- Job-related discourse on social media Working adults spend nearly one third of their daily time at their jobs. In this paper, we study job-related social media discourse from a community of users. We use both crowdsourcing and local expertise to train a classifier to detect job-related messages on Twitter. Additionally, we analyze the linguistic differences in a job-related corpus of tweets between individual users vs. commercial accounts. The volumes of job-related tweets from individual users indicate that people use Twitter with distinct monthly, daily, and hourly patterns. We further show that the moods associated with jobs, positive and negative, have unique diurnal rhythms. 6 authors · Nov 15, 2015
- JobBERT: Understanding Job Titles through Skills Job titles form a cornerstone of today's human resources (HR) processes. Within online recruitment, they allow candidates to understand the contents of a vacancy at a glance, while internal HR departments use them to organize and structure many of their processes. As job titles are a compact, convenient, and readily available data source, modeling them with high accuracy can greatly benefit many HR tech applications. In this paper, we propose a neural representation model for job titles, by augmenting a pre-trained language model with co-occurrence information from skill labels extracted from vacancies. Our JobBERT method leads to considerable improvements compared to using generic sentence encoders, for the task of job title normalization, for which we release a new evaluation benchmark. 4 authors · Sep 20, 2021
- Twitter Job/Employment Corpus: A Dataset of Job-Related Discourse Built with Humans in the Loop We present the Twitter Job/Employment Corpus, a collection of tweets annotated by a humans-in-the-loop supervised learning framework that integrates crowdsourcing contributions and expertise on the local community and employment environment. Previous computational studies of job-related phenomena have used corpora collected from workplace social media that are hosted internally by the employers, and so lacks independence from latent job-related coercion and the broader context that an open domain, general-purpose medium such as Twitter provides. Our new corpus promises to be a benchmark for the extraction of job-related topics and advanced analysis and modeling, and can potentially benefit a wide range of research communities in the future. 2 authors · Jan 29, 2019
- Leveraging the Inherent Hierarchy of Vacancy Titles for Automated Job Ontology Expansion Machine learning plays an ever-bigger part in online recruitment, powering intelligent matchmaking and job recommendations across many of the world's largest job platforms. However, the main text is rarely enough to fully understand a job posting: more often than not, much of the required information is condensed into the job title. Several organised efforts have been made to map job titles onto a hand-made knowledge base as to provide this information, but these only cover around 60\% of online vacancies. We introduce a novel, purely data-driven approach towards the detection of new job titles. Our method is conceptually simple, extremely efficient and competitive with traditional NER-based approaches. Although the standalone application of our method does not outperform a finetuned BERT model, it can be applied as a preprocessing step as well, substantially boosting accuracy across several architectures. 3 authors · Apr 6, 2020
- Career Path Prediction using Resume Representation Learning and Skill-based Matching The impact of person-job fit on job satisfaction and performance is widely acknowledged, which highlights the importance of providing workers with next steps at the right time in their career. This task of predicting the next step in a career is known as career path prediction, and has diverse applications such as turnover prevention and internal job mobility. Existing methods to career path prediction rely on large amounts of private career history data to model the interactions between job titles and companies. We propose leveraging the unexplored textual descriptions that are part of work experience sections in resumes. We introduce a structured dataset of 2,164 anonymized career histories, annotated with ESCO occupation labels. Based on this dataset, we present a novel representation learning approach, CareerBERT, specifically designed for work history data. We develop a skill-based model and a text-based model for career path prediction, which achieve 35.24% and 39.61% recall@10 respectively on our dataset. Finally, we show that both approaches are complementary as a hybrid approach achieves the strongest result with 43.01% recall@10. 5 authors · Oct 24, 2023