaLA-500, a novel large language model designed to cover an extensive range of 534 languages. To train MaLA-500, we employ vocabulary extension and continued pretraining on LLaMA 2 with Glot500-c. Our experiments on SIB-200 show that MaLA-500 achieves state-of-the-art in-context learning results. We release MaLA-500 at https://huggingface.co/MaLA-LM
Multilingual Large Language Model: A Survey of Resources, Taxonomy and Frontiers
Multilingual Large Language Models are capable of using powerful Large Language Models to handle and respond to queries in multiple languages, which achieves remarkable success in multilingual natural language processing tasks. Despite these breakthroughs, there still remains a lack of a comprehensive survey to summarize existing approaches and recent developments in this field. To this end, in this paper, we present a thorough review and provide a unified perspective to summarize the recent progress as well as emerging trends in multilingual large language models (MLLMs) literature. The contributions of this paper can be summarized: (1) First survey: to our knowledge, we take the first step and present a thorough review in MLLMs research field according to multi-lingual alignment; (2) New taxonomy: we offer a new and unified perspective to summarize the current progress of MLLMs; (3) New frontiers: we highlight several emerging frontiers and discuss the corresponding challenges; (4) Abundant resources: we collect abundant open-source resources, including relevant papers, data corpora, and leaderboards. We hope our work can provide the community with quick access and spur breakthrough research in MLLMs.
Scaling Sentence Embeddings with Large Language Models
Large language models (LLMs) have recently garnered significant interest. With in-context learning, LLMs achieve impressive results in various natural language tasks. However, the application of LLMs to sentence embeddings remains an area of ongoing research. In this work, we propose an in-context learning-based method aimed at improving sentence embeddings performance. Our approach involves adapting the previous prompt-based representation method for autoregressive models, constructing a demonstration set that enables LLMs to perform in-context learning, and scaling up the LLMs to different model sizes. Through extensive experiments, in-context learning enables LLMs to generate high-quality sentence embeddings without any fine-tuning. It helps LLMs achieve performance comparable to current contrastive learning methods. By scaling model size, we find scaling to more than tens of billion parameters harms the performance on semantic textual similarity (STS) tasks. However, the largest model outperforms other counterparts and achieves the new state-of-the-art result on transfer tasks. We also fine-tune LLMs with current contrastive learning approach, and the 2.7B OPT model, incorporating our prompt-based method, surpasses the performance of 4.8B ST5, achieving the new state-of-the-art results on STS tasks. Our code is available at https://github.com/kongds/scaling_sentemb.
Cross-modal Information Flow in Multimodal Large Language Models
The recent advancements in auto-regressive multimodal large language models (MLLMs) have demonstrated promising progress for vision-language tasks. While there exists a variety of studies investigating the processing of linguistic information within large language models, little is currently known about the inner working mechanism of MLLMs and how linguistic and visual information interact within these models. In this study, we aim to fill this gap by examining the information flow between different modalities -- language and vision -- in MLLMs, focusing on visual question answering. Specifically, given an image-question pair as input, we investigate where in the model and how the visual and linguistic information are combined to generate the final prediction. Conducting experiments with a series of models from the LLaVA series, we find that there are two distinct stages in the process of integration of the two modalities. In the lower layers, the model first transfers the more general visual features of the whole image into the representations of (linguistic) question tokens. In the middle layers, it once again transfers visual information about specific objects relevant to the question to the respective token positions of the question. Finally, in the higher layers, the resulting multimodal representation is propagated to the last position of the input sequence for the final prediction. Overall, our findings provide a new and comprehensive perspective on the spatial and functional aspects of image and language processing in the MLLMs, thereby facilitating future research into multimodal information localization and editing.
From Words to Numbers: Your Large Language Model Is Secretly A Capable Regressor When Given In-Context Examples
We analyze how well pre-trained large language models (e.g., Llama2, GPT-4, Claude 3, etc) can do linear and non-linear regression when given in-context examples, without any additional training or gradient updates. Our findings reveal that several large language models (e.g., GPT-4, Claude 3) are able to perform regression tasks with a performance rivaling (or even outperforming) that of traditional supervised methods such as Random Forest, Bagging, or Gradient Boosting. For example, on the challenging Friedman #2 regression dataset, Claude 3 outperforms many supervised methods such as AdaBoost, SVM, Random Forest, KNN, or Gradient Boosting. We then investigate how well the performance of large language models scales with the number of in-context exemplars. We borrow from the notion of regret from online learning and empirically show that LLMs are capable of obtaining a sub-linear regret.
AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling
We introduce AnyGPT, an any-to-any multimodal language model that utilizes discrete representations for the unified processing of various modalities, including speech, text, images, and music. AnyGPT can be trained stably without any alterations to the current large language model (LLM) architecture or training paradigms. Instead, it relies exclusively on data-level preprocessing, facilitating the seamless integration of new modalities into LLMs, akin to the incorporation of new languages. We build a multimodal text-centric dataset for multimodal alignment pre-training. Utilizing generative models, we synthesize the first large-scale any-to-any multimodal instruction dataset. It consists of 108k samples of multi-turn conversations that intricately interweave various modalities, thus equipping the model to handle arbitrary combinations of multimodal inputs and outputs. Experimental results demonstrate that AnyGPT is capable of facilitating any-to-any multimodal conversation while achieving performance comparable to specialized models across all modalities, proving that discrete representations can effectively and conveniently unify multiple modalities within a language model. Demos are shown in https://junzhan2000.github.io/AnyGPT.github.io/
Accelerating Multimodal Large Language Models by Searching Optimal Vision Token Reduction
Prevailing Multimodal Large Language Models (MLLMs) encode the input image(s) as vision tokens and feed them into the language backbone, similar to how Large Language Models (LLMs) process the text tokens. However, the number of vision tokens increases quadratically as the image resolutions, leading to huge computational costs. In this paper, we consider improving MLLM's efficiency from two scenarios, (I) Reducing computational cost without degrading the performance. (II) Improving the performance with given budgets. We start with our main finding that the ranking of each vision token sorted by attention scores is similar in each layer except the first layer. Based on it, we assume that the number of essential top vision tokens does not increase along layers. Accordingly, for Scenario I, we propose a greedy search algorithm (G-Search) to find the least number of vision tokens to keep at each layer from the shallow to the deep. Interestingly, G-Search is able to reach the optimal reduction strategy based on our assumption. For Scenario II, based on the reduction strategy from G-Search, we design a parametric sigmoid function (P-Sigmoid) to guide the reduction at each layer of the MLLM, whose parameters are optimized by Bayesian Optimization. Extensive experiments demonstrate that our approach can significantly accelerate those popular MLLMs, e.g. LLaVA, and InternVL2 models, by more than 2 times without performance drops. Our approach also far outperforms other token reduction methods when budgets are limited, achieving a better trade-off between efficiency and effectiveness.
Implicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs
Large Language Models (LLMs) have demonstrated impressive performance on multimodal tasks, without any multimodal finetuning. They are the building block for Large Multimodal Models, yet, we still lack a proper understanding of their success. In this work, we expose frozen LLMs to image, video, audio and text inputs and analyse their internal representation aiming to understand their generalization beyond textual inputs. Findings. Perceptual tokens (1) are easily distinguishable from textual ones inside LLMs, with significantly different representations, and complete translation to textual tokens does not exist. Yet, (2) both perceptual and textual tokens activate similar LLM weights. Despite being different, (3) perceptual and textual tokens are implicitly aligned inside LLMs, we call this the implicit multimodal alignment (IMA), and argue that this is linked to architectural design, helping LLMs to generalize. This provide more evidence to believe that the generalization of LLMs to multimodal inputs is mainly due to their architecture. Implications. (1) We find a positive correlation between the implicit alignment score and the task performance, suggesting that this could act as a proxy metric for model evaluation and selection. (2) A negative correlation exists regarding hallucinations, revealing that this problem is mainly due to misalignment between the internal perceptual and textual representations. (3) Perceptual tokens change slightly throughout the model, thus, we propose different approaches to skip computations (e.g. in FFN layers), and significantly reduce the inference cost. (4) Due to the slowly changing embeddings across layers, and the high overlap between textual and multimodal activated weights, we compress LLMs by keeping only 1 subnetwork that works well across a wide range of multimodal tasks. Paper code: https://github.com/mshukor/ima-lmms.
DenseFusion-1M: Merging Vision Experts for Comprehensive Multimodal Perception
Existing Multimodal Large Language Models (MLLMs) increasingly emphasize complex understanding of various visual elements, including multiple objects, text information, and spatial relations. Their development for comprehensive visual perception hinges on the availability of high-quality image-text datasets that offer diverse visual elements and throughout image descriptions. However, the scarcity of such hyper-detailed datasets currently hinders progress within the MLLM community. The bottleneck stems from the limited perceptual capabilities of current caption engines, which fall short in providing complete and accurate annotations. To facilitate the cutting-edge research of MLLMs on comprehensive vision perception, we thereby propose Perceptual Fusion, using a low-budget but highly effective caption engine for complete and accurate image descriptions. Specifically, Perceptual Fusion integrates diverse perception experts as image priors to provide explicit information on visual elements and adopts an efficient MLLM as a centric pivot to mimic advanced MLLMs' perception abilities. We carefully select 1M highly representative images from uncurated LAION dataset and generate dense descriptions using our engine, dubbed DenseFusion-1M. Extensive experiments validate that our engine outperforms its counterparts, where the resulting dataset significantly improves the perception and cognition abilities of existing MLLMs across diverse vision-language benchmarks, especially with high-resolution images as inputs. The dataset and code are publicly available at https://github.com/baaivision/DenseFusion.
LLaVA-Read: Enhancing Reading Ability of Multimodal Language Models
Large multimodal language models have demonstrated impressive capabilities in understanding and manipulating images. However, many of these models struggle with comprehending intensive textual contents embedded within the images, primarily due to the limited text recognition and layout understanding ability. To understand the sources of these limitations, we perform an exploratory analysis showing the drawbacks of classical visual encoders on visual text understanding. Hence, we present LLaVA-Read, a multimodal large language model that utilizes dual visual encoders along with a visual text encoder. Our model surpasses existing state-of-the-art models in various text-rich image understanding tasks, showcasing enhanced comprehension of textual content within images. Together, our research suggests visual text understanding remains an open challenge and an efficient visual text encoder is crucial for future successful multimodal systems.
StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized Image-Dialogue Data
The remarkable multimodal capabilities demonstrated by OpenAI's GPT-4 have sparked significant interest in the development of multimodal Large Language Models (LLMs). A primary research objective of such models is to align visual and textual modalities effectively while comprehending human instructions. Current methodologies often rely on annotations derived from benchmark datasets to construct image-dialogue datasets for training purposes, akin to instruction tuning in LLMs. However, these datasets often exhibit domain bias, potentially constraining the generative capabilities of the models. In an effort to mitigate these limitations, we propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning. This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models to yield a diverse and controllable dataset with varied image content. This not only provides greater flexibility compared to existing methodologies but also significantly enhances several model capabilities. Our research includes comprehensive experiments conducted on various datasets using the open-source LLAVA model as a testbed for our proposed pipeline. Our results underscore marked enhancements across more than ten commonly assessed capabilities,
Constituency Parsing using LLMs
Constituency parsing is a fundamental yet unsolved natural language processing task. In this paper, we explore the potential of recent large language models (LLMs) that have exhibited remarkable performance across various domains and tasks to tackle this task. We employ three linearization strategies to transform output trees into symbol sequences, such that LLMs can solve constituency parsing by generating linearized trees. We conduct experiments using a diverse range of LLMs, including ChatGPT, GPT-4, OPT, LLaMA, and Alpaca, comparing their performance against the state-of-the-art constituency parsers. Our experiments encompass zero-shot, few-shot, and full-training learning settings, and we evaluate the models on one in-domain and five out-of-domain test datasets. Our findings reveal insights into LLMs' performance, generalization abilities, and challenges in constituency parsing.
Scaling Pre-training to One Hundred Billion Data for Vision Language Models
We provide an empirical investigation of the potential of pre-training vision-language models on an unprecedented scale: 100 billion examples. We find that model performance tends to saturate at this scale on many common Western-centric classification and retrieval benchmarks, such as COCO Captions. Nevertheless, tasks of cultural diversity achieve more substantial gains from the 100-billion scale web data, thanks to its coverage of long-tail concepts. Furthermore, we analyze the model's multilinguality and show gains in low-resource languages as well. In addition, we observe that reducing the size of the pretraining dataset via quality filters like using CLIP, typically used to enhance performance, may inadvertently reduce the cultural diversity represented even in large-scale datasets. Our results highlight that while traditional benchmarks may not benefit significantly from scaling noisy, raw web data to 100 billion examples, this data scale is vital for building truly inclusive multimodal systems.
Large Language Models as Markov Chains
Large language models (LLMs) have proven to be remarkably efficient, both across a wide range of natural language processing tasks and well beyond them. However, a comprehensive theoretical analysis of the origins of their impressive performance remains elusive. In this paper, we approach this challenging task by drawing an equivalence between generic autoregressive language models with vocabulary of size T and context window of size K and Markov chains defined on a finite state space of size O(T^K). We derive several surprising findings related to the existence of a stationary distribution of Markov chains that capture the inference power of LLMs, their speed of convergence to it, and the influence of the temperature on the latter. We then prove pre-training and in-context generalization bounds and show how the drawn equivalence allows us to enrich their interpretation. Finally, we illustrate our theoretical guarantees with experiments on several recent LLMs to highlight how they capture the behavior observed in practice.
Typhoon 2: A Family of Open Text and Multimodal Thai Large Language Models
This paper introduces Typhoon 2, a series of text and multimodal large language models optimized for the Thai language. The series includes models for text, vision, and audio. Typhoon2-Text builds on state-of-the-art open models, such as Llama 3 and Qwen2, and we perform continual pre-training on a mixture of English and Thai data. We employ post-training techniques to enhance Thai language performance while preserving the base models' original capabilities. We release text models across a range of sizes, from 1 to 70 billion parameters, available in both base and instruction-tuned variants. To guardrail text generation, we release Typhoon2-Safety, a classifier enhanced for Thai cultures and language. Typhoon2-Vision improves Thai document understanding while retaining general visual capabilities, such as image captioning. Typhoon2-Audio introduces an end-to-end speech-to-speech model architecture capable of processing audio, speech, and text inputs and generating both text and speech outputs.
UnifiedMLLM: Enabling Unified Representation for Multi-modal Multi-tasks With Large Language Model
Significant advancements has recently been achieved in the field of multi-modal large language models (MLLMs), demonstrating their remarkable capabilities in understanding and reasoning across diverse tasks. However, these models are often trained for specific tasks and rely on task-specific input-output formats, limiting their applicability to a broader range of tasks. This raises a fundamental question: Can we develop a unified approach to represent and handle different multi-modal tasks to maximize the generalizability of MLLMs? In this paper, we propose UnifiedMLLM, a comprehensive model designed to represent various tasks using a unified representation. Our model exhibits strong capabilities in comprehending the implicit intent of user instructions and preforming reasoning. In addition to generating textual responses, our model also outputs task tokens and grounding tokens, serving as indicators of task types and task granularity. These outputs are subsequently routed through the task router and directed to specific expert models for task completion. To train our model, we construct a task-specific dataset and an 100k multi-task dataset encompassing complex scenarios. Employing a three-stage training strategy, we equip our model with robust reasoning and task processing capabilities while preserving its generalization capacity and knowledge reservoir. Extensive experiments showcase the impressive performance of our unified representation approach across various tasks, surpassing existing methodologies. Furthermore, our approach exhibits exceptional scalability and generality. Our code, model, and dataset will be available at https://github.com/lzw-lzw/UnifiedMLLM.
OLMoE: Open Mixture-of-Experts Language Models
We introduce OLMoE, a fully open, state-of-the-art language model leveraging sparse Mixture-of-Experts (MoE). OLMoE-1B-7B has 7 billion (B) parameters but uses only 1B per input token. We pretrain it on 5 trillion tokens and further adapt it to create OLMoE-1B-7B-Instruct. Our models outperform all available models with similar active parameters, even surpassing larger ones like Llama2-13B-Chat and DeepSeekMoE-16B. We present various experiments on MoE training, analyze routing in our model showing high specialization, and open-source all aspects of our work: model weights, training data, code, and logs.
MULTI: Multimodal Understanding Leaderboard with Text and Images
Rapid progress in multimodal large language models (MLLMs) highlights the need to introduce challenging yet realistic benchmarks to the academic community, while existing benchmarks primarily focus on understanding simple natural images and short context. In this paper, we present MULTI as a cutting-edge benchmark for evaluating MLLMs on understanding complex tables and images, and reasoning with long context. MULTI provides multimodal inputs and requires responses that are either precise or open-ended, reflecting real-life examination styles. MULTI includes over 18,000 questions and challenges MLLMs with a variety of tasks, ranging from formula derivation to image detail analysis and cross-modality reasoning. We also introduce MULTI-Elite, a 500-question selected hard subset, and MULTI-Extend, with more than 4,500 external knowledge context pieces. Our evaluation indicates significant potential for MLLM advancement, with GPT-4V achieving a 63.7% accuracy rate on MULTI, in contrast to other MLLMs scoring between 28.5% and 55.3%. MULTI serves not only as a robust evaluation platform but also paves the way for the development of expert-level AI.
Scaling Expert Language Models with Unsupervised Domain Discovery
Large language models are typically trained densely: all parameters are updated with respect to all inputs. This requires synchronization of billions of parameters across thousands of GPUs. We introduce a simple but effective method to asynchronously train large, sparse language models on arbitrary text corpora. Our method clusters a corpus into sets of related documents, trains a separate expert language model on each cluster, and combines them in a sparse ensemble for inference. This approach generalizes embarrassingly parallel training by automatically discovering the domains for each expert, and eliminates nearly all the communication overhead of existing sparse language models. Our technique outperforms dense baselines on multiple corpora and few-shot tasks, and our analysis shows that specializing experts to meaningful clusters is key to these gains. Performance also improves with the number of experts and size of training data, suggesting this is a highly efficient and accessible approach to training large language models.
The LLM Surgeon
State-of-the-art language models are becoming increasingly large in an effort to achieve the highest performance on large corpora of available textual data. However, the sheer size of the Transformer architectures makes it difficult to deploy models within computational, environmental or device-specific constraints. We explore data-driven compression of existing pretrained models as an alternative to training smaller models from scratch. To do so, we scale Kronecker-factored curvature approximations of the target loss landscape to large language models. In doing so, we can compute both the dynamic allocation of structures that can be removed as well as updates of remaining weights that account for the removal. We provide a general framework for unstructured, semi-structured and structured pruning and improve upon weight updates to capture more correlations between weights, while remaining computationally efficient. Experimentally, our method can prune rows and columns from a range of OPT models and Llamav2-7B by 20%-30%, with a negligible loss in performance, and achieve state-of-the-art results in unstructured and semi-structured pruning of large language models.
AdaptVision: Dynamic Input Scaling in MLLMs for Versatile Scene Understanding
Over the past few years, the advancement of Multimodal Large Language Models (MLLMs) has captured the wide interest of researchers, leading to numerous innovations to enhance MLLMs' comprehension. In this paper, we present AdaptVision, a multimodal large language model specifically designed to dynamically process input images at varying resolutions. We hypothesize that the requisite number of visual tokens for the model is contingent upon both the resolution and content of the input image. Generally, natural images with a lower information density can be effectively interpreted by the model using fewer visual tokens at reduced resolutions. In contrast, images containing textual content, such as documents with rich text, necessitate a higher number of visual tokens for accurate text interpretation due to their higher information density. Building on this insight, we devise a dynamic image partitioning module that adjusts the number of visual tokens according to the size and aspect ratio of images. This method mitigates distortion effects that arise from resizing images to a uniform resolution and dynamically optimizing the visual tokens input to the LLMs. Our model is capable of processing images with resolutions up to 1008times 1008. Extensive experiments across various datasets demonstrate that our method achieves impressive performance in handling vision-language tasks in both natural and text-related scenes. The source code and dataset are now publicly available at https://github.com/harrytea/AdaptVision.
VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections
Large language models (LLMs) have recently emerged as powerful tools for tackling many language-processing tasks. Despite their success, training and fine-tuning these models is still far too computationally and memory intensive. In this paper, we identify and characterise the important components needed for effective model convergence using gradient descent. In doing so we find that the intermediate activations used to implement backpropagation can be excessively compressed without incurring any degradation in performance. This result leads us to a cheap and memory-efficient algorithm for both fine-tuning and pre-training LLMs. The proposed algorithm simply divides the tokens up into smaller sub-tokens before projecting them onto a fixed 1-dimensional subspace during the forward pass. These features are then coarsely reconstructed during the backward pass to implement the update rules. We confirm the effectiveness of our algorithm as being complimentary to many state-of-the-art PEFT methods on the VTAB-1k fine-tuning benchmark. Furthermore, we outperform QLoRA for fine-tuning LLaMA and show competitive performance against other memory-efficient pre-training methods on the large-scale C4 dataset.
NExT-GPT: Any-to-Any Multimodal LLM
While recently Multimodal Large Language Models (MM-LLMs) have made exciting strides, they mostly fall prey to the limitation of only input-side multimodal understanding, without the ability to produce content in multiple modalities. As we humans always perceive the world and communicate with people through various modalities, developing any-to-any MM-LLMs capable of accepting and delivering content in any modality becomes essential to human-level AI. To fill the gap, we present an end-to-end general-purpose any-to-any MM-LLM system, NExT-GPT. We connect an LLM with multimodal adaptors and different diffusion decoders, enabling NExT-GPT to perceive inputs and generate outputs in arbitrary combinations of text, images, videos, and audio. By leveraging the existing well-trained highly-performing encoders and decoders, NExT-GPT is tuned with only a small amount of parameter (1%) of certain projection layers, which not only benefits low-cost training and also facilitates convenient expansion to more potential modalities. Moreover, we introduce a modality-switching instruction tuning (MosIT) and manually curate a high-quality dataset for MosIT, based on which NExT-GPT is empowered with complex cross-modal semantic understanding and content generation. Overall, our research showcases the promising possibility of building an AI agent capable of modeling universal modalities, paving the way for more human-like AI research in the community.
Reducing Distraction in Long-Context Language Models by Focused Learning
Recent advancements in Large Language Models (LLMs) have significantly enhanced their capacity to process long contexts. However, effectively utilizing this long context remains a challenge due to the issue of distraction, where irrelevant information dominates lengthy contexts, causing LLMs to lose focus on the most relevant segments. To address this, we propose a novel training method that enhances LLMs' ability to discern relevant information through a unique combination of retrieval-based data augmentation and contrastive learning. Specifically, during fine-tuning with long contexts, we employ a retriever to extract the most relevant segments, serving as augmented inputs. We then introduce an auxiliary contrastive learning objective to explicitly ensure that outputs from the original context and the retrieved sub-context are closely aligned. Extensive experiments on long single-document and multi-document QA benchmarks demonstrate the effectiveness of our proposed method.
LOOK-M: Look-Once Optimization in KV Cache for Efficient Multimodal Long-Context Inference
Long-context Multimodal Large Language Models (MLLMs) demand substantial computational resources for inference as the growth of their multimodal Key-Value (KV) cache, in response to increasing input lengths, challenges memory and time efficiency. Unlike single-modality LLMs that manage only textual contexts, the KV cache of long-context MLLMs includes representations from multiple images with temporal and spatial relationships and related textual contexts. The predominance of image tokens means traditional optimizations for LLMs' KV caches are unsuitable for multimodal long-context settings, and no prior works have addressed this challenge. In this work, we introduce LOOK-M, a pioneering, fine-tuning-free approach that efficiently reduces the multimodal KV cache size while maintaining performance comparable to a full cache. We observe that during prompt prefill, the model prioritizes more textual attention over image features, and based on the multimodal interaction observation, a new proposed text-prior method is explored to compress the KV cache. Furthermore, to mitigate the degradation of image contextual information, we propose several compensatory strategies using KV pairs merging. LOOK-M demonstrates that with a significant reduction in KV Cache memory usage, such as reducing it by 80% in some cases, it not only achieves up to 1.5x faster decoding but also maintains or even enhances performance across a variety of long context multimodal tasks.
GPT4Tools: Teaching Large Language Model to Use Tools via Self-instruction
This paper aims to efficiently enable Large Language Models (LLMs) to use multimodal tools. Advanced proprietary LLMs, such as ChatGPT and GPT-4, have shown great potential for tool usage through sophisticated prompt engineering. Nevertheless, these models typically rely on prohibitive computational costs and publicly inaccessible data. To address these challenges, we propose the GPT4Tools based on self-instruct to enable open-source LLMs, such as LLaMA and OPT, to use tools. It generates an instruction-following dataset by prompting an advanced teacher with various multi-modal contexts. By using the Low-Rank Adaptation (LoRA) optimization, our approach facilitates the open-source LLMs to solve a range of visual problems, including visual comprehension and image generation. Moreover, we provide a benchmark to evaluate the ability of LLMs to use tools, which is performed in both zero-shot and fine-tuning ways. Extensive experiments demonstrate the effectiveness of our method on various language models, which not only significantly improves the accuracy of invoking seen tools, but also enables the zero-shot capacity for unseen tools. The code and demo are available at https://github.com/StevenGrove/GPT4Tools.
MMNeuron: Discovering Neuron-Level Domain-Specific Interpretation in Multimodal Large Language Model
Projecting visual features into word embedding space has become a significant fusion strategy adopted by Multimodal Large Language Models (MLLMs). However, its internal mechanisms have yet to be explored. Inspired by multilingual research, we identify domain-specific neurons in multimodal large language models. Specifically, we investigate the distribution of domain-specific neurons and the mechanism of how MLLMs process features from diverse domains. Furthermore, we propose a three-stage framework for language model modules in MLLMs when handling projected image features, and verify this hypothesis using logit lens. Extensive experiments indicate that while current MLLMs exhibit Visual Question Answering (VQA) capability, they may not fully utilize domain-specific information. Manipulating domain-specific neurons properly will result in a 10\% change of accuracy at most, shedding light on the development of cross-domain, all-encompassing MLLMs in the future. Our code will be released upon paper notification.
LongHeads: Multi-Head Attention is Secretly a Long Context Processor
Large language models (LLMs) have achieved impressive performance in numerous domains but often struggle to process lengthy inputs effectively and efficiently due to limited length generalization and attention's quadratic computational demands. Many sought to mitigate this by restricting the attention window within the pre-trained length. However, these methods introduce new issues such as ignoring the middle context and requiring additional training. To address these problems, we propose LongHeads, a training-free framework that enhances LLM's long context ability by unlocking multi-head attention's untapped potential. Instead of allowing each head to attend to the full sentence, which struggles with generalizing to longer sequences due to out-of-distribution (OOD) issues, we allow each head to process in-distribution length by selecting and attending to important context chunks. To this end, we propose a chunk selection strategy that relies on the inherent correlation between the query and the key representations, efficiently distributing context chunks to different heads. In this way, each head ensures it can effectively process attended tokens within the trained length, while different heads in different layers can collectively process longer contexts. LongHeads works efficiently in linear time, fits seamlessly with many LLMs that use relative positional encoding. Our extensive empirical analyses verify LongHeads's efficacy in extending the usable context window for existing models, showcasing its promise for enhancing long text understanding.
A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks
This survey and application guide to multimodal large language models(MLLMs) explores the rapidly developing field of MLLMs, examining their architectures, applications, and impact on AI and Generative Models. Starting with foundational concepts, we delve into how MLLMs integrate various data types, including text, images, video and audio, to enable complex AI systems for cross-modal understanding and generation. It covers essential topics such as training methods, architectural components, and practical applications in various fields, from visual storytelling to enhanced accessibility. Through detailed case studies and technical analysis, the text examines prominent MLLM implementations while addressing key challenges in scalability, robustness, and cross-modal learning. Concluding with a discussion of ethical considerations, responsible AI development, and future directions, this authoritative resource provides both theoretical frameworks and practical insights. It offers a balanced perspective on the opportunities and challenges in the development and deployment of MLLMs, and is highly valuable for researchers, practitioners, and students interested in the intersection of natural language processing and computer vision.
DRAMA: Diverse Augmentation from Large Language Models to Smaller Dense Retrievers
Large language models (LLMs) have demonstrated strong effectiveness and robustness while fine-tuned as dense retrievers. However, their large parameter size brings significant inference time computational challenges, including high encoding costs for large-scale corpora and increased query latency, limiting their practical deployment. While smaller retrievers offer better efficiency, they often fail to generalize effectively with limited supervised fine-tuning data. In this work, we introduce DRAMA, a training framework that leverages LLMs to train smaller generalizable dense retrievers. In particular, we adopt pruned LLMs as the backbone and train on diverse LLM-augmented data in a single-stage contrastive learning setup. Experiments show that DRAMA offers better multilingual and long-context capabilities than traditional encoder-based retrievers, and achieves strong performance across multiple tasks and languages. These highlight the potential of connecting the training of smaller retrievers with the growing advancements in LLMs, bridging the gap between efficiency and generalization.
Orion-14B: Open-source Multilingual Large Language Models
In this study, we introduce Orion-14B, a collection of multilingual large language models with 14 billion parameters. We utilize a data scheduling approach to train a foundational model on a diverse corpus of 2.5 trillion tokens, sourced from texts in English, Chinese, Japanese, Korean, and other languages. Additionally, we fine-tuned a series of models tailored for conversational applications and other specific use cases. Our evaluation results demonstrate that Orion-14B achieves state-of-the-art performance across a broad spectrum of tasks. We make the Orion-14B model family and its associated code publicly accessible https://github.com/OrionStarAI/Orion, aiming to inspire future research and practical applications in the field.
A Survey of Large Language Models for European Languages
Large Language Models (LLMs) have gained significant attention due to their high performance on a wide range of natural language tasks since the release of ChatGPT. The LLMs learn to understand and generate language by training billions of model parameters on vast volumes of text data. Despite being a relatively new field, LLM research is rapidly advancing in various directions. In this paper, we present an overview of LLM families, including LLaMA, PaLM, GPT, and MoE, and the methods developed to create and enhance LLMs for official European Union (EU) languages. We provide a comprehensive summary of common monolingual and multilingual datasets used for pretraining large language models.
Visual Context Window Extension: A New Perspective for Long Video Understanding
Large Multimodal Models (LMMs) have demonstrated impressive performance in short video understanding tasks but face great challenges when applied to long video understanding. In contrast, Large Language Models (LLMs) exhibit outstanding capabilities in modeling long texts. Existing work attempts to address this issue by introducing long video-text pairs during training. However, these approaches require substantial computational and data resources. In this paper, we tackle the challenge of long video understanding from the perspective of context windows, aiming to apply LMMs to long video tasks without retraining on long video datasets. We first conduct an in-depth analysis of why pretrained LMMs struggle to understand lengthy video content, identifying that discrepancies between visual and language modalities lead to different context windows for visual and language tokens, making it difficult to directly extend the visual tokens to match the language context window. Based on this, we propose to adapt LMMs for long video understanding tasks by extending the visual context window, eliminating the need for retraining on large scalelong video datasets. To further mitigate the significant memory consumption caused by long sequences, we introduce a progressive pooling inference strategy that selectively adjusts the spatial resolution of frame embeddings, reducing the number of visual tokens while retaining important spatial information. Across multiple long video understanding benchmarks, our method consistently improves the performance as the number of video frames increases. On the MLVU benchmark, our method outperforms GPT-4o, even though our model size is only 7B. Additionally, in the 256-frame setting, our method reduces memory usage by approximately 45% compared to the baseline, without introducing any performance loss.
LLaVA-KD: A Framework of Distilling Multimodal Large Language Models
The success of Large Language Models (LLM) has led researchers to explore Multimodal Large Language Models (MLLM) for unified visual and linguistic understanding. However, the increasing model size and computational complexity of MLLM limit their use in resource-constrained environments. Small-scale MLLM (s-MLLM) aims to retain the capabilities of the large-scale model (l-MLLM) while reducing computational demands, but resulting in a significant decline in performance. To address the aforementioned issues, we propose a novel LLaVA-KD framework to transfer knowledge from l-MLLM to s-MLLM. Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM, and Relation Distillation (RDist) to transfer l-MLLM's ability to model correlations between visual features. Additionally, we propose a three-stage training scheme to fully exploit the potential of s-MLLM: 1) Distilled Pre-Training to align visual-textual representations, 2) Supervised Fine-Tuning to equip the model with multimodal understanding, and 3) Distilled Fine-Tuning to further transfer l-MLLM capabilities. Our approach significantly improves performance without altering the small model's architecture. Extensive experiments and ablation studies validate the effectiveness of each proposed component. Code will be available at https://github.com/caiyuxuan1120/LLaVA-KD.
LAION-400M: Open Dataset of CLIP-Filtered 400 Million Image-Text Pairs
Multi-modal language-vision models trained on hundreds of millions of image-text pairs (e.g. CLIP, DALL-E) gained a recent surge, showing remarkable capability to perform zero- or few-shot learning and transfer even in absence of per-sample labels on target image data. Despite this trend, to date there has been no publicly available datasets of sufficient scale for training such models from scratch. To address this issue, in a community effort we build and release for public LAION-400M, a dataset with CLIP-filtered 400 million image-text pairs, their CLIP embeddings and kNN indices that allow efficient similarity search.
DreamLLM: Synergistic Multimodal Comprehension and Creation
This paper presents DreamLLM, a learning framework that first achieves versatile Multimodal Large Language Models (MLLMs) empowered with frequently overlooked synergy between multimodal comprehension and creation. DreamLLM operates on two fundamental principles. The first focuses on the generative modeling of both language and image posteriors by direct sampling in the raw multimodal space. This approach circumvents the limitations and information loss inherent to external feature extractors like CLIP, and a more thorough multimodal understanding is obtained. Second, DreamLLM fosters the generation of raw, interleaved documents, modeling both text and image contents, along with unstructured layouts. This allows DreamLLM to learn all conditional, marginal, and joint multimodal distributions effectively. As a result, DreamLLM is the first MLLM capable of generating free-form interleaved content. Comprehensive experiments highlight DreamLLM's superior performance as a zero-shot multimodal generalist, reaping from the enhanced learning synergy.
Towards a Unified View of Preference Learning for Large Language Models: A Survey
Large Language Models (LLMs) exhibit remarkably powerful capabilities. One of the crucial factors to achieve success is aligning the LLM's output with human preferences. This alignment process often requires only a small amount of data to efficiently enhance the LLM's performance. While effective, research in this area spans multiple domains, and the methods involved are relatively complex to understand. The relationships between different methods have been under-explored, limiting the development of the preference alignment. In light of this, we break down the existing popular alignment strategies into different components and provide a unified framework to study the current alignment strategies, thereby establishing connections among them. In this survey, we decompose all the strategies in preference learning into four components: model, data, feedback, and algorithm. This unified view offers an in-depth understanding of existing alignment algorithms and also opens up possibilities to synergize the strengths of different strategies. Furthermore, we present detailed working examples of prevalent existing algorithms to facilitate a comprehensive understanding for the readers. Finally, based on our unified perspective, we explore the challenges and future research directions for aligning large language models with human preferences.
Enhancing Multimodal Large Language Models with Vision Detection Models: An Empirical Study
Despite the impressive capabilities of Multimodal Large Language Models (MLLMs) in integrating text and image modalities, challenges remain in accurately interpreting detailed visual elements. This paper presents an empirical study on enhancing MLLMs with state-of-the-art (SOTA) object detection and Optical Character Recognition models to improve fine-grained image understanding and reduce hallucination in responses. Our research investigates the embedding-based infusion of detection information, the impact of such infusion on the MLLMs' original abilities, and the interchangeability of detection models. We conduct systematic experiments with models such as LLaVA-1.5, DINO, and PaddleOCRv2, revealing that our approach not only refines MLLMs' performance in specific visual tasks but also maintains their original strengths. The resulting enhanced MLLMs outperform SOTA models on 9 out of 10 benchmarks, achieving an improvement of up to 12.99% on the normalized average score, marking a notable advancement in multimodal understanding. We release our codes to facilitate further exploration into the fine-grained multimodal dialogue capabilities of MLLMs.
AIM: Let Any Multi-modal Large Language Models Embrace Efficient In-Context Learning
In-context learning (ICL) facilitates Large Language Models (LLMs) exhibiting emergent ability on downstream tasks without updating billions of parameters. However, in the area of multi-modal Large Language Models (MLLMs), two problems hinder the application of multi-modal ICL: (1) Most primary MLLMs are only trained on single-image datasets, making them unable to read multi-modal demonstrations. (2) With the demonstrations increasing, thousands of visual tokens highly challenge hardware and degrade ICL performance. During preliminary explorations, we discovered that the inner LLM tends to focus more on the linguistic modality within multi-modal demonstrations to generate responses. Therefore, we propose a general and light-weighted framework AIM to tackle the mentioned problems through Aggregating Image information of Multimodal demonstrations to the dense latent space of the corresponding linguistic part. Specifically, AIM first uses the frozen backbone MLLM to read each image-text demonstration and extracts the vector representations on top of the text. These vectors naturally fuse the information of the image-text pair, and AIM transforms them into fused virtual tokens acceptable for the inner LLM via a trainable projection layer. Ultimately, these fused tokens function as variants of multi-modal demonstrations, fed into the MLLM to direct its response to the current query as usual. Because these fused tokens stem from the textual component of the image-text pair, a multi-modal demonstration is nearly reduced to a pure textual demonstration, thus seamlessly applying to any MLLMs. With its de facto MLLM frozen, AIM is parameter-efficient and we train it on public multi-modal web corpora which have nothing to do with downstream test tasks.
eP-ALM: Efficient Perceptual Augmentation of Language Models
Large Language Models (LLMs) have so far impressed the world, with unprecedented capabilities that emerge in models at large scales. On the vision side, transformer models (i.e., ViT) are following the same trend, achieving the best performance on challenging benchmarks. With the abundance of such unimodal models, a natural question arises; do we need also to follow this trend to tackle multimodal tasks? In this work, we propose to rather direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception. Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency. In particular, they still train a large number of parameters, rely on large multimodal pretraining, use encoders (e.g., CLIP) trained on huge image-text datasets, and add significant inference overhead. In addition, most of these approaches have focused on Zero-Shot and In Context Learning, with little to no effort on direct finetuning. We investigate the minimal computational effort needed to adapt unimodal models for multimodal tasks and propose a new challenging setup, alongside different approaches, that efficiently adapts unimodal pretrained models. We show that by freezing more than 99\% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning across Image, Video, and Audio modalities, following the proposed setup. The code will be available here: https://github.com/mshukor/eP-ALM.
From Seconds to Hours: Reviewing MultiModal Large Language Models on Comprehensive Long Video Understanding
The integration of Large Language Models (LLMs) with visual encoders has recently shown promising performance in visual understanding tasks, leveraging their inherent capability to comprehend and generate human-like text for visual reasoning. Given the diverse nature of visual data, MultiModal Large Language Models (MM-LLMs) exhibit variations in model designing and training for understanding images, short videos, and long videos. Our paper focuses on the substantial differences and unique challenges posed by long video understanding compared to static image and short video understanding. Unlike static images, short videos encompass sequential frames with both spatial and within-event temporal information, while long videos consist of multiple events with between-event and long-term temporal information. In this survey, we aim to trace and summarize the advancements of MM-LLMs from image understanding to long video understanding. We review the differences among various visual understanding tasks and highlight the challenges in long video understanding, including more fine-grained spatiotemporal details, dynamic events, and long-term dependencies. We then provide a detailed summary of the advancements in MM-LLMs in terms of model design and training methodologies for understanding long videos. Finally, we compare the performance of existing MM-LLMs on video understanding benchmarks of various lengths and discuss potential future directions for MM-LLMs in long video understanding.
Deep Visual-Semantic Alignments for Generating Image Descriptions
We present a model that generates natural language descriptions of images and their regions. Our approach leverages datasets of images and their sentence descriptions to learn about the inter-modal correspondences between language and visual data. Our alignment model is based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural Networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding. We then describe a Multimodal Recurrent Neural Network architecture that uses the inferred alignments to learn to generate novel descriptions of image regions. We demonstrate that our alignment model produces state of the art results in retrieval experiments on Flickr8K, Flickr30K and MSCOCO datasets. We then show that the generated descriptions significantly outperform retrieval baselines on both full images and on a new dataset of region-level annotations.
Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization
In light of recent advances in multimodal Large Language Models (LLMs), there is increasing attention to scaling them from image-text data to more informative real-world videos. Compared to static images, video poses unique challenges for effective large-scale pre-training due to the modeling of its spatiotemporal dynamics. In this paper, we address such limitations in video-language pre-training with an efficient video decomposition that represents each video as keyframes and temporal motions. These are then adapted to an LLM using well-designed tokenizers that discretize visual and temporal information as a few tokens, thus enabling unified generative pre-training of videos, images, and text. At inference, the generated tokens from the LLM are carefully recovered to the original continuous pixel space to create various video content. Our proposed framework is both capable of comprehending and generating image and video content, as demonstrated by its competitive performance across 13 multimodal benchmarks in image and video understanding and generation. Our code and models will be available at https://video-lavit.github.io.
Are Bigger Encoders Always Better in Vision Large Models?
In recent years, multimodal large language models (MLLMs) have shown strong potential in real-world applications. They are developing rapidly due to their remarkable ability to comprehend multimodal information and their inherent powerful cognitive and reasoning capabilities. Among MLLMs, vision language models (VLM) stand out for their ability to understand vision information. However, the scaling trend of VLMs under the current mainstream paradigm has not been extensively studied. Whether we can achieve better performance by training even larger models is still unclear. To address this issue, we conducted experiments on the pretraining stage of MLLMs. We conduct our experiment using different encoder sizes and large language model (LLM) sizes. Our findings indicate that merely increasing the size of encoders does not necessarily enhance the performance of VLMs. Moreover, we analyzed the effects of LLM backbone parameter size and data quality on the pretraining outcomes. Additionally, we explored the differences in scaling laws between LLMs and VLMs.
Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts
Recent advancements in Multimodal Large Language Models (MLLMs) underscore the significance of scalable models and data to boost performance, yet this often incurs substantial computational costs. Although the Mixture of Experts (MoE) architecture has been employed to efficiently scale large language and image-text models, these efforts typically involve fewer experts and limited modalities. To address this, our work presents the pioneering attempt to develop a unified MLLM with the MoE architecture, named Uni-MoE that can handle a wide array of modalities. Specifically, it features modality-specific encoders with connectors for a unified multimodal representation. We also implement a sparse MoE architecture within the LLMs to enable efficient training and inference through modality-level data parallelism and expert-level model parallelism. To enhance the multi-expert collaboration and generalization, we present a progressive training strategy: 1) Cross-modality alignment using various connectors with different cross-modality data, 2) Training modality-specific experts with cross-modality instruction data to activate experts' preferences, and 3) Tuning the Uni-MoE framework utilizing Low-Rank Adaptation (LoRA) on mixed multimodal instruction data. We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets. The extensive experimental results demonstrate Uni-MoE's principal advantage of significantly reducing performance bias in handling mixed multimodal datasets, alongside improved multi-expert collaboration and generalization. Our findings highlight the substantial potential of MoE frameworks in advancing MLLMs and the code is available at https://github.com/HITsz-TMG/UMOE-Scaling-Unified-Multimodal-LLMs.
Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model
Pretrained general-purpose language models can achieve state-of-the-art accuracies in various natural language processing domains by adapting to downstream tasks via zero-shot, few-shot and fine-tuning techniques. Because of their success, the size of these models has increased rapidly, requiring high-performance hardware, software, and algorithmic techniques to enable training such large models. As the result of a joint effort between Microsoft and NVIDIA, we present details on the training of the largest monolithic transformer based language model, Megatron-Turing NLG 530B (MT-NLG), with 530 billion parameters. In this paper, we first focus on the infrastructure as well as the 3D parallelism methodology used to train this model using DeepSpeed and Megatron. Next, we detail the training process, the design of our training corpus, and our data curation techniques, which we believe is a key ingredient to the success of the model. Finally, we discuss various evaluation results, as well as other interesting observations and new properties exhibited by MT-NLG. We demonstrate that MT-NLG achieves superior zero-, one-, and few-shot learning accuracies on several NLP benchmarks and establishes new state-of-the-art results. We believe that our contributions will help further the development of large-scale training infrastructures, large-scale language models, and natural language generations.
M5 -- A Diverse Benchmark to Assess the Performance of Large Multimodal Models Across Multilingual and Multicultural Vision-Language Tasks
Since the release of ChatGPT, the field of Natural Language Processing has experienced rapid advancements, particularly in Large Language Models (LLMs) and their multimodal counterparts, Large Multimodal Models (LMMs). Despite their impressive capabilities, LLMs often exhibit significant performance disparities across different languages and cultural contexts, as demonstrated by various text-only benchmarks. However, current research lacks such benchmarks for multimodal visio-linguistic settings. This work fills this gap by introducing M5, the first comprehensive benchmark designed to evaluate LMMs on diverse vision-language tasks within a multilingual and multicultural context. M5 includes eight datasets covering five tasks and 41 languages, with a focus on underrepresented languages and culturally diverse images. Furthermore, we introduce two novel datasets, M5-VGR and M5-VLOD, including a new Visio-Linguistic Outlier Detection task, in which all evaluated open-source models fail to significantly surpass the random baseline. Through extensive evaluation and analyses, we highlight substantial task-agnostic performance disparities between high- and low-resource languages. Moreover, we show that larger models do not necessarily outperform smaller ones in a multilingual setting.
Efficient Multimodal Large Language Models: A Survey
In the past year, Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance in tasks such as visual question answering, visual understanding and reasoning. However, the extensive model size and high training and inference costs have hindered the widespread application of MLLMs in academia and industry. Thus, studying efficient and lightweight MLLMs has enormous potential, especially in edge computing scenarios. In this survey, we provide a comprehensive and systematic review of the current state of efficient MLLMs. Specifically, we summarize the timeline of representative efficient MLLMs, research state of efficient structures and strategies, and the applications. Finally, we discuss the limitations of current efficient MLLM research and promising future directions. Please refer to our GitHub repository for more details: https://github.com/lijiannuist/Efficient-Multimodal-LLMs-Survey.
LamRA: Large Multimodal Model as Your Advanced Retrieval Assistant
With the rapid advancement of multimodal information retrieval, increasingly complex retrieval tasks have emerged. Existing methods predominately rely on task-specific fine-tuning of vision-language models, often those trained with image-text contrastive learning. In this paper, we explore the possibility of re-purposing generative Large Multimodal Models (LMMs) for retrieval. This approach enables unifying all retrieval tasks under the same formulation and, more importantly, allows for extrapolation towards unseen retrieval tasks without additional training. Our contributions can be summarised in the following aspects: (i) We introduce LamRA, a versatile framework designed to empower LMMs with sophisticated retrieval and reranking capabilities. (ii) For retrieval, we adopt a two-stage training strategy comprising language-only pre-training and multimodal instruction tuning to progressively enhance LMM's retrieval performance. (iii) For reranking, we employ joint training for both pointwise and listwise reranking, offering two distinct ways to further boost the retrieval performance. (iv) Extensive experimental results underscore the efficacy of our method in handling more than ten retrieval tasks, demonstrating robust performance in both supervised and zero-shot settings, including scenarios involving previously unseen retrieval tasks.
LEGO:Language Enhanced Multi-modal Grounding Model
Multi-modal large language models have demonstrated impressive performance across various tasks in different modalities. However, existing multi-modal models primarily emphasize capturing global information within each modality while neglecting the importance of perceiving local information across modalities. Consequently, these models lack the ability to effectively understand the fine-grained details of input data, limiting their performance in tasks that require a more nuanced understanding. To address this limitation, there is a compelling need to develop models that enable fine-grained understanding across multiple modalities, thereby enhancing their applicability to a wide range of tasks. In this paper, we propose LEGO, a language enhanced multi-modal grounding model. Beyond capturing global information like other multi-modal models, our proposed model excels at tasks demanding a detailed understanding of local information within the input. It demonstrates precise identification and localization of specific regions in images or moments in videos. To achieve this objective, we design a diversified dataset construction pipeline, resulting in a multi-modal, multi-granularity dataset for model training. The code, dataset, and demo of our model can be found at https: //github.com/lzw-lzw/LEGO.
MiniGPT-5: Interleaved Vision-and-Language Generation via Generative Vokens
Large Language Models (LLMs) have garnered significant attention for their advancements in natural language processing, demonstrating unparalleled prowess in text comprehension and generation. Yet, the simultaneous generation of images with coherent textual narratives remains an evolving frontier. In response, we introduce an innovative interleaved vision-and-language generation technique anchored by the concept of "generative vokens," acting as the bridge for harmonized image-text outputs. Our approach is characterized by a distinctive two-staged training strategy focusing on description-free multimodal generation, where the training requires no comprehensive descriptions of images. To bolster model integrity, classifier-free guidance is incorporated, enhancing the effectiveness of vokens on image generation. Our model, MiniGPT-5, exhibits substantial improvement over the baseline Divter model on the MMDialog dataset and consistently delivers superior or comparable multimodal outputs in human evaluations on the VIST dataset, highlighting its efficacy across diverse benchmarks.
4M: Massively Multimodal Masked Modeling
Current machine learning models for vision are often highly specialized and limited to a single modality and task. In contrast, recent large language models exhibit a wide range of capabilities, hinting at a possibility for similarly versatile models in computer vision. In this paper, we take a step in this direction and propose a multimodal training scheme called 4M. It consists of training a single unified Transformer encoder-decoder using a masked modeling objective across a wide range of input/output modalities - including text, images, geometric, and semantic modalities, as well as neural network feature maps. 4M achieves scalability by unifying the representation space of all modalities through mapping them into discrete tokens and performing multimodal masked modeling on a small randomized subset of tokens. 4M leads to models that exhibit several key capabilities: (1) they can perform a diverse set of vision tasks out of the box, (2) they excel when fine-tuned for unseen downstream tasks or new input modalities, and (3) they can function as a generative model that can be conditioned on arbitrary modalities, enabling a wide variety of expressive multimodal editing capabilities with remarkable flexibility. Through experimental analyses, we demonstrate the potential of 4M for training versatile and scalable foundation models for vision tasks, setting the stage for further exploration in multimodal learning for vision and other domains.
MammothModa: Multi-Modal Large Language Model
In this report, we introduce MammothModa, yet another multi-modal large language model (MLLM) designed to achieve state-of-the-art performance starting from an elementary baseline. We focus on three key design insights: (i) Integrating Visual Capabilities while Maintaining Complex Language Understanding: In addition to the vision encoder, we incorporated the Visual Attention Experts into the LLM to enhance its visual capabilities. (ii) Extending Context Window for High-Resolution and Long-Duration Visual Feature: We explore the Visual Merger Module to effectively reduce the token number of high-resolution images and incorporated frame position ids to avoid position interpolation. (iii) High-Quality Bilingual Datasets: We meticulously curated and filtered a high-quality bilingual multimodal dataset to reduce visual hallucinations. With above recipe we build MammothModa that consistently outperforms the state-of-the-art models, e.g., LLaVA-series, across main real-world visual language benchmarks without bells and whistles.
FoPru: Focal Pruning for Efficient Large Vision-Language Models
Large Vision-Language Models (LVLMs) represent a significant advancement toward achieving superior multimodal capabilities by enabling powerful Large Language Models (LLMs) to understand visual input. Typically, LVLMs utilize visual encoders, such as CLIP, to transform images into visual tokens, which are then aligned with textual tokens through projection layers before being input into the LLM for inference. Although existing LVLMs have achieved significant success, their inference efficiency is still limited by the substantial number of visual tokens and the potential redundancy among them. To mitigate this issue, we propose Focal Pruning (FoPru), a training-free method that prunes visual tokens based on the attention-based token significance derived from the vision encoder. Specifically, we introduce two alternative pruning strategies: 1) the rank strategy, which leverages all token significance scores to retain more critical tokens in a global view; 2) the row strategy, which focuses on preserving continuous key information in images from a local perspective. Finally, the selected tokens are reordered to maintain their original positional relationships. Extensive experiments across various LVLMs and multimodal datasets demonstrate that our method can prune a large number of redundant tokens while maintaining high accuracy, leading to significant improvements in inference efficiency.
Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs
Multi-modal Large Language Models (MLLMs) have shown remarkable capabilities in many vision-language tasks. Nevertheless, most MLLMs still lack the Referential Comprehension (RC) ability to identify a specific object or area in images, limiting their application in fine-grained perception tasks. This paper proposes a novel method to enhance the RC capability for MLLMs. Our model represents the referring object in the image using the coordinates of its bounding box and converts the coordinates into texts in a specific format. This allows the model to treat the coordinates as natural language. Moreover, we construct the instruction tuning dataset with various designed RC tasks at a low cost by unleashing the potential of annotations in existing datasets. To further boost the RC ability of the model, we propose a self-consistent bootstrapping method that extends dense object annotations of a dataset into high-quality referring-expression-bounding-box pairs. The model is trained end-to-end with a parameter-efficient tuning framework that allows both modalities to benefit from multi-modal instruction tuning. This framework requires fewer trainable parameters and less training data. Experimental results on conventional vision-language and RC tasks demonstrate the superior performance of our method. For instance, our model exhibits a 12.0% absolute accuracy improvement over Instruct-BLIP on VSR and surpasses Kosmos-2 by 24.7% on RefCOCO_val under zero-shot settings. We also attain the top position on the leaderboard of MMBench. The models, datasets, and codes are publicly available at https://github.com/SY-Xuan/Pink
Do Vision and Language Models Share Concepts? A Vector Space Alignment Study
Large-scale pretrained language models (LMs) are said to ``lack the ability to connect utterances to the world'' (Bender and Koller, 2020), because they do not have ``mental models of the world' '(Mitchell and Krakauer, 2023). If so, one would expect LM representations to be unrelated to representations induced by vision models. We present an empirical evaluation across four families of LMs (BERT, GPT-2, OPT and LLaMA-2) and three vision model architectures (ResNet, SegFormer, and MAE). Our experiments show that LMs partially converge towards representations isomorphic to those of vision models, subject to dispersion, polysemy and frequency. This has important implications for both multi-modal processing and the LM understanding debate (Mitchell and Krakauer, 2023).
ChatGPT Alternative Solutions: Large Language Models Survey
In recent times, the grandeur of Large Language Models (LLMs) has not only shone in the realm of natural language processing but has also cast its brilliance across a vast array of applications. This remarkable display of LLM capabilities has ignited a surge in research contributions within this domain, spanning a diverse spectrum of topics. These contributions encompass advancements in neural network architecture, context length enhancements, model alignment, training datasets, benchmarking, efficiency improvements, and more. Recent years have witnessed a dynamic synergy between academia and industry, propelling the field of LLM research to new heights. A notable milestone in this journey is the introduction of ChatGPT, a powerful AI chatbot grounded in LLMs, which has garnered widespread societal attention. The evolving technology of LLMs has begun to reshape the landscape of the entire AI community, promising a revolutionary shift in the way we create and employ AI algorithms. Given this swift-paced technical evolution, our survey embarks on a journey to encapsulate the recent strides made in the world of LLMs. Through an exploration of the background, key discoveries, and prevailing methodologies, we offer an up-to-the-minute review of the literature. By examining multiple LLM models, our paper not only presents a comprehensive overview but also charts a course that identifies existing challenges and points toward potential future research trajectories. This survey furnishes a well-rounded perspective on the current state of generative AI, shedding light on opportunities for further exploration, enhancement, and innovation.
PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers
Large Multimodal Models (LMMs) excel in natural language and visual understanding but are challenged by exacting tasks such as Knowledge-based Visual Question Answering (KB-VQA) which involve the retrieval of relevant information from document collections to use in shaping answers to questions. We present an extensive training and evaluation framework, M2KR, for KB-VQA. M2KR contains a collection of vision and language tasks which we have incorporated into a single suite of benchmark tasks for training and evaluating general-purpose multi-modal retrievers. We use M2KR to develop PreFLMR, a pre-trained version of the recently developed Fine-grained Late-interaction Multi-modal Retriever (FLMR) approach to KB-VQA, and we report new state-of-the-art results across a range of tasks. We also present investigations into the scaling behaviors of PreFLMR intended to be useful in future developments in general-purpose multi-modal retrievers.
LM-Infinite: Simple On-the-Fly Length Generalization for Large Language Models
In recent years, there have been remarkable advancements in the performance of Transformer-based Large Language Models (LLMs) across various domains. As these LLMs are deployed for increasingly complex tasks, they often face the needs to conduct longer reasoning processes or understanding larger contexts. In these situations, the length generalization failure of LLMs on long sequences become more prominent. Most pre-training schemes truncate training sequences to a fixed length (such as 2048 for LLaMa). LLMs often struggle to generate fluent texts, let alone carry out downstream tasks, after longer contexts, even with relative positional encoding which is designed to cope with this problem. Common solutions such as finetuning on longer corpora often involves daunting hardware and time costs and requires careful training process design. To more efficiently leverage the generation capacity of existing LLMs, we theoretically and empirically investigate the main out-of-distribution (OOD) factors contributing to this problem. Inspired by this diagnosis, we propose a simple yet effective solution for on-the-fly length generalization, LM-Infinite, which involves only a Lambda-shaped attention mask and a distance limit while requiring no parameter updates or learning. We find it applicable to a variety of LLMs using relative-position encoding methods. LM-Infinite is computational efficient with O(n) time and space, and demonstrates consistent fluency and generation quality to as long as 32k tokens on ArXiv and OpenWebText2 datasets, with 2.72x decoding speedup. On downstream task such as passkey retrieval, it continues to work on inputs much longer than training lengths where vanilla models fail immediately.
GPT4Image: Can Large Pre-trained Models Help Vision Models on Perception Tasks?
The recent upsurge in pre-trained large models (e.g. GPT-4) has swept across the entire deep learning community. Such powerful large language models (LLMs) demonstrate advanced generative ability and multimodal understanding capability, which quickly achieve new state-of-the-art performances on a variety of benchmarks. The pre-trained LLM usually plays the role as a universal AI model that can conduct various tasks, including context reasoning, article analysis and image content comprehension. However, considering the prohibitively high memory and computational cost for implementing such a large model, the conventional models (such as CNN and ViT), are still essential for many visual perception tasks. In this paper, we propose to enhance the representation ability of ordinary vision models for perception tasks (e.g. image classification) by taking advantage of large pre-trained models. We present a new learning paradigm in which the knowledge extracted from large pre-trained models are utilized to help models like CNN and ViT learn enhanced representations and achieve better performance. Firstly, we curate a high quality description set by prompting a multimodal LLM to generate descriptive text for all training images. Furthermore, we feed these detailed descriptions into a pre-trained encoder to extract text embeddings with rich semantic information that encodes the content of images. During training, text embeddings will serve as extra supervising signals and be aligned with image representations learned by vision models. The alignment process helps vision models learn better and achieve higher accuracy with the assistance of pre-trained LLMs. We conduct extensive experiments to verify that the proposed algorithm consistently improves the performance for various vision models with heterogeneous architectures.
TP-Eval: Tap Multimodal LLMs' Potential in Evaluation by Customizing Prompts
Recently, multimodal large language models (MLLMs) have received much attention for their impressive capabilities. The evaluation of MLLMs is becoming critical to analyzing attributes of MLLMs and providing valuable insights. However, current benchmarks overlook the problem of prompt sensitivity - minor prompt variations may lead to significant performance fluctuations. Thus, inappropriate prompts may obscure the models' capabilities, underestimating the models' performance. Moreover, different models have different preferences for different prompts, and thus, using the same prompt for all models will cause evaluation bias. This paper analyzes this deficiency in existing benchmarks and further introduces a new evaluation framework named TP-Eval, which introduces a prompt customization method to reduce evaluation biases and tap models' potential. TP-Eval will rewrite the original prompts to different customized prompts for different models. In particular, we propose some well-designed modules for prompt customization tailored to the scenario of MLLM evaluation. Extensive experiments demonstrate the effectiveness of our approach to uncovering models' capabilities, and TP-Eval should benefit the community in developing more comprehensive and convincing MLLM evaluation benchmarks.
A Comprehensive Survey of LLM Alignment Techniques: RLHF, RLAIF, PPO, DPO and More
With advancements in self-supervised learning, the availability of trillions tokens in a pre-training corpus, instruction fine-tuning, and the development of large Transformers with billions of parameters, large language models (LLMs) are now capable of generating factual and coherent responses to human queries. However, the mixed quality of training data can lead to the generation of undesired responses, presenting a significant challenge. Over the past two years, various methods have been proposed from different perspectives to enhance LLMs, particularly in aligning them with human expectation. Despite these efforts, there has not been a comprehensive survey paper that categorizes and details these approaches. In this work, we aim to address this gap by categorizing these papers into distinct topics and providing detailed explanations of each alignment method, thereby helping readers gain a thorough understanding of the current state of the field.
LAION-5B: An open large-scale dataset for training next generation image-text models
Groundbreaking language-vision architectures like CLIP and DALL-E proved the utility of training on large amounts of noisy image-text data, without relying on expensive accurate labels used in standard vision unimodal supervised learning. The resulting models showed capabilities of strong text-guided image generation and transfer to downstream tasks, while performing remarkably at zero-shot classification with noteworthy out-of-distribution robustness. Since then, large-scale language-vision models like ALIGN, BASIC, GLIDE, Flamingo and Imagen made further improvements. Studying the training and capabilities of such models requires datasets containing billions of image-text pairs. Until now, no datasets of this size have been made openly available for the broader research community. To address this problem and democratize research on large-scale multi-modal models, we present LAION-5B - a dataset consisting of 5.85 billion CLIP-filtered image-text pairs, of which 2.32B contain English language. We show successful replication and fine-tuning of foundational models like CLIP, GLIDE and Stable Diffusion using the dataset, and discuss further experiments enabled with an openly available dataset of this scale. Additionally we provide several nearest neighbor indices, an improved web-interface for dataset exploration and subset generation, and detection scores for watermark, NSFW, and toxic content detection. Announcement page https://laion.ai/laion-5b-a-new-era-of-open-large-scale-multi-modal-datasets/
Liquid: Language Models are Scalable Multi-modal Generators
We present Liquid, an auto-regressive generation paradigm that seamlessly integrates visual comprehension and generation by tokenizing images into discrete codes and learning these code embeddings alongside text tokens within a shared feature space for both vision and language. Unlike previous multimodal large language model (MLLM), Liquid achieves this integration using a single large language model (LLM), eliminating the need for external pretrained visual embeddings such as CLIP. For the first time, Liquid uncovers a scaling law that performance drop unavoidably brought by the unified training of visual and language tasks diminishes as the model size increases. Furthermore, the unified token space enables visual generation and comprehension tasks to mutually enhance each other, effectively removing the typical interference seen in earlier models. We show that existing LLMs can serve as strong foundations for Liquid, saving 100x in training costs while outperforming Chameleon in multimodal capabilities and maintaining language performance comparable to mainstream LLMs like LLAMA2. Liquid also outperforms models like SD v2.1 and SD-XL (FID of 5.47 on MJHQ-30K), excelling in both vision-language and text-only tasks. This work demonstrates that LLMs such as LLAMA3.2 and GEMMA2 are powerful multimodal generators, offering a scalable solution for enhancing both vision-language understanding and generation. The code and models will be released.
NVLM: Open Frontier-Class Multimodal LLMs
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks, rivaling the leading proprietary models (e.g., GPT-4o) and open-access models (e.g., Llama 3-V 405B and InternVL 2). Remarkably, NVLM 1.0 shows improved text-only performance over its LLM backbone after multimodal training. In terms of model design, we perform a comprehensive comparison between decoder-only multimodal LLMs (e.g., LLaVA) and cross-attention-based models (e.g., Flamingo). Based on the strengths and weaknesses of both approaches, we propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities. Furthermore, we introduce a 1-D tile-tagging design for tile-based dynamic high-resolution images, which significantly boosts performance on multimodal reasoning and OCR-related tasks. Regarding training data, we meticulously curate and provide detailed information on our multimodal pretraining and supervised fine-tuning datasets. Our findings indicate that dataset quality and task diversity are more important than scale, even during the pretraining phase, across all architectures. Notably, we develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks while maintaining and even improving text-only performance compared to their LLM backbones. To achieve this, we craft and integrate a high-quality text-only dataset into multimodal training, alongside a substantial amount of multimodal math and reasoning data, leading to enhanced math and coding capabilities across modalities. To advance research in the field, we are releasing the model weights and will open-source the code for the community: https://nvlm-project.github.io/.
Boosting Text-To-Image Generation via Multilingual Prompting in Large Multimodal Models
Previous work on augmenting large multimodal models (LMMs) for text-to-image (T2I) generation has focused on enriching the input space of in-context learning (ICL). This includes providing a few demonstrations and optimizing image descriptions to be more detailed and logical. However, as demand for more complex and flexible image descriptions grows, enhancing comprehension of input text within the ICL paradigm remains a critical yet underexplored area. In this work, we extend this line of research by constructing parallel multilingual prompts aimed at harnessing the multilingual capabilities of LMMs. More specifically, we translate the input text into several languages and provide the models with both the original text and the translations. Experiments on two LMMs across 3 benchmarks show that our method, PMT2I, achieves superior performance in general, compositional, and fine-grained assessments, especially in human preference alignment. Additionally, with its advantage of generating more diverse images, PMT2I significantly outperforms baseline prompts when incorporated with reranking methods. Our code and parallel multilingual data can be found at https://github.com/takagi97/PMT2I.
A Survey of GPT-3 Family Large Language Models Including ChatGPT and GPT-4
Large language models (LLMs) are a special class of pretrained language models obtained by scaling model size, pretraining corpus and computation. LLMs, because of their large size and pretraining on large volumes of text data, exhibit special abilities which allow them to achieve remarkable performances without any task-specific training in many of the natural language processing tasks. The era of LLMs started with OpenAI GPT-3 model, and the popularity of LLMs is increasing exponentially after the introduction of models like ChatGPT and GPT4. We refer to GPT-3 and its successor OpenAI models, including ChatGPT and GPT4, as GPT-3 family large language models (GLLMs). With the ever-rising popularity of GLLMs, especially in the research community, there is a strong need for a comprehensive survey which summarizes the recent research progress in multiple dimensions and can guide the research community with insightful future research directions. We start the survey paper with foundation concepts like transformers, transfer learning, self-supervised learning, pretrained language models and large language models. We then present a brief overview of GLLMs and discuss the performances of GLLMs in various downstream tasks, specific domains and multiple languages. We also discuss the data labelling and data augmentation abilities of GLLMs, the robustness of GLLMs, the effectiveness of GLLMs as evaluators, and finally, conclude with multiple insightful future research directions. To summarize, this comprehensive survey paper will serve as a good resource for both academic and industry people to stay updated with the latest research related to GPT-3 family large language models.
Macaw-LLM: Multi-Modal Language Modeling with Image, Audio, Video, and Text Integration
Although instruction-tuned large language models (LLMs) have exhibited remarkable capabilities across various NLP tasks, their effectiveness on other data modalities beyond text has not been fully studied. In this work, we propose Macaw-LLM, a novel multi-modal LLM that seamlessly integrates visual, audio, and textual information. Macaw-LLM consists of three main components: a modality module for encoding multi-modal data, a cognitive module for harnessing pretrained LLMs, and an alignment module for harmonizing diverse representations. Our novel alignment module seamlessly bridges multi-modal features to textual features, simplifying the adaptation process from the modality modules to the cognitive module. In addition, we construct a large-scale multi-modal instruction dataset in terms of multi-turn dialogue, including 69K image instances and 50K video instances. We have made our data, code and model publicly available, which we hope can pave the way for future research in multi-modal LLMs and expand the capabilities of LLMs to handle diverse data modalities and address complex real-world scenarios.
Trained on 100 million words and still in shape: BERT meets British National Corpus
While modern masked language models (LMs) are trained on ever larger corpora, we here explore the effects of down-scaling training to a modestly-sized but representative, well-balanced, and publicly available English text source -- the British National Corpus. We show that pre-training on this carefully curated corpus can reach better performance than the original BERT model. We argue that this type of corpora has great potential as a language modeling benchmark. To showcase this potential, we present fair, reproducible and data-efficient comparative studies of LMs, in which we evaluate several training objectives and model architectures and replicate previous empirical results in a systematic way. We propose an optimized LM architecture called LTG-BERT.
PaLM-E: An Embodied Multimodal Language Model
Large language models excel at a wide range of complex tasks. However, enabling general inference in the real world, e.g., for robotics problems, raises the challenge of grounding. We propose embodied language models to directly incorporate real-world continuous sensor modalities into language models and thereby establish the link between words and percepts. Input to our embodied language model are multi-modal sentences that interleave visual, continuous state estimation, and textual input encodings. We train these encodings end-to-end, in conjunction with a pre-trained large language model, for multiple embodied tasks including sequential robotic manipulation planning, visual question answering, and captioning. Our evaluations show that PaLM-E, a single large embodied multimodal model, can address a variety of embodied reasoning tasks, from a variety of observation modalities, on multiple embodiments, and further, exhibits positive transfer: the model benefits from diverse joint training across internet-scale language, vision, and visual-language domains. Our largest model, PaLM-E-562B with 562B parameters, in addition to being trained on robotics tasks, is a visual-language generalist with state-of-the-art performance on OK-VQA, and retains generalist language capabilities with increasing scale.
LHRS-Bot: Empowering Remote Sensing with VGI-Enhanced Large Multimodal Language Model
The revolutionary capabilities of large language models (LLMs) have paved the way for multimodal large language models (MLLMs) and fostered diverse applications across various specialized domains. In the remote sensing (RS) field, however, the diverse geographical landscapes and varied objects in RS imagery are not adequately considered in recent MLLM endeavors. To bridge this gap, we construct a large-scale RS image-text dataset, LHRS-Align, and an informative RS-specific instruction dataset, LHRS-Instruct, leveraging the extensive volunteered geographic information (VGI) and globally available RS images. Building on this foundation, we introduce LHRS-Bot, an MLLM tailored for RS image understanding through a novel multi-level vision-language alignment strategy and a curriculum learning method. Additionally, we introduce LHRS-Bench, a benchmark for thoroughly evaluating MLLMs' abilities in RS image understanding. Comprehensive experiments demonstrate that LHRS-Bot exhibits a profound understanding of RS images and the ability to perform nuanced reasoning within the RS domain.
GME: Improving Universal Multimodal Retrieval by Multimodal LLMs
Universal Multimodal Retrieval (UMR) aims to enable search across various modalities using a unified model, where queries and candidates can consist of pure text, images, or a combination of both. Previous work has attempted to adopt multimodal large language models (MLLMs) to realize UMR using only text data. However, our preliminary experiments demonstrate that more diverse multimodal training data can further unlock the potential of MLLMs. Despite its effectiveness, the existing multimodal training data is highly imbalanced in terms of modality, which motivates us to develop a training data synthesis pipeline and construct a large-scale, high-quality fused-modal training dataset. Based on the synthetic training data, we develop the General Multimodal Embedder (GME), an MLLM-based dense retriever designed for UMR. Furthermore, we construct a comprehensive UMR Benchmark (UMRB) to evaluate the effectiveness of our approach. Experimental results show that our method achieves state-of-the-art performance among existing UMR methods. Last, we provide in-depth analyses of model scaling, training strategies, and perform ablation studies on both the model and synthetic data.
LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset, Framework, and Benchmark
Large language models have become a potential pathway toward achieving artificial general intelligence. Recent works on multi-modal large language models have demonstrated their effectiveness in handling visual modalities. In this work, we extend the research of MLLMs to point clouds and present the LAMM-Dataset and LAMM-Benchmark for 2D image and 3D point cloud understanding. We also establish an extensible framework to facilitate the extension of MLLMs to additional modalities. Our main contribution is three-fold: 1) We present the LAMM-Dataset and LAMM-Benchmark, which cover almost all high-level vision tasks for 2D and 3D vision. Extensive experiments validate the effectiveness of our dataset and benchmark. 2) We demonstrate the detailed methods of constructing instruction-tuning datasets and benchmarks for MLLMs, which will enable future research on MLLMs to scale up and extend to other domains, tasks, and modalities faster. 3) We provide a primary but potential MLLM training framework optimized for modalities' extension. We also provide baseline models, comprehensive experimental observations, and analysis to accelerate future research. Codes and datasets are now available at https://github.com/OpenLAMM/LAMM.
PeFoMed: Parameter Efficient Fine-tuning on Multimodal Large Language Models for Medical Visual Question Answering
Multimodal large language models (MLLMs) represent an evolutionary expansion in the capabilities of traditional large language models, enabling them to tackle challenges that surpass the scope of purely text-based applications. It leverages the knowledge previously encoded within these language models, thereby enhancing their applicability and functionality in the reign of multimodal contexts. Recent works investigate the adaptation of MLLMs to predict free-form answers as a generative task to solve medical visual question answering (Med-VQA) tasks. In this paper, we propose a parameter efficient framework for fine-tuning MLLM specifically tailored to Med-VQA applications, and empirically validate it on a public benchmark dataset. To accurately measure the performance, we employ human evaluation and the results reveal that our model achieves an overall accuracy of 81.9%, and outperforms the GPT-4v model by a significant margin of 26% absolute accuracy on closed-ended questions. The code will be available here: https://github.com/jinlHe/PeFoMed.
Beyond the Limits: A Survey of Techniques to Extend the Context Length in Large Language Models
Recently, large language models (LLMs) have shown remarkable capabilities including understanding context, engaging in logical reasoning, and generating responses. However, this is achieved at the expense of stringent computational and memory requirements, hindering their ability to effectively support long input sequences. This survey provides an inclusive review of the recent techniques and methods devised to extend the sequence length in LLMs, thereby enhancing their capacity for long-context understanding. In particular, we review and categorize a wide range of techniques including architectural modifications, such as modified positional encoding and altered attention mechanisms, which are designed to enhance the processing of longer sequences while avoiding a proportional increase in computational requirements. The diverse methodologies investigated in this study can be leveraged across different phases of LLMs, i.e., training, fine-tuning and inference. This enables LLMs to efficiently process extended sequences. The limitations of the current methodologies is discussed in the last section along with the suggestions for future research directions, underscoring the importance of sequence length in the continued advancement of LLMs.
InfiMM-HD: A Leap Forward in High-Resolution Multimodal Understanding
Multimodal Large Language Models (MLLMs) have experienced significant advancements recently. Nevertheless, challenges persist in the accurate recognition and comprehension of intricate details within high-resolution images. Despite being indispensable for the development of robust MLLMs, this area remains underinvestigated. To tackle this challenge, our work introduces InfiMM-HD, a novel architecture specifically designed for processing images of different resolutions with low computational overhead. This innovation facilitates the enlargement of MLLMs to higher-resolution capabilities. InfiMM-HD incorporates a cross-attention module and visual windows to reduce computation costs. By integrating this architectural design with a four-stage training pipeline, our model attains improved visual perception efficiently and cost-effectively. Empirical study underscores the robustness and effectiveness of InfiMM-HD, opening new avenues for exploration in related areas. Codes and models can be found at https://huggingface.co/Infi-MM/infimm-hd
Seeing is Understanding: Unlocking Causal Attention into Modality-Mutual Attention for Multimodal LLMs
Recent Multimodal Large Language Models (MLLMs) have demonstrated significant progress in perceiving and reasoning over multimodal inquiries, ushering in a new research era for foundation models. However, vision-language misalignment in MLLMs has emerged as a critical challenge, where the textual responses generated by these models are not factually aligned with the given text-image inputs. Existing efforts to address vision-language misalignment have focused on developing specialized vision-language connectors or leveraging visual instruction tuning from diverse domains. In this paper, we tackle this issue from a fundamental yet unexplored perspective by revisiting the core architecture of MLLMs. Most MLLMs are typically built on decoder-only LLMs consisting of a causal attention mechanism, which limits the ability of earlier modalities (e.g., images) to incorporate information from later modalities (e.g., text). To address this problem, we propose AKI, a novel MLLM that unlocks causal attention into modality-mutual attention (MMA) to enable image tokens to attend to text tokens. This simple yet effective design allows AKI to achieve superior performance in 12 multimodal understanding benchmarks (+7.2% on average) without introducing additional parameters and increasing training time. Our MMA design is intended to be generic, allowing for application across various modalities, and scalable to accommodate diverse multimodal scenarios. The code is publicly available at https://github.com/sony/aki, and we will release our AKI-4B model to encourage further advancements in MLLMs across various directions.
Multi-modal preference alignment remedies regression of visual instruction tuning on language model
In production, multi-modal large language models (MLLMs) are expected to support multi-turn queries of interchanging image and text modalities. However, the current MLLMs trained with visual-question-answering (VQA) datasets could suffer from degradation, as VQA datasets lack the diversity and complexity of the original text instruction datasets which the underlying language model had been trained with. To address this challenging degradation, we first collect a lightweight (6k entries) VQA preference dataset where answers were annotated by Gemini for 5 quality metrics in a granular fashion, and investigate standard Supervised Fine-tuning, rejection sampling, Direct Preference Optimization (DPO), and SteerLM. Our findings indicate that the with DPO we are able to surpass instruction-following capabilities of the language model, achieving a 6.73 score on MT-Bench, compared to Vicuna's 6.57 and LLaVA's 5.99 despite small data scale. This enhancement in textual instruction proficiency correlates with boosted visual instruction performance (+4.9\% on MM-Vet, +6\% on LLaVA-Bench), with minimal alignment tax on visual knowledge benchmarks compared to previous RLHF approach. In conclusion, we propose a distillation-based multi-modal alignment model with fine-grained annotations on a small dataset that reconciles the textual and visual performance of MLLMs, restoring and boosting language capability after visual instruction tuning.
Tele-FLM Technical Report
Large language models (LLMs) have showcased profound capabilities in language understanding and generation, facilitating a wide array of applications. However, there is a notable paucity of detailed, open-sourced methodologies on efficiently scaling LLMs beyond 50 billion parameters with minimum trial-and-error cost and computational resources. In this report, we introduce Tele-FLM (aka FLM-2), a 52B open-sourced multilingual large language model that features a stable, efficient pre-training paradigm and enhanced factual judgment capabilities. Tele-FLM demonstrates superior multilingual language modeling abilities, measured by BPB on textual corpus. Besides, in both English and Chinese foundation model evaluation, it is comparable to strong open-sourced models that involve larger pre-training FLOPs, such as Llama2-70B and DeepSeek-67B. In addition to the model weights, we share the core designs, engineering practices, and training details, which we expect to benefit both the academic and industrial communities.
SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts. However, prompting often leads models to make predictions with lower accuracy compared to finetuning a model with ample training data. On the other hand, while finetuning LLMs on task-specific data generally improves their performance, abundant annotated datasets are not available for all tasks. Previous work has explored generating task-specific data from state-of-the-art LLMs and using this data to finetune smaller models, but this approach requires access to a language model other than the one being trained, which introduces cost, scalability challenges, and legal hurdles associated with continuously relying on more powerful LLMs. In response to these, we propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM, then use these input-output pairs to finetune the student LLM itself. In our empirical evaluation of the Natural Instructions V2 benchmark, we find that SELF-GUIDE improves the performance of LLM by a substantial margin. Specifically, we report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics. This sheds light on the promise of self-synthesized data guiding LLMs towards becoming task-specific experts without any external learning signals.
Imp: Highly Capable Large Multimodal Models for Mobile Devices
By harnessing the capabilities of large language models (LLMs), recent large multimodal models (LMMs) have shown remarkable versatility in open-world multimodal understanding. Nevertheless, they are usually parameter-heavy and computation-intensive, thus hindering their applicability in resource-constrained scenarios. To this end, several lightweight LMMs have been proposed successively to maximize the capabilities under constrained scale (e.g., 3B). Despite the encouraging results achieved by these methods, most of them only focus on one or two aspects of the design space, and the key design choices that influence model capability have not yet been thoroughly investigated. In this paper, we conduct a systematic study for lightweight LMMs from the aspects of model architecture, training strategy, and training data. Based on our findings, we obtain Imp -- a family of highly capable LMMs at the 2B-4B scales. Notably, our Imp-3B model steadily outperforms all the existing lightweight LMMs of similar size, and even surpasses the state-of-the-art LMMs at the 13B scale. With low-bit quantization and resolution reduction techniques, our Imp model can be deployed on a Qualcomm Snapdragon 8Gen3 mobile chip with a high inference speed of about 13 tokens/s.
Wings: Learning Multimodal LLMs without Text-only Forgetting
Multimodal large language models (MLLMs), initiated with a trained LLM, first align images with text and then fine-tune on multimodal mixed inputs. However, the MLLM catastrophically forgets the text-only instructions, which do not include images and can be addressed within the initial LLM. In this paper, we present Wings, a novel MLLM that excels in both text-only dialogues and multimodal comprehension. Analyzing MLLM attention in multimodal instructions reveals that text-only forgetting is related to the attention shifts from pre-image to post-image text. From that, we construct extra modules that act as the boosted learner to compensate for the attention shift. The complementary visual and textual learners, like "wings" on either side, are connected in parallel within each layer's attention block. Initially, image and text inputs are aligned with visual learners operating alongside the main attention, balancing focus on visual elements. Textual learners are later collaboratively integrated with attention-based routing to blend the outputs of the visual and textual learners. We design the Low-Rank Residual Attention (LoRRA) to guarantee high efficiency for learners. Our experimental results demonstrate that Wings outperforms equally-scaled MLLMs in both text-only and visual question-answering tasks. On a newly constructed Interleaved Image-Text (IIT) benchmark, Wings exhibits superior performance from text-only-rich to multimodal-rich question-answering tasks.
3DMIT: 3D Multi-modal Instruction Tuning for Scene Understanding
The remarkable potential of multi-modal large language models (MLLMs) in comprehending both vision and language information has been widely acknowledged. However, the scarcity of 3D scenes-language pairs in comparison to their 2D counterparts, coupled with the inadequacy of existing approaches in understanding of 3D scenes by LLMs, poses a significant challenge. In response, we collect and construct an extensive dataset comprising 75K instruction-response pairs tailored for 3D scenes. This dataset addresses tasks related to 3D VQA, 3D grounding, and 3D conversation. To further enhance the integration of 3D spatial information into LLMs, we introduce a novel and efficient prompt tuning paradigm, 3DMIT. This paradigm eliminates the alignment stage between 3D scenes and language and extends the instruction prompt with the 3D modality information including the entire scene and segmented objects. We evaluate the effectiveness of our method across diverse tasks in the 3D scene domain and find that our approach serves as a strategic means to enrich LLMs' comprehension of the 3D world. Our code is available at https://github.com/staymylove/3DMIT.
On LLMs-Driven Synthetic Data Generation, Curation, and Evaluation: A Survey
Within the evolving landscape of deep learning, the dilemma of data quantity and quality has been a long-standing problem. The recent advent of Large Language Models (LLMs) offers a data-centric solution to alleviate the limitations of real-world data with synthetic data generation. However, current investigations into this field lack a unified framework and mostly stay on the surface. Therefore, this paper provides an organization of relevant studies based on a generic workflow of synthetic data generation. By doing so, we highlight the gaps within existing research and outline prospective avenues for future study. This work aims to shepherd the academic and industrial communities towards deeper, more methodical inquiries into the capabilities and applications of LLMs-driven synthetic data generation.
M3P: Learning Universal Representations via Multitask Multilingual Multimodal Pre-training
We present M3P, a Multitask Multilingual Multimodal Pre-trained model that combines multilingual pre-training and multimodal pre-training into a unified framework via multitask pre-training. Our goal is to learn universal representations that can map objects occurred in different modalities or texts expressed in different languages into a common semantic space. In addition, to explicitly encourage fine-grained alignment between images and non-English languages, we also propose Multimodal Code-switched Training (MCT) to combine monolingual pre-training and multimodal pre-training via a code-switch strategy. Experiments are performed on the multilingual image retrieval task across two benchmark datasets, including MSCOCO and Multi30K. M3P can achieve comparable results for English and new state-of-the-art results for non-English languages.
From Word Vectors to Multimodal Embeddings: Techniques, Applications, and Future Directions For Large Language Models
Word embeddings and language models have transformed natural language processing (NLP) by facilitating the representation of linguistic elements in continuous vector spaces. This review visits foundational concepts such as the distributional hypothesis and contextual similarity, tracing the evolution from sparse representations like one-hot encoding to dense embeddings including Word2Vec, GloVe, and fastText. We examine both static and contextualized embeddings, underscoring advancements in models such as ELMo, BERT, and GPT and their adaptations for cross-lingual and personalized applications. The discussion extends to sentence and document embeddings, covering aggregation methods and generative topic models, along with the application of embeddings in multimodal domains, including vision, robotics, and cognitive science. Advanced topics such as model compression, interpretability, numerical encoding, and bias mitigation are analyzed, addressing both technical challenges and ethical implications. Additionally, we identify future research directions, emphasizing the need for scalable training techniques, enhanced interpretability, and robust grounding in non-textual modalities. By synthesizing current methodologies and emerging trends, this survey offers researchers and practitioners an in-depth resource to push the boundaries of embedding-based language models.
Vikhr: The Family of Open-Source Instruction-Tuned Large Language Models for Russian
There has been a surge in the development of various Large Language Models (LLMs). However, text generation for languages other than English often faces significant challenges, including poor generation quality and the reduced computational performance due to the disproportionate representation of tokens in model's vocabulary. In this work, we address these issues and introduce Vikhr, a new state-of-the-art open-source instruction-tuned LLM designed specifically for the Russian language. Unlike previous efforts for Russian that utilize computationally inexpensive LoRA adapters on top of English-oriented models, Vikhr features an adapted tokenizer vocabulary and undergoes the continued pre-training and instruction tuning of all weights. This approach not only enhances the model's performance but also significantly improves its computational and contextual efficiency. The remarkable performance of Vikhr across various Russian-language benchmarks can also be attributed to our efforts in expanding instruction datasets and corpora for continued pre-training. Vikhr not only sets the new state of the art among open-source LLMs for Russian, but even outperforms some proprietary closed-source models on certain benchmarks. The model weights, instruction sets, and code are publicly available
Jointly Training Large Autoregressive Multimodal Models
In recent years, advances in the large-scale pretraining of language and text-to-image models have revolutionized the field of machine learning. Yet, integrating these two modalities into a single, robust model capable of generating seamless multimodal outputs remains a significant challenge. To address this gap, we present the Joint Autoregressive Mixture (JAM) framework, a modular approach that systematically fuses existing text and image generation models. We also introduce a specialized, data-efficient instruction-tuning strategy, tailored for mixed-modal generation tasks. Our final instruct-tuned model demonstrates unparalleled performance in generating high-quality multimodal outputs and represents the first model explicitly designed for this purpose.
FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions
Modern Large Language Models (LLMs) are capable of following long and complex instructions that enable a diverse amount of user tasks. However, despite Information Retrieval (IR) models using LLMs as the backbone of their architectures, nearly all of them still only take queries as input, with no instructions. For the handful of recent models that do take instructions, it's unclear how they use them. We introduce our dataset FollowIR, which contains a rigorous instruction evaluation benchmark as well as a training set for helping IR models learn to better follow real-world instructions. FollowIR builds off the long history of the TREC conferences: as TREC provides human annotators with instructions (also known as narratives) to determine document relevance, so should IR models be able to understand and decide relevance based on these detailed instructions. Our evaluation benchmark starts with three deeply judged TREC collections and alters the annotator instructions, re-annotating relevant documents. Through this process, we can measure how well IR models follow instructions, through a new pairwise evaluation framework. Our results indicate that existing retrieval models fail to correctly use instructions, using them for basic keywords and struggling to understand long-form information. However, we show that it is possible for IR models to learn to follow complex instructions: our new FollowIR-7B model has significant improvements (over 13%) after fine-tuning on our training set.
Enabling Large Language Models to Generate Text with Citations
Large language models (LLMs) have emerged as a widely-used tool for information seeking, but their generated outputs are prone to hallucination. In this work, we aim to enable LLMs to generate text with citations, improving their factual correctness and verifiability. Existing work mainly relies on commercial search engines and human evaluation, making it challenging to reproduce and compare with different modeling approaches. We propose ALCE, the first benchmark for Automatic LLMs' Citation Evaluation. ALCE collects a diverse set of questions and retrieval corpora and requires building end-to-end systems to retrieve supporting evidence and generate answers with citations. We build automatic metrics along three dimensions -- fluency, correctness, and citation quality -- and demonstrate their strong correlation with human judgements. Our experiments with state-of-the-art LLMs and novel prompting strategies show that current systems have considerable room for improvements -- for example, on the ELI5 dataset, even the best model has 49% of its generations lacking complete citation support. Our extensive analyses further highlight promising future directions, including developing better retrievers, advancing long-context LLMs, and improving the ability to synthesize information from multiple sources.
Adapting Language Models to Compress Contexts
Transformer-based language models (LMs) are powerful and widely-applicable tools, but their usefulness is constrained by a finite context window and the expensive computational cost of processing long text documents. We propose to adapt pre-trained LMs into AutoCompressors. These models are capable of compressing long contexts into compact summary vectors, which are then accessible to the model as soft prompts. Summary vectors are trained with an unsupervised objective, whereby long documents are processed in segments and summary vectors from all previous segments are used in language modeling. We fine-tune OPT models on sequences of up to 30,720 tokens and show that AutoCompressors can utilize long contexts to improve perplexity. We evaluate AutoCompressors on in-context learning by compressing task demonstrations. We find that summary vectors are good substitutes for plain-text demonstrations, increasing accuracy while reducing inference cost. Finally, we explore the benefits of pre-computing summary vectors for large corpora by applying summary vectors to retrieval-augmented language modeling. Overall, AutoCompressors emerge as a simple and inexpensive solution for extending the context window of LMs while speeding up inference over long contexts.
It's All in The [MASK]: Simple Instruction-Tuning Enables BERT-like Masked Language Models As Generative Classifiers
While encoder-only models such as BERT and ModernBERT are ubiquitous in real-world NLP applications, their conventional reliance on task-specific classification heads can limit their applicability compared to decoder-based large language models (LLMs). In this work, we introduce ModernBERT-Large-Instruct, a 0.4B-parameter encoder model that leverages its masked language modelling (MLM) head for generative classification. Our approach employs an intentionally simple training loop and inference mechanism that requires no heavy pre-processing, heavily engineered prompting, or architectural modifications. ModernBERT-Large-Instruct exhibits strong zero-shot performance on both classification and knowledge-based tasks, outperforming similarly sized LLMs on MMLU and achieving 93% of Llama3-1B's MMLU performance with 60% less parameters. We also demonstrate that, when fine-tuned, the generative approach using the MLM head matches or even surpasses traditional classification-head methods across diverse NLU tasks.This capability emerges specifically in models trained on contemporary, diverse data mixes, with models trained on lower volume, less-diverse data yielding considerably weaker performance. Although preliminary, these results demonstrate the potential of using the original generative masked language modelling head over traditional task-specific heads for downstream tasks. Our work suggests that further exploration into this area is warranted, highlighting many avenues for future improvements.
Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See
By treating visual tokens from visual encoders as text tokens, Multimodal Large Language Models (MLLMs) have achieved remarkable progress across diverse visual understanding tasks, leveraging the robust architectures of Large Language Models (LLMs). However, as token counts grow, the quadratic scaling of computation in LLMs introduces a significant efficiency bottleneck, impeding further scalability. Although recent approaches have explored pruning visual tokens or employing lighter LLM architectures, the computational overhead from an increasing number of visual tokens remains a substantial challenge. In this study, we investigate the redundancy in visual computation at both the parameter and computational pattern levels within LLaVA, a representative MLLM, and introduce a suite of streamlined strategies to enhance efficiency. These include neighbor-aware visual token attention, pruning of inactive visual attention heads, and selective layer dropping for visual computations. By implementing these strategies in LLaVA, we achieve a reduction in computational demands of 88% while maintaining model performance across key benchmarks. Additionally, we validate the existence of visual computational redundancy in other MLLMs, such as Qwen2-VL-7B and InternVL-2.0-4B/8B/26B. These results present a novel pathway for MLLMs to handle dense visual tokens with minimal computational costs. Code and model checkpoints will be released to support further research.
A Law of Next-Token Prediction in Large Language Models
Large language models (LLMs) have been widely employed across various application domains, yet their black-box nature poses significant challenges to understanding how these models process input data internally to make predictions. In this paper, we introduce a precise and quantitative law that governs the learning of contextualized token embeddings through intermediate layers in pre-trained LLMs for next-token prediction. Our findings reveal that each layer contributes equally to enhancing prediction accuracy, from the lowest to the highest layer -- a universal phenomenon observed across a diverse array of open-source LLMs, built on architectures such as Transformer, RWKV, and Mamba. We demonstrate that this law offers new perspectives and insights to inform and guide practices in LLM development and applications, including model scaling, pre-training tasks, and information flow. Overall, our law enables more fine-grained approaches to the design, training, and interpretation of LLMs through scrutinizing their internal data processing mechanisms.
Refining Sentence Embedding Model through Ranking Sentences Generation with Large Language Models
Sentence embedding is essential for many NLP tasks, with contrastive learning methods achieving strong performance using annotated datasets like NLI. Yet, the reliance on manual labels limits scalability. Recent studies leverage large language models (LLMs) to generate sentence pairs, reducing annotation dependency. However, they overlook ranking information crucial for fine-grained semantic distinctions. To tackle this challenge, we propose a method for controlling the generation direction of LLMs in the latent space. Unlike unconstrained generation, the controlled approach ensures meaningful semantic divergence. Then, we refine exist sentence embedding model by integrating ranking information and semantic information. Experiments on multiple benchmarks demonstrate that our method achieves new SOTA performance with a modest cost in ranking sentence synthesis.
Large Language Models as Foundations for Next-Gen Dense Retrieval: A Comprehensive Empirical Assessment
Pretrained language models like BERT and T5 serve as crucial backbone encoders for dense retrieval. However, these models often exhibit limited generalization capabilities and face challenges in improving in domain accuracy. Recent research has explored using large language models (LLMs) as retrievers, achieving SOTA performance across various tasks. Despite these advancements, the specific benefits of LLMs over traditional retrievers and the impact of different LLM configurations, such as parameter sizes, pretraining duration, and alignment processes on retrieval tasks remain unclear. In this work, we conduct a comprehensive empirical study on a wide range of retrieval tasks, including in domain accuracy, data efficiency, zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. We evaluate over 15 different backbone LLMs and non LLMs. Our findings reveal that larger models and extensive pretraining consistently enhance in domain accuracy and data efficiency. Additionally, larger models demonstrate significant potential in zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. These results underscore the advantages of LLMs as versatile and effective backbone encoders in dense retrieval, providing valuable insights for future research and development in this field.
World Model on Million-Length Video And Language With RingAttention
Current language models fall short in understanding aspects of the world not easily described in words, and struggle with complex, long-form tasks. Video sequences offer valuable temporal information absent in language and static images, making them attractive for joint modeling with language. Such models could develop a understanding of both human textual knowledge and the physical world, enabling broader AI capabilities for assisting humans. However, learning from millions of tokens of video and language sequences poses challenges due to memory constraints, computational complexity, and limited datasets. To address these challenges, we curate a large dataset of diverse videos and books, utilize the RingAttention technique to scalably train on long sequences, and gradually increase context size from 4K to 1M tokens. This paper makes the following contributions: (a) Largest context size neural network: We train one of the largest context size transformers on long video and language sequences, setting new benchmarks in difficult retrieval tasks and long video understanding. (b) Solutions for overcoming vision-language training challenges, including using masked sequence packing for mixing different sequence lengths, loss weighting to balance language and vision, and model-generated QA dataset for long sequence chat. (c) A highly-optimized implementation with RingAttention, masked sequence packing, and other key features for training on millions-length multimodal sequences. (d) Fully open-sourced a family of 7B parameter models capable of processing long text documents (LWM-Text, LWM-Text-Chat) and videos (LWM, LWM-Chat) of over 1M tokens. This work paves the way for training on massive datasets of long video and language to develop understanding of both human knowledge and the multimodal world, and broader capabilities.
MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale
Open-source multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks. However, their reasoning capabilities remain constrained by existing instruction-tuning datasets, which were predominately repurposed from academic datasets such as VQA, AI2D, and ChartQA. These datasets target simplistic tasks, and only provide phrase-level answers without any intermediate rationales. To address these challenges, we introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales designed to elicit CoT reasoning. Using only open models, we create a dataset containing 12M instruction-response pairs to cover diverse, reasoning-intensive tasks with detailed and faithful rationales. Experiments demonstrate that training MLLMs on this dataset significantly improves reasoning capabilities, achieving state-of-the-art performance on benchmarks such as MathVerse (+8.1%), MMMU-Pro (+7%), and MuirBench (+13.3%). Additionally, the model demonstrates notable improvements of up to 4% on non-reasoning-based benchmarks. Ablation studies further highlight the importance of key components, such as rewriting and self-filtering, in the dataset construction process.
What Makes Multimodal In-Context Learning Work?
Large Language Models have demonstrated remarkable performance across various tasks, exhibiting the capacity to swiftly acquire new skills, such as through In-Context Learning (ICL) with minimal demonstration examples. In this work, we present a comprehensive framework for investigating Multimodal ICL (M-ICL) in the context of Large Multimodal Models. We consider the best open-source multimodal models (e.g., IDEFICS, OpenFlamingo) and a wide range of multimodal tasks. Our study unveils several noteworthy findings: (1) M-ICL primarily relies on text-driven mechanisms, showing little to no influence from the image modality. (2) When used with advanced-ICL strategy (like RICES), M-ICL is not better than a simple strategy based on majority voting over context examples. Moreover, we identify several biases and limitations of M-ICL that warrant consideration prior to deployment. Code available at https://gitlab.com/folbaeni/multimodal-icl
Large Language Models Can Self-Improve in Long-context Reasoning
Large language models (LLMs) have achieved substantial progress in processing long contexts but still struggle with long-context reasoning. Existing approaches typically involve fine-tuning LLMs with synthetic data, which depends on annotations from human experts or advanced models like GPT-4, thus restricting further advancements. To address this issue, we investigate the potential for LLMs to self-improve in long-context reasoning and propose \ours, an approach specifically designed for this purpose. This approach is straightforward: we sample multiple outputs for each question, score them with Minimum Bayes Risk, and then apply supervised fine-tuning or preference optimization based on these outputs. Extensive experiments on several leading LLMs demonstrate the effectiveness of \ours, with an absolute improvement of 4.2 points for Llama-3.1-8B-Instruct. Furthermore, \ours achieves superior performance compared to prior approaches that depend on data produced by human experts or advanced models. We anticipate that this work will open new avenues for self-improvement techniques in long-context scenarios, which are essential for the continual advancement of LLMs.
On Speeding Up Language Model Evaluation
Large language models (LLMs) currently dominate the field of natural language processing (NLP), representing the state-of-the-art across a diverse array of tasks. Developing a model of this nature, from training to inference, requires making numerous decisions which define a combinatorial search problem. For example, selecting the optimal pre-trained LLM, prompt, or hyperparameters to attain the best performance for a task often requires evaluating multiple candidates on an entire test set. This exhaustive evaluation can be time-consuming and costly, as both inference and metric computation with LLMs are resource-intensive. In this paper, we address the challenge of identifying the best method within a limited budget for evaluating methods on test examples. By leveraging the well-studied multi-armed bandit framework, which sequentially selects the next method-example pair to evaluate, our approach, combining multi-armed bandit algorithms with low-rank factorization, significantly reduces the required resources. Experiments show that our algorithms can identify the top-performing method using only 5-15\% of the typically needed resources, resulting in an 85-95\% reduction in cost.
Exploring Multi-Grained Concept Annotations for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) excel in vision--language tasks by pre-training solely on coarse-grained concept annotations (e.g., image captions). We hypothesize that integrating fine-grained concept annotations (e.g., object labels and object regions) will further improve performance, as both data granularities complement each other in terms of breadth and depth in concept representation. We introduce a new dataset featuring Multimodal Multi-Grained Concept annotations (MMGiC) for MLLMs. In constructing MMGiC, we explore the impact of different data recipes on multimodal comprehension and generation. Our analyses reveal that multi-grained concept annotations integrate and complement each other, under our structured template and a general MLLM framework. We clearly explore and demonstrate the potential of MMGiC to help MLLMs better locate and learn concepts, aligning vision and language at multiple granularities. We further validate our hypothesis by investigating the fair comparison and effective collaboration between MMGiC and image--caption data on 12 multimodal comprehension and generation benchmarks, e.g., their appropriate combination achieve 3.95% and 2.34% absolute improvements over image--caption data alone on POPE and SEED-Bench. Code, data and models will be available at https://github.com/LooperXX/MMGiC.
mSLAM: Massively multilingual joint pre-training for speech and text
We present mSLAM, a multilingual Speech and LAnguage Model that learns cross-lingual cross-modal representations of speech and text by pre-training jointly on large amounts of unlabeled speech and text in multiple languages. mSLAM combines w2v-BERT pre-training on speech with SpanBERT pre-training on character-level text, along with Connectionist Temporal Classification (CTC) losses on paired speech and transcript data, to learn a single model capable of learning from and representing both speech and text signals in a shared representation space. We evaluate mSLAM on several downstream speech understanding tasks and find that joint pre-training with text improves quality on speech translation, speech intent classification and speech language-ID while being competitive on multilingual ASR, when compared against speech-only pre-training. Our speech translation model demonstrates zero-shot text translation without seeing any text translation data, providing evidence for cross-modal alignment of representations. mSLAM also benefits from multi-modal fine-tuning, further improving the quality of speech translation by directly leveraging text translation data during the fine-tuning process. Our empirical analysis highlights several opportunities and challenges arising from large-scale multimodal pre-training, suggesting directions for future research.
Towards Fast Multilingual LLM Inference: Speculative Decoding and Specialized Drafters
Large language models (LLMs) have revolutionized natural language processing and broadened their applicability across diverse commercial applications. However, the deployment of these models is constrained by high inference time in multilingual settings. To mitigate this challenge, this paper explores a training recipe of an assistant model in speculative decoding, which are leveraged to draft and-then its future tokens are verified by the target LLM. We show that language-specific draft models, optimized through a targeted pretrain-and-finetune strategy, substantially brings a speedup of inference time compared to the previous methods. We validate these models across various languages in inference time, out-of-domain speedup, and GPT-4o evaluation.
News Reporter: A Multi-lingual LLM Framework for Broadcast T.V News
Large Language Models (LLMs) have fast become an essential tools to many conversational chatbots due to their ability to provide coherent answers for varied queries. Datasets used to train these LLMs are often a mix of generic and synthetic samples, thus lacking the verification needed to provide correct and verifiable answers for T.V. News. We collect and share a large collection of QA pairs extracted from transcripts of news recordings from various news-channels across the United States. Resultant QA pairs are then used to fine-tune an off-the-shelf LLM model. Our model surpasses base models of similar size on several open LLM benchmarks. We further integrate and propose a RAG method to improve contextualization of our answers and also point it to a verifiable news recording.
Scaling Up LLM Reviews for Google Ads Content Moderation
Large language models (LLMs) are powerful tools for content moderation, but their inference costs and latency make them prohibitive for casual use on large datasets, such as the Google Ads repository. This study proposes a method for scaling up LLM reviews for content moderation in Google Ads. First, we use heuristics to select candidates via filtering and duplicate removal, and create clusters of ads for which we select one representative ad per cluster. We then use LLMs to review only the representative ads. Finally, we propagate the LLM decisions for the representative ads back to their clusters. This method reduces the number of reviews by more than 3 orders of magnitude while achieving a 2x recall compared to a baseline non-LLM model. The success of this approach is a strong function of the representations used in clustering and label propagation; we found that cross-modal similarity representations yield better results than uni-modal representations.
CuMo: Scaling Multimodal LLM with Co-Upcycled Mixture-of-Experts
Recent advancements in Multimodal Large Language Models (LLMs) have focused primarily on scaling by increasing text-image pair data and enhancing LLMs to improve performance on multimodal tasks. However, these scaling approaches are computationally expensive and overlook the significance of improving model capabilities from the vision side. Inspired by the successful applications of Mixture-of-Experts (MoE) in LLMs, which improves model scalability during training while keeping inference costs similar to those of smaller models, we propose CuMo. CuMo incorporates Co-upcycled Top-K sparsely-gated Mixture-of-experts blocks into both the vision encoder and the MLP connector, thereby enhancing the multimodal LLMs with minimal additional activated parameters during inference. CuMo first pre-trains the MLP blocks and then initializes each expert in the MoE block from the pre-trained MLP block during the visual instruction tuning stage. Auxiliary losses are used to ensure a balanced loading of experts. CuMo outperforms state-of-the-art multimodal LLMs across various VQA and visual-instruction-following benchmarks using models within each model size group, all while training exclusively on open-sourced datasets. The code and model weights for CuMo are open-sourced at https://github.com/SHI-Labs/CuMo.
LoRA-Contextualizing Adaptation of Large Multimodal Models for Long Document Understanding
Large multimodal models (LMMs) have recently shown great progress in text-rich image understanding, yet they still struggle with complex, multi-page, visually-rich documents. Traditional methods using document parsers for retrieval-augmented generation suffer from performance and efficiency limitations, while directly presenting all pages to LMMs leads to inefficiencies, especially with lengthy documents. In this work, we present a novel framework named LoRA-Contextualizing Adaptation of Large multimodal models (LoCAL), which broadens the capabilities of any LMM to support long-document understanding. We demonstrate that LMMs can effectively serve as multimodal retrievers, fetching relevant pages to answer user questions based on these pages. LoCAL is implemented with two specific LMM adapters: one for evidence page retrieval and another for question answering. Empirical results show state-of-the-art performance on public benchmarks, demonstrating the effectiveness of LoCAL.
Czert -- Czech BERT-like Model for Language Representation
This paper describes the training process of the first Czech monolingual language representation models based on BERT and ALBERT architectures. We pre-train our models on more than 340K of sentences, which is 50 times more than multilingual models that include Czech data. We outperform the multilingual models on 9 out of 11 datasets. In addition, we establish the new state-of-the-art results on nine datasets. At the end, we discuss properties of monolingual and multilingual models based upon our results. We publish all the pre-trained and fine-tuned models freely for the research community.
ChEF: A Comprehensive Evaluation Framework for Standardized Assessment of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have shown impressive abilities in interacting with visual content with myriad potential downstream tasks. However, even though a list of benchmarks has been proposed, the capabilities and limitations of MLLMs are still not comprehensively understood, due to a lack of a standardized and holistic evaluation framework. To this end, we present the first Comprehensive Evaluation Framework (ChEF) that can holistically profile each MLLM and fairly compare different MLLMs. First, we structure ChEF as four modular components, i.e., Scenario as scalable multimodal datasets, Instruction as flexible instruction retrieving formulae, Inferencer as reliable question answering strategies, and Metric as indicative task-specific score functions. Based on them, ChEF facilitates versatile evaluations in a standardized framework, and new evaluations can be built by designing new Recipes (systematic selection of these four components). Notably, current MLLM benchmarks can be readily summarized as recipes of ChEF. Second, we introduce 6 new recipes to quantify competent MLLMs' desired capabilities (or called desiderata, i.e., calibration, in-context learning, instruction following, language performance, hallucination, and robustness) as reliable agents that can perform real-world multimodal interactions. Third, we conduct a large-scale evaluation of 9 prominent MLLMs on 9 scenarios and 6 desiderata. Our evaluation summarized over 20 valuable observations concerning the generalizability of MLLMs across various scenarios and the composite capability of MLLMs required for multimodal interactions. We will publicly release all the detailed implementations for further analysis, as well as an easy-to-use modular toolkit for the integration of new recipes and models, so that ChEF can be a growing evaluation framework for the MLLM community.
SONAR: Sentence-Level Multimodal and Language-Agnostic Representations
We introduce SONAR, a new multilingual and multimodal fixed-size sentence embedding space. Our single text encoder, covering 200 languages, substantially outperforms existing sentence embeddings such as LASER3 and LabSE on the xsim and xsim++ multilingual similarity search tasks. Speech segments can be embedded in the same SONAR embedding space using language-specific speech encoders trained in a teacher-student setting on speech transcription data. Our encoders outperform existing speech encoders on similarity search tasks. We also provide a text decoder for 200 languages, which allows us to perform text-to-text and speech-to-text machine translation, including for zero-shot language and modality combinations. Our text-to-text results are competitive compared to the state-of-the-art NLLB~1B model, despite the fixed-size bottleneck representation. Our zero-shot speech-to-text translation results compare favorably with strong supervised baselines such as Whisper.
4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities
Current multimodal and multitask foundation models like 4M or UnifiedIO show promising results, but in practice their out-of-the-box abilities to accept diverse inputs and perform diverse tasks are limited by the (usually rather small) number of modalities and tasks they are trained on. In this paper, we expand upon the capabilities of them by training a single model on tens of highly diverse modalities and by performing co-training on large-scale multimodal datasets and text corpora. This includes training on several semantic and geometric modalities, feature maps from recent state of the art models like DINOv2 and ImageBind, pseudo labels of specialist models like SAM and 4DHumans, and a range of new modalities that allow for novel ways to interact with the model and steer the generation, for example image metadata or color palettes. A crucial step in this process is performing discrete tokenization on various modalities, whether they are image-like, neural network feature maps, vectors, structured data like instance segmentation or human poses, or data that can be represented as text. Through this, we expand on the out-of-the-box capabilities of multimodal models and specifically show the possibility of training one model to solve at least 3x more tasks/modalities than existing ones and doing so without a loss in performance. This enables more fine-grained and controllable multimodal generation capabilities and allows us to study the distillation of models trained on diverse data and objectives into a unified model. We successfully scale the training to a three billion parameter model using tens of modalities and different datasets. The resulting models and training code are open sourced at 4m.epfl.ch.
MMSearch: Benchmarking the Potential of Large Models as Multi-modal Search Engines
The advent of Large Language Models (LLMs) has paved the way for AI search engines, e.g., SearchGPT, showcasing a new paradigm in human-internet interaction. However, most current AI search engines are limited to text-only settings, neglecting the multimodal user queries and the text-image interleaved nature of website information. Recently, Large Multimodal Models (LMMs) have made impressive strides. Yet, whether they can function as AI search engines remains under-explored, leaving the potential of LMMs in multimodal search an open question. To this end, we first design a delicate pipeline, MMSearch-Engine, to empower any LMMs with multimodal search capabilities. On top of this, we introduce MMSearch, a comprehensive evaluation benchmark to assess the multimodal search performance of LMMs. The curated dataset contains 300 manually collected instances spanning 14 subfields, which involves no overlap with the current LMMs' training data, ensuring the correct answer can only be obtained within searching. By using MMSearch-Engine, the LMMs are evaluated by performing three individual tasks (requery, rerank, and summarization), and one challenging end-to-end task with a complete searching process. We conduct extensive experiments on closed-source and open-source LMMs. Among all tested models, GPT-4o with MMSearch-Engine achieves the best results, which surpasses the commercial product, Perplexity Pro, in the end-to-end task, demonstrating the effectiveness of our proposed pipeline. We further present error analysis to unveil current LMMs still struggle to fully grasp the multimodal search tasks, and conduct ablation study to indicate the potential of scaling test-time computation for AI search engine. We hope MMSearch may provide unique insights to guide the future development of multimodal AI search engine. Project Page: https://mmsearch.github.io
A Survey on Multimodal Benchmarks: In the Era of Large AI Models
The rapid evolution of Multimodal Large Language Models (MLLMs) has brought substantial advancements in artificial intelligence, significantly enhancing the capability to understand and generate multimodal content. While prior studies have largely concentrated on model architectures and training methodologies, a thorough analysis of the benchmarks used for evaluating these models remains underexplored. This survey addresses this gap by systematically reviewing 211 benchmarks that assess MLLMs across four core domains: understanding, reasoning, generation, and application. We provide a detailed analysis of task designs, evaluation metrics, and dataset constructions, across diverse modalities. We hope that this survey will contribute to the ongoing advancement of MLLM research by offering a comprehensive overview of benchmarking practices and identifying promising directions for future work. An associated GitHub repository collecting the latest papers is available.
Visual Perception by Large Language Model's Weights
Existing Multimodal Large Language Models (MLLMs) follow the paradigm that perceives visual information by aligning visual features with the input space of Large Language Models (LLMs), and concatenating visual tokens with text tokens to form a unified sequence input for LLMs. These methods demonstrate promising results on various vision-language tasks but are limited by the high computational effort due to the extended input sequence resulting from the involvement of visual tokens. In this paper, instead of input space alignment, we propose a novel parameter space alignment paradigm that represents visual information as model weights. For each input image, we use a vision encoder to extract visual features, convert features into perceptual weights, and merge the perceptual weights with LLM's weights. In this way, the input of LLM does not require visual tokens, which reduces the length of the input sequence and greatly improves efficiency. Following this paradigm, we propose VLoRA with the perceptual weights generator. The perceptual weights generator is designed to convert visual features to perceptual weights with low-rank property, exhibiting a form similar to LoRA. The experimental results show that our VLoRA achieves comparable performance on various benchmarks for MLLMs, while significantly reducing the computational costs for both training and inference. The code and models will be made open-source.
PDF-WuKong: A Large Multimodal Model for Efficient Long PDF Reading with End-to-End Sparse Sampling
Document understanding is a challenging task to process and comprehend large amounts of textual and visual information. Recent advances in Large Language Models (LLMs) have significantly improved the performance of this task. However, existing methods typically focus on either plain text or a limited number of document images, struggling to handle long PDF documents with interleaved text and images, especially in academic papers. In this paper, we introduce PDF-WuKong, a multimodal large language model (MLLM) which is designed to enhance multimodal question-answering (QA) for long PDF documents. PDF-WuKong incorporates a sparse sampler that operates on both text and image representations, significantly improving the efficiency and capability of the MLLM. The sparse sampler is integrated with the MLLM's image encoder and selects the paragraphs or diagrams most pertinent to user queries for processing by the language model. To effectively train and evaluate our model, we construct PaperPDF, a dataset consisting of a broad collection of academic papers sourced from arXiv, multiple strategies are proposed to generate automatically 1M QA pairs along with their corresponding evidence sources. Experimental results demonstrate the superiority and high efficiency of our approach over other models on the task of long multimodal PDF understanding, surpassing proprietary products by an average of 8.6% on F1. Our code and dataset will be released at https://github.com/yh-hust/PDF-Wukong.
Towards Better Parameter-Efficient Fine-Tuning for Large Language Models: A Position Paper
This paper delves into the pressing need in Parameter-Efficient Fine-Tuning (PEFT) for Large Language Models (LLMs). While LLMs possess remarkable capabilities, their extensive parameter requirements and associated computational demands hinder their practicality and scalability for real-world applications. Our position paper highlights current states and the necessity of further studying into the topic, and recognizes significant challenges and open issues that must be addressed to fully harness the powerful abilities of LLMs. These challenges encompass novel efficient PEFT architectures, PEFT for different learning settings, PEFT combined with model compression techniques, and the exploration of PEFT for multi-modal LLMs. By presenting this position paper, we aim to stimulate further research and foster discussions surrounding more efficient and accessible PEFT for LLMs.
Mixture-of-Transformers: A Sparse and Scalable Architecture for Multi-Modal Foundation Models
The development of large language models (LLMs) has expanded to multi-modal systems capable of processing text, images, and speech within a unified framework. Training these models demands significantly larger datasets and computational resources compared to text-only LLMs. To address the scaling challenges, we introduce Mixture-of-Transformers (MoT), a sparse multi-modal transformer architecture that significantly reduces pretraining computational costs. MoT decouples non-embedding parameters of the model by modality -- including feed-forward networks, attention matrices, and layer normalization -- enabling modality-specific processing with global self-attention over the full input sequence. We evaluate MoT across multiple settings and model scales. In the Chameleon 7B setting (autoregressive text-and-image generation), MoT matches the dense baseline's performance using only 55.8\% of the FLOPs. When extended to include speech, MoT reaches speech performance comparable to the dense baseline with only 37.2\% of the FLOPs. In the Transfusion setting, where text and image are trained with different objectives, a 7B MoT model matches the image modality performance of the dense baseline with one third of the FLOPs, and a 760M MoT model outperforms a 1.4B dense baseline across key image generation metrics. System profiling further highlights MoT's practical benefits, achieving dense baseline image quality in 47.2\% of the wall-clock time and text quality in 75.6\% of the wall-clock time (measured on AWS p4de.24xlarge instances with NVIDIA A100 GPUs).
Benchmarking Sequential Visual Input Reasoning and Prediction in Multimodal Large Language Models
Multimodal large language models (MLLMs) have shown great potential in perception and interpretation tasks, but their capabilities in predictive reasoning remain under-explored. To address this gap, we introduce a novel benchmark that assesses the predictive reasoning capabilities of MLLMs across diverse scenarios. Our benchmark targets three important domains: abstract pattern reasoning, human activity prediction, and physical interaction prediction. We further develop three evaluation methods powered by large language model to robustly quantify a model's performance in predicting and reasoning the future based on multi-visual context. Empirical experiments confirm the soundness of the proposed benchmark and evaluation methods via rigorous testing and reveal pros and cons of current popular MLLMs in the task of predictive reasoning. Lastly, our proposed benchmark provides a standardized evaluation framework for MLLMs and can facilitate the development of more advanced models that can reason and predict over complex long sequence of multimodal input.
Nugget: Neural Agglomerative Embeddings of Text
Embedding text sequences is a widespread requirement in modern language understanding. Existing approaches focus largely on constant-size representations. This is problematic, as the amount of information contained in text often varies with the length of the input. We propose a solution called Nugget, which encodes language into a representation based on a dynamically selected subset of input tokens. These nuggets are learned through tasks like autoencoding and machine translation, and intuitively segment language into meaningful units. We demonstrate Nugget outperforms related approaches in tasks involving semantic comparison. Finally, we illustrate these compact units allow for expanding the contextual window of a language model (LM), suggesting new future LMs that can condition on significantly larger amounts of content.
Text4Seg: Reimagining Image Segmentation as Text Generation
Multimodal Large Language Models (MLLMs) have shown exceptional capabilities in vision-language tasks; however, effectively integrating image segmentation into these models remains a significant challenge. In this paper, we introduce Text4Seg, a novel text-as-mask paradigm that casts image segmentation as a text generation problem, eliminating the need for additional decoders and significantly simplifying the segmentation process. Our key innovation is semantic descriptors, a new textual representation of segmentation masks where each image patch is mapped to its corresponding text label. This unified representation allows seamless integration into the auto-regressive training pipeline of MLLMs for easier optimization. We demonstrate that representing an image with 16times16 semantic descriptors yields competitive segmentation performance. To enhance efficiency, we introduce the Row-wise Run-Length Encoding (R-RLE), which compresses redundant text sequences, reducing the length of semantic descriptors by 74% and accelerating inference by 3times, without compromising performance. Extensive experiments across various vision tasks, such as referring expression segmentation and comprehension, show that Text4Seg achieves state-of-the-art performance on multiple datasets by fine-tuning different MLLM backbones. Our approach provides an efficient, scalable solution for vision-centric tasks within the MLLM framework.
Browse and Concentrate: Comprehending Multimodal Content via prior-LLM Context Fusion
With the bloom of Large Language Models (LLMs), Multimodal Large Language Models (MLLMs) that incorporate LLMs with pre-trained vision models have recently demonstrated impressive performance across diverse vision-language tasks. However, they fall short to comprehend context involving multiple images. A primary reason for this shortcoming is that the visual features for each images are encoded individually by frozen encoders before feeding into the LLM backbone, lacking awareness of other images and the multimodal instructions. We term this issue as prior-LLM modality isolation and propose a two phase paradigm, browse-and-concentrate, to enable in-depth multimodal context fusion prior to feeding the features into LLMs. This paradigm initially "browses" through the inputs for essential insights, and then revisits the inputs to "concentrate" on crucial details, guided by these insights, to achieve a more comprehensive understanding of the multimodal inputs. Additionally, we develop training strategies specifically to enhance the understanding of multi-image inputs. Our method markedly boosts the performance on 7 multi-image scenarios, contributing to increments on average accuracy by 2.13% and 7.60% against strong MLLMs baselines with 3B and 11B LLMs, respectively.
Overcoming Language Disparity in Online Content Classification with Multimodal Learning
Advances in Natural Language Processing (NLP) have revolutionized the way researchers and practitioners address crucial societal problems. Large language models are now the standard to develop state-of-the-art solutions for text detection and classification tasks. However, the development of advanced computational techniques and resources is disproportionately focused on the English language, sidelining a majority of the languages spoken globally. While existing research has developed better multilingual and monolingual language models to bridge this language disparity between English and non-English languages, we explore the promise of incorporating the information contained in images via multimodal machine learning. Our comparative analyses on three detection tasks focusing on crisis information, fake news, and emotion recognition, as well as five high-resource non-English languages, demonstrate that: (a) detection frameworks based on pre-trained large language models like BERT and multilingual-BERT systematically perform better on the English language compared against non-English languages, and (b) including images via multimodal learning bridges this performance gap. We situate our findings with respect to existing work on the pitfalls of large language models, and discuss their theoretical and practical implications. Resources for this paper are available at https://multimodality-language-disparity.github.io/.
TLDR: Token-Level Detective Reward Model for Large Vision Language Models
Although reward models have been successful in improving multimodal large language models, the reward models themselves remain brutal and contain minimal information. Notably, existing reward models only mimic human annotations by assigning only one binary feedback to any text, no matter how long the text is. In the realm of multimodal language models, where models are required to process both images and texts, a naive reward model may learn implicit biases toward texts and become less grounded in images. In this paper, we propose a Token-Level Detective Reward Model (TLDR) to provide fine-grained annotations to each text token. We first introduce a perturbation-based method to generate synthetic hard negatives and their token-level labels to train TLDR models. Then we show the rich usefulness of TLDR models both in assisting off-the-shelf models to self-correct their generations, and in serving as a hallucination evaluation tool. Finally, we show that TLDR models can significantly speed up human annotation by 3 times to acquire a broader range of high-quality vision language data.
Towards Multi-Modal Mastery: A 4.5B Parameter Truly Multi-Modal Small Language Model
We present a novel 4.5B parameter small language model that can handle multiple input and output modalities, including text, images, videos, and audio. Despite its small size, the model achieves near state-of-the-art performance on a variety of tasks, demonstrating the potential of multi-modal models to tackle complex real-world problems. Our approach leverages recent advancements in language modeling and multi-task learning to create a versatile and high-performing model that can even be deployed for edge inference. Experimental results show the model's strong performance across multiple benchmarks, paving the way for further progress in multi-modal artificial intelligence.
A Generalized Language Model as the Combination of Skipped n-grams and Modified Kneser-Ney Smoothing
We introduce a novel approach for building language models based on a systematic, recursive exploration of skip n-gram models which are interpolated using modified Kneser-Ney smoothing. Our approach generalizes language models as it contains the classical interpolation with lower order models as a special case. In this paper we motivate, formalize and present our approach. In an extensive empirical experiment over English text corpora we demonstrate that our generalized language models lead to a substantial reduction of perplexity between 3.1% and 12.7% in comparison to traditional language models using modified Kneser-Ney smoothing. Furthermore, we investigate the behaviour over three other languages and a domain specific corpus where we observed consistent improvements. Finally, we also show that the strength of our approach lies in its ability to cope in particular with sparse training data. Using a very small training data set of only 736 KB text we yield improvements of even 25.7% reduction of perplexity.
MM-BigBench: Evaluating Multimodal Models on Multimodal Content Comprehension Tasks
The popularity of multimodal large language models (MLLMs) has triggered a recent surge in research efforts dedicated to evaluating these models. Nevertheless, existing evaluation studies of MLLMs primarily focus on the comprehension and reasoning of unimodal (vision) content, neglecting performance evaluations in the domain of multimodal (vision-language) content understanding. Beyond multimodal reasoning, tasks related to multimodal content comprehension necessitate a profound understanding of multimodal contexts, achieved through the multimodal interaction to obtain a final answer. In this paper, we introduce a comprehensive assessment framework called MM-BigBench, which incorporates a diverse range of metrics to offer an extensive evaluation of the performance of various models and instructions across a wide spectrum of diverse multimodal content comprehension tasks. Consequently, our work complements research on the performance of MLLMs in multimodal comprehension tasks, achieving a more comprehensive and holistic evaluation of MLLMs. To begin, we employ the Best Performance metric to ascertain each model's performance upper bound on different datasets. Subsequently, the Mean Relative Gain metric offers an assessment of the overall performance of various models and instructions, while the Stability metric measures their sensitivity. Furthermore, previous research centers on evaluating models independently or solely assessing instructions, neglecting the adaptability between models and instructions. We propose the Adaptability metric to quantify the adaptability between models and instructions. Our paper evaluates a total of 20 language models (14 MLLMs) on 14 multimodal datasets spanning 6 tasks, with 10 instructions for each task, and derives novel insights. Our code will be released at https://github.com/declare-lab/MM-BigBench.
InfMLLM: A Unified Framework for Visual-Language Tasks
Large language models (LLMs) have proven their remarkable versatility in handling a comprehensive range of language-centric applications. To expand LLMs' capabilities to a broader spectrum of modal inputs, multimodal large language models (MLLMs) have attracted growing interest. This work delves into enabling LLMs to tackle more vision-language-related tasks, particularly image captioning, visual question answering (VQA,) and visual grounding. To this end, we implemented a three-stage training scheme: starting with lightweight alignment pretraining, then moderate-weight multitask hybrid training, and finally, LLM fine-tuning to improve instruction following capability. Throughout the training process, the requirements on GPU memory gradually increase. To effectively manage the number of visual embeddings passed to the LLM while preserving their positional information, we introduce a straightforward visual adapter module dubbed pool-adapter. Our experiments demonstrate that preserving the positional information of visual embeddings through the pool-adapter is particularly beneficial for tasks like visual grounding. We name our proposed approach InfMLLM and have evaluated it extensively on various benchmark datasets. Our results demonstrate that InfMLLM achieves either state-of-the-art (SOTA) performance or performance comparable to recent MLLMs. The code and model will be made open-source at: https://github.com/mightyzau/InfMLLM.
Empower Your Model with Longer and Better Context Comprehension
Recently, with the emergence of numerous Large Language Models (LLMs), the implementation of AI has entered a new era. Irrespective of these models' own capacity and structure, there is a growing demand for LLMs to possess enhanced comprehension of longer and more complex contexts with relatively smaller sizes. Models often encounter an upper limit when processing sequences of sentences that extend beyond their comprehension capacity and result in off-topic or even chaotic responses. While several recent works attempt to address this issue in various ways, they rarely focus on "why models are unable to compensate or strengthen their capabilities on their own". In this paper, we thoroughly investigate the nature of information transfer within LLMs and propose a novel technique called Attention Transition. This technique empowers models to achieve longer and better context comprehension with minimal additional training or impact on generation fluency. Our experiments are conducted on the challenging XSum dataset using LLaMa-7b model with context token length ranging from 800 to 1900. Results demonstrate that we achieve substantial improvements compared with the original generation results evaluated by GPT4.
Multi-Word Tokenization for Sequence Compression
Large Language Models have proven highly successful at modelling a variety of tasks. However, this comes at a steep computational cost that hinders wider industrial uptake. In this pa005 per, we present MWT: a Multi-Word Tokenizer that goes beyond word boundaries by representing frequent multi-word expressions as single tokens. MWTs produce a more compact and efficient tokenization that yields two benefits: (1) Increase in performance due to a greater coverage of input data given a fixed sequence length and budget; (2) Faster and lighter inference due to the ability to reduce the sequence length with negligible drops in performance. Our results show that MWT is more robust across shorter sequence lengths, thus allowing for major speedups via early sequence truncation.
ANOLE: An Open, Autoregressive, Native Large Multimodal Models for Interleaved Image-Text Generation
Previous open-source large multimodal models (LMMs) have faced several limitations: (1) they often lack native integration, requiring adapters to align visual representations with pre-trained large language models (LLMs); (2) many are restricted to single-modal generation; (3) while some support multimodal generation, they rely on separate diffusion models for visual modeling and generation. To mitigate these limitations, we present Anole, an open, autoregressive, native large multimodal model for interleaved image-text generation. We build Anole from Meta AI's Chameleon, adopting an innovative fine-tuning strategy that is both data-efficient and parameter-efficient. Anole demonstrates high-quality, coherent multimodal generation capabilities. We have open-sourced our model, training framework, and instruction tuning data.
mPLUG-Owl2: Revolutionizing Multi-modal Large Language Model with Modality Collaboration
Multi-modal Large Language Models (MLLMs) have demonstrated impressive instruction abilities across various open-ended tasks. However, previous methods primarily focus on enhancing multi-modal capabilities. In this work, we introduce a versatile multi-modal large language model, mPLUG-Owl2, which effectively leverages modality collaboration to improve performance in both text and multi-modal tasks. mPLUG-Owl2 utilizes a modularized network design, with the language decoder acting as a universal interface for managing different modalities. Specifically, mPLUG-Owl2 incorporates shared functional modules to facilitate modality collaboration and introduces a modality-adaptive module that preserves modality-specific features. Extensive experiments reveal that mPLUG-Owl2 is capable of generalizing both text tasks and multi-modal tasks and achieving state-of-the-art performances with a single generic model. Notably, mPLUG-Owl2 is the first MLLM model that demonstrates the modality collaboration phenomenon in both pure-text and multi-modal scenarios, setting a pioneering path in the development of future multi-modal foundation models.
VCoder: Versatile Vision Encoders for Multimodal Large Language Models
Humans possess the remarkable skill of Visual Perception, the ability to see and understand the seen, helping them make sense of the visual world and, in turn, reason. Multimodal Large Language Models (MLLM) have recently achieved impressive performance on vision-language tasks ranging from visual question-answering and image captioning to visual reasoning and image generation. However, when prompted to identify or count (perceive) the entities in a given image, existing MLLM systems fail. Working towards developing an accurate MLLM system for perception and reasoning, we propose using Versatile vision enCoders (VCoder) as perception eyes for Multimodal LLMs. We feed the VCoder with perception modalities such as segmentation or depth maps, improving the MLLM's perception abilities. Secondly, we leverage the images from COCO and outputs from off-the-shelf vision perception models to create our COCO Segmentation Text (COST) dataset for training and evaluating MLLMs on the object perception task. Thirdly, we introduce metrics to assess the object perception abilities in MLLMs on our COST dataset. Lastly, we provide extensive experimental evidence proving the VCoder's improved object-level perception skills over existing Multimodal LLMs, including GPT-4V. We open-source our dataset, code, and models to promote research. We open-source our code at https://github.com/SHI-Labs/VCoder
SILMM: Self-Improving Large Multimodal Models for Compositional Text-to-Image Generation
Large Multimodal Models (LMMs) have demonstrated impressive capabilities in multimodal understanding and generation, pushing forward advancements in text-to-image generation. However, achieving accurate text-image alignment for LMMs, particularly in compositional scenarios, remains challenging. Existing approaches, such as layout planning for multi-step generation and learning from human feedback or AI feedback, depend heavily on prompt engineering, costly human annotations, and continual upgrading, limiting flexibility and scalability. In this work, we introduce a model-agnostic iterative self-improvement framework (SILMM) that can enable LMMs to provide helpful and scalable self-feedback and optimize text-image alignment via Direct Preference Optimization (DPO). DPO can readily applied to LMMs that use discrete visual tokens as intermediate image representations; while it is less suitable for LMMs with continuous visual features, as obtaining generation probabilities is challenging. To adapt SILMM to LMMs with continuous features, we propose a diversity mechanism to obtain diverse representations and a kernel-based continuous DPO for alignment. Extensive experiments on three compositional text-to-image generation benchmarks validate the effectiveness and superiority of SILMM, showing improvements exceeding 30% on T2I-CompBench++ and around 20% on DPG-Bench.
Improving Joint Speech-Text Representations Without Alignment
The last year has seen astonishing progress in text-prompted image generation premised on the idea of a cross-modal representation space in which the text and image domains are represented jointly. In ASR, this idea has found application as joint speech-text encoders that can scale to the capacities of very large parameter models by being trained on both unpaired speech and text. While these methods show promise, they have required special treatment of the sequence-length mismatch inherent in speech and text, either by up-sampling heuristics or an explicit alignment model. In this work, we offer evidence that joint speech-text encoders naturally achieve consistent representations across modalities by disregarding sequence length, and argue that consistency losses could forgive length differences and simply assume the best alignment. We show that such a loss improves downstream WER in both a large-parameter monolingual and multilingual system.
Ola: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment
Recent advances in large language models, particularly following GPT-4o, have sparked increasing interest in developing omni-modal models capable of understanding more modalities. While some open-source alternatives have emerged, there is still a notable lag behind specialized single-modality models in performance. In this paper, we present Ola, an Omni-modal language model that achieves competitive performance across image, video, and audio understanding compared to specialized counterparts. The core design of Ola lies in its progressive modality alignment strategy that extends the supporting modality of the language model progressively. Our training pipeline begins with the most distinct modalities: image and text, then gradually expands the skill sets of the model using speech data that connects language and audio knowledge, and video data that connects all modalities. The progressive learning pipeline also enables us to maintain a relatively small size of the cross-modal alignment data, making developing omni-modal from existing vision-language models easy and less costly. Moreover, to unlock an advanced interactive experience like GPT-4o, we further design a sentence-wise decoding solution for streaming speech generation. Extensive experiments demonstrate that Ola surpasses existing open omni-modal LLMs across all modalities while achieving highly competitive performance compared to state-of-the-art specialized models of similar sizes. We aim to make Ola a fully open omni-modal understanding solution to advance future research in this emerging field. Model weights, code, and data are open-sourced at https://github.com/Ola-Omni/Ola.
From Pixels to Tokens: Byte-Pair Encoding on Quantized Visual Modalities
Multimodal Large Language Models have made significant strides in integrating visual and textual information, yet they often struggle with effectively aligning these modalities. We introduce a novel image tokenizer that bridges this gap by applying the principle of Byte-Pair Encoding (BPE) to visual data. Unlike conventional approaches that rely on separate visual encoders, our method directly incorporates structural prior information into image tokens, mirroring the successful tokenization strategies used in text-only Large Language Models. This innovative approach enables Transformer models to more effectively learn and reason across modalities. Through theoretical analysis and extensive experiments, we demonstrate that our BPE Image Tokenizer significantly enhances MLLMs' multimodal understanding capabilities, even with limited training data. Our method not only improves performance across various benchmarks but also shows promising scalability, potentially paving the way for more efficient and capable multimodal foundation models.
Pixtral 12B
We introduce Pixtral-12B, a 12--billion-parameter multimodal language model. Pixtral-12B is trained to understand both natural images and documents, achieving leading performance on various multimodal benchmarks, surpassing a number of larger models. Unlike many open-source models, Pixtral is also a cutting-edge text model for its size, and does not compromise on natural language performance to excel in multimodal tasks. Pixtral uses a new vision encoder trained from scratch, which allows it to ingest images at their natural resolution and aspect ratio. This gives users flexibility on the number of tokens used to process an image. Pixtral is also able to process any number of images in its long context window of 128K tokens. Pixtral 12B substanially outperforms other open models of similar sizes (Llama-3.2 11B \& Qwen-2-VL 7B). It also outperforms much larger open models like Llama-3.2 90B while being 7x smaller. We further contribute an open-source benchmark, MM-MT-Bench, for evaluating vision-language models in practical scenarios, and provide detailed analysis and code for standardized evaluation protocols for multimodal LLMs. Pixtral-12B is released under Apache 2.0 license.
Datasets for Large Language Models: A Comprehensive Survey
This paper embarks on an exploration into the Large Language Model (LLM) datasets, which play a crucial role in the remarkable advancements of LLMs. The datasets serve as the foundational infrastructure analogous to a root system that sustains and nurtures the development of LLMs. Consequently, examination of these datasets emerges as a critical topic in research. In order to address the current lack of a comprehensive overview and thorough analysis of LLM datasets, and to gain insights into their current status and future trends, this survey consolidates and categorizes the fundamental aspects of LLM datasets from five perspectives: (1) Pre-training Corpora; (2) Instruction Fine-tuning Datasets; (3) Preference Datasets; (4) Evaluation Datasets; (5) Traditional Natural Language Processing (NLP) Datasets. The survey sheds light on the prevailing challenges and points out potential avenues for future investigation. Additionally, a comprehensive review of the existing available dataset resources is also provided, including statistics from 444 datasets, covering 8 language categories and spanning 32 domains. Information from 20 dimensions is incorporated into the dataset statistics. The total data size surveyed surpasses 774.5 TB for pre-training corpora and 700M instances for other datasets. We aim to present the entire landscape of LLM text datasets, serving as a comprehensive reference for researchers in this field and contributing to future studies. Related resources are available at: https://github.com/lmmlzn/Awesome-LLMs-Datasets.
CROME: Cross-Modal Adapters for Efficient Multimodal LLM
Multimodal Large Language Models (MLLMs) demonstrate remarkable image-language capabilities, but their widespread use faces challenges in cost-effective training and adaptation. Existing approaches often necessitate expensive language model retraining and limited adaptability. Additionally, the current focus on zero-shot performance improvements offers insufficient guidance for task-specific tuning. We propose CROME, an efficient vision-language instruction tuning framework. It features a novel gated cross-modal adapter that effectively combines visual and textual representations prior to input into a frozen LLM. This lightweight adapter, trained with minimal parameters, enables efficient cross-modal understanding. Notably, CROME demonstrates superior zero-shot performance on standard visual question answering and instruction-following benchmarks. Moreover, it yields fine-tuning with exceptional parameter efficiency, competing with task-specific specialist state-of-the-art methods. CROME demonstrates the potential of pre-LM alignment for building scalable, adaptable, and parameter-efficient multimodal models.
Law of Vision Representation in MLLMs
We present the "Law of Vision Representation" in multimodal large language models (MLLMs). It reveals a strong correlation between the combination of cross-modal alignment, correspondence in vision representation, and MLLM performance. We quantify the two factors using the cross-modal Alignment and Correspondence score (AC score). Through extensive experiments involving thirteen different vision representation settings and evaluations across eight benchmarks, we find that the AC score is linearly correlated to model performance. By leveraging this relationship, we are able to identify and train the optimal vision representation only, which does not require finetuning the language model every time, resulting in a 99.7% reduction in computational cost.
Multi-Modal Classifiers for Open-Vocabulary Object Detection
The goal of this paper is open-vocabulary object detection (OVOD) x2013 building a model that can detect objects beyond the set of categories seen at training, thus enabling the user to specify categories of interest at inference without the need for model retraining. We adopt a standard two-stage object detector architecture, and explore three ways for specifying novel categories: via language descriptions, via image exemplars, or via a combination of the two. We make three contributions: first, we prompt a large language model (LLM) to generate informative language descriptions for object classes, and construct powerful text-based classifiers; second, we employ a visual aggregator on image exemplars that can ingest any number of images as input, forming vision-based classifiers; and third, we provide a simple method to fuse information from language descriptions and image exemplars, yielding a multi-modal classifier. When evaluating on the challenging LVIS open-vocabulary benchmark we demonstrate that: (i) our text-based classifiers outperform all previous OVOD works; (ii) our vision-based classifiers perform as well as text-based classifiers in prior work; (iii) using multi-modal classifiers perform better than either modality alone; and finally, (iv) our text-based and multi-modal classifiers yield better performance than a fully-supervised detector.
AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability
Multimodal Large Language Models (MLLMs) are widely regarded as crucial in the exploration of Artificial General Intelligence (AGI). The core of MLLMs lies in their capability to achieve cross-modal alignment. To attain this goal, current MLLMs typically follow a two-phase training paradigm: the pre-training phase and the instruction-tuning phase. Despite their success, there are shortcomings in the modeling of alignment capabilities within these models. Firstly, during the pre-training phase, the model usually assumes that all image-text pairs are uniformly aligned, but in fact the degree of alignment between different image-text pairs is inconsistent. Secondly, the instructions currently used for finetuning incorporate a variety of tasks, different tasks's instructions usually require different levels of alignment capabilities, but previous MLLMs overlook these differentiated alignment needs. To tackle these issues, we propose a new multimodal large language model AlignGPT. In the pre-training stage, instead of treating all image-text pairs equally, we assign different levels of alignment capabilities to different image-text pairs. Then, in the instruction-tuning phase, we adaptively combine these different levels of alignment capabilities to meet the dynamic alignment needs of different instructions. Extensive experimental results show that our model achieves competitive performance on 12 benchmarks.
Beyond Specialization: Assessing the Capabilities of MLLMs in Age and Gender Estimation
Multimodal Large Language Models (MLLMs) have recently gained immense popularity. Powerful commercial models like ChatGPT-4V and Gemini, as well as open-source ones such as LLaVA, are essentially general-purpose models and are applied to solve a wide variety of tasks, including those in computer vision. These neural networks possess such strong general knowledge and reasoning abilities that they have proven capable of working even on tasks for which they were not specifically trained. We compared the capabilities of the most powerful MLLMs to date: ShareGPT4V, ChatGPT, LLaVA-Next in a specialized task of age and gender estimation with our state-of-the-art specialized model, MiVOLO. We also updated MiVOLO and provide details and new metrics in this article. This comparison has yielded some interesting results and insights about the strengths and weaknesses of the participating models. Furthermore, we attempted various ways to fine-tune the ShareGPT4V model for this specific task, aiming to achieve state-of-the-art results in this particular challenge. Although such a model would not be practical in production, as it is incredibly expensive compared to a specialized model like MiVOLO, it could be very useful in some tasks, like data annotation.
Recent Advances in Speech Language Models: A Survey
Large Language Models (LLMs) have recently garnered significant attention, primarily for their capabilities in text-based interactions. However, natural human interaction often relies on speech, necessitating a shift towards voice-based models. A straightforward approach to achieve this involves a pipeline of ``Automatic Speech Recognition (ASR) + LLM + Text-to-Speech (TTS)", where input speech is transcribed to text, processed by an LLM, and then converted back to speech. Despite being straightforward, this method suffers from inherent limitations, such as information loss during modality conversion and error accumulation across the three stages. To address these issues, Speech Language Models (SpeechLMs) -- end-to-end models that generate speech without converting from text -- have emerged as a promising alternative. This survey paper provides the first comprehensive overview of recent methodologies for constructing SpeechLMs, detailing the key components of their architecture and the various training recipes integral to their development. Additionally, we systematically survey the various capabilities of SpeechLMs, categorize the evaluation metrics for SpeechLMs, and discuss the challenges and future research directions in this rapidly evolving field.
How Multilingual is Multilingual LLM?
Large Language Models (LLMs), trained predominantly on extensive English data, often exhibit limitations when applied to other languages. Current research is primarily focused on enhancing the multilingual capabilities of these models by employing various tuning strategies. Despite their effectiveness in certain languages, the understanding of the multilingual abilities of LLMs remains incomplete. This study endeavors to evaluate the multilingual capacity of LLMs by conducting an exhaustive analysis across 101 languages, and classifies languages with similar characteristics into four distinct quadrants. By delving into each quadrant, we shed light on the rationale behind their categorization and offer actionable guidelines for tuning these languages. Extensive experiments reveal that existing LLMs possess multilingual capabilities that surpass our expectations, and we can significantly improve the multilingual performance of LLMs by focusing on these distinct attributes present in each quadrant.
Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want
The interaction between humans and artificial intelligence (AI) is a crucial factor that reflects the effectiveness of multimodal large language models (MLLMs). However, current MLLMs primarily focus on image-level comprehension and limit interaction to textual instructions, thereby constraining their flexibility in usage and depth of response. In this paper, we introduce the Draw-and-Understand project: a new model, a multi-domain dataset, and a challenging benchmark for visual prompting. Specifically, we propose SPHINX-V, a new end-to-end trained Multimodal Large Language Model (MLLM) that connects a vision encoder, a visual prompt encoder and an LLM for various visual prompts (points, bounding boxes, and free-form shape) and language understanding. To advance visual prompting research for MLLMs, we introduce MDVP-Data and MDVP-Bench. MDVP-Data features a multi-domain dataset containing 1.6M unique image-visual prompt-text instruction-following samples, including natural images, document images, OCR images, mobile screenshots, web screenshots, and multi-panel images. Furthermore, we present MDVP-Bench, a comprehensive and challenging benchmark to assess a model's capability in understanding visual prompting instructions. Our experiments demonstrate SPHINX-V's impressive multimodal interaction capabilities through visual prompting, revealing significant improvements in detailed pixel-level description and question-answering abilities.
Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation
Evaluating production-level retrieval systems at scale is a crucial yet challenging task due to the limited availability of a large pool of well-trained human annotators. Large Language Models (LLMs) have the potential to address this scaling issue and offer a viable alternative to humans for the bulk of annotation tasks. In this paper, we propose a framework for assessing the product search engines in a large-scale e-commerce setting, leveraging Multimodal LLMs for (i) generating tailored annotation guidelines for individual queries, and (ii) conducting the subsequent annotation task. Our method, validated through deployment on a large e-commerce platform, demonstrates comparable quality to human annotations, significantly reduces time and cost, facilitates rapid problem discovery, and provides an effective solution for production-level quality control at scale.
A Survey of Confidence Estimation and Calibration in Large Language Models
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks in various domains. Despite their impressive performance, they can be unreliable due to factual errors in their generations. Assessing their confidence and calibrating them across different tasks can help mitigate risks and enable LLMs to produce better generations. There has been a lot of recent research aiming to address this, but there has been no comprehensive overview to organize it and outline the main lessons learned. The present survey aims to bridge this gap. In particular, we outline the challenges and we summarize recent technical advancements for LLM confidence estimation and calibration. We further discuss their applications and suggest promising directions for future work.
SeFAR: Semi-supervised Fine-grained Action Recognition with Temporal Perturbation and Learning Stabilization
Human action understanding is crucial for the advancement of multimodal systems. While recent developments, driven by powerful large language models (LLMs), aim to be general enough to cover a wide range of categories, they often overlook the need for more specific capabilities. In this work, we address the more challenging task of Fine-grained Action Recognition (FAR), which focuses on detailed semantic labels within shorter temporal duration (e.g., "salto backward tucked with 1 turn"). Given the high costs of annotating fine-grained labels and the substantial data needed for fine-tuning LLMs, we propose to adopt semi-supervised learning (SSL). Our framework, SeFAR, incorporates several innovative designs to tackle these challenges. Specifically, to capture sufficient visual details, we construct Dual-level temporal elements as more effective representations, based on which we design a new strong augmentation strategy for the Teacher-Student learning paradigm through involving moderate temporal perturbation. Furthermore, to handle the high uncertainty within the teacher model's predictions for FAR, we propose the Adaptive Regulation to stabilize the learning process. Experiments show that SeFAR achieves state-of-the-art performance on two FAR datasets, FineGym and FineDiving, across various data scopes. It also outperforms other semi-supervised methods on two classical coarse-grained datasets, UCF101 and HMDB51. Further analysis and ablation studies validate the effectiveness of our designs. Additionally, we show that the features extracted by our SeFAR could largely promote the ability of multimodal foundation models to understand fine-grained and domain-specific semantics.
LLM-augmented Preference Learning from Natural Language
Finding preferences expressed in natural language is an important but challenging task. State-of-the-art(SotA) methods leverage transformer-based models such as BERT, RoBERTa, etc. and graph neural architectures such as graph attention networks. Since Large Language Models (LLMs) are equipped to deal with larger context lengths and have much larger model sizes than the transformer-based model, we investigate their ability to classify comparative text directly. This work aims to serve as a first step towards using LLMs for the CPC task. We design and conduct a set of experiments that format the classification task into an input prompt for the LLM and a methodology to get a fixed-format response that can be automatically evaluated. Comparing performances with existing methods, we see that pre-trained LLMs are able to outperform the previous SotA models with no fine-tuning involved. Our results show that the LLMs can consistently outperform the SotA when the target text is large -- i.e. composed of multiple sentences --, and are still comparable to the SotA performance in shorter text. We also find that few-shot learning yields better performance than zero-shot learning.
Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal LLMs in Video Analysis
In the quest for artificial general intelligence, Multi-modal Large Language Models (MLLMs) have emerged as a focal point in recent advancements. However, the predominant focus remains on developing their capabilities in static image understanding. The potential of MLLMs in processing sequential visual data is still insufficiently explored, highlighting the absence of a comprehensive, high-quality assessment of their performance. In this paper, we introduce Video-MME, the first-ever full-spectrum, Multi-Modal Evaluation benchmark of MLLMs in Video analysis. Our work distinguishes from existing benchmarks through four key features: 1) Diversity in video types, spanning 6 primary visual domains with 30 subfields to ensure broad scenario generalizability; 2) Duration in temporal dimension, encompassing both short-, medium-, and long-term videos, ranging from 11 seconds to 1 hour, for robust contextual dynamics; 3) Breadth in data modalities, integrating multi-modal inputs besides video frames, including subtitles and audios, to unveil the all-round capabilities of MLLMs; 4) Quality in annotations, utilizing rigorous manual labeling by expert annotators to facilitate precise and reliable model assessment. 900 videos with a total of 256 hours are manually selected and annotated by repeatedly viewing all the video content, resulting in 2,700 question-answer pairs. With Video-MME, we extensively evaluate various state-of-the-art MLLMs, including GPT-4 series and Gemini 1.5 Pro, as well as open-source image models like InternVL-Chat-V1.5 and video models like LLaVA-NeXT-Video. Our experiments reveal that Gemini 1.5 Pro is the best-performing commercial model, significantly outperforming the open-source models. Our dataset along with these findings underscores the need for further improvements in handling longer sequences and multi-modal data. Project Page: https://video-mme.github.io
Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data
Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs) by incorporating pre-trained speech models. However, these SLMs often undergo extensive speech instruction-tuning to bridge the gap between speech and text modalities. This requires significant annotation efforts and risks catastrophic forgetting of the original language capabilities. In this work, we present a simple yet effective automatic process for creating speech-text pair data that carefully injects speech paralinguistic understanding abilities into SLMs while preserving the inherent language capabilities of the text-based LLM. Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data, achieving impressive performance on Dynamic-SUPERB and AIR-Bench-Chat benchmarks. Furthermore, our model exhibits the ability to follow complex instructions derived from LLMs, such as specific output formatting and chain-of-thought reasoning. Our approach not only enhances the versatility and effectiveness of SLMs but also reduces reliance on extensive annotated datasets, paving the way for more efficient and capable speech understanding systems.
Veagle: Advancements in Multimodal Representation Learning
Lately, researchers in artificial intelligence have been really interested in how language and vision come together, giving rise to the development of multimodal models that aim to seamlessly integrate textual and visual information. Multimodal models, an extension of Large Language Models (LLMs), have exhibited remarkable capabilities in addressing a diverse array of tasks, ranging from image captioning and visual question answering (VQA) to visual grounding. While these models have showcased significant advancements, challenges persist in accurately interpreting images and answering the question, a common occurrence in real-world scenarios. This paper introduces a novel approach to enhance the multimodal capabilities of existing models. In response to the limitations observed in current Vision Language Models (VLMs) and Multimodal Large Language Models (MLLMs), our proposed model Veagle, incorporates a unique mechanism inspired by the successes and insights of previous works. Veagle leverages a dynamic mechanism to project encoded visual information directly into the language model. This dynamic approach allows for a more nuanced understanding of intricate details present in visual contexts. To validate the effectiveness of Veagle, we conduct comprehensive experiments on benchmark datasets, emphasizing tasks such as visual question answering and image understanding. Our results indicate a improvement of 5-6 \% in performance, with Veagle outperforming existing models by a notable margin. The outcomes underscore the model's versatility and applicability beyond traditional benchmarks.
AudioPaLM: A Large Language Model That Can Speak and Listen
We introduce AudioPaLM, a large language model for speech understanding and generation. AudioPaLM fuses text-based and speech-based language models, PaLM-2 [Anil et al., 2023] and AudioLM [Borsos et al., 2022], into a unified multimodal architecture that can process and generate text and speech with applications including speech recognition and speech-to-speech translation. AudioPaLM inherits the capability to preserve paralinguistic information such as speaker identity and intonation from AudioLM and the linguistic knowledge present only in text large language models such as PaLM-2. We demonstrate that initializing AudioPaLM with the weights of a text-only large language model improves speech processing, successfully leveraging the larger quantity of text training data used in pretraining to assist with the speech tasks. The resulting model significantly outperforms existing systems for speech translation tasks and has the ability to perform zero-shot speech-to-text translation for many languages for which input/target language combinations were not seen in training. AudioPaLM also demonstrates features of audio language models, such as transferring a voice across languages based on a short spoken prompt. We release examples of our method at https://google-research.github.io/seanet/audiopalm/examples
LLaSM: Large Language and Speech Model
Multi-modal large language models have garnered significant interest recently. Though, most of the works focus on vision-language multi-modal models providing strong capabilities in following vision-and-language instructions. However, we claim that speech is also an important modality through which humans interact with the world. Hence, it is crucial for a general-purpose assistant to be able to follow multi-modal speech-and-language instructions. In this work, we propose Large Language and Speech Model (LLaSM). LLaSM is an end-to-end trained large multi-modal speech-language model with cross-modal conversational abilities, capable of following speech-and-language instructions. Our early experiments show that LLaSM demonstrates a more convenient and natural way for humans to interact with artificial intelligence. Specifically, we also release a large Speech Instruction Following dataset LLaSM-Audio-Instructions. Code and demo are available at https://github.com/LinkSoul-AI/LLaSM and https://huggingface.co/spaces/LinkSoul/LLaSM. The LLaSM-Audio-Instructions dataset is available at https://huggingface.co/datasets/LinkSoul/LLaSM-Audio-Instructions.
Neural Text Generation from Structured Data with Application to the Biography Domain
This paper introduces a neural model for concept-to-text generation that scales to large, rich domains. We experiment with a new dataset of biographies from Wikipedia that is an order of magnitude larger than existing resources with over 700k samples. The dataset is also vastly more diverse with a 400k vocabulary, compared to a few hundred words for Weathergov or Robocup. Our model builds upon recent work on conditional neural language model for text generation. To deal with the large vocabulary, we extend these models to mix a fixed vocabulary with copy actions that transfer sample-specific words from the input database to the generated output sentence. Our neural model significantly out-performs a classical Kneser-Ney language model adapted to this task by nearly 15 BLEU.
M6: A Chinese Multimodal Pretrainer
In this work, we construct the largest dataset for multimodal pretraining in Chinese, which consists of over 1.9TB images and 292GB texts that cover a wide range of domains. We propose a cross-modal pretraining method called M6, referring to Multi-Modality to Multi-Modality Multitask Mega-transformer, for unified pretraining on the data of single modality and multiple modalities. We scale the model size up to 10 billion and 100 billion parameters, and build the largest pretrained model in Chinese. We apply the model to a series of downstream applications, and demonstrate its outstanding performance in comparison with strong baselines. Furthermore, we specifically design a downstream task of text-guided image generation, and show that the finetuned M6 can create high-quality images with high resolution and abundant details.
Retrieval-Augmented Semantic Parsing: Using Large Language Models to Improve Generalization
Open-domain semantic parsing remains a challenging task, as models often rely on heuristics and struggle to handle unseen concepts. In this paper, we investigate the potential of large language models (LLMs) for this task and introduce Retrieval-Augmented Semantic Parsing (RASP), a simple yet effective approach that integrates external lexical knowledge into the parsing process. Our experiments not only show that LLMs outperform previous encoder-decoder baselines for semantic parsing, but that RASP further enhances their ability to predict unseen concepts, nearly doubling the performance of previous models on out-of-distribution concepts. These findings highlight the promise of leveraging large language models and retrieval mechanisms for robust and open-domain semantic parsing.
Speech Recognition Rescoring with Large Speech-Text Foundation Models
Large language models (LLM) have demonstrated the ability to understand human language by leveraging large amount of text data. Automatic speech recognition (ASR) systems are often limited by available transcribed speech data and benefit from a second pass rescoring using LLM. Recently multi-modal large language models, particularly speech and text foundational models have demonstrated strong spoken language understanding. Speech-Text foundational models leverage large amounts of unlabelled and labelled data both in speech and text modalities to model human language. In this work, we propose novel techniques to use multi-modal LLM for ASR rescoring. We also explore discriminative training to further improve the foundational model rescoring performance. We demonstrate cross-modal knowledge transfer in speech-text LLM can benefit rescoring. Our experiments demonstrate up-to 20% relative improvements over Whisper large ASR and up-to 15% relative improvements over text-only LLM.
Benchmarking Multi-Image Understanding in Vision and Language Models: Perception, Knowledge, Reasoning, and Multi-Hop Reasoning
The advancement of large language models (LLMs) has significantly broadened the scope of applications in natural language processing, with multi-modal LLMs extending these capabilities to integrate and interpret visual data. However, existing benchmarks for visual language models (VLMs) predominantly focus on single-image inputs, neglecting the crucial aspect of multi-image understanding. In this paper, we introduce a Multi-Image Relational Benchmark MIRB, designed to evaluate VLMs' ability to compare, analyze, and reason across multiple images. Our benchmark encompasses four categories: perception, visual world knowledge, reasoning, and multi-hop reasoning. Through a comprehensive evaluation of a wide range of open-source and closed-source models, we demonstrate that while open-source VLMs were shown to approach the performance of GPT-4V in single-image tasks, a significant performance gap remains in multi-image reasoning tasks. Our findings also reveal that even the state-of-the-art GPT-4V model struggles with our benchmark, underscoring the need for further research and development in this area. We believe our contribution of MIRB could serve as a testbed for developing the next-generation multi-modal models.
WaveletGPT: Wavelets Meet Large Language Models
Large Language Models (LLMs) have ushered in a new wave of artificial intelligence advancements impacting every scientific field and discipline. They are trained on a simple objective: to predict the next token given the previous context. We live in a world where most of the data around us, e.g., text, audio, and music, has a multi-scale structure associated with it. This paper infuses LLMs with traditional signal processing ideas, namely wavelets, during pre-training to take advantage of the structure. Without adding any extra parameters to a GPT-style LLM architecture, we achieve the same pre-training performance almost twice as fast in text, raw audio, and symbolic music. This is achieved by imposing a structure on intermediate embeddings. When trained for the same number of training steps, we achieve significant gains in performance, which is comparable to pre-training a larger neural architecture. Our architecture allows every next token prediction access to intermediate embeddings at different temporal resolutions in every Transformer decoder block. This work will hopefully pave the way for incorporating multi-rate signal processing ideas into traditional LLM pre-training. Further, we showcase pushing model performance by improving internal structure instead of just going after scale.
Steered Generation via Gradient Descent on Sparse Features
Large language models (LLMs) encode a diverse range of linguistic features within their latent representations, which can be harnessed to steer their output toward specific target characteristics. In this paper, we modify the internal structure of LLMs by training sparse autoencoders to learn a sparse representation of the query embedding, allowing precise control over the model's attention distribution. We demonstrate that manipulating this sparse representation effectively transforms the output toward different stylistic and cognitive targets. Specifically, in an educational setting, we show that the cognitive complexity of LLM-generated feedback can be systematically adjusted by modifying the encoded query representation at a specific layer. To achieve this, we guide the learned sparse embedding toward the representation of samples from the desired cognitive complexity level, using gradient-based optimization in the latent space.
Transforming LLMs into Cross-modal and Cross-lingual Retrieval Systems
Large language models (LLMs) are trained on text-only data that go far beyond the languages with paired speech and text data. At the same time, Dual Encoder (DE) based retrieval systems project queries and documents into the same embedding space and have demonstrated their success in retrieval and bi-text mining. To match speech and text in many languages, we propose using LLMs to initialize multi-modal DE retrieval systems. Unlike traditional methods, our system doesn't require speech data during LLM pre-training and can exploit LLM's multilingual text understanding capabilities to match speech and text in languages unseen during retrieval training. Our multi-modal LLM-based retrieval system is capable of matching speech and text in 102 languages despite only training on 21 languages. Our system outperforms previous systems trained explicitly on all 102 languages. We achieve a 10% absolute improvement in Recall@1 averaged across these languages. Additionally, our model demonstrates cross-lingual speech and text matching, which is further enhanced by readily available machine translation data.
WebLINX: Real-World Website Navigation with Multi-Turn Dialogue
We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve real-world tasks in a multi-turn dialogue fashion. To support this problem, we introduce WEBLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers a broad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller finetuned decoders surpass the best zero-shot LLMs (including GPT-4V), but also larger finetuned multimodal models which were explicitly pretrained on screenshots. However, all finetuned models struggle to generalize to unseen websites. Our findings highlight the need for large multimodal models that can generalize to novel settings. Our code, data and models are available for research: https://mcgill-nlp.github.io/weblinx
Can LLMs Predict Citation Intent? An Experimental Analysis of In-context Learning and Fine-tuning on Open LLMs
This work investigates the ability of open Large Language Models (LLMs) to predict citation intent through in-context learning and fine-tuning. Unlike traditional approaches that rely on pre-trained models like SciBERT, which require extensive domain-specific pretraining and specialized architectures, we demonstrate that general-purpose LLMs can be adapted to this task with minimal task-specific data. We evaluate twelve model variations across five prominent open LLM families using zero, one, few, and many-shot prompting to assess performance across scenarios. Our experimental study identifies the top-performing model through extensive experimentation of in-context learning-related parameters, which we fine-tune to further enhance task performance. The results highlight the strengths and limitations of LLMs in recognizing citation intents, providing valuable insights for model selection and prompt engineering. Additionally, we make our end-to-end evaluation framework and models openly available for future use.
SnakModel: Lessons Learned from Training an Open Danish Large Language Model
We present SnakModel, a Danish large language model (LLM) based on Llama2-7B, which we continuously pre-train on 13.6B Danish words, and further tune on 3.7M Danish instructions. As best practices for creating LLMs for smaller language communities have yet to be established, we examine the effects of early modeling and training decisions on downstream performance throughout the entire training pipeline, including (1) the creation of a strictly curated corpus of Danish text from diverse sources; (2) the language modeling and instruction-tuning training process itself, including the analysis of intermediate training dynamics, and ablations across different hyperparameters; (3) an evaluation on eight language and culturally-specific tasks. Across these experiments SnakModel achieves the highest overall performance, outperforming multiple contemporary Llama2-7B-based models. By making SnakModel, the majority of our pre-training corpus, and the associated code available under open licenses, we hope to foster further research and development in Danish Natural Language Processing, and establish training guidelines for languages with similar resource constraints.
Fine-Tuning LLaMA for Multi-Stage Text Retrieval
The effectiveness of multi-stage text retrieval has been solidly demonstrated since before the era of pre-trained language models. However, most existing studies utilize models that predate recent advances in large language models (LLMs). This study seeks to explore potential improvements that state-of-the-art LLMs can bring. We conduct a comprehensive study, fine-tuning the latest LLaMA model both as a dense retriever (RepLLaMA) and as a pointwise reranker (RankLLaMA) for both passage retrieval and document retrieval using the MS MARCO datasets. Our findings demonstrate that the effectiveness of large language models indeed surpasses that of smaller models. Additionally, since LLMs can inherently handle longer contexts, they can represent entire documents holistically, obviating the need for traditional segmenting and pooling strategies. Furthermore, evaluations on BEIR demonstrate that our RepLLaMA-RankLLaMA pipeline exhibits strong zero-shot effectiveness. Model checkpoints from this study are available on HuggingFace.
EMMA: Efficient Visual Alignment in Multi-Modal LLMs
Multi-modal Large Language Models (MLLMs) have recently exhibited impressive general-purpose capabilities by leveraging vision foundation models to encode the core concepts of images into representations. These are then combined with instructions and processed by the language model to generate high-quality responses. Despite significant progress in enhancing the language component, challenges persist in optimally fusing visual encodings within the language model for task-specific adaptability. Recent research has focused on improving this fusion through modality adaptation modules but at the cost of significantly increased model complexity and training data needs. In this paper, we propose EMMA (Efficient Multi-Modal Adaptation), a lightweight cross-modality module designed to efficiently fuse visual and textual encodings, generating instruction-aware visual representations for the language model. Our key contributions include: (1) an efficient early fusion mechanism that integrates vision and language representations with minimal added parameters (less than 0.2% increase in model size), (2) an in-depth interpretability analysis that sheds light on the internal mechanisms of the proposed method; (3) comprehensive experiments that demonstrate notable improvements on both specialized and general benchmarks for MLLMs. Empirical results show that EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations. Our code is available at https://github.com/SaraGhazanfari/EMMA
EE-MLLM: A Data-Efficient and Compute-Efficient Multimodal Large Language Model
In the realm of multimodal research, numerous studies leverage substantial image-text pairs to conduct modal alignment learning, transforming Large Language Models (LLMs) into Multimodal LLMs and excelling in a variety of visual-language tasks. The prevailing methodologies primarily fall into two categories: self-attention-based and cross-attention-based methods. While self-attention-based methods offer superior data efficiency due to their simple MLP architecture, they often suffer from lower computational efficiency due to concatenating visual and textual tokens as input for LLM. Conversely, cross-attention-based methods, although less data-efficient due to additional learnable parameters, exhibit higher computational efficiency by avoiding long sequence input for LLM. To address these trade-offs, we introduce the Data-Efficient and Compute-Efficient Multimodal Large Language Model (EE-MLLM). Without introducing additional modules or learnable parameters, EE-MLLM achieves both data and compute efficiency. Specifically, we modify the original self-attention mechanism in MLLM to a composite attention mechanism. This mechanism has two key characteristics: 1) Eliminating the computational overhead of self-attention within visual tokens to achieve compute efficiency, and 2) Reusing the weights on each layer of LLM to facilitate effective modality alignment between vision and language for data efficiency. Experimental results demonstrate the effectiveness of EE-MLLM across a range of benchmarks, including general-purpose datasets like MMBench and SeedBench, as well as fine-grained tasks such as TextVQA and DocVQA.
Small Language Models Improve Giants by Rewriting Their Outputs
Large language models (LLMs) have demonstrated impressive few-shot learning capabilities, but they often underperform compared to fine-tuned models on challenging tasks. Furthermore, their large size and restricted access only through APIs make task-specific fine-tuning impractical. Moreover, LLMs are sensitive to different aspects of prompts (e.g., the selection and order of demonstrations) and can thus require time-consuming prompt engineering. In this light, we propose a method to correct LLM outputs without relying on their weights. First, we generate a pool of candidates by few-shot prompting an LLM. Second, we refine the LLM-generated outputs using a smaller model, the LM-corrector (LMCor), which is trained to rank, combine and rewrite the candidates to produce the final target output. Our experiments demonstrate that even a small LMCor model (250M) substantially improves the few-shot performance of LLMs (62B) across diverse tasks. Moreover, we illustrate that the LMCor exhibits robustness against different prompts, thereby minimizing the need for extensive prompt engineering. Finally, we showcase that the LMCor can be seamlessly integrated with different LLMs at inference time, serving as a plug-and-play module to improve their performance.
Scaling Properties of Speech Language Models
Speech Language Models (SLMs) aim to learn language from raw audio, without textual resources. Despite significant advances, our current models exhibit weak syntax and semantic abilities. However, if the scaling properties of neural language models hold for the speech modality, these abilities will improve as the amount of compute used for training increases. In this paper, we use models of this scaling behavior to estimate the scale at which our current methods will yield a SLM with the English proficiency of text-based Large Language Models (LLMs). We establish a strong correlation between pre-training loss and downstream syntactic and semantic performance in SLMs and LLMs, which results in predictable scaling of linguistic performance. We show that the linguistic performance of SLMs scales up to three orders of magnitude more slowly than that of text-based LLMs. Additionally, we study the benefits of synthetic data designed to boost semantic understanding and the effects of coarser speech tokenization.
LLM Compression with Neural Architecture Search
Large language models (LLMs) exhibit remarkable reasoning abilities, allowing them to generalize across a wide range of downstream tasks, such as commonsense reasoning or instruction following. However, as LLMs scale, inference costs become increasingly prohibitive, accumulating significantly over their life cycle. This poses the question: Can we compress pre-trained LLMs to meet diverse size and latency requirements? We leverage Neural Architecture Search (NAS) to compress LLMs by pruning structural components, such as attention heads, neurons, and layers, aiming to achieve a Pareto-optimal balance between performance and efficiency. While NAS already achieved promising results on small language models in previous work, in this paper we propose various extensions that allow us to scale to LLMs. Compared to structural pruning baselines, we show that NAS improves performance up to 3.4% on MMLU with an on-device latency speedup.
Large Language Model Can Transcribe Speech in Multi-Talker Scenarios with Versatile Instructions
Recent advancements in large language models (LLMs) have revolutionized various domains, bringing significant progress and new opportunities. Despite progress in speech-related tasks, LLMs have not been sufficiently explored in multi-talker scenarios. In this work, we present a pioneering effort to investigate the capability of LLMs in transcribing speech in multi-talker environments, following versatile instructions related to multi-talker automatic speech recognition (ASR), target talker ASR, and ASR based on specific talker attributes such as sex, occurrence order, language, and keyword spoken. Our approach utilizes WavLM and Whisper encoder to extract multi-faceted speech representations that are sensitive to speaker characteristics and semantic context. These representations are then fed into an LLM fine-tuned using LoRA, enabling the capabilities for speech comprehension and transcription. Comprehensive experiments reveal the promising performance of our proposed system, MT-LLM, in cocktail party scenarios, highlighting the potential of LLM to handle speech-related tasks based on user instructions in such complex settings.
MegaPairs: Massive Data Synthesis For Universal Multimodal Retrieval
Despite the rapidly growing demand for multimodal retrieval, progress in this field remains severely constrained by a lack of training data. In this paper, we introduce MegaPairs, a novel data synthesis method that leverages vision language models (VLMs) and open-domain images, together with a massive synthetic dataset generated from this method. Our empirical analysis shows that MegaPairs generates high-quality data, enabling the multimodal retriever to significantly outperform the baseline model trained on 70times more data from existing datasets. Moreover, since MegaPairs solely relies on general image corpora and open-source VLMs, it can be easily scaled up, enabling continuous improvements in retrieval performance. In this stage, we produced more than 26 million training instances and trained several models of varying sizes using this data. These new models achieve state-of-the-art zero-shot performance across 4 popular composed image retrieval (CIR) benchmarks and the highest overall performance on the 36 datasets provided by MMEB. They also demonstrate notable performance improvements with additional downstream fine-tuning. Our produced dataset, well-trained models, and data synthesis pipeline will be made publicly available to facilitate the future development of this field.
Towards Text-Image Interleaved Retrieval
Current multimodal information retrieval studies mainly focus on single-image inputs, which limits real-world applications involving multiple images and text-image interleaved content. In this work, we introduce the text-image interleaved retrieval (TIIR) task, where the query and document are interleaved text-image sequences, and the model is required to understand the semantics from the interleaved context for effective retrieval. We construct a TIIR benchmark based on naturally interleaved wikiHow tutorials, where a specific pipeline is designed to generate interleaved queries. To explore the task, we adapt several off-the-shelf retrievers and build a dense baseline by interleaved multimodal large language model (MLLM). We then propose a novel Matryoshka Multimodal Embedder (MME), which compresses the number of visual tokens at different granularity, to address the challenge of excessive visual tokens in MLLM-based TIIR models. Experiments demonstrate that simple adaption of existing models does not consistently yield effective results. Our MME achieves significant improvements over the baseline by substantially fewer visual tokens. We provide extensive analysis and will release the dataset and code to facilitate future research.
Language Model Behavior: A Comprehensive Survey
Transformer language models have received widespread public attention, yet their generated text is often surprising even to NLP researchers. In this survey, we discuss over 250 recent studies of English language model behavior before task-specific fine-tuning. Language models possess basic capabilities in syntax, semantics, pragmatics, world knowledge, and reasoning, but these capabilities are sensitive to specific inputs and surface features. Despite dramatic increases in generated text quality as models scale to hundreds of billions of parameters, the models are still prone to unfactual responses, commonsense errors, memorized text, and social biases. Many of these weaknesses can be framed as over-generalizations or under-generalizations of learned patterns in text. We synthesize recent results to highlight what is currently known about what large language models can and cannot do.
User-LLM: Efficient LLM Contextualization with User Embeddings
Large language models (LLMs) have revolutionized natural language processing. However, effectively incorporating complex and potentially noisy user interaction data remains a challenge. To address this, we propose User-LLM, a novel framework that leverages user embeddings to contextualize LLMs. These embeddings, distilled from diverse user interactions using self-supervised pretraining, capture latent user preferences and their evolution over time. We integrate these user embeddings with LLMs through cross-attention and soft-prompting, enabling LLMs to dynamically adapt to user context. Our comprehensive experiments on MovieLens, Amazon Review, and Google Local Review datasets demonstrate significant performance gains across various tasks. Notably, our approach outperforms text-prompt-based contextualization on long sequence tasks and tasks that require deep user understanding while being computationally efficient. We further incorporate Perceiver layers to streamline the integration between user encoders and LLMs, reducing computational demands.
Achieving Peak Performance for Large Language Models: A Systematic Review
In recent years, large language models (LLMs) have achieved remarkable success in natural language processing (NLP). LLMs require an extreme amount of parameters to attain high performance. As models grow into the trillion-parameter range, computational and memory costs increase significantly. This makes it difficult for many researchers to access the resources needed to train or apply these models. Optimizing LLM performance involves two main approaches: fine-tuning pre-trained models for specific tasks to achieve state-of-the-art performance, and reducing costs or improving training time while maintaining similar performance. This paper presents a systematic literature review (SLR) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. We reviewed 65 publications out of 983 from 2017 to December 2023, retrieved from 5 databases. The study presents methods to optimize and accelerate LLMs while achieving cutting-edge results without sacrificing accuracy. We begin with an overview of the development of language modeling, followed by a detailed explanation of commonly used frameworks and libraries, and a taxonomy for improving and speeding up LLMs based on three classes: LLM training, LLM inference, and system serving. We then delve into recent optimization and acceleration strategies such as training optimization, hardware optimization, scalability and reliability, accompanied by the taxonomy and categorization of these strategies. Finally, we provide an in-depth comparison of each class and strategy, with two case studies on optimizing model training and enhancing inference efficiency. These case studies showcase practical approaches to address LLM resource limitations while maintaining performance.
A Survey of Large Language Models
Language is essentially a complex, intricate system of human expressions governed by grammatical rules. It poses a significant challenge to develop capable AI algorithms for comprehending and grasping a language. As a major approach, language modeling has been widely studied for language understanding and generation in the past two decades, evolving from statistical language models to neural language models. Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora, showing strong capabilities in solving various NLP tasks. Since researchers have found that model scaling can lead to performance improvement, they further study the scaling effect by increasing the model size to an even larger size. Interestingly, when the parameter scale exceeds a certain level, these enlarged language models not only achieve a significant performance improvement but also show some special abilities that are not present in small-scale language models. To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size. Recently, the research on LLMs has been largely advanced by both academia and industry, and a remarkable progress is the launch of ChatGPT, which has attracted widespread attention from society. The technical evolution of LLMs has been making an important impact on the entire AI community, which would revolutionize the way how we develop and use AI algorithms. In this survey, we review the recent advances of LLMs by introducing the background, key findings, and mainstream techniques. In particular, we focus on four major aspects of LLMs, namely pre-training, adaptation tuning, utilization, and capacity evaluation. Besides, we also summarize the available resources for developing LLMs and discuss the remaining issues for future directions.
Compressing LLMs: The Truth is Rarely Pure and Never Simple
Despite their remarkable achievements, modern Large Language Models (LLMs) encounter exorbitant computational and memory footprints. Recently, several works have shown significant success in training-free and data-free compression (pruning and quantization) of LLMs achieving 50-60% sparsity and reducing the bit-width down to 3 or 4 bits per weight, with negligible perplexity degradation over the uncompressed baseline. As recent research efforts are focused on developing increasingly sophisticated compression methods, our work takes a step back, and re-evaluates the effectiveness of existing SoTA compression methods, which rely on a fairly simple and widely questioned metric, perplexity (even for dense LLMs). We introduce Knowledge-Intensive Compressed LLM BenchmarK (LLM-KICK), a collection of carefully-curated tasks to re-define the evaluation protocol for compressed LLMs, which have significant alignment with their dense counterparts, and perplexity fail to capture subtle change in their true capabilities. LLM-KICK unveils many favorable merits and unfortunate plights of current SoTA compression methods: all pruning methods suffer significant performance degradation, sometimes at trivial sparsity ratios (e.g., 25-30%), and fail for N:M sparsity on knowledge-intensive tasks; current quantization methods are more successful than pruning; yet, pruned LLMs even at geq 50% sparsity are robust in-context retrieval and summarization systems; among others. LLM-KICK is designed to holistically access compressed LLMs' ability for language understanding, reasoning, generation, in-context retrieval, in-context summarization, etc. We hope our study can foster the development of better LLM compression methods. All our related codes are planed to be open-sourced.
Scaling Laws for Generative Mixed-Modal Language Models
Generative language models define distributions over sequences of tokens that can represent essentially any combination of data modalities (e.g., any permutation of image tokens from VQ-VAEs, speech tokens from HuBERT, BPE tokens for language or code, and so on). To better understand the scaling properties of such mixed-modal models, we conducted over 250 experiments using seven different modalities and model sizes ranging from 8 million to 30 billion, trained on 5-100 billion tokens. We report new mixed-modal scaling laws that unify the contributions of individual modalities and the interactions between them. Specifically, we explicitly model the optimal synergy and competition due to data and model size as an additive term to previous uni-modal scaling laws. We also find four empirical phenomena observed during the training, such as emergent coordinate-ascent style training that naturally alternates between modalities, guidelines for selecting critical hyper-parameters, and connections between mixed-modal competition and training stability. Finally, we test our scaling law by training a 30B speech-text model, which significantly outperforms the corresponding unimodal models. Overall, our research provides valuable insights into the design and training of mixed-modal generative models, an important new class of unified models that have unique distributional properties.
VTechAGP: An Academic-to-General-Audience Text Paraphrase Dataset and Benchmark Models
Existing text simplification or paraphrase datasets mainly focus on sentence-level text generation in a general domain. These datasets are typically developed without using domain knowledge. In this paper, we release a novel dataset, VTechAGP, which is the first academic-to-general-audience text paraphrase dataset consisting of 4,938 document-level these and dissertation academic and general-audience abstract pairs from 8 colleges authored over 25 years. We also propose a novel dynamic soft prompt generative language model, DSPT5. For training, we leverage a contrastive-generative loss function to learn the keyword vectors in the dynamic prompt. For inference, we adopt a crowd-sampling decoding strategy at both semantic and structural levels to further select the best output candidate. We evaluate DSPT5 and various state-of-the-art large language models (LLMs) from multiple perspectives. Results demonstrate that the SOTA LLMs does not provide satisfactory outcomes, while the lightweight DSPT5 can achieve competitive results. To the best of our knowledge, we are the first to build a benchmark dataset and solutions for academic-to-general-audience text paraphrase dataset.
Frozen Transformers in Language Models Are Effective Visual Encoder Layers
This paper reveals that large language models (LLMs), despite being trained solely on textual data, are surprisingly strong encoders for purely visual tasks in the absence of language. Even more intriguingly, this can be achieved by a simple yet previously overlooked strategy -- employing a frozen transformer block from pre-trained LLMs as a constituent encoder layer to directly process visual tokens. Our work pushes the boundaries of leveraging LLMs for computer vision tasks, significantly departing from conventional practices that typically necessitate a multi-modal vision-language setup with associated language prompts, inputs, or outputs. We demonstrate that our approach consistently enhances performance across a diverse range of tasks, encompassing pure 2D and 3D visual recognition tasks (e.g., image and point cloud classification), temporal modeling tasks (e.g., action recognition), non-semantic tasks (e.g., motion forecasting), and multi-modal tasks (e.g., 2D/3D visual question answering and image-text retrieval). Such improvements are a general phenomenon, applicable to various types of LLMs (e.g., LLaMA and OPT) and different LLM transformer blocks. We additionally propose the information filtering hypothesis to explain the effectiveness of pre-trained LLMs in visual encoding -- the pre-trained LLM transformer blocks discern informative visual tokens and further amplify their effect. This hypothesis is empirically supported by the observation that the feature activation, after training with LLM transformer blocks, exhibits a stronger focus on relevant regions. We hope that our work inspires new perspectives on utilizing LLMs and deepening our understanding of their underlying mechanisms. Code is available at https://github.com/ziqipang/LM4VisualEncoding.
The Curious Case of Nonverbal Abstract Reasoning with Multi-Modal Large Language Models
While large language models (LLMs) are still being adopted to new domains and utilized in novel applications, we are experiencing an influx of the new generation of foundation models, namely multi-modal large language models (MLLMs). These models integrate verbal and visual information, opening new possibilities to demonstrate more complex reasoning abilities at the intersection of the two modalities. However, despite the revolutionizing prospect of MLLMs, our understanding of their reasoning abilities is limited. In this study, we assess the nonverbal abstract reasoning abilities of open-source and closed-source MLLMs using variations of Raven's Progressive Matrices. Our experiments expose the difficulty of solving such problems while showcasing the immense gap between open-source and closed-source models. We also reveal critical shortcomings with individual visual and textual modules, subjecting the models to low-performance ceilings. Finally, to improve MLLMs' performance, we experiment with various methods, such as Chain-of-Thought prompting, resulting in a significant (up to 100%) boost in performance.
SURf: Teaching Large Vision-Language Models to Selectively Utilize Retrieved Information
Large Vision-Language Models (LVLMs) have become pivotal at the intersection of computer vision and natural language processing. However, the full potential of LVLMs Retrieval-Augmented Generation (RAG) capabilities remains underutilized. Existing works either focus solely on the text modality or are limited to specific tasks. Moreover, most LVLMs struggle to selectively utilize retrieved information and are sensitive to irrelevant or misleading references. To address these challenges, we propose a self-refinement framework designed to teach LVLMs to Selectively Utilize Retrieved Information (SURf). Specifically, when given questions that are incorrectly answered by the LVLM backbone, we obtain references that help correct the answers (positive references) and those that do not (negative references). We then fine-tune the LVLM backbone using a combination of these positive and negative references. Our experiments across three tasks and seven datasets demonstrate that our framework significantly enhances LVLMs ability to effectively utilize retrieved multimodal references and improves their robustness against irrelevant or misleading information. The source code is available at https://github.com/GasolSun36/SURf.
Efficient Large Language Models: A Survey
Large Language Models (LLMs) have demonstrated remarkable capabilities in important tasks such as natural language understanding, language generation, and complex reasoning and have the potential to make a substantial impact on our society. Such capabilities, however, come with the considerable resources they demand, highlighting the strong need to develop effective techniques for addressing their efficiency challenges. In this survey, we provide a systematic and comprehensive review of efficient LLMs research. We organize the literature in a taxonomy consisting of three main categories, covering distinct yet interconnected efficient LLMs topics from model-centric, data-centric, and framework-centric perspective, respectively. We have also created a GitHub repository where we compile the papers featured in this survey at https://github.com/AIoT-MLSys-Lab/EfficientLLMs, and will actively maintain this repository and incorporate new research as it emerges. We hope our survey can serve as a valuable resource to help researchers and practitioners gain a systematic understanding of the research developments in efficient LLMs and inspire them to contribute to this important and exciting field.
CMMLU: Measuring massive multitask language understanding in Chinese
As the capabilities of large language models (LLMs) continue to advance, evaluating their performance becomes increasingly crucial and challenging. This paper aims to bridge this gap by introducing CMMLU, a comprehensive Chinese benchmark that covers various subjects, including natural science, social sciences, engineering, and humanities. We conduct a thorough evaluation of 18 advanced multilingual- and Chinese-oriented LLMs, assessing their performance across different subjects and settings. The results reveal that most existing LLMs struggle to achieve an average accuracy of 50%, even when provided with in-context examples and chain-of-thought prompts, whereas the random baseline stands at 25%. This highlights significant room for improvement in LLMs. Additionally, we conduct extensive experiments to identify factors impacting the models' performance and propose directions for enhancing LLMs. CMMLU fills the gap in evaluating the knowledge and reasoning capabilities of large language models within the Chinese context.
On Speculative Decoding for Multimodal Large Language Models
Inference with Multimodal Large Language Models (MLLMs) is slow due to their large-language-model backbone which suffers from memory bandwidth bottleneck and generates tokens auto-regressively. In this paper, we explore the application of speculative decoding to enhance the inference efficiency of MLLMs, specifically the LLaVA 7B model. We show that a language-only model can serve as a good draft model for speculative decoding with LLaVA 7B, bypassing the need for image tokens and their associated processing components from the draft model. Our experiments across three different tasks show that speculative decoding can achieve a memory-bound speedup of up to 2.37times using a 115M parameter language model that we trained from scratch. Additionally, we introduce a compact LLaVA draft model incorporating an image adapter, which shows marginal performance gains in image captioning while maintaining comparable results in other tasks.
Giraffe: Adventures in Expanding Context Lengths in LLMs
Modern large language models (LLMs) that rely on attention mechanisms are typically trained with fixed context lengths which enforce upper limits on the length of input sequences that they can handle at evaluation time. To use these models on sequences longer than the train-time context length, one might employ techniques from the growing family of context length extrapolation methods -- most of which focus on modifying the system of positional encodings used in the attention mechanism to indicate where tokens or activations are located in the input sequence. We conduct a wide survey of existing methods of context length extrapolation on a base LLaMA or LLaMA 2 model, and introduce some of our own design as well -- in particular, a new truncation strategy for modifying the basis for the position encoding. We test these methods using three new evaluation tasks (FreeFormQA, AlteredNumericQA, and LongChat-Lines) as well as perplexity, which we find to be less fine-grained as a measure of long context performance of LLMs. We release the three tasks publicly as datasets on HuggingFace. We discover that linear scaling is the best method for extending context length, and show that further gains can be achieved by using longer scales at evaluation time. We also discover promising extrapolation capabilities in the truncated basis. To support further research in this area, we release three new 13B parameter long-context models which we call Giraffe: 4k and 16k context models trained from base LLaMA-13B, and a 32k context model trained from base LLaMA2-13B. We also release the code to replicate our results.
CorrSynth -- A Correlated Sampling Method for Diverse Dataset Generation from LLMs
Large language models (LLMs) have demonstrated remarkable performance in diverse tasks using zero-shot and few-shot prompting. Even though their capabilities of data synthesis have been studied well in recent years, the generated data suffers from a lack of diversity, less adherence to the prompt, and potential biases that creep into the data from the generator model. In this work, we tackle the challenge of generating datasets with high diversity, upon which a student model is trained for downstream tasks. Taking the route of decoding-time guidance-based approaches, we propose CorrSynth, which generates data that is more diverse and faithful to the input prompt using a correlated sampling strategy. Further, our method overcomes the complexity drawbacks of some other guidance-based techniques like classifier-based guidance. With extensive experiments, we show the effectiveness of our approach and substantiate our claims. In particular, we perform intrinsic evaluation to show the improvements in diversity. Our experiments show that CorrSynth improves both student metrics and intrinsic metrics upon competitive baselines across four datasets, showing the innate advantage of our method.
Finding Neurons in a Haystack: Case Studies with Sparse Probing
Despite rapid adoption and deployment of large language models (LLMs), the internal computations of these models remain opaque and poorly understood. In this work, we seek to understand how high-level human-interpretable features are represented within the internal neuron activations of LLMs. We train k-sparse linear classifiers (probes) on these internal activations to predict the presence of features in the input; by varying the value of k we study the sparsity of learned representations and how this varies with model scale. With k=1, we localize individual neurons which are highly relevant for a particular feature, and perform a number of case studies to illustrate general properties of LLMs. In particular, we show that early layers make use of sparse combinations of neurons to represent many features in superposition, that middle layers have seemingly dedicated neurons to represent higher-level contextual features, and that increasing scale causes representational sparsity to increase on average, but there are multiple types of scaling dynamics. In all, we probe for over 100 unique features comprising 10 different categories in 7 different models spanning 70 million to 6.9 billion parameters.
In-Context Example Selection via Similarity Search Improves Low-Resource Machine Translation
The ability of generative large language models (LLMs) to perform in-context learning has given rise to a large body of research into how best to prompt models for various natural language processing tasks. In this paper, we focus on machine translation (MT), a task that has been shown to benefit from in-context translation examples. However no systematic studies have been published on how best to select examples, and mixed results have been reported on the usefulness of similarity-based selection over random selection. We provide a study covering multiple LLMs and multiple in-context example retrieval strategies, comparing multilingual sentence embeddings. We cover several language directions, representing different levels of language resourcedness (English into French, German, Swahili and Wolof). Contrarily to previously published results, we find that sentence embedding similarity can improve MT, especially for low-resource language directions, and discuss the balance between selection pool diversity and quality. We also highlight potential problems with the evaluation of LLM-based MT and suggest a more appropriate evaluation protocol, adapting the COMET metric to the evaluation of LLMs. Code and outputs are freely available at https://github.com/ArmelRandy/ICL-MT.
WanJuan: A Comprehensive Multimodal Dataset for Advancing English and Chinese Large Models
The rise in popularity of ChatGPT and GPT-4 has significantly accelerated the development of large models, leading to the creation of numerous impressive large language models(LLMs) and multimodal large language models (MLLMs). These cutting-edge models owe their remarkable performance to high-quality data. However, the details of the training data used in leading paradigms are often kept confidential. This lack of transparency, coupled with the scarcity of open-source data, impedes further developments within the community. As a response, this paper presents "Wan Juan", a large-scale multimodal dataset composed of both Chinese and English data, collected from a wide range of web sources. The dataset incorporates text, image-text, and video modalities, with a total volume exceeding 2TB. It was utilized in the training of InternLM, a model that demonstrated significant advantages in multi-dimensional evaluations when compared to models of a similar scale. All data can be accessed at https://opendatalab.org.cn/WanJuan1.0.
Mixture of Soft Prompts for Controllable Data Generation
Large language models (LLMs) effectively generate fluent text when the target output follows natural language patterns. However, structured prediction tasks confine the output format to a limited ontology, causing even very large models to struggle since they were never trained with such restrictions in mind. The difficulty of using LLMs for direct prediction is exacerbated in few-shot learning scenarios, which commonly arise due to domain shift and resource limitations. We flip the problem on its head by leveraging the LLM as a tool for data augmentation rather than direct prediction. Our proposed Mixture of Soft Prompts (MSP) serves as a parameter-efficient procedure for generating data in a controlled manner. Denoising mechanisms are further applied to improve the quality of synthesized data. Automatic metrics show our method is capable of producing diverse and natural text, while preserving label semantics. Moreover, MSP achieves state-of-the-art results on three benchmarks when compared against strong baselines. Our method offers an alternate data-centric approach for applying LLMs to complex prediction tasks.
X-LLM: Bootstrapping Advanced Large Language Models by Treating Multi-Modalities as Foreign Languages
Large language models (LLMs) have demonstrated remarkable language abilities. GPT-4, based on advanced LLMs, exhibits extraordinary multimodal capabilities beyond previous visual language models. We attribute this to the use of more advanced LLMs compared with previous multimodal models. Unfortunately, the model architecture and training strategies of GPT-4 are unknown. To endow LLMs with multimodal capabilities, we propose X-LLM, which converts Multi-modalities (images, speech, videos) into foreign languages using X2L interfaces and inputs them into a large Language model (ChatGLM). Specifically, X-LLM aligns multiple frozen single-modal encoders and a frozen LLM using X2L interfaces, where ``X'' denotes multi-modalities such as image, speech, and videos, and ``L'' denotes languages. X-LLM's training consists of three stages: (1) Converting Multimodal Information: The first stage trains each X2L interface to align with its respective single-modal encoder separately to convert multimodal information into languages. (2) Aligning X2L representations with the LLM: single-modal encoders are aligned with the LLM through X2L interfaces independently. (3) Integrating multiple modalities: all single-modal encoders are aligned with the LLM through X2L interfaces to integrate multimodal capabilities into the LLM. Our experiments show that X-LLM demonstrates impressive multimodel chat abilities, sometimes exhibiting the behaviors of multimodal GPT-4 on unseen images/instructions, and yields a 84.5\% relative score compared with GPT-4 on a synthetic multimodal instruction-following dataset. And we also conduct quantitative tests on using LLM for ASR and multimodal ASR, hoping to promote the era of LLM-based speech recognition.
Zero-Shot and Few-Shot Video Question Answering with Multi-Modal Prompts
Recent vision-language models are driven by large-scale pretrained models. However, adapting pretrained models on limited data presents challenges such as overfitting, catastrophic forgetting, and the cross-modal gap between vision and language. We introduce a parameter-efficient method to address these challenges, combining multimodal prompt learning and a transformer-based mapping network, while keeping the pretrained models frozen. Our experiments on several video question answering benchmarks demonstrate the superiority of our approach in terms of performance and parameter efficiency on both zero-shot and few-shot settings. Our code is available at https://engindeniz.github.io/vitis.
NextLevelBERT: Investigating Masked Language Modeling with Higher-Level Representations for Long Documents
While (large) language models have significantly improved over the last years, they still struggle to sensibly process long sequences found, e.g., in books, due to the quadratic scaling of the underlying attention mechanism. To address this, we propose NextLevelBERT, a Masked Language Model operating not on tokens, but on higher-level semantic representations in the form of text embeddings. We pretrain NextLevelBERT to predict the vector representation of entire masked text chunks and evaluate the effectiveness of the resulting document vectors on three task types: 1) Semantic Textual Similarity via zero-shot document embeddings, 2) Long document classification, 3) Multiple-choice question answering. We find that next level Masked Language Modeling is an effective technique to tackle long-document use cases and can outperform much larger embedding models as long as the required level of detail is not too high. We make model and code available.
OmniBench: Towards The Future of Universal Omni-Language Models
Recent advancements in multimodal large language models (MLLMs) have aimed to integrate and interpret data across diverse modalities. However, the capacity of these models to concurrently process and reason about multiple modalities remains inadequately explored, partly due to the lack of comprehensive modality-wise benchmarks. We introduce OmniBench, a novel benchmark designed to rigorously evaluate models' ability to recognize, interpret, and reason across visual, acoustic, and textual inputs simultaneously. We define models capable of such tri-modal processing as omni-language models (OLMs). OmniBench is distinguished by high-quality human annotations, ensuring that accurate responses require integrated understanding and reasoning across all three modalities. Our main findings reveal that: i) open-source OLMs exhibit critical limitations in instruction-following and reasoning capabilities within tri-modal contexts; and ii) the baseline models perform poorly (below 50% accuracy) even when provided with alternative textual representations of images and audio. These results suggest that the ability to construct a consistent context from text, image, and audio is often overlooked in existing MLLM training paradigms. We advocate for future research to focus on developing more robust tri-modal integration techniques and training strategies to enhance OLM performance across diverse modalities. The codes and live leaderboard could be found at https://m-a-p.ai/OmniBench.
Focused Transformer: Contrastive Training for Context Scaling
Large language models have an exceptional capability to incorporate new information in a contextual manner. However, the full potential of such an approach is often restrained due to a limitation in the effective context length. One solution to this issue is to endow an attention layer with access to an external memory, which comprises of (key, value) pairs. Yet, as the number of documents increases, the proportion of relevant keys to irrelevant ones decreases, leading the model to focus more on the irrelevant keys. We identify a significant challenge, dubbed the distraction issue, where keys linked to different semantic values might overlap, making them hard to distinguish. To tackle this problem, we introduce the Focused Transformer (FoT), a technique that employs a training process inspired by contrastive learning. This novel approach enhances the structure of the (key, value) space, enabling an extension of the context length. Our method allows for fine-tuning pre-existing, large-scale models to lengthen their effective context. This is demonstrated by our fine-tuning of 3B and 7B OpenLLaMA checkpoints. The resulting models, which we name LongLLaMA, exhibit advancements in tasks requiring a long context. We further illustrate that our LongLLaMA models adeptly manage a 256 k context length for passkey retrieval.
MileBench: Benchmarking MLLMs in Long Context
Despite the advancements and impressive performance of Multimodal Large Language Models (MLLMs) on benchmarks, their effectiveness in real-world, long-context, and multi-image tasks is unclear due to the benchmarks' limited scope. Existing benchmarks often focus on single-image and short-text samples, and when assessing multi-image tasks, they either limit the image count or focus on specific task (e.g time-series captioning), potentially obscuring the performance challenges of MLLMs. To address these limitations, we introduce MileBench, a pioneering benchmark designed to test the MultImodal Long-contExt capabilities of MLLMs. This benchmark comprises not only multimodal long contexts, but also multiple tasks requiring both comprehension and generation. We establish two distinct evaluation sets, diagnostic and realistic, to systematically assess MLLMs' long-context adaptation capacity and their ability to complete tasks in long-context scenarios. Our experimental results, obtained from testing 20 models, revealed that while the closed-source GPT-4(Vision) and Gemini 1.5 outperform others, most open-source MLLMs struggle in long-context situations. Interestingly, the performance gap tends to widen with an increase in the number of images. We strongly encourage an intensification of research efforts towards enhancing MLLMs' long-context capabilities, especially in scenarios involving multiple images.
Beyond Text: Optimizing RAG with Multimodal Inputs for Industrial Applications
Large Language Models (LLMs) have demonstrated impressive capabilities in answering questions, but they lack domain-specific knowledge and are prone to hallucinations. Retrieval Augmented Generation (RAG) is one approach to address these challenges, while multimodal models are emerging as promising AI assistants for processing both text and images. In this paper we describe a series of experiments aimed at determining how to best integrate multimodal models into RAG systems for the industrial domain. The purpose of the experiments is to determine whether including images alongside text from documents within the industrial domain increases RAG performance and to find the optimal configuration for such a multimodal RAG system. Our experiments include two approaches for image processing and retrieval, as well as two LLMs (GPT4-Vision and LLaVA) for answer synthesis. These image processing strategies involve the use of multimodal embeddings and the generation of textual summaries from images. We evaluate our experiments with an LLM-as-a-Judge approach. Our results reveal that multimodal RAG can outperform single-modality RAG settings, although image retrieval poses a greater challenge than text retrieval. Additionally, leveraging textual summaries from images presents a more promising approach compared to the use of multimodal embeddings, providing more opportunities for future advancements.
On the Hidden Mystery of OCR in Large Multimodal Models
Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. It remains less explored about their efficacy in text-related visual tasks. We conducted a comprehensive study of existing publicly available multimodal models, evaluating their performance in text recognition (document text, artistic text, handwritten text, scene text), text-based visual question answering (document text, scene text, and bilingual text), key information extraction (receipts, documents, and nutrition facts) and handwritten mathematical expression recognition. Our findings reveal strengths and weaknesses in these models, which primarily rely on semantic understanding for word recognition and exhibit inferior perception of individual character shapes. They also display indifference towards text length and have limited capabilities in detecting finegrained features in images. Consequently, these results demonstrate that even the current most powerful large multimodal models cannot match domain-specific methods in traditional text tasks and face greater challenges in more complex tasks. Most importantly, the baseline results showcased in this study could provide a foundational framework for the conception and assessment of innovative strategies targeted at enhancing zero-shot multimodal techniques. Evaluation pipeline is available at https://github.com/Yuliang-Liu/MultimodalOCR.
Internet-augmented language models through few-shot prompting for open-domain question answering
In this work, we aim to capitalize on the unique few-shot capabilities of large-scale language models (LSLMs) to overcome some of their challenges with respect to grounding to factual and up-to-date information. Motivated by semi-parametric language models (LMs), which ground their decisions in external retrieved evidence, we use few-shot prompting to learn to condition LMs on information returned from the web using Google Search, a broad and constantly updated knowledge source. Our approach does not involve fine-tuning or learning additional parameters, thus making it applicable to any LM, offering therefore a strong baseline. Indeed, we find that LMs conditioned on the web surpass performance of closed-book models of similar, or even larger, model sizes in open-domain question answering. Finally, we find that increasing the inference-time compute of models, achieved via using multiple retrieved evidences to generate multiple answers followed by a reranking stage that uses scores generated by the same LMs, leads to better performance and alleviates lower performance of smaller few-shot LMs. All in all, our findings suggest that it might be beneficial to slow down the race towards the biggest model and instead shift attention towards finding more effective ways to use models, including but not limited to, better prompting or increasing inference-time compute.
Dual Modalities of Text: Visual and Textual Generative Pre-training
Harnessing visual texts represents a burgeoning frontier in the evolution of language modeling. In this paper, we introduce a novel pre-training framework for a suite of pixel-based autoregressive language models, pre-training on a corpus of over 400 million documents rendered as RGB images. Our approach is characterized by a dual-modality training regimen, engaging both visual data through next patch prediction with a regression head and textual data via next token prediction with a classification head. This study is particularly focused on investigating the synergistic interplay between visual and textual modalities of language. Our comprehensive evaluation across a diverse array of benchmarks reveals that the confluence of visual and textual data substantially augments the efficacy of pixel-based language models. Notably, our findings show that a unidirectional pixel-based model, devoid of textual data during training, can match the performance levels of advanced bidirectional pixel-based models on various language understanding benchmarks. This work highlights the considerable untapped potential of integrating visual and textual information for language modeling purposes. We will release our code, data, and checkpoints to inspire further research advancement.
Learning to Retrieve In-Context Examples for Large Language Models
Large language models (LLMs) have demonstrated their ability to learn in-context, allowing them to perform various tasks based on a few input-output examples. However, the effectiveness of in-context learning is heavily reliant on the quality of the selected examples. In this paper, we propose a novel framework to iteratively train dense retrievers that can identify high-quality in-context examples for LLMs. Our framework initially trains a reward model based on LLM feedback to evaluate the quality of candidate examples, followed by knowledge distillation to train a bi-encoder based dense retriever. Our experiments on a suite of 30 tasks demonstrate that our framework significantly enhances in-context learning performance. Furthermore, we show the generalization ability of our framework to unseen tasks during training. An in-depth analysis reveals that our model improves performance by retrieving examples with similar patterns, and the gains are consistent across LLMs of varying sizes.