- ITINERA: Integrating Spatial Optimization with Large Language Models for Open-domain Urban Itinerary Planning Citywalk, a recently popular form of urban travel, requires genuine personalization and understanding of fine-grained requests compared to traditional itinerary planning. In this paper, we introduce the novel task of Open-domain Urban Itinerary Planning (OUIP), which generates personalized urban itineraries from user requests in natural language. We then present ITINERA, an OUIP system that integrates spatial optimization with large language models to provide customized urban itineraries based on user needs. This involves decomposing user requests, selecting candidate points of interest (POIs), ordering the POIs based on cluster-aware spatial optimization, and generating the itinerary. Experiments on real-world datasets and the performance of the deployed system demonstrate our system's capacity to deliver personalized and spatially coherent itineraries compared to current solutions. Source codes of ITINERA are available at https://github.com/YihongT/ITINERA. 12 authors · Feb 11, 2024
- TravelAgent: An AI Assistant for Personalized Travel Planning As global tourism expands and artificial intelligence technology advances, intelligent travel planning services have emerged as a significant research focus. Within dynamic real-world travel scenarios with multi-dimensional constraints, services that support users in automatically creating practical and customized travel itineraries must address three key objectives: Rationality, Comprehensiveness, and Personalization. However, existing systems with rule-based combinations or LLM-based planning methods struggle to fully satisfy these criteria. To overcome the challenges, we introduce TravelAgent, a travel planning system powered by large language models (LLMs) designed to provide reasonable, comprehensive, and personalized travel itineraries grounded in dynamic scenarios. TravelAgent comprises four modules: Tool-usage, Recommendation, Planning, and Memory Module. We evaluate TravelAgent's performance with human and simulated users, demonstrating its overall effectiveness in three criteria and confirming the accuracy of personalized recommendations. 5 authors · Sep 12, 2024
- TDAG: A Multi-Agent Framework based on Dynamic Task Decomposition and Agent Generation The emergence of Large Language Models (LLMs) like ChatGPT has inspired the development of LLM-based agents capable of addressing complex, real-world tasks. However, these agents often struggle during task execution due to methodological constraints, such as error propagation and limited adaptability. To address this issue, we propose a multi-agent framework based on dynamic Task Decomposition and Agent Generation (TDAG). This framework dynamically decomposes complex tasks into smaller subtasks and assigns each to a specifically generated subagent, thereby enhancing adaptability in diverse and unpredictable real-world tasks. Simultaneously, existing benchmarks often lack the granularity needed to evaluate incremental progress in complex, multi-step tasks. In response, we introduce ItineraryBench in the context of travel planning, featuring interconnected, progressively complex tasks with a fine-grained evaluation system. ItineraryBench is designed to assess agents' abilities in memory, planning, and tool usage across tasks of varying complexity. Our experimental results reveal that TDAG significantly outperforms established baselines, showcasing its superior adaptability and context awareness in complex task scenarios. 4 authors · Feb 15, 2024
- PlanGenLLMs: A Modern Survey of LLM Planning Capabilities LLMs have immense potential for generating plans, transforming an initial world state into a desired goal state. A large body of research has explored the use of LLMs for various planning tasks, from web navigation to travel planning and database querying. However, many of these systems are tailored to specific problems, making it challenging to compare them or determine the best approach for new tasks. There is also a lack of clear and consistent evaluation criteria. Our survey aims to offer a comprehensive overview of current LLM planners to fill this gap. It builds on foundational work by Kartam and Wilkins (1990) and examines six key performance criteria: completeness, executability, optimality, representation, generalization, and efficiency. For each, we provide a thorough analysis of representative works and highlight their strengths and weaknesses. Our paper also identifies crucial future directions, making it a valuable resource for both practitioners and newcomers interested in leveraging LLM planning to support agentic workflows. 6 authors · Feb 16
- Large Language Models Can Solve Real-World Planning Rigorously with Formal Verification Tools Large Language Models (LLMs) struggle to directly generate correct plans for complex multi-constraint planning problems, even with self-verification and self-critique. For example, a U.S. domestic travel planning benchmark TravelPlanner was proposed in Xie et al. (2024), where the best LLM OpenAI o1-preview can only find viable travel plans with a 10% success rate given all needed information. In this work, we tackle this by proposing an LLM-based planning framework that formalizes and solves complex multi-constraint planning problems as constrained satisfiability problems, which are further consumed by sound and complete satisfiability solvers. We start with TravelPlanner as the primary use case and show that our framework achieves a success rate of 93.9% and is effective with diverse paraphrased prompts. More importantly, our framework has strong zero-shot generalizability, successfully handling unseen constraints in our newly created unseen international travel dataset and generalizing well to new fundamentally different domains. Moreover, when user input queries are infeasible, our framework can identify the unsatisfiable core, provide failure reasons, and offers personalized modification suggestions. We show that our framework can modify and solve for an average of 81.6% and 91.7% unsatisfiable queries from two datasets and prove with ablations that all key components of our framework are effective and necessary. Project page: https://sites.google.com/view/llm-rwplanning. 4 authors · Apr 18, 2024
- Enhancing Tourism Recommender Systems for Sustainable City Trips Using Retrieval-Augmented Generation Tourism Recommender Systems (TRS) have traditionally focused on providing personalized travel suggestions, often prioritizing user preferences without considering broader sustainability goals. Integrating sustainability into TRS has become essential with the increasing need to balance environmental impact, local community interests, and visitor satisfaction. This paper proposes a novel approach to enhancing TRS for sustainable city trips using Large Language Models (LLMs) and a modified Retrieval-Augmented Generation (RAG) pipeline. We enhance the traditional RAG system by incorporating a sustainability metric based on a city's popularity and seasonal demand during the prompt augmentation phase. This modification, called Sustainability Augmented Reranking (SAR), ensures the system's recommendations align with sustainability goals. Evaluations using popular open-source LLMs, such as Llama-3.1-Instruct-8B and Mistral-Instruct-7B, demonstrate that the SAR-enhanced approach consistently matches or outperforms the baseline (without SAR) across most metrics, highlighting the benefits of incorporating sustainability into TRS. 3 authors · Sep 26, 2024
- Modeling Sustainable City Trips: Integrating CO2e Emissions, Popularity, and Seasonality into Tourism Recommender Systems Tourism affects not only the tourism industry but also society and stakeholders such as the environment, local businesses, and residents. Tourism Recommender Systems (TRS) can be pivotal in promoting sustainable tourism by guiding travelers toward destinations with minimal negative impact. Our paper introduces a composite sustainability indicator for a city trip TRS based on the users' starting point and month of travel. This indicator integrates CO2e emissions for different transportation modes and analyses destination popularity and seasonal demand. We quantify city popularity based on user reviews, points of interest, and search trends from Tripadvisor and Google Trends data. To calculate a seasonal demand index, we leverage data from TourMIS and Airbnb. We conducted a user study to explore the fundamental trade-offs in travel decision-making and determine the weights for our proposed indicator. Finally, we demonstrate the integration of this indicator into a TRS, illustrating its ability to deliver sustainable city trip recommendations. This work lays the foundation for future research by integrating sustainability measures and contributing to responsible recommendations by TRS. 5 authors · Mar 27, 2024
14 NATURAL PLAN: Benchmarking LLMs on Natural Language Planning We introduce NATURAL PLAN, a realistic planning benchmark in natural language containing 3 key tasks: Trip Planning, Meeting Planning, and Calendar Scheduling. We focus our evaluation on the planning capabilities of LLMs with full information on the task, by providing outputs from tools such as Google Flights, Google Maps, and Google Calendar as contexts to the models. This eliminates the need for a tool-use environment for evaluating LLMs on Planning. We observe that NATURAL PLAN is a challenging benchmark for state of the art models. For example, in Trip Planning, GPT-4 and Gemini 1.5 Pro could only achieve 31.1% and 34.8% solve rate respectively. We find that model performance drops drastically as the complexity of the problem increases: all models perform below 5% when there are 10 cities, highlighting a significant gap in planning in natural language for SoTA LLMs. We also conduct extensive ablation studies on NATURAL PLAN to further shed light on the (in)effectiveness of approaches such as self-correction, few-shot generalization, and in-context planning with long-contexts on improving LLM planning. 11 authors · Jun 6, 2024
- Urban Mobility Assessment Using LLMs Understanding urban mobility patterns and analyzing how people move around cities helps improve the overall quality of life and supports the development of more livable, efficient, and sustainable urban areas. A challenging aspect of this work is the collection of mobility data by means of user tracking or travel surveys, given the associated privacy concerns, noncompliance, and high cost. This work proposes an innovative AI-based approach for synthesizing travel surveys by prompting large language models (LLMs), aiming to leverage their vast amount of relevant background knowledge and text generation capabilities. Our study evaluates the effectiveness of this approach across various U.S. metropolitan areas by comparing the results against existing survey data at different granularity levels. These levels include (i) pattern level, which compares aggregated metrics like the average number of locations traveled and travel time, (ii) trip level, which focuses on comparing trips as whole units using transition probabilities, and (iii) activity chain level, which examines the sequence of locations visited by individuals. Our work covers several proprietary and open-source LLMs, revealing that open-source base models like Llama-2, when fine-tuned on even a limited amount of actual data, can generate synthetic data that closely mimics the actual travel survey data, and as such provides an argument for using such data in mobility studies. 3 authors · Aug 22, 2024
- Transforming Location Retrieval at Airbnb: A Journey from Heuristics to Reinforcement Learning The Airbnb search system grapples with many unique challenges as it continues to evolve. We oversee a marketplace that is nuanced by geography, diversity of homes, and guests with a variety of preferences. Crafting an efficient search system that can accommodate diverse guest needs, while showcasing relevant homes lies at the heart of Airbnb's success. Airbnb search has many challenges that parallel other recommendation and search systems but it has a unique information retrieval problem, upstream of ranking, called location retrieval. It requires defining a topological map area that is relevant to the searched query for homes listing retrieval. The purpose of this paper is to demonstrate the methodology, challenges, and impact of building a machine learning based location retrieval product from the ground up. Despite the lack of suitable, prevalent machine learning based approaches, we tackle cold start, generalization, differentiation and algorithmic bias. We detail the efficacy of heuristics, statistics, machine learning, and reinforcement learning approaches to solve these challenges, particularly for systems that are often unexplored by current literature. 9 authors · Aug 23, 2024