Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMatSynth: A Modern PBR Materials Dataset
We introduce MatSynth, a dataset of 4,000+ CC0 ultra-high resolution PBR materials. Materials are crucial components of virtual relightable assets, defining the interaction of light at the surface of geometries. Given their importance, significant research effort was dedicated to their representation, creation and acquisition. However, in the past 6 years, most research in material acquisiton or generation relied either on the same unique dataset, or on company-owned huge library of procedural materials. With this dataset we propose a significantly larger, more diverse, and higher resolution set of materials than previously publicly available. We carefully discuss the data collection process and demonstrate the benefits of this dataset on material acquisition and generation applications. The complete data further contains metadata with each material's origin, license, category, tags, creation method and, when available, descriptions and physical size, as well as 3M+ renderings of the augmented materials, in 1K, under various environment lightings. The MatSynth dataset is released through the project page at: https://www.gvecchio.com/matsynth.
Hypothesis Generation for Materials Discovery and Design Using Goal-Driven and Constraint-Guided LLM Agents
Materials discovery and design are essential for advancing technology across various industries by enabling the development of application-specific materials. Recent research has leveraged Large Language Models (LLMs) to accelerate this process. We explore the potential of LLMs to generate viable hypotheses that, once validated, can expedite materials discovery. Collaborating with materials science experts, we curated a novel dataset from recent journal publications, featuring real-world goals, constraints, and methods for designing real-world applications. Using this dataset, we test LLM-based agents that generate hypotheses for achieving given goals under specific constraints. To assess the relevance and quality of these hypotheses, we propose a novel scalable evaluation metric that emulates the process a materials scientist would use to evaluate a hypothesis critically. Our curated dataset, proposed method, and evaluation framework aim to advance future research in accelerating materials discovery and design with LLMs.
Foundational Large Language Models for Materials Research
Materials discovery and development are critical for addressing global challenges. Yet, the exponential growth in materials science literature comprising vast amounts of textual data has created significant bottlenecks in knowledge extraction, synthesis, and scientific reasoning. Large Language Models (LLMs) offer unprecedented opportunities to accelerate materials research through automated analysis and prediction. Still, their effective deployment requires domain-specific adaptation for understanding and solving domain-relevant tasks. Here, we present LLaMat, a family of foundational models for materials science developed through continued pretraining of LLaMA models on an extensive corpus of materials literature and crystallographic data. Through systematic evaluation, we demonstrate that LLaMat excels in materials-specific NLP and structured information extraction while maintaining general linguistic capabilities. The specialized LLaMat-CIF variant demonstrates unprecedented capabilities in crystal structure generation, predicting stable crystals with high coverage across the periodic table. Intriguingly, despite LLaMA-3's superior performance in comparison to LLaMA-2, we observe that LLaMat-2 demonstrates unexpectedly enhanced domain-specific performance across diverse materials science tasks, including structured information extraction from text and tables, more particularly in crystal structure generation, a potential adaptation rigidity in overtrained LLMs. Altogether, the present work demonstrates the effectiveness of domain adaptation towards developing practically deployable LLM copilots for materials research. Beyond materials science, our findings reveal important considerations for domain adaptation of LLMs, such as model selection, training methodology, and domain-specific performance, which may influence the development of specialized scientific AI systems.
JARVIS-Leaderboard: A Large Scale Benchmark of Materials Design Methods
Lack of rigorous reproducibility and validation are major hurdles for scientific development across many fields. Materials science in particular encompasses a variety of experimental and theoretical approaches that require careful benchmarking. Leaderboard efforts have been developed previously to mitigate these issues. However, a comprehensive comparison and benchmarking on an integrated platform with multiple data modalities with both perfect and defect materials data is still lacking. This work introduces JARVIS-Leaderboard, an open-source and community-driven platform that facilitates benchmarking and enhances reproducibility. The platform allows users to set up benchmarks with custom tasks and enables contributions in the form of dataset, code, and meta-data submissions. We cover the following materials design categories: Artificial Intelligence (AI), Electronic Structure (ES), Force-fields (FF), Quantum Computation (QC) and Experiments (EXP). For AI, we cover several types of input data, including atomic structures, atomistic images, spectra, and text. For ES, we consider multiple ES approaches, software packages, pseudopotentials, materials, and properties, comparing results to experiment. For FF, we compare multiple approaches for material property predictions. For QC, we benchmark Hamiltonian simulations using various quantum algorithms and circuits. Finally, for experiments, we use the inter-laboratory approach to establish benchmarks. There are 1281 contributions to 274 benchmarks using 152 methods with more than 8 million data-points, and the leaderboard is continuously expanding. The JARVIS-Leaderboard is available at the website: https://pages.nist.gov/jarvis_leaderboard
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
The ability to discover new materials with desirable properties is critical for numerous applications from helping mitigate climate change to advances in next generation computing hardware. AI has the potential to accelerate materials discovery and design by more effectively exploring the chemical space compared to other computational methods or by trial-and-error. While substantial progress has been made on AI for materials data, benchmarks, and models, a barrier that has emerged is the lack of publicly available training data and open pre-trained models. To address this, we present a Meta FAIR release of the Open Materials 2024 (OMat24) large-scale open dataset and an accompanying set of pre-trained models. OMat24 contains over 110 million density functional theory (DFT) calculations focused on structural and compositional diversity. Our EquiformerV2 models achieve state-of-the-art performance on the Matbench Discovery leaderboard and are capable of predicting ground-state stability and formation energies to an F1 score above 0.9 and an accuracy of 20 meV/atom, respectively. We explore the impact of model size, auxiliary denoising objectives, and fine-tuning on performance across a range of datasets including OMat24, MPtraj, and Alexandria. The open release of the OMat24 dataset and models enables the research community to build upon our efforts and drive further advancements in AI-assisted materials science.
BioinspiredLLM: Conversational Large Language Model for the Mechanics of Biological and Bio-inspired Materials
The study of biological materials and bio-inspired materials science is well established; however, surprisingly little knowledge has been systematically translated to engineering solutions. To accelerate discovery and guide insights, an open-source autoregressive transformer large language model (LLM), BioinspiredLLM, is reported. The model was finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity. The model has proven that it is able to accurately recall information about biological materials and is further enhanced with enhanced reasoning ability, as well as with retrieval-augmented generation to incorporate new data during generation that can also help to traceback sources, update the knowledge base, and connect knowledge domains. BioinspiredLLM also has been shown to develop sound hypotheses regarding biological materials design and remarkably so for materials that have never been explicitly studied before. Lastly, the model showed impressive promise in collaborating with other generative artificial intelligence models in a workflow that can reshape the traditional materials design process. This collaborative generative artificial intelligence method can stimulate and enhance bio-inspired materials design workflows. Biological materials are at a critical intersection of multiple scientific fields and models like BioinspiredLLM help to connect knowledge domains.
Inorganic Materials Synthesis Planning with Literature-Trained Neural Networks
Leveraging new data sources is a key step in accelerating the pace of materials design and discovery. To complement the strides in synthesis planning driven by historical, experimental, and computed data, we present an automated method for connecting scientific literature to synthesis insights. Starting from natural language text, we apply word embeddings from language models, which are fed into a named entity recognition model, upon which a conditional variational autoencoder is trained to generate syntheses for arbitrary materials. We show the potential of this technique by predicting precursors for two perovskite materials, using only training data published over a decade prior to their first reported syntheses. We demonstrate that the model learns representations of materials corresponding to synthesis-related properties, and that the model's behavior complements existing thermodynamic knowledge. Finally, we apply the model to perform synthesizability screening for proposed novel perovskite compounds.
Multi-property directed generative design of inorganic materials through Wyckoff-augmented transfer learning
Accelerated materials discovery is an urgent demand to drive advancements in fields such as energy conversion, storage, and catalysis. Property-directed generative design has emerged as a transformative approach for rapidly discovering new functional inorganic materials with multiple desired properties within vast and complex search spaces. However, this approach faces two primary challenges: data scarcity for functional properties and the multi-objective optimization required to balance competing tasks. Here, we present a multi-property-directed generative framework designed to overcome these limitations and enhance site symmetry-compliant crystal generation beyond P1 (translational) symmetry. By incorporating Wyckoff-position-based data augmentation and transfer learning, our framework effectively handles sparse and small functional datasets, enabling the generation of new stable materials simultaneously conditioned on targeted space group, band gap, and formation energy. Using this approach, we identified previously unknown thermodynamically and lattice-dynamically stable semiconductors in tetragonal, trigonal, and cubic systems, with bandgaps ranging from 0.13 to 2.20 eV, as validated by density functional theory (DFT) calculations. Additionally, we assessed their thermoelectric descriptors using DFT, indicating their potential suitability for thermoelectric applications. We believe our integrated framework represents a significant step forward in generative design of inorganic materials.
FlowMM: Generating Materials with Riemannian Flow Matching
Crystalline materials are a fundamental component in next-generation technologies, yet modeling their distribution presents unique computational challenges. Of the plausible arrangements of atoms in a periodic lattice only a vanishingly small percentage are thermodynamically stable, which is a key indicator of the materials that can be experimentally realized. Two fundamental tasks in this area are to (a) predict the stable crystal structure of a known composition of elements and (b) propose novel compositions along with their stable structures. We present FlowMM, a pair of generative models that achieve state-of-the-art performance on both tasks while being more efficient and more flexible than competing methods. We generalize Riemannian Flow Matching to suit the symmetries inherent to crystals: translation, rotation, permutation, and periodic boundary conditions. Our framework enables the freedom to choose the flow base distributions, drastically simplifying the problem of learning crystal structures compared with diffusion models. In addition to standard benchmarks, we validate FlowMM's generated structures with quantum chemistry calculations, demonstrating that it is about 3x more efficient, in terms of integration steps, at finding stable materials compared to previous open methods.
Material Anything: Generating Materials for Any 3D Object via Diffusion
We present Material Anything, a fully-automated, unified diffusion framework designed to generate physically-based materials for 3D objects. Unlike existing methods that rely on complex pipelines or case-specific optimizations, Material Anything offers a robust, end-to-end solution adaptable to objects under diverse lighting conditions. Our approach leverages a pre-trained image diffusion model, enhanced with a triple-head architecture and rendering loss to improve stability and material quality. Additionally, we introduce confidence masks as a dynamic switcher within the diffusion model, enabling it to effectively handle both textured and texture-less objects across varying lighting conditions. By employing a progressive material generation strategy guided by these confidence masks, along with a UV-space material refiner, our method ensures consistent, UV-ready material outputs. Extensive experiments demonstrate our approach outperforms existing methods across a wide range of object categories and lighting conditions.
Generative Hierarchical Materials Search
Generative models trained at scale can now produce text, video, and more recently, scientific data such as crystal structures. In applications of generative approaches to materials science, and in particular to crystal structures, the guidance from the domain expert in the form of high-level instructions can be essential for an automated system to output candidate crystals that are viable for downstream research. In this work, we formulate end-to-end language-to-structure generation as a multi-objective optimization problem, and propose Generative Hierarchical Materials Search (GenMS) for controllable generation of crystal structures. GenMS consists of (1) a language model that takes high-level natural language as input and generates intermediate textual information about a crystal (e.g., chemical formulae), and (2) a diffusion model that takes intermediate information as input and generates low-level continuous value crystal structures. GenMS additionally uses a graph neural network to predict properties (e.g., formation energy) from the generated crystal structures. During inference, GenMS leverages all three components to conduct a forward tree search over the space of possible structures. Experiments show that GenMS outperforms other alternatives of directly using language models to generate structures both in satisfying user request and in generating low-energy structures. We confirm that GenMS is able to generate common crystal structures such as double perovskites, or spinels, solely from natural language input, and hence can form the foundation for more complex structure generation in near future.
Make-it-Real: Unleashing Large Multimodal Model's Ability for Painting 3D Objects with Realistic Materials
Physically realistic materials are pivotal in augmenting the realism of 3D assets across various applications and lighting conditions. However, existing 3D assets and generative models often lack authentic material properties. Manual assignment of materials using graphic software is a tedious and time-consuming task. In this paper, we exploit advancements in Multimodal Large Language Models (MLLMs), particularly GPT-4V, to present a novel approach, Make-it-Real: 1) We demonstrate that GPT-4V can effectively recognize and describe materials, allowing the construction of a detailed material library. 2) Utilizing a combination of visual cues and hierarchical text prompts, GPT-4V precisely identifies and aligns materials with the corresponding components of 3D objects. 3) The correctly matched materials are then meticulously applied as reference for the new SVBRDF material generation according to the original diffuse map, significantly enhancing their visual authenticity. Make-it-Real offers a streamlined integration into the 3D content creation workflow, showcasing its utility as an essential tool for developers of 3D assets.
Incorporating Domain Knowledge into Materials Tokenization
While language models are increasingly utilized in materials science, typical models rely on frequency-centric tokenization methods originally developed for natural language processing. However, these methods frequently produce excessive fragmentation and semantic loss, failing to maintain the structural and semantic integrity of material concepts. To address this issue, we propose MATTER, a novel tokenization approach that integrates material knowledge into tokenization. Based on MatDetector trained on our materials knowledge base and a re-ranking method prioritizing material concepts in token merging, MATTER maintains the structural integrity of identified material concepts and prevents fragmentation during tokenization, ensuring their semantic meaning remains intact. The experimental results demonstrate that MATTER outperforms existing tokenization methods, achieving an average performance gain of 4% and 2% in the generation and classification tasks, respectively. These results underscore the importance of domain knowledge for tokenization strategies in scientific text processing. Our code is available at https://github.com/yerimoh/MATTER
Training a Foundation Model for Materials on a Budget
Foundation models for materials modeling are advancing quickly, but their training remains expensive, often placing state-of-the-art methods out of reach for many research groups. We introduce Nequix, a compact E(3)-equivariant potential that pairs a simplified NequIP design with modern training practices, including equivariant root-mean-square layer normalization and the Muon optimizer, to retain accuracy while substantially reducing compute requirements. Built in JAX, Nequix has 700K parameters and was trained in 500 A100-GPU hours. On the Matbench-Discovery and MDR Phonon benchmarks, Nequix ranks third overall while requiring less than one quarter of the training cost of most other methods, and it delivers an order-of-magnitude faster inference speed than the current top-ranked model. We release model weights and fully reproducible codebase at https://github.com/atomicarchitects/nequix
Extracting Accurate Materials Data from Research Papers with Conversational Language Models and Prompt Engineering
There has been a growing effort to replace hand extraction of data from research papers with automated data extraction based on natural language processing, language models, and recently, large language models (LLMs). Although these methods enable efficient extraction of data from large sets of research papers, they require a significant amount of up-front effort, expertise, and coding. In this work we propose the ChatExtract method that can fully automate very accurate data extraction with minimal initial effort and background, using an advanced conversational LLM. ChatExtract consists of a set of engineered prompts applied to a conversational LLM that both identify sentences with data, extract that data, and assure the data's correctness through a series of follow-up questions. These follow-up questions largely overcome known issues with LLMs providing factually inaccurate responses. ChatExtract can be applied with any conversational LLMs and yields very high quality data extraction. In tests on materials data we find precision and recall both close to 90% from the best conversational LLMs, like ChatGPT-4. We demonstrate that the exceptional performance is enabled by the information retention in a conversational model combined with purposeful redundancy and introducing uncertainty through follow-up prompts. These results suggest that approaches similar to ChatExtract, due to their simplicity, transferability, and accuracy are likely to become powerful tools for data extraction in the near future. Finally, databases for critical cooling rates of metallic glasses and yield strengths of high entropy alloys are developed using ChatExtract.
Automatic extraction of materials and properties from superconductors scientific literature
The automatic extraction of materials and related properties from the scientific literature is gaining attention in data-driven materials science (Materials Informatics). In this paper, we discuss Grobid-superconductors, our solution for automatically extracting superconductor material names and respective properties from text. Built as a Grobid module, it combines machine learning and heuristic approaches in a multi-step architecture that supports input data as raw text or PDF documents. Using Grobid-superconductors, we built SuperCon2, a database of 40324 materials and properties records from 37700 papers. The material (or sample) information is represented by name, chemical formula, and material class, and is characterized by shape, doping, substitution variables for components, and substrate as adjoined information. The properties include the Tc superconducting critical temperature and, when available, applied pressure with the Tc measurement method.
MatText: Do Language Models Need More than Text & Scale for Materials Modeling?
Effectively representing materials as text has the potential to leverage the vast advancements of large language models (LLMs) for discovering new materials. While LLMs have shown remarkable success in various domains, their application to materials science remains underexplored. A fundamental challenge is the lack of understanding of how to best utilize text-based representations for materials modeling. This challenge is further compounded by the absence of a comprehensive benchmark to rigorously evaluate the capabilities and limitations of these text representations in capturing the complexity of material systems. To address this gap, we propose MatText, a suite of benchmarking tools and datasets designed to systematically evaluate the performance of language models in modeling materials. MatText encompasses nine distinct text-based representations for material systems, including several novel representations. Each representation incorporates unique inductive biases that capture relevant information and integrate prior physical knowledge about materials. Additionally, MatText provides essential tools for training and benchmarking the performance of language models in the context of materials science. These tools include standardized dataset splits for each representation, probes for evaluating sensitivity to geometric factors, and tools for seamlessly converting crystal structures into text. Using MatText, we conduct an extensive analysis of the capabilities of language models in modeling materials. Our findings reveal that current language models consistently struggle to capture the geometric information crucial for materials modeling across all representations. Instead, these models tend to leverage local information, which is emphasized in some of our novel representations. Our analysis underscores MatText's ability to reveal shortcomings of text-based methods for materials design.
Mining experimental data from Materials Science literature with Large Language Models: an evaluation study
This study is dedicated to assessing the capabilities of large language models (LLMs) such as GPT-3.5-Turbo, GPT-4, and GPT-4-Turbo in extracting structured information from scientific documents in materials science. To this end, we primarily focus on two critical tasks of information extraction: (i) a named entity recognition (NER) of studied materials and physical properties and (ii) a relation extraction (RE) between these entities. Due to the evident lack of datasets within Materials Informatics (MI), we evaluated using SuperMat, based on superconductor research, and MeasEval, a generic measurement evaluation corpus. The performance of LLMs in executing these tasks is benchmarked against traditional models based on the BERT architecture and rule-based approaches (baseline). We introduce a novel methodology for the comparative analysis of intricate material expressions, emphasising the standardisation of chemical formulas to tackle the complexities inherent in materials science information assessment. For NER, LLMs fail to outperform the baseline with zero-shot prompting and exhibit only limited improvement with few-shot prompting. However, a GPT-3.5-Turbo fine-tuned with the appropriate strategy for RE outperforms all models, including the baseline. Without any fine-tuning, GPT-4 and GPT-4-Turbo display remarkable reasoning and relationship extraction capabilities after being provided with merely a couple of examples, surpassing the baseline. Overall, the results suggest that although LLMs demonstrate relevant reasoning skills in connecting concepts, specialised models are currently a better choice for tasks requiring extracting complex domain-specific entities like materials. These insights provide initial guidance applicable to other materials science sub-domains in future work.
An inorganic ABX3 perovskite materials dataset for target property prediction and classification using machine learning
The reliability with Machine Learning (ML) techniques in novel materials discovery often depend on the quality of the dataset, in addition to the relevant features used in describing the material. In this regard, the current study presents and validates a newly processed materials dataset that can be utilized for benchmark ML analysis, as it relates to the prediction and classification of deterministic target properties. Originally, the dataset was extracted from the Open Quantum Materials Database (OQMD) and contains a robust 16,323 samples of ABX3 inorganic perovskite structures. The dataset is tabular in form and is preprocessed to include sixty-one generalized input features that broadly describes the physicochemical, stability/geometrical, and Density Functional Theory (DFT) target properties associated with the elemental ionic sites in a three-dimensional ABX3 polyhedral. For validation, four different ML models are employed to predict three distinctive target properties, namely: formation energy, energy band gap, and crystal system. On experimentation, the best accuracy measurements are reported at 0.013 eV/atom MAE, 0.216 eV MAE, and 85% F1, corresponding to the formation energy prediction, band gap prediction and crystal system multi-classification, respectively. Moreover, the realized results are compared with previous literature and as such, affirms the resourcefulness of the current dataset for future benchmark materials analysis via ML techniques. The preprocessed dataset and source codes are openly available to download from github.com/chenebuah/ML_abx3_dataset.
Closed-loop Error Correction Learning Accelerates Experimental Discovery of Thermoelectric Materials
The exploration of thermoelectric materials is challenging considering the large materials space, combined with added exponential degrees of freedom coming from doping and the diversity of synthetic pathways. Here we seek to incorporate historical data and update and refine it using experimental feedback by employing error-correction learning (ECL). We thus learn from prior datasets and then adapt the model to differences in synthesis and characterization that are otherwise difficult to parameterize. We then apply this strategy to discovering thermoelectric materials where we prioritize synthesis at temperatures < 300{\deg}C. We document a previously unreported chemical family of thermoelectric materials, PbSe:SnSb, finding that the best candidate in this chemical family, 2 wt% SnSb doped PbSe, exhibits a power factor more than 2x that of PbSe. Our investigations show that our closed-loop experimentation strategy reduces the required number of experiments to find an optimized material by as much as 3x compared to high-throughput searches powered by state-of-the-art machine learning models. We also observe that this improvement is dependent on the accuracy of prior in a manner that exhibits diminishing returns, and after a certain accuracy is reached, it is factors associated with experimental pathways that dictate the trends.
Prediction of superconducting properties of materials based on machine learning models
The application of superconducting materials is becoming more and more widespread. Traditionally, the discovery of new superconducting materials relies on the experience of experts and a large number of "trial and error" experiments, which not only increases the cost of experiments but also prolongs the period of discovering new superconducting materials. In recent years, machine learning has been increasingly applied to materials science. Based on this, this manuscript proposes the use of XGBoost model to identify superconductors; the first application of deep forest model to predict the critical temperature of superconductors; the first application of deep forest to predict the band gap of materials; and application of a new sub-network model to predict the Fermi energy level of materials. Compared with our known similar literature, all the above algorithms reach state-of-the-art. Finally, this manuscript uses the above models to search the COD public dataset and identify 50 candidate superconducting materials with possible critical temperature greater than 90 K.
MOFA: Discovering Materials for Carbon Capture with a GenAI- and Simulation-Based Workflow
We present MOFA, an open-source generative AI (GenAI) plus simulation workflow for high-throughput generation of metal-organic frameworks (MOFs) on large-scale high-performance computing (HPC) systems. MOFA addresses key challenges in integrating GPU-accelerated computing for GPU-intensive GenAI tasks, including distributed training and inference, alongside CPU- and GPU-optimized tasks for screening and filtering AI-generated MOFs using molecular dynamics, density functional theory, and Monte Carlo simulations. These heterogeneous tasks are unified within an online learning framework that optimizes the utilization of available CPU and GPU resources across HPC systems. Performance metrics from a 450-node (14,400 AMD Zen 3 CPUs + 1800 NVIDIA A100 GPUs) supercomputer run demonstrate that MOFA achieves high-throughput generation of novel MOF structures, with CO_2 adsorption capacities ranking among the top 10 in the hypothetical MOF (hMOF) dataset. Furthermore, the production of high-quality MOFs exhibits a linear relationship with the number of nodes utilized. The modular architecture of MOFA will facilitate its integration into other scientific applications that dynamically combine GenAI with large-scale simulations.
Revealing diatom-inspired materials multifunctionality
Diatoms have been described as nanometer-born lithographers because of their ability to create sophisticated three-dimensional amorphous silica exoskeletons. The hierarchical architecture of these structures provides diatoms with mechanical protection and the ability to filter, float, and manipulate light. Therefore, they emerge as an extraordinary model of multifunctional materials from which to draw inspiration. In this paper, we use numerical simulations, analytical models, and experimental tests to unveil the structural and fluid dynamic efficiency of the Coscinodiscus species diatom. Then we propose a novel 3D printable multifunctional biomimetic material for applications such as porous filters, heat exchangers, drug delivery systems, lightweight structures, and robotics. Our results demonstrate the role of Nature as a material designer for efficient and tunable systems and highlight the potential of diatoms for engineering materials innovation. Additionally, the results reported in this paper lay the foundation to extend the structure-property characterization of diatoms.
Agent-based Learning of Materials Datasets from Scientific Literature
Advancements in machine learning and artificial intelligence are transforming materials discovery. Yet, the availability of structured experimental data remains a bottleneck. The vast corpus of scientific literature presents a valuable and rich resource of such data. However, manual dataset creation from these resources is challenging due to issues in maintaining quality and consistency, scalability limitations, and the risk of human error and bias. Therefore, in this work, we develop a chemist AI agent, powered by large language models (LLMs), to overcome these challenges by autonomously creating structured datasets from natural language text, ranging from sentences and paragraphs to extensive scientific research articles. Our chemist AI agent, Eunomia, can plan and execute actions by leveraging the existing knowledge from decades of scientific research articles, scientists, the Internet and other tools altogether. We benchmark the performance of our approach in three different information extraction tasks with various levels of complexity, including solid-state impurity doping, metal-organic framework (MOF) chemical formula, and property relations. Our results demonstrate that our zero-shot agent, with the appropriate tools, is capable of attaining performance that is either superior or comparable to the state-of-the-art fine-tuned materials information extraction methods. This approach simplifies compilation of machine learning-ready datasets for various materials discovery applications, and significantly ease the accessibility of advanced natural language processing tools for novice users in natural language. The methodology in this work is developed as an open-source software on https://github.com/AI4ChemS/Eunomia.
MatterGen: a generative model for inorganic materials design
The design of functional materials with desired properties is essential in driving technological advances in areas like energy storage, catalysis, and carbon capture. Generative models provide a new paradigm for materials design by directly generating entirely novel materials given desired property constraints. Despite recent progress, current generative models have low success rate in proposing stable crystals, or can only satisfy a very limited set of property constraints. Here, we present MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. To enable this, we introduce a new diffusion-based generative process that produces crystalline structures by gradually refining atom types, coordinates, and the periodic lattice. We further introduce adapter modules to enable fine-tuning towards any given property constraints with a labeled dataset. Compared to prior generative models, structures produced by MatterGen are more than twice as likely to be novel and stable, and more than 15 times closer to the local energy minimum. After fine-tuning, MatterGen successfully generates stable, novel materials with desired chemistry, symmetry, as well as mechanical, electronic and magnetic properties. Finally, we demonstrate multi-property materials design capabilities by proposing structures that have both high magnetic density and a chemical composition with low supply-chain risk. We believe that the quality of generated materials and the breadth of MatterGen's capabilities represent a major advancement towards creating a universal generative model for materials design.
Multimodal Learning for Materials
Artificial intelligence is transforming computational materials science, improving the prediction of material properties, and accelerating the discovery of novel materials. Recently, publicly available material data repositories have grown rapidly. This growth encompasses not only more materials, but also a greater variety and quantity of their associated properties. Existing machine learning efforts in materials science focus primarily on single-modality tasks, i.e., relationships between materials and a single physical property, thus not taking advantage of the rich and multimodal set of material properties. Here, we introduce Multimodal Learning for Materials (MultiMat), which enables self-supervised multi-modality training of foundation models for materials. We demonstrate our framework's potential using data from the Materials Project database on multiple axes: (i) MultiMat achieves state-of-the-art performance for challenging material property prediction tasks; (ii) MultiMat enables novel and accurate material discovery via latent space similarity, enabling screening for stable materials with desired properties; and (iii) MultiMat encodes interpretable emergent features that may provide novel scientific insights.
Material Palette: Extraction of Materials from a Single Image
In this paper, we propose a method to extract physically-based rendering (PBR) materials from a single real-world image. We do so in two steps: first, we map regions of the image to material concepts using a diffusion model, which allows the sampling of texture images resembling each material in the scene. Second, we benefit from a separate network to decompose the generated textures into Spatially Varying BRDFs (SVBRDFs), providing us with materials ready to be used in rendering applications. Our approach builds on existing synthetic material libraries with SVBRDF ground truth, but also exploits a diffusion-generated RGB texture dataset to allow generalization to new samples using unsupervised domain adaptation (UDA). Our contributions are thoroughly evaluated on synthetic and real-world datasets. We further demonstrate the applicability of our method for editing 3D scenes with materials estimated from real photographs. The code and models will be made open-source. Project page: https://astra-vision.github.io/MaterialPalette/
From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction
Foundation models have been transformational in machine learning fields such as natural language processing and computer vision. Similar success in atomic property prediction has been limited due to the challenges of training effective models across multiple chemical domains. To address this, we introduce Joint Multi-domain Pre-training (JMP), a supervised pre-training strategy that simultaneously trains on multiple datasets from different chemical domains, treating each dataset as a unique pre-training task within a multi-task framework. Our combined training dataset consists of sim120M systems from OC20, OC22, ANI-1x, and Transition-1x. We evaluate performance and generalization by fine-tuning over a diverse set of downstream tasks and datasets including: QM9, rMD17, MatBench, QMOF, SPICE, and MD22. JMP demonstrates an average improvement of 59% over training from scratch, and matches or sets state-of-the-art on 34 out of 40 tasks. Our work highlights the potential of pre-training strategies that utilize diverse data to advance property prediction across chemical domains, especially for low-data tasks.
Scalable Diffusion for Materials Generation
Generative models trained on internet-scale data are capable of generating novel and realistic texts, images, and videos. A natural next question is whether these models can advance science, for example by generating novel stable materials. Traditionally, models with explicit structures (e.g., graphs) have been used in modeling structural relationships in scientific data (e.g., atoms and bonds in crystals), but generating structures can be difficult to scale to large and complex systems. Another challenge in generating materials is the mismatch between standard generative modeling metrics and downstream applications. For instance, common metrics such as the reconstruction error do not correlate well with the downstream goal of discovering stable materials. In this work, we tackle the scalability challenge by developing a unified crystal representation that can represent any crystal structure (UniMat), followed by training a diffusion probabilistic model on these UniMat representations. Our empirical results suggest that despite the lack of explicit structure modeling, UniMat can generate high fidelity crystal structures from larger and more complex chemical systems, outperforming previous graph-based approaches under various generative modeling metrics. To better connect the generation quality of materials to downstream applications, such as discovering novel stable materials, we propose additional metrics for evaluating generative models of materials, including per-composition formation energy and stability with respect to convex hulls through decomposition energy from Density Function Theory (DFT). Lastly, we show that conditional generation with UniMat can scale to previously established crystal datasets with up to millions of crystals structures, outperforming random structure search (the current leading method for structure discovery) in discovering new stable materials.
1.5 million materials narratives generated by chatbots
The advent of artificial intelligence (AI) has enabled a comprehensive exploration of materials for various applications. However, AI models often prioritize frequently encountered materials in the scientific literature, limiting the selection of suitable candidates based on inherent physical and chemical properties. To address this imbalance, we have generated a dataset of 1,494,017 natural language-material paragraphs based on combined OQMD, Materials Project, JARVIS, COD and AFLOW2 databases, which are dominated by ab initio calculations and tend to be much more evenly distributed on the periodic table. The generated text narratives were then polled and scored by both human experts and ChatGPT-4, based on three rubrics: technical accuracy, language and structure, and relevance and depth of content, showing similar scores but with human-scored depth of content being the most lagging. The merger of multi-modality data sources and large language model (LLM) holds immense potential for AI frameworks to help the exploration and discovery of solid-state materials for specific applications.
MaScQA: A Question Answering Dataset for Investigating Materials Science Knowledge of Large Language Models
Information extraction and textual comprehension from materials literature are vital for developing an exhaustive knowledge base that enables accelerated materials discovery. Language models have demonstrated their capability to answer domain-specific questions and retrieve information from knowledge bases. However, there are no benchmark datasets in the materials domain that can evaluate the understanding of the key concepts by these language models. In this work, we curate a dataset of 650 challenging questions from the materials domain that require the knowledge and skills of a materials student who has cleared their undergraduate degree. We classify these questions based on their structure and the materials science domain-based subcategories. Further, we evaluate the performance of GPT-3.5 and GPT-4 models on solving these questions via zero-shot and chain of thought prompting. It is observed that GPT-4 gives the best performance (~62% accuracy) as compared to GPT-3.5. Interestingly, in contrast to the general observation, no significant improvement in accuracy is observed with the chain of thought prompting. To evaluate the limitations, we performed an error analysis, which revealed conceptual errors (~64%) as the major contributor compared to computational errors (~36%) towards the reduced performance of LLMs. We hope that the dataset and analysis performed in this work will promote further research in developing better materials science domain-specific LLMs and strategies for information extraction.
Fine-Tuned Language Models Generate Stable Inorganic Materials as Text
We propose fine-tuning large language models for generation of stable materials. While unorthodox, fine-tuning large language models on text-encoded atomistic data is simple to implement yet reliable, with around 90% of sampled structures obeying physical constraints on atom positions and charges. Using energy above hull calculations from both learned ML potentials and gold-standard DFT calculations, we show that our strongest model (fine-tuned LLaMA-2 70B) can generate materials predicted to be metastable at about twice the rate (49% vs 28%) of CDVAE, a competing diffusion model. Because of text prompting's inherent flexibility, our models can simultaneously be used for unconditional generation of stable material, infilling of partial structures and text-conditional generation. Finally, we show that language models' ability to capture key symmetries of crystal structures improves with model scale, suggesting that the biases of pretrained LLMs are surprisingly well-suited for atomistic data.
MatTools: Benchmarking Large Language Models for Materials Science Tools
Large language models (LLMs) are increasingly applied to materials science questions, including literature comprehension, property prediction, materials discovery and alloy design. At the same time, a wide range of physics-based computational approaches have been developed in which materials properties can be calculated. Here, we propose a benchmark application to evaluate the proficiency of LLMs to answer materials science questions through the generation and safe execution of codes based on such physics-based computational materials science packages. MatTools is built on two complementary components: a materials simulation tool question-answer (QA) benchmark and a real-world tool-usage benchmark. We designed an automated methodology to efficiently collect real-world materials science tool-use examples. The QA benchmark, derived from the pymatgen (Python Materials Genomics) codebase and documentation, comprises 69,225 QA pairs that assess the ability of an LLM to understand materials science tools. The real-world benchmark contains 49 tasks (138 subtasks) requiring the generation of functional Python code for materials property calculations. Our evaluation of diverse LLMs yields three key insights: (1)Generalists outshine specialists;(2)AI knows AI; and (3)Simpler is better. MatTools provides a standardized framework for assessing and improving LLM capabilities for materials science tool applications, facilitating the development of more effective AI systems for materials science and general scientific research.
A foundation model for atomistic materials chemistry
Machine-learned force fields have transformed the atomistic modelling of materials by enabling simulations of ab initio quality on unprecedented time and length scales. However, they are currently limited by: (i) the significant computational and human effort that must go into development and validation of potentials for each particular system of interest; and (ii) a general lack of transferability from one chemical system to the next. Here, using the state-of-the-art MACE architecture we introduce a single general-purpose ML model, trained on a public database of 150k inorganic crystals, that is capable of running stable molecular dynamics on molecules and materials. We demonstrate the power of the MACE-MP-0 model -- and its qualitative and at times quantitative accuracy -- on a diverse set problems in the physical sciences, including the properties of solids, liquids, gases, and chemical reactions. The model can be applied out of the box and as a starting or "foundation model" for any atomistic system of interest and is thus a step towards democratising the revolution of ML force fields by lowering the barriers to entry.
MatKB: Semantic Search for Polycrystalline Materials Synthesis Procedures
In this paper, we present a novel approach to knowledge extraction and retrieval using Natural Language Processing (NLP) techniques for material science. Our goal is to automatically mine structured knowledge from millions of research articles in the field of polycrystalline materials and make it easily accessible to the broader community. The proposed method leverages NLP techniques such as entity recognition and document classification to extract relevant information and build an extensive knowledge base, from a collection of 9.5 Million publications. The resulting knowledge base is integrated into a search engine, which enables users to search for information about specific materials, properties, and experiments with greater precision than traditional search engines like Google. We hope our results can enable material scientists quickly locate desired experimental procedures, compare their differences, and even inspire them to design new experiments. Our website will be available at Github https://github.com/Xianjun-Yang/PcMSP.git soon.
Reoccurring patterns in hierarchical protein materials and music: The power of analogies
Complex hierarchical structures composed of simple nanoscale building blocks form the basis of most biological materials. Here we demonstrate how analogies between seemingly different fields enable the understanding of general principles by which functional properties in hierarchical systems emerge, similar to an analogy learning process. Specifically, natural hierarchical materials like spider silk exhibit properties comparable to classical music in terms of their hierarchical structure and function. As a comparative tool here we apply hierarchical ontology logs (olog) that follow a rigorous mathematical formulation based on category theory to provide an insightful system representation by expressing knowledge in a conceptual map. We explain the process of analogy creation, draw connections at several levels of hierarchy and identify similar patterns that govern the structure of the hierarchical systems silk and music and discuss the impact of the derived analogy for nanotechnology.
ChemAgent: Enhancing LLMs for Chemistry and Materials Science through Tree-Search Based Tool Learning
Large language models (LLMs) have recently demonstrated promising capabilities in chemistry tasks while still facing challenges due to outdated pretraining knowledge and the difficulty of incorporating specialized chemical expertise. To address these issues, we propose an LLM-based agent that synergistically integrates 137 external chemical tools created ranging from basic information retrieval to complex reaction predictions, and a dataset curation pipeline to generate the dataset ChemToolBench that facilitates both effective tool selection and precise parameter filling during fine-tuning and evaluation. We introduce a Hierarchical Evolutionary Monte Carlo Tree Search (HE-MCTS) framework, enabling independent optimization of tool planning and execution. By leveraging self-generated data, our approach supports step-level fine-tuning (FT) of the policy model and training task-adaptive PRM and ORM that surpass GPT-4o. Experimental evaluations demonstrate that our approach significantly improves performance in Chemistry QA and discovery tasks, offering a robust solution to integrate specialized tools with LLMs for advanced chemical applications. All datasets and code are available at https://github.com/AI4Chem/ChemistryAgent .
34 Examples of LLM Applications in Materials Science and Chemistry: Towards Automation, Assistants, Agents, and Accelerated Scientific Discovery
Large Language Models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 34 total projects developed during the second annual Large Language Model Hackathon for Applications in Materials Science and Chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility.
SOPHY: Generating Simulation-Ready Objects with Physical Materials
We present SOPHY, a generative model for 3D physics-aware shape synthesis. Unlike existing 3D generative models that focus solely on static geometry or 4D models that produce physics-agnostic animations, our approach jointly synthesizes shape, texture, and material properties related to physics-grounded dynamics, making the generated objects ready for simulations and interactive, dynamic environments. To train our model, we introduce a dataset of 3D objects annotated with detailed physical material attributes, along with an annotation pipeline for efficient material annotation. Our method enables applications such as text-driven generation of interactive, physics-aware 3D objects and single-image reconstruction of physically plausible shapes. Furthermore, our experiments demonstrate that jointly modeling shape and material properties enhances the realism and fidelity of generated shapes, improving performance on generative geometry evaluation metrics.
A Foundational Potential Energy Surface Dataset for Materials
Accurate potential energy surface (PES) descriptions are essential for atomistic simulations of materials. Universal machine learning interatomic potentials (UMLIPs)^{1-3} offer a computationally efficient alternative to density functional theory (DFT)^4 for PES modeling across the periodic table. However, their accuracy today is fundamentally constrained due to a reliance on DFT relaxation data.^{5,6} Here, we introduce MatPES, a foundational PES dataset comprising sim 400,000 structures carefully sampled from 281 million molecular dynamics snapshots that span 16 billion atomic environments. We demonstrate that UMLIPs trained on the modestly sized MatPES dataset can rival, or even outperform, prior models trained on much larger datasets across a broad range of equilibrium, near-equilibrium, and molecular dynamics property benchmarks. We also introduce the first high-fidelity PES dataset based on the revised regularized strongly constrained and appropriately normed (r^2SCAN) functional^7 with greatly improved descriptions of interatomic bonding. The open source MatPES initiative emphasizes the importance of data quality over quantity in materials science and enables broad community-driven advancements toward more reliable, generalizable, and efficient UMLIPs for large-scale materials discovery and design.
Boosting 3D Object Generation through PBR Materials
Automatic 3D content creation has gained increasing attention recently, due to its potential in various applications such as video games, film industry, and AR/VR. Recent advancements in diffusion models and multimodal models have notably improved the quality and efficiency of 3D object generation given a single RGB image. However, 3D objects generated even by state-of-the-art methods are still unsatisfactory compared to human-created assets. Considering only textures instead of materials makes these methods encounter challenges in photo-realistic rendering, relighting, and flexible appearance editing. And they also suffer from severe misalignment between geometry and high-frequency texture details. In this work, we propose a novel approach to boost the quality of generated 3D objects from the perspective of Physics-Based Rendering (PBR) materials. By analyzing the components of PBR materials, we choose to consider albedo, roughness, metalness, and bump maps. For albedo and bump maps, we leverage Stable Diffusion fine-tuned on synthetic data to extract these values, with novel usages of these fine-tuned models to obtain 3D consistent albedo UV and bump UV for generated objects. In terms of roughness and metalness maps, we adopt a semi-automatic process to provide room for interactive adjustment, which we believe is more practical. Extensive experiments demonstrate that our model is generally beneficial for various state-of-the-art generation methods, significantly boosting the quality and realism of their generated 3D objects, with natural relighting effects and substantially improved geometry.
MatterGPT: A Generative Transformer for Multi-Property Inverse Design of Solid-State Materials
Inverse design of solid-state materials with desired properties represents a formidable challenge in materials science. Although recent generative models have demonstrated potential, their adoption has been hindered by limitations such as inefficiency, architectural constraints and restricted open-source availability. The representation of crystal structures using the SLICES (Simplified Line-Input Crystal-Encoding System) notation as a string of characters enables the use of state-of-the-art natural language processing models, such as Transformers, for crystal design. Drawing inspiration from the success of GPT models in generating coherent text, we trained a generative Transformer on the next-token prediction task to generate solid-state materials with targeted properties. We demonstrate MatterGPT's capability to generate de novo crystal structures with targeted single properties, including both lattice-insensitive (formation energy) and lattice-sensitive (band gap) properties. Furthermore, we extend MatterGPT to simultaneously target multiple properties, addressing the complex challenge of multi-objective inverse design of crystals. Our approach showcases high validity, uniqueness, and novelty in generated structures, as well as the ability to generate materials with properties beyond the training data distribution. This work represents a significant step forward in computational materials discovery, offering a powerful and open tool for designing materials with tailored properties for various applications in energy, electronics, and beyond.
OpenMaterial: A Comprehensive Dataset of Complex Materials for 3D Reconstruction
Recent advances in deep learning such as neural radiance fields and implicit neural representations have significantly propelled the field of 3D reconstruction. However, accurately reconstructing objects with complex optical properties, such as metals and glass, remains a formidable challenge due to their unique specular and light-transmission characteristics. To facilitate the development of solutions to these challenges, we introduce the OpenMaterial dataset, comprising 1001 objects made of 295 distinct materials-including conductors, dielectrics, plastics, and their roughened variants- and captured under 723 diverse lighting conditions. To this end, we utilized physics-based rendering with laboratory-measured Indices of Refraction (IOR) and generated high-fidelity multiview images that closely replicate real-world objects. OpenMaterial provides comprehensive annotations, including 3D shape, material type, camera pose, depth, and object mask. It stands as the first large-scale dataset enabling quantitative evaluations of existing algorithms on objects with diverse and challenging materials, thereby paving the way for the development of 3D reconstruction algorithms capable of handling complex material properties.
A Prompt-Engineered Large Language Model, Deep Learning Workflow for Materials Classification
Large language models (LLMs) have demonstrated rapid progress across a wide array of domains. Owing to the very large number of parameters and training data in LLMs, these models inherently encompass an expansive and comprehensive materials knowledge database, far exceeding the capabilities of individual researcher. Nonetheless, devising methods to harness the knowledge embedded within LLMs for the design and discovery of novel materials remains a formidable challenge. We introduce a general approach for addressing materials classification problems, which incorporates LLMs, prompt engineering, and deep learning. Utilizing a dataset of metallic glasses as a case study, our methodology achieved an improvement of up to 463% in prediction accuracy compared to conventional classification models. These findings underscore the potential of leveraging textual knowledge generated by LLMs for materials especially in the common situation where datasets are sparse, thereby promoting innovation in materials discovery and design.
MatSci-NLP: Evaluating Scientific Language Models on Materials Science Language Tasks Using Text-to-Schema Modeling
We present MatSci-NLP, a natural language benchmark for evaluating the performance of natural language processing (NLP) models on materials science text. We construct the benchmark from publicly available materials science text data to encompass seven different NLP tasks, including conventional NLP tasks like named entity recognition and relation classification, as well as NLP tasks specific to materials science, such as synthesis action retrieval which relates to creating synthesis procedures for materials. We study various BERT-based models pretrained on different scientific text corpora on MatSci-NLP to understand the impact of pretraining strategies on understanding materials science text. Given the scarcity of high-quality annotated data in the materials science domain, we perform our fine-tuning experiments with limited training data to encourage the generalize across MatSci-NLP tasks. Our experiments in this low-resource training setting show that language models pretrained on scientific text outperform BERT trained on general text. MatBERT, a model pretrained specifically on materials science journals, generally performs best for most tasks. Moreover, we propose a unified text-to-schema for multitask learning on \benchmark and compare its performance with traditional fine-tuning methods. In our analysis of different training methods, we find that our proposed text-to-schema methods inspired by question-answering consistently outperform single and multitask NLP fine-tuning methods. The code and datasets are publicly available at https://github.com/BangLab-UdeM-Mila/NLP4MatSci-ACL23.
An Extensible Multimodal Multi-task Object Dataset with Materials
We present EMMa, an Extensible, Multimodal dataset of Amazon product listings that contains rich Material annotations. It contains more than 2.8 million objects, each with image(s), listing text, mass, price, product ratings, and position in Amazon's product-category taxonomy. We also design a comprehensive taxonomy of 182 physical materials (e.g., Plastic rightarrow Thermoplastic rightarrow Acrylic). Objects are annotated with one or more materials from this taxonomy. With the numerous attributes available for each object, we develop a Smart Labeling framework to quickly add new binary labels to all objects with very little manual labeling effort, making the dataset extensible. Each object attribute in our dataset can be included in either the model inputs or outputs, leading to combinatorial possibilities in task configurations. For example, we can train a model to predict the object category from the listing text, or the mass and price from the product listing image. EMMa offers a new benchmark for multi-task learning in computer vision and NLP, and allows practitioners to efficiently add new tasks and object attributes at scale.
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Applications of machine learning techniques for materials modeling typically involve functions known to be equivariant or invariant to specific symmetries. While graph neural networks (GNNs) have proven successful in such tasks, they enforce symmetries via the model architecture, which often reduces their expressivity, scalability and comprehensibility. In this paper, we introduce (1) a flexible framework relying on stochastic frame-averaging (SFA) to make any model E(3)-equivariant or invariant through data transformations. (2) FAENet: a simple, fast and expressive GNN, optimized for SFA, that processes geometric information without any symmetrypreserving design constraints. We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling on the OC20 dataset (S2EF, IS2RE) as well as common molecular modeling tasks (QM9, QM7-X). A package implementation is available at https://faenet.readthedocs.io.
Toward Accurate Interpretable Predictions of Materials Properties within Transformer Language Models
Property prediction accuracy has long been a key parameter of machine learning in materials informatics. Accordingly, advanced models showing state-of-the-art performance turn into highly parameterized black boxes missing interpretability. Here, we present an elegant way to make their reasoning transparent. Human-readable text-based descriptions automatically generated within a suite of open-source tools are proposed as materials representation. Transformer language models pretrained on 2 million peer-reviewed articles take as input well-known terms, e.g., chemical composition, crystal symmetry, and site geometry. Our approach outperforms crystal graph networks by classifying four out of five analyzed properties if one considers all available reference data. Moreover, fine-tuned text-based models show high accuracy in the ultra-small data limit. Explanations of their internal machinery are produced using local interpretability techniques and are faithful and consistent with domain expert rationales. This language-centric framework makes accurate property predictions accessible to people without artificial-intelligence expertise.
A Deep-learning Model for Fast Prediction of Vacancy Formation in Diverse Materials
The presence of point defects such as vacancies plays an important role in material design. Here, we demonstrate that a graph neural network (GNN) model trained only on perfect materials can also be used to predict vacancy formation energies (E_{vac}) of defect structures without the need for additional training data. Such GNN-based predictions are considerably faster than density functional theory (DFT) calculations with reasonable accuracy and show the potential that GNNs are able to capture a functional form for energy predictions. To test this strategy, we developed a DFT dataset of 508 E_{vac} consisting of 3D elemental solids, alloys, oxides, nitrides, and 2D monolayer materials. We analyzed and discussed the applicability of such direct and fast predictions. We applied the model to predict 192494 E_{vac} for 55723 materials in the JARVIS-DFT database.
Crystal Transformer: Self-learning neural language model for Generative and Tinkering Design of Materials
Self-supervised neural language models have recently achieved unprecedented success, from natural language processing to learning the languages of biological sequences and organic molecules. These models have demonstrated superior performance in the generation, structure classification, and functional predictions for proteins and molecules with learned representations. However, most of the masking-based pre-trained language models are not designed for generative design, and their black-box nature makes it difficult to interpret their design logic. Here we propose BLMM Crystal Transformer, a neural network based probabilistic generative model for generative and tinkering design of inorganic materials. Our model is built on the blank filling language model for text generation and has demonstrated unique advantages in learning the "materials grammars" together with high-quality generation, interpretability, and data efficiency. It can generate chemically valid materials compositions with as high as 89.7\% charge neutrality and 84.8\% balanced electronegativity, which are more than 4 and 8 times higher compared to a pseudo random sampling baseline. The probabilistic generation process of BLMM allows it to recommend tinkering operations based on learned materials chemistry and makes it useful for materials doping. Combined with the TCSP crysal structure prediction algorithm, We have applied our model to discover a set of new materials as validated using DFT calculations. Our work thus brings the unsupervised transformer language models based generative artificial intelligence to inorganic materials. A user-friendly web app has been developed for computational materials doping and can be accessed freely at www.materialsatlas.org/blmtinker.
Training Object Detectors on Synthetic Images Containing Reflecting Materials
One of the grand challenges of deep learning is the requirement to obtain large labeled training data sets. While synthesized data sets can be used to overcome this challenge, it is important that these data sets close the reality gap, i.e., a model trained on synthetic image data is able to generalize to real images. Whereas, the reality gap can be considered bridged in several application scenarios, training on synthesized images containing reflecting materials requires further research. Since the appearance of objects with reflecting materials is dominated by the surrounding environment, this interaction needs to be considered during training data generation. Therefore, within this paper we examine the effect of reflecting materials in the context of synthetic image generation for training object detectors. We investigate the influence of rendering approach used for image synthesis, the effect of domain randomization, as well as the amount of used training data. To be able to compare our results to the state-of-the-art, we focus on indoor scenes as they have been investigated extensively. Within this scenario, bathroom furniture is a natural choice for objects with reflecting materials, for which we report our findings on real and synthetic testing data.
Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry
Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year's hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research.
Meta 3D AssetGen: Text-to-Mesh Generation with High-Quality Geometry, Texture, and PBR Materials
We present Meta 3D AssetGen (AssetGen), a significant advancement in text-to-3D generation which produces faithful, high-quality meshes with texture and material control. Compared to works that bake shading in the 3D object's appearance, AssetGen outputs physically-based rendering (PBR) materials, supporting realistic relighting. AssetGen generates first several views of the object with factored shaded and albedo appearance channels, and then reconstructs colours, metalness and roughness in 3D, using a deferred shading loss for efficient supervision. It also uses a sign-distance function to represent 3D shape more reliably and introduces a corresponding loss for direct shape supervision. This is implemented using fused kernels for high memory efficiency. After mesh extraction, a texture refinement transformer operating in UV space significantly improves sharpness and details. AssetGen achieves 17% improvement in Chamfer Distance and 40% in LPIPS over the best concurrent work for few-view reconstruction, and a human preference of 72% over the best industry competitors of comparable speed, including those that support PBR. Project page with generated assets: https://assetgen.github.io
Cephalo: Multi-Modal Vision-Language Models for Bio-Inspired Materials Analysis and Design
We present Cephalo, a series of multimodal vision large language models (V-LLMs) designed for materials science applications, integrating visual and linguistic data for enhanced understanding and interaction within human-AI and multi-agent AI frameworks. A key innovation of Cephalo is its advanced dataset generation method, which employs a sophisticated algorithm to accurately detect and separate images and their corresponding textual descriptions from PDF documents, such as scientific papers. The method includes a careful refinement of image-text pairs through integrated vision and language processing, ensuring high-quality, contextually relevant, and well reasoned training data. Cephalo is trained on integrated image and text data extracted from thousands of scientific papers and science-focused Wikipedia pages demonstrates can interpret complex visual scenes, generate precise language descriptions, and answer queries about images effectively. The combination of a vision encoder with an autoregressive transformer supports complex natural language understanding in an integrated model, which can be coupled with other generative methods to create an image-to-text-to-image or image-to-text-to-3D pipeline. To explore the development of larger models from smaller ones, we merge sets of layers that originate from different pre-trained source models. This hybrid approach allows us to leverage the domain-specific expertise and general conversational capabilities to harness the strengths of multiple models. We examine the models in diverse use cases that incorporate biological materials, fracture and engineering analysis, protein biophysics, and bio-inspired design based on insect behavior. Generative applications include bio-inspired designs, including pollen-inspired architected materials, as well as the synthesis of bio-inspired material microstructures from a photograph of a solar eclipse.
All-atom Diffusion Transformers: Unified generative modelling of molecules and materials
Diffusion models are the standard toolkit for generative modelling of 3D atomic systems. However, for different types of atomic systems - such as molecules and materials - the generative processes are usually highly specific to the target system despite the underlying physics being the same. We introduce the All-atom Diffusion Transformer (ADiT), a unified latent diffusion framework for jointly generating both periodic materials and non-periodic molecular systems using the same model: (1) An autoencoder maps a unified, all-atom representations of molecules and materials to a shared latent embedding space; and (2) A diffusion model is trained to generate new latent embeddings that the autoencoder can decode to sample new molecules or materials. Experiments on QM9 and MP20 datasets demonstrate that jointly trained ADiT generates realistic and valid molecules as well as materials, exceeding state-of-the-art results from molecule and crystal-specific models. ADiT uses standard Transformers for both the autoencoder and diffusion model, resulting in significant speedups during training and inference compared to equivariant diffusion models. Scaling ADiT up to half a billion parameters predictably improves performance, representing a step towards broadly generalizable foundation models for generative chemistry. Open source code: https://github.com/facebookresearch/all-atom-diffusion-transformer
Probing the limitations of multimodal language models for chemistry and materials research
Recent advancements in artificial intelligence have sparked interest in scientific assistants that could support researchers across the full spectrum of scientific workflows, from literature review to experimental design and data analysis. A key capability for such systems is the ability to process and reason about scientific information in both visual and textual forms - from interpreting spectroscopic data to understanding laboratory setups. Here, we introduce MaCBench, a comprehensive benchmark for evaluating how vision-language models handle real-world chemistry and materials science tasks across three core aspects: data extraction, experimental understanding, and results interpretation. Through a systematic evaluation of leading models, we find that while these systems show promising capabilities in basic perception tasks - achieving near-perfect performance in equipment identification and standardized data extraction - they exhibit fundamental limitations in spatial reasoning, cross-modal information synthesis, and multi-step logical inference. Our insights have important implications beyond chemistry and materials science, suggesting that developing reliable multimodal AI scientific assistants may require advances in curating suitable training data and approaches to training those models.
AtomGPT: Atomistic Generative Pre-trained Transformer for Forward and Inverse Materials Design
Large language models (LLMs) such as generative pretrained transformers (GPTs) have shown potential for various commercial applications, but their applicability for materials design remains underexplored. In this article, we introduce AtomGPT, a model specifically developed for materials design based on transformer architectures, to demonstrate the capability for both atomistic property prediction and structure generation. We show that a combination of chemical and structural text descriptions can efficiently predict material properties with accuracy comparable to graph neural network models, including formation energies, electronic bandgaps from two different methods and superconducting transition temperatures. Furthermore, we demonstrate that AtomGPT can generate atomic structures for tasks such as designing new superconductors, with the predictions validated through density functional theory calculations. This work paves the way for leveraging LLMs in forward and inverse materials design, offering an efficient approach to the discovery and optimization of materials.
Classification-based detection and quantification of cross-domain data bias in materials discovery
It stands to reason that the amount and the quality of data is of key importance for setting up accurate AI-driven models. Among others, a fundamental aspect to consider is the bias introduced during sample selection in database generation. This is particularly relevant when a model is trained on a specialized dataset to predict a property of interest, and then applied to forecast the same property over samples having a completely different genesis. Indeed, the resulting biased model will likely produce unreliable predictions for many of those out-of-the-box samples. Neglecting such an aspect may hinder the AI-based discovery process, even when high quality, sufficiently large and highly reputable data sources are available. In this regard, with superconducting and thermoelectric materials as two prototypical case studies in the field of energy material discovery, we present and validate a new method (based on a classification strategy) capable of detecting, quantifying and circumventing the presence of cross-domain data bias.
ChemNLP: A Natural Language Processing based Library for Materials Chemistry Text Data
In this work, we present the ChemNLP library that can be used for 1) curating open access datasets for materials and chemistry literature, developing and comparing traditional machine learning, transformers and graph neural network models for 2) classifying and clustering texts, 3) named entity recognition for large-scale text-mining, 4) abstractive summarization for generating titles of articles from abstracts, 5) text generation for suggesting abstracts from titles, 6) integration with density functional theory dataset for identifying potential candidate materials such as superconductors, and 7) web-interface development for text and reference query. We primarily use the publicly available arXiv and Pubchem datasets but the tools can be used for other datasets as well. Moreover, as new models are developed, they can be easily integrated in the library. ChemNLP is available at the websites: https://github.com/usnistgov/chemnlp and https://jarvis.nist.gov/jarvischemnlp.
DiffCrysGen: A Score-Based Diffusion Model for Design of Diverse Inorganic Crystalline Materials
Crystal structure generation is a foundational challenge in materials discovery, particularly in designing functional inorganic crystalline materials with desired properties. Most existing diffusion-based generative models for crystals rely on complex, hand-crafted priors and modular architectures to separately model atom types, atomic positions, and lattice parameters. These methods often require customized diffusion processes and conditional denoising, which can introduce additional model complexities and inconsistencies. Here we introduce DiffCrysGen, a fully data-driven, score-based diffusion model that jointly learns the distribution of all structural components in crystalline materials. With crystal structure representation as unified 2D matrices, DiffCrysGen bypasses the need for task-specific priors or decoupled modules, enabling end-to-end generation of atom types, fractional coordinates, and lattice parameters within a single framework. Our model learns crystallographic symmetry and chemical validity directly from large-scale datasets, allowing it to scale to complex materials discovery tasks. As a demonstration, we applied DiffCrysGen to the design of rare-earth-free magnetic materials with high saturation magnetization, showing its effectiveness in generating stable, diverse, and property-aligned candidates for sustainable magnet applications.
Wild SBOMs: a Large-scale Dataset of Software Bills of Materials from Public Code
Developers gain productivity by reusing readily available Free and Open Source Software (FOSS) components. Such practices also bring some difficulties, such as managing licensing, components and related security. One approach to handle those difficulties is to use Software Bill of Materials (SBOMs). While there have been studies on the readiness of practitioners to embrace SBOMs and on the SBOM tools ecosystem, a large scale study on SBOM practices based on SBOM files produced in the wild is still lacking. A starting point for such a study is a large dataset of SBOM files found in the wild. We introduce such a dataset, consisting of over 78 thousand unique SBOM files, deduplicated from those found in over 94 million repositories. We include metadata that contains the standard and format used, quality score generated by the tool sbomqs, number of revisions, filenames and provenance information. Finally, we give suggestions and examples of research that could bring new insights on assessing and improving SBOM real practices.
Gradient-Based Optimization of Core-Shell Particles with Discrete Materials for Directional Scattering
Designing nanophotonic structures traditionally grapples with the complexities of discrete parameters, such as real materials, often resorting to costly global optimization methods. This paper introduces an approach that leverages generative deep learning to map discrete parameter sets into a continuous latent space, enabling direct gradient-based optimization. For scenarios with non-differentiable physics evaluation functions, a neural network is employed as a differentiable surrogate model. The efficacy of this methodology is demonstrated by optimizing the directional scattering properties of core-shell nanoparticles composed of a selection of realistic materials. We derive suggestions for core-shell geometries with strong forward scattering and minimized backscattering. Our findings reveal significant improvements in computational efficiency and performance when compared to global optimization techniques. Beyond nanophotonics design problems, this framework holds promise for broad applications across all types of inverse problems constrained by discrete variables.
Large Language Models for Material Property Predictions: elastic constant tensor prediction and materials design
Efficient and accurate prediction of material properties is critical for advancing materials design and applications. The rapid-evolution of large language models (LLMs) presents a new opportunity for material property predictions, complementing experimental measurements and multi-scale computational methods. We focus on predicting the elastic constant tensor, as a case study, and develop domain-specific LLMs for predicting elastic constants and for materials discovery. The proposed ElaTBot LLM enables simultaneous prediction of elastic constant tensors, bulk modulus at finite temperatures, and the generation of new materials with targeted properties. Moreover, the capabilities of ElaTBot are further enhanced by integrating with general LLMs (GPT-4o) and Retrieval-Augmented Generation (RAG) for prediction. A specialized variant, ElaTBot-DFT, designed for 0 K elastic constant tensor prediction, reduces the prediction errors by 33.1% compared with domain-specific, material science LLMs (Darwin) trained on the same dataset. This natural language-based approach lowers the barriers to computational materials science and highlights the broader potential of LLMs for material property predictions and inverse design.
A Mapping Strategy for Interacting with Latent Audio Synthesis Using Artistic Materials
This paper presents a mapping strategy for interacting with the latent spaces of generative AI models. Our approach involves using unsupervised feature learning to encode a human control space and mapping it to an audio synthesis model's latent space. To demonstrate how this mapping strategy can turn high-dimensional sensor data into control mechanisms of a deep generative model, we present a proof-of-concept system that uses visual sketches to control an audio synthesis model. We draw on emerging discourses in XAIxArts to discuss how this approach can contribute to XAI in artistic and creative contexts, we also discuss its current limitations and propose future research directions.
LLaMP: Large Language Model Made Powerful for High-fidelity Materials Knowledge Retrieval and Distillation
Reducing hallucination of Large Language Models (LLMs) is imperative for use in the sciences where reproducibility is crucial. However, LLMs inherently lack long-term memory, making it a nontrivial, ad hoc, and inevitably biased task to fine-tune them on domain-specific literature and data. Here we introduce LLaMP, a multimodal retrieval-augmented generation (RAG) framework of multiple data-aware reasoning-and-acting (ReAct) agents that dynamically interact with computational and experimental data on Materials Project (MP). Without fine-tuning, LLaMP demonstrates an ability to comprehend and integrate various modalities of materials science concepts, fetch relevant data stores on the fly, process higher-order data (such as crystal structures and elastic tensors), and summarize multi-step procedures for solid-state synthesis. We show that LLaMP effectively corrects errors in GPT-3.5's intrinsic knowledge, reducing a 5.21% MAPE on frequently-documented bandgaps and a significant 1103.54% MAPE on formation energies -- errors that GPT-3.5 seems to derive from mixed data sources. Additionally, LLaMP substantially reduces the hallucinated volumetric strain in a diamond cubic silicon structure from 66.3% to 0. The proposed framework offers an intuitive and nearly hallucination-free approach to exploring materials informatics and establishes a pathway for knowledge distillation and fine-tuning other language models. We envision the framework as a valuable component for scientific hypotheses and a foundation for future autonomous laboratories where multiple LLM agents communicate and cooperate with robotics to drive material synthesis and chemical reactions without hard-coded human logic and intervention.
HoneyBee: Progressive Instruction Finetuning of Large Language Models for Materials Science
We propose an instruction-based process for trustworthy data curation in materials science (MatSci-Instruct), which we then apply to finetune a LLaMa-based language model targeted for materials science (HoneyBee). MatSci-Instruct helps alleviate the scarcity of relevant, high-quality materials science textual data available in the open literature, and HoneyBee is the first billion-parameter language model specialized to materials science. In MatSci-Instruct we improve the trustworthiness of generated data by prompting multiple commercially available large language models for generation with an Instructor module (e.g. Chat-GPT) and verification from an independent Verifier module (e.g. Claude). Using MatSci-Instruct, we construct a dataset of multiple tasks and measure the quality of our dataset along multiple dimensions, including accuracy against known facts, relevance to materials science, as well as completeness and reasonableness of the data. Moreover, we iteratively generate more targeted instructions and instruction-data in a finetuning-evaluation-feedback loop leading to progressively better performance for our finetuned HoneyBee models. Our evaluation on the MatSci-NLP benchmark shows HoneyBee's outperformance of existing language models on materials science tasks and iterative improvement in successive stages of instruction-data refinement. We study the quality of HoneyBee's language modeling through automatic evaluation and analyze case studies to further understand the model's capabilities and limitations. Our code and relevant datasets are publicly available at https://github.com/BangLab-UdeM-Mila/NLP4MatSci-HoneyBee.
Flexible, Model-Agnostic Method for Materials Data Extraction from Text Using General Purpose Language Models
Accurate and comprehensive material databases extracted from research papers are critical for materials science and engineering but require significant human effort to develop. In this paper we present a simple method of extracting materials data from full texts of research papers suitable for quickly developing modest-sized databases. The method requires minimal to no coding, prior knowledge about the extracted property, or model training, and provides high recall and almost perfect precision in the resultant database. The method is fully automated except for one human-assisted step, which typically requires just a few hours of human labor. The method builds on top of natural language processing and large general language models but can work with almost any such model. The language models GPT-3/3.5, bart and DeBERTaV3 are evaluated here for comparison. We provide a detailed detailed analysis of the methods performance in extracting bulk modulus data, obtaining up to 90% precision at 96% recall, depending on the amount of human effort involved. We then demonstrate the methods broader effectiveness by developing a database of critical cooling rates for metallic glasses.
MechGPT, a language-based strategy for mechanics and materials modeling that connects knowledge across scales, disciplines and modalities
For centuries, researchers have sought out ways to connect disparate areas of knowledge. While early scholars (Galileo, da Vinci, etc.) were experts across fields, specialization has taken hold later. With the advent of Artificial Intelligence, we can now explore relationships across areas (e.g., mechanics-biology) or disparate domains (e.g., failure mechanics-art). To achieve this, we use a fine-tuned Large Language Model (LLM), here for a subset of knowledge in multiscale materials failure. The approach includes the use of a general-purpose LLM to distill question-answer pairs from raw sources followed by LLM fine-tuning. The resulting MechGPT LLM foundation model is used in a series of computational experiments to explore its capacity for knowledge retrieval, various language tasks, hypothesis generation, and connecting knowledge across disparate areas. While the model has some ability to recall knowledge from training, we find that LLMs are particularly useful to extract structural insights through Ontological Knowledge Graphs. These interpretable graph structures provide explanatory insights, frameworks for new research questions, and visual representations of knowledge that also can be used in retrieval-augmented generation. Three versions of MechGPT are discussed, featuring different sizes from 13 billion to 70 billion parameters, and reaching context lengths of more than 10,000 tokens. This provides ample capacity for sophisticated retrieval augmented strategies, as well as agent-based modeling where multiple LLMs interact collaboratively and/or adversarially, the incorporation of new data from the literature or web searches, as well as multimodality.
Predicting thermoelectric properties from crystal graphs and material descriptors - first application for functional materials
We introduce the use of Crystal Graph Convolutional Neural Networks (CGCNN), Fully Connected Neural Networks (FCNN) and XGBoost to predict thermoelectric properties. The dataset for the CGCNN is independent of Density Functional Theory (DFT) and only relies on the crystal and atomic information, while that for the FCNN is based on a rich attribute list mined from Materialsproject.org. The results show that the optimized FCNN is three layer deep and is able to predict the scattering-time independent thermoelectric powerfactor much better than the CGCNN (or XGBoost), suggesting that bonding and density of states descriptors informed from materials science knowledge obtained partially from DFT are vital to predict functional properties.
Avoiding Data Contamination in Language Model Evaluation: Dynamic Test Construction with Latest Materials
Data contamination in evaluation is getting increasingly prevalent with the emerge of language models pre-trained on super large, automatically-crawled corpora. This problem leads to significant challenges in accurate assessment of model capabilities and generalisations. In this paper, we propose LatestEval, an automatic method leverages the most recent texts to create uncontaminated reading comprehension evaluations. LatestEval avoids data contamination by only using texts published within a recent time window, ensuring no overlap with the training corpora of pre-trained language models. We develop LatestEval automated pipeline to 1) gather latest texts; 2) identify key information, and 3) construct questions targeting the information while removing the existing answers from the context. This encourages models to infer the answers themselves based on the remaining context, rather than just copy-paste. Our experiments demonstrate that language models exhibit negligible memorisation behaviours on LatestEval as opposed to previous benchmarks, suggesting a significantly reduced risk of data contamination and leading to a more robust evaluation. Data and code are publicly available at: https://github.com/liyucheng09/LatestEval.
MuLMS: A Multi-Layer Annotated Text Corpus for Information Extraction in the Materials Science Domain
Keeping track of all relevant recent publications and experimental results for a research area is a challenging task. Prior work has demonstrated the efficacy of information extraction models in various scientific areas. Recently, several datasets have been released for the yet understudied materials science domain. However, these datasets focus on sub-problems such as parsing synthesis procedures or on sub-domains, e.g., solid oxide fuel cells. In this resource paper, we present MuLMS, a new dataset of 50 open-access articles, spanning seven sub-domains of materials science. The corpus has been annotated by domain experts with several layers ranging from named entities over relations to frame structures. We present competitive neural models for all tasks and demonstrate that multi-task training with existing related resources leads to benefits.
The SOFC-Exp Corpus and Neural Approaches to Information Extraction in the Materials Science Domain
This paper presents a new challenging information extraction task in the domain of materials science. We develop an annotation scheme for marking information on experiments related to solid oxide fuel cells in scientific publications, such as involved materials and measurement conditions. With this paper, we publish our annotation guidelines, as well as our SOFC-Exp corpus consisting of 45 open-access scholarly articles annotated by domain experts. A corpus and an inter-annotator agreement study demonstrate the complexity of the suggested named entity recognition and slot filling tasks as well as high annotation quality. We also present strong neural-network based models for a variety of tasks that can be addressed on the basis of our new data set. On all tasks, using BERT embeddings leads to large performance gains, but with increasing task complexity, adding a recurrent neural network on top seems beneficial. Our models will serve as competitive baselines in future work, and analysis of their performance highlights difficult cases when modeling the data and suggests promising research directions.