new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 2

Mining experimental data from Materials Science literature with Large Language Models: an evaluation study

This study is dedicated to assessing the capabilities of large language models (LLMs) such as GPT-3.5-Turbo, GPT-4, and GPT-4-Turbo in extracting structured information from scientific documents in materials science. To this end, we primarily focus on two critical tasks of information extraction: (i) a named entity recognition (NER) of studied materials and physical properties and (ii) a relation extraction (RE) between these entities. Due to the evident lack of datasets within Materials Informatics (MI), we evaluated using SuperMat, based on superconductor research, and MeasEval, a generic measurement evaluation corpus. The performance of LLMs in executing these tasks is benchmarked against traditional models based on the BERT architecture and rule-based approaches (baseline). We introduce a novel methodology for the comparative analysis of intricate material expressions, emphasising the standardisation of chemical formulas to tackle the complexities inherent in materials science information assessment. For NER, LLMs fail to outperform the baseline with zero-shot prompting and exhibit only limited improvement with few-shot prompting. However, a GPT-3.5-Turbo fine-tuned with the appropriate strategy for RE outperforms all models, including the baseline. Without any fine-tuning, GPT-4 and GPT-4-Turbo display remarkable reasoning and relationship extraction capabilities after being provided with merely a couple of examples, surpassing the baseline. Overall, the results suggest that although LLMs demonstrate relevant reasoning skills in connecting concepts, specialised models are currently a better choice for tasks requiring extracting complex domain-specific entities like materials. These insights provide initial guidance applicable to other materials science sub-domains in future work.

MaScQA: A Question Answering Dataset for Investigating Materials Science Knowledge of Large Language Models

Information extraction and textual comprehension from materials literature are vital for developing an exhaustive knowledge base that enables accelerated materials discovery. Language models have demonstrated their capability to answer domain-specific questions and retrieve information from knowledge bases. However, there are no benchmark datasets in the materials domain that can evaluate the understanding of the key concepts by these language models. In this work, we curate a dataset of 650 challenging questions from the materials domain that require the knowledge and skills of a materials student who has cleared their undergraduate degree. We classify these questions based on their structure and the materials science domain-based subcategories. Further, we evaluate the performance of GPT-3.5 and GPT-4 models on solving these questions via zero-shot and chain of thought prompting. It is observed that GPT-4 gives the best performance (~62% accuracy) as compared to GPT-3.5. Interestingly, in contrast to the general observation, no significant improvement in accuracy is observed with the chain of thought prompting. To evaluate the limitations, we performed an error analysis, which revealed conceptual errors (~64%) as the major contributor compared to computational errors (~36%) towards the reduced performance of LLMs. We hope that the dataset and analysis performed in this work will promote further research in developing better materials science domain-specific LLMs and strategies for information extraction.

MatTools: Benchmarking Large Language Models for Materials Science Tools

Large language models (LLMs) are increasingly applied to materials science questions, including literature comprehension, property prediction, materials discovery and alloy design. At the same time, a wide range of physics-based computational approaches have been developed in which materials properties can be calculated. Here, we propose a benchmark application to evaluate the proficiency of LLMs to answer materials science questions through the generation and safe execution of codes based on such physics-based computational materials science packages. MatTools is built on two complementary components: a materials simulation tool question-answer (QA) benchmark and a real-world tool-usage benchmark. We designed an automated methodology to efficiently collect real-world materials science tool-use examples. The QA benchmark, derived from the pymatgen (Python Materials Genomics) codebase and documentation, comprises 69,225 QA pairs that assess the ability of an LLM to understand materials science tools. The real-world benchmark contains 49 tasks (138 subtasks) requiring the generation of functional Python code for materials property calculations. Our evaluation of diverse LLMs yields three key insights: (1)Generalists outshine specialists;(2)AI knows AI; and (3)Simpler is better. MatTools provides a standardized framework for assessing and improving LLM capabilities for materials science tool applications, facilitating the development of more effective AI systems for materials science and general scientific research.

34 Examples of LLM Applications in Materials Science and Chemistry: Towards Automation, Assistants, Agents, and Accelerated Scientific Discovery

Large Language Models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 34 total projects developed during the second annual Large Language Model Hackathon for Applications in Materials Science and Chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility.

MatSci-NLP: Evaluating Scientific Language Models on Materials Science Language Tasks Using Text-to-Schema Modeling

We present MatSci-NLP, a natural language benchmark for evaluating the performance of natural language processing (NLP) models on materials science text. We construct the benchmark from publicly available materials science text data to encompass seven different NLP tasks, including conventional NLP tasks like named entity recognition and relation classification, as well as NLP tasks specific to materials science, such as synthesis action retrieval which relates to creating synthesis procedures for materials. We study various BERT-based models pretrained on different scientific text corpora on MatSci-NLP to understand the impact of pretraining strategies on understanding materials science text. Given the scarcity of high-quality annotated data in the materials science domain, we perform our fine-tuning experiments with limited training data to encourage the generalize across MatSci-NLP tasks. Our experiments in this low-resource training setting show that language models pretrained on scientific text outperform BERT trained on general text. MatBERT, a model pretrained specifically on materials science journals, generally performs best for most tasks. Moreover, we propose a unified text-to-schema for multitask learning on \benchmark and compare its performance with traditional fine-tuning methods. In our analysis of different training methods, we find that our proposed text-to-schema methods inspired by question-answering consistently outperform single and multitask NLP fine-tuning methods. The code and datasets are publicly available at https://github.com/BangLab-UdeM-Mila/NLP4MatSci-ACL23.

Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry

Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year's hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research.

HoneyBee: Progressive Instruction Finetuning of Large Language Models for Materials Science

We propose an instruction-based process for trustworthy data curation in materials science (MatSci-Instruct), which we then apply to finetune a LLaMa-based language model targeted for materials science (HoneyBee). MatSci-Instruct helps alleviate the scarcity of relevant, high-quality materials science textual data available in the open literature, and HoneyBee is the first billion-parameter language model specialized to materials science. In MatSci-Instruct we improve the trustworthiness of generated data by prompting multiple commercially available large language models for generation with an Instructor module (e.g. Chat-GPT) and verification from an independent Verifier module (e.g. Claude). Using MatSci-Instruct, we construct a dataset of multiple tasks and measure the quality of our dataset along multiple dimensions, including accuracy against known facts, relevance to materials science, as well as completeness and reasonableness of the data. Moreover, we iteratively generate more targeted instructions and instruction-data in a finetuning-evaluation-feedback loop leading to progressively better performance for our finetuned HoneyBee models. Our evaluation on the MatSci-NLP benchmark shows HoneyBee's outperformance of existing language models on materials science tasks and iterative improvement in successive stages of instruction-data refinement. We study the quality of HoneyBee's language modeling through automatic evaluation and analyze case studies to further understand the model's capabilities and limitations. Our code and relevant datasets are publicly available at https://github.com/BangLab-UdeM-Mila/NLP4MatSci-HoneyBee.

JARVIS-Leaderboard: A Large Scale Benchmark of Materials Design Methods

Lack of rigorous reproducibility and validation are major hurdles for scientific development across many fields. Materials science in particular encompasses a variety of experimental and theoretical approaches that require careful benchmarking. Leaderboard efforts have been developed previously to mitigate these issues. However, a comprehensive comparison and benchmarking on an integrated platform with multiple data modalities with both perfect and defect materials data is still lacking. This work introduces JARVIS-Leaderboard, an open-source and community-driven platform that facilitates benchmarking and enhances reproducibility. The platform allows users to set up benchmarks with custom tasks and enables contributions in the form of dataset, code, and meta-data submissions. We cover the following materials design categories: Artificial Intelligence (AI), Electronic Structure (ES), Force-fields (FF), Quantum Computation (QC) and Experiments (EXP). For AI, we cover several types of input data, including atomic structures, atomistic images, spectra, and text. For ES, we consider multiple ES approaches, software packages, pseudopotentials, materials, and properties, comparing results to experiment. For FF, we compare multiple approaches for material property predictions. For QC, we benchmark Hamiltonian simulations using various quantum algorithms and circuits. Finally, for experiments, we use the inter-laboratory approach to establish benchmarks. There are 1281 contributions to 274 benchmarks using 152 methods with more than 8 million data-points, and the leaderboard is continuously expanding. The JARVIS-Leaderboard is available at the website: https://pages.nist.gov/jarvis_leaderboard

Foundational Large Language Models for Materials Research

Materials discovery and development are critical for addressing global challenges. Yet, the exponential growth in materials science literature comprising vast amounts of textual data has created significant bottlenecks in knowledge extraction, synthesis, and scientific reasoning. Large Language Models (LLMs) offer unprecedented opportunities to accelerate materials research through automated analysis and prediction. Still, their effective deployment requires domain-specific adaptation for understanding and solving domain-relevant tasks. Here, we present LLaMat, a family of foundational models for materials science developed through continued pretraining of LLaMA models on an extensive corpus of materials literature and crystallographic data. Through systematic evaluation, we demonstrate that LLaMat excels in materials-specific NLP and structured information extraction while maintaining general linguistic capabilities. The specialized LLaMat-CIF variant demonstrates unprecedented capabilities in crystal structure generation, predicting stable crystals with high coverage across the periodic table. Intriguingly, despite LLaMA-3's superior performance in comparison to LLaMA-2, we observe that LLaMat-2 demonstrates unexpectedly enhanced domain-specific performance across diverse materials science tasks, including structured information extraction from text and tables, more particularly in crystal structure generation, a potential adaptation rigidity in overtrained LLMs. Altogether, the present work demonstrates the effectiveness of domain adaptation towards developing practically deployable LLM copilots for materials research. Beyond materials science, our findings reveal important considerations for domain adaptation of LLMs, such as model selection, training methodology, and domain-specific performance, which may influence the development of specialized scientific AI systems.

Generative Hierarchical Materials Search

Generative models trained at scale can now produce text, video, and more recently, scientific data such as crystal structures. In applications of generative approaches to materials science, and in particular to crystal structures, the guidance from the domain expert in the form of high-level instructions can be essential for an automated system to output candidate crystals that are viable for downstream research. In this work, we formulate end-to-end language-to-structure generation as a multi-objective optimization problem, and propose Generative Hierarchical Materials Search (GenMS) for controllable generation of crystal structures. GenMS consists of (1) a language model that takes high-level natural language as input and generates intermediate textual information about a crystal (e.g., chemical formulae), and (2) a diffusion model that takes intermediate information as input and generates low-level continuous value crystal structures. GenMS additionally uses a graph neural network to predict properties (e.g., formation energy) from the generated crystal structures. During inference, GenMS leverages all three components to conduct a forward tree search over the space of possible structures. Experiments show that GenMS outperforms other alternatives of directly using language models to generate structures both in satisfying user request and in generating low-energy structures. We confirm that GenMS is able to generate common crystal structures such as double perovskites, or spinels, solely from natural language input, and hence can form the foundation for more complex structure generation in near future.

BioinspiredLLM: Conversational Large Language Model for the Mechanics of Biological and Bio-inspired Materials

The study of biological materials and bio-inspired materials science is well established; however, surprisingly little knowledge has been systematically translated to engineering solutions. To accelerate discovery and guide insights, an open-source autoregressive transformer large language model (LLM), BioinspiredLLM, is reported. The model was finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity. The model has proven that it is able to accurately recall information about biological materials and is further enhanced with enhanced reasoning ability, as well as with retrieval-augmented generation to incorporate new data during generation that can also help to traceback sources, update the knowledge base, and connect knowledge domains. BioinspiredLLM also has been shown to develop sound hypotheses regarding biological materials design and remarkably so for materials that have never been explicitly studied before. Lastly, the model showed impressive promise in collaborating with other generative artificial intelligence models in a workflow that can reshape the traditional materials design process. This collaborative generative artificial intelligence method can stimulate and enhance bio-inspired materials design workflows. Biological materials are at a critical intersection of multiple scientific fields and models like BioinspiredLLM help to connect knowledge domains.

MatText: Do Language Models Need More than Text & Scale for Materials Modeling?

Effectively representing materials as text has the potential to leverage the vast advancements of large language models (LLMs) for discovering new materials. While LLMs have shown remarkable success in various domains, their application to materials science remains underexplored. A fundamental challenge is the lack of understanding of how to best utilize text-based representations for materials modeling. This challenge is further compounded by the absence of a comprehensive benchmark to rigorously evaluate the capabilities and limitations of these text representations in capturing the complexity of material systems. To address this gap, we propose MatText, a suite of benchmarking tools and datasets designed to systematically evaluate the performance of language models in modeling materials. MatText encompasses nine distinct text-based representations for material systems, including several novel representations. Each representation incorporates unique inductive biases that capture relevant information and integrate prior physical knowledge about materials. Additionally, MatText provides essential tools for training and benchmarking the performance of language models in the context of materials science. These tools include standardized dataset splits for each representation, probes for evaluating sensitivity to geometric factors, and tools for seamlessly converting crystal structures into text. Using MatText, we conduct an extensive analysis of the capabilities of language models in modeling materials. Our findings reveal that current language models consistently struggle to capture the geometric information crucial for materials modeling across all representations. Instead, these models tend to leverage local information, which is emphasized in some of our novel representations. Our analysis underscores MatText's ability to reveal shortcomings of text-based methods for materials design.

Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models

The ability to discover new materials with desirable properties is critical for numerous applications from helping mitigate climate change to advances in next generation computing hardware. AI has the potential to accelerate materials discovery and design by more effectively exploring the chemical space compared to other computational methods or by trial-and-error. While substantial progress has been made on AI for materials data, benchmarks, and models, a barrier that has emerged is the lack of publicly available training data and open pre-trained models. To address this, we present a Meta FAIR release of the Open Materials 2024 (OMat24) large-scale open dataset and an accompanying set of pre-trained models. OMat24 contains over 110 million density functional theory (DFT) calculations focused on structural and compositional diversity. Our EquiformerV2 models achieve state-of-the-art performance on the Matbench Discovery leaderboard and are capable of predicting ground-state stability and formation energies to an F1 score above 0.9 and an accuracy of 20 meV/atom, respectively. We explore the impact of model size, auxiliary denoising objectives, and fine-tuning on performance across a range of datasets including OMat24, MPtraj, and Alexandria. The open release of the OMat24 dataset and models enables the research community to build upon our efforts and drive further advancements in AI-assisted materials science.

MatterGPT: A Generative Transformer for Multi-Property Inverse Design of Solid-State Materials

Inverse design of solid-state materials with desired properties represents a formidable challenge in materials science. Although recent generative models have demonstrated potential, their adoption has been hindered by limitations such as inefficiency, architectural constraints and restricted open-source availability. The representation of crystal structures using the SLICES (Simplified Line-Input Crystal-Encoding System) notation as a string of characters enables the use of state-of-the-art natural language processing models, such as Transformers, for crystal design. Drawing inspiration from the success of GPT models in generating coherent text, we trained a generative Transformer on the next-token prediction task to generate solid-state materials with targeted properties. We demonstrate MatterGPT's capability to generate de novo crystal structures with targeted single properties, including both lattice-insensitive (formation energy) and lattice-sensitive (band gap) properties. Furthermore, we extend MatterGPT to simultaneously target multiple properties, addressing the complex challenge of multi-objective inverse design of crystals. Our approach showcases high validity, uniqueness, and novelty in generated structures, as well as the ability to generate materials with properties beyond the training data distribution. This work represents a significant step forward in computational materials discovery, offering a powerful and open tool for designing materials with tailored properties for various applications in energy, electronics, and beyond.

From AI for Science to Agentic Science: A Survey on Autonomous Scientific Discovery

Artificial intelligence (AI) is reshaping scientific discovery, evolving from specialized computational tools into autonomous research partners. We position Agentic Science as a pivotal stage within the broader AI for Science paradigm, where AI systems progress from partial assistance to full scientific agency. Enabled by large language models (LLMs), multimodal systems, and integrated research platforms, agentic AI shows capabilities in hypothesis generation, experimental design, execution, analysis, and iterative refinement -- behaviors once regarded as uniquely human. This survey provides a domain-oriented review of autonomous scientific discovery across life sciences, chemistry, materials science, and physics. We unify three previously fragmented perspectives -- process-oriented, autonomy-oriented, and mechanism-oriented -- through a comprehensive framework that connects foundational capabilities, core processes, and domain-specific realizations. Building on this framework, we (i) trace the evolution of AI for Science, (ii) identify five core capabilities underpinning scientific agency, (iii) model discovery as a dynamic four-stage workflow, (iv) review applications across the above domains, and (v) synthesize key challenges and future opportunities. This work establishes a domain-oriented synthesis of autonomous scientific discovery and positions Agentic Science as a structured paradigm for advancing AI-driven research.

Cephalo: Multi-Modal Vision-Language Models for Bio-Inspired Materials Analysis and Design

We present Cephalo, a series of multimodal vision large language models (V-LLMs) designed for materials science applications, integrating visual and linguistic data for enhanced understanding and interaction within human-AI and multi-agent AI frameworks. A key innovation of Cephalo is its advanced dataset generation method, which employs a sophisticated algorithm to accurately detect and separate images and their corresponding textual descriptions from PDF documents, such as scientific papers. The method includes a careful refinement of image-text pairs through integrated vision and language processing, ensuring high-quality, contextually relevant, and well reasoned training data. Cephalo is trained on integrated image and text data extracted from thousands of scientific papers and science-focused Wikipedia pages demonstrates can interpret complex visual scenes, generate precise language descriptions, and answer queries about images effectively. The combination of a vision encoder with an autoregressive transformer supports complex natural language understanding in an integrated model, which can be coupled with other generative methods to create an image-to-text-to-image or image-to-text-to-3D pipeline. To explore the development of larger models from smaller ones, we merge sets of layers that originate from different pre-trained source models. This hybrid approach allows us to leverage the domain-specific expertise and general conversational capabilities to harness the strengths of multiple models. We examine the models in diverse use cases that incorporate biological materials, fracture and engineering analysis, protein biophysics, and bio-inspired design based on insect behavior. Generative applications include bio-inspired designs, including pollen-inspired architected materials, as well as the synthesis of bio-inspired material microstructures from a photograph of a solar eclipse.

LLaMP: Large Language Model Made Powerful for High-fidelity Materials Knowledge Retrieval and Distillation

Reducing hallucination of Large Language Models (LLMs) is imperative for use in the sciences where reproducibility is crucial. However, LLMs inherently lack long-term memory, making it a nontrivial, ad hoc, and inevitably biased task to fine-tune them on domain-specific literature and data. Here we introduce LLaMP, a multimodal retrieval-augmented generation (RAG) framework of multiple data-aware reasoning-and-acting (ReAct) agents that dynamically interact with computational and experimental data on Materials Project (MP). Without fine-tuning, LLaMP demonstrates an ability to comprehend and integrate various modalities of materials science concepts, fetch relevant data stores on the fly, process higher-order data (such as crystal structures and elastic tensors), and summarize multi-step procedures for solid-state synthesis. We show that LLaMP effectively corrects errors in GPT-3.5's intrinsic knowledge, reducing a 5.21% MAPE on frequently-documented bandgaps and a significant 1103.54% MAPE on formation energies -- errors that GPT-3.5 seems to derive from mixed data sources. Additionally, LLaMP substantially reduces the hallucinated volumetric strain in a diamond cubic silicon structure from 66.3% to 0. The proposed framework offers an intuitive and nearly hallucination-free approach to exploring materials informatics and establishes a pathway for knowledge distillation and fine-tuning other language models. We envision the framework as a valuable component for scientific hypotheses and a foundation for future autonomous laboratories where multiple LLM agents communicate and cooperate with robotics to drive material synthesis and chemical reactions without hard-coded human logic and intervention.

UniEM-3M: A Universal Electron Micrograph Dataset for Microstructural Segmentation and Generation

Quantitative microstructural characterization is fundamental to materials science, where electron micrograph (EM) provides indispensable high-resolution insights. However, progress in deep learning-based EM characterization has been hampered by the scarcity of large-scale, diverse, and expert-annotated datasets, due to acquisition costs, privacy concerns, and annotation complexity. To address this issue, we introduce UniEM-3M, the first large-scale and multimodal EM dataset for instance-level understanding. It comprises 5,091 high-resolution EMs, about 3 million instance segmentation labels, and image-level attribute-disentangled textual descriptions, a subset of which will be made publicly available. Furthermore, we are also releasing a text-to-image diffusion model trained on the entire collection to serve as both a powerful data augmentation tool and a proxy for the complete data distribution. To establish a rigorous benchmark, we evaluate various representative instance segmentation methods on the complete UniEM-3M and present UniEM-Net as a strong baseline model. Quantitative experiments demonstrate that this flow-based model outperforms other advanced methods on this challenging benchmark. Our multifaceted release of a partial dataset, a generative model, and a comprehensive benchmark -- available at huggingface -- will significantly accelerate progress in automated materials analysis.

Graph-Aware Isomorphic Attention for Adaptive Dynamics in Transformers

We present an approach to modifying Transformer architectures by integrating graph-aware relational reasoning into the attention mechanism, merging concepts from graph neural networks and language modeling. Building on the inherent connection between attention and graph theory, we reformulate the Transformer's attention mechanism as a graph operation and propose Graph-Aware Isomorphic Attention. This method leverages advanced graph modeling strategies, including Graph Isomorphism Networks (GIN) and Principal Neighborhood Aggregation (PNA), to enrich the representation of relational structures. Our approach captures complex dependencies and generalizes across tasks, as evidenced by a reduced generalization gap and improved learning performance. Additionally, we expand the concept of graph-aware attention to introduce Sparse GIN-Attention, a fine-tuning approach that employs sparse GINs. By interpreting attention matrices as sparse adjacency graphs, this technique enhances the adaptability of pre-trained foundational models with minimal computational overhead, endowing them with graph-aware capabilities. Sparse GIN-Attention fine-tuning achieves improved training dynamics and better generalization compared to alternative methods like low-rank adaption (LoRA). We discuss latent graph-like structures within traditional attention mechanisms, offering a new lens through which Transformers can be understood. By evolving Transformers as hierarchical GIN models for relational reasoning. This perspective suggests profound implications for foundational model development, enabling the design of architectures that dynamically adapt to both local and global dependencies. Applications in bioinformatics, materials science, language modeling, and beyond could benefit from this synthesis of relational and sequential data modeling, setting the stage for interpretable and generalizable modeling strategies.

PRefLexOR: Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning and Agentic Thinking

PRefLexOR (Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning) combines preference optimization with concepts from Reinforcement Learning to enable models to self-teach through iterative reasoning improvements. We propose a recursive learning approach that engages the model in multi-step reasoning, revisiting, and refining intermediate steps before producing a final output in training and inference phases. Through multiple training stages, the model first learns to align its reasoning with accurate decision paths by optimizing the log odds between preferred and non-preferred responses. During this process, PRefLexOR builds a dynamic knowledge graph by generating questions from random text chunks and retrieval-augmentation to contextualize relevant details from the entire training corpus. In the second stage, preference optimization enhances model performance by using rejection sampling to fine-tune reasoning quality by continually producing in-situ training data while masking the reasoning steps. Recursive optimization within a thinking token framework introduces iterative feedback loops, where the model refines reasoning, achieving deeper coherence, consistency, and adaptability. Implemented in small language models with only 3 billion parameters, we should that even tiny models can iteratively teach themselves to reason with greater depth and reflectivity. Our implementation is straightforward and can be incorporated into any existing pretrained LLM. We focus our examples on applications in biological materials science and demonstrate the method in a variety of case studies that range from in-domain to cross-domain applications. Using reasoning strategies that include thinking and reflection modalities we build a multi-agent recursive self-improving inference approach to successively improve responses via repeated sampling in inference time.

Fine-tuning large language models for domain adaptation: Exploration of training strategies, scaling, model merging and synergistic capabilities

The advancement of Large Language Models (LLMs) for domain applications in fields such as materials science and engineering depends on the development of fine-tuning strategies that adapt models for specialized, technical capabilities. In this work, we explore the effects of Continued Pretraining (CPT), Supervised Fine-Tuning (SFT), and various preference-based optimization approaches, including Direct Preference Optimization (DPO) and Odds Ratio Preference Optimization (ORPO), on fine-tuned LLM performance. Our analysis shows how these strategies influence model outcomes and reveals that the merging of multiple fine-tuned models can lead to the emergence of capabilities that surpass the individual contributions of the parent models. We find that model merging leads to new functionalities that neither parent model could achieve alone, leading to improved performance in domain-specific assessments. Experiments with different model architectures are presented, including Llama 3.1 8B and Mistral 7B models, where similar behaviors are observed. Exploring whether the results hold also for much smaller models, we use a tiny LLM with 1.7 billion parameters and show that very small LLMs do not necessarily feature emergent capabilities under model merging, suggesting that model scaling may be a key component. In open-ended yet consistent chat conversations between a human and AI models, our assessment reveals detailed insights into how different model variants perform and show that the smallest model achieves a high intelligence score across key criteria including reasoning depth, creativity, clarity, and quantitative precision. Other experiments include the development of image generation prompts based on disparate biological material design concepts, to create new microstructures, architectural concepts, and urban design based on biological materials-inspired construction principles.

Grad DFT: a software library for machine learning enhanced density functional theory

Density functional theory (DFT) stands as a cornerstone method in computational quantum chemistry and materials science due to its remarkable versatility and scalability. Yet, it suffers from limitations in accuracy, particularly when dealing with strongly correlated systems. To address these shortcomings, recent work has begun to explore how machine learning can expand the capabilities of DFT; an endeavor with many open questions and technical challenges. In this work, we present Grad DFT: a fully differentiable JAX-based DFT library, enabling quick prototyping and experimentation with machine learning-enhanced exchange-correlation energy functionals. Grad DFT employs a pioneering parametrization of exchange-correlation functionals constructed using a weighted sum of energy densities, where the weights are determined using neural networks. Moreover, Grad DFT encompasses a comprehensive suite of auxiliary functions, notably featuring a just-in-time compilable and fully differentiable self-consistent iterative procedure. To support training and benchmarking efforts, we additionally compile a curated dataset of experimental dissociation energies of dimers, half of which contain transition metal atoms characterized by strong electronic correlations. The software library is tested against experimental results to study the generalization capabilities of a neural functional across potential energy surfaces and atomic species, as well as the effect of training data noise on the resulting model accuracy.

Navigating the Design Space of Equivariant Diffusion-Based Generative Models for De Novo 3D Molecule Generation

Deep generative diffusion models are a promising avenue for 3D de novo molecular design in materials science and drug discovery. However, their utility is still limited by suboptimal performance on large molecular structures and limited training data. To address this gap, we explore the design space of E(3)-equivariant diffusion models, focusing on previously unexplored areas. Our extensive comparative analysis evaluates the interplay between continuous and discrete state spaces. From this investigation, we present the EQGAT-diff model, which consistently outperforms established models for the QM9 and GEOM-Drugs datasets. Significantly, EQGAT-diff takes continuous atom positions, while chemical elements and bond types are categorical and uses time-dependent loss weighting, substantially increasing training convergence, the quality of generated samples, and inference time. We also showcase that including chemically motivated additional features like hybridization states in the diffusion process enhances the validity of generated molecules. To further strengthen the applicability of diffusion models to limited training data, we investigate the transferability of EQGAT-diff trained on the large PubChem3D dataset with implicit hydrogen atoms to target different data distributions. Fine-tuning EQGAT-diff for just a few iterations shows an efficient distribution shift, further improving performance throughout data sets. Finally, we test our model on the Crossdocked data set for structure-based de novo ligand generation, underlining the importance of our findings showing state-of-the-art performance on Vina docking scores.

In-situ graph reasoning and knowledge expansion using Graph-PReFLexOR

The pursuit of automated scientific discovery has fueled progress from symbolic logic to modern AI, forging new frontiers in reasoning and pattern recognition. Transformers function as potential systems, where every possible relationship remains latent potentiality until tasks impose constraints, akin to measurement. Yet, refining their sampling requires more than probabilistic selection: solutions must conform to specific structures or rules, ensuring consistency and the invocation of general principles. We present Graph-PReFLexOR (Graph-based Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning), a framework that combines graph reasoning with symbolic abstraction to dynamically expand domain knowledge. Inspired by reinforcement learning, Graph-PReFLexOR defines reasoning as a structured mapping, where tasks yield knowledge graphs, abstract patterns, and ultimately, final answers. Inspired by category theory, it encodes concepts as nodes and their relationships as edges, supporting hierarchical inference and adaptive learning through isomorphic representations. Demonstrations include hypothesis generation, materials design, and creative reasoning, such as discovering relationships between mythological concepts like 'thin places' with materials science. We propose a 'knowledge garden growth' strategy that integrates insights across domains, promoting interdisciplinary connections. Results with a 3-billion-parameter Graph-PReFLexOR model show superior reasoning depth and adaptability, underscoring the potential for transparent, multidisciplinary AI-driven discovery. It lays the groundwork for general autonomous reasoning solutions.

From LLM Reasoning to Autonomous AI Agents: A Comprehensive Review

Large language models and autonomous AI agents have evolved rapidly, resulting in a diverse array of evaluation benchmarks, frameworks, and collaboration protocols. However, the landscape remains fragmented and lacks a unified taxonomy or comprehensive survey. Therefore, we present a side-by-side comparison of benchmarks developed between 2019 and 2025 that evaluate these models and agents across multiple domains. In addition, we propose a taxonomy of approximately 60 benchmarks that cover general and academic knowledge reasoning, mathematical problem-solving, code generation and software engineering, factual grounding and retrieval, domain-specific evaluations, multimodal and embodied tasks, task orchestration, and interactive assessments. Furthermore, we review AI-agent frameworks introduced between 2023 and 2025 that integrate large language models with modular toolkits to enable autonomous decision-making and multi-step reasoning. Moreover, we present real-world applications of autonomous AI agents in materials science, biomedical research, academic ideation, software engineering, synthetic data generation, chemical reasoning, mathematical problem-solving, geographic information systems, multimedia, healthcare, and finance. We then survey key agent-to-agent collaboration protocols, namely the Agent Communication Protocol (ACP), the Model Context Protocol (MCP), and the Agent-to-Agent Protocol (A2A). Finally, we discuss recommendations for future research, focusing on advanced reasoning strategies, failure modes in multi-agent LLM systems, automated scientific discovery, dynamic tool integration via reinforcement learning, integrated search capabilities, and security vulnerabilities in agent protocols.

GraphGPT: Generative Pre-trained Graph Eulerian Transformer

We introduceGraphGPT, a novel self-supervised generative pre-trained model for graph learning based on the Graph Eulerian Transformer (GET). First, we propose GET, which combines a standard transformer encoder or decoder architecture with an innovative graph-to-sequence transformation method. This method converts graphs or sampled subgraphs into sequences of tokens representing nodes, edges, and attributes in a reversible manner using Eulerian paths. We pre-train GET using either of the two self-supervised tasks: next-token prediction (NTP) and scheduled masked-token prediction (SMTP). The pre-trained model is then fine-tuned for downstream tasks such as graph-, edge-, and node-level prediction. Despite its simplicity, GraphGPT achieves performance comparable to or surpassing state-of-the-art methods on multiple large-scale Open Graph Benchmark (OGB) datasets. It demonstrates exceptional results on the molecular property prediction dataset PCQM4Mv2 and the protein-protein interaction dataset ogbl-ppa. Notably, generative pre-training enables scaling GraphGPT to 2 billion parameters while maintaining performance gains - a breakthrough that overcomes the scalability limitations of traditional Graph Neural Networks (GNNs) and prior graph transformers (GTs). To advance research in graph foundation models and facilitate scientific discovery in chemistry, materials science, and related fields, we will release the source code (https://github.com/alibaba/graph-gpt) and pre-trained checkpoints.

ChemAgent: Self-updating Library in Large Language Models Improves Chemical Reasoning

Chemical reasoning usually involves complex, multi-step processes that demand precise calculations, where even minor errors can lead to cascading failures. Furthermore, large language models (LLMs) encounter difficulties handling domain-specific formulas, executing reasoning steps accurately, and integrating code effectively when tackling chemical reasoning tasks. To address these challenges, we present ChemAgent, a novel framework designed to improve the performance of LLMs through a dynamic, self-updating library. This library is developed by decomposing chemical tasks into sub-tasks and compiling these sub-tasks into a structured collection that can be referenced for future queries. Then, when presented with a new problem, ChemAgent retrieves and refines pertinent information from the library, which we call memory, facilitating effective task decomposition and the generation of solutions. Our method designs three types of memory and a library-enhanced reasoning component, enabling LLMs to improve over time through experience. Experimental results on four chemical reasoning datasets from SciBench demonstrate that ChemAgent achieves performance gains of up to 46% (GPT-4), significantly outperforming existing methods. Our findings suggest substantial potential for future applications, including tasks such as drug discovery and materials science. Our code can be found at https://github.com/gersteinlab/chemagent

A Benchmark for Quantum Chemistry Relaxations via Machine Learning Interatomic Potentials

Computational quantum chemistry plays a critical role in drug discovery, chemical synthesis, and materials science. While first-principles methods, such as density functional theory (DFT), provide high accuracy in modeling electronic structures and predicting molecular properties, they are computationally expensive. Machine learning interatomic potentials (MLIPs) have emerged as promising surrogate models that aim to achieve DFT-level accuracy while enabling efficient large-scale atomistic simulations. The development of accurate and transferable MLIPs requires large-scale, high-quality datasets with both energy and force labels. Critically, MLIPs must generalize not only to stable geometries but also to intermediate, non-equilibrium conformations encountered during atomistic simulations. In this work, we introduce PubChemQCR, a large-scale dataset of molecular relaxation trajectories curated from the raw geometry optimization outputs of the PubChemQC project. PubChemQCR is the largest publicly available dataset of DFT-based relaxation trajectories for small organic molecules, comprising approximately 3.5 million trajectories and over 300 million molecular conformations computed at various levels of theory. Each conformation is labeled with both total energy and atomic forces, making the dataset suitable for training and evaluating MLIPs. To provide baselines for future developments, we benchmark nine representative MLIP models on the dataset. Our resources are publicly available at https://huggingface.co/divelab

Diffusion Sequence Models for Enhanced Protein Representation and Generation

Proteins are fundamental to biology, executing diverse functions through complex physicochemical interactions, and they hold transformative potential across medicine, materials science, and environmental applications. Protein Language Models (pLMs) aim to unlock insights from the vast space of unlabeled protein sequences by learning rich, semantic representations from primary sequences via masked language modeling. However, these models typically exhibit limited generative capacity. In this work, we introduce the Diffusion Sequence Model (DSM), a novel pLM trained with masked diffusion to enable both high-quality representation learning and generative protein design. DSM builds upon the ESM2 architecture by incorporating a masked forward diffusion process inspired by the LLaDA framework. After training, DSM is capable of generating diverse, biomimetic sequences that align with expected amino acid compositions, secondary structures, and predicted functions, even with 90\% token corruption. Furthermore, DSM's learned representations match or exceed those of similarly sized pLMs on downstream tasks. We also introduce DSM(ppi), a variant fine-tuned to generate protein binders by attending to target sequences. We demonstrate DSM(ppi)'s effectiveness on the challenging Bench-tested Binder Benchmark (BenchBB), where both DSM and DSM(ppi) produce candidates with superior predicted binding affinity compared to known binders. Our results establish masked diffusion as a powerful paradigm for unifying protein representation and generation in a single framework.

AutoMat: Enabling Automated Crystal Structure Reconstruction from Microscopy via Agentic Tool Use

Machine learning-based interatomic potentials and force fields depend critically on accurate atomic structures, yet such data are scarce due to the limited availability of experimentally resolved crystals. Although atomic-resolution electron microscopy offers a potential source of structural data, converting these images into simulation-ready formats remains labor-intensive and error-prone, creating a bottleneck for model training and validation. We introduce AutoMat, an end-to-end, agent-assisted pipeline that automatically transforms scanning transmission electron microscopy (STEM) images into atomic crystal structures and predicts their physical properties. AutoMat combines pattern-adaptive denoising, physics-guided template retrieval, symmetry-aware atomic reconstruction, fast relaxation and property prediction via MatterSim, and coordinated orchestration across all stages. We propose the first dedicated STEM2Mat-Bench for this task and evaluate performance using lattice RMSD, formation energy MAE, and structure-matching success rate. By orchestrating external tool calls, AutoMat enables a text-only LLM to outperform vision-language models in this domain, achieving closed-loop reasoning throughout the pipeline. In large-scale experiments over 450 structure samples, AutoMat substantially outperforms existing multimodal large language models and tools. These results validate both AutoMat and STEM2Mat-Bench, marking a key step toward bridging microscopy and atomistic simulation in materials science.The code and dataset are publicly available at https://github.com/yyt-2378/AutoMat and https://huggingface.co/datasets/yaotianvector/STEM2Mat.

Crystal Structure Generation with Autoregressive Large Language Modeling

The generation of plausible crystal structures is often the first step in predicting the structure and properties of a material from its chemical composition. Quickly generating and predicting inorganic crystal structures is important for the discovery of new materials, which can target applications such as energy or electronic devices. However, most current methods for crystal structure prediction are computationally expensive, slowing the pace of innovation. Seeding structure prediction algorithms with quality generated candidates can overcome a major bottleneck. Here, we introduce CrystaLLM, a methodology for the versatile generation of crystal structures, based on the autoregressive large language modeling (LLM) of the Crystallographic Information File (CIF) format. Trained on millions of CIF files, CrystaLLM focuses on modeling crystal structures through text. CrystaLLM can produce plausible crystal structures for a wide range of inorganic compounds unseen in training, as demonstrated by ab initio simulations. The integration with predictors of formation energy permits the use of a Monte Carlo Tree Search algorithm to improve the generation of meaningful structures. Our approach challenges conventional representations of crystals, and demonstrates the potential of LLMs for learning effective 'world models' of crystal chemistry, which will lead to accelerated discovery and innovation in materials science.

Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model

While various models and computational tools have been proposed for structure and property analysis of molecules, generating molecules that conform to all desired structures and properties remains a challenge. Here, we introduce a multi-constraint molecular generation large language model, TSMMG, which, akin to a student, incorporates knowledge from various small models and tools, namely, the 'teachers'. To train TSMMG, we construct a large set of text-molecule pairs by extracting molecular knowledge from these 'teachers', enabling it to generate novel molecules that conform to the descriptions through various text prompts. We experimentally show that TSMMG remarkably performs in generating molecules meeting complex, natural language-described property requirements across two-, three-, and four-constraint tasks, with an average molecular validity of over 99% and success ratio of 82.58%, 68.03%, and 67.48%, respectively. The model also exhibits adaptability through zero-shot testing, creating molecules that satisfy combinations of properties that have not been encountered. It can comprehend text inputs with various language styles, extending beyond the confines of outlined prompts, as confirmed through empirical validation. Additionally, the knowledge distillation feature of TSMMG contributes to the continuous enhancement of small models, while the innovative approach to dataset construction effectively addresses the issues of data scarcity and quality, which positions TSMMG as a promising tool in the domains of drug discovery and materials science.

Scalable Diffusion for Materials Generation

Generative models trained on internet-scale data are capable of generating novel and realistic texts, images, and videos. A natural next question is whether these models can advance science, for example by generating novel stable materials. Traditionally, models with explicit structures (e.g., graphs) have been used in modeling structural relationships in scientific data (e.g., atoms and bonds in crystals), but generating structures can be difficult to scale to large and complex systems. Another challenge in generating materials is the mismatch between standard generative modeling metrics and downstream applications. For instance, common metrics such as the reconstruction error do not correlate well with the downstream goal of discovering stable materials. In this work, we tackle the scalability challenge by developing a unified crystal representation that can represent any crystal structure (UniMat), followed by training a diffusion probabilistic model on these UniMat representations. Our empirical results suggest that despite the lack of explicit structure modeling, UniMat can generate high fidelity crystal structures from larger and more complex chemical systems, outperforming previous graph-based approaches under various generative modeling metrics. To better connect the generation quality of materials to downstream applications, such as discovering novel stable materials, we propose additional metrics for evaluating generative models of materials, including per-composition formation energy and stability with respect to convex hulls through decomposition energy from Density Function Theory (DFT). Lastly, we show that conditional generation with UniMat can scale to previously established crystal datasets with up to millions of crystals structures, outperforming random structure search (the current leading method for structure discovery) in discovering new stable materials.

SCP-116K: A High-Quality Problem-Solution Dataset and a Generalized Pipeline for Automated Extraction in the Higher Education Science Domain

Recent breakthroughs in large language models (LLMs) exemplified by the impressive mathematical and scientific reasoning capabilities of the o1 model have spotlighted the critical importance of high-quality training data in advancing LLM performance across STEM disciplines. While the mathematics community has benefited from a growing body of curated datasets, the scientific domain at the higher education level has long suffered from a scarcity of comparable resources. To address this gap, we present SCP-116K, a new large-scale dataset of 116,756 high-quality problem-solution pairs, automatically extracted from heterogeneous sources using a streamlined and highly generalizable pipeline. Our approach involves stringent filtering to ensure the scientific rigor and educational level of the extracted materials, while maintaining adaptability for future expansions or domain transfers. By openly releasing both the dataset and the extraction pipeline, we seek to foster research on scientific reasoning, enable comprehensive performance evaluations of new LLMs, and lower the barrier to replicating the successes of advanced models like o1 in the broader science community. We believe SCP-116K will serve as a critical resource, catalyzing progress in high-level scientific reasoning tasks and promoting further innovations in LLM development. The dataset and code are publicly available at https://github.com/AQA6666/SCP-116K-open.

Leveraging Large Language Models as Knowledge-Driven Agents for Reliable Retrosynthesis Planning

Identifying reliable synthesis pathways in materials chemistry is a complex task, particularly in polymer science, due to the intricate and often non-unique nomenclature of macromolecules. To address this challenge, we propose an agent system that integrates large language models (LLMs) and knowledge graphs (KGs). By leveraging LLMs' powerful capabilities for extracting and recognizing chemical substance names, and storing the extracted data in a structured knowledge graph, our system fully automates the retrieval of relevant literatures, extraction of reaction data, database querying, construction of retrosynthetic pathway trees, further expansion through the retrieval of additional literature and recommendation of optimal reaction pathways. A novel Multi-branched Reaction Pathway Search (MBRPS) algorithm enables the exploration of all pathways, with a particular focus on multi-branched ones, helping LLMs overcome weak reasoning in multi-branched paths. This work represents the first attempt to develop a fully automated retrosynthesis planning agent tailored specially for macromolecules powered by LLMs. Applied to polyimide synthesis, our new approach constructs a retrosynthetic pathway tree with hundreds of pathways and recommends optimized routes, including both known and novel pathways, demonstrating its effectiveness and potential for broader applications.

MatterGen: a generative model for inorganic materials design

The design of functional materials with desired properties is essential in driving technological advances in areas like energy storage, catalysis, and carbon capture. Generative models provide a new paradigm for materials design by directly generating entirely novel materials given desired property constraints. Despite recent progress, current generative models have low success rate in proposing stable crystals, or can only satisfy a very limited set of property constraints. Here, we present MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. To enable this, we introduce a new diffusion-based generative process that produces crystalline structures by gradually refining atom types, coordinates, and the periodic lattice. We further introduce adapter modules to enable fine-tuning towards any given property constraints with a labeled dataset. Compared to prior generative models, structures produced by MatterGen are more than twice as likely to be novel and stable, and more than 15 times closer to the local energy minimum. After fine-tuning, MatterGen successfully generates stable, novel materials with desired chemistry, symmetry, as well as mechanical, electronic and magnetic properties. Finally, we demonstrate multi-property materials design capabilities by proposing structures that have both high magnetic density and a chemical composition with low supply-chain risk. We believe that the quality of generated materials and the breadth of MatterGen's capabilities represent a major advancement towards creating a universal generative model for materials design.

SELFormer: Molecular Representation Learning via SELFIES Language Models

Automated computational analysis of the vast chemical space is critical for numerous fields of research such as drug discovery and material science. Representation learning techniques have recently been employed with the primary objective of generating compact and informative numerical expressions of complex data. One approach to efficiently learn molecular representations is processing string-based notations of chemicals via natural language processing (NLP) algorithms. Majority of the methods proposed so far utilize SMILES notations for this purpose; however, SMILES is associated with numerous problems related to validity and robustness, which may prevent the model from effectively uncovering the knowledge hidden in the data. In this study, we propose SELFormer, a transformer architecture-based chemical language model that utilizes a 100% valid, compact and expressive notation, SELFIES, as input, in order to learn flexible and high-quality molecular representations. SELFormer is pre-trained on two million drug-like compounds and fine-tuned for diverse molecular property prediction tasks. Our performance evaluation has revealed that, SELFormer outperforms all competing methods, including graph learning-based approaches and SMILES-based chemical language models, on predicting aqueous solubility of molecules and adverse drug reactions. We also visualized molecular representations learned by SELFormer via dimensionality reduction, which indicated that even the pre-trained model can discriminate molecules with differing structural properties. We shared SELFormer as a programmatic tool, together with its datasets and pre-trained models. Overall, our research demonstrates the benefit of using the SELFIES notations in the context of chemical language modeling and opens up new possibilities for the design and discovery of novel drug candidates with desired features.

S2SNet: A Pretrained Neural Network for Superconductivity Discovery

Superconductivity allows electrical current to flow without any energy loss, and thus making solids superconducting is a grand goal of physics, material science, and electrical engineering. More than 16 Nobel Laureates have been awarded for their contribution to superconductivity research. Superconductors are valuable for sustainable development goals (SDGs), such as climate change mitigation, affordable and clean energy, industry, innovation and infrastructure, and so on. However, a unified physics theory explaining all superconductivity mechanism is still unknown. It is believed that superconductivity is microscopically due to not only molecular compositions but also the geometric crystal structure. Hence a new dataset, S2S, containing both crystal structures and superconducting critical temperature, is built upon SuperCon and Material Project. Based on this new dataset, we propose a novel model, S2SNet, which utilizes the attention mechanism for superconductivity prediction. To overcome the shortage of data, S2SNet is pre-trained on the whole Material Project dataset with Masked-Language Modeling (MLM). S2SNet makes a new state-of-the-art, with out-of-sample accuracy of 92% and Area Under Curve (AUC) of 0.92. To the best of our knowledge, S2SNet is the first work to predict superconductivity with only information of crystal structures. This work is beneficial to superconductivity discovery and further SDGs. Code and datasets are available in https://github.com/zjuKeLiu/S2SNet

Segmentation of 3D pore space from CT images using curvilinear skeleton: application to numerical simulation of microbial decomposition

Recent advances in 3D X-ray Computed Tomographic (CT) sensors have stimulated research efforts to unveil the extremely complex micro-scale processes that control the activity of soil microorganisms. Voxel-based description (up to hundreds millions voxels) of the pore space can be extracted, from grey level 3D CT scanner images, by means of simple image processing tools. Classical methods for numerical simulation of biological dynamics using mesh of voxels, such as Lattice Boltzmann Model (LBM), are too much time consuming. Thus, the use of more compact and reliable geometrical representations of pore space can drastically decrease the computational cost of the simulations. Several recent works propose basic analytic volume primitives (e.g. spheres, generalized cylinders, ellipsoids) to define a piece-wise approximation of pore space for numerical simulation of draining, diffusion and microbial decomposition. Such approaches work well but the drawback is that it generates approximation errors. In the present work, we study another alternative where pore space is described by means of geometrically relevant connected subsets of voxels (regions) computed from the curvilinear skeleton. Indeed, many works use the curvilinear skeleton (3D medial axis) for analyzing and partitioning 3D shapes within various domains (medicine, material sciences, petroleum engineering, etc.) but only a few ones in soil sciences. Within the context of soil sciences, most studies dealing with 3D medial axis focus on the determination of pore throats. Here, we segment pore space using curvilinear skeleton in order to achieve numerical simulation of microbial decomposition (including diffusion processes). We validate simulation outputs by comparison with other methods using different pore space geometrical representations (balls, voxels).

SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning

A key challenge in artificial intelligence is the creation of systems capable of autonomously advancing scientific understanding by exploring novel domains, identifying complex patterns, and uncovering previously unseen connections in vast scientific data. In this work, we present SciAgents, an approach that leverages three core concepts: (1) the use of large-scale ontological knowledge graphs to organize and interconnect diverse scientific concepts, (2) a suite of large language models (LLMs) and data retrieval tools, and (3) multi-agent systems with in-situ learning capabilities. Applied to biologically inspired materials, SciAgents reveals hidden interdisciplinary relationships that were previously considered unrelated, achieving a scale, precision, and exploratory power that surpasses traditional human-driven research methods. The framework autonomously generates and refines research hypotheses, elucidating underlying mechanisms, design principles, and unexpected material properties. By integrating these capabilities in a modular fashion, the intelligent system yields material discoveries, critique and improve existing hypotheses, retrieve up-to-date data about existing research, and highlights their strengths and limitations. Our case studies demonstrate scalable capabilities to combine generative AI, ontological representations, and multi-agent modeling, harnessing a `swarm of intelligence' similar to biological systems. This provides new avenues for materials discovery and accelerates the development of advanced materials by unlocking Nature's design principles.

Matbench Discovery -- An evaluation framework for machine learning crystal stability prediction

Matbench Discovery simulates the deployment of machine learning (ML) energy models in a high-throughput search for stable inorganic crystals. We address the disconnect between (i) thermodynamic stability and formation energy and (ii) in-domain vs out-of-distribution performance. Alongside this paper, we publish a Python package to aid with future model submissions and a growing online leaderboard with further insights into trade-offs between various performance metrics. To answer the question which ML methodology performs best at materials discovery, our initial release explores a variety of models including random forests, graph neural networks (GNN), one-shot predictors, iterative Bayesian optimizers and universal interatomic potentials (UIP). Ranked best-to-worst by their test set F1 score on thermodynamic stability prediction, we find CHGNet > M3GNet > MACE > ALIGNN > MEGNet > CGCNN > CGCNN+P > Wrenformer > BOWSR > Voronoi tessellation fingerprints with random forest. The top 3 models are UIPs, the winning methodology for ML-guided materials discovery, achieving F1 scores of ~0.6 for crystal stability classification and discovery acceleration factors (DAF) of up to 5x on the first 10k most stable predictions compared to dummy selection from our test set. We also highlight a sharp disconnect between commonly used global regression metrics and more task-relevant classification metrics. Accurate regressors are susceptible to unexpectedly high false-positive rates if those accurate predictions lie close to the decision boundary at 0 eV/atom above the convex hull where most materials are. Our results highlight the need to focus on classification metrics that actually correlate with improved stability hit rate.

Procedural Generation of Grain Orientations using the Wave Function Collapse Algorithm

Statistics of grain sizes and orientations in metals correlate to the material's mechanical properties. Reproducing representative volume elements for further analysis of deformation and failure in metals, like 316L stainless steel, is particularly important due to their wide use in manufacturing goods today. Two approaches, initially created for video games, were considered for the procedural generation of representative grain microstructures. The first is the Wave Function Collapse (WFC) algorithm, and the second is constraint propagation and probabilistic inference through Markov Junior, a free and open-source software. This study aimed to investigate these two algorithms' effectiveness in using reference electron backscatter diffraction (EBSD) maps and recreating a statistically similar one that could be used in further research. It utilized two stainless steel EBSD maps as references to test both algorithms. First, the WFC algorithm was too constricting and, thus, incapable of producing images that resembled EBSDs. The second, MarkovJunior, was much more effective in creating a Voronoi tessellation that could be used to create an EBSD map in Python. When comparing the results between the reference and the generated EBSD, we discovered that the orientation and volume fractions were extremely similar. With the study, it was concluded that MarkovJunior is an effective machine learning tool that can reproduce representative grain microstructures.

An inorganic ABX3 perovskite materials dataset for target property prediction and classification using machine learning

The reliability with Machine Learning (ML) techniques in novel materials discovery often depend on the quality of the dataset, in addition to the relevant features used in describing the material. In this regard, the current study presents and validates a newly processed materials dataset that can be utilized for benchmark ML analysis, as it relates to the prediction and classification of deterministic target properties. Originally, the dataset was extracted from the Open Quantum Materials Database (OQMD) and contains a robust 16,323 samples of ABX3 inorganic perovskite structures. The dataset is tabular in form and is preprocessed to include sixty-one generalized input features that broadly describes the physicochemical, stability/geometrical, and Density Functional Theory (DFT) target properties associated with the elemental ionic sites in a three-dimensional ABX3 polyhedral. For validation, four different ML models are employed to predict three distinctive target properties, namely: formation energy, energy band gap, and crystal system. On experimentation, the best accuracy measurements are reported at 0.013 eV/atom MAE, 0.216 eV MAE, and 85% F1, corresponding to the formation energy prediction, band gap prediction and crystal system multi-classification, respectively. Moreover, the realized results are compared with previous literature and as such, affirms the resourcefulness of the current dataset for future benchmark materials analysis via ML techniques. The preprocessed dataset and source codes are openly available to download from github.com/chenebuah/ML_abx3_dataset.

An open-source robust machine learning platform for real-time detection and classification of 2D material flakes

The most widely used method for obtaining high-quality two-dimensional materials is through mechanical exfoliation of bulk crystals. Manual identification of suitable flakes from the resulting random distribution of crystal thicknesses and sizes on a substrate is a time-consuming, tedious task. Here, we present a platform for fully automated scanning, detection, and classification of two-dimensional materials, the source code of which we make openly available. Our platform is designed to be accurate, reliable, fast, and versatile in integrating new materials, making it suitable for everyday laboratory work. The implementation allows fully automated scanning and analysis of wafers with an average inference time of 100 ms for images of 2.3 Mpixels. The developed detection algorithm is based on a combination of the flakes' optical contrast toward the substrate and their geometric shape. We demonstrate that it is able to detect the majority of exfoliated flakes of various materials, with an average recall (AR50) between 67% and 89%. We also show that the algorithm can be trained with as few as five flakes of a given material, which we demonstrate for the examples of few-layer graphene, WSe_2, MoSe_2, CrI_3, 1T-TaS_2 and hexagonal BN. Our platform has been tested over a two-year period, during which more than 10^6 images of multiple different materials were acquired by over 30 individual researchers.

MeLM, a generative pretrained language modeling framework that solves forward and inverse mechanics problems

We report a flexible multi-modal mechanics language model, MeLM, applied to solve various nonlinear forward and inverse problems, that can deal with a set of instructions, numbers and microstructure data. The framework is applied to various examples including bio-inspired hierarchical honeycomb design, carbon nanotube mechanics, and protein unfolding. In spite of the flexible nature of the model-which allows us to easily incorporate diverse materials, scales, and mechanical features-it performs well across disparate forward and inverse tasks. Based on an autoregressive attention-model, MeLM effectively represents a large multi-particle system consisting of hundreds of millions of neurons, where the interaction potentials are discovered through graph-forming self-attention mechanisms that are then used to identify relationships from emergent structures, while taking advantage of synergies discovered in the training data. We show that the model can solve complex degenerate mechanics design problems and determine novel material architectures across a range of hierarchical levels, providing an avenue for materials discovery and analysis. Looking beyond the demonstrations reported in this paper, we discuss other opportunities in applied mechanics and general considerations about the use of large language models in modeling, design, and analysis that can span a broad spectrum of material properties from mechanical, thermal, optical, to electronic.

Toward quantitative fractography using convolutional neural networks

The science of fractography revolves around the correlation between topographic characteristics of the fracture surface and the mechanisms and external conditions leading to their creation. While being a topic of investigation for centuries, it has remained mostly qualitative to date. A quantitative analysis of fracture surfaces is of prime interest for both the scientific community and the industrial sector, bearing the potential for improved understanding on the mechanisms controlling the fracture process and at the same time assessing the reliability of computational models currently being used for material design. With new advances in the field of image analysis, and specifically with machine learning tools becoming more accessible and reliable, it is now feasible to automate the process of extracting meaningful information from fracture surface images. Here, we propose a method of identifying and quantifying the relative appearance of intergranular and transgranular fracture events from scanning electron microscope images. The newly proposed method is based on a convolutional neural network algorithm for semantic segmentation. The proposed method is extensively tested and evaluated against two ceramic material systems (Al_2O_3,MgAl_2O_4) and shows high prediction accuracy, despite being trained on only one material system (MgAl_2O_4). While here attention is focused on brittle fracture characteristics, the method can be easily extended to account for other fracture morphologies, such as dimples, fatigue striations, etc.

Multi-property directed generative design of inorganic materials through Wyckoff-augmented transfer learning

Accelerated materials discovery is an urgent demand to drive advancements in fields such as energy conversion, storage, and catalysis. Property-directed generative design has emerged as a transformative approach for rapidly discovering new functional inorganic materials with multiple desired properties within vast and complex search spaces. However, this approach faces two primary challenges: data scarcity for functional properties and the multi-objective optimization required to balance competing tasks. Here, we present a multi-property-directed generative framework designed to overcome these limitations and enhance site symmetry-compliant crystal generation beyond P1 (translational) symmetry. By incorporating Wyckoff-position-based data augmentation and transfer learning, our framework effectively handles sparse and small functional datasets, enabling the generation of new stable materials simultaneously conditioned on targeted space group, band gap, and formation energy. Using this approach, we identified previously unknown thermodynamically and lattice-dynamically stable semiconductors in tetragonal, trigonal, and cubic systems, with bandgaps ranging from 0.13 to 2.20 eV, as validated by density functional theory (DFT) calculations. Additionally, we assessed their thermoelectric descriptors using DFT, indicating their potential suitability for thermoelectric applications. We believe our integrated framework represents a significant step forward in generative design of inorganic materials.

Crystal Diffusion Variational Autoencoder for Periodic Material Generation

Generating the periodic structure of stable materials is a long-standing challenge for the material design community. This task is difficult because stable materials only exist in a low-dimensional subspace of all possible periodic arrangements of atoms: 1) the coordinates must lie in the local energy minimum defined by quantum mechanics, and 2) global stability also requires the structure to follow the complex, yet specific bonding preferences between different atom types. Existing methods fail to incorporate these factors and often lack proper invariances. We propose a Crystal Diffusion Variational Autoencoder (CDVAE) that captures the physical inductive bias of material stability. By learning from the data distribution of stable materials, the decoder generates materials in a diffusion process that moves atomic coordinates towards a lower energy state and updates atom types to satisfy bonding preferences between neighbors. Our model also explicitly encodes interactions across periodic boundaries and respects permutation, translation, rotation, and periodic invariances. We significantly outperform past methods in three tasks: 1) reconstructing the input structure, 2) generating valid, diverse, and realistic materials, and 3) generating materials that optimize a specific property. We also provide several standard datasets and evaluation metrics for the broader machine learning community.

MetamatBench: Integrating Heterogeneous Data, Computational Tools, and Visual Interface for Metamaterial Discovery

Metamaterials, engineered materials with architected structures across multiple length scales, offer unprecedented and tunable mechanical properties that surpass those of conventional materials. However, leveraging advanced machine learning (ML) for metamaterial discovery is hindered by three fundamental challenges: (C1) Data Heterogeneity Challenge arises from heterogeneous data sources, heterogeneous composition scales, and heterogeneous structure categories; (C2) Model Complexity Challenge stems from the intricate geometric constraints of ML models, which complicate their adaptation to metamaterial structures; and (C3) Human-AI Collaboration Challenge comes from the "dual black-box'' nature of sophisticated ML models and the need for intuitive user interfaces. To tackle these challenges, we introduce a unified framework, named MetamatBench, that operates on three levels. (1) At the data level, we integrate and standardize 5 heterogeneous, multi-modal metamaterial datasets. (2) The ML level provides a comprehensive toolkit that adapts 17 state-of-the-art ML methods for metamaterial discovery. It also includes a comprehensive evaluation suite with 12 novel performance metrics with finite element-based assessments to ensure accurate and reliable model validation. (3) The user level features a visual-interactive interface that bridges the gap between complex ML techniques and non-ML researchers, advancing property prediction and inverse design of metamaterials for research and applications. MetamatBench offers a unified platform deployed at http://zhoulab-1.cs.vt.edu:5550 that enables machine learning researchers and practitioners to develop and evaluate new methodologies in metamaterial discovery. For accessibility and reproducibility, we open-source our benchmark and the codebase at https://github.com/cjpcool/Metamaterial-Benchmark.

Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion

In recent years, there has been rapid development in 3D generation models, opening up new possibilities for applications such as simulating the dynamic movements of 3D objects and customizing their behaviors. However, current 3D generative models tend to focus only on surface features such as color and shape, neglecting the inherent physical properties that govern the behavior of objects in the real world. To accurately simulate physics-aligned dynamics, it is essential to predict the physical properties of materials and incorporate them into the behavior prediction process. Nonetheless, predicting the diverse materials of real-world objects is still challenging due to the complex nature of their physical attributes. In this paper, we propose Physics3D, a novel method for learning various physical properties of 3D objects through a video diffusion model. Our approach involves designing a highly generalizable physical simulation system based on a viscoelastic material model, which enables us to simulate a wide range of materials with high-fidelity capabilities. Moreover, we distill the physical priors from a video diffusion model that contains more understanding of realistic object materials. Extensive experiments demonstrate the effectiveness of our method with both elastic and plastic materials. Physics3D shows great potential for bridging the gap between the physical world and virtual neural space, providing a better integration and application of realistic physical principles in virtual environments. Project page: https://liuff19.github.io/Physics3D.

A Cartesian Encoding Graph Neural Network for Crystal Structures Property Prediction: Application to Thermal Ellipsoid Estimation

In diffraction-based crystal structure analysis, thermal ellipsoids, quantified via Anisotropic Displacement Parameters (ADPs), are critical yet challenging to determine. ADPs capture atomic vibrations, reflecting thermal and structural properties, but traditional computation is often expensive. This paper introduces CartNet, a novel graph neural network (GNN) for efficiently predicting crystal properties by encoding atomic geometry into Cartesian coordinates alongside the crystal temperature. CartNet integrates a neighbour equalization technique to emphasize covalent and contact interactions, and a Cholesky-based head to ensure valid ADP predictions. We also propose a rotational SO(3) data augmentation strategy during training to handle unseen orientations. An ADP dataset with over 200,000 experimental crystal structures from the Cambridge Structural Database (CSD) was curated to validate the approach. CartNet significantly reduces computational costs and outperforms existing methods in ADP prediction by 10.87%, while delivering a 34.77% improvement over theoretical approaches. We further evaluated CartNet on other datasets covering formation energy, band gap, total energy, energy above the convex hull, bulk moduli, and shear moduli, achieving 7.71% better results on the Jarvis Dataset and 13.16% on the Materials Project Dataset. These gains establish CartNet as a state-of-the-art solution for diverse crystal property predictions. Project website and online demo: https://www.ee.ub.edu/cartnet

Accelerating the Search for Superconductors Using Machine Learning

Prediction of critical temperature (T_c) of a superconductor remains a significant challenge in condensed matter physics. While the BCS theory explains superconductivity in conventional superconductors, there is no framework to predict T_c of unconventional, higher T_{c} superconductors. Quantum Structure Diagrams (QSD) were successful in establishing structure-property relationship for superconductors, quasicrystals, and ferroelectric materials starting from chemical composition. Building on the QSD ideas, we demonstrate that the principal component analysis of superconductivity data uncovers the clustering of various classes of superconductors. We use machine learning analysis and cleaned databases of superconductors to develop predictive models of T_c of a superconductor using its chemical composition. Earlier studies relied on datasets with inconsistencies, leading to suboptimal predictions. To address this, we introduce a data-cleaning workflow to enhance the statistical quality of superconducting databases by eliminating redundancies and resolving inconsistencies. With this improvised database, we apply a supervised machine learning framework and develop a Random Forest model to predict superconductivity and T_c as a function of descriptors motivated from Quantum Structure Diagrams. We demonstrate that this model generalizes effectively in reasonably accurate prediction of T_{c} of compounds outside the database. We further employ our model to systematically screen materials across materials databases as well as various chemically plausible combinations of elements and predict Tl_{5}Ba_{6}Ca_{6}Cu_{9}O_{29} to exhibit superconductivity with a T_{c} sim 105 K. Being based on the descriptors used in QSD's, our model bypasses structural information and predicts T_{c} merely from the chemical composition.

3D Multiphase Heterogeneous Microstructure Generation Using Conditional Latent Diffusion Models

The ability to generate 3D multiphase microstructures on-demand with targeted attributes can greatly accelerate the design of advanced materials. Here, we present a conditional latent diffusion model (LDM) framework that rapidly synthesizes high-fidelity 3D multiphase microstructures tailored to user specifications. Using this approach, we generate diverse two-phase and three-phase microstructures at high resolution (volumes of 128 times 128 times 64 voxels, representing >10^6 voxels each) within seconds, overcoming the scalability and time limitations of traditional simulation-based methods. Key design features, such as desired volume fractions and tortuosities, are incorporated as controllable inputs to guide the generative process, ensuring that the output structures meet prescribed statistical and topological targets. Moreover, the framework predicts corresponding manufacturing (processing) parameters for each generated microstructure, helping to bridge the gap between digital microstructure design and experimental fabrication. While demonstrated on organic photovoltaic (OPV) active-layer morphologies, the flexible architecture of our approach makes it readily adaptable to other material systems and microstructure datasets. By combining computational efficiency, adaptability, and experimental relevance, this framework addresses major limitations of existing methods and offers a powerful tool for accelerated materials discovery.

Synergistic Fusion of Multi-Source Knowledge via Evidence Theory for High-Entropy Alloy Discovery

Discovering novel high-entropy alloys (HEAs) with desirable properties is challenging due to the vast compositional space and complex phase formation mechanisms. Efficient exploration of this space requires a strategic approach that integrates heterogeneous knowledge sources. Here, we propose a framework that systematically combines knowledge extracted from computational material datasets with domain knowledge distilled from scientific literature using large language models (LLMs). A central feature of this approach is the explicit consideration of element substitutability, identifying chemically similar elements that can be interchanged to potentially stabilize desired HEAs. Dempster-Shafer theory, a mathematical framework for reasoning under uncertainty, is employed to model and combine substitutabilities based on aggregated evidence from multiple sources. The framework predicts the phase stability of candidate HEA compositions and is systematically evaluated on both quaternary alloy systems, demonstrating superior performance compared to baseline machine learning models and methods reliant on single-source evidence in cross-validation experiments. By leveraging multi-source knowledge, the framework retains robust predictive power even when key elements are absent from the training data, underscoring its potential for knowledge transfer and extrapolation. Furthermore, the enhanced interpretability of the methodology offers insights into the fundamental factors governing HEA formation. Overall, this work provides a promising strategy for accelerating HEA discovery by integrating computational and textual knowledge sources, enabling efficient exploration of vast compositional spaces with improved generalization and interpretability.

Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning

Leveraging generative Artificial Intelligence (AI), we have transformed a dataset comprising 1,000 scientific papers into an ontological knowledge graph. Through an in-depth structural analysis, we have calculated node degrees, identified communities and connectivities, and evaluated clustering coefficients and betweenness centrality of pivotal nodes, uncovering fascinating knowledge architectures. The graph has an inherently scale-free nature, is highly connected, and can be used for graph reasoning by taking advantage of transitive and isomorphic properties that reveal unprecedented interdisciplinary relationships that can be used to answer queries, identify gaps in knowledge, propose never-before-seen material designs, and predict material behaviors. We compute deep node embeddings for combinatorial node similarity ranking for use in a path sampling strategy links dissimilar concepts that have previously not been related. One comparison revealed structural parallels between biological materials and Beethoven's 9th Symphony, highlighting shared patterns of complexity through isomorphic mapping. In another example, the algorithm proposed a hierarchical mycelium-based composite based on integrating path sampling with principles extracted from Kandinsky's 'Composition VII' painting. The resulting material integrates an innovative set of concepts that include a balance of chaos/order, adjustable porosity, mechanical strength, and complex patterned chemical functionalization. We uncover other isomorphisms across science, technology and art, revealing a nuanced ontology of immanence that reveal a context-dependent heterarchical interplay of constituents. Graph-based generative AI achieves a far higher degree of novelty, explorative capacity, and technical detail, than conventional approaches and establishes a widely useful framework for innovation by revealing hidden connections.

CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling

The simulation of large-scale systems with complex electron interactions remains one of the greatest challenges for the atomistic modeling of materials. Although classical force fields often fail to describe the coupling between electronic states and ionic rearrangements, the more accurate ab-initio molecular dynamics suffers from computational complexity that prevents long-time and large-scale simulations, which are essential to study many technologically relevant phenomena, such as reactions, ion migrations, phase transformations, and degradation. In this work, we present the Crystal Hamiltonian Graph neural Network (CHGNet) as a novel machine-learning interatomic potential (MLIP), using a graph-neural-network-based force field to model a universal potential energy surface. CHGNet is pretrained on the energies, forces, stresses, and magnetic moments from the Materials Project Trajectory Dataset, which consists of over 10 years of density functional theory static and relaxation trajectories of sim 1.5 million inorganic structures. The explicit inclusion of magnetic moments enables CHGNet to learn and accurately represent the orbital occupancy of electrons, enhancing its capability to describe both atomic and electronic degrees of freedom. We demonstrate several applications of CHGNet in solid-state materials, including charge-informed molecular dynamics in Li_xMnO_2, the finite temperature phase diagram for Li_xFePO_4 and Li diffusion in garnet conductors. We critically analyze the significance of including charge information for capturing appropriate chemistry, and we provide new insights into ionic systems with additional electronic degrees of freedom that can not be observed by previous MLIPs.

Generative Pretrained Autoregressive Transformer Graph Neural Network applied to the Analysis and Discovery of Novel Proteins

We report a flexible language-model based deep learning strategy, applied here to solve complex forward and inverse problems in protein modeling, based on an attention neural network that integrates transformer and graph convolutional architectures in a causal multi-headed graph mechanism, to realize a generative pretrained model. The model is applied to predict secondary structure content (per-residue level and overall content), protein solubility, and sequencing tasks. Further trained on inverse tasks, the model is rendered capable of designing proteins with these properties as target features. The model is formulated as a general framework, completely prompt-based, and can be adapted for a variety of downstream tasks. We find that adding additional tasks yields emergent synergies that the model exploits in improving overall performance, beyond what would be possible by training a model on each dataset alone. Case studies are presented to validate the method, yielding protein designs specifically focused on structural proteins, but also exploring the applicability in the design of soluble, antimicrobial biomaterials. While our model is trained to ultimately perform 8 distinct tasks, with available datasets it can be extended to solve additional problems. In a broader sense, this work illustrates a form of multiscale modeling that relates a set of ultimate building blocks (here, byte-level utf8 characters) to complex output. This materiomic scheme captures complex emergent relationships between universal building block and resulting properties via a synergizing learning capacity to express a set of potentialities embedded in the knowledge used in training, via the interplay of universality and diversity.

Kolmogorov-Arnold Neural Networks for High-Entropy Alloys Design

A wide range of deep learning-based machine learning techniques are extensively applied to the design of high-entropy alloys (HEAs), yielding numerous valuable insights. Kolmogorov-Arnold Networks (KAN) is a recently developed architecture that aims to improve both the accuracy and interpretability of input features. In this work, we explore three different datasets for HEA design and demonstrate the application of KAN for both classification and regression models. In the first example, we use a KAN classification model to predict the probability of single-phase formation in high-entropy carbide ceramics based on various properties such as mixing enthalpy and valence electron concentration. In the second example, we employ a KAN regression model to predict the yield strength and ultimate tensile strength of HEAs based on their chemical composition and process conditions including annealing time, cold rolling percentage, and homogenization temperature. The third example involves a KAN classification model to determine whether a certain composition is an HEA or non-HEA, followed by a KAN regressor model to predict the bulk modulus of the identified HEA, aiming to identify HEAs with high bulk modulus. In all three examples, KAN either outperform or match the performance in terms of accuracy such as F1 score for classification and Mean Square Error (MSE), and coefficient of determination (R2) for regression of the multilayer perceptron (MLP) by demonstrating the efficacy of KAN in handling both classification and regression tasks. We provide a promising direction for future research to explore advanced machine learning techniques, which lead to more accurate predictions and better interpretability of complex materials, ultimately accelerating the discovery and optimization of HEAs with desirable properties.

POINT^{2}: A Polymer Informatics Training and Testing Database

The advancement of polymer informatics has been significantly propelled by the integration of machine learning (ML) techniques, enabling the rapid prediction of polymer properties and expediting the discovery of high-performance polymeric materials. However, the field lacks a standardized workflow that encompasses prediction accuracy, uncertainty quantification, ML interpretability, and polymer synthesizability. In this study, we introduce POINT^{2} (POlymer INformatics Training and Testing), a comprehensive benchmark database and protocol designed to address these critical challenges. Leveraging the existing labeled datasets and the unlabeled PI1M dataset, a collection of approximately one million virtual polymers generated via a recurrent neural network trained on the realistic polymers, we develop an ensemble of ML models, including Quantile Random Forests, Multilayer Perceptrons with dropout, Graph Neural Networks, and pretrained large language models. These models are coupled with diverse polymer representations such as Morgan, MACCS, RDKit, Topological, Atom Pair fingerprints, and graph-based descriptors to achieve property predictions, uncertainty estimations, model interpretability, and template-based polymerization synthesizability across a spectrum of properties, including gas permeability, thermal conductivity, glass transition temperature, melting temperature, fractional free volume, and density. The POINT^{2} database can serve as a valuable resource for the polymer informatics community for polymer discovery and optimization.

Predicting Thermoelectric Power Factor of Bismuth Telluride During Laser Powder Bed Fusion Additive Manufacturing

An additive manufacturing (AM) process, like laser powder bed fusion, allows for the fabrication of objects by spreading and melting powder in layers until a freeform part shape is created. In order to improve the properties of the material involved in the AM process, it is important to predict the material characterization property as a function of the processing conditions. In thermoelectric materials, the power factor is a measure of how efficiently the material can convert heat to electricity. While earlier works have predicted the material characterization properties of different thermoelectric materials using various techniques, implementation of machine learning models to predict the power factor of bismuth telluride (Bi2Te3) during the AM process has not been explored. This is important as Bi2Te3 is a standard material for low temperature applications. Thus, we used data about manufacturing processing parameters involved and in-situ sensor monitoring data collected during AM of Bi2Te3, to train different machine learning models in order to predict its thermoelectric power factor. We implemented supervised machine learning techniques using 80% training and 20% test data and further used the permutation feature importance method to identify important processing parameters and in-situ sensor features which were best at predicting power factor of the material. Ensemble-based methods like random forest, AdaBoost classifier, and bagging classifier performed the best in predicting power factor with the highest accuracy of 90% achieved by the bagging classifier model. Additionally, we found the top 15 processing parameters and in-situ sensor features to characterize the material manufacturing property like power factor. These features could further be optimized to maximize power factor of the thermoelectric material and improve the quality of the products built using this material.

UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion

Unified generation of sequence and structure for scientific data (e.g., materials, molecules, proteins) is a critical task. Existing approaches primarily rely on either autoregressive sequence models or diffusion models, each offering distinct advantages and facing notable limitations. Autoregressive models, such as GPT, Llama, and Phi-4, have demonstrated remarkable success in natural language generation and have been extended to multimodal tasks (e.g., image, video, and audio) using advanced encoders like VQ-VAE to represent complex modalities as discrete sequences. However, their direct application to scientific domains is challenging due to the high precision requirements and the diverse nature of scientific data. On the other hand, diffusion models excel at generating high-dimensional scientific data, such as protein, molecule, and material structures, with remarkable accuracy. Yet, their inability to effectively model sequences limits their potential as general-purpose multimodal foundation models. To address these challenges, we propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models. This integration leverages the strengths of autoregressive models to ease the training of conditional diffusion models, while diffusion-based generative heads enhance the precision of autoregressive predictions. We validate the effectiveness of UniGenX on material and small molecule generation tasks, achieving a significant leap in state-of-the-art performance for material crystal structure prediction and establishing new state-of-the-art results for small molecule structure prediction, de novo design, and conditional generation. Notably, UniGenX demonstrates significant improvements, especially in handling long sequences for complex structures, showcasing its efficacy as a versatile tool for scientific data generation.

Interplay between thermal and compositional gradients decides the microstructure during thermomigration: a phase-field study

The presence of thermal gradients in alloys often leads to non-uniformity in concentration profiles, which can induce the thermomigration of microstructural features such as precipitates. To investigate such microstructural changes, we present a phase-field model that incorporates coupling between concentration and thermal gradients. First, we simulated the evolution of non-uniform concentration profiles in the single-phase regions of Fe-C and Fe-N alloy systems due to imposed thermal gradients. To validate our model with the classical experiments performed by Darken and Oriani, we studied the evolution of spatially varying concentration profiles where thermal gradients encompass single-phase and two-phase regions. We developed a parameterized thermodynamic description of the two-phase region of a binary alloy to systematically study the effect of interactions between chemically-driven and thermal gradient-driven diffusion of solute on the evolution of precipitates. Our simulations show how thermal gradient, precipitate size, and interparticle distance influence the migration and associated morphological changes of precipitates. The composition profiles and migration rates obtained from single-particle simulations show an exact match with our analytical model. We use twoparticle simulations to show conditions under which thermomigration induces the growth of the smaller particle and shrinkage of the larger one in contrast to the isothermal Ostwald ripening behavior. Our multiparticle simulations show similar behavior during coarsening. Moreover, in the presence of a thermal gradient, there is a shift in the center of mass of the precipitates towards the high-temperature region. Thus, our study offers new insights into the phenomena of microstructure evolution in the presence of thermal gradient.

DyFraNet: Forecasting and Backcasting Dynamic Fracture Mechanics in Space and Time Using a 2D-to-3D Deep Neural Network

The dynamics of materials failure is one of the most critical phenomena in a range of scientific and engineering fields, from healthcare to structural materials to transportation. In this paper we propose a specially designed deep neural network, DyFraNet, which can predict dynamic fracture behaviors by identifying a complete history of fracture propagation - from cracking onset, as a crack grows through the material, modeled as a series of frames evolving over time and dependent on each other. Furthermore, this model can not only forecast future fracture processes but also backcast to elucidate the past fracture history. In this scenario, once provided with the outcome of a fracture event, the model will elucidate past events that led to this state and will predict the future evolution of the failure process. By comparing the predicted results with atomistic-level simulations and theory, we show that DyFraNet can capture dynamic fracture mechanics by accurately predicting how cracks develop over time, including measures such as the crack speed, as well as when cracks become unstable. We use GradCAM to interpret how DyFraNet perceives the relationship between geometric conditions and fracture dynamics and we find DyFraNet pays special attention to the areas around crack tips, which have a critical influence in the early stage of fracture propagation. In later stages, the model pays increased attention to the existing or newly formed damage distribution in the material. The proposed approach offers significant potential to accelerate the exploration of the dynamics in material design against fracture failures and can be beneficially adapted for all kinds of dynamical engineering problems.

ProtAgents: Protein discovery via large language model multi-agent collaborations combining physics and machine learning

Designing de novo proteins beyond those found in nature holds significant promise for advancements in both scientific and engineering applications. Current methodologies for protein design often rely on AI-based models, such as surrogate models that address end-to-end problems by linking protein structure to material properties or vice versa. However, these models frequently focus on specific material objectives or structural properties, limiting their flexibility when incorporating out-of-domain knowledge into the design process or comprehensive data analysis is required. In this study, we introduce ProtAgents, a platform for de novo protein design based on Large Language Models (LLMs), where multiple AI agents with distinct capabilities collaboratively address complex tasks within a dynamic environment. The versatility in agent development allows for expertise in diverse domains, including knowledge retrieval, protein structure analysis, physics-based simulations, and results analysis. The dynamic collaboration between agents, empowered by LLMs, provides a versatile approach to tackling protein design and analysis problems, as demonstrated through diverse examples in this study. The problems of interest encompass designing new proteins, analyzing protein structures and obtaining new first-principles data -- natural vibrational frequencies -- via physics simulations. The concerted effort of the system allows for powerful automated and synergistic design of de novo proteins with targeted mechanical properties. The flexibility in designing the agents, on one hand, and their capacity in autonomous collaboration through the dynamic LLM-based multi-agent environment on the other hand, unleashes great potentials of LLMs in addressing multi-objective materials problems and opens up new avenues for autonomous materials discovery and design.

NatureLM: Deciphering the Language of Nature for Scientific Discovery

Foundation models have revolutionized natural language processing and artificial intelligence, significantly enhancing how machines comprehend and generate human languages. Inspired by the success of these foundation models, researchers have developed foundation models for individual scientific domains, including small molecules, materials, proteins, DNA, and RNA. However, these models are typically trained in isolation, lacking the ability to integrate across different scientific domains. Recognizing that entities within these domains can all be represented as sequences, which together form the "language of nature", we introduce Nature Language Model (briefly, NatureLM), a sequence-based science foundation model designed for scientific discovery. Pre-trained with data from multiple scientific domains, NatureLM offers a unified, versatile model that enables various applications including: (i) generating and optimizing small molecules, proteins, RNA, and materials using text instructions; (ii) cross-domain generation/design, such as protein-to-molecule and protein-to-RNA generation; and (iii) achieving state-of-the-art performance in tasks like SMILES-to-IUPAC translation and retrosynthesis on USPTO-50k. NatureLM offers a promising generalist approach for various scientific tasks, including drug discovery (hit generation/optimization, ADMET optimization, synthesis), novel material design, and the development of therapeutic proteins or nucleotides. We have developed NatureLM models in different sizes (1 billion, 8 billion, and 46.7 billion parameters) and observed a clear improvement in performance as the model size increases.