Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeWSM: Decay-Free Learning Rate Schedule via Checkpoint Merging for LLM Pre-training
Recent advances in learning rate (LR) scheduling have demonstrated the effectiveness of decay-free approaches that eliminate the traditional decay phase while maintaining competitive performance. Model merging techniques have emerged as particularly promising solutions in this domain. We present Warmup-Stable and Merge (WSM), a general framework that establishes a formal connection between learning rate decay and model merging. WSM provides a unified theoretical foundation for emulating various decay strategies-including cosine decay, linear decay and inverse square root decay-as principled model averaging schemes, while remaining fully compatible with diverse optimization methods. Through extensive experiments, we identify merge duration-the training window for checkpoint aggregation-as the most critical factor influencing model performance, surpassing the importance of both checkpoint interval and merge quantity. Our framework consistently outperforms the widely-adopted Warmup-Stable-Decay (WSD) approach across multiple benchmarks, achieving significant improvements of +3.5% on MATH, +2.9% on HumanEval, and +5.5% on MMLU-Pro. The performance advantages extend to supervised fine-tuning scenarios, highlighting WSM's potential for long-term model refinement.
When, Why and How Much? Adaptive Learning Rate Scheduling by Refinement
Learning rate schedules used in practice bear little resemblance to those recommended by theory. We close much of this theory/practice gap, and as a consequence are able to derive new problem-adaptive learning rate schedules. Our key technical contribution is a refined analysis of learning rate schedules for a wide class of optimization algorithms (including SGD). In contrast to most prior works that study the convergence of the average iterate, we study the last iterate, which is what most people use in practice. When considering only worst-case analysis, our theory predicts that the best choice is the linear decay schedule: a popular choice in practice that sets the stepsize proportionally to 1 - t/T, where t is the current iteration and T is the total number of steps. To go beyond this worst-case analysis, we use the observed gradient norms to derive schedules refined for any particular task. These refined schedules exhibit learning rate warm-up and rapid learning rate annealing near the end of training. Ours is the first systematic approach to automatically yield both of these properties. We perform the most comprehensive evaluation of learning rate schedules to date, evaluating across 10 diverse deep learning problems, a series of LLMs, and a suite of logistic regression problems. We validate that overall, the linear-decay schedule matches or outperforms all commonly used default schedules including cosine annealing, and that our schedule refinement method gives further improvements.
YCB-Ev SD: Synthetic event-vision dataset for 6DoF object pose estimation
We introduce YCB-Ev SD, a synthetic dataset of event-camera data at standard definition (SD) resolution for 6DoF object pose estimation. While synthetic data has become fundamental in frame-based computer vision, event-based vision lacks comparable comprehensive resources. Addressing this gap, we present 50,000 event sequences of 34 ms duration each, synthesized from Physically Based Rendering (PBR) scenes of YCB-Video objects following the Benchmark for 6D Object Pose (BOP) methodology. Our generation framework employs simulated linear camera motion to ensure complete scene coverage, including background activity. Through systematic evaluation of event representations for CNN-based inference, we demonstrate that time-surfaces with linear decay and dual-channel polarity encoding achieve superior pose estimation performance, outperforming exponential decay and single-channel alternatives by significant margins. Our analysis reveals that polarity information contributes most substantially to performance gains, while linear temporal encoding preserves critical motion information more effectively than exponential decay. The dataset is provided in a structured format with both raw event streams and precomputed optimal representations to facilitate immediate research use and reproducible benchmarking. The dataset is publicly available at https://huggingface.co/datasets/paroj/ycbev_sd.
$\textit{SKIntern}$: Internalizing Symbolic Knowledge for Distilling Better CoT Capabilities into Small Language Models
Small Language Models (SLMs) are attracting attention due to the high computational demands and privacy concerns of Large Language Models (LLMs). Some studies fine-tune SLMs using Chains of Thought (CoT) data distilled from LLMs, aiming to enhance their reasoning ability. Furthermore, Some CoT distillation methods introduce external symbolic knowledge into the generation process to improve the limited knowledge memory, reasoning ability and out-of-domain (OOD) generalization of SLMs. However, the introduction of symbolic knowledge increases computational overhead and introduces potential noise. In this paper, we introduce SKIntern, an innovative approach that empowers SLMs to internalize symbolic knowledge and few-shot examples gradually through a progressive fine-tuning process, guided by a predefined linear decay schedule under curriculum learning. By efficiently internalizing knowledge, SKIntern reduces computational overhead and speeds up the reasoning process by focusing solely on the question during inference. It outperforms state-of-the-art baselines by over 5\%, while reducing inference costs (measured in FLOPs) by up to 4times across a wide range of SLMs in both in-domain (ID) and out-of-domain (OOD) tasks. Our code will be available at https://github.com/Xnhyacinth/SKIntern.
On almost sure limit theorems for heavy-tailed products of long-range dependent linear processes
Marcinkiewicz strong law of large numbers, {n^{-frac1p}}sum_{k=1}^{n} (d_{k}- d)rightarrow 0 almost surely with pin(1,2), are developed for products d_k=prod_{r=1}^s x_k^{(r)}, where the x_k^{(r)} = sum_{l=-infty}^{infty}c_{k-l}^{(r)}xi_l^{(r)} are two-sided linear processes with coefficients {c_l^{(r)}}_{lin Z} and i.i.d. zero-mean innovations {xi_l^{(r)}}_{lin Z}. The decay of the coefficients c_l^{(r)} as |l|toinfty, can be slow enough for {x_k^{(r)}} to have long memory while {d_k} can have heavy tails. The long-range dependence and heavy tails for {d_k} are handled simultaneously and a decoupling property shows the convergence rate is dictated by the worst of long-range dependence and heavy tails, but not their combination. The Marcinkiewicz strong law of large numbers is also extended to the multivariate linear process case.
Linear Attention for Efficient Bidirectional Sequence Modeling
Linear Transformers and State Space Models have emerged as efficient alternatives to softmax Transformers for causal sequence modeling, enabling parallel training via matrix multiplication and efficient RNN-style inference. However, despite their success in causal tasks, no unified framework exists for applying Linear Transformers to bidirectional sequence modeling. We introduce LION, the first framework to systematically extend Linear Transformers to the bidirectional setting. LION generalizes three core representations commonly used in the causal case - full Linear Attention , bidirectional RNN, and chunkwise parallel form - to the bidirectional setting. These forms are theoretically equivalent and enable models to exploit the strengths of each during training and inference. We prove that a broad class of Linear Transformers can be extended using LION and validate our framework via three core examples based on the choice of decay type: LION-LIT, the bidirectional extension of arXiv:2006.16236; LION-D, based on arXiv:2307.08621; and LION-S, a variant using selective decay arXiv:2103.02143, arXiv:2312.0075. Across standard bidirectional tasks, LION enables models to match or exceed the performance of softmax Transformers, while offering significantly faster training and more efficient inference than existing State Space Models.
Rethinking Model Re-Basin and Linear Mode Connectivity
Recent studies suggest that with sufficiently wide models, most SGD solutions can, up to permutation, converge into the same basin. This phenomenon, known as the model re-basin regime, has significant implications for model averaging by ensuring the linear mode connectivity. However, current re-basin strategies are ineffective in many scenarios due to a lack of comprehensive understanding of underlying mechanisms. Addressing this gap, this paper provides novel insights into understanding and improving the standard practice. Firstly, we decompose re-normalization into rescaling and reshift, uncovering that rescaling plays a crucial role in re-normalization while re-basin performance is sensitive to shifts in model activation. The finding calls for a more nuanced handling of the activation shift. Secondly, we identify that the merged model suffers from the issue of activation collapse and magnitude collapse. Varying the learning rate, weight decay, and initialization method can mitigate the issues and improve model performance. Lastly, we propose a new perspective to unify the re-basin and pruning, under which a lightweight yet effective post-pruning technique is derived, which can significantly improve the model performance after pruning. Our implementation is available at https://github.com/XingyuQu/rethink-re-basin.
Scaling Laws for Linear Complexity Language Models
The interest in linear complexity models for large language models is on the rise, although their scaling capacity remains uncertain. In this study, we present the scaling laws for linear complexity language models to establish a foundation for their scalability. Specifically, we examine the scaling behaviors of three efficient linear architectures. These include TNL, a linear attention model with data-independent decay; HGRN2, a linear RNN with data-dependent decay; and cosFormer2, a linear attention model without decay. We also include LLaMA as a baseline architecture for softmax attention for comparison. These models were trained with six variants, ranging from 70M to 7B parameters on a 300B-token corpus, and evaluated with a total of 1,376 intermediate checkpoints on various downstream tasks. These tasks include validation loss, commonsense reasoning, and information retrieval and generation. The study reveals that existing linear complexity language models exhibit similar scaling capabilities as conventional transformer-based models while also demonstrating superior linguistic proficiency and knowledge retention.
Gated Linear Attention Transformers with Hardware-Efficient Training
Transformers with linear attention allow for efficient parallel training but can simultaneously be formulated as an RNN with 2D (matrix-valued) hidden states, thus enjoying linear (with respect to output length) inference complexity. Recent works such as RetNet (Sun et al., 2023) and TransNormerLLM (Qin et al., 2023a) observe that adding a global decay term to the additive RNN update rule greatly improves performance, sometimes outperforming standard Transformers with softmax attention when trained at scale. In this work we show that adding a data-dependent gating mechanism further improves performance. We derive a parallel form of this gated linear attention layer that enables efficient training. However, a straightforward, numerically stable implementation of this parallel form requires generalized matrix multiplications in log-space for numerical stability, and thus cannot take advantage of tensor cores on modern GPUs which are optimized for standard matrix multiplications. We develop a hardware-efficient version of the parallel form that can still make use of tensor cores through block-parallel computations over sequence chunks. Experiments on moderate-scale language modeling (340M-parameter models trained on 15B tokens, 1.3B-parameter models trained on 100B tokens) show that gated linear attention (GLA) Transformers perform competitively against a strong LLaMA-architecture Transformer baseline (Touvron et al., 2023) as well as Mamba (Gu & Dao, 2023), a recently introduced state-space model with a data-dependent state transition mechanism. For training speed, our Triton-based implementation performs comparably to CUDA-optimized FlashAttention-2 (Dao, 2023) under the regular 2048 training length setting, while outperforming FlashAttention-2 when training on longer sequences beyond 4096.
Understanding SGD with Exponential Moving Average: A Case Study in Linear Regression
Exponential moving average (EMA) has recently gained significant popularity in training modern deep learning models, especially diffusion-based generative models. However, there have been few theoretical results explaining the effectiveness of EMA. In this paper, to better understand EMA, we establish the risk bound of online SGD with EMA for high-dimensional linear regression, one of the simplest overparameterized learning tasks that shares similarities with neural networks. Our results indicate that (i) the variance error of SGD with EMA is always smaller than that of SGD without averaging, and (ii) unlike SGD with iterate averaging from the beginning, the bias error of SGD with EMA decays exponentially in every eigen-subspace of the data covariance matrix. Additionally, we develop proof techniques applicable to the analysis of a broad class of averaging schemes.
Risk Bounds of Accelerated SGD for Overparameterized Linear Regression
Accelerated stochastic gradient descent (ASGD) is a workhorse in deep learning and often achieves better generalization performance than SGD. However, existing optimization theory can only explain the faster convergence of ASGD, but cannot explain its better generalization. In this paper, we study the generalization of ASGD for overparameterized linear regression, which is possibly the simplest setting of learning with overparameterization. We establish an instance-dependent excess risk bound for ASGD within each eigen-subspace of the data covariance matrix. Our analysis shows that (i) ASGD outperforms SGD in the subspace of small eigenvalues, exhibiting a faster rate of exponential decay for bias error, while in the subspace of large eigenvalues, its bias error decays slower than SGD; and (ii) the variance error of ASGD is always larger than that of SGD. Our result suggests that ASGD can outperform SGD when the difference between the initialization and the true weight vector is mostly confined to the subspace of small eigenvalues. Additionally, when our analysis is specialized to linear regression in the strongly convex setting, it yields a tighter bound for bias error than the best-known result.
Radial Attention: $O(n\log n)$ Sparse Attention with Energy Decay for Long Video Generation
Recent advances in diffusion models have enabled high-quality video generation, but the additional temporal dimension significantly increases computational costs, making training and inference on long videos prohibitively expensive. In this paper, we identify a phenomenon we term Spatiotemporal Energy Decay in video diffusion models: post-softmax attention scores diminish as spatial and temporal distance between tokens increase, akin to the physical decay of signal or waves over space and time in nature. Motivated by this, we propose Radial Attention, a scalable sparse attention mechanism with O(n log n) complexity that translates energy decay into exponentially decaying compute density, which is significantly more efficient than standard O(n^2) dense attention and more expressive than linear attention. Specifically, Radial Attention employs a simple, static attention mask where each token attends to spatially nearby tokens, with the attention window size shrinking with temporal distance. Moreover, it allows pre-trained video diffusion models to extend their generation length with efficient LoRA-based fine-tuning. Extensive experiments show that Radial Attention maintains video quality across Wan2.1-14B, HunyuanVideo, and Mochi 1, achieving up to a 1.9times speedup over the original dense attention. With minimal tuning, it enables video generation up to 4times longer while reducing training costs by up to 4.4times compared to direct fine-tuning and accelerating inference by up to 3.7times compared to dense attention inference.
CoPE: A Lightweight Complex Positional Encoding
Recent studies have demonstrated the effectiveness of position encoding in transformer architectures. By incorporating positional information, this approach provides essential guidance for modeling dependencies between elements across different sequence positions. We introduce CoPE (a lightweight Complex Positional Encoding), a novel architecture that leverages complex-valued encoding to encode both content and positional information. Our approach replaces traditional positional encodings with complex embeddings where the real part captures semantic content and the imaginary part encodes positional information. We introduce phase-aware attention in the first layer of the transformer model to capture position-dependent patterns, followed by standard attention layers for higher-levels. We show that CoPE doesn't exhibit long term decay and is compatible with linear attention. Experimental evaluation on the GLUE benchmark suggest that our approach achieves superior performance with less computational complexity, compared to RoPE, Sinusoidal and Learned positional encodings.
You Only Scan Once: Efficient Multi-dimension Sequential Modeling with LightNet
Linear attention mechanisms have gained prominence in causal language models due to their linear computational complexity and enhanced speed. However, the inherent decay mechanism in linear attention presents challenges when applied to multi-dimensional sequence modeling tasks, such as image processing and multi-modal learning. In these scenarios, the utilization of sequential scanning to establish a global receptive field necessitates multiple scans for multi-dimensional data, thereby leading to inefficiencies. This paper identifies the inefficiency caused by a multiplicative linear recurrence and proposes an efficient alternative additive linear recurrence to avoid the issue, as it can handle multi-dimensional data within a single scan. We further develop an efficient multi-dimensional sequential modeling framework called LightNet based on the new recurrence. Moreover, we present two new multi-dimensional linear relative positional encoding methods, MD-TPE and MD-LRPE to enhance the model's ability to discern positional information in multi-dimensional scenarios. Our empirical evaluations across various tasks, including image classification, image generation, bidirectional language modeling, and autoregressive language modeling, demonstrate the efficacy of LightNet, showcasing its potential as a versatile and efficient solution for multi-dimensional sequential modeling.
Inverse Approximation Theory for Nonlinear Recurrent Neural Networks
We prove an inverse approximation theorem for the approximation of nonlinear sequence-to-sequence relationships using recurrent neural networks (RNNs). This is a so-called Bernstein-type result in approximation theory, which deduces properties of a target function under the assumption that it can be effectively approximated by a hypothesis space. In particular, we show that nonlinear sequence relationships that can be stably approximated by nonlinear RNNs must have an exponential decaying memory structure - a notion that can be made precise. This extends the previously identified curse of memory in linear RNNs into the general nonlinear setting, and quantifies the essential limitations of the RNN architecture for learning sequential relationships with long-term memory. Based on the analysis, we propose a principled reparameterization method to overcome the limitations. Our theoretical results are confirmed by numerical experiments. The code has been released in https://github.com/radarFudan/Curse-of-memory
REX: Revisiting Budgeted Training with an Improved Schedule
Deep learning practitioners often operate on a computational and monetary budget. Thus, it is critical to design optimization algorithms that perform well under any budget. The linear learning rate schedule is considered the best budget-aware schedule, as it outperforms most other schedules in the low budget regime. On the other hand, learning rate schedules -- such as the 30-60-90 step schedule -- are known to achieve high performance when the model can be trained for many epochs. Yet, it is often not known a priori whether one's budget will be large or small; thus, the optimal choice of learning rate schedule is made on a case-by-case basis. In this paper, we frame the learning rate schedule selection problem as a combination of i) selecting a profile (i.e., the continuous function that models the learning rate schedule), and ii) choosing a sampling rate (i.e., how frequently the learning rate is updated/sampled from this profile). We propose a novel profile and sampling rate combination called the Reflected Exponential (REX) schedule, which we evaluate across seven different experimental settings with both SGD and Adam optimizers. REX outperforms the linear schedule in the low budget regime, while matching or exceeding the performance of several state-of-the-art learning rate schedules (linear, step, exponential, cosine, step decay on plateau, and OneCycle) in both high and low budget regimes. Furthermore, REX requires no added computation, storage, or hyperparameters.
Continual Pre-Training of Large Language Models: How to (re)warm your model?
Large language models (LLMs) are routinely pre-trained on billions of tokens, only to restart the process over again once new data becomes available. A much cheaper and more efficient solution would be to enable the continual pre-training of these models, i.e. updating pre-trained models with new data instead of re-training them from scratch. However, the distribution shift induced by novel data typically results in degraded performance on past data. Taking a step towards efficient continual pre-training, in this work, we examine the effect of different warm-up strategies. Our hypothesis is that the learning rate must be re-increased to improve compute efficiency when training on a new dataset. We study the warmup phase of models pre-trained on the Pile (upstream data, 300B tokens) as we continue to pre-train on SlimPajama (downstream data, 297B tokens), following a linear warmup and cosine decay schedule. We conduct all experiments on the Pythia 410M language model architecture and evaluate performance through validation perplexity. We experiment with different pre-training checkpoints, various maximum learning rates, and various warmup lengths. Our results show that while rewarming models first increases the loss on upstream and downstream data, in the longer run it improves the downstream performance, outperforming models trained from scratchx2013even for a large downstream dataset.
RoFormer: Enhanced Transformer with Rotary Position Embedding
Position encoding recently has shown effective in the transformer architecture. It enables valuable supervision for dependency modeling between elements at different positions of the sequence. In this paper, we first investigate various methods to integrate positional information into the learning process of transformer-based language models. Then, we propose a novel method named Rotary Position Embedding(RoPE) to effectively leverage the positional information. Specifically, the proposed RoPE encodes the absolute position with a rotation matrix and meanwhile incorporates the explicit relative position dependency in self-attention formulation. Notably, RoPE enables valuable properties, including the flexibility of sequence length, decaying inter-token dependency with increasing relative distances, and the capability of equipping the linear self-attention with relative position encoding. Finally, we evaluate the enhanced transformer with rotary position embedding, also called RoFormer, on various long text classification benchmark datasets. Our experiments show that it consistently overcomes its alternatives. Furthermore, we provide a theoretical analysis to explain some experimental results. RoFormer is already integrated into Huggingface: https://huggingface.co/docs/transformers/model_doc/roformer.
Selective Rotary Position Embedding
Position information is essential for language modeling. In softmax transformers, Rotary Position Embeddings (RoPE) encode positions through fixed-angle rotations, while in linear transformers, order is handled via input-dependent (selective) gating that decays past key-value associations. Selectivity has generally been shown to improve language-related tasks. Inspired by this, we introduce Selective RoPE, an input-dependent rotary embedding mechanism, that generalizes RoPE, and enables rotation in arbitrary angles for both linear and softmax transformers. We show that softmax attention already performs a hidden form of these rotations on query-key pairs, uncovering an implicit positional structure. We further show that in state-space models and gated linear transformers, the real part manages forgetting while the imaginary part encodes positions through rotations. We validate our method by equipping gated transformers with Selective RoPE, demonstrating that its input-dependent rotations improve performance in language modeling and on difficult sequence tasks like copying, state tracking, and retrieval.
Your Transformer is Secretly Linear
This paper reveals a novel linear characteristic exclusive to transformer decoders, including models such as GPT, LLaMA, OPT, BLOOM and others. We analyze embedding transformations between sequential layers, uncovering a near-perfect linear relationship (Procrustes similarity score of 0.99). However, linearity decreases when the residual component is removed due to a consistently low output norm of the transformer layer. Our experiments show that removing or linearly approximating some of the most linear blocks of transformers does not affect significantly the loss or model performance. Moreover, in our pretraining experiments on smaller models we introduce a cosine-similarity-based regularization, aimed at reducing layer linearity. This regularization improves performance metrics on benchmarks like Tiny Stories and SuperGLUE and as well successfully decreases the linearity of the models. This study challenges the existing understanding of transformer architectures, suggesting that their operation may be more linear than previously assumed.
Why Do We Need Weight Decay in Modern Deep Learning?
Weight decay is a broadly used technique for training state-of-the-art deep networks from image classification to large language models. Despite its widespread usage and being extensively studied in the classical literature, its role remains poorly understood for deep learning. In this work, we highlight that the role of weight decay in modern deep learning is different from its regularization effect studied in classical learning theory. For deep networks on vision tasks trained with multipass SGD, we show how weight decay modifies the optimization dynamics enhancing the ever-present implicit regularization of SGD via the loss stabilization mechanism. In contrast, for large language models trained with nearly one-epoch training, we describe how weight decay balances the bias-variance tradeoff in stochastic optimization leading to lower training loss and improved training stability. Overall, we present a unifying perspective from ResNets on vision tasks to LLMs: weight decay is never useful as an explicit regularizer but instead changes the training dynamics in a desirable way. The code is available at https://github.com/tml-epfl/why-weight-decay
A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay
Although deep learning has produced dazzling successes for applications of image, speech, and video processing in the past few years, most trainings are with suboptimal hyper-parameters, requiring unnecessarily long training times. Setting the hyper-parameters remains a black art that requires years of experience to acquire. This report proposes several efficient ways to set the hyper-parameters that significantly reduce training time and improves performance. Specifically, this report shows how to examine the training validation/test loss function for subtle clues of underfitting and overfitting and suggests guidelines for moving toward the optimal balance point. Then it discusses how to increase/decrease the learning rate/momentum to speed up training. Our experiments show that it is crucial to balance every manner of regularization for each dataset and architecture. Weight decay is used as a sample regularizer to show how its optimal value is tightly coupled with the learning rates and momentums. Files to help replicate the results reported here are available.
Cautious Weight Decay
We introduce Cautious Weight Decay (CWD), a one-line, optimizer-agnostic modification that applies weight decay only to parameter coordinates whose signs align with the optimizer update. Unlike standard decoupled decay, which implicitly optimizes a regularized or constrained objective, CWD preserves the original loss and admits a bilevel interpretation: it induces sliding-mode behavior upon reaching the stationary manifold, allowing it to search for locally Pareto-optimal stationary points of the unmodified objective. In practice, CWD is a drop-in change for optimizers such as AdamW, Lion, and Muon, requiring no new hyperparameters or additional tuning. For language model pre-training and ImageNet classification, CWD consistently improves final loss and accuracy at million- to billion-parameter scales.
Stability of Superconducting Strings
We investigate the stability of superconducting strings as bound states of strings and fermion zero modes at both the classical and quantum levels. The dynamics of these superconducting strings can result in a stable configuration, known as a vorton. We mainly focus on global strings, but the majority of the discussion can be applied to local strings. Using lattice simulations, we study the classical dynamics of superconducting strings and confirm that they relax to the vorton configuration through Nambu-Goldstone boson radiation, with no evidence of over-shooting that would destabilize the vorton. We explore the tunneling of fermion zero modes out of the strings. Both our classical analysis and quantum calculations yield consistent results: the maximum energy of the zero mode significantly exceeds the fermion mass, in contrast to previous literature. Additionally, we introduce a world-sheet formalism to evaluate the decay rate of zero modes into other particles, which constitute the dominant decay channel. We also identify additional processes that trigger zero-mode decay due to non-adiabatic changes of the string configuration. In these decay processes, the rates are suppressed by the curvature of string loops, with exponential suppression for large masses of the final states. We further study the scattering with light charged particles surrounding the string core produced by the zero-mode current and find that a wide zero-mode wavefunction can enhance vorton stability.
Dynamical Linear Bandits
In many real-world sequential decision-making problems, an action does not immediately reflect on the feedback and spreads its effects over a long time frame. For instance, in online advertising, investing in a platform produces an instantaneous increase of awareness, but the actual reward, i.e., a conversion, might occur far in the future. Furthermore, whether a conversion takes place depends on: how fast the awareness grows, its vanishing effects, and the synergy or interference with other advertising platforms. Previous work has investigated the Multi-Armed Bandit framework with the possibility of delayed and aggregated feedback, without a particular structure on how an action propagates in the future, disregarding possible dynamical effects. In this paper, we introduce a novel setting, the Dynamical Linear Bandits (DLB), an extension of the linear bandits characterized by a hidden state. When an action is performed, the learner observes a noisy reward whose mean is a linear function of the hidden state and of the action. Then, the hidden state evolves according to linear dynamics, affected by the performed action too. We start by introducing the setting, discussing the notion of optimal policy, and deriving an expected regret lower bound. Then, we provide an optimistic regret minimization algorithm, Dynamical Linear Upper Confidence Bound (DynLin-UCB), that suffers an expected regret of order mathcal{O} Big( d sqrt{T}{(1-rho)^{3/2}} Big), where rho is a measure of the stability of the system, and d is the dimension of the action vector. Finally, we conduct a numerical validation on a synthetic environment and on real-world data to show the effectiveness of DynLin-UCB in comparison with several baselines.
Fidelity Isn't Accuracy: When Linearly Decodable Functions Fail to Match the Ground Truth
Neural networks excel as function approximators, but their complexity often obscures the types of functions they learn, making it difficult to explain their behavior. To address this, the linearity score lambda(f) is introduced, a simple and interpretable diagnostic that quantifies how well a regression network's output can be mimicked by a linear model. Defined as the R^2 value between the network's predictions and those of a trained linear surrogate, lambda(f) measures linear decodability: the extent to which the network's behavior aligns with a structurally simple model. This framework is evaluated on both synthetic and real-world datasets, using dataset-specific networks and surrogates. High lambda(f) scores reliably indicate alignment with the network's outputs; however, they do not guarantee accuracy with respect to the ground truth. These results highlight the risk of using surrogate fidelity as a proxy for model understanding, especially in high-stakes regression tasks.
Lion Secretly Solves Constrained Optimization: As Lyapunov Predicts
Lion (Evolved Sign Momentum), a new optimizer discovered through program search, has shown promising results in training large AI models. It performs comparably or favorably to AdamW but with greater memory efficiency. As we can expect from the results of a random search program, Lion incorporates elements from several existing algorithms, including signed momentum, decoupled weight decay, Polak, and Nesterov momentum, but does not fit into any existing category of theoretically grounded optimizers. Thus, even though Lion appears to perform well as a general-purpose optimizer for a wide range of tasks, its theoretical basis remains uncertain. This lack of theoretical clarity limits opportunities to further enhance and expand Lion's efficacy. This work aims to demystify Lion. Based on both continuous-time and discrete-time analysis, we demonstrate that Lion is a theoretically novel and principled approach for minimizing a general loss function f(x) while enforcing a bound constraint |x|_infty leq 1/lambda. Lion achieves this through the incorporation of decoupled weight decay, where lambda represents the weight decay coefficient. Our analysis is made possible by the development of a new Lyapunov function for the Lion updates. It applies to a broader family of Lion-kappa algorithms, where the sign(cdot) operator in Lion is replaced by the subgradient of a convex function kappa, leading to the solution of a general composite optimization problem of min_x f(x) + kappa^*(x). Our findings provide valuable insights into the dynamics of Lion and pave the way for further improvements and extensions of Lion-related algorithms.
Bubbles in a box: Eliminating edge nucleation in cold-atom simulators of vacuum decay
The decay of metastable 'false vacuum' states via bubble nucleation plays a crucial role in many cosmological scenarios. Cold-atom analog experiments will soon provide the first empirical probes of this process, with potentially far-reaching implications for early-Universe cosmology and high-energy physics. However, an inevitable difference between these analog systems and the early Universe is that the former have a boundary. We show, using a combination of Euclidean calculations and real-time lattice simulations, that these boundaries generically cause rapid bubble nucleation on the edge of the experiment, obscuring the bulk nucleation that is relevant for cosmology. We demonstrate that implementing a high-density 'trench' region at the boundary completely eliminates this problem, and recovers the desired cosmological behavior. Our findings are relevant for ongoing efforts to probe vacuum decay in the laboratory, providing a practical solution to a key experimental obstacle.
Decoupled Weight Decay Regularization
L_2 regularization and weight decay regularization are equivalent for standard stochastic gradient descent (when rescaled by the learning rate), but as we demonstrate this is not the case for adaptive gradient algorithms, such as Adam. While common implementations of these algorithms employ L_2 regularization (often calling it "weight decay" in what may be misleading due to the inequivalence we expose), we propose a simple modification to recover the original formulation of weight decay regularization by decoupling the weight decay from the optimization steps taken w.r.t. the loss function. We provide empirical evidence that our proposed modification (i) decouples the optimal choice of weight decay factor from the setting of the learning rate for both standard SGD and Adam and (ii) substantially improves Adam's generalization performance, allowing it to compete with SGD with momentum on image classification datasets (on which it was previously typically outperformed by the latter). Our proposed decoupled weight decay has already been adopted by many researchers, and the community has implemented it in TensorFlow and PyTorch; the complete source code for our experiments is available at https://github.com/loshchil/AdamW-and-SGDW
MeritRank: Sybil Tolerant Reputation for Merit-based Tokenomics
Decentralized reputation schemes present a promising area of experimentation in blockchain applications. These solutions aim to overcome the shortcomings of simple monetary incentive mechanisms of naive tokenomics. However, there is a significant research gap regarding the limitations and benefits of such solutions. We formulate these trade-offs as a conjecture on the irreconcilability of three desirable properties of the reputation system in this context. Such a system can not be simultaneously generalizable, trustless, and Sybil resistant. To handle the limitations of this trilemma, we propose MeritRank: Sybil tolerant feedback aggregation mechanism for reputation. Instead of preventing Sybil attacks, our approach successfully bounds the benefits of these attacks. Using a dataset of participants' interactions in MakerDAO, we run experiments to demonstrate Sybil tolerance of MeritRank. Decay parameters of reputation in MeritRank: transitivity decay and connectivity decay, allow for a fine-tuning of desirable levels of reputation utility and Sybil tolerance in different use contexts.
L2 Regularization versus Batch and Weight Normalization
Batch Normalization is a commonly used trick to improve the training of deep neural networks. These neural networks use L2 regularization, also called weight decay, ostensibly to prevent overfitting. However, we show that L2 regularization has no regularizing effect when combined with normalization. Instead, regularization has an influence on the scale of weights, and thereby on the effective learning rate. We investigate this dependence, both in theory, and experimentally. We show that popular optimization methods such as ADAM only partially eliminate the influence of normalization on the learning rate. This leads to a discussion on other ways to mitigate this issue.
Real-valued continued fraction of straight lines
In an unbounded plane, straight lines are used extensively for mathematical analysis. They are tools of convenience. However, those with high slope values become unbounded at a faster rate than the independent variable. So, straight lines, in this work, are made to be bounded by introducing a parametric nonlinear term that is positive. The straight lines are transformed into bounded nonlinear curves that become unbounded at a much slower rate than the independent variable. This transforming equation can be expressed as a continued fraction of straight lines. The continued fraction is real-valued and converges to the solutions of the transforming equation. Following Euler's method, the continued fraction has been reduced into an infinite series. The usefulness of the bounding nature of continued fraction is demonstrated by solving the problem of image classification. Parameters estimated on the Fashion-MNIST dataset of greyscale images using continued fraction of regression lines have less variance, converge quickly and are more accurate than the linear counterpart. Moreover, this multi-dimensional parametric estimation problem can be expressed on xy- plane using the parameters of the continued fraction and patterns emerge on planar plots.
Words in Motion: Extracting Interpretable Control Vectors for Motion Transformers
Transformer-based models generate hidden states that are difficult to interpret. In this work, we analyze hidden states and modify them at inference, with a focus on motion forecasting. We use linear probing to analyze whether interpretable features are embedded in hidden states. Our experiments reveal high probing accuracy, indicating latent space regularities with functionally important directions. Building on this, we use the directions between hidden states with opposing features to fit control vectors. At inference, we add our control vectors to hidden states and evaluate their impact on predictions. Remarkably, such modifications preserve the feasibility of predictions. We further refine our control vectors using sparse autoencoders (SAEs). This leads to more linear changes in predictions when scaling control vectors. Our approach enables mechanistic interpretation as well as zero-shot generalization to unseen dataset characteristics with negligible computational overhead.
A Precise Characterization of SGD Stability Using Loss Surface Geometry
Stochastic Gradient Descent (SGD) stands as a cornerstone optimization algorithm with proven real-world empirical successes but relatively limited theoretical understanding. Recent research has illuminated a key factor contributing to its practical efficacy: the implicit regularization it instigates. Several studies have investigated the linear stability property of SGD in the vicinity of a stationary point as a predictive proxy for sharpness and generalization error in overparameterized neural networks (Wu et al., 2022; Jastrzebski et al., 2019; Cohen et al., 2021). In this paper, we delve deeper into the relationship between linear stability and sharpness. More specifically, we meticulously delineate the necessary and sufficient conditions for linear stability, contingent on hyperparameters of SGD and the sharpness at the optimum. Towards this end, we introduce a novel coherence measure of the loss Hessian that encapsulates pertinent geometric properties of the loss function that are relevant to the linear stability of SGD. It enables us to provide a simplified sufficient condition for identifying linear instability at an optimum. Notably, compared to previous works, our analysis relies on significantly milder assumptions and is applicable for a broader class of loss functions than known before, encompassing not only mean-squared error but also cross-entropy loss.
Model Collapse Demystified: The Case of Regression
In the era of proliferation of large language and image generation models, the phenomenon of "model collapse" refers to the situation whereby as a model is trained recursively on data generated from previous generations of itself over time, its performance degrades until the model eventually becomes completely useless, i.e the model collapses. In this work, we study this phenomenon in the setting of high-dimensional regression and obtain analytic formulae which quantitatively outline this phenomenon in a broad range of regimes. In the special case of polynomial decaying spectral and source conditions, we obtain modified scaling laws which exhibit new crossover phenomena from fast to slow rates. We also propose a simple strategy based on adaptive regularization to mitigate model collapse. Our theoretical results are validated with experiments.
Baryon-number-violating nucleon decays in SMEFT extended with a light scalar
New light particles have received considerable attention in recent years. Baryon-number-violating (BNV) nucleon decays involving such light particles are able to provide stringent constraints. They exhibit distinctive experimental signatures that merit thorough investigation. We systematically investigate BNV nucleon decay with a light scalar in an effective field theory framework. Within this framework, we set stringent bounds on BNV operators using available experimental data and predict the occurrence of several BNV three-body nucleon decays. We further study contributions to dinucleon to dilepton transitions in a nucleus mediated by the scalar, which complements single nucleon decay. Finally, we provide three ultraviolet-complete models that can generate different subsets of BNV operators in leading order. Our theoretical framework will facilitate experimental searches for those exotic nucleon decays.
Theory on Forgetting and Generalization of Continual Learning
Continual learning (CL), which aims to learn a sequence of tasks, has attracted significant recent attention. However, most work has focused on the experimental performance of CL, and theoretical studies of CL are still limited. In particular, there is a lack of understanding on what factors are important and how they affect "catastrophic forgetting" and generalization performance. To fill this gap, our theoretical analysis, under overparameterized linear models, provides the first-known explicit form of the expected forgetting and generalization error. Further analysis of such a key result yields a number of theoretical explanations about how overparameterization, task similarity, and task ordering affect both forgetting and generalization error of CL. More interestingly, by conducting experiments on real datasets using deep neural networks (DNNs), we show that some of these insights even go beyond the linear models and can be carried over to practical setups. In particular, we use concrete examples to show that our results not only explain some interesting empirical observations in recent studies, but also motivate better practical algorithm designs of CL.
A Tale of Tails: Model Collapse as a Change of Scaling Laws
As AI model size grows, neural scaling laws have become a crucial tool to predict the improvements of large models when increasing capacity and the size of original (human or natural) training data. Yet, the widespread use of popular models means that the ecosystem of online data and text will co-evolve to progressively contain increased amounts of synthesized data. In this paper we ask: How will the scaling laws change in the inevitable regime where synthetic data makes its way into the training corpus? Will future models, still improve, or be doomed to degenerate up to total (model) collapse? We develop a theoretical framework of model collapse through the lens of scaling laws. We discover a wide range of decay phenomena, analyzing loss of scaling, shifted scaling with number of generations, the ''un-learning" of skills, and grokking when mixing human and synthesized data. Our theory is validated by large-scale experiments with a transformer on an arithmetic task and text generation using the large language model Llama2.
Linear Object Detection in Document Images using Multiple Object Tracking
Linear objects convey substantial information about document structure, but are challenging to detect accurately because of degradation (curved, erased) or decoration (doubled, dashed). Many approaches can recover some vector representation, but only one closed-source technique introduced in 1994, based on Kalman filters (a particular case of Multiple Object Tracking algorithm), can perform a pixel-accurate instance segmentation of linear objects and enable to selectively remove them from the original image. We aim at re-popularizing this approach and propose: 1. a framework for accurate instance segmentation of linear objects in document images using Multiple Object Tracking (MOT); 2. document image datasets and metrics which enable both vector- and pixel-based evaluation of linear object detection; 3. performance measures of MOT approaches against modern segment detectors; 4. performance measures of various tracking strategies, exhibiting alternatives to the original Kalman filters approach; and 5. an open-source implementation of a detector which can discriminate instances of curved, erased, dashed, intersecting and/or overlapping linear objects.
LLMs Can Get "Brain Rot"!
We propose and test the LLM Brain Rot Hypothesis: continual exposure to junk web text induces lasting cognitive decline in large language models (LLMs). To causally isolate data quality, we run controlled experiments on real Twitter/X corpora, constructing junk and reversely controlled datasets via two orthogonal operationalizations: M1 (engagement degree) and M2 (semantic quality), with matched token scale and training operations across conditions. Contrary to the control group, continual pre-training of 4 LLMs on the junk dataset causes non-trivial declines (Hedges' g>0.3) on reasoning, long-context understanding, safety, and inflating "dark traits" (e.g., psychopathy, narcissism). The gradual mixtures of junk and control datasets also yield dose-response cognition decay: for example, under M1, ARC-Challenge with Chain Of Thoughts drops 74.9 rightarrow 57.2 and RULER-CWE 84.4 rightarrow 52.3 as junk ratio rises from 0% to 100%. Error forensics reveal several key insights. First, we identify thought-skipping as the primary lesion: models increasingly truncate or skip reasoning chains, explaining most of the error growth. Second, partial but incomplete healing is observed: scaling instruction tuning and clean data pre-training improve the declined cognition yet cannot restore baseline capability, suggesting persistent representational drift rather than format mismatch. Finally, we discover that the popularity, a non-semantic metric, of a tweet is a better indicator of the Brain Rot effect than the length in M1. Together, the results provide significant, multi-perspective evidence that data quality is a causal driver of LLM capability decay, reframing curation for continual pretraining as a training-time safety problem and motivating routine "cognitive health checks" for deployed LLMs.
Embarrassingly Shallow Autoencoders for Sparse Data
Combining simple elements from the literature, we define a linear model that is geared toward sparse data, in particular implicit feedback data for recommender systems. We show that its training objective has a closed-form solution, and discuss the resulting conceptual insights. Surprisingly, this simple model achieves better ranking accuracy than various state-of-the-art collaborative-filtering approaches, including deep non-linear models, on most of the publicly available data-sets used in our experiments.
Nonlinear Advantage: Trained Networks Might Not Be As Complex as You Think
We perform an empirical study of the behaviour of deep networks when fully linearizing some of its feature channels through a sparsity prior on the overall number of nonlinear units in the network. In experiments on image classification and machine translation tasks, we investigate how much we can simplify the network function towards linearity before performance collapses. First, we observe a significant performance gap when reducing nonlinearity in the network function early on as opposed to late in training, in-line with recent observations on the time-evolution of the data-dependent NTK. Second, we find that after training, we are able to linearize a significant number of nonlinear units while maintaining a high performance, indicating that much of a network's expressivity remains unused but helps gradient descent in early stages of training. To characterize the depth of the resulting partially linearized network, we introduce a measure called average path length, representing the average number of active nonlinearities encountered along a path in the network graph. Under sparsity pressure, we find that the remaining nonlinear units organize into distinct structures, forming core-networks of near constant effective depth and width, which in turn depend on task difficulty.
Kalman Filter for Online Classification of Non-Stationary Data
In Online Continual Learning (OCL) a learning system receives a stream of data and sequentially performs prediction and training steps. Important challenges in OCL are concerned with automatic adaptation to the particular non-stationary structure of the data, and with quantification of predictive uncertainty. Motivated by these challenges we introduce a probabilistic Bayesian online learning model by using a (possibly pretrained) neural representation and a state space model over the linear predictor weights. Non-stationarity over the linear predictor weights is modelled using a parameter drift transition density, parametrized by a coefficient that quantifies forgetting. Inference in the model is implemented with efficient Kalman filter recursions which track the posterior distribution over the linear weights, while online SGD updates over the transition dynamics coefficient allows to adapt to the non-stationarity seen in data. While the framework is developed assuming a linear Gaussian model, we also extend it to deal with classification problems and for fine-tuning the deep learning representation. In a set of experiments in multi-class classification using data sets such as CIFAR-100 and CLOC we demonstrate the predictive ability of the model and its flexibility to capture non-stationarity.
Learning the Dynamics of Sparsely Observed Interacting Systems
We address the problem of learning the dynamics of an unknown non-parametric system linking a target and a feature time series. The feature time series is measured on a sparse and irregular grid, while we have access to only a few points of the target time series. Once learned, we can use these dynamics to predict values of the target from the previous values of the feature time series. We frame this task as learning the solution map of a controlled differential equation (CDE). By leveraging the rich theory of signatures, we are able to cast this non-linear problem as a high-dimensional linear regression. We provide an oracle bound on the prediction error which exhibits explicit dependencies on the individual-specific sampling schemes. Our theoretical results are illustrated by simulations which show that our method outperforms existing algorithms for recovering the full time series while being computationally cheap. We conclude by demonstrating its potential on real-world epidemiological data.
The Fair Language Model Paradox
Large Language Models (LLMs) are widely deployed in real-world applications, yet little is known about their training dynamics at the token level. Evaluation typically relies on aggregated training loss, measured at the batch level, which overlooks subtle per-token biases arising from (i) varying token-level dynamics and (ii) structural biases introduced by hyperparameters. While weight decay is commonly used to stabilize training, we reveal that it silently introduces performance biases detectable only at the token level. In fact, we empirically show across different dataset sizes, model architectures and sizes ranging from 270M to 3B parameters that as weight decay increases, low-frequency tokens are disproportionately depreciated. This is particularly concerning, as these neglected low-frequency tokens represent the vast majority of the token distribution in most languages, calling for novel regularization techniques that ensure fairness across all available tokens.
Regularization-based Pruning of Irrelevant Weights in Deep Neural Architectures
Deep neural networks exploiting millions of parameters are nowadays the norm in deep learning applications. This is a potential issue because of the great amount of computational resources needed for training, and of the possible loss of generalization performance of overparametrized networks. We propose in this paper a method for learning sparse neural topologies via a regularization technique which identifies non relevant weights and selectively shrinks their norm, while performing a classic update for relevant ones. This technique, which is an improvement of classical weight decay, is based on the definition of a regularization term which can be added to any loss functional regardless of its form, resulting in a unified general framework exploitable in many different contexts. The actual elimination of parameters identified as irrelevant is handled by an iterative pruning algorithm. We tested the proposed technique on different image classification and Natural language generation tasks, obtaining results on par or better then competitors in terms of sparsity and metrics, while achieving strong models compression.
