new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 11

3D-Mem: 3D Scene Memory for Embodied Exploration and Reasoning

Constructing compact and informative 3D scene representations is essential for effective embodied exploration and reasoning, especially in complex environments over extended periods. Existing representations, such as object-centric 3D scene graphs, oversimplify spatial relationships by modeling scenes as isolated objects with restrictive textual relationships, making it difficult to address queries requiring nuanced spatial understanding. Moreover, these representations lack natural mechanisms for active exploration and memory management, hindering their application to lifelong autonomy. In this work, we propose 3D-Mem, a novel 3D scene memory framework for embodied agents. 3D-Mem employs informative multi-view images, termed Memory Snapshots, to represent the scene and capture rich visual information of explored regions. It further integrates frontier-based exploration by introducing Frontier Snapshots-glimpses of unexplored areas-enabling agents to make informed decisions by considering both known and potential new information. To support lifelong memory in active exploration settings, we present an incremental construction pipeline for 3D-Mem, as well as a memory retrieval technique for memory management. Experimental results on three benchmarks demonstrate that 3D-Mem significantly enhances agents' exploration and reasoning capabilities in 3D environments, highlighting its potential for advancing applications in embodied AI.

Efficiently Training 7B LLM with 1 Million Sequence Length on 8 GPUs

Nowadays, Large Language Models (LLMs) have been trained using extended context lengths to foster more creative applications. However, long context training poses great challenges considering the constraint of GPU memory. It not only leads to substantial activation memory consumption during training, but also incurs considerable memory fragmentation. To facilitate long context training, existing frameworks have adopted strategies such as recomputation and various forms of parallelisms. Nevertheless, these techniques rely on redundant computation or extensive communication, resulting in low Model FLOPS Utilization (MFU). In this paper, we propose MEMO, a novel LLM training framework designed for fine-grained activation memory management. Given the quadratic scaling of computation and linear scaling of memory with sequence lengths when using FlashAttention, we offload memory-consuming activations to CPU memory after each layer's forward pass and fetch them during the backward pass. To maximize the swapping of activations without hindering computation, and to avoid exhausting limited CPU memory, we implement a token-wise activation recomputation and swapping mechanism. Furthermore, we tackle the memory fragmentation issue by employing a bi-level Mixed Integer Programming (MIP) approach, optimizing the reuse of memory across transformer layers. Empirical results demonstrate that MEMO achieves an average of 2.42x and 2.26x MFU compared to Megatron-LM and DeepSpeed, respectively. This improvement is attributed to MEMO's ability to minimize memory fragmentation, reduce recomputation and intensive communication, and circumvent the delays associated with the memory reorganization process due to fragmentation. By leveraging fine-grained activation memory management, MEMO facilitates efficient training of 7B LLM with 1 million sequence length on just 8 A800 GPUs, achieving an MFU of 52.30%.

vAttention: Dynamic Memory Management for Serving LLMs without PagedAttention

Efficient use of GPU memory is essential for high throughput LLM inference. Prior systems reserved memory for the KV-cache ahead-of-time, resulting in wasted capacity due to internal fragmentation. Inspired by OS-based virtual memory systems, vLLM proposed PagedAttention to enable dynamic memory allocation for KV-cache. This approach eliminates fragmentation, enabling high-throughput LLM serving with larger batch sizes. However, to be able to allocate physical memory dynamically, PagedAttention changes the layout of KV-cache from contiguous virtual memory to non-contiguous virtual memory. This change requires attention kernels to be rewritten to support paging, and serving framework to implement a memory manager. Thus, the PagedAttention model leads to software complexity, portability issues, redundancy and inefficiency. In this paper, we propose vAttention for dynamic KV-cache memory management. In contrast to PagedAttention, vAttention retains KV-cache in contiguous virtual memory and leverages low-level system support for demand paging, that already exists, to enable on-demand physical memory allocation. Thus, vAttention unburdens the attention kernel developer from having to explicitly support paging and avoids re-implementation of memory management in the serving framework. We show that vAttention enables seamless dynamic memory management for unchanged implementations of various attention kernels. vAttention also generates tokens up to 1.97x faster than vLLM, while processing input prompts up to 3.92x and 1.45x faster than the PagedAttention variants of FlashAttention and FlashInfer.

A-MEM: Agentic Memory for LLM Agents

While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.

Assessing Episodic Memory in LLMs with Sequence Order Recall Tasks

Current LLM benchmarks focus on evaluating models' memory of facts and semantic relations, primarily assessing semantic aspects of long-term memory. However, in humans, long-term memory also includes episodic memory, which links memories to their contexts, such as the time and place they occurred. The ability to contextualize memories is crucial for many cognitive tasks and everyday functions. This form of memory has not been evaluated in LLMs with existing benchmarks. To address the gap in evaluating memory in LLMs, we introduce Sequence Order Recall Tasks (SORT), which we adapt from tasks used to study episodic memory in cognitive psychology. SORT requires LLMs to recall the correct order of text segments, and provides a general framework that is both easily extendable and does not require any additional annotations. We present an initial evaluation dataset, Book-SORT, comprising 36k pairs of segments extracted from 9 books recently added to the public domain. Based on a human experiment with 155 participants, we show that humans can recall sequence order based on long-term memory of a book. We find that models can perform the task with high accuracy when relevant text is given in-context during the SORT evaluation. However, when presented with the book text only during training, LLMs' performance on SORT falls short. By allowing to evaluate more aspects of memory, we believe that SORT will aid in the emerging development of memory-augmented models.

Think-in-Memory: Recalling and Post-thinking Enable LLMs with Long-Term Memory

Memory-augmented Large Language Models (LLMs) have demonstrated remarkable performance in long-term human-machine interactions, which basically relies on iterative recalling and reasoning of history to generate high-quality responses. However, such repeated recall-reason steps easily produce biased thoughts, i.e., inconsistent reasoning results when recalling the same history for different questions. On the contrary, humans can keep thoughts in the memory and recall them without repeated reasoning. Motivated by this human capability, we propose a novel memory mechanism called TiM (Think-in-Memory) that enables LLMs to maintain an evolved memory for storing historical thoughts along the conversation stream. The TiM framework consists of two crucial stages: (1) before generating a response, a LLM agent recalls relevant thoughts from memory, and (2) after generating a response, the LLM agent post-thinks and incorporates both historical and new thoughts to update the memory. Thus, TiM can eliminate the issue of repeated reasoning by saving the post-thinking thoughts as the history. Besides, we formulate the basic principles to organize the thoughts in memory based on the well-established operations, (i.e., insert, forget, and merge operations), allowing for dynamic updates and evolution of the thoughts. Furthermore, we introduce Locality-Sensitive Hashing into TiM to achieve efficient retrieval for the long-term conversations. We conduct qualitative and quantitative experiments on real-world and simulated dialogues covering a wide range of topics, demonstrating that equipping existing LLMs with TiM significantly enhances their performance in generating responses for long-term interactions.

CMT: A Memory Compression Method for Continual Knowledge Learning of Large Language Models

Large Language Models (LLMs) need to adapt to the continuous changes in data, tasks, and user preferences. Due to their massive size and the high costs associated with training, LLMs are not suitable for frequent retraining. However, updates are necessary to keep them in sync with rapidly evolving human knowledge. To address these challenges, this paper proposes the Compression Memory Training (CMT) method, an efficient and effective online adaptation framework for LLMs that features robust knowledge retention capabilities. Inspired by human memory mechanisms, CMT compresses and extracts information from new documents to be stored in a memory bank. When answering to queries related to these new documents, the model aggregates these document memories from the memory bank to better answer user questions. The parameters of the LLM itself do not change during training and inference, reducing the risk of catastrophic forgetting. To enhance the encoding, retrieval, and aggregation of memory, we further propose three new general and flexible techniques, including memory-aware objective, self-matching and top-aggregation. Extensive experiments conducted on three continual learning datasets (i.e., StreamingQA, SQuAD and ArchivalQA) demonstrate that the proposed method improves model adaptability and robustness across multiple base LLMs (e.g., +4.07 EM & +4.19 F1 in StreamingQA with Llama-2-7b).

Simple linear attention language models balance the recall-throughput tradeoff

Recent work has shown that attention-based language models excel at recall, the ability to ground generations in tokens previously seen in context. However, the efficiency of attention-based models is bottle-necked during inference by the KV-cache's aggressive memory consumption. In this work, we explore whether we can improve language model efficiency (e.g. by reducing memory consumption) without compromising on recall. By applying experiments and theory to a broad set of architectures, we identify a key tradeoff between a model's state size and recall ability. We show that efficient alternatives to attention (e.g. H3, Mamba, RWKV) maintain a fixed-size recurrent state, but struggle at recall. We propose BASED a simple architecture combining linear and sliding window attention. By varying BASED window size and linear attention feature dimension, we can dial the state size and traverse the pareto frontier of the recall-memory tradeoff curve, recovering the full quality of attention on one end and the small state size of attention-alternatives on the other. We train language models up to 1.3b parameters and show that BASED matches the strongest sub-quadratic models (e.g. Mamba) in perplexity and outperforms them on real-world recall-intensive tasks by 6.22 accuracy points. Implementations of linear attention are often less efficient than optimized standard attention implementations. To make BASED competitive, we develop IO-aware algorithms that enable 24x higher throughput on language generation than FlashAttention-2, when generating 1024 tokens using 1.3b parameter models. Code for this work is provided at: https://github.com/HazyResearch/based.

Spatially-Aware Transformer for Embodied Agents

Episodic memory plays a crucial role in various cognitive processes, such as the ability to mentally recall past events. While cognitive science emphasizes the significance of spatial context in the formation and retrieval of episodic memory, the current primary approach to implementing episodic memory in AI systems is through transformers that store temporally ordered experiences, which overlooks the spatial dimension. As a result, it is unclear how the underlying structure could be extended to incorporate the spatial axis beyond temporal order alone and thereby what benefits can be obtained. To address this, this paper explores the use of Spatially-Aware Transformer models that incorporate spatial information. These models enable the creation of place-centric episodic memory that considers both temporal and spatial dimensions. Adopting this approach, we demonstrate that memory utilization efficiency can be improved, leading to enhanced accuracy in various place-centric downstream tasks. Additionally, we propose the Adaptive Memory Allocator, a memory management method based on reinforcement learning that aims to optimize efficiency of memory utilization. Our experiments demonstrate the advantages of our proposed model in various environments and across multiple downstream tasks, including prediction, generation, reasoning, and reinforcement learning. The source code for our models and experiments will be available at https://github.com/junmokane/spatially-aware-transformer.

Towards mental time travel: a hierarchical memory for reinforcement learning agents

Reinforcement learning agents often forget details of the past, especially after delays or distractor tasks. Agents with common memory architectures struggle to recall and integrate across multiple timesteps of a past event, or even to recall the details of a single timestep that is followed by distractor tasks. To address these limitations, we propose a Hierarchical Chunk Attention Memory (HCAM), which helps agents to remember the past in detail. HCAM stores memories by dividing the past into chunks, and recalls by first performing high-level attention over coarse summaries of the chunks, and then performing detailed attention within only the most relevant chunks. An agent with HCAM can therefore "mentally time-travel" -- remember past events in detail without attending to all intervening events. We show that agents with HCAM substantially outperform agents with other memory architectures at tasks requiring long-term recall, retention, or reasoning over memory. These include recalling where an object is hidden in a 3D environment, rapidly learning to navigate efficiently in a new neighborhood, and rapidly learning and retaining new object names. Agents with HCAM can extrapolate to task sequences much longer than they were trained on, and can even generalize zero-shot from a meta-learning setting to maintaining knowledge across episodes. HCAM improves agent sample efficiency, generalization, and generality (by solving tasks that previously required specialized architectures). Our work is a step towards agents that can learn, interact, and adapt in complex and temporally-extended environments.

LLM in a flash: Efficient Large Language Model Inference with Limited Memory

Large language models (LLMs) are central to modern natural language processing, delivering exceptional performance in various tasks. However, their intensive computational and memory requirements present challenges, especially for devices with limited DRAM capacity. This paper tackles the challenge of efficiently running LLMs that exceed the available DRAM capacity by storing the model parameters on flash memory but bringing them on demand to DRAM. Our method involves constructing an inference cost model that harmonizes with the flash memory behavior, guiding us to optimize in two critical areas: reducing the volume of data transferred from flash and reading data in larger, more contiguous chunks. Within this flash memory-informed framework, we introduce two principal techniques. First, "windowing'" strategically reduces data transfer by reusing previously activated neurons, and second, "row-column bundling", tailored to the sequential data access strengths of flash memory, increases the size of data chunks read from flash memory. These methods collectively enable running models up to twice the size of the available DRAM, with a 4-5x and 20-25x increase in inference speed compared to naive loading approaches in CPU and GPU, respectively. Our integration of sparsity awareness, context-adaptive loading, and a hardware-oriented design paves the way for effective inference of LLMs on devices with limited memory.

SirLLM: Streaming Infinite Retentive LLM

As Large Language Models (LLMs) become increasingly prevalent in various domains, their ability to process inputs of any length and maintain a degree of memory becomes essential. However, the one-off input of overly long texts is limited, as studies have shown that when input lengths exceed the LLMs' pre-trained text length, there is a dramatic decline in text generation capabilities. Moreover, simply extending the length of pre-training texts is impractical due to the difficulty in obtaining long text data and the substantial memory consumption costs this would entail for LLMs. Recent efforts have employed streaming inputs to alleviate the pressure of excessively long text inputs, but this approach can significantly impair the model's long-term memory capabilities. Motivated by this challenge, we introduce Streaming Infinite Retentive LLM (SirLLM), which allows LLMs to maintain longer memory during infinite-length dialogues without the need for fine-tuning. SirLLM utilizes the Token Entropy metric and a memory decay mechanism to filter key phrases, endowing LLMs with both long-lasting and flexible memory. We designed three distinct tasks and constructed three datasets to measure the effectiveness of SirLLM from various angles: (1) DailyDialog; (2) Grocery Shopping; (3) Rock-Paper-Scissors. Our experimental results robustly demonstrate that SirLLM can achieve stable and significant improvements across different LLMs and tasks, compellingly proving its effectiveness. When having a coversation, "A sir could forget himself," but SirLLM never does! Our code is publicly available at https://github.com/Zoeyyao27/SirLLM

MoM: Linear Sequence Modeling with Mixture-of-Memories

Linear sequence modeling methods, such as linear attention, state space modeling, and linear RNNs, offer significant efficiency improvements by reducing the complexity of training and inference. However, these methods typically compress the entire input sequence into a single fixed-size memory state, which leads to suboptimal performance on recall-intensive downstream tasks. Drawing inspiration from neuroscience, particularly the brain's ability to maintain robust long-term memory while mitigating "memory interference", we introduce a novel architecture called Mixture-of-Memories (MoM). MoM utilizes multiple independent memory states, with a router network directing input tokens to specific memory states. This approach greatly enhances the overall memory capacity while minimizing memory interference. As a result, MoM performs exceptionally well on recall-intensive tasks, surpassing existing linear sequence modeling techniques. Despite incorporating multiple memory states, the computation of each memory state remains linear in complexity, allowing MoM to retain the linear-complexity advantage during training, while constant-complexity during inference. Our experimental results show that MoM significantly outperforms current linear sequence models on downstream language tasks, particularly recall-intensive tasks, and even achieves performance comparable to Transformer models. The code is released at https://github.com/OpenSparseLLMs/MoM and is also released as a part of https://github.com/OpenSparseLLMs/Linear-MoE.

A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental Learning

Real-world applications require the classification model to adapt to new classes without forgetting old ones. Correspondingly, Class-Incremental Learning (CIL) aims to train a model with limited memory size to meet this requirement. Typical CIL methods tend to save representative exemplars from former classes to resist forgetting, while recent works find that storing models from history can substantially boost the performance. However, the stored models are not counted into the memory budget, which implicitly results in unfair comparisons. We find that when counting the model size into the total budget and comparing methods with aligned memory size, saving models do not consistently work, especially for the case with limited memory budgets. As a result, we need to holistically evaluate different CIL methods at different memory scales and simultaneously consider accuracy and memory size for measurement. On the other hand, we dive deeply into the construction of the memory buffer for memory efficiency. By analyzing the effect of different layers in the network, we find that shallow and deep layers have different characteristics in CIL. Motivated by this, we propose a simple yet effective baseline, denoted as MEMO for Memory-efficient Expandable MOdel. MEMO extends specialized layers based on the shared generalized representations, efficiently extracting diverse representations with modest cost and maintaining representative exemplars. Extensive experiments on benchmark datasets validate MEMO's competitive performance. Code is available at: https://github.com/wangkiw/ICLR23-MEMO

L2MAC: Large Language Model Automatic Computer for Extensive Code Generation

Transformer-based large language models (LLMs) are constrained by the fixed context window of the underlying transformer architecture, hindering their ability to produce long and coherent outputs. Memory-augmented LLMs are a promising solution, but current approaches cannot handle long output generation tasks since they (1) only focus on reading memory and reduce its evolution to the concatenation of new memories or (2) use very specialized memories that cannot adapt to other domains. This paper presents L2MAC, the first practical LLM-based general-purpose stored-program automatic computer (von Neumann architecture) framework, an LLM-based multi-agent system, for long and consistent output generation. Its memory has two components: the instruction registry, which is populated with a prompt program to solve the user-given task, and a file store, which will contain the final and intermediate outputs. Each instruction in turn is executed by a separate LLM agent, whose context is managed by a control unit capable of precise memory reading and writing to ensure effective interaction with the file store. These components enable L2MAC to generate extensive outputs, bypassing the constraints of the finite context window while producing outputs that fulfill a complex user-specified task. We empirically demonstrate that L2MAC achieves state-of-the-art performance in generating large codebases for system design tasks, significantly outperforming other coding methods in implementing the detailed user-specified task; we show that L2MAC works for general-purpose extensive text-based tasks, such as writing an entire book; and we provide valuable insights into L2MAC's performance improvement over existing methods.

LongMemEval: Benchmarking Chat Assistants on Long-Term Interactive Memory

Recent large language model (LLM)-driven chat assistant systems have integrated memory components to track user-assistant chat histories, enabling more accurate and personalized responses. However, their long-term memory capabilities in sustained interactions remain underexplored. This paper introduces LongMemEval, a comprehensive benchmark designed to evaluate five core long-term memory abilities of chat assistants: information extraction, multi-session reasoning, temporal reasoning, knowledge updates, and abstention. With 500 meticulously curated questions embedded within freely scalable user-assistant chat histories, LongMemEval presents a significant challenge to existing long-term memory systems, with commercial chat assistants and long-context LLMs showing 30% accuracy drop on memorizing information across sustained interactions. We then present a unified framework that breaks down the long-term memory design into four design choices across the indexing, retrieval, and reading stages. Built upon key experimental insights, we propose several memory designs including session decomposition for optimizing value granularity, fact-augmented key expansion for enhancing the index structure, and time-aware query expansion for refining the search scope. Experiment results show that these optimizations greatly improve both memory recall and downstream question answering on LongMemEval. Overall, our study provides valuable resources and guidance for advancing the long-term memory capabilities of LLM-based chat assistants, paving the way toward more personalized and reliable conversational AI.

Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores

Large language models (LLMs) have been widely applied but face challenges in efficient inference. While quantization methods reduce computational demands, ultra-low bit quantization with arbitrary precision is hindered by limited GPU Tensor Core support and inefficient memory management, leading to suboptimal acceleration. To address these challenges, we propose a comprehensive acceleration scheme for arbitrary precision LLMs. At its core, we introduce a novel bipolar-INT data format that facilitates parallel computing and supports symmetric quantization, effectively reducing data redundancy. Building on this, we implement an arbitrary precision matrix multiplication scheme that decomposes and recovers matrices at the bit level, enabling flexible precision while maximizing GPU Tensor Core utilization. Furthermore, we develop an efficient matrix preprocessing method that optimizes data layout for subsequent computations. Finally, we design a data recovery-oriented memory management system that strategically utilizes fast shared memory, significantly enhancing kernel execution speed and minimizing memory access latency. Experimental results demonstrate our approach's effectiveness, with up to 2.4\times speedup in matrix multiplication compared to NVIDIA's CUTLASS. When integrated into LLMs, we achieve up to 6.7\times inference acceleration. These improvements significantly enhance LLM inference efficiency, enabling broader and more responsive applications of LLMs.

Fast & Slow Learning: Incorporating Synthetic Gradients in Neural Memory Controllers

Neural Memory Networks (NMNs) have received increased attention in recent years compared to deep architectures that use a constrained memory. Despite their new appeal, the success of NMNs hinges on the ability of the gradient-based optimiser to perform incremental training of the NMN controllers, determining how to leverage their high capacity for knowledge retrieval. This means that while excellent performance can be achieved when the training data is consistent and well distributed, rare data samples are hard to learn from as the controllers fail to incorporate them effectively during model training. Drawing inspiration from the human cognition process, in particular the utilisation of neuromodulators in the human brain, we propose to decouple the learning process of the NMN controllers to allow them to achieve flexible, rapid adaptation in the presence of new information. This trait is highly beneficial for meta-learning tasks where the memory controllers must quickly grasp abstract concepts in the target domain, and adapt stored knowledge. This allows the NMN controllers to quickly determine which memories are to be retained and which are to be erased, and swiftly adapt their strategy to the new task at hand. Through both quantitative and qualitative evaluations on multiple public benchmarks, including classification and regression tasks, we demonstrate the utility of the proposed approach. Our evaluations not only highlight the ability of the proposed NMN architecture to outperform the current state-of-the-art methods, but also provide insights on how the proposed augmentations help achieve such superior results. In addition, we demonstrate the practical implications of the proposed learning strategy, where the feedback path can be shared among multiple neural memory networks as a mechanism for knowledge sharing.

Contextual Memory Reweaving in Large Language Models Using Layered Latent State Reconstruction

Memory retention challenges in deep neural architectures have ongoing limitations in the ability to process and recall extended contextual information. Token dependencies degrade as sequence length increases, leading to a decline in coherence and factual consistency across longer outputs. A structured approach is introduced to mitigate this issue through the reweaving of latent states captured at different processing layers, reinforcing token representations over extended sequences. The proposed Contextual Memory Reweaving framework incorporates a Layered Latent State Reconstruction mechanism to systematically integrate past contextual embeddings without introducing external memory modules. Experimental results demonstrate improvements in recall accuracy across a range of sequence lengths, with notable gains in the retention of rarely occurring tokens and numerical reasoning consistency. Further analysis of computational efficiency indicates that the additional processing overhead remains within acceptable thresholds, enabling scalability across different model sizes. Evaluations in long-form text generation and ambiguous query resolution highlight the capacity of memory reweaving to enhance continuity and reduce inconsistencies over extended outputs. Attention weight distributions reveal more structured allocation patterns, suggesting that reweaved latent states contribute to improved contextual awareness. The findings establish a framework for refining memory retention mechanisms in language models, addressing long-standing challenges in handling complex, multi-step reasoning tasks.

Unleashing Infinite-Length Input Capacity for Large-scale Language Models with Self-Controlled Memory System

Large-scale Language Models (LLMs) are constrained by their inability to process lengthy inputs. To address this limitation, we propose the Self-Controlled Memory (SCM) system to unleash infinite-length input capacity for large-scale language models. Our SCM system is composed of three key modules: the language model agent, the memory stream, and the memory controller. The language model agent iteratively processes ultra-long inputs and stores all historical information in the memory stream. The memory controller provides the agent with both long-term memory (archived memory) and short-term memory (flash memory) to generate precise and coherent responses. The controller determines which memories from archived memory should be activated and how to incorporate them into the model input. Our SCM system can be integrated with any LLMs to enable them to process ultra-long texts without any modification or fine-tuning. Experimental results show that our SCM system enables LLMs, which are not optimized for multi-turn dialogue, to achieve multi-turn dialogue capabilities that are comparable to ChatGPT, and to outperform ChatGPT in scenarios involving ultra-long document summarization or long-term conversations. Additionally, we will supply a test set, which covers common long-text input scenarios, for evaluating the abilities of LLMs in processing long documents.~Working in progress.\url{https://github.com/wbbeyourself/SCM4LLMs}

Augmenting Language Models with Long-Term Memory

Existing large language models (LLMs) can only afford fix-sized inputs due to the input length limit, preventing them from utilizing rich long-context information from past inputs. To address this, we propose a framework, Language Models Augmented with Long-Term Memory (LongMem), which enables LLMs to memorize long history. We design a novel decoupled network architecture with the original backbone LLM frozen as a memory encoder and an adaptive residual side-network as a memory retriever and reader. Such a decoupled memory design can easily cache and update long-term past contexts for memory retrieval without suffering from memory staleness. Enhanced with memory-augmented adaptation training, LongMem can thus memorize long past context and use long-term memory for language modeling. The proposed memory retrieval module can handle unlimited-length context in its memory bank to benefit various downstream tasks. Typically, LongMem can enlarge the long-form memory to 65k tokens and thus cache many-shot extra demonstration examples as long-form memory for in-context learning. Experiments show that our method outperforms strong long-context models on ChapterBreak, a challenging long-context modeling benchmark, and achieves remarkable improvements on memory-augmented in-context learning over LLMs. The results demonstrate that the proposed method is effective in helping language models to memorize and utilize long-form contents. Our code is open-sourced at https://aka.ms/LongMem.

ThinK: Thinner Key Cache by Query-Driven Pruning

Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications by leveraging increased model sizes and sequence lengths. However, the associated rise in computational and memory costs poses significant challenges, particularly in managing long sequences due to the quadratic complexity of the transformer attention mechanism. This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference. Unlike existing approaches that optimize the memory based on the sequence lengths, we uncover that the channel dimension of the KV cache exhibits significant redundancy, characterized by unbalanced magnitude distribution and low-rank structure in attention weights. Based on these observations, we propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels. Our approach not only maintains or enhances model accuracy but also achieves a reduction in memory costs by over 20% compared with vanilla KV cache eviction methods. Extensive evaluations on the LLaMA3 and Mistral models across various long-sequence datasets confirm the efficacy of ThinK, setting a new precedent for efficient LLM deployment without compromising performance. We also outline the potential of extending our method to value cache pruning, demonstrating ThinK's versatility and broad applicability in reducing both memory and computational overheads.

Efficient Inference of Vision Instruction-Following Models with Elastic Cache

In the field of instruction-following large vision-language models (LVLMs), the efficient deployment of these models faces challenges, notably due to the high memory demands of their key-value (KV) caches. Conventional cache management strategies for LLMs focus on cache eviction, which often fails to address the specific needs of multimodal instruction-following models. Recognizing this gap, in this paper, we introduce Elastic Cache, a novel approach that benefits from applying distinct acceleration methods for instruction encoding and output generation stages. We investigate the metrics of importance in different stages and propose an importance-driven cache merging strategy to prune redundancy caches. Instead of discarding less important caches, our strategy identifies important key/value vectors as anchor points. Surrounding less important caches are then merged with these anchors, enhancing the preservation of contextual information in the KV caches while yielding an arbitrary acceleration ratio. For instruction encoding, we utilize the frequency to evaluate the importance of caches. Regarding output generation, we prioritize tokens based on their distance with an offset, by which both the initial and most recent tokens are retained. Results on a range of LVLMs demonstrate that Elastic Cache not only boosts efficiency but also notably outperforms existing pruning methods in language generation across various tasks. Code is available at https://github.com/liuzuyan/ElasticCache

SPANN: Highly-efficient Billion-scale Approximate Nearest Neighbor Search

The in-memory algorithms for approximate nearest neighbor search (ANNS) have achieved great success for fast high-recall search, but are extremely expensive when handling very large scale database. Thus, there is an increasing request for the hybrid ANNS solutions with small memory and inexpensive solid-state drive (SSD). In this paper, we present a simple but efficient memory-disk hybrid indexing and search system, named SPANN, that follows the inverted index methodology. It stores the centroid points of the posting lists in the memory and the large posting lists in the disk. We guarantee both disk-access efficiency (low latency) and high recall by effectively reducing the disk-access number and retrieving high-quality posting lists. In the index-building stage, we adopt a hierarchical balanced clustering algorithm to balance the length of posting lists and augment the posting list by adding the points in the closure of the corresponding clusters. In the search stage, we use a query-aware scheme to dynamically prune the access of unnecessary posting lists. Experiment results demonstrate that SPANN is 2times faster than the state-of-the-art ANNS solution DiskANN to reach the same recall quality 90% with same memory cost in three billion-scale datasets. It can reach 90% recall@1 and recall@10 in just around one millisecond with only 32GB memory cost. Code is available at: {\footnotesizeblue{https://github.com/microsoft/SPTAG}}.

Beyond Efficiency: A Systematic Survey of Resource-Efficient Large Language Models

The burgeoning field of Large Language Models (LLMs), exemplified by sophisticated models like OpenAI's ChatGPT, represents a significant advancement in artificial intelligence. These models, however, bring forth substantial challenges in the high consumption of computational, memory, energy, and financial resources, especially in environments with limited resource capabilities. This survey aims to systematically address these challenges by reviewing a broad spectrum of techniques designed to enhance the resource efficiency of LLMs. We categorize methods based on their optimization focus: computational, memory, energy, financial, and network resources and their applicability across various stages of an LLM's lifecycle, including architecture design, pretraining, finetuning, and system design. Additionally, the survey introduces a nuanced categorization of resource efficiency techniques by their specific resource types, which uncovers the intricate relationships and mappings between various resources and corresponding optimization techniques. A standardized set of evaluation metrics and datasets is also presented to facilitate consistent and fair comparisons across different models and techniques. By offering a comprehensive overview of the current sota and identifying open research avenues, this survey serves as a foundational reference for researchers and practitioners, aiding them in developing more sustainable and efficient LLMs in a rapidly evolving landscape.

Model Tells You Where to Merge: Adaptive KV Cache Merging for LLMs on Long-Context Tasks

How to efficiently serve Large Language Models (LLMs) has become a pressing issue because of their huge computational cost in their autoregressive generation process. To mitigate computational costs, LLMs often employ the KV Cache technique to improve the generation speed. While improving the computational efficiency, the storage requirements of the KV cache are substantial, particularly in long-context scenarios, leading to significant memory consumption. Existing KV cache eviction methods often degrade the performance of LLMs in long-context scenarios due to the information loss introduced by eviction. In this paper, we propose a novel KV cache merging approach, called KVMerger, to achieve adaptive KV cache compression for long-context tasks without significant performance degradation under constrained memory budgets. Our approach is inspired by the intriguing observation that key states exhibit high similarity at the token level within a single sequence. To facilitate merging, we develop an effective yet straightforward merging set identification algorithm to identify suitable KV states for merging. Our merging set identification algorithm stimulates the second observation that KV cache sparsity, from similarity perspective, is independent of the dataset and remains persistent at the model level. Subsequently, we propose a Gaussian kernel weighted merging algorithm to selectively merge all states within each merging set. We conduct extensive experiments to demonstrate the effectiveness of KVMerger for long-context tasks under constrained memory budgets, applying it to models including Llama2-7B-chat and Llama2-13B-chat. Using the LongBench and ZeroScroll benchmarks, we compare our method with other KV cache compression techniques, including H2O and CaM, showing that our method achieves superior performance across tasks with both 50% and 35% KV cache budgets.

RazorAttention: Efficient KV Cache Compression Through Retrieval Heads

The memory and computational demands of Key-Value (KV) cache present significant challenges for deploying long-context language models. Previous approaches attempt to mitigate this issue by selectively dropping tokens, which irreversibly erases critical information that might be needed for future queries. In this paper, we propose a novel compression technique for KV cache that preserves all token information. Our investigation reveals that: i) Most attention heads primarily focus on the local context; ii) Only a few heads, denoted as retrieval heads, can essentially pay attention to all input tokens. These key observations motivate us to use separate caching strategy for attention heads. Therefore, we propose RazorAttention, a training-free KV cache compression algorithm, which maintains a full cache for these crucial retrieval heads and discards the remote tokens in non-retrieval heads. Furthermore, we introduce a novel mechanism involving a "compensation token" to further recover the information in the dropped tokens. Extensive evaluations across a diverse set of large language models (LLMs) demonstrate that RazorAttention achieves a reduction in KV cache size by over 70% without noticeable impacts on performance. Additionally, RazorAttention is compatible with FlashAttention, rendering it an efficient and plug-and-play solution that enhances LLM inference efficiency without overhead or retraining of the original model.

Online Adaptation of Language Models with a Memory of Amortized Contexts

Due to the rapid generation and dissemination of information, large language models (LLMs) quickly run out of date despite enormous development costs. Due to this crucial need to keep models updated, online learning has emerged as a critical necessity when utilizing LLMs for real-world applications. However, given the ever-expanding corpus of unseen documents and the large parameter space of modern LLMs, efficient adaptation is essential. To address these challenges, we propose Memory of Amortized Contexts (MAC), an efficient and effective online adaptation framework for LLMs with strong knowledge retention. We propose an amortized feature extraction and memory-augmentation approach to compress and extract information from new documents into compact modulations stored in a memory bank. When answering questions, our model attends to and extracts relevant knowledge from this memory bank. To learn informative modulations in an efficient manner, we utilize amortization-based meta-learning, which substitutes the optimization process with a single forward pass of the encoder. Subsequently, we learn to choose from and aggregate selected documents into a single modulation by conditioning on the question, allowing us to adapt a frozen language model during test time without requiring further gradient updates. Our experiment demonstrates the superiority of MAC in multiple aspects, including online adaptation performance, time, and memory efficiency. Code is available at: https://github.com/jihoontack/MAC.

MemoryBank: Enhancing Large Language Models with Long-Term Memory

Revolutionary advancements in Large Language Models have drastically reshaped our interactions with artificial intelligence systems. Despite this, a notable hindrance remains-the deficiency of a long-term memory mechanism within these models. This shortfall becomes increasingly evident in situations demanding sustained interaction, such as personal companion systems and psychological counseling. Therefore, we propose MemoryBank, a novel memory mechanism tailored for LLMs. MemoryBank enables the models to summon relevant memories, continually evolve through continuous memory updates, comprehend, and adapt to a user personality by synthesizing information from past interactions. To mimic anthropomorphic behaviors and selectively preserve memory, MemoryBank incorporates a memory updating mechanism, inspired by the Ebbinghaus Forgetting Curve theory, which permits the AI to forget and reinforce memory based on time elapsed and the relative significance of the memory, thereby offering a human-like memory mechanism. MemoryBank is versatile in accommodating both closed-source models like ChatGPT and open-source models like ChatGLM. We exemplify application of MemoryBank through the creation of an LLM-based chatbot named SiliconFriend in a long-term AI Companion scenario. Further tuned with psychological dialogs, SiliconFriend displays heightened empathy in its interactions. Experiment involves both qualitative analysis with real-world user dialogs and quantitative analysis with simulated dialogs. In the latter, ChatGPT acts as users with diverse characteristics and generates long-term dialog contexts covering a wide array of topics. The results of our analysis reveal that SiliconFriend, equipped with MemoryBank, exhibits a strong capability for long-term companionship as it can provide emphatic response, recall relevant memories and understand user personality.

Cutting Off the Head Ends the Conflict: A Mechanism for Interpreting and Mitigating Knowledge Conflicts in Language Models

Recently, retrieval augmentation and tool augmentation have demonstrated a remarkable capability to expand the internal memory boundaries of language models (LMs) by providing external context. However, internal memory and external context inevitably clash, leading to knowledge conflicts within LMs. In this paper, we aim to interpret the mechanism of knowledge conflicts through the lens of information flow, and then mitigate conflicts by precise interventions at the pivotal point. We find there are some attention heads with opposite effects in the later layers, where memory heads can recall knowledge from internal memory, and context heads can retrieve knowledge from external context. Moreover, we reveal that the pivotal point at which knowledge conflicts emerge in LMs is the integration of inconsistent information flows by memory heads and context heads. Inspired by the insights, we propose a novel method called Pruning Head via PatH PatcHing (PH3), which can efficiently mitigate knowledge conflicts by pruning conflicting attention heads without updating model parameters. PH3 can flexibly control eight LMs to use internal memory (uparrow 44.0%) or external context (uparrow 38.5%). Moreover, PH3 can also improve the performance of LMs on open-domain QA tasks. We also conduct extensive experiments to demonstrate the cross-model, cross-relation, and cross-format generalization of our method.

MemoRAG: Moving towards Next-Gen RAG Via Memory-Inspired Knowledge Discovery

Retrieval-Augmented Generation (RAG) leverages retrieval tools to access external databases, thereby enhancing the generation quality of large language models (LLMs) through optimized context. However, the existing retrieval methods are constrained inherently, as they can only perform relevance matching between explicitly stated queries and well-formed knowledge, but unable to handle tasks involving ambiguous information needs or unstructured knowledge. Consequently, existing RAG systems are primarily effective for straightforward question-answering tasks. In this work, we propose MemoRAG, a novel retrieval-augmented generation paradigm empowered by long-term memory. MemoRAG adopts a dual-system architecture. On the one hand, it employs a light but long-range LLM to form the global memory of database. Once a task is presented, it generates draft answers, cluing the retrieval tools to locate useful information within the database. On the other hand, it leverages an expensive but expressive LLM, which generates the ultimate answer based on the retrieved information. Building on this general framework, we further optimize MemoRAG's performance by enhancing its cluing mechanism and memorization capacity. In our experiment, MemoRAG achieves superior performance across a variety of evaluation tasks, including both complex ones where conventional RAG fails and straightforward ones where RAG is commonly applied.

D2O: Dynamic Discriminative Operations for Efficient Generative Inference of Large Language Models

Efficient inference in Large Language Models (LLMs) is impeded by the growing memory demands of key-value (KV) caching, especially for longer sequences. Traditional KV cache eviction strategies, which prioritize less critical KV-pairs based on attention scores, often degrade generation quality, leading to issues such as context loss or hallucinations. To address this, we introduce Dynamic Discriminative Operations (D2O), a novel method that utilizes two-level discriminative strategies to optimize KV cache size without fine-tuning, while preserving essential context. Initially, by observing varying densities of attention weights between shallow and deep layers, we use this insight to determine which layers should avoid excessive eviction to minimize information loss. Subsequently, for the eviction strategy in each layer, D2O innovatively incorporates a compensation mechanism that maintains a similarity threshold to re-discriminate the importance of previously discarded tokens, determining whether they should be recalled and merged with similar tokens. Our approach not only achieves significant memory savings and enhances inference throughput by more than 3 times but also maintains high-quality long-text generation. Extensive experiments across various benchmarks and LLM architectures have demonstrated that D2O significantly enhances performance with a constrained KV cache budget.

Natural GaLore: Accelerating GaLore for memory-efficient LLM Training and Fine-tuning

Training LLMs presents significant memory challenges due to growing size of data, weights, and optimizer states. Techniques such as data and model parallelism, gradient checkpointing, and offloading strategies address this issue but are often infeasible due to hardware constraints. To mitigate memory usage, alternative methods like Parameter-Efficient-Fine-Tuning (PEFT) and GaLore approximate weights or optimizer states. PEFT methods, such as LoRA, have gained popularity for fine-tuning LLMs, though they require a full-rank warm start. In contrast, GaLore allows full-parameter learning while being more memory-efficient. This work introduces Natural GaLore, a simple drop in replacement for AdamW, which efficiently applies the inverse Empirical Fisher Information Matrix to low-rank gradients using Woodbury's Identity. We demonstrate that incorporating second-order information speeds up optimization significantly, especially when the iteration budget is limited. Empirical pretraining on 60M, 130M, 350M, and 1.1B parameter Llama models on C4 data demonstrate significantly lower perplexity over GaLore without additional memory overhead. By fine-tuning RoBERTa on the GLUE benchmark using Natural GaLore, we demonstrate significant reduction in gap 86.05% vs 86.28% for full-finetuning. Furthermore, fine-tuning the TinyLlama 1.1B model for function calling using the TinyAgent framework shows that Natural GaLore achieving 83.09% accuracy on the TinyAgent dataset, significantly outperforms 16-bit LoRA at 80.06% and even surpasses GPT4-Turbo by 4%, all while using 30% less memory. All code to reproduce the results are available at: https://github.com/selfsupervised-ai/Natural-GaLore.git

Natural Logic-guided Autoregressive Multi-hop Document Retrieval for Fact Verification

A key component of fact verification is thevevidence retrieval, often from multiple documents. Recent approaches use dense representations and condition the retrieval of each document on the previously retrieved ones. The latter step is performed over all the documents in the collection, requiring storing their dense representations in an index, thus incurring a high memory footprint. An alternative paradigm is retrieve-and-rerank, where documents are retrieved using methods such as BM25, their sentences are reranked, and further documents are retrieved conditioned on these sentences, reducing the memory requirements. However, such approaches can be brittle as they rely on heuristics and assume hyperlinks between documents. We propose a novel retrieve-and-rerank method for multi-hop retrieval, that consists of a retriever that jointly scores documents in the knowledge source and sentences from previously retrieved documents using an autoregressive formulation and is guided by a proof system based on natural logic that dynamically terminates the retrieval process if the evidence is deemed sufficient. This method is competitive with current state-of-the-art methods on FEVER, HoVer and FEVEROUS-S, while using 5 to 10 times less memory than competing systems. Evaluation on an adversarial dataset indicates improved stability of our approach compared to commonly deployed threshold-based methods. Finally, the proof system helps humans predict model decisions correctly more often than using the evidence alone.

Recognition, recall, and retention of few-shot memories in large language models

The training of modern large language models (LLMs) takes place in a regime where most training examples are seen only a few times by the model during the course of training. What does a model remember about such examples seen only a few times during training and how long does that memory persist in the face of continuous training with new examples? Here, we investigate these questions through simple recognition, recall, and retention experiments with LLMs. In recognition experiments, we ask if the model can distinguish the seen example from a novel example; in recall experiments, we ask if the model can correctly recall the seen example when cued by a part of it; and in retention experiments, we periodically probe the model's memory for the original examples as the model is trained continuously with new examples. We find that a single exposure is generally sufficient for a model to achieve near perfect accuracy even in very challenging recognition experiments. We estimate that the recognition performance of even small language models easily exceeds human recognition performance reported in similar experiments with humans (Shepard, 1967). Achieving near perfect recall takes more exposures, but most models can do it in just 3 exposures. The flip side of this remarkable capacity for fast learning is that precise memories are quickly overwritten: recall performance for the original examples drops steeply over the first 10 training updates with new examples, followed by a more gradual decline. Even after 100K updates, however, some of the original examples are still recalled near perfectly. A qualitatively similar retention pattern has been observed in human long-term memory retention studies before (Bahrick, 1984). Finally, recognition is much more robust to interference than recall and memory for natural language sentences is generally superior to memory for stimuli without structure.

A Unified Framework for Model Editing

Model editing is a growing area focused on updating the knowledge embedded within models. Among the various methodologies, ROME and MEMIT stand out as leading "locate-and-edit" model editing techniques. While MEMIT enables batched editing of memories, ROME is limited to changing one fact at a time. This paper introduces a unifying framework that brings ROME and MEMIT under a single conceptual umbrella, optimizing for the same goal, which we call the "preservation-memorization" objective. This objective aims to preserve the representations of certain selected vectors while memorizing the representations of new factual information. Specifically, ROME optimizes this objective using an equality constraint, whereas MEMIT employs a more flexible least-square constraint. In addition to making batched edits, MEMIT also edits the model at multiple layers. We disentangle the distribution of edits to multiple layers from the optimization objective of MEMIT and show that these edit-distribution algorithms should be considered separate entities worthy of their own line of research. Finally, we present EMMET - an Equality-constrained Mass Model Editing algorithm for Transformers, a new batched memory-editing algorithm. With EMMET, we present a closed form solution for the equality-constrained version of the preservation-memorization objective. We show that EMMET is able to perform batched-edits on par with MEMIT up to a batch-size of 256 and discuss the challenges in stabilizing EMMET. By articulating the "locate-and-edit" model editing algorithms under a simple conceptual framework of "preservation-memorization", we aim to bridge the gap between intuition and mathematics and hope to simplify the journey for future researchers in model editing.

HMT: Hierarchical Memory Transformer for Long Context Language Processing

Transformer-based large language models (LLM) have been widely used in language processing applications. However, most of them restrict the context window that permits the model to attend to every token in the inputs. Previous works in recurrent models can memorize past tokens to enable unlimited context and maintain effectiveness. However, they have "flat" memory architectures, which have limitations in selecting and filtering information. Since humans are good at learning and self-adjustment, we speculate that imitating brain memory hierarchy is beneficial for model memorization. We propose the Hierarchical Memory Transformer (HMT), a novel framework that enables and improves models' long-context processing ability by imitating human memorization behavior. Leveraging memory-augmented segment-level recurrence, we organize the memory hierarchy by preserving tokens from early input token segments, passing memory embeddings along the sequence, and recalling relevant information from history. Evaluating general language modeling (Wikitext-103, PG-19) and question-answering tasks (PubMedQA), we show that HMT steadily improves the long-context processing ability of context-constrained and long-context models. With an additional 0.5% - 2% of parameters, HMT can easily plug in and augment future LLMs to handle long context effectively. Our code is open-sourced on Github: https://github.com/OswaldHe/HMT-pytorch.

Titans: Learning to Memorize at Test Time

Over more than a decade there has been an extensive research effort on how to effectively utilize recurrent models and attention. While recurrent models aim to compress the data into a fixed-size memory (called hidden state), attention allows attending to the entire context window, capturing the direct dependencies of all tokens. This more accurate modeling of dependencies, however, comes with a quadratic cost, limiting the model to a fixed-length context. We present a new neural long-term memory module that learns to memorize historical context and helps attention to attend to the current context while utilizing long past information. We show that this neural memory has the advantage of fast parallelizable training while maintaining a fast inference. From a memory perspective, we argue that attention due to its limited context but accurate dependency modeling performs as a short-term memory, while neural memory due to its ability to memorize the data, acts as a long-term, more persistent, memory. Based on these two modules, we introduce a new family of architectures, called Titans, and present three variants to address how one can effectively incorporate memory into this architecture. Our experimental results on language modeling, common-sense reasoning, genomics, and time series tasks show that Titans are more effective than Transformers and recent modern linear recurrent models. They further can effectively scale to larger than 2M context window size with higher accuracy in needle-in-haystack tasks compared to baselines.

No Token Left Behind: Reliable KV Cache Compression via Importance-Aware Mixed Precision Quantization

Key-Value (KV) Caching has become an essential technique for accelerating the inference speed and throughput of generative Large Language Models~(LLMs). However, the memory footprint of the KV cache poses a critical bottleneck in LLM deployment as the cache size grows with batch size and sequence length, often surpassing even the size of the model itself. Although recent methods were proposed to select and evict unimportant KV pairs from the cache to reduce memory consumption, the potential ramifications of eviction on the generative process are yet to be thoroughly examined. In this paper, we examine the detrimental impact of cache eviction and observe that unforeseen risks arise as the information contained in the KV pairs is exhaustively discarded, resulting in safety breaches, hallucinations, and context loss. Surprisingly, we find that preserving even a small amount of information contained in the evicted KV pairs via reduced precision quantization substantially recovers the incurred degradation. On the other hand, we observe that the important KV pairs must be kept at a relatively higher precision to safeguard the generation quality. Motivated by these observations, we propose Mixed-precision KV cache~(MiKV), a reliable cache compression method that simultaneously preserves the context details by retaining the evicted KV pairs in low-precision and ensure generation quality by keeping the important KV pairs in high-precision. Experiments on diverse benchmarks and LLM backbones show that our proposed method offers a state-of-the-art trade-off between compression ratio and performance, compared to other baselines.

GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

Training Large Language Models (LLMs) presents significant memory challenges, predominantly due to the growing size of weights and optimizer states. Common memory-reduction approaches, such as low-rank adaptation (LoRA), add a trainable low-rank matrix to the frozen pre-trained weight in each layer, reducing trainable parameters and optimizer states. However, such approaches typically underperform training with full-rank weights in both pre-training and fine-tuning stages since they limit the parameter search to a low-rank subspace and alter the training dynamics, and further, may require full-rank warm start. In this work, we propose Gradient Low-Rank Projection (GaLore), a training strategy that allows full-parameter learning but is more memory-efficient than common low-rank adaptation methods such as LoRA. Our approach reduces memory usage by up to 65.5% in optimizer states while maintaining both efficiency and performance for pre-training on LLaMA 1B and 7B architectures with C4 dataset with up to 19.7B tokens, and on fine-tuning RoBERTa on GLUE tasks. Our 8-bit GaLore further reduces optimizer memory by up to 82.5% and total training memory by 63.3%, compared to a BF16 baseline. Notably, we demonstrate, for the first time, the feasibility of pre-training a 7B model on consumer GPUs with 24GB memory (e.g., NVIDIA RTX 4090) without model parallel, checkpointing, or offloading strategies.

Understanding AI Cognition: A Neural Module for Inference Inspired by Human Memory Mechanisms

How humans and machines make sense of current inputs for relation reasoning and question-answering while putting the perceived information into context of our past memories, has been a challenging conundrum in cognitive science and artificial intelligence. Inspired by human brain's memory system and cognitive architectures, we propose a PMI framework that consists of perception, memory and inference components. Notably, the memory module comprises working and long-term memory, with the latter endowed with a higher-order structure to retain more accumulated knowledge and experiences. Through a differentiable competitive write access, current perceptions update working memory, which is later merged with long-term memory via outer product associations, averting memory overflow and minimizing information conflicts. In the inference module, relevant information is retrieved from two separate memory origins and associatively integrated to attain a more comprehensive and precise interpretation of current perceptions. We exploratively apply our PMI to improve prevailing Transformers and CNN models on question-answering tasks like bAbI-20k and Sort-of-CLEVR datasets, as well as relation calculation and image classification tasks, and in each case, our PMI enhancements consistently outshine their original counterparts significantly. Visualization analyses reveal that memory consolidation, along with the interaction and integration of information from diverse memory sources, substantially contributes to the model effectiveness on inference tasks.

WISE: Rethinking the Knowledge Memory for Lifelong Model Editing of Large Language Models

Large language models (LLMs) need knowledge updates to meet the ever-growing world facts and correct the hallucinated responses, facilitating the methods of lifelong model editing. Where the updated knowledge resides in memories is a fundamental question for model editing. In this paper, we find that editing either long-term memory (direct model parameters) or working memory (non-parametric knowledge of neural network activations/representations by retrieval) will result in an impossible triangle -- reliability, generalization, and locality can not be realized together in the lifelong editing settings. For long-term memory, directly editing the parameters will cause conflicts with irrelevant pretrained knowledge or previous edits (poor reliability and locality). For working memory, retrieval-based activations can hardly make the model understand the edits and generalize (poor generalization). Therefore, we propose WISE to bridge the gap between memories. In WISE, we design a dual parametric memory scheme, which consists of the main memory for the pretrained knowledge and a side memory for the edited knowledge. We only edit the knowledge in the side memory and train a router to decide which memory to go through when given a query. For continual editing, we devise a knowledge-sharding mechanism where different sets of edits reside in distinct subspaces of parameters, and are subsequently merged into a shared memory without conflicts. Extensive experiments show that WISE can outperform previous model editing methods and overcome the impossible triangle under lifelong model editing of question answering, hallucination, and out-of-distribution settings across trending LLM architectures, e.g., GPT, LLaMA, and Mistral. Code will be released at https://github.com/zjunlp/EasyEdit.

SCBench: A KV Cache-Centric Analysis of Long-Context Methods

Long-context LLMs have enabled numerous downstream applications but also introduced significant challenges related to computational and memory efficiency. To address these challenges, optimizations for long-context inference have been developed, centered around the KV cache. However, existing benchmarks often evaluate in single-request, neglecting the full lifecycle of the KV cache in real-world use. This oversight is particularly critical, as KV cache reuse has become widely adopted in LLMs inference frameworks, such as vLLM and SGLang, as well as by LLM providers, including OpenAI, Microsoft, Google, and Anthropic. To address this gap, we introduce SCBench(SharedContextBench), a comprehensive benchmark for evaluating long-context methods from a KV cachecentric perspective: 1) KV cache generation, 2) KV cache compression, 3) KV cache retrieval, 4) KV cache loading. Specifically, SCBench uses test examples with shared context, ranging 12 tasks with two shared context modes, covering four categories of long-context capabilities: string retrieval, semantic retrieval, global information, and multi-task. With it, we provide an extensive KV cache-centric analysis of eight categories long-context solutions, including Gated Linear RNNs, Mamba-Attention hybrids, and efficient methods such as sparse attention, KV cache dropping, quantization, retrieval, loading, and prompt compression. The evaluation is conducted on 8 long-context LLMs. Our findings show that sub-O(n) memory methods suffer in multi-turn scenarios, while sparse encoding with O(n) memory and sub-O(n^2) pre-filling computation perform robustly. Dynamic sparsity yields more expressive KV caches than static patterns, and layer-level sparsity in hybrid architectures reduces memory usage with strong performance. Additionally, we identify attention distribution shift issues in long-generation scenarios. https://aka.ms/SCBench.

Prototype-Sample Relation Distillation: Towards Replay-Free Continual Learning

In Continual learning (CL) balancing effective adaptation while combating catastrophic forgetting is a central challenge. Many of the recent best-performing methods utilize various forms of prior task data, e.g. a replay buffer, to tackle the catastrophic forgetting problem. Having access to previous task data can be restrictive in many real-world scenarios, for example when task data is sensitive or proprietary. To overcome the necessity of using previous tasks' data, in this work, we start with strong representation learning methods that have been shown to be less prone to forgetting. We propose a holistic approach to jointly learn the representation and class prototypes while maintaining the relevance of old class prototypes and their embedded similarities. Specifically, samples are mapped to an embedding space where the representations are learned using a supervised contrastive loss. Class prototypes are evolved continually in the same latent space, enabling learning and prediction at any point. To continually adapt the prototypes without keeping any prior task data, we propose a novel distillation loss that constrains class prototypes to maintain relative similarities as compared to new task data. This method yields state-of-the-art performance in the task-incremental setting, outperforming methods relying on large amounts of data, and provides strong performance in the class-incremental setting without using any stored data points.

eDKM: An Efficient and Accurate Train-time Weight Clustering for Large Language Models

Since Large Language Models or LLMs have demonstrated high-quality performance on many complex language tasks, there is a great interest in bringing these LLMs to mobile devices for faster responses and better privacy protection. However, the size of LLMs (i.e., billions of parameters) requires highly effective compression to fit into storage-limited devices. Among many compression techniques, weight-clustering, a form of non-linear quantization, is one of the leading candidates for LLM compression, and supported by modern smartphones. Yet, its training overhead is prohibitively significant for LLM fine-tuning. Especially, Differentiable KMeans Clustering, or DKM, has shown the state-of-the-art trade-off between compression ratio and accuracy regression, but its large memory complexity makes it nearly impossible to apply to train-time LLM compression. In this paper, we propose a memory-efficient DKM implementation, eDKM powered by novel techniques to reduce the memory footprint of DKM by orders of magnitudes. For a given tensor to be saved on CPU for the backward pass of DKM, we compressed the tensor by applying uniquification and sharding after checking if there is no duplicated tensor previously copied to CPU. Our experimental results demonstrate that \prjname can fine-tune and compress a pretrained LLaMA 7B model from 12.6 GB to 2.5 GB (3bit/weight) with the Alpaca dataset by reducing the train-time memory footprint of a decoder layer by 130times, while delivering good accuracy on broader LLM benchmarks (i.e., 77.7% for PIQA, 66.1% for Winograde, and so on).

BitStack: Fine-Grained Size Control for Compressed Large Language Models in Variable Memory Environments

Large language models (LLMs) have revolutionized numerous applications, yet their deployment remains challenged by memory constraints on local devices. While scaling laws have enhanced LLM capabilities, the primary bottleneck has shifted from capability to availability, emphasizing the need for efficient memory management. Traditional compression methods, such as quantization, often require predefined compression ratios and separate compression processes for each setting, complicating deployment in variable memory environments. In this paper, we introduce BitStack, a novel, training-free weight compression approach that enables megabyte-level trade-offs between memory usage and model performance. By leveraging weight decomposition, BitStack can dynamically adjust the model size with minimal transmission between running memory and storage devices. Our approach iteratively decomposes weight matrices while considering the significance of each parameter, resulting in an approximately 1-bit per parameter residual block in each decomposition iteration. These blocks are sorted and stacked in storage as basic transmission units, with different quantities loaded based on current memory availability. Extensive experiments across a wide range of tasks demonstrate that, despite offering fine-grained size control, BitStack consistently matches or surpasses strong quantization baselines, particularly at extreme compression ratios. To the best of our knowledge, this is the first decomposition-based method that effectively bridges the gap to practical compression techniques like quantization. Code is available at https://github.com/xinghaow99/BitStack.

Landmark Attention: Random-Access Infinite Context Length for Transformers

While transformers have shown remarkable success in natural language processing, their attention mechanism's large memory requirements have limited their ability to handle longer contexts. Prior approaches, such as recurrent memory or retrieval-based augmentation, have either compromised the random-access flexibility of attention (i.e., the capability to select any token in the entire context) or relied on separate mechanisms for relevant context retrieval, which may not be compatible with the model's attention. In this paper, we present a novel approach that allows access to the complete context while retaining random-access flexibility, closely resembling running attention on the entire context. Our method uses a landmark token to represent each block of the input and trains the attention to use it for selecting relevant blocks, enabling retrieval of blocks directly through the attention mechanism instead of by relying on a separate mechanism. Our approach seamlessly integrates with specialized data structures and the system's memory hierarchy, enabling processing of arbitrarily long context lengths. We demonstrate that our method can obtain comparable performance with Transformer-XL while significantly reducing the number of retrieved tokens in each step. Finally, we show that fine-tuning LLaMA 7B with our method successfully extends its context length capacity up to 32k tokens, allowing for inference at the context lengths of GPT-4.

DataStates-LLM: Lazy Asynchronous Checkpointing for Large Language Models

LLMs have seen rapid adoption in all domains. They need to be trained on high-end high-performance computing (HPC) infrastructures and ingest massive amounts of input data. Unsurprisingly, at such a large scale, unexpected events (e.g., failures of components, instability of the software, undesirable learning patterns, etc.), are frequent and typically impact the training in a negative fashion. Thus, LLMs need to be checkpointed frequently so that they can be rolled back to a stable state and subsequently fine-tuned. However, given the large sizes of LLMs, a straightforward checkpointing solution that directly writes the model parameters and optimizer state to persistent storage (e.g., a parallel file system), incurs significant I/O overheads. To address this challenge, in this paper we study how to reduce the I/O overheads for enabling fast and scalable checkpointing for LLMs that can be applied at high frequency (up to the granularity of individual iterations) without significant impact on the training process. Specifically, we introduce a lazy asynchronous multi-level approach that takes advantage of the fact that the tensors making up the model and optimizer state shards remain immutable for extended periods of time, which makes it possible to copy their content in the background with minimal interference during the training process. We evaluate our approach at scales of up to 180 GPUs using different model sizes, parallelism settings, and checkpointing frequencies. The results show up to 48times faster checkpointing and 2.2times faster end-to-end training runtime compared with the state-of-art checkpointing approaches.

Efficient and Economic Large Language Model Inference with Attention Offloading

Transformer-based large language models (LLMs) exhibit impressive performance in generative tasks but introduce significant challenges in real-world serving due to inefficient use of the expensive, computation-optimized accelerators. This mismatch arises from the autoregressive nature of LLMs, where the generation phase comprises operators with varying resource demands. Specifically, the attention operator is memory-intensive, exhibiting a memory access pattern that clashes with the strengths of modern accelerators, especially as context length increases. To enhance the efficiency and cost-effectiveness of LLM serving, we introduce the concept of attention offloading. This approach leverages a collection of cheap, memory-optimized devices for the attention operator while still utilizing high-end accelerators for other parts of the model. This heterogeneous setup ensures that each component is tailored to its specific workload, maximizing overall performance and cost efficiency. Our comprehensive analysis and experiments confirm the viability of splitting the attention computation over multiple devices. Also, the communication bandwidth required between heterogeneous devices proves to be manageable with prevalent networking technologies. To further validate our theory, we develop Lamina, an LLM inference system that incorporates attention offloading. Experimental results indicate that Lamina can provide 1.48x-12.1x higher estimated throughput per dollar than homogeneous solutions.

In-context KV-Cache Eviction for LLMs via Attention-Gate

The KV-Cache technique has become the standard for the inference of large language models (LLMs). It caches states of self-attention to avoid recomputation. Yet, it is widely criticized that KV-Cache can become a bottleneck of the LLM inference system, especially when confronted with ultra-large models and long-context queries. A natural remedy is to discard the KV-Cache for less important tokens, with StreamingLLM as an example, but the used static eviction strategies cannot flexibly adapt to varying contexts. Remedies like H2O leverage accumulative attention scores to perform dynamic eviction but suffer from the attention bias issue in capturing contextual information. This paper bridges this gap by devising a parameterized KV-Cache eviction mechanism, dubbed as Attention-Gate, which accepts the whole context as input and yields eviction flags for each token to realize in-context eviction. The subsequent self-attention module proceeds according to the flags and only the KV states for the remaining tokens need to be cached. The Attention-Gates can vary among different heads and layers and be trivially plugged into pre-trained LLMs, tuned by cost-effective continual pre-training or supervised fine-tuning objectives to acquire what to discard. The computational and memory overhead introduced by Attention-Gates is minimal. Our method is validated across multiple tasks, demonstrating both efficiency and adaptability. After a highly efficient continual pre-training, it achieves higher average accuracy and evicts more tokens compared to traditional training-free methods. In supervised fine-tuning, it not only evicts many tokens but also outperforms LoRA-finetuned LLMs on some datasets, such as RTE, where it improves accuracy by 13.9% while evicting 62.8% of tokens, showing that effective eviction of redundant tokens can even enhance performance.

Does Continual Learning Equally Forget All Parameters?

Distribution shift (e.g., task or domain shift) in continual learning (CL) usually results in catastrophic forgetting of neural networks. Although it can be alleviated by repeatedly replaying buffered data, the every-step replay is time-consuming. In this paper, we study which modules in neural networks are more prone to forgetting by investigating their training dynamics during CL. Our proposed metrics show that only a few modules are more task-specific and sensitively alter between tasks, while others can be shared across tasks as common knowledge. Hence, we attribute forgetting mainly to the former and find that finetuning them only on a small buffer at the end of any CL method can bring non-trivial improvement. Due to the small number of finetuned parameters, such ``Forgetting Prioritized Finetuning (FPF)'' is efficient in computation. We further propose a more efficient and simpler method that entirely removes the every-step replay and replaces them by only k-times of FPF periodically triggered during CL. Surprisingly, this ``k-FPF'' performs comparably to FPF and outperforms the SOTA CL methods but significantly reduces their computational overhead and cost. In experiments on several benchmarks of class- and domain-incremental CL, FPF consistently improves existing CL methods by a large margin, and k-FPF further excels in efficiency without degrading the accuracy. We also empirically studied the impact of buffer size, epochs per task, and finetuning modules on the cost and accuracy of our methods.

MemoryFormer: Minimize Transformer Computation by Removing Fully-Connected Layers

In order to reduce the computational complexity of large language models, great efforts have been made to to improve the efficiency of transformer models such as linear attention and flash-attention. However, the model size and corresponding computational complexity are constantly scaled up in pursuit of higher performance. In this work, we present MemoryFormer, a novel transformer architecture which significantly reduces the computational complexity (FLOPs) from a new perspective. We eliminate nearly all the computations of the transformer model except for the necessary computation required by the multi-head attention operation. This is made possible by utilizing an alternative method for feature transformation to replace the linear projection of fully-connected layers. Specifically, we first construct a group of in-memory lookup tables that store a large amount of discrete vectors to replace the weight matrix used in linear projection. We then use a hash algorithm to retrieve a correlated subset of vectors dynamically based on the input embedding. The retrieved vectors combined together will form the output embedding, which provides an estimation of the result of matrix multiplication operation in a fully-connected layer. Compared to conducting matrix multiplication, retrieving data blocks from memory is a much cheaper operation which requires little computations. We train MemoryFormer from scratch and conduct extensive experiments on various benchmarks to demonstrate the effectiveness of the proposed model.

Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models

Finetuning large language models (LLMs) has been empirically effective on a variety of downstream tasks. Existing approaches to finetuning an LLM either focus on parameter-efficient finetuning, which only updates a small number of trainable parameters, or attempt to reduce the memory footprint during the training phase of the finetuning. Typically, the memory footprint during finetuning stems from three contributors: model weights, optimizer states, and intermediate activations. However, existing works still require considerable memory and none can simultaneously mitigate memory footprint for all three sources. In this paper, we present Quantized Side Tuing (QST), which enables memory-efficient and fast finetuning of LLMs by operating through a dual-stage process. First, QST quantizes an LLM's model weights into 4-bit to reduce the memory footprint of the LLM's original weights; QST also introduces a side network separated from the LLM, which utilizes the hidden states of the LLM to make task-specific predictions. Using a separate side network avoids performing backpropagation through the LLM, thus reducing the memory requirement of the intermediate activations. Furthermore, QST leverages several low-rank adaptors and gradient-free downsample modules to significantly reduce the trainable parameters, so as to save the memory footprint of the optimizer states. Experiments show that QST can reduce the total memory footprint by up to 2.3 times and speed up the finetuning process by up to 3 times while achieving competent performance compared with the state-of-the-art. When it comes to full finetuning, QST can reduce the total memory footprint up to 7 times.

DuoAttention: Efficient Long-Context LLM Inference with Retrieval and Streaming Heads

Deploying long-context large language models (LLMs) is essential but poses significant computational and memory challenges. Caching all Key and Value (KV) states across all attention heads consumes substantial memory. Existing KV cache pruning methods either damage the long-context capabilities of LLMs or offer only limited efficiency improvements. In this paper, we identify that only a fraction of attention heads, a.k.a, Retrieval Heads, are critical for processing long contexts and require full attention across all tokens. In contrast, all other heads, which primarily focus on recent tokens and attention sinks--referred to as Streaming Heads--do not require full attention. Based on this insight, we introduce DuoAttention, a framework that only applies a full KV cache to retrieval heads while using a light-weight, constant-length KV cache for streaming heads, which reduces both LLM's decoding and pre-filling memory and latency without compromising its long-context abilities. DuoAttention uses a lightweight, optimization-based algorithm with synthetic data to identify retrieval heads accurately. Our method significantly reduces long-context inference memory by up to 2.55x for MHA and 1.67x for GQA models while speeding up decoding by up to 2.18x and 1.50x and accelerating pre-filling by up to 1.73x and 1.63x for MHA and GQA models, respectively, with minimal accuracy loss compared to full attention. Notably, combined with quantization, DuoAttention enables Llama-3-8B decoding with 3.3 million context length on a single A100 GPU. Code is provided in https://github.com/mit-han-lab/duo-attention.

Adaptive Chameleon or Stubborn Sloth: Unraveling the Behavior of Large Language Models in Knowledge Clashes

By providing external information to large language models (LLMs), tool augmentation (including retrieval augmentation) has emerged as a promising solution for addressing the limitations of LLMs' static parametric memory. However, how receptive are LLMs to such external evidence, especially when the evidence conflicts with their parametric memory? We present the first comprehensive and controlled investigation into the behavior of LLMs when encountering knowledge conflicts. We propose a systematic framework to elicit high-quality parametric memory from LLMs and construct the corresponding counter-memory, which enables us to conduct a series of controlled experiments. Our investigation reveals seemingly contradicting behaviors of LLMs. On the one hand, different from prior wisdom, we find that LLMs can be highly receptive to external evidence even when that conflicts with their parametric memory, given that the external evidence is coherent and convincing. On the other hand, LLMs also demonstrate a strong confirmation bias when the external evidence contains some information that is consistent with their parametric memory, despite being presented with conflicting evidence at the same time. These results pose important implications that are worth careful consideration for the further development and deployment of tool- and retrieval-augmented LLMs.

Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference

As Large Language Models (LLMs) demonstrate extensive capability in learning from documents, LLM unlearning becomes an increasingly important research area to address concerns of LLMs in terms of privacy, copyright, etc. A conventional LLM unlearning task typically involves two goals: (1) The target LLM should forget the knowledge in the specified forget documents, and (2) it should retain the other knowledge that the LLM possesses, for which we assume access to a small number of retain documents. To achieve both goals, a mainstream class of LLM unlearning methods introduces an optimization framework with a combination of two objectives - maximizing the prediction loss on the forget documents while minimizing that on the retain documents, which suffers from two challenges, degenerated output and catastrophic forgetting. In this paper, we propose a novel unlearning framework called Unlearning from Logit Difference (ULD), which introduces an assistant LLM that aims to achieve the opposite of the unlearning goals: remembering the forget documents and forgetting the retain knowledge. ULD then derives the unlearned LLM by computing the logit difference between the target and the assistant LLMs. We show that such reversed objectives would naturally resolve both aforementioned challenges while significantly improving the training efficiency. Extensive experiments demonstrate that our method efficiently achieves the intended forgetting while preserving the LLM's overall capabilities, reducing training time by more than threefold. Notably, our method loses 0% of model utility on the ToFU benchmark, whereas baseline methods may sacrifice 17% of utility on average to achieve comparable forget quality. Our code will be publicly available at https://github.com/UCSB-NLP-Chang/ULD.

Just read twice: closing the recall gap for recurrent language models

Recurrent large language models that compete with Transformers in language modeling perplexity are emerging at a rapid rate (e.g., Mamba, RWKV). Excitingly, these architectures use a constant amount of memory during inference. However, due to the limited memory, recurrent LMs cannot recall and use all the information in long contexts leading to brittle in-context learning (ICL) quality. A key challenge for efficient LMs is selecting what information to store versus discard. In this work, we observe the order in which information is shown to the LM impacts the selection difficulty. To formalize this, we show that the hardness of information recall reduces to the hardness of a problem called set disjointness (SD), a quintessential problem in communication complexity that requires a streaming algorithm (e.g., recurrent model) to decide whether inputted sets are disjoint. We empirically and theoretically show that the recurrent memory required to solve SD changes with set order, i.e., whether the smaller set appears first in-context. Our analysis suggests, to mitigate the reliance on data order, we can put information in the right order in-context or process prompts non-causally. Towards that end, we propose: (1) JRT-Prompt, where context gets repeated multiple times in the prompt, effectively showing the model all data orders. This gives 11.0 pm 1.3 points of improvement, averaged across 16 recurrent LMs and the 6 ICL tasks, with 11.9times higher throughput than FlashAttention-2 for generation prefill (length 32k, batch size 16, NVidia H100). We then propose (2) JRT-RNN, which uses non-causal prefix-linear-attention to process prompts and provides 99% of Transformer quality at 360M params., 30B tokens and 96% at 1.3B params., 50B tokens on average across the tasks, with 19.2times higher throughput for prefill than FA2.

RetrievalAttention: Accelerating Long-Context LLM Inference via Vector Retrieval

Transformer-based large Language Models (LLMs) become increasingly important in various domains. However, the quadratic time complexity of attention operation poses a significant challenge for scaling to longer contexts due to the extremely high inference latency and GPU memory consumption for caching key-value (KV) vectors. This paper proposes RetrievalAttention, a training-free approach to accelerate attention computation. To leverage the dynamic sparse property of attention, RetrievalAttention builds approximate nearest neighbor search (ANNS) indexes upon KV vectors in CPU memory and retrieves the most relevant ones via vector search during generation. Due to the out-of-distribution (OOD) between query vectors and key vectors, off-the-shelf ANNS indexes still need to scan O(N) (usually 30% of all keys) data for accurate retrieval, which fails to exploit the high sparsity. RetrievalAttention first identifies the OOD challenge of ANNS-based attention, and addresses it via an attention-aware vector search algorithm that can adapt to queries and only access 1--3% of data, thus achieving a sub-linear time complexity. RetrievalAttention greatly reduces the inference cost of long-context LLM with much lower GPU memory requirements while maintaining the model accuracy. Especially, RetrievalAttention only needs 16GB GPU memory for serving 128K tokens in LLMs with 8B parameters, which is capable of generating one token in 0.188 seconds on a single NVIDIA RTX4090 (24GB).

LLM Inference Unveiled: Survey and Roofline Model Insights

The field of efficient Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges. Although the field has expanded and is vibrant, there hasn't been a concise framework that analyzes the various methods of LLM Inference to provide a clear understanding of this domain. Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model for systematic analysis of LLM inference techniques. This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems, such as why LLMs are memory-bound, how much memory and computation they need, and how to choose the right hardware. We systematically collate the latest advancements in efficient LLM inference, covering crucial areas such as model compression (e.g., Knowledge Distillation and Quantization), algorithm improvements (e.g., Early Exit and Mixture-of-Expert), and both hardware and system-level enhancements. Our survey stands out by analyzing these methods with roofline model, helping us understand their impact on memory access and computation. This distinctive approach not only showcases the current research landscape but also delivers valuable insights for practical implementation, positioning our work as an indispensable resource for researchers new to the field as well as for those seeking to deepen their understanding of efficient LLM deployment. The analyze tool, LLM-Viewer, is open-sourced.

A Unified and General Framework for Continual Learning

Continual Learning (CL) focuses on learning from dynamic and changing data distributions while retaining previously acquired knowledge. Various methods have been developed to address the challenge of catastrophic forgetting, including regularization-based, Bayesian-based, and memory-replay-based techniques. However, these methods lack a unified framework and common terminology for describing their approaches. This research aims to bridge this gap by introducing a comprehensive and overarching framework that encompasses and reconciles these existing methodologies. Notably, this new framework is capable of encompassing established CL approaches as special instances within a unified and general optimization objective. An intriguing finding is that despite their diverse origins, these methods share common mathematical structures. This observation highlights the compatibility of these seemingly distinct techniques, revealing their interconnectedness through a shared underlying optimization objective. Moreover, the proposed general framework introduces an innovative concept called refresh learning, specifically designed to enhance the CL performance. This novel approach draws inspiration from neuroscience, where the human brain often sheds outdated information to improve the retention of crucial knowledge and facilitate the acquisition of new information. In essence, refresh learning operates by initially unlearning current data and subsequently relearning it. It serves as a versatile plug-in that seamlessly integrates with existing CL methods, offering an adaptable and effective enhancement to the learning process. Extensive experiments on CL benchmarks and theoretical analysis demonstrate the effectiveness of the proposed refresh learning. Code is available at https://github.com/joey-wang123/CL-refresh-learning.

Exploring Synaptic Resonance in Large Language Models: A Novel Approach to Contextual Memory Integration

Contextual memory integration remains a high challenge in the development of language models, particularly in tasks that require maintaining coherence over extended sequences. Traditional approaches, such as self-attention mechanisms and memory-augmented architectures, often prioritize short-term dependencies, leading to fragmentation and inconsistency in long-range contextual understanding. Inspired by principles of synaptic plasticity observed in biological neural systems, a novel mechanism, Synaptic Resonance, is introduced to dynamically reinforce relevant memory pathways during training and inference. Unlike static memory representations, this mechanism continuously adjusts synaptic weight matrices based on contextual relevance, allowing for improved information retention without excessive computational overhead. Evaluations conducted on an open-source language model demonstrate reductions in perplexity, enhancements in contextual coherence, and increased robustness against input noise, highlighting the effectiveness of reinforcement-driven memory modulation. Comparative analysis against baseline models further reveals that the proposed approach achieves higher memory retention efficiency while maintaining computational feasibility. The architectural modifications integrate seamlessly into existing transformer-based frameworks, ensuring stable convergence and efficient inference without sacrificing scalability. Applications benefiting from improved long-term contextual consistency, such as dialogue systems and document summarization, stand to gain from this approach. Empirical findings suggest that dynamically reinforced memory pathways offer a promising alternative to conventional memory mechanisms, addressing longstanding limitations in extended sequence modeling.

LeMo: Enabling LEss Token Involvement for MOre Context Fine-tuning

The escalating demand for long-context applications has intensified the necessity of extending the LLM context windows. Despite recent fine-tuning approaches successfully expanding context lengths, their high memory footprints, especially for activations, present a critical practical limitation. Current parameter-efficient fine-tuning methods prioritize reducing parameter update overhead over addressing activation memory constraints. Similarly, existing sparsity mechanisms improve computational efficiency but overlook activation memory optimization due to the phenomenon of Shadowy Activation. In this paper, we propose LeMo, the first LLM fine-tuning system that explores and exploits a new token-level sparsity mechanism inherent in long-context scenarios, termed Contextual Token Sparsity. LeMo minimizes redundant token involvement by assessing the informativeness of token embeddings while preserving model accuracy. Specifically, LeMo introduces three key techniques: (1) Token Elimination, dynamically identifying and excluding redundant tokens across varying inputs and layers. (2) Pattern Prediction, utilizing well-trained predictors to approximate token sparsity patterns with minimal overhead. (3) Kernel Optimization, employing permutation-free and segment-based strategies to boost system performance. We implement LeMo as an end-to-end fine-tuning system compatible with various LLM architectures and other optimization techniques. Comprehensive evaluations demonstrate that LeMo reduces memory consumption by up to 1.93x and achieves up to 1.36x speedups, outperforming state-of-the-art fine-tuning systems.

MOS: Model Surgery for Pre-Trained Model-Based Class-Incremental Learning

Class-Incremental Learning (CIL) requires models to continually acquire knowledge of new classes without forgetting old ones. Despite Pre-trained Models (PTMs) have shown excellent performance in CIL, catastrophic forgetting still occurs as the model learns new concepts. Existing work seeks to utilize lightweight components to adjust the PTM, while the forgetting phenomenon still comes from {\em parameter and retrieval} levels. Specifically, iterative updates of the model result in parameter drift, while mistakenly retrieving irrelevant modules leads to the mismatch during inference. To this end, we propose MOdel Surgery (MOS) to rescue the model from forgetting previous knowledge. By training task-specific adapters, we continually adjust the PTM to downstream tasks. To mitigate parameter-level forgetting, we present an adapter merging approach to learn task-specific adapters, which aims to bridge the gap between different components while reserve task-specific information. Besides, to address retrieval-level forgetting, we introduce a training-free self-refined adapter retrieval mechanism during inference, which leverages the model's inherent ability for better adapter retrieval. By jointly rectifying the model with those steps, MOS can robustly resist catastrophic forgetting in the learning process. Extensive experiments on seven benchmark datasets validate MOS's state-of-the-art performance. Code is available at: https://github.com/sun-hailong/AAAI25-MOS