new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 11

Leveraging Domain Adaptation and Data Augmentation to Improve Qur'anic IR in English and Arabic

In this work, we approach the problem of Qur'anic information retrieval (IR) in Arabic and English. Using the latest state-of-the-art methods in neural IR, we research what helps to tackle this task more efficiently. Training retrieval models requires a lot of data, which is difficult to obtain for training in-domain. Therefore, we commence with training on a large amount of general domain data and then continue training on in-domain data. To handle the lack of in-domain data, we employed a data augmentation technique, which considerably improved results in MRR@10 and NDCG@5 metrics, setting the state-of-the-art in Qur'anic IR for both English and Arabic. The absence of an Islamic corpus and domain-specific model for IR task in English motivated us to address this lack of resources and take preliminary steps of the Islamic corpus compilation and domain-specific language model (LM) pre-training, which helped to improve the performance of the retrieval models that use the domain-specific LM as the shared backbone. We examined several language models (LMs) in Arabic to select one that efficiently deals with the Qur'anic IR task. Besides transferring successful experiments from English to Arabic, we conducted additional experiments with retrieval task in Arabic to amortize the scarcity of general domain datasets used to train the retrieval models. Handling Qur'anic IR task combining English and Arabic allowed us to enhance the comparison and share valuable insights across models and languages.

DynaMo: In-Domain Dynamics Pretraining for Visuo-Motor Control

Imitation learning has proven to be a powerful tool for training complex visuomotor policies. However, current methods often require hundreds to thousands of expert demonstrations to handle high-dimensional visual observations. A key reason for this poor data efficiency is that visual representations are predominantly either pretrained on out-of-domain data or trained directly through a behavior cloning objective. In this work, we present DynaMo, a new in-domain, self-supervised method for learning visual representations. Given a set of expert demonstrations, we jointly learn a latent inverse dynamics model and a forward dynamics model over a sequence of image embeddings, predicting the next frame in latent space, without augmentations, contrastive sampling, or access to ground truth actions. Importantly, DynaMo does not require any out-of-domain data such as Internet datasets or cross-embodied datasets. On a suite of six simulated and real environments, we show that representations learned with DynaMo significantly improve downstream imitation learning performance over prior self-supervised learning objectives, and pretrained representations. Gains from using DynaMo hold across policy classes such as Behavior Transformer, Diffusion Policy, MLP, and nearest neighbors. Finally, we ablate over key components of DynaMo and measure its impact on downstream policy performance. Robot videos are best viewed at https://dynamo-ssl.github.io

LLMLingua-2: Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression

This paper focuses on task-agnostic prompt compression for better generalizability and efficiency. Considering the redundancy in natural language, existing approaches compress prompts by removing tokens or lexical units according to their information entropy obtained from a causal language model such as LLaMa-7B. The challenge is that information entropy may be a suboptimal compression metric: (i) it only leverages unidirectional context and may fail to capture all essential information needed for prompt compression; (ii) it is not aligned with the prompt compression objective. To address these issues, we propose a data distillation procedure to derive knowledge from an LLM to compress prompts without losing crucial information, and meantime, introduce an extractive text compression dataset. We formulate prompt compression as a token classification problem to guarantee the faithfulness of the compressed prompt to the original one, and use a Transformer encoder as the base architecture to capture all essential information for prompt compression from the full bidirectional context. Our approach leads to lower latency by explicitly learning the compression objective with smaller models such as XLM-RoBERTa-large and mBERT. We evaluate our method on both in-domain and out-of-domain datasets, including MeetingBank, LongBench, ZeroScrolls, GSM8K, and BBH. Despite its small size, our model shows significant performance gains over strong baselines and demonstrates robust generalization ability across different LLMs. Additionally, our model is 3x-6x faster than existing prompt compression methods, while accelerating the end-to-end latency by 1.6x-2.9x with compression ratios of 2x-5x.

Stack Over-Flowing with Results: The Case for Domain-Specific Pre-Training Over One-Size-Fits-All Models

Large pre-trained neural language models have brought immense progress to both NLP and software engineering. Models in OpenAI's GPT series now dwarf Google's BERT and Meta's RoBERTa, which previously set new benchmarks on a wide range of NLP applications. These models are trained on massive corpora of heterogeneous data from web crawls, which enables them to learn general language patterns and semantic relationships. However, the largest models are both expensive to train and deploy and are often closed-source, so we lack access to their data and design decisions. We argue that this trend towards large, general-purpose models should be complemented with single-purpose, more modestly sized pre-trained models. In this work, we take StackOverflow (SO) as a domain example in which large volumes of rich aligned code and text data is available. We adopt standard practices for pre-training large language models, including using a very large context size (2,048 tokens), batch size (0.5M tokens) and training set (27B tokens), coupled with a powerful toolkit (Megatron-LM), to train two models: SOBertBase, with 109M parameters, and SOBertLarge with 762M parameters, at a budget of just 187 and \800 each. We compare the performance of our models with both the previous SOTA model trained on SO data exclusively as well general-purpose BERT models and OpenAI's ChatGPT on four SO-specific downstream tasks - question quality prediction, closed question prediction, named entity recognition and obsoletion prediction (a new task we introduce). Not only do our models consistently outperform all baselines, the smaller model is often sufficient for strong results. Both models are released to the public. These results demonstrate that pre-training both extensively and properly on in-domain data can yield a powerful and affordable alternative to leveraging closed-source general-purpose models.

Reformulating Domain Adaptation of Large Language Models as Adapt-Retrieve-Revise

While large language models (LLMs) like GPT-4 have recently demonstrated astonishing zero-shot capabilities in general domain tasks, they often generate content with hallucinations in specific domains such as Chinese law, hindering their application in these areas. This is typically due to the absence of training data that encompasses such a specific domain, preventing GPT-4 from acquiring in-domain knowledge. A pressing challenge is that it's not plausible to continue training LLMs of such scale on in-domain data. This paper introduces a simple and effective domain adaptation framework for GPT-4 by reformulating generation as an adapt-retrieve-revise process. The initial step is to adapt an affordable 7B LLM to the target domain by continuing learning on in-domain data. When solving a task, we leverage the adapted LLM to generate a draft answer given a task query. Then, the draft answer will be used to retrieve supporting evidence candidates from an external in-domain knowledge base. Finally, the draft answer and retrieved evidence are concatenated into a whole prompt to let GPT-4 assess the evidence and revise the draft answer to generate the final answer. Our proposal combines the advantages of the efficiency of adapting a smaller 7B model with the evidence-assessing capability of GPT-4 and effectively prevents GPT-4 from generating hallucinatory content. In the zero-shot setting of four Chinese legal tasks, our method improves accuracy by 33.3\% compared to the direct generation by GPT-4. When compared to two stronger retrieval-based baselines, our method outperforms them by 15.4\% and 23.9\%. Our code will be released

xPQA: Cross-Lingual Product Question Answering across 12 Languages

Product Question Answering (PQA) systems are key in e-commerce applications to provide responses to customers' questions as they shop for products. While existing work on PQA focuses mainly on English, in practice there is need to support multiple customer languages while leveraging product information available in English. To study this practical industrial task, we present xPQA, a large-scale annotated cross-lingual PQA dataset in 12 languages across 9 branches, and report results in (1) candidate ranking, to select the best English candidate containing the information to answer a non-English question; and (2) answer generation, to generate a natural-sounding non-English answer based on the selected English candidate. We evaluate various approaches involving machine translation at runtime or offline, leveraging multilingual pre-trained LMs, and including or excluding xPQA training data. We find that (1) In-domain data is essential as cross-lingual rankers trained on other domains perform poorly on the PQA task; (2) Candidate ranking often prefers runtime-translation approaches while answer generation prefers multilingual approaches; (3) Translating offline to augment multilingual models helps candidate ranking mainly on languages with non-Latin scripts; and helps answer generation mainly on languages with Latin scripts. Still, there remains a significant performance gap between the English and the cross-lingual test sets.

Adaptive Query Rewriting: Aligning Rewriters through Marginal Probability of Conversational Answers

Query rewriting is a crucial technique for passage retrieval in open-domain conversational question answering (CQA). It decontexualizes conversational queries into self-contained questions suitable for off-the-shelf retrievers. Existing methods attempt to incorporate retriever's preference during the training of rewriting models. However, these approaches typically rely on extensive annotations such as in-domain rewrites and/or relevant passage labels, limiting the models' generalization and adaptation capabilities. In this paper, we introduce AdaQR (Adaptive Query Rewriting), a framework for training query rewriting models with limited rewrite annotations from seed datasets and completely no passage label. Our approach begins by fine-tuning compact large language models using only ~10% of rewrite annotations from the seed dataset training split. The models are then utilized to generate rewrite candidates for each query instance. A novel approach is then proposed to assess retriever's preference for these candidates by the probability of answers conditioned on the conversational query by marginalizing the Top-K passages. This serves as the reward for optimizing the rewriter further using Direct Preference Optimization (DPO), a process free of rewrite and retrieval annotations. Experimental results on four open-domain CQA datasets demonstrate that AdaQR not only enhances the in-domain capabilities of the rewriter with limited annotation requirement, but also adapts effectively to out-of-domain datasets.

AlphaMath Almost Zero: process Supervision without process

Recent advancements in large language models (LLMs) have substantially enhanced their mathematical reasoning abilities. However, these models still struggle with complex problems that require multiple reasoning steps, frequently leading to logical or numerical errors. While numerical mistakes can be largely addressed by integrating a code interpreter, identifying logical errors within intermediate steps is more challenging. Moreover, manually annotating these steps for training is not only expensive but also labor-intensive, requiring the expertise of professional annotators. In our study, we introduce an innovative approach that bypasses the need for process annotations (from human or GPTs) by utilizing the Monte Carlo Tree Search (MCTS) framework. This technique automatically generates both the process supervision and the step-level evaluation signals. Our method iteratively trains the policy and value models, leveraging the capabilities of a well-pretrained LLM to progressively enhance its mathematical reasoning skills. Furthermore, we propose an efficient inference strategy-step-level beam search, where the value model is crafted to assist the policy model (i.e., LLM) in navigating more effective reasoning paths, rather than solely relying on prior probabilities. The experimental results on both in-domain and out-of-domain datasets demonstrate that even without GPT-4 or human-annotated process supervision, our AlphaMath framework achieves comparable or superior results to previous state-of-the-art methods.

Automatic Intent-Slot Induction for Dialogue Systems

Automatically and accurately identifying user intents and filling the associated slots from their spoken language are critical to the success of dialogue systems. Traditional methods require manually defining the DOMAIN-INTENT-SLOT schema and asking many domain experts to annotate the corresponding utterances, upon which neural models are trained. This procedure brings the challenges of information sharing hindering, out-of-schema, or data sparsity in open-domain dialogue systems. To tackle these challenges, we explore a new task of {\em automatic intent-slot induction} and propose a novel domain-independent tool. That is, we design a coarse-to-fine three-step procedure including Role-labeling, Concept-mining, And Pattern-mining (RCAP): (1) role-labeling: extracting keyphrases from users' utterances and classifying them into a quadruple of coarsely-defined intent-roles via sequence labeling; (2) concept-mining: clustering the extracted intent-role mentions and naming them into abstract fine-grained concepts; (3) pattern-mining: applying the Apriori algorithm to mine intent-role patterns and automatically inferring the intent-slot using these coarse-grained intent-role labels and fine-grained concepts. Empirical evaluations on both real-world in-domain and out-of-domain datasets show that: (1) our RCAP can generate satisfactory SLU schema and outperforms the state-of-the-art supervised learning method; (2) our RCAP can be directly applied to out-of-domain datasets and gain at least 76\% improvement of F1-score on intent detection and 41\% improvement of F1-score on slot filling; (3) our RCAP exhibits its power in generic intent-slot extractions with less manual effort, which opens pathways for schema induction on new domains and unseen intent-slot discovery for generalizable dialogue systems.

Unleashing the Power of Pre-trained Language Models for Offline Reinforcement Learning

Offline reinforcement learning (RL) aims to find a near-optimal policy using pre-collected datasets. In real-world scenarios, data collection could be costly and risky; therefore, offline RL becomes particularly challenging when the in-domain data is limited. Given recent advances in Large Language Models (LLMs) and their few-shot learning prowess, this paper introduces Language Models for Motion Control (LaMo), a general framework based on Decision Transformers to effectively use pre-trained Language Models (LMs) for offline RL. Our framework highlights four crucial components: (1) Initializing Decision Transformers with sequentially pre-trained LMs, (2) employing the LoRA fine-tuning method, in contrast to full-weight fine-tuning, to combine the pre-trained knowledge from LMs and in-domain knowledge effectively, (3) using the non-linear MLP transformation instead of linear projections, to generate embeddings, and (4) integrating an auxiliary language prediction loss during fine-tuning to stabilize the LMs and retain their original abilities on languages. Empirical results indicate LaMo achieves state-of-the-art performance in sparse-reward tasks and closes the gap between value-based offline RL methods and decision transformers in dense-reward tasks. In particular, our method demonstrates superior performance in scenarios with limited data samples. Our project website is https://lamo2023.github.io

JCoLA: Japanese Corpus of Linguistic Acceptability

Neural language models have exhibited outstanding performance in a range of downstream tasks. However, there is limited understanding regarding the extent to which these models internalize syntactic knowledge, so that various datasets have recently been constructed to facilitate syntactic evaluation of language models across languages. In this paper, we introduce JCoLA (Japanese Corpus of Linguistic Acceptability), which consists of 10,020 sentences annotated with binary acceptability judgments. Specifically, those sentences are manually extracted from linguistics textbooks, handbooks and journal articles, and split into in-domain data (86 %; relatively simple acceptability judgments extracted from textbooks and handbooks) and out-of-domain data (14 %; theoretically significant acceptability judgments extracted from journal articles), the latter of which is categorized by 12 linguistic phenomena. We then evaluate the syntactic knowledge of 9 different types of Japanese language models on JCoLA. The results demonstrated that several models could surpass human performance for the in-domain data, while no models were able to exceed human performance for the out-of-domain data. Error analyses by linguistic phenomena further revealed that although neural language models are adept at handling local syntactic dependencies like argument structure, their performance wanes when confronted with long-distance syntactic dependencies like verbal agreement and NPI licensing.

LVLM-eHub: A Comprehensive Evaluation Benchmark for Large Vision-Language Models

Large Vision-Language Models (LVLMs) have recently played a dominant role in multimodal vision-language learning. Despite the great success, it lacks a holistic evaluation of their efficacy. This paper presents a comprehensive evaluation of publicly available large multimodal models by building a LVLM evaluation Hub (LVLM-eHub). Our LVLM-eHub consists of 8 representative LVLMs such as InstructBLIP and MiniGPT-4, which are thoroughly evaluated by a quantitative capability evaluation and an online arena platform. The former evaluates 6 categories of multimodal capabilities of LVLMs such as visual question answering and embodied artificial intelligence on 47 standard text-related visual benchmarks, while the latter provides the user-level evaluation of LVLMs in an open-world question-answering scenario. The study reveals several innovative findings. First, instruction-tuned LVLM with massive in-domain data such as InstructBLIP heavily overfits many existing tasks, generalizing poorly in the open-world scenario. Second, instruction-tuned LVLM with moderate instruction-following data may result in object hallucination issues (i.e., generate objects that are inconsistent with target images in the descriptions). It either makes the current evaluation metric such as CIDEr for image captioning ineffective or generates wrong answers. Third, employing a multi-turn reasoning evaluation framework can mitigate the issue of object hallucination, shedding light on developing an effective pipeline for LVLM evaluation. The findings provide a foundational framework for the conception and assessment of innovative strategies aimed at enhancing zero-shot multimodal techniques. Our LVLM-eHub will be available at https://github.com/OpenGVLab/Multi-Modality-Arena

A Unified Generative Retriever for Knowledge-Intensive Language Tasks via Prompt Learning

Knowledge-intensive language tasks (KILTs) benefit from retrieving high-quality relevant contexts from large external knowledge corpora. Learning task-specific retrievers that return relevant contexts at an appropriate level of semantic granularity, such as a document retriever, passage retriever, sentence retriever, and entity retriever, may help to achieve better performance on the end-to-end task. But a task-specific retriever usually has poor generalization ability to new domains and tasks, and it may be costly to deploy a variety of specialised retrievers in practice. We propose a unified generative retriever (UGR) that combines task-specific effectiveness with robust performance over different retrieval tasks in KILTs. To achieve this goal, we make two major contributions: (i) To unify different retrieval tasks into a single generative form, we introduce an n-gram-based identifier for relevant contexts at different levels of granularity in KILTs. And (ii) to address different retrieval tasks with a single model, we employ a prompt learning strategy and investigate three methods to design prompt tokens for each task. In this way, the proposed UGR model can not only share common knowledge across tasks for better generalization, but also perform different retrieval tasks effectively by distinguishing task-specific characteristics. We train UGR on a heterogeneous set of retrieval corpora with well-designed prompts in a supervised and multi-task fashion. Experimental results on the KILT benchmark demonstrate the effectiveness of UGR on in-domain datasets, out-of-domain datasets, and unseen tasks.

DiaSynth -- Synthetic Dialogue Generation Framework

The scarcity of domain specific dialogue datasets across various domains, from academic topics to everyday conversations, limits the development of dialogue systems for various applications. Existing research is often constrained either by dialogue datasets that are too general or by niche domain dialogue datasets whose scale does not match the required scale for training dialogue systems. To address this gap, we introduce DiaSynth - a synthetic dialogue generation framework capable of generating high quality, contextually rich dialogues across a wide range of domains. Our approach differs from existing frameworks by dynamically generating dialogues that incorporate simulated personas, subtopics, and diverse conversational characteristics, using a Large Language Model (LLM) with Chain of Thought (CoT) reasoning to create contextually rich, domain-specific dialogues that closely mimic natural human interactions. DiaSynth produces tailored dialogues that emulate realistic conversations. We perform our experiments by generating synthetic data using different LLMs and few-shot examples from DialogSum and SAMSum. The pretrained language models fine-tuned on the synthetic data outperform the base models by 16.47%, while the comparison between models fine-tuned on in-domain data and synthetic data shows that the synthetic data is able to capture 90.48% of the distribution of the in-domain data. The quality of the data generated also scales with the size of LLMs. These results validate DiaSynth's potential as a robust alternative to traditional data collection methods.

A Benchmark for Learning to Translate a New Language from One Grammar Book

Large language models (LLMs) can perform impressive feats with in-context learning or lightweight finetuning. It is natural to wonder how well these models adapt to genuinely new tasks, but how does one find tasks that are unseen in internet-scale training sets? We turn to a field that is explicitly motivated and bottlenecked by a scarcity of web data: low-resource languages. In this paper, we introduce MTOB (Machine Translation from One Book), a benchmark for learning to translate between English and Kalamang -- a language with less than 200 speakers and therefore virtually no presence on the web -- using several hundred pages of field linguistics reference materials. This task framing is novel in that it asks a model to learn a language from a single human-readable book of grammar explanations, rather than a large mined corpus of in-domain data, more akin to L2 learning than L1 acquisition. We demonstrate that baselines using current LLMs are promising but fall short of human performance, achieving 44.7 chrF on Kalamang to English translation and 45.8 chrF on English to Kalamang translation, compared to 51.6 and 57.0 chrF by a human who learned Kalamang from the same reference materials. We hope that MTOB will help measure LLM capabilities along a new dimension, and that the methods developed to solve it could help expand access to language technology for underserved communities by leveraging qualitatively different kinds of data than traditional machine translation.

Exploring the Viability of Synthetic Query Generation for Relevance Prediction

Query-document relevance prediction is a critical problem in Information Retrieval systems. This problem has increasingly been tackled using (pretrained) transformer-based models which are finetuned using large collections of labeled data. However, in specialized domains such as e-commerce and healthcare, the viability of this approach is limited by the dearth of large in-domain data. To address this paucity, recent methods leverage these powerful models to generate high-quality task and domain-specific synthetic data. Prior work has largely explored synthetic data generation or query generation (QGen) for Question-Answering (QA) and binary (yes/no) relevance prediction, where for instance, the QGen models are given a document, and trained to generate a query relevant to that document. However in many problems, we have a more fine-grained notion of relevance than a simple yes/no label. Thus, in this work, we conduct a detailed study into how QGen approaches can be leveraged for nuanced relevance prediction. We demonstrate that -- contrary to claims from prior works -- current QGen approaches fall short of the more conventional cross-domain transfer-learning approaches. Via empirical studies spanning 3 public e-commerce benchmarks, we identify new shortcomings of existing QGen approaches -- including their inability to distinguish between different grades of relevance. To address this, we introduce label-conditioned QGen models which incorporates knowledge about the different relevance. While our experiments demonstrate that these modifications help improve performance of QGen techniques, we also find that QGen approaches struggle to capture the full nuance of the relevance label space and as a result the generated queries are not faithful to the desired relevance label.

Multiscale Structure Guided Diffusion for Image Deblurring

Diffusion Probabilistic Models (DPMs) have recently been employed for image deblurring, formulated as an image-conditioned generation process that maps Gaussian noise to the high-quality image, conditioned on the blurry input. Image-conditioned DPMs (icDPMs) have shown more realistic results than regression-based methods when trained on pairwise in-domain data. However, their robustness in restoring images is unclear when presented with out-of-domain images as they do not impose specific degradation models or intermediate constraints. To this end, we introduce a simple yet effective multiscale structure guidance as an implicit bias that informs the icDPM about the coarse structure of the sharp image at the intermediate layers. This guided formulation leads to a significant improvement of the deblurring results, particularly on unseen domain. The guidance is extracted from the latent space of a regression network trained to predict the clean-sharp target at multiple lower resolutions, thus maintaining the most salient sharp structures. With both the blurry input and multiscale guidance, the icDPM model can better understand the blur and recover the clean image. We evaluate a single-dataset trained model on diverse datasets and demonstrate more robust deblurring results with fewer artifacts on unseen data. Our method outperforms existing baselines, achieving state-of-the-art perceptual quality while keeping competitive distortion metrics.

Mask-DPO: Generalizable Fine-grained Factuality Alignment of LLMs

Large language models (LLMs) exhibit hallucinations (i.e., unfaithful or nonsensical information) when serving as AI assistants in various domains. Since hallucinations always come with truthful content in the LLM responses, previous factuality alignment methods that conduct response-level preference learning inevitably introduced noises during training. Therefore, this paper proposes a fine-grained factuality alignment method based on Direct Preference Optimization (DPO), called Mask-DPO. Incorporating sentence-level factuality as mask signals, Mask-DPO only learns from factually correct sentences in the preferred samples and prevents the penalty on factual contents in the not preferred samples, which resolves the ambiguity in the preference learning. Extensive experimental results demonstrate that Mask-DPO can significantly improve the factuality of LLMs responses to questions from both in-domain and out-of-domain datasets, although these questions and their corresponding topics are unseen during training. Only trained on the ANAH train set, the score of Llama3.1-8B-Instruct on the ANAH test set is improved from 49.19% to 77.53%, even surpassing the score of Llama3.1-70B-Instruct (53.44%), while its FactScore on the out-of-domain Biography dataset is also improved from 30.29% to 39.39%. We further study the generalization property of Mask-DPO using different training sample scaling strategies and find that scaling the number of topics in the dataset is more effective than the number of questions. We provide a hypothesis of what factual alignment is doing with LLMs, on the implication of this phenomenon, and conduct proof-of-concept experiments to verify it. We hope the method and the findings pave the way for future research on scaling factuality alignment.

CoWs on Pasture: Baselines and Benchmarks for Language-Driven Zero-Shot Object Navigation

For robots to be generally useful, they must be able to find arbitrary objects described by people (i.e., be language-driven) even without expensive navigation training on in-domain data (i.e., perform zero-shot inference). We explore these capabilities in a unified setting: language-driven zero-shot object navigation (L-ZSON). Inspired by the recent success of open-vocabulary models for image classification, we investigate a straightforward framework, CLIP on Wheels (CoW), to adapt open-vocabulary models to this task without fine-tuning. To better evaluate L-ZSON, we introduce the Pasture benchmark, which considers finding uncommon objects, objects described by spatial and appearance attributes, and hidden objects described relative to visible objects. We conduct an in-depth empirical study by directly deploying 21 CoW baselines across Habitat, RoboTHOR, and Pasture. In total, we evaluate over 90k navigation episodes and find that (1) CoW baselines often struggle to leverage language descriptions, but are proficient at finding uncommon objects. (2) A simple CoW, with CLIP-based object localization and classical exploration -- and no additional training -- matches the navigation efficiency of a state-of-the-art ZSON method trained for 500M steps on Habitat MP3D data. This same CoW provides a 15.6 percentage point improvement in success over a state-of-the-art RoboTHOR ZSON model.

Sparsely Shared LoRA on Whisper for Child Speech Recognition

Whisper is a powerful automatic speech recognition (ASR) model. Nevertheless, its zero-shot performance on low-resource speech requires further improvement. Child speech, as a representative type of low-resource speech, is leveraged for adaptation. Recently, parameter-efficient fine-tuning (PEFT) in NLP was shown to be comparable and even better than full fine-tuning, while only needing to tune a small set of trainable parameters. However, current PEFT methods have not been well examined for their effectiveness on Whisper. In this paper, only parameter composition types of PEFT approaches such as LoRA and Bitfit are investigated as they do not bring extra inference costs. Different popular PEFT methods are examined. Particularly, we compare LoRA and AdaLoRA and figure out the learnable rank coefficient is a good design. Inspired by the sparse rank distribution allocated by AdaLoRA, a novel PEFT approach Sparsely Shared LoRA (S2-LoRA) is proposed. The two low-rank decomposed matrices are globally shared. Each weight matrix only has to maintain its specific rank coefficients that are constrained to be sparse. Experiments on low-resource Chinese child speech show that with much fewer trainable parameters, S2-LoRA can achieve comparable in-domain adaptation performance to AdaLoRA and exhibit better generalization ability on out-of-domain data. In addition, the rank distribution automatically learned by S2-LoRA is found to have similar patterns to AdaLoRA's allocation.

Don't Ignore Dual Logic Ability of LLMs while Privatizing: A Data-Intensive Analysis in Medical Domain

Extensive studies have been devoted to privatizing general-domain Large Language Models (LLMs) as Domain-Specific LLMs via feeding specific-domain data. However, these privatization efforts often ignored a critical aspect: Dual Logic Ability, which is a core reasoning ability for LLMs. The dual logic ability of LLMs ensures that they can maintain a consistent stance when confronted with both positive and negative statements about the same fact. Our study focuses on how the dual logic ability of LLMs is affected during the privatization process in the medical domain. We conduct several experiments to analyze the dual logic ability of LLMs by examining the consistency of the stance in responses to paired questions about the same fact. In our experiments, interestingly, we observed a significant decrease in the dual logic ability of existing LLMs after privatization. Besides, our results indicate that incorporating general domain dual logic data into LLMs not only enhances LLMs' dual logic ability but also further improves their accuracy. These findings underscore the importance of prioritizing LLMs' dual logic ability during the privatization process. Our study establishes a benchmark for future research aimed at exploring LLMs' dual logic ability during the privatization process and offers valuable guidance for privatization efforts in real-world applications.

Out-Of-Domain Unlabeled Data Improves Generalization

We propose a novel framework for incorporating unlabeled data into semi-supervised classification problems, where scenarios involving the minimization of either i) adversarially robust or ii) non-robust loss functions have been considered. Notably, we allow the unlabeled samples to deviate slightly (in total variation sense) from the in-domain distribution. The core idea behind our framework is to combine Distributionally Robust Optimization (DRO) with self-supervised training. As a result, we also leverage efficient polynomial-time algorithms for the training stage. From a theoretical standpoint, we apply our framework on the classification problem of a mixture of two Gaussians in R^d, where in addition to the m independent and labeled samples from the true distribution, a set of n (usually with ngg m) out of domain and unlabeled samples are given as well. Using only the labeled data, it is known that the generalization error can be bounded by proptoleft(d/mright)^{1/2}. However, using our method on both isotropic and non-isotropic Gaussian mixture models, one can derive a new set of analytically explicit and non-asymptotic bounds which show substantial improvement on the generalization error compared to ERM. Our results underscore two significant insights: 1) out-of-domain samples, even when unlabeled, can be harnessed to narrow the generalization gap, provided that the true data distribution adheres to a form of the ``cluster assumption", and 2) the semi-supervised learning paradigm can be regarded as a special case of our framework when there are no distributional shifts. We validate our claims through experiments conducted on a variety of synthetic and real-world datasets.

Robots Pre-train Robots: Manipulation-Centric Robotic Representation from Large-Scale Robot Dataset

The pre-training of visual representations has enhanced the efficiency of robot learning. Due to the lack of large-scale in-domain robotic datasets, prior works utilize in-the-wild human videos to pre-train robotic visual representation. Despite their promising results, representations from human videos are inevitably subject to distribution shifts and lack the dynamics information crucial for task completion. We first evaluate various pre-trained representations in terms of their correlation to the downstream robotic manipulation tasks (i.e., manipulation centricity). Interestingly, we find that the "manipulation centricity" is a strong indicator of success rates when applied to downstream tasks. Drawing from these findings, we propose Manipulation Centric Representation (MCR), a foundation representation learning framework capturing both visual features and the dynamics information such as actions and proprioceptions of manipulation tasks to improve manipulation centricity. Specifically, we pre-train a visual encoder on the DROID robotic dataset and leverage motion-relevant data such as robot proprioceptive states and actions. We introduce a novel contrastive loss that aligns visual observations with the robot's proprioceptive state-action dynamics, combined with a behavior cloning (BC)-like actor loss to predict actions during pre-training, along with a time contrastive loss. Empirical results across 4 simulation domains with 20 tasks verify that MCR outperforms the strongest baseline method by 14.8%. Moreover, MCR boosts the performance of data-efficient learning with a UR5e arm on 3 real-world tasks by 76.9%. Project website: https://robots-pretrain-robots.github.io/.

Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). Domain specification techniques are key to make large language models disruptive in many applications. Specifically, to solve these hurdles, there has been a notable increase in research and practices conducted in recent years on the domain specialization of LLMs. This emerging field of study, with its substantial potential for impact, necessitates a comprehensive and systematic review to better summarize and guide ongoing work in this area. In this article, we present a comprehensive survey on domain specification techniques for large language models, an emerging direction critical for large language model applications. First, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. Second, we present an extensive taxonomy of critical application domains that can benefit dramatically from specialized LLMs, discussing their practical significance and open challenges. Last, we offer our insights into the current research status and future trends in this area.

Unsupervised Pre-Training for Vietnamese Automatic Speech Recognition in the HYKIST Project

In today's interconnected globe, moving abroad is more and more prevalent, whether it's for employment, refugee resettlement, or other causes. Language difficulties between natives and immigrants present a common issue on a daily basis, especially in medical domain. This can make it difficult for patients and doctors to communicate during anamnesis or in the emergency room, which compromises patient care. The goal of the HYKIST Project is to develop a speech translation system to support patient-doctor communication with ASR and MT. ASR systems have recently displayed astounding performance on particular tasks for which enough quantities of training data are available, such as LibriSpeech. Building a good model is still difficult due to a variety of speaking styles, acoustic and recording settings, and a lack of in-domain training data. In this thesis, we describe our efforts to construct ASR systems for a conversational telephone speech recognition task in the medical domain for Vietnamese language to assist emergency room contact between doctors and patients across linguistic barriers. In order to enhance the system's performance, we investigate various training schedules and data combining strategies. We also examine how best to make use of the little data that is available. The use of publicly accessible models like XLSR-53 is compared to the use of customized pre-trained models, and both supervised and unsupervised approaches are utilized using wav2vec 2.0 as architecture.

LEIA: Linguistic Embeddings for the Identification of Affect

The wealth of text data generated by social media has enabled new kinds of analysis of emotions with language models. These models are often trained on small and costly datasets of text annotations produced by readers who guess the emotions expressed by others in social media posts. This affects the quality of emotion identification methods due to training data size limitations and noise in the production of labels used in model development. We present LEIA, a model for emotion identification in text that has been trained on a dataset of more than 6 million posts with self-annotated emotion labels for happiness, affection, sadness, anger, and fear. LEIA is based on a word masking method that enhances the learning of emotion words during model pre-training. LEIA achieves macro-F1 values of approximately 73 on three in-domain test datasets, outperforming other supervised and unsupervised methods in a strong benchmark that shows that LEIA generalizes across posts, users, and time periods. We further perform an out-of-domain evaluation on five different datasets of social media and other sources, showing LEIA's robust performance across media, data collection methods, and annotation schemes. Our results show that LEIA generalizes its classification of anger, happiness, and sadness beyond the domain it was trained on. LEIA can be applied in future research to provide better identification of emotions in text from the perspective of the writer. The models produced for this article are publicly available at https://huggingface.co/LEIA

TicketTalk: Toward human-level performance with end-to-end, transaction-based dialog systems

We present a data-driven, end-to-end approach to transaction-based dialog systems that performs at near-human levels in terms of verbal response quality and factual grounding accuracy. We show that two essential components of the system produce these results: a sufficiently large and diverse, in-domain labeled dataset, and a neural network-based, pre-trained model that generates both verbal responses and API call predictions. In terms of data, we introduce TicketTalk, a movie ticketing dialog dataset with 23,789 annotated conversations. The movie ticketing conversations range from completely open-ended and unrestricted to more structured, both in terms of their knowledge base, discourse features, and number of turns. In qualitative human evaluations, model-generated responses trained on just 10,000 TicketTalk dialogs were rated to "make sense" 86.5 percent of the time, almost the same as human responses in the same contexts. Our simple, API-focused annotation schema results in a much easier labeling task making it faster and more cost effective. It is also the key component for being able to predict API calls accurately. We handle factual grounding by incorporating API calls in the training data, allowing our model to learn which actions to take and when. Trained on the same 10,000-dialog set, the model's API call predictions were rated to be correct 93.9 percent of the time in our evaluations, surpassing the ratings for the corresponding human labels. We show how API prediction and response generation scores improve as the dataset size incrementally increases from 5000 to 21,000 dialogs. Our analysis also clearly illustrates the benefits of pre-training. We are publicly releasing the TicketTalk dataset with this paper to facilitate future work on transaction-based dialogs.

Crafting Distribution Shifts for Validation and Training in Single Source Domain Generalization

Single-source domain generalization attempts to learn a model on a source domain and deploy it to unseen target domains. Limiting access only to source domain data imposes two key challenges - how to train a model that can generalize and how to verify that it does. The standard practice of validation on the training distribution does not accurately reflect the model's generalization ability, while validation on the test distribution is a malpractice to avoid. In this work, we construct an independent validation set by transforming source domain images with a comprehensive list of augmentations, covering a broad spectrum of potential distribution shifts in target domains. We demonstrate a high correlation between validation and test performance for multiple methods and across various datasets. The proposed validation achieves a relative accuracy improvement over the standard validation equal to 15.4% or 1.6% when used for method selection or learning rate tuning, respectively. Furthermore, we introduce a novel family of methods that increase the shape bias through enhanced edge maps. To benefit from the augmentations during training and preserve the independence of the validation set, a k-fold validation process is designed to separate the augmentation types used in training and validation. The method that achieves the best performance on the augmented validation is selected from the proposed family. It achieves state-of-the-art performance on various standard benchmarks. Code at: https://github.com/NikosEfth/crafting-shifts

3D-VField: Adversarial Augmentation of Point Clouds for Domain Generalization in 3D Object Detection

As 3D object detection on point clouds relies on the geometrical relationships between the points, non-standard object shapes can hinder a method's detection capability. However, in safety-critical settings, robustness to out-of-domain and long-tail samples is fundamental to circumvent dangerous issues, such as the misdetection of damaged or rare cars. In this work, we substantially improve the generalization of 3D object detectors to out-of-domain data by deforming point clouds during training. We achieve this with 3D-VField: a novel data augmentation method that plausibly deforms objects via vector fields learned in an adversarial fashion. Our approach constrains 3D points to slide along their sensor view rays while neither adding nor removing any of them. The obtained vectors are transferable, sample-independent and preserve shape and occlusions. Despite training only on a standard dataset, such as KITTI, augmenting with our vector fields significantly improves the generalization to differently shaped objects and scenes. Towards this end, we propose and share CrashD: a synthetic dataset of realistic damaged and rare cars, with a variety of crash scenarios. Extensive experiments on KITTI, Waymo, our CrashD and SUN RGB-D show the generalizability of our techniques to out-of-domain data, different models and sensors, namely LiDAR and ToF cameras, for both indoor and outdoor scenes. Our CrashD dataset is available at https://crashd-cars.github.io.

Unifying Demonstration Selection and Compression for In-Context Learning

In-context learning (ICL) facilitates large language models (LLMs) exhibiting spectacular emergent capabilities in various scenarios. Unfortunately, introducing demonstrations easily makes the prompt length explode, bringing a significant burden to hardware. In addition, random demonstrations usually achieve limited improvements in ICL, necessitating demonstration selection among accessible candidates. Previous studies introduce extra modules to perform demonstration compression or selection independently. In this paper, we propose an ICL framework UniICL, which Unifies demonstration selection and compression, and final response generation via a single frozen LLM. Specifically, UniICL first projects actual demonstrations and inference text inputs into short virtual tokens, respectively. Then, virtual tokens are applied to select suitable demonstrations by measuring semantic similarity within latent space among candidate demonstrations and inference input. Finally, inference text inputs together with selected virtual demonstrations are fed into the same frozen LLM for response generation. Notably, UniICL is a parameter-efficient framework that only contains 17M trainable parameters originating from the projection layer. We conduct experiments and analysis over in- and out-domain datasets of both generative and understanding tasks, encompassing ICL scenarios with plentiful and limited demonstration candidates. Results show that UniICL effectively unifies 12 times compression, demonstration selection, and response generation, efficiently scaling up the baseline from 4-shot to 64-shot ICL in IMDb with 24 GB CUDA allocation

Enhancing Environmental Robustness in Few-shot Learning via Conditional Representation Learning

Few-shot learning (FSL) has recently been extensively utilized to overcome the scarcity of training data in domain-specific visual recognition. In real-world scenarios, environmental factors such as complex backgrounds, varying lighting conditions, long-distance shooting, and moving targets often cause test images to exhibit numerous incomplete targets or noise disruptions. However, current research on evaluation datasets and methodologies has largely ignored the concept of "environmental robustness", which refers to maintaining consistent performance in complex and diverse physical environments. This neglect has led to a notable decline in the performance of FSL models during practical testing compared to their training performance. To bridge this gap, we introduce a new real-world multi-domain few-shot learning (RD-FSL) benchmark, which includes four domains and six evaluation datasets. The test images in this benchmark feature various challenging elements, such as camouflaged objects, small targets, and blurriness. Our evaluation experiments reveal that existing methods struggle to utilize training images effectively to generate accurate feature representations for challenging test images. To address this problem, we propose a novel conditional representation learning network (CRLNet) that integrates the interactions between training and testing images as conditional information in their respective representation processes. The main goal is to reduce intra-class variance or enhance inter-class variance at the feature representation level. Finally, comparative experiments reveal that CRLNet surpasses the current state-of-the-art methods, achieving performance improvements ranging from 6.83% to 16.98% across diverse settings and backbones. The source code and dataset are available at https://github.com/guoqianyu-alberta/Conditional-Representation-Learning.

AD-CLIP: Adapting Domains in Prompt Space Using CLIP

Although deep learning models have shown impressive performance on supervised learning tasks, they often struggle to generalize well when the training (source) and test (target) domains differ. Unsupervised domain adaptation (DA) has emerged as a popular solution to this problem. However, current DA techniques rely on visual backbones, which may lack semantic richness. Despite the potential of large-scale vision-language foundation models like CLIP, their effectiveness for DA has yet to be fully explored. To address this gap, we introduce AD-CLIP, a domain-agnostic prompt learning strategy for CLIP that aims to solve the DA problem in the prompt space. We leverage the frozen vision backbone of CLIP to extract both image style (domain) and content information, which we apply to learn prompt tokens. Our prompts are designed to be domain-invariant and class-generalizable, by conditioning prompt learning on image style and content features simultaneously. We use standard supervised contrastive learning in the source domain, while proposing an entropy minimization strategy to align domains in the embedding space given the target domain data. We also consider a scenario where only target domain samples are available during testing, without any source domain data, and propose a cross-domain style mapping network to hallucinate domain-agnostic tokens. Our extensive experiments on three benchmark DA datasets demonstrate the effectiveness of AD-CLIP compared to existing literature.

LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation

Machine translation is indispensable in healthcare for enabling the global dissemination of medical knowledge across languages. However, complex medical terminology poses unique challenges to achieving adequate translation quality and accuracy. This study introduces a novel "LLMs-in-the-loop" approach to develop supervised neural machine translation models optimized specifically for medical texts. While large language models (LLMs) have demonstrated powerful capabilities, this research shows that small, specialized models trained on high-quality in-domain (mostly synthetic) data can outperform even vastly larger LLMs. Custom parallel corpora in six languages were compiled from scientific articles, synthetically generated clinical documents, and medical texts. Our LLMs-in-the-loop methodology employs synthetic data generation, rigorous evaluation, and agent orchestration to enhance performance. We developed small medical translation models using the MarianMT base model. We introduce a new medical translation test dataset to standardize evaluation in this domain. Assessed using BLEU, METEOR, ROUGE, and BERT scores on this test set, our MarianMT-based models outperform Google Translate, DeepL, and GPT-4-Turbo. Results demonstrate that our LLMs-in-the-loop approach, combined with fine-tuning high-quality, domain-specific data, enables specialized models to outperform general-purpose and some larger systems. This research, part of a broader series on expert small models, paves the way for future healthcare-related AI developments, including deidentification and bio-medical entity extraction models. Our study underscores the potential of tailored neural translation models and the LLMs-in-the-loop methodology to advance the field through improved data generation, evaluation, agent, and modeling techniques.

Evaluating Prompt-based Question Answering for Object Prediction in the Open Research Knowledge Graph

There have been many recent investigations into prompt-based training of transformer language models for new text genres in low-resource settings. The prompt-based training approach has been found to be effective in generalizing pre-trained or fine-tuned models for transfer to resource-scarce settings. This work, for the first time, reports results on adopting prompt-based training of transformers for scholarly knowledge graph object prediction. The work is unique in the following two main aspects. 1) It deviates from the other works proposing entity and relation extraction pipelines for predicting objects of a scholarly knowledge graph. 2) While other works have tested the method on text genera relatively close to the general knowledge domain, we test the method for a significantly different domain, i.e. scholarly knowledge, in turn testing the linguistic, probabilistic, and factual generalizability of these large-scale transformer models. We find that (i) per expectations, transformer models when tested out-of-the-box underperform on a new domain of data, (ii) prompt-based training of the models achieve performance boosts of up to 40\% in a relaxed evaluation setting, and (iii) testing the models on a starkly different domain even with a clever training objective in a low resource setting makes evident the domain knowledge capture gap offering an empirically-verified incentive for investing more attention and resources to the scholarly domain in the context of transformer models.

$\textbf{Only-IF}$:Revealing the Decisive Effect of Instruction Diversity on Generalization

Understanding and accurately following instructions is critical for large language models (LLMs) to be effective across diverse tasks. In this work, we rigorously examine the key factors that enable models to generalize to unseen instructions, providing insights to guide the collection of data for instruction-tuning. Through controlled experiments, inspired by the Turing-complete Markov algorithm, we demonstrate that such generalization only emerges when training data is diversified enough across semantic domains. Our findings also reveal that merely diversifying within limited domains fails to ensure robust generalization. In contrast, cross-domain data diversification, even under constrained data budgets, significantly enhances a model's adaptability. We further extend our analysis to real-world scenarios, including fine-tuning of $textbf{specialist} and textbf{generalist}$ models. In both cases, we demonstrate that 1) better performance can be achieved by increasing the diversity of an established dataset while keeping the data size constant, and 2) when scaling up the data, diversifying the semantics of instructions is more effective than simply increasing the quantity of similar data. Our research provides important insights for dataset collation, particularly when optimizing model performance by expanding training data for both specialist and generalist scenarios. We show that careful consideration of data diversification is key: training specialist models with data extending beyond their core domain leads to significant performance improvements, while generalist models benefit from diverse data mixtures that enhance their overall instruction-following capabilities across a wide range of applications. Our results highlight the critical role of strategic diversification and offer clear guidelines for improving data quality.

Large Language Models as Foundations for Next-Gen Dense Retrieval: A Comprehensive Empirical Assessment

Pretrained language models like BERT and T5 serve as crucial backbone encoders for dense retrieval. However, these models often exhibit limited generalization capabilities and face challenges in improving in domain accuracy. Recent research has explored using large language models (LLMs) as retrievers, achieving SOTA performance across various tasks. Despite these advancements, the specific benefits of LLMs over traditional retrievers and the impact of different LLM configurations, such as parameter sizes, pretraining duration, and alignment processes on retrieval tasks remain unclear. In this work, we conduct a comprehensive empirical study on a wide range of retrieval tasks, including in domain accuracy, data efficiency, zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. We evaluate over 15 different backbone LLMs and non LLMs. Our findings reveal that larger models and extensive pretraining consistently enhance in domain accuracy and data efficiency. Additionally, larger models demonstrate significant potential in zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. These results underscore the advantages of LLMs as versatile and effective backbone encoders in dense retrieval, providing valuable insights for future research and development in this field.

Evidence-Driven Retrieval Augmented Response Generation for Online Misinformation

The proliferation of online misinformation has posed significant threats to public interest. While numerous online users actively participate in the combat against misinformation, many of such responses can be characterized by the lack of politeness and supporting facts. As a solution, text generation approaches are proposed to automatically produce counter-misinformation responses. Nevertheless, existing methods are often trained end-to-end without leveraging external knowledge, resulting in subpar text quality and excessively repetitive responses. In this paper, we propose retrieval augmented response generation for online misinformation (RARG), which collects supporting evidence from scientific sources and generates counter-misinformation responses based on the evidences. In particular, our RARG consists of two stages: (1) evidence collection, where we design a retrieval pipeline to retrieve and rerank evidence documents using a database comprising over 1M academic articles; (2) response generation, in which we align large language models (LLMs) to generate evidence-based responses via reinforcement learning from human feedback (RLHF). We propose a reward function to maximize the utilization of the retrieved evidence while maintaining the quality of the generated text, which yields polite and factual responses that clearly refutes misinformation. To demonstrate the effectiveness of our method, we study the case of COVID-19 and perform extensive experiments with both in- and cross-domain datasets, where RARG consistently outperforms baselines by generating high-quality counter-misinformation responses.

MULTI3NLU++: A Multilingual, Multi-Intent, Multi-Domain Dataset for Natural Language Understanding in Task-Oriented Dialogue

Task-oriented dialogue (TOD) systems have been applied in a range of domains to support human users to achieve specific goals. Systems are typically constructed for a single domain or language and do not generalise well beyond this. Their extension to other languages in particular is restricted by the lack of available training data for many of the world's languages. To support work on Natural Language Understanding (NLU) in TOD across multiple languages and domains simultaneously, we constructed MULTI3NLU++, a multilingual, multi-intent, multi-domain dataset. MULTI3NLU++ extends the English-only NLU++ dataset to include manual translations into a range of high, medium and low resource languages (Spanish, Marathi, Turkish and Amharic), in two domains (banking and hotels). MULTI3NLU++ inherits the multi-intent property of NLU++, where an utterance may be labelled with multiple intents, providing a more realistic representation of a user's goals and aligning with the more complex tasks that commercial systems aim to model. We use MULTI3NLU++ to benchmark state-of-the-art multilingual language models as well as Machine Translation and Question Answering systems for the NLU task of intent detection for TOD systems in the multilingual setting. The results demonstrate the challenging nature of the dataset, particularly in the low-resource language setting.

Localising In-Domain Adaptation of Transformer-Based Biomedical Language Models

In the era of digital healthcare, the huge volumes of textual information generated every day in hospitals constitute an essential but underused asset that could be exploited with task-specific, fine-tuned biomedical language representation models, improving patient care and management. For such specialized domains, previous research has shown that fine-tuning models stemming from broad-coverage checkpoints can largely benefit additional training rounds over large-scale in-domain resources. However, these resources are often unreachable for less-resourced languages like Italian, preventing local medical institutions to employ in-domain adaptation. In order to reduce this gap, our work investigates two accessible approaches to derive biomedical language models in languages other than English, taking Italian as a concrete use-case: one based on neural machine translation of English resources, favoring quantity over quality; the other based on a high-grade, narrow-scoped corpus natively written in Italian, thus preferring quality over quantity. Our study shows that data quantity is a harder constraint than data quality for biomedical adaptation, but the concatenation of high-quality data can improve model performance even when dealing with relatively size-limited corpora. The models published from our investigations have the potential to unlock important research opportunities for Italian hospitals and academia. Finally, the set of lessons learned from the study constitutes valuable insights towards a solution to build biomedical language models that are generalizable to other less-resourced languages and different domain settings.

SF(DA)$^2$: Source-free Domain Adaptation Through the Lens of Data Augmentation

In the face of the deep learning model's vulnerability to domain shift, source-free domain adaptation (SFDA) methods have been proposed to adapt models to new, unseen target domains without requiring access to source domain data. Although the potential benefits of applying data augmentation to SFDA are attractive, several challenges arise such as the dependence on prior knowledge of class-preserving transformations and the increase in memory and computational requirements. In this paper, we propose Source-free Domain Adaptation Through the Lens of Data Augmentation (SF(DA)^2), a novel approach that leverages the benefits of data augmentation without suffering from these challenges. We construct an augmentation graph in the feature space of the pretrained model using the neighbor relationships between target features and propose spectral neighborhood clustering to identify partitions in the prediction space. Furthermore, we propose implicit feature augmentation and feature disentanglement as regularization loss functions that effectively utilize class semantic information within the feature space. These regularizers simulate the inclusion of an unlimited number of augmented target features into the augmentation graph while minimizing computational and memory demands. Our method shows superior adaptation performance in SFDA scenarios, including 2D image and 3D point cloud datasets and a highly imbalanced dataset.

Exploring the Effect of Dataset Diversity in Self-Supervised Learning for Surgical Computer Vision

Over the past decade, computer vision applications in minimally invasive surgery have rapidly increased. Despite this growth, the impact of surgical computer vision remains limited compared to other medical fields like pathology and radiology, primarily due to the scarcity of representative annotated data. Whereas transfer learning from large annotated datasets such as ImageNet has been conventionally the norm to achieve high-performing models, recent advancements in self-supervised learning (SSL) have demonstrated superior performance. In medical image analysis, in-domain SSL pretraining has already been shown to outperform ImageNet-based initialization. Although unlabeled data in the field of surgical computer vision is abundant, the diversity within this data is limited. This study investigates the role of dataset diversity in SSL for surgical computer vision, comparing procedure-specific datasets against a more heterogeneous general surgical dataset across three different downstream surgical applications. The obtained results show that using solely procedure-specific data can lead to substantial improvements of 13.8%, 9.5%, and 36.8% compared to ImageNet pretraining. However, extending this data with more heterogeneous surgical data further increases performance by an additional 5.0%, 5.2%, and 2.5%, suggesting that increasing diversity within SSL data is beneficial for model performance. The code and pretrained model weights are made publicly available at https://github.com/TimJaspers0801/SurgeNet.

FairDomain: Achieving Fairness in Cross-Domain Medical Image Segmentation and Classification

Addressing fairness in artificial intelligence (AI), particularly in medical AI, is crucial for ensuring equitable healthcare outcomes. Recent efforts to enhance fairness have introduced new methodologies and datasets in medical AI. However, the fairness issue under the setting of domain transfer is almost unexplored, while it is common that clinics rely on different imaging technologies (e.g., different retinal imaging modalities) for patient diagnosis. This paper presents FairDomain, a pioneering systemic study into algorithmic fairness under domain shifts, employing state-of-the-art domain adaptation (DA) and generalization (DG) algorithms for both medical segmentation and classification tasks to understand how biases are transferred between different domains. We also introduce a novel plug-and-play fair identity attention (FIA) module that adapts to various DA and DG algorithms to improve fairness by using self-attention to adjust feature importance based on demographic attributes. Additionally, we curate the first fairness-focused dataset with two paired imaging modalities for the same patient cohort on medical segmentation and classification tasks, to rigorously assess fairness in domain-shift scenarios. Excluding the confounding impact of demographic distribution variation between source and target domains will allow clearer quantification of the performance of domain transfer models. Our extensive evaluations reveal that the proposed FIA significantly enhances both model performance accounted for fairness across all domain shift settings (i.e., DA and DG) with respect to different demographics, which outperforms existing methods on both segmentation and classification. The code and data can be accessed at https://ophai.hms.harvard.edu/datasets/harvard-fairdomain20k.

Open-Source Large Language Models as Multilingual Crowdworkers: Synthesizing Open-Domain Dialogues in Several Languages With No Examples in Targets and No Machine Translation

The prevailing paradigm in the domain of Open-Domain Dialogue agents predominantly focuses on the English language, encompassing both models and datasets. Furthermore, the financial and temporal investments required for crowdsourcing such datasets for finetuning are substantial, particularly when multiple languages are involved. Fortunately, advancements in Large Language Models (LLMs) have unveiled a plethora of possibilities across diverse tasks. Specifically, instruction-tuning has enabled LLMs to execute tasks based on natural language instructions, occasionally surpassing the performance of human crowdworkers. Additionally, these models possess the capability to function in various languages within a single thread. Consequently, to generate new samples in different languages, we propose leveraging these capabilities to replicate the data collection process. We introduce a pipeline for generating Open-Domain Dialogue data in multiple Target Languages using LLMs, with demonstrations provided in a unique Source Language. By eschewing explicit Machine Translation in this approach, we enhance the adherence to language-specific nuances. We apply this methodology to the PersonaChat dataset. To enhance the openness of generated dialogues and mimic real life scenarii, we added the notion of speech events corresponding to the type of conversation the speakers are involved in and also that of common ground which represents the premises of a conversation.

MORDA: A Synthetic Dataset to Facilitate Adaptation of Object Detectors to Unseen Real-target Domain While Preserving Performance on Real-source Domain

Deep neural network (DNN) based perception models are indispensable in the development of autonomous vehicles (AVs). However, their reliance on large-scale, high-quality data is broadly recognized as a burdensome necessity due to the substantial cost of data acquisition and labeling. Further, the issue is not a one-time concern, as AVs might need a new dataset if they are to be deployed to another region (real-target domain) that the in-hand dataset within the real-source domain cannot incorporate. To mitigate this burden, we propose leveraging synthetic environments as an auxiliary domain where the characteristics of real domains are reproduced. This approach could enable indirect experience about the real-target domain in a time- and cost-effective manner. As a practical demonstration of our methodology, nuScenes and South Korea are employed to represent real-source and real-target domains, respectively. That means we construct digital twins for several regions of South Korea, and the data-acquisition framework of nuScenes is reproduced. Blending the aforementioned components within a simulator allows us to obtain a synthetic-fusion domain in which we forge our novel driving dataset, MORDA: Mixture Of Real-domain characteristics for synthetic-data-assisted Domain Adaptation. To verify the value of synthetic features that MORDA provides in learning about driving environments of South Korea, 2D/3D detectors are trained solely on a combination of nuScenes and MORDA. Afterward, their performance is evaluated on the unforeseen real-world dataset (AI-Hub) collected in South Korea. Our experiments present that MORDA can significantly improve mean Average Precision (mAP) on AI-Hub dataset while that on nuScenes is retained or slightly enhanced.

Exploring the Impact of Table-to-Text Methods on Augmenting LLM-based Question Answering with Domain Hybrid Data

Augmenting Large Language Models (LLMs) for Question Answering (QA) with domain specific data has attracted wide attention. However, domain data often exists in a hybrid format, including text and semi-structured tables, posing challenges for the seamless integration of information. Table-to-Text Generation is a promising solution by facilitating the transformation of hybrid data into a uniformly text-formatted corpus. Although this technique has been widely studied by the NLP community, there is currently no comparative analysis on how corpora generated by different table-to-text methods affect the performance of QA systems. In this paper, we address this research gap in two steps. First, we innovatively integrate table-to-text generation into the framework of enhancing LLM-based QA systems with domain hybrid data. Then, we utilize this framework in real-world industrial data to conduct extensive experiments on two types of QA systems (DSFT and RAG frameworks) with four representative methods: Markdown format, Template serialization, TPLM-based method, and LLM-based method. Based on the experimental results, we draw some empirical findings and explore the underlying reasons behind the success of some methods. We hope the findings of this work will provide a valuable reference for the academic and industrial communities in developing robust QA systems.

InfinityMATH: A Scalable Instruction Tuning Dataset in Programmatic Mathematical Reasoning

Recent advancements in Chain-of-Thoughts (CoT) and Program-of-Thoughts (PoT) methods have greatly enhanced language models' mathematical reasoning capabilities, facilitating their integration into instruction tuning datasets with LLMs. However, existing methods for large-scale dataset creation require substantial seed data and high computational costs for data synthesis, posing significant challenges for scalability. We introduce InfinityMATH, a scalable instruction tuning dataset for programmatic mathematical reasoning. The construction pipeline emphasizes decoupling numbers from mathematical problems to synthesize number-independent programs, enabling efficient and flexible scaling while minimizing dependency on specific numerical values. Fine-tuning experiments with open-source language and code models, such as Llama2 and CodeLlama, demonstrate the practical benefits of InfinityMATH. These fine-tuned models, showed significant relative improvements on both in-domain and out-of-domain benchmarks, ranging from 184.7% to 514.3% on average. Additionally, these models exhibited high robustness on the GSM8K+ and MATH+ benchmarks, which are enhanced version of test sets with simply the number variations. InfinityMATH ensures that models are more versatile and effective across a broader range of mathematical problems. The data is available at https://huggingface.co/datasets/flagopen/InfinityMATH.

Biomedical and Clinical Language Models for Spanish: On the Benefits of Domain-Specific Pretraining in a Mid-Resource Scenario

This work presents biomedical and clinical language models for Spanish by experimenting with different pretraining choices, such as masking at word and subword level, varying the vocabulary size and testing with domain data, looking for better language representations. Interestingly, in the absence of enough clinical data to train a model from scratch, we applied mixed-domain pretraining and cross-domain transfer approaches to generate a performant bio-clinical model suitable for real-world clinical data. We evaluated our models on Named Entity Recognition (NER) tasks for biomedical documents and challenging hospital discharge reports. When compared against the competitive mBERT and BETO models, we outperform them in all NER tasks by a significant margin. Finally, we studied the impact of the model's vocabulary on the NER performances by offering an interesting vocabulary-centric analysis. The results confirm that domain-specific pretraining is fundamental to achieving higher performances in downstream NER tasks, even within a mid-resource scenario. To the best of our knowledge, we provide the first biomedical and clinical transformer-based pretrained language models for Spanish, intending to boost native Spanish NLP applications in biomedicine. Our best models are freely available in the HuggingFace hub: https://huggingface.co/BSC-TeMU.

On the Effects of Data Scale on Computer Control Agents

Autonomous agents that control computer interfaces to accomplish human tasks are emerging. Leveraging LLMs to power such agents has been of special interest, but unless fine-tuned on human-collected task demonstrations, performance is still relatively low. In this work we study whether fine-tuning alone is a viable approach for building real-world computer control agents. %In particularly, we investigate how performance measured on both high and low-level tasks in domain and out of domain scales as more training data is collected. To this end we collect and release a new dataset, AndroidControl, consisting of 15,283 demonstrations of everyday tasks with Android apps. Compared to existing datasets, each AndroidControl task instance includes both high and low-level human-generated instructions, allowing us to explore the level of task complexity an agent can handle. Moreover, AndroidControl is the most diverse computer control dataset to date, including 15,283 unique tasks over 833 Android apps, thus allowing us to conduct in-depth analysis of the model performance in and out of the domain of the training data. Using the dataset, we find that when tested in domain fine-tuned models outperform zero and few-shot baselines and scale in such a way that robust performance might feasibly be obtained simply by collecting more data. Out of domain, performance scales significantly more slowly and suggests that in particular for high-level tasks, fine-tuning on more data alone may be insufficient for achieving robust out-of-domain performance.

MAG-V: A Multi-Agent Framework for Synthetic Data Generation and Verification

Extending the capabilities of Large Language Models (LLMs) with functions or tools for environment interaction has led to the emergence of the agent paradigm. In industry, training an LLM is not always feasible because of the scarcity of domain data, legal holds on proprietary customer data, rapidly changing business requirements, and the need to prototype new assistants. Agents provide an elegant solution to the above by relying on the zero-shot reasoning abilities of the underlying LLM and utilizing tools to explore and reason over customer data and respond to user requests. However, there are two concerns here: (I) acquiring large scale customer queries for agent testing is time-consuming, and (II) high reliance on the tool call sequence (or trajectory) followed by the agent to respond to user queries may lead to unexpected or incorrect behavior. To address this, we propose MAG-V, a multi-agent framework to first generate a dataset of questions that mimic customer queries; and second, reverse-engineer alternate questions from the responses for trajectory verification. Initial results indicate that our synthetic data can improve agent performance on actual customer queries. Furthermore, our trajectory verification methodology, inspired by distant supervision and using traditional machine learning (ML) models, outperforms a GPT-4o judge baseline by 11% accuracy and matches the performance of a GPT-4 judge on our constructed dataset. Overall, our approach is a step towards unifying diverse task agents into a cohesive framework for achieving an aligned objective.

weighted CapsuleNet networks for Persian multi-domain sentiment analysis

Sentiment classification is a fundamental task in natural language processing, assigning one of the three classes, positive, negative, or neutral, to free texts. However, sentiment classification models are highly domain dependent; the classifier may perform classification with reasonable accuracy in one domain but not in another due to the Semantic multiplicity of words getting poor accuracy. This article presents a new Persian/Arabic multi-domain sentiment analysis method using the cumulative weighted capsule networks approach. Weighted capsule ensemble consists of training separate capsule networks for each domain and a weighting measure called domain belonging degree (DBD). This criterion consists of TF and IDF, which calculates the dependency of each document for each domain separately; this value is multiplied by the possible output that each capsule creates. In the end, the sum of these multiplications is the title of the final output, and is used to determine the polarity. And the most dependent domain is considered the final output for each domain. The proposed method was evaluated using the Digikala dataset and obtained acceptable accuracy compared to the existing approaches. It achieved an accuracy of 0.89 on detecting the domain of belonging and 0.99 on detecting the polarity. Also, for the problem of dealing with unbalanced classes, a cost-sensitive function was used. This function was able to achieve 0.0162 improvements in accuracy for sentiment classification. This approach on Amazon Arabic data can achieve 0.9695 accuracies in domain classification.

A Contrastive Cross-Channel Data Augmentation Framework for Aspect-based Sentiment Analysis

Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment analysis task, which focuses on detecting the sentiment polarity towards the aspect in a sentence. However, it is always sensitive to the multi-aspect challenge, where features of multiple aspects in a sentence will affect each other. To mitigate this issue, we design a novel training framework, called Contrastive Cross-Channel Data Augmentation (C3 DA), which leverages an in-domain generator to construct more multi-aspect samples and then boosts the robustness of ABSA models via contrastive learning on these generated data. In practice, given a generative pretrained language model and some limited ABSA labeled data, we first employ some parameter-efficient approaches to perform the in-domain fine-tuning. Then, the obtained in-domain generator is used to generate the synthetic sentences from two channels, i.e., Aspect Augmentation Channel and Polarity Augmentation Channel, which generate the sentence condition on a given aspect and polarity respectively. Specifically, our C3 DA performs the sentence generation in a cross-channel manner to obtain more sentences, and proposes an Entropy-Minimization Filter to filter low-quality generated samples. Extensive experiments show that our C3 DA can outperform those baselines without any augmentations by about 1% on accuracy and Macro- F1. Code and data are released in https://github.com/wangbing1416/C3DA.

Adapting Vision Foundation Models for Robust Cloud Segmentation in Remote Sensing Images

Cloud segmentation is a critical challenge in remote sensing image interpretation, as its accuracy directly impacts the effectiveness of subsequent data processing and analysis. Recently, vision foundation models (VFM) have demonstrated powerful generalization capabilities across various visual tasks. In this paper, we present a parameter-efficient adaptive approach, termed Cloud-Adapter, designed to enhance the accuracy and robustness of cloud segmentation. Our method leverages a VFM pretrained on general domain data, which remains frozen, eliminating the need for additional training. Cloud-Adapter incorporates a lightweight spatial perception module that initially utilizes a convolutional neural network (ConvNet) to extract dense spatial representations. These multi-scale features are then aggregated and serve as contextual inputs to an adapting module, which modulates the frozen transformer layers within the VFM. Experimental results demonstrate that the Cloud-Adapter approach, utilizing only 0.6% of the trainable parameters of the frozen backbone, achieves substantial performance gains. Cloud-Adapter consistently attains state-of-the-art (SOTA) performance across a wide variety of cloud segmentation datasets from multiple satellite sources, sensor series, data processing levels, land cover scenarios, and annotation granularities. We have released the source code and pretrained models at https://github.com/XavierJiezou/Cloud-Adapter to support further research.

Domain-Adversarial Training of Neural Networks

We introduce a new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains. The approach implements this idea in the context of neural network architectures that are trained on labeled data from the source domain and unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of features that are (i) discriminative for the main learning task on the source domain and (ii) indiscriminate with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation and stochastic gradient descent, and can thus be implemented with little effort using any of the deep learning packages. We demonstrate the success of our approach for two distinct classification problems (document sentiment analysis and image classification), where state-of-the-art domain adaptation performance on standard benchmarks is achieved. We also validate the approach for descriptor learning task in the context of person re-identification application.

Improved Test-Time Adaptation for Domain Generalization

The main challenge in domain generalization (DG) is to handle the distribution shift problem that lies between the training and test data. Recent studies suggest that test-time training (TTT), which adapts the learned model with test data, might be a promising solution to the problem. Generally, a TTT strategy hinges its performance on two main factors: selecting an appropriate auxiliary TTT task for updating and identifying reliable parameters to update during the test phase. Both previous arts and our experiments indicate that TTT may not improve but be detrimental to the learned model if those two factors are not properly considered. This work addresses those two factors by proposing an Improved Test-Time Adaptation (ITTA) method. First, instead of heuristically defining an auxiliary objective, we propose a learnable consistency loss for the TTT task, which contains learnable parameters that can be adjusted toward better alignment between our TTT task and the main prediction task. Second, we introduce additional adaptive parameters for the trained model, and we suggest only updating the adaptive parameters during the test phase. Through extensive experiments, we show that the proposed two strategies are beneficial for the learned model (see Figure 1), and ITTA could achieve superior performance to the current state-of-the-art methods on several DG benchmarks. Code is available at https://github.com/liangchen527/ITTA.

Characterizing Multi-Domain False News and Underlying User Effects on Chinese Weibo

False news that spreads on social media has proliferated over the past years and has led to multi-aspect threats in the real world. While there are studies of false news on specific domains (like politics or health care), little work is found comparing false news across domains. In this article, we investigate false news across nine domains on Weibo, the largest Twitter-like social media platform in China, from 2009 to 2019. The newly collected data comprise 44,728 posts in the nine domains, published by 40,215 users, and reposted over 3.4 million times. Based on the distributions and spreads of the multi-domain dataset, we observe that false news in domains that are close to daily life like health and medicine generated more posts but diffused less effectively than those in other domains like politics, and that political false news had the most effective capacity for diffusion. The widely diffused false news posts on Weibo were associated strongly with certain types of users -- by gender, age, etc. Further, these posts provoked strong emotions in the reposts and diffused further with the active engagement of false-news starters. Our findings have the potential to help design false news detection systems in suspicious news discovery, veracity prediction, and display and explanation. The comparison of the findings on Weibo with those of existing work demonstrates nuanced patterns, suggesting the need for more research on data from diverse platforms, countries, or languages to tackle the global issue of false news. The code and new anonymized dataset are available at https://github.com/ICTMCG/Characterizing-Weibo-Multi-Domain-False-News.

Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale

Large language model pre-training has traditionally relied on human experts to craft heuristics for improving the corpora quality, resulting in numerous rules developed to date. However, these rules lack the flexibility to address the unique characteristics of individual example effectively. Meanwhile, applying tailored rules to every example is impractical for human experts. In this paper, we demonstrate that even small language models, with as few as 0.3B parameters, can exhibit substantial data refining capabilities comparable to those of human experts. We introduce Programming Every Example (ProX), a novel framework that treats data refinement as a programming task, enabling models to refine corpora by generating and executing fine-grained operations, such as string normalization, for each individual example at scale. Experimental results show that models pre-trained on ProX-curated data outperform either original data or data filtered by other selection methods by more than 2% across various downstream benchmarks. Its effectiveness spans various model sizes and pre-training corpora, including C4, RedPajama-V2, and FineWeb. Furthermore, ProX exhibits significant potential in domain-specific continual pre-training: without domain specific design, models trained on OpenWebMath refined by ProX outperform human-crafted rule-based methods, improving average accuracy by 7.6% over Mistral-7B, with 14.6% for Llama-2-7B and 20.3% for CodeLlama-7B, all within 10B tokens to be comparable to models like Llemma-7B trained on 200B tokens. Further analysis highlights that ProX significantly saves training FLOPs, offering a promising path for efficient LLM pre-training.We are open-sourcing ProX with >100B corpus, models, and sharing all training and implementation details for reproducible research and future innovation. Code: https://github.com/GAIR-NLP/ProX

Toxicity of the Commons: Curating Open-Source Pre-Training Data

Open-source large language models are becoming increasingly available and popular among researchers and practitioners. While significant progress has been made on open-weight models, open training data is a practice yet to be adopted by the leading open-weight models creators. At the same time, there researchers are working to make language models safer. We propose a data curation pipeline to reduce harmful outputs by models trained on public domain data. There are unique challenges to working with public domain data, as these sources differ from web text in both form and content. Many sources are historical documents and are the result of Optical Character Recognition (OCR). Consequently, current state-of-the-art approaches to toxicity filtering are often infeasible or inappropriate for open data models. In this paper, we introduce a new fully open-source pipeline for open-data toxicity filtering. Our contributions are threefold. We create a custom training dataset, ToxicCommons, which is composed of texts which have been classified across five different dimensions (racial/origin-based, gender/sex-based, religious, ability-based discrimination, and violence). We use this dataset to train a custom classifier, Celadon, that can be used to detect toxic content in open data more efficiently at a larger scale. Finally, we describe the balanced approach to content filtration that optimizes safety filtering with respect to the filtered data available for training.

SmallToLarge (S2L): Scalable Data Selection for Fine-tuning Large Language Models by Summarizing Training Trajectories of Small Models

Despite the effectiveness of data selection for large language models (LLMs) during pretraining and instruction fine-tuning phases, improving data efficiency in supervised fine-tuning (SFT) for specialized domains poses significant challenges due to the complexity of fine-tuning data. To bridge this gap, we introduce an effective and scalable data selection method for SFT, SmallToLarge (S2L), which leverages training trajectories from small models to guide the data selection for larger models. We demonstrate through extensive experiments that S2L significantly improves data efficiency in SFT for mathematical problem-solving, reducing the training data to just 11% of the original MathInstruct dataset (Yue et al., 2023) to match full dataset performance while outperforming state-of-the-art data selection algorithms by an average of 4.7% across 6 in- and out-domain evaluation datasets. Remarkably, selecting only 50K data for SFT, S2L achieves a 32.7% accuracy on the most challenging MATH (Hendrycks et al., 2021) benchmark, improving Phi-2 (Li et al., 2023b) by 16.6%. In clinical text summarization on the MIMIC-III dataset (Johnson et al., 2016), S2L again outperforms training on the full dataset using only 50% of the data. Notably, S2L can perform data selection using a reference model 40x smaller than the target model, proportionally reducing the cost of data selection.

Decorate the Newcomers: Visual Domain Prompt for Continual Test Time Adaptation

Continual Test-Time Adaptation (CTTA) aims to adapt the source model to continually changing unlabeled target domains without access to the source data. Existing methods mainly focus on model-based adaptation in a self-training manner, such as predicting pseudo labels for new domain datasets. Since pseudo labels are noisy and unreliable, these methods suffer from catastrophic forgetting and error accumulation when dealing with dynamic data distributions. Motivated by the prompt learning in NLP, in this paper, we propose to learn an image-level visual domain prompt for target domains while having the source model parameters frozen. During testing, the changing target datasets can be adapted to the source model by reformulating the input data with the learned visual prompts. Specifically, we devise two types of prompts, i.e., domains-specific prompts and domains-agnostic prompts, to extract current domain knowledge and maintain the domain-shared knowledge in the continual adaptation. Furthermore, we design a homeostasis-based prompt adaptation strategy to suppress domain-sensitive parameters in domain-invariant prompts to learn domain-shared knowledge more effectively. This transition from the model-dependent paradigm to the model-free one enables us to bypass the catastrophic forgetting and error accumulation problems. Experiments show that our proposed method achieves significant performance gains over state-of-the-art methods on four widely-used benchmarks, including CIFAR-10C, CIFAR-100C, ImageNet-C, and VLCS datasets.

Towards Best Practices for Open Datasets for LLM Training

Many AI companies are training their large language models (LLMs) on data without the permission of the copyright owners. The permissibility of doing so varies by jurisdiction: in countries like the EU and Japan, this is allowed under certain restrictions, while in the United States, the legal landscape is more ambiguous. Regardless of the legal status, concerns from creative producers have led to several high-profile copyright lawsuits, and the threat of litigation is commonly cited as a reason for the recent trend towards minimizing the information shared about training datasets by both corporate and public interest actors. This trend in limiting data information causes harm by hindering transparency, accountability, and innovation in the broader ecosystem by denying researchers, auditors, and impacted individuals access to the information needed to understand AI models. While this could be mitigated by training language models on open access and public domain data, at the time of writing, there are no such models (trained at a meaningful scale) due to the substantial technical and sociological challenges in assembling the necessary corpus. These challenges include incomplete and unreliable metadata, the cost and complexity of digitizing physical records, and the diverse set of legal and technical skills required to ensure relevance and responsibility in a quickly changing landscape. Building towards a future where AI systems can be trained on openly licensed data that is responsibly curated and governed requires collaboration across legal, technical, and policy domains, along with investments in metadata standards, digitization, and fostering a culture of openness.

Leveraging Open Knowledge for Advancing Task Expertise in Large Language Models

The cultivation of expertise for large language models (LLMs) to solve tasks of specific areas often requires special-purpose tuning with calibrated behaviors on the expected stable outputs. To avoid huge cost brought by manual preparation of instruction datasets and training resources up to hundreds of hours, the exploitation of open knowledge including a wealth of low rank adaptation (LoRA) models and instruction datasets serves as a good starting point. However, existing methods on model and data selection focus on the performance of general-purpose capabilities while neglecting the knowledge gap exposed in domain-specific deployment. In the present study, we propose to bridge such gap by introducing few human-annotated samples (i.e., K-shot) for advancing task expertise of LLMs with open knowledge. Specifically, we develop an efficient and scalable pipeline to cost-efficiently produce task experts where K-shot data intervene in selecting the most promising expert candidates and the task-relevant instructions. A mixture-of-expert (MoE) system is built to make the best use of individual-yet-complementary knowledge between multiple experts. We unveil the two keys to the success of a MoE system, 1) the abidance by K-shot, and 2) the insistence on diversity. For the former, we ensure that models that truly possess problem-solving abilities on K-shot are selected rather than those blind guessers. Besides, during data selection, instructions that share task-relevant contexts with K-shot are prioritized. For the latter, we highlight the diversity of constituting experts and that of the fine-tuning instructions throughout the model and data selection process. Extensive experimental results confirm the superiority of our approach over existing methods on utilization of open knowledge across various tasks. Codes and models will be released later.

ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications

Personal assistants, automatic speech recognizers and dialogue understanding systems are becoming more critical in our interconnected digital world. A clear example is air traffic control (ATC) communications. ATC aims at guiding aircraft and controlling the airspace in a safe and optimal manner. These voice-based dialogues are carried between an air traffic controller (ATCO) and pilots via very-high frequency radio channels. In order to incorporate these novel technologies into ATC (low-resource domain), large-scale annotated datasets are required to develop the data-driven AI systems. Two examples are automatic speech recognition (ASR) and natural language understanding (NLU). In this paper, we introduce the ATCO2 corpus, a dataset that aims at fostering research on the challenging ATC field, which has lagged behind due to lack of annotated data. The ATCO2 corpus covers 1) data collection and pre-processing, 2) pseudo-annotations of speech data, and 3) extraction of ATC-related named entities. The ATCO2 corpus is split into three subsets. 1) ATCO2-test-set corpus contains 4 hours of ATC speech with manual transcripts and a subset with gold annotations for named-entity recognition (callsign, command, value). 2) The ATCO2-PL-set corpus consists of 5281 hours of unlabeled ATC data enriched with automatic transcripts from an in-domain speech recognizer, contextual information, speaker turn information, signal-to-noise ratio estimate and English language detection score per sample. Both available for purchase through ELDA at http://catalog.elra.info/en-us/repository/browse/ELRA-S0484. 3) The ATCO2-test-set-1h corpus is a one-hour subset from the original test set corpus, that we are offering for free at https://www.atco2.org/data. We expect the ATCO2 corpus will foster research on robust ASR and NLU not only in the field of ATC communications but also in the general research community.

Verifiable by Design: Aligning Language Models to Quote from Pre-Training Data

For humans to trust the fluent generations of large language models (LLMs), they must be able to verify their correctness against trusted, external sources. Recent efforts aim to increase verifiability through citations of retrieved documents or post-hoc provenance. However, such citations are prone to mistakes that further complicate their verifiability. To address these limitations, we tackle the verifiability goal with a different philosophy: we trivialize the verification process by developing models that quote verbatim statements from trusted sources in pre-training data. We propose Quote-Tuning, which demonstrates the feasibility of aligning LLMs to leverage memorized information and quote from pre-training data. Quote-Tuning quantifies quoting against large corpora with efficient membership inference tools, and uses the amount of quotes as an implicit reward signal to construct a synthetic preference dataset for quoting, without any human annotation. Next, the target model is aligned to quote using preference optimization algorithms. Experimental results show that Quote-Tuning significantly increases the percentage of LLM generation quoted verbatim from high-quality pre-training documents by 55% to 130% relative to untuned models while maintaining response quality. Further experiments demonstrate that Quote-Tuning generalizes quoting to out-of-domain data, is applicable in different tasks, and provides additional benefits to truthfulness. Quote-Tuning not only serves as a hassle-free method to increase quoting but also opens up avenues for improving LLM trustworthiness through better verifiability.

Boosting Novel Category Discovery Over Domains with Soft Contrastive Learning and All-in-One Classifier

Unsupervised domain adaptation (UDA) has proven to be highly effective in transferring knowledge from a label-rich source domain to a label-scarce target domain. However, the presence of additional novel categories in the target domain has led to the development of open-set domain adaptation (ODA) and universal domain adaptation (UNDA). Existing ODA and UNDA methods treat all novel categories as a single, unified unknown class and attempt to detect it during training. However, we found that domain variance can lead to more significant view-noise in unsupervised data augmentation, which affects the effectiveness of contrastive learning (CL) and causes the model to be overconfident in novel category discovery. To address these issues, a framework named Soft-contrastive All-in-one Network (SAN) is proposed for ODA and UNDA tasks. SAN includes a novel data-augmentation-based soft contrastive learning (SCL) loss to fine-tune the backbone for feature transfer and a more human-intuitive classifier to improve new class discovery capability. The SCL loss weakens the adverse effects of the data augmentation view-noise problem which is amplified in domain transfer tasks. The All-in-One (AIO) classifier overcomes the overconfidence problem of current mainstream closed-set and open-set classifiers. Visualization and ablation experiments demonstrate the effectiveness of the proposed innovations. Furthermore, extensive experiment results on ODA and UNDA show that SAN outperforms existing state-of-the-art methods.

A Survey for Large Language Models in Biomedicine

Recent breakthroughs in large language models (LLMs) offer unprecedented natural language understanding and generation capabilities. However, existing surveys on LLMs in biomedicine often focus on specific applications or model architectures, lacking a comprehensive analysis that integrates the latest advancements across various biomedical domains. This review, based on an analysis of 484 publications sourced from databases including PubMed, Web of Science, and arXiv, provides an in-depth examination of the current landscape, applications, challenges, and prospects of LLMs in biomedicine, distinguishing itself by focusing on the practical implications of these models in real-world biomedical contexts. Firstly, we explore the capabilities of LLMs in zero-shot learning across a broad spectrum of biomedical tasks, including diagnostic assistance, drug discovery, and personalized medicine, among others, with insights drawn from 137 key studies. Then, we discuss adaptation strategies of LLMs, including fine-tuning methods for both uni-modal and multi-modal LLMs to enhance their performance in specialized biomedical contexts where zero-shot fails to achieve, such as medical question answering and efficient processing of biomedical literature. Finally, we discuss the challenges that LLMs face in the biomedicine domain including data privacy concerns, limited model interpretability, issues with dataset quality, and ethics due to the sensitive nature of biomedical data, the need for highly reliable model outputs, and the ethical implications of deploying AI in healthcare. To address these challenges, we also identify future research directions of LLM in biomedicine including federated learning methods to preserve data privacy and integrating explainable AI methodologies to enhance the transparency of LLMs.

WebFAQ: A Multilingual Collection of Natural Q&A Datasets for Dense Retrieval

We present WebFAQ, a large-scale collection of open-domain question answering datasets derived from FAQ-style schema.org annotations. In total, the data collection consists of 96 million natural question-answer (QA) pairs across 75 languages, including 47 million (49%) non-English samples. WebFAQ further serves as the foundation for 20 monolingual retrieval benchmarks with a total size of 11.2 million QA pairs (5.9 million non-English). These datasets are carefully curated through refined filtering and near-duplicate detection, yielding high-quality resources for training and evaluating multilingual dense retrieval models. To empirically confirm WebFAQ's efficacy, we use the collected QAs to fine-tune an in-domain pretrained XLM-RoBERTa model. Through this process of dataset-specific fine-tuning, the model achieves significant retrieval performance gains, which generalize - beyond WebFAQ - to other multilingual retrieval benchmarks evaluated in zero-shot setting. Last but not least, we utilize WebFAQ to construct a set of QA-aligned bilingual corpora spanning over 1000 language pairs using state-of-the-art bitext mining and automated LLM-assessed translation evaluation. Due to our advanced, automated method of bitext dataset generation, the resulting bilingual corpora demonstrate higher translation quality compared to similar datasets. WebFAQ and all associated resources are publicly available on GitHub and HuggingFace.

Few-shot learning for automated content analysis: Efficient coding of arguments and claims in the debate on arms deliveries to Ukraine

Pre-trained language models (PLM) based on transformer neural networks developed in the field of natural language processing (NLP) offer great opportunities to improve automatic content analysis in communication science, especially for the coding of complex semantic categories in large datasets via supervised machine learning. However, three characteristics so far impeded the widespread adoption of the methods in the applying disciplines: the dominance of English language models in NLP research, the necessary computing resources, and the effort required to produce training data to fine-tune PLMs. In this study, we address these challenges by using a multilingual transformer model in combination with the adapter extension to transformers, and few-shot learning methods. We test our approach on a realistic use case from communication science to automatically detect claims and arguments together with their stance in the German news debate on arms deliveries to Ukraine. In three experiments, we evaluate (1) data preprocessing strategies and model variants for this task, (2) the performance of different few-shot learning methods, and (3) how well the best setup performs on varying training set sizes in terms of validity, reliability, replicability and reproducibility of the results. We find that our proposed combination of transformer adapters with pattern exploiting training provides a parameter-efficient and easily shareable alternative to fully fine-tuning PLMs. It performs on par in terms of validity, while overall, provides better properties for application in communication studies. The results also show that pre-fine-tuning for a task on a near-domain dataset leads to substantial improvement, in particular in the few-shot setting. Further, the results indicate that it is useful to bias the dataset away from the viewpoints of specific prominent individuals.

Self-Improving Diffusion Models with Synthetic Data

The artificial intelligence (AI) world is running out of real data for training increasingly large generative models, resulting in accelerating pressure to train on synthetic data. Unfortunately, training new generative models with synthetic data from current or past generation models creates an autophagous (self-consuming) loop that degrades the quality and/or diversity of the synthetic data in what has been termed model autophagy disorder (MAD) and model collapse. Current thinking around model autophagy recommends that synthetic data is to be avoided for model training lest the system deteriorate into MADness. In this paper, we take a different tack that treats synthetic data differently from real data. Self-IMproving diffusion models with Synthetic data (SIMS) is a new training concept for diffusion models that uses self-synthesized data to provide negative guidance during the generation process to steer a model's generative process away from the non-ideal synthetic data manifold and towards the real data distribution. We demonstrate that SIMS is capable of self-improvement; it establishes new records based on the Fr\'echet inception distance (FID) metric for CIFAR-10 and ImageNet-64 generation and achieves competitive results on FFHQ-64 and ImageNet-512. Moreover, SIMS is, to the best of our knowledge, the first prophylactic generative AI algorithm that can be iteratively trained on self-generated synthetic data without going MAD. As a bonus, SIMS can adjust a diffusion model's synthetic data distribution to match any desired in-domain target distribution to help mitigate biases and ensure fairness.

Understanding and Mitigating the Label Noise in Pre-training on Downstream Tasks

Pre-training on large-scale datasets and then fine-tuning on downstream tasks have become a standard practice in deep learning. However, pre-training data often contain label noise that may adversely affect the generalization of the model. This paper aims to understand the nature of noise in pre-training datasets and to mitigate its impact on downstream tasks. More specifically, through extensive experiments of supervised pre-training models on synthetic noisy ImageNet-1K and YFCC15M datasets, we demonstrate that while slight noise in pre-training can benefit in-domain (ID) transfer performance, where the training and testing data share the same distribution, it always deteriorates out-of-domain (OOD) performance, where training and testing data distribution are different. We empirically verify that the reason behind is noise in pre-training shapes the feature space differently. We then propose a light-weight black-box tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization on both ID and OOD tasks, considering one may not be able to fully fine-tune or even access the pre-trained models. We conduct practical experiments on popular vision and language models that are pre-trained on noisy data for evaluation of our approach. Our analysis and results show the importance of this interesting and novel research direction, which we term Noisy Model Learning.

PRODIGy: a PROfile-based DIalogue Generation dataset

Providing dialogue agents with a profile representation can improve their consistency and coherence, leading to better conversations. However, current profile-based dialogue datasets for training such agents contain either explicit profile representations that are simple and dialogue-specific, or implicit representations that are difficult to collect. In this work, we propose a unified framework in which we bring together both standard and more sophisticated profile representations by creating a new resource where each dialogue is aligned with all possible speaker representations such as communication style, biographies, and personality. This framework allows to test several baselines built using generative language models with several profile configurations. The automatic evaluation shows that profile-based models have better generalisation capabilities than models trained on dialogues only, both in-domain and cross-domain settings. These results are consistent for fine-tuned models and instruction-based LLMs. Additionally, human evaluation demonstrates a clear preference for generations consistent with both profile and context. Finally, to account for possible privacy concerns, all experiments are done under two configurations: inter-character and intra-character. In the former, the LM stores the information about the character in its internal representation, while in the latter, the LM does not retain any personal information but uses it only at inference time.

BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models

Large Language Models (LLMs) like ChatGPT and GPT-4 are versatile and capable of addressing a diverse range of tasks. However, general LLMs, which are developed on open-domain data, may lack the domain-specific knowledge essential for tasks in vertical domains, such as legal, medical, etc. To address this issue, previous approaches either conduct continuous pre-training with domain-specific data or employ retrieval augmentation to support general LLMs. Unfortunately, these strategies are either cost-intensive or unreliable in practical applications. To this end, we present a novel framework named BLADE, which enhances Black-box LArge language models with small Domain-spEcific models. BLADE consists of a black-box LLM and a small domain-specific LM. The small LM preserves domain-specific knowledge and offers specialized insights, while the general LLM contributes robust language comprehension and reasoning capabilities. Specifically, our method involves three steps: 1) pre-training the small LM with domain-specific data, 2) fine-tuning this model using knowledge instruction data, and 3) joint Bayesian optimization of the general LLM and the small LM. Extensive experiments conducted on public legal and medical benchmarks reveal that BLADE significantly outperforms existing approaches. This shows the potential of BLADE as an effective and cost-efficient solution in adapting general LLMs for vertical domains.

Failing Forward: Improving Generative Error Correction for ASR with Synthetic Data and Retrieval Augmentation

Generative Error Correction (GEC) has emerged as a powerful post-processing method to enhance the performance of Automatic Speech Recognition (ASR) systems. However, we show that GEC models struggle to generalize beyond the specific types of errors encountered during training, limiting their ability to correct new, unseen errors at test time, particularly in out-of-domain (OOD) scenarios. This phenomenon amplifies with named entities (NEs), where, in addition to insufficient contextual information or knowledge about the NEs, novel NEs keep emerging. To address these issues, we propose DARAG (Data- and Retrieval-Augmented Generative Error Correction), a novel approach designed to improve GEC for ASR in in-domain (ID) and OOD scenarios. We augment the GEC training dataset with synthetic data generated by prompting LLMs and text-to-speech models, thereby simulating additional errors from which the model can learn. For OOD scenarios, we simulate test-time errors from new domains similarly and in an unsupervised fashion. Additionally, to better handle named entities, we introduce retrieval-augmented correction by augmenting the input with entities retrieved from a database. Our approach is simple, scalable, and both domain- and language-agnostic. We experiment on multiple datasets and settings, showing that DARAG outperforms all our baselines, achieving 8\% -- 30\% relative WER improvements in ID and 10\% -- 33\% improvements in OOD settings.

eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data

With tremendous efforts on developing effective e-commerce models, conventional e-commerce models show limited success in generalist e-commerce modeling, and suffer from unsatisfactory performance on new users and new products - a typical out-of-domain generalization challenge. Meanwhile, large language models (LLMs) demonstrate outstanding performance in generalist modeling and out-of-domain generalizability in many fields. Toward fully unleashing their power for e-commerce, in this paper, we construct ECInstruct, the first open-sourced, large-scale, and high-quality benchmark instruction dataset for e-commerce. Leveraging ECInstruct, we develop eCeLLM, a series of e-commerce LLMs, by instruction-tuning general-purpose LLMs. Our comprehensive experiments and evaluation demonstrate that eCeLLM models substantially outperform baseline models, including the most advanced GPT-4, and the state-of-the-art task-specific models in in-domain evaluation. Moreover, eCeLLM exhibits excellent generalizability to out-of-domain settings, including unseen products and unseen instructions, highlighting its superiority as a generalist e-commerce model. Both the ECInstruct dataset and the eCeLLM models show great potential in empowering versatile and effective LLMs for e-commerce. ECInstruct and eCeLLM models are publicly accessible through https://ninglab.github.io/eCeLLM.

ChrEn: Cherokee-English Machine Translation for Endangered Language Revitalization

Cherokee is a highly endangered Native American language spoken by the Cherokee people. The Cherokee culture is deeply embedded in its language. However, there are approximately only 2,000 fluent first language Cherokee speakers remaining in the world, and the number is declining every year. To help save this endangered language, we introduce ChrEn, a Cherokee-English parallel dataset, to facilitate machine translation research between Cherokee and English. Compared to some popular machine translation language pairs, ChrEn is extremely low-resource, only containing 14k sentence pairs in total. We split our parallel data in ways that facilitate both in-domain and out-of-domain evaluation. We also collect 5k Cherokee monolingual data to enable semi-supervised learning. Besides these datasets, we propose several Cherokee-English and English-Cherokee machine translation systems. We compare SMT (phrase-based) versus NMT (RNN-based and Transformer-based) systems; supervised versus semi-supervised (via language model, back-translation, and BERT/Multilingual-BERT) methods; as well as transfer learning versus multilingual joint training with 4 other languages. Our best results are 15.8/12.7 BLEU for in-domain and 6.5/5.0 BLEU for out-of-domain Chr-En/EnChr translations, respectively, and we hope that our dataset and systems will encourage future work by the community for Cherokee language revitalization. Our data, code, and demo will be publicly available at https://github.com/ZhangShiyue/ChrEn

DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving

Solving mathematical problems requires advanced reasoning abilities and presents notable challenges for large language models. Previous works usually synthesize data from proprietary models to augment existing datasets, followed by instruction tuning to achieve top-tier results. However, our analysis of these datasets reveals severe biases towards easy queries, with frequent failures to generate any correct response for the most challenging queries. Hypothesizing that difficult queries are crucial to learn complex reasoning, we propose Difficulty-Aware Rejection Tuning (DART), a method that allocates difficult queries more trials during the synthesis phase, enabling more extensive training on difficult samples. Utilizing DART, we have created new datasets for mathematical problem-solving that focus more on difficult queries and are substantially smaller than previous ones. Remarkably, our synthesis process solely relies on a 7B-sized open-weight model, without reliance on the commonly used proprietary GPT-4. We fine-tune various base models on our datasets ranging from 7B to 70B in size, resulting in a series of strong models called DART-MATH. In comprehensive in-domain and out-of-domain evaluation on 6 mathematical benchmarks, DART-MATH outperforms vanilla rejection tuning significantly, being superior or comparable to previous arts, despite using much smaller datasets and no proprietary models. Furthermore, our results position our synthetic datasets as the most effective and cost-efficient publicly available resources for advancing mathematical problem-solving.

Leveraging Broadcast Media Subtitle Transcripts for Automatic Speech Recognition and Subtitling

The recent advancement of speech recognition technology has been driven by large-scale datasets and attention-based architectures, but many challenges still remain, especially for low-resource languages and dialects. This paper explores the integration of weakly supervised transcripts from TV subtitles into automatic speech recognition (ASR) systems, aiming to improve both verbatim transcriptions and automatically generated subtitles. To this end, verbatim data and subtitles are regarded as different domains or languages, due to their distinct characteristics. We propose and compare several end-to-end architectures that are designed to jointly model both modalities with separate or shared encoders and decoders. The proposed methods are able to jointly generate a verbatim transcription and a subtitle. Evaluation on Flemish (Belgian Dutch) demonstrates that a model with cascaded encoders and separate decoders allows to represent the differences between the two data types most efficiently while improving on both domains. Despite differences in domain and linguistic variations, combining verbatim transcripts with subtitle data leads to notable ASR improvements without the need for extensive preprocessing. Additionally, experiments with a large-scale subtitle dataset show the scalability of the proposed approach. The methods not only improve ASR accuracy but also generate subtitles that closely match standard written text, offering several potential applications.

UFineBench: Towards Text-based Person Retrieval with Ultra-fine Granularity

Existing text-based person retrieval datasets often have relatively coarse-grained text annotations. This hinders the model to comprehend the fine-grained semantics of query texts in real scenarios. To address this problem, we contribute a new benchmark named UFineBench for text-based person retrieval with ultra-fine granularity. Firstly, we construct a new dataset named UFine6926. We collect a large number of person images and manually annotate each image with two detailed textual descriptions, averaging 80.8 words each. The average word count is three to four times that of the previous datasets. In addition of standard in-domain evaluation, we also propose a special evaluation paradigm more representative of real scenarios. It contains a new evaluation set with cross domains, cross textual granularity and cross textual styles, named UFine3C, and a new evaluation metric for accurately measuring retrieval ability, named mean Similarity Distribution (mSD). Moreover, we propose CFAM, a more efficient algorithm especially designed for text-based person retrieval with ultra fine-grained texts. It achieves fine granularity mining by adopting a shared cross-modal granularity decoder and hard negative match mechanism. With standard in-domain evaluation, CFAM establishes competitive performance across various datasets, especially on our ultra fine-grained UFine6926. Furthermore, by evaluating on UFine3C, we demonstrate that training on our UFine6926 significantly improves generalization to real scenarios compared with other coarse-grained datasets. The dataset and code will be made publicly available at https://github.com/Zplusdragon/UFineBench.

Efficient Maximum Fair Clique Search over Large Networks

Mining cohesive subgraphs in attributed graphs is an essential problem in the domain of graph data analysis. The integration of fairness considerations significantly fuels interest in models and algorithms for mining fairness-aware cohesive subgraphs. Notably, the relative fair clique emerges as a robust model, ensuring not only comprehensive attribute coverage but also greater flexibility in distributing attribute vertices. Motivated by the strength of this model, we for the first time pioneer an investigation into the identification of the maximum relative fair clique in large-scale graphs. We introduce a novel concept of colorful support, which serves as the foundation for two innovative graph reduction techniques. These techniques effectively narrow the graph's size by iteratively removing edges that do not belong to relative fair cliques. Furthermore, a series of upper bounds of the maximum relative fair clique size is proposed by incorporating consideration of vertex attributes and colors. The pruning techniques derived from these upper bounds can significantly trim unnecessary search space during the branch-and-bound procedure. Adding to this, we present a heuristic algorithm with a linear time complexity, employing both a degree-based greedy strategy and a colored degree-based greedy strategy to identify a larger relative fair clique. This heuristic algorithm can serve a dual purpose by aiding in branch pruning, thereby enhancing overall search efficiency. Extensive experiments conducted on six real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.

Pre-trained Language Models for Keyphrase Generation: A Thorough Empirical Study

Neural models that do not rely on pre-training have excelled in the keyphrase generation task with large annotated datasets. Meanwhile, new approaches have incorporated pre-trained language models (PLMs) for their data efficiency. However, there lacks a systematic study of how the two types of approaches compare and how different design choices can affect the performance of PLM-based models. To fill in this knowledge gap and facilitate a more informed use of PLMs for keyphrase extraction and keyphrase generation, we present an in-depth empirical study. Formulating keyphrase extraction as sequence labeling and keyphrase generation as sequence-to-sequence generation, we perform extensive experiments in three domains. After showing that PLMs have competitive high-resource performance and state-of-the-art low-resource performance, we investigate important design choices including in-domain PLMs, PLMs with different pre-training objectives, using PLMs with a parameter budget, and different formulations for present keyphrases. Further results show that (1) in-domain BERT-like PLMs can be used to build strong and data-efficient keyphrase generation models; (2) with a fixed parameter budget, prioritizing model depth over width and allocating more layers in the encoder leads to better encoder-decoder models; and (3) introducing four in-domain PLMs, we achieve a competitive performance in the news domain and the state-of-the-art performance in the scientific domain.

Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want

The interaction between humans and artificial intelligence (AI) is a crucial factor that reflects the effectiveness of multimodal large language models (MLLMs). However, current MLLMs primarily focus on image-level comprehension and limit interaction to textual instructions, thereby constraining their flexibility in usage and depth of response. In this paper, we introduce the Draw-and-Understand project: a new model, a multi-domain dataset, and a challenging benchmark for visual prompting. Specifically, we propose SPHINX-V, a new end-to-end trained Multimodal Large Language Model (MLLM) that connects a vision encoder, a visual prompt encoder and an LLM for various visual prompts (points, bounding boxes, and free-form shape) and language understanding. To advance visual prompting research for MLLMs, we introduce MDVP-Data and MDVP-Bench. MDVP-Data features a multi-domain dataset containing 1.6M unique image-visual prompt-text instruction-following samples, including natural images, document images, OCR images, mobile screenshots, web screenshots, and multi-panel images. Furthermore, we present MDVP-Bench, a comprehensive and challenging benchmark to assess a model's capability in understanding visual prompting instructions. Our experiments demonstrate SPHINX-V's impressive multimodal interaction capabilities through visual prompting, revealing significant improvements in detailed pixel-level description and question-answering abilities.

Build a Robust QA System with Transformer-based Mixture of Experts

In this paper, we aim to build a robust question answering system that can adapt to out-of-domain datasets. A single network may overfit to the superficial correlation in the training distribution, but with a meaningful number of expert sub-networks, a gating network that selects a sparse combination of experts for each input, and careful balance on the importance of expert sub-networks, the Mixture-of-Experts (MoE) model allows us to train a multi-task learner that can be generalized to out-of-domain datasets. We also explore the possibility of bringing the MoE layers up to the middle of the DistilBERT and replacing the dense feed-forward network with a sparsely-activated switch FFN layers, similar to the Switch Transformer architecture, which simplifies the MoE routing algorithm with reduced communication and computational costs. In addition to model architectures, we explore techniques of data augmentation including Easy Data Augmentation (EDA) and back translation, to create more meaningful variance among the small out-of-domain training data, therefore boosting the performance and robustness of our models. In this paper, we show that our combination of best architecture and data augmentation techniques achieves a 53.477 F1 score in the out-of-domain evaluation, which is a 9.52% performance gain over the baseline. On the final test set, we reported a higher 59.506 F1 and 41.651 EM. We successfully demonstrate the effectiveness of Mixture-of-Expert architecture in a Robust QA task.

ViCor: Bridging Visual Understanding and Commonsense Reasoning with Large Language Models

In our work, we explore the synergistic capabilities of pre-trained vision-and-language models (VLMs) and large language models (LLMs) for visual commonsense reasoning (VCR). We categorize the problem of VCR into visual commonsense understanding (VCU) and visual commonsense inference (VCI). For VCU, which involves perceiving the literal visual content, pre-trained VLMs exhibit strong cross-dataset generalization. On the other hand, in VCI, where the goal is to infer conclusions beyond image content, VLMs face difficulties. We find that a baseline where VLMs provide perception results (image captions) to LLMs leads to improved performance on VCI. However, we identify a challenge with VLMs' passive perception, which often misses crucial context information, leading to incorrect or uncertain reasoning by LLMs. To mitigate this issue, we suggest a collaborative approach where LLMs, when uncertain about their reasoning, actively direct VLMs to concentrate on and gather relevant visual elements to support potential commonsense inferences. In our method, named ViCor, pre-trained LLMs serve as problem classifiers to analyze the problem category, VLM commanders to leverage VLMs differently based on the problem classification, and visual commonsense reasoners to answer the question. VLMs will perform visual recognition and understanding. We evaluate our framework on two VCR benchmark datasets and outperform all other methods that do not require in-domain supervised fine-tuning.

Text2Reward: Automated Dense Reward Function Generation for Reinforcement Learning

Designing reward functions is a longstanding challenge in reinforcement learning (RL); it requires specialized knowledge or domain data, leading to high costs for development. To address this, we introduce Text2Reward, a data-free framework that automates the generation of dense reward functions based on large language models (LLMs). Given a goal described in natural language, Text2Reward generates dense reward functions as an executable program grounded in a compact representation of the environment. Unlike inverse RL and recent work that uses LLMs to write sparse reward codes, Text2Reward produces interpretable, free-form dense reward codes that cover a wide range of tasks, utilize existing packages, and allow iterative refinement with human feedback. We evaluate Text2Reward on two robotic manipulation benchmarks (ManiSkill2, MetaWorld) and two locomotion environments of MuJoCo. On 13 of the 17 manipulation tasks, policies trained with generated reward codes achieve similar or better task success rates and convergence speed than expert-written reward codes. For locomotion tasks, our method learns six novel locomotion behaviors with a success rate exceeding 94%. Furthermore, we show that the policies trained in the simulator with our method can be deployed in the real world. Finally, Text2Reward further improves the policies by refining their reward functions with human feedback. Video results are available at https://text-to-reward.github.io

Octo-planner: On-device Language Model for Planner-Action Agents

AI agents have become increasingly significant in various domains, enabling autonomous decision-making and problem-solving. To function effectively, these agents require a planning process that determines the best course of action and then executes the planned actions. In this paper, we present an efficient on-device Planner-Action framework that separates planning and action execution into two distinct components: a planner agent based on Phi-3 Mini, a 3.8 billion parameter LLM optimized for edge devices, and an action agent using the Octopus model for function execution. The planner agent first responds to user queries by decomposing tasks into a sequence of sub-steps, which are then executed by the action agent. To optimize performance on resource-constrained devices, we employ model fine-tuning instead of in-context learning, reducing computational costs and energy consumption while improving response times. Our approach involves using GPT-4 to generate diverse planning queries and responses based on available functions, with subsequent validations to ensure data quality. We fine-tune the Phi-3 Mini model on this curated dataset, achieving a 97\% success rate in our in-domain test environment. To address multi-domain planning challenges, we developed a multi-LoRA training method that merges weights from LoRAs trained on distinct function subsets. This approach enables flexible handling of complex, multi-domain queries while maintaining computational efficiency on resource-constrained devices. To support further research, we have open-sourced our model weights at https://huggingface.co/NexaAIDev/octopus-planning. For the demo, please refer to https://www.nexa4ai.com/octo-planner.

Improving Tool Retrieval by Leveraging Large Language Models for Query Generation

Using tools by Large Language Models (LLMs) is a promising avenue to extend their reach beyond language or conversational settings. The number of tools can scale to thousands as they enable accessing sensory information, fetching updated factual knowledge, or taking actions in the real world. In such settings, in-context learning by providing a short list of relevant tools in the prompt is a viable approach. To retrieve relevant tools, various approaches have been suggested, ranging from simple frequency-based matching to dense embedding-based semantic retrieval. However, such approaches lack the contextual and common-sense understanding required to retrieve the right tools for complex user requests. Rather than increasing the complexity of the retrieval component itself, we propose leveraging LLM understanding to generate a retrieval query. Then, the generated query is embedded and used to find the most relevant tools via a nearest-neighbor search. We investigate three approaches for query generation: zero-shot prompting, supervised fine-tuning on tool descriptions, and alignment learning by iteratively optimizing a reward metric measuring retrieval performance. By conducting extensive experiments on a dataset covering complex and multi-tool scenarios, we show that leveraging LLMs for query generation improves the retrieval for in-domain (seen tools) and out-of-domain (unseen tools) settings.

SCALE: Scaling up the Complexity for Advanced Language Model Evaluation

Recent strides in Large Language Models (LLMs) have saturated many NLP benchmarks (even professional domain-specific ones), emphasizing the need for novel, more challenging novel ones to properly assess LLM capabilities. In this paper, we introduce a novel NLP benchmark that poses challenges to current LLMs across four key dimensions: processing long documents (up to 50K tokens), utilizing domain specific knowledge (embodied in legal texts), multilingual understanding (covering five languages), and multitasking (comprising legal document to document Information Retrieval, Court View Generation, Leading Decision Summarization, Citation Extraction, and eight challenging Text Classification tasks). Our benchmark comprises diverse legal NLP datasets from the Swiss legal system, allowing for a comprehensive study of the underlying Non-English, inherently multilingual, federal legal system. Despite recent advances, efficiently processing long documents for intense review/analysis tasks remains an open challenge for language models. Also, comprehensive, domain-specific benchmarks requiring high expertise to develop are rare, as are multilingual benchmarks. This scarcity underscores our contribution's value, considering most public models are trained predominantly on English corpora, while other languages remain understudied, particularly for practical domain-specific NLP tasks. Our benchmark allows for testing and advancing the state-of-the-art LLMs. As part of our study, we evaluate several pre-trained multilingual language models on our benchmark to establish strong baselines as a point of reference. Despite the large size of our datasets (tens to hundreds of thousands of examples), existing publicly available models struggle with most tasks, even after in-domain pretraining. We publish all resources (benchmark suite, pre-trained models, code) under a fully permissive open CC BY-SA license.

Augmented Conditioning Is Enough For Effective Training Image Generation

Image generation abilities of text-to-image diffusion models have significantly advanced, yielding highly photo-realistic images from descriptive text and increasing the viability of leveraging synthetic images to train computer vision models. To serve as effective training data, generated images must be highly realistic while also sufficiently diverse within the support of the target data distribution. Yet, state-of-the-art conditional image generation models have been primarily optimized for creative applications, prioritizing image realism and prompt adherence over conditional diversity. In this paper, we investigate how to improve the diversity of generated images with the goal of increasing their effectiveness to train downstream image classification models, without fine-tuning the image generation model. We find that conditioning the generation process on an augmented real image and text prompt produces generations that serve as effective synthetic datasets for downstream training. Conditioning on real training images contextualizes the generation process to produce images that are in-domain with the real image distribution, while data augmentations introduce visual diversity that improves the performance of the downstream classifier. We validate augmentation-conditioning on a total of five established long-tail and few-shot image classification benchmarks and show that leveraging augmentations to condition the generation process results in consistent improvements over the state-of-the-art on the long-tailed benchmark and remarkable gains in extreme few-shot regimes of the remaining four benchmarks. These results constitute an important step towards effectively leveraging synthetic data for downstream training.

Universal Actions for Enhanced Embodied Foundation Models

Training on diverse, internet-scale data is a key factor in the success of recent large foundation models. Yet, using the same recipe for building embodied agents has faced noticeable difficulties. Despite the availability of many crowd-sourced embodied datasets, their action spaces often exhibit significant heterogeneity due to distinct physical embodiment and control interfaces for different robots, causing substantial challenges in developing embodied foundation models using cross-domain data. In this paper, we introduce UniAct, a new embodied foundation modeling framework operating in a tokenized Universal Action Space. Our learned universal actions capture the generic atomic behaviors across diverse robots by exploiting their shared structural features, and enable enhanced cross-domain data utilization and cross-embodiment generalizations by eliminating the notorious heterogeneity. The universal actions can be efficiently translated back to heterogeneous actionable commands by simply adding embodiment-specific details, from which fast adaptation to new robots becomes simple and straightforward. Our 0.5B instantiation of UniAct outperforms 14X larger SOTA embodied foundation models in extensive evaluations on various real-world and simulation robots, showcasing exceptional cross-embodiment control and adaptation capability, highlighting the crucial benefit of adopting universal actions. Project page: https://github.com/2toinf/UniAct

Neural-Symbolic Collaborative Distillation: Advancing Small Language Models for Complex Reasoning Tasks

In this paper, we propose Neural-Symbolic Collaborative Distillation (NesyCD), a novel knowledge distillation method for learning the complex reasoning abilities of Large Language Models (LLMs, e.g., \textgreater 13B). We argue that complex reasoning tasks are difficult for Small Language Models (SLMs, e.g., leq 7B), as these tasks demand not only general cognitive abilities but also specialized knowledge, which is often sparse and difficult for these neural-based SLMs to effectively capture. Therefore, NesyCD distills the general capabilities and specialized knowledge in LLMs using different manners. On the one hand, we distill only general abilities from teacher LLMs into the student SLMs of parameterized neural networks. On the other hand, for the specialized abilities and uncommon knowledge of a complex reasoning task, we employ a symbolic knowledge distillation approach to obtain and store the specialized knowledge within a symbolic knowledge base (KB). By decoupling general and specialized capabilities, the proposed NesyCD can achieve superior performance cost-effectively, utilizing smaller models and blending parameterized neural networks with symbolic KB. Moreover, the specialized KB generalizes well and is comprehended and manipulated by humans. Our experiments show that NesyCD significantly boosts SLMs' complex reasoning performance on in-domain (BBH, GSM8K) and out-of-domain (AGIEval, ARC) datasets. Notably, our approach enabled the LLaMA3-8B and Qwen2-7B to surpass GPT-3.5-turbo in performance and come close to matching LLaMA3-70B, despite the latter having nine times more parameters. Our code will be available at https://github.com/Xnhyacinth/NesyCD.

Label Shift Adapter for Test-Time Adaptation under Covariate and Label Shifts

Test-time adaptation (TTA) aims to adapt a pre-trained model to the target domain in a batch-by-batch manner during inference. While label distributions often exhibit imbalances in real-world scenarios, most previous TTA approaches typically assume that both source and target domain datasets have balanced label distribution. Due to the fact that certain classes appear more frequently in certain domains (e.g., buildings in cities, trees in forests), it is natural that the label distribution shifts as the domain changes. However, we discover that the majority of existing TTA methods fail to address the coexistence of covariate and label shifts. To tackle this challenge, we propose a novel label shift adapter that can be incorporated into existing TTA approaches to deal with label shifts during the TTA process effectively. Specifically, we estimate the label distribution of the target domain to feed it into the label shift adapter. Subsequently, the label shift adapter produces optimal parameters for the target label distribution. By predicting only the parameters for a part of the pre-trained source model, our approach is computationally efficient and can be easily applied, regardless of the model architectures. Through extensive experiments, we demonstrate that integrating our strategy with TTA approaches leads to substantial performance improvements under the joint presence of label and covariate shifts.

BioInstruct: Instruction Tuning of Large Language Models for Biomedical Natural Language Processing

To enhance the performance of large language models (LLMs) in biomedical natural language processing (BioNLP) by introducing a domain-specific instruction dataset and examining its impact when combined with multi-task learning principles. We created the BioInstruct, comprising 25,005 instructions to instruction-tune LLMs(LLaMA 1 & 2, 7B & 13B version). The instructions were created by prompting the GPT-4 language model with three-seed samples randomly drawn from an 80 human curated instructions. We employed Low-Rank Adaptation(LoRA) for parameter-efficient fine-tuning. We then evaluated these instruction-tuned LLMs on several BioNLP tasks, which can be grouped into three major categories: question answering(QA), information extraction(IE), and text generation(GEN). We also examined whether categories(e.g., QA, IE, and generation) of instructions impact model performance. Comparing with LLMs without instruction-tuned, our instruction-tuned LLMs demonstrated marked performance gains: 17.3% in QA, 5.7% in IE, and 96% in Generation tasks. Our 7B-parameter instruction-tuned LLaMA 1 model was competitive or even surpassed other LLMs in the biomedical domain that were also fine-tuned from LLaMA 1 with vast domain-specific data or a variety of tasks. Our results also show that the performance gain is significantly higher when instruction fine-tuning is conducted with closely related tasks. Our findings align with the observations of multi-task learning, suggesting the synergies between two tasks. The BioInstruct dataset serves as a valuable resource and instruction tuned LLMs lead to the best performing BioNLP applications.

Unsupervised Dense Information Retrieval with Contrastive Learning

Recently, information retrieval has seen the emergence of dense retrievers, using neural networks, as an alternative to classical sparse methods based on term-frequency. These models have obtained state-of-the-art results on datasets and tasks where large training sets are available. However, they do not transfer well to new applications with no training data, and are outperformed by unsupervised term-frequency methods such as BM25. In this work, we explore the limits of contrastive learning as a way to train unsupervised dense retrievers and show that it leads to strong performance in various retrieval settings. On the BEIR benchmark our unsupervised model outperforms BM25 on 11 out of 15 datasets for the Recall@100. When used as pre-training before fine-tuning, either on a few thousands in-domain examples or on the large MS~MARCO dataset, our contrastive model leads to improvements on the BEIR benchmark. Finally, we evaluate our approach for multi-lingual retrieval, where training data is even scarcer than for English, and show that our approach leads to strong unsupervised performance. Our model also exhibits strong cross-lingual transfer when fine-tuned on supervised English data only and evaluated on low resources language such as Swahili. We show that our unsupervised models can perform cross-lingual retrieval between different scripts, such as retrieving English documents from Arabic queries, which would not be possible with term matching methods.

Policy-Gradient Training of Language Models for Ranking

Text retrieval plays a crucial role in incorporating factual knowledge for decision making into language processing pipelines, ranging from chat-based web search to question answering systems. Current state-of-the-art text retrieval models leverage pre-trained large language models (LLMs) to achieve competitive performance, but training LLM-based retrievers via typical contrastive losses requires intricate heuristics, including selecting hard negatives and using additional supervision as learning signals. This reliance on heuristics stems from the fact that the contrastive loss itself is heuristic and does not directly optimize the downstream metrics of decision quality at the end of the processing pipeline. To address this issue, we introduce Neural PG-RANK, a novel training algorithm that learns to rank by instantiating a LLM as a Plackett-Luce ranking policy. Neural PG-RANK provides a principled method for end-to-end training of retrieval models as part of larger decision systems via policy gradient, with little reliance on complex heuristics, and it effectively unifies the training objective with downstream decision-making quality. We conduct extensive experiments on various text retrieval benchmarks. The results demonstrate that when the training objective aligns with the evaluation setup, Neural PG-RANK yields remarkable in-domain performance improvement, with substantial out-of-domain generalization to some critical datasets employed in downstream question answering tasks.

O1 Embedder: Let Retrievers Think Before Action

The growing power of large language models (LLMs) has revolutionized how people access and utilize information. Notably, the LLMs excel at performing fine-grained data representation, which facilitates precise retrieval of information. They also generate high-quality answers based on external references, enabling the production of useful knowledge. The recent introduction of reasoning models, like OpenAI O1 and DeepSeek R1, marks another leap forward, highlighting LLMs' ability to think progressively before delivering final answers. This breakthrough significantly improves the ability to address complex tasks, e.g., coding and math proofs. Inspired by this progress, we aim to develop similar capabilities for retrieval models, which hold great promise for tackling critical challenges in the field, including multi-task retrieval, zero-shot retrieval, and tasks requiring intensive reasoning of complex relationships. With this motivation, we propose a novel approach called O1 Embedder, which generates useful thoughts for the input query before making retrieval for the target documents. To realize this objective, we conquer two technical difficulties. First, we design a data synthesis workflow, creating training signals for O1 Embedder by generating initial thoughts from an LLM-expert and subsequently refining them using a retrieval committee. Second, we optimize the training process, enabling a pre-trained model to be jointly fine-tuned to generate retrieval thoughts via behavior cloning and perform dense retrieval through contrastive learning. Our approach is evaluated by comprehensive experiments, where substantial improvements are achieved across 12 popular datasets, spanning both in-domain and out-of-domain scenarios. These results highlight O1 Embedder's remarkable accuracy and generalizability, paving the way for the development of next-generation IR foundation models.

CWCL: Cross-Modal Transfer with Continuously Weighted Contrastive Loss

This paper considers contrastive training for cross-modal 0-shot transfer wherein a pre-trained model in one modality is used for representation learning in another domain using pairwise data. The learnt models in the latter domain can then be used for a diverse set of tasks in a zero-shot way, similar to ``Contrastive Language-Image Pre-training (CLIP)'' and ``Locked-image Tuning (LiT)'' that have recently gained considerable attention. Most existing works for cross-modal representation alignment (including CLIP and LiT) use the standard contrastive training objective, which employs sets of positive and negative examples to align similar and repel dissimilar training data samples. However, similarity amongst training examples has a more continuous nature, thus calling for a more `non-binary' treatment. To address this, we propose a novel loss function called Continuously Weighted Contrastive Loss (CWCL) that employs a continuous measure of similarity. With CWCL, we seek to align the embedding space of one modality with another. Owing to the continuous nature of similarity in the proposed loss function, these models outperform existing methods for 0-shot transfer across multiple models, datasets and modalities. Particularly, we consider the modality pairs of image-text and speech-text and our models achieve 5-8% (absolute) improvement over previous state-of-the-art methods in 0-shot image classification and 20-30% (absolute) improvement in 0-shot speech-to-intent classification and keyword classification.

Evaluating RAG-Fusion with RAGElo: an Automated Elo-based Framework

Challenges in the automated evaluation of Retrieval-Augmented Generation (RAG) Question-Answering (QA) systems include hallucination problems in domain-specific knowledge and the lack of gold standard benchmarks for company internal tasks. This results in difficulties in evaluating RAG variations, like RAG-Fusion (RAGF), in the context of a product QA task at Infineon Technologies. To solve these problems, we propose a comprehensive evaluation framework, which leverages Large Language Models (LLMs) to generate large datasets of synthetic queries based on real user queries and in-domain documents, uses LLM-as-a-judge to rate retrieved documents and answers, evaluates the quality of answers, and ranks different variants of Retrieval-Augmented Generation (RAG) agents with RAGElo's automated Elo-based competition. LLM-as-a-judge rating of a random sample of synthetic queries shows a moderate, positive correlation with domain expert scoring in relevance, accuracy, completeness, and precision. While RAGF outperformed RAG in Elo score, a significance analysis against expert annotations also shows that RAGF significantly outperforms RAG in completeness, but underperforms in precision. In addition, Infineon's RAGF assistant demonstrated slightly higher performance in document relevance based on MRR@5 scores. We find that RAGElo positively aligns with the preferences of human annotators, though due caution is still required. Finally, RAGF's approach leads to more complete answers based on expert annotations and better answers overall based on RAGElo's evaluation criteria.

Unsupervised Domain Adaptation with Global and Local Graph Neural Networks in Limited Labeled Data Scenario: Application to Disaster Management

Identification and categorization of social media posts generated during disasters are crucial to reduce the sufferings of the affected people. However, lack of labeled data is a significant bottleneck in learning an effective categorization system for a disaster. This motivates us to study the problem as unsupervised domain adaptation (UDA) between a previous disaster with labeled data (source) and a current disaster (target). However, if the amount of labeled data available is limited, it restricts the learning capabilities of the model. To handle this challenge, we utilize limited labeled data along with abundantly available unlabeled data, generated during a source disaster to propose a novel two-part graph neural network. The first-part extracts domain-agnostic global information by constructing a token level graph across domains and the second-part preserves local instance-level semantics. In our experiments, we show that the proposed method outperforms state-of-the-art techniques by 2.74% weighted F_1 score on average on two standard public dataset in the area of disaster management. We also report experimental results for granular actionable multi-label classification datasets in disaster domain for the first time, on which we outperform BERT by 3.00% on average w.r.t weighted F_1. Additionally, we show that our approach can retain performance when very limited labeled data is available.

Does your data spark joy? Performance gains from domain upsampling at the end of training

Pretraining datasets for large language models (LLMs) have grown to trillions of tokens composed of large amounts of CommonCrawl (CC) web scrape along with smaller, domain-specific datasets. It is expensive to understand the impact of these domain-specific datasets on model capabilities as training at large FLOP scales is required to reveal significant changes to difficult and emergent benchmarks. Given the increasing cost of experimenting with pretraining data, how does one determine the optimal balance between the diversity in general web scrapes and the information density of domain specific data? In this work, we show how to leverage the smaller domain specific datasets by upsampling them relative to CC at the end of training to drive performance improvements on difficult benchmarks. This simple technique allows us to improve up to 6.90 pp on MMLU, 8.26 pp on GSM8K, and 6.17 pp on HumanEval relative to the base data mix for a 7B model trained for 1 trillion (T) tokens, thus rivaling Llama-2 (7B)x2014a model trained for twice as long. We experiment with ablating the duration of domain upsampling from 5% to 30% of training and find that 10% to 20% percent is optimal for navigating the tradeoff between general language modeling capabilities and targeted benchmarks. We also use domain upsampling to characterize at scale the utility of individual datasets for improving various benchmarks by removing them during this final phase of training. This tool opens up the ability to experiment with the impact of different pretraining datasets at scale, but at an order of magnitude lower cost compared to full pretraining runs.

Persuasion Should be Double-Blind: A Multi-Domain Dialogue Dataset With Faithfulness Based on Causal Theory of Mind

Persuasive dialogue plays a pivotal role in human communication, influencing various domains. Recent persuasive dialogue datasets often fail to align with real-world interpersonal interactions, leading to unfaithful representations. For instance, unrealistic scenarios may arise, such as when the persuadee explicitly instructs the persuader on which persuasion strategies to employ, with each of the persuadee's questions corresponding to a specific strategy for the persuader to follow. This issue can be attributed to a violation of the "Double Blind" condition, where critical information is fully shared between participants. In actual human interactions, however, key information such as the mental state of the persuadee and the persuasion strategies of the persuader is not directly accessible. The persuader must infer the persuadee's mental state using Theory of Mind capabilities and construct arguments that align with the persuadee's motivations. To address this gap, we introduce ToMMA, a novel multi-agent framework for dialogue generation that is guided by causal Theory of Mind. This framework ensures that information remains undisclosed between agents, preserving "double-blind" conditions, while causal ToM directs the persuader's reasoning, enhancing alignment with human-like persuasion dynamics. Consequently, we present CToMPersu, a multi-domain, multi-turn persuasive dialogue dataset that tackles both double-blind and logical coherence issues, demonstrating superior performance across multiple metrics and achieving better alignment with real human dialogues. Our dataset and prompts are available at https://github.com/DingyiZhang/ToMMA-CToMPersu .

A Unified Data Augmentation Framework for Low-Resource Multi-Domain Dialogue Generation

Current state-of-the-art dialogue systems heavily rely on extensive training datasets. However, challenges arise in domains where domain-specific training datasets are insufficient or entirely absent. To tackle this challenge, we propose a novel data Augmentation framework for Multi-Domain Dialogue Generation, referred to as AMD^2G. The AMD^2G framework consists of a data augmentation process and a two-stage training approach: domain-agnostic training and domain adaptation training. We posit that domain corpora are a blend of domain-agnostic and domain-specific features, with certain representation patterns shared among diverse domains. Domain-agnostic training aims to enable models to learn these common expressive patterns. To construct domain-agnostic dialogue corpora, we employ a \textbf{de-domaining} data processing technique used to remove domain-specific features. By mitigating the effects of domain-specific features, the model trained on the de-domained corpora can effectively learn common expression patterns in different domains. Subsequently, we adapt the learned domain-agnostic features to the target domain through domain adaptation training. We conduct experiments on Chinese dialogue datasets from five different domains and show that AMD^2G achieves superior performance compared to both direct training on the target domain corpus and collective training on all five domain corpora. Our work underscores AMD^2G as a viable alternative solution for low-resource multi-domain dialogue generation. Code and data associated with our work are available on GitHub repository^{text 1}.

Improving the detection of technical debt in Java source code with an enriched dataset

Technical debt (TD) is a term used to describe the additional work and costs that emerge when developers have opted for a quick and easy solution to a problem, rather than a more effective and well-designed, but time-consuming approach. Self-Admitted Technical Debts (SATDs) are a specific type of technical debts that developers intentionally document and acknowledge, typically via textual comments. While these self-admitted comments are a useful tool for identifying technical debts, most of the existing approaches focus on capturing crucial tokens associated with various categories of TD, neglecting the rich information embedded within the source code itself. Recent research has focused on detecting SATDs by analyzing comments embedded in source code, and there has been little work dealing with technical debts contained in the source code. To fill such a gap, in this study, through the analysis of comments and their associated source code from 974 Java projects hosted in the Stack corpus, we curated the first ever dataset of TD identified by code comments, coupled with its associated source code. Through an empirical evaluation, we found out that the comments of the resulting dataset help enhance the prediction performance of state-of-the-art SATD detection models. More importantly, including the classified source code significantly improves the accuracy in predicting various types of technical debt. In this respect, our work is two-fold: (i) We believe that our dataset will catalyze future work in the domain, inspiring various research issues related to the recognition of technical debt; (ii) The proposed classifiers may serve as baselines for other studies on the detection of TD by means of the curated dataset.

TimberVision: A Multi-Task Dataset and Framework for Log-Component Segmentation and Tracking in Autonomous Forestry Operations

Timber represents an increasingly valuable and versatile resource. However, forestry operations such as harvesting, handling and measuring logs still require substantial human labor in remote environments posing significant safety risks. Progressively automating these tasks has the potential of increasing their efficiency as well as safety, but requires an accurate detection of individual logs as well as live trees and their context. Although initial approaches have been proposed for this challenging application domain, specialized data and algorithms are still too scarce to develop robust solutions. To mitigate this gap, we introduce the TimberVision dataset, consisting of more than 2k annotated RGB images containing a total of 51k trunk components including cut and lateral surfaces, thereby surpassing any existing dataset in this domain in terms of both quantity and detail by a large margin. Based on this data, we conduct a series of ablation experiments for oriented object detection and instance segmentation and evaluate the influence of multiple scene parameters on model performance. We introduce a generic framework to fuse the components detected by our models for both tasks into unified trunk representations. Furthermore, we automatically derive geometric properties and apply multi-object tracking to further enhance robustness. Our detection and tracking approach provides highly descriptive and accurate trunk representations solely from RGB image data, even under challenging environmental conditions. Our solution is suitable for a wide range of application scenarios and can be readily combined with other sensor modalities.

Get more for less: Principled Data Selection for Warming Up Fine-Tuning in LLMs

This work focuses on leveraging and selecting from vast, unlabeled, open data to pre-fine-tune a pre-trained language model. The goal is to minimize the need for costly domain-specific data for subsequent fine-tuning while achieving desired performance levels. While many data selection algorithms have been designed for small-scale applications, rendering them unsuitable for our context, some emerging methods do cater to language data scales. However, they often prioritize data that aligns with the target distribution. While this strategy may be effective when training a model from scratch, it can yield limited results when the model has already been pre-trained on a different distribution. Differing from prior work, our key idea is to select data that nudges the pre-training distribution closer to the target distribution. We show the optimality of this approach for fine-tuning tasks under certain conditions. We demonstrate the efficacy of our methodology across a diverse array of tasks (NLU, NLG, zero-shot) with models up to 2.7B, showing that it consistently surpasses other selection methods. Moreover, our proposed method is significantly faster than existing techniques, scaling to millions of samples within a single GPU hour. Our code is open-sourced (Code repository: https://anonymous.4open.science/r/DV4LLM-D761/ ). While fine-tuning offers significant potential for enhancing performance across diverse tasks, its associated costs often limit its widespread adoption; with this work, we hope to lay the groundwork for cost-effective fine-tuning, making its benefits more accessible.

Time-MMD: Multi-Domain Multimodal Dataset for Time Series Analysis

Time series data are ubiquitous across a wide range of real-world domains. While real-world time series analysis (TSA) requires human experts to integrate numerical series data with multimodal domain-specific knowledge, most existing TSA models rely solely on numerical data, overlooking the significance of information beyond numerical series. This oversight is due to the untapped potential of textual series data and the absence of a comprehensive, high-quality multimodal dataset. To overcome this obstacle, we introduce Time-MMD, the first multi-domain, multimodal time series dataset covering 9 primary data domains. Time-MMD ensures fine-grained modality alignment, eliminates data contamination, and provides high usability. Additionally, we develop MM-TSFlib, the first multimodal time-series forecasting (TSF) library, seamlessly pipelining multimodal TSF evaluations based on Time-MMD for in-depth analyses. Extensive experiments conducted on Time-MMD through MM-TSFlib demonstrate significant performance enhancements by extending unimodal TSF to multimodality, evidenced by over 15% mean squared error reduction in general, and up to 40% in domains with rich textual data. More importantly, our datasets and library revolutionize broader applications, impacts, research topics to advance TSA. The dataset and library are available at https://github.com/AdityaLab/Time-MMD and https://github.com/AdityaLab/MM-TSFlib.

Transform Once: Efficient Operator Learning in Frequency Domain

Spectral analysis provides one of the most effective paradigms for information-preserving dimensionality reduction, as simple descriptions of naturally occurring signals are often obtained via few terms of periodic basis functions. In this work, we study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time: frequency-domain models (FDMs). Existing FDMs are based on complex-valued transforms i.e. Fourier Transforms (FT), and layers that perform computation on the spectrum and input data separately. This design introduces considerable computational overhead: for each layer, a forward and inverse FT. Instead, this work introduces a blueprint for frequency domain learning through a single transform: transform once (T1). To enable efficient, direct learning in the frequency domain we derive a variance-preserving weight initialization scheme and investigate methods for frequency selection in reduced-order FDMs. Our results noticeably streamline the design process of FDMs, pruning redundant transforms, and leading to speedups of 3x to 10x that increase with data resolution and model size. We perform extensive experiments on learning the solution operator of spatio-temporal dynamics, including incompressible Navier-Stokes, turbulent flows around airfoils and high-resolution video of smoke. T1 models improve on the test performance of FDMs while requiring significantly less computation (5 hours instead of 32 for our large-scale experiment), with over 20% reduction in average predictive error across tasks.

Vector representations of text data in deep learning

In this dissertation we report results of our research on dense distributed representations of text data. We propose two novel neural models for learning such representations. The first model learns representations at the document level, while the second model learns word-level representations. For document-level representations we propose Binary Paragraph Vector: a neural network models for learning binary representations of text documents, which can be used for fast document retrieval. We provide a thorough evaluation of these models and demonstrate that they outperform the seminal method in the field in the information retrieval task. We also report strong results in transfer learning settings, where our models are trained on a generic text corpus and then used to infer codes for documents from a domain-specific dataset. In contrast to previously proposed approaches, Binary Paragraph Vector models learn embeddings directly from raw text data. For word-level representations we propose Disambiguated Skip-gram: a neural network model for learning multi-sense word embeddings. Representations learned by this model can be used in downstream tasks, like part-of-speech tagging or identification of semantic relations. In the word sense induction task Disambiguated Skip-gram outperforms state-of-the-art models on three out of four benchmarks datasets. Our model has an elegant probabilistic interpretation. Furthermore, unlike previous models of this kind, it is differentiable with respect to all its parameters and can be trained with backpropagation. In addition to quantitative results, we present qualitative evaluation of Disambiguated Skip-gram, including two-dimensional visualisations of selected word-sense embeddings.

Openstory++: A Large-scale Dataset and Benchmark for Instance-aware Open-domain Visual Storytelling

Recent image generation models excel at creating high-quality images from brief captions. However, they fail to maintain consistency of multiple instances across images when encountering lengthy contexts. This inconsistency is largely due to in existing training datasets the absence of granular instance feature labeling in existing training datasets. To tackle these issues, we introduce Openstory++, a large-scale dataset combining additional instance-level annotations with both images and text. Furthermore, we develop a training methodology that emphasizes entity-centric image-text generation, ensuring that the models learn to effectively interweave visual and textual information. Specifically, Openstory++ streamlines the process of keyframe extraction from open-domain videos, employing vision-language models to generate captions that are then polished by a large language model for narrative continuity. It surpasses previous datasets by offering a more expansive open-domain resource, which incorporates automated captioning, high-resolution imagery tailored for instance count, and extensive frame sequences for temporal consistency. Additionally, we present Cohere-Bench, a pioneering benchmark framework for evaluating the image generation tasks when long multimodal context is provided, including the ability to keep the background, style, instances in the given context coherent. Compared to existing benchmarks, our work fills critical gaps in multi-modal generation, propelling the development of models that can adeptly generate and interpret complex narratives in open-domain environments. Experiments conducted within Cohere-Bench confirm the superiority of Openstory++ in nurturing high-quality visual storytelling models, enhancing their ability to address open-domain generation tasks. More details can be found at https://openstorypp.github.io/

Enriching Information and Preserving Semantic Consistency in Expanding Curvilinear Object Segmentation Datasets

Curvilinear object segmentation plays a crucial role across various applications, yet datasets in this domain often suffer from small scale due to the high costs associated with data acquisition and annotation. To address these challenges, this paper introduces a novel approach for expanding curvilinear object segmentation datasets, focusing on enhancing the informativeness of generated data and the consistency between semantic maps and generated images. Our method enriches synthetic data informativeness by generating curvilinear objects through their multiple textual features. By combining textual features from each sample in original dataset, we obtain synthetic images that beyond the original dataset's distribution. This initiative necessitated the creation of the Curvilinear Object Segmentation based on Text Generation (COSTG) dataset. Designed to surpass the limitations of conventional datasets, COSTG incorporates not only standard semantic maps but also some textual descriptions of curvilinear object features. To ensure consistency between synthetic semantic maps and images, we introduce the Semantic Consistency Preserving ControlNet (SCP ControlNet). This involves an adaptation of ControlNet with Spatially-Adaptive Normalization (SPADE), allowing it to preserve semantic information that would typically be washed away in normalization layers. This modification facilitates more accurate semantic image synthesis. Experimental results demonstrate the efficacy of our approach across three types of curvilinear objects (angiography, crack and retina) and six public datasets (CHUAC, XCAD, DCA1, DRIVE, CHASEDB1 and Crack500). The synthetic data generated by our method not only expand the dataset, but also effectively improves the performance of other curvilinear object segmentation models. Source code and dataset are available at https://github.com/tanlei0/COSTG.

Self-Supervised Pre-Training with Contrastive and Masked Autoencoder Methods for Dealing with Small Datasets in Deep Learning for Medical Imaging

Deep learning in medical imaging has the potential to minimize the risk of diagnostic errors, reduce radiologist workload, and accelerate diagnosis. Training such deep learning models requires large and accurate datasets, with annotations for all training samples. However, in the medical imaging domain, annotated datasets for specific tasks are often small due to the high complexity of annotations, limited access, or the rarity of diseases. To address this challenge, deep learning models can be pre-trained on large image datasets without annotations using methods from the field of self-supervised learning. After pre-training, small annotated datasets are sufficient to fine-tune the models for a specific task. The most popular self-supervised pre-training approaches in medical imaging are based on contrastive learning. However, recent studies in natural image processing indicate a strong potential for masked autoencoder approaches. Our work compares state-of-the-art contrastive learning methods with the recently introduced masked autoencoder approach "SparK" for convolutional neural networks (CNNs) on medical images. Therefore we pre-train on a large unannotated CT image dataset and fine-tune on several CT classification tasks. Due to the challenge of obtaining sufficient annotated training data in medical imaging, it is of particular interest to evaluate how the self-supervised pre-training methods perform when fine-tuning on small datasets. By experimenting with gradually reducing the training dataset size for fine-tuning, we find that the reduction has different effects depending on the type of pre-training chosen. The SparK pre-training method is more robust to the training dataset size than the contrastive methods. Based on our results, we propose the SparK pre-training for medical imaging tasks with only small annotated datasets.

OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain

As a typical and practical application of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) techniques have gained extensive attention, particularly in vertical domains where LLMs may lack domain-specific knowledge. In this paper, we introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain. Our benchmark is characterized by its multi-dimensional evaluation framework, including (1) a matrix-based RAG scenario evaluation system that categorizes queries into five task classes and 16 financial topics, leading to a structured assessment of diverse query scenarios; (2) a multi-dimensional evaluation data generation approach, which combines GPT-4-based automatic generation and human annotation, achieving an 87.47\% acceptance ratio in human evaluations on generated instances; (3) a multi-stage evaluation system that evaluates both retrieval and generation performance, result in a comprehensive evaluation on the RAG pipeline; and (4) robust evaluation metrics derived from rule-based and LLM-based ones, enhancing the reliability of assessments through manual annotations and supervised fine-tuning of an LLM evaluator. Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets and highlights the performance variations of RAG systems across diverse topics and tasks, revealing significant opportunities for RAG models to improve their capabilities in vertical domains. We open source the code of our benchmark in https://github.com/RUC-NLPIR/OmniEval{https://github.com/RUC-NLPIR/OmniEval}.

ReSee: Responding through Seeing Fine-grained Visual Knowledge in Open-domain Dialogue

Incorporating visual knowledge into text-only dialogue systems has become a potential direction to imitate the way humans think, imagine, and communicate. However, existing multimodal dialogue systems are either confined by the scale and quality of available datasets or the coarse concept of visual knowledge. To address these issues, we provide a new paradigm of constructing multimodal dialogues as well as two datasets extended from text-only dialogues under such paradigm (ReSee-WoW, ReSee-DD). We propose to explicitly split the visual knowledge into finer granularity (``turn-level'' and ``entity-level''). To further boost the accuracy and diversity of augmented visual information, we retrieve them from the Internet or a large image dataset. To demonstrate the superiority and universality of the provided visual knowledge, we propose a simple but effective framework ReSee to add visual representation into vanilla dialogue models by modality concatenations. We also conduct extensive experiments and ablations w.r.t. different model configurations and visual knowledge settings. Empirical, encouraging results not only demonstrate the effectiveness of introducing visual knowledge at both entity and turn level but also verify the proposed model ReSee outperforms several state-of-the-art methods on automatic and human evaluations. By leveraging text and vision knowledge, ReSee can produce informative responses with real-world visual concepts. Our code is available at https://github.com/ImKeTT/ReSee.

How far is Language Model from 100% Few-shot Named Entity Recognition in Medical Domain

Recent advancements in language models (LMs) have led to the emergence of powerful models such as Small LMs (e.g., T5) and Large LMs (e.g., GPT-4). These models have demonstrated exceptional capabilities across a wide range of tasks, such as name entity recognition (NER) in the general domain. (We define SLMs as pre-trained models with fewer parameters compared to models like GPT-3/3.5/4, such as T5, BERT, and others.) Nevertheless, their efficacy in the medical section remains uncertain and the performance of medical NER always needs high accuracy because of the particularity of the field. This paper aims to provide a thorough investigation to compare the performance of LMs in medical few-shot NER and answer How far is LMs from 100\% Few-shot NER in Medical Domain, and moreover to explore an effective entity recognizer to help improve the NER performance. Based on our extensive experiments conducted on 16 NER models spanning from 2018 to 2023, our findings clearly indicate that LLMs outperform SLMs in few-shot medical NER tasks, given the presence of suitable examples and appropriate logical frameworks. Despite the overall superiority of LLMs in few-shot medical NER tasks, it is important to note that they still encounter some challenges, such as misidentification, wrong template prediction, etc. Building on previous findings, we introduce a simple and effective method called RT (Retrieving and Thinking), which serves as retrievers, finding relevant examples, and as thinkers, employing a step-by-step reasoning process. Experimental results show that our proposed RT framework significantly outperforms the strong open baselines on the two open medical benchmark datasets

Building a Family of Data Augmentation Models for Low-cost LLM Fine-tuning on the Cloud

Specializing LLMs in various domain-specific tasks has emerged as a critical step towards achieving high performance. However, the construction and annotation of datasets in specific domains are always very costly. Apart from using superior and expensive closed-source LLM APIs to construct datasets, some open-source models have become strong enough to handle dataset construction in many scenarios. Thus, we present a family of data augmentation models designed to significantly improve the efficiency for model fine-tuning. These models, trained based on sufficiently small LLMs, support key functionalities with low inference costs: instruction expansion, instruction refinement, and instruction-response pair expansion. To fulfill this goal, we first construct an automatic data collection system with seed datasets generated from both public repositories and our in-house datasets. This system leverages powerful LLMs to expand, refine and re-write the instructions and responses, incorporating quality assessment techniques. Following this, we introduce the training process of our models, which effectively distills task-solving and text synthesis abilities from teacher LLMs. Finally, we demonstrate how we integrate these functionalities into a machine learning platform to support low-cost LLM fine-tuning from both dataset preparation and training perspectives for users. Experiments and an application study prove the effectiveness of our approach.

MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation

In unsupervised domain adaptation (UDA), a model trained on source data (e.g. synthetic) is adapted to target data (e.g. real-world) without access to target annotation. Most previous UDA methods struggle with classes that have a similar visual appearance on the target domain as no ground truth is available to learn the slight appearance differences. To address this problem, we propose a Masked Image Consistency (MIC) module to enhance UDA by learning spatial context relations of the target domain as additional clues for robust visual recognition. MIC enforces the consistency between predictions of masked target images, where random patches are withheld, and pseudo-labels that are generated based on the complete image by an exponential moving average teacher. To minimize the consistency loss, the network has to learn to infer the predictions of the masked regions from their context. Due to its simple and universal concept, MIC can be integrated into various UDA methods across different visual recognition tasks such as image classification, semantic segmentation, and object detection. MIC significantly improves the state-of-the-art performance across the different recognition tasks for synthetic-to-real, day-to-nighttime, and clear-to-adverse-weather UDA. For instance, MIC achieves an unprecedented UDA performance of 75.9 mIoU and 92.8% on GTA-to-Cityscapes and VisDA-2017, respectively, which corresponds to an improvement of +2.1 and +3.0 percent points over the previous state of the art. The implementation is available at https://github.com/lhoyer/MIC.

OffensiveLang: A Community Based Implicit Offensive Language Dataset

The widespread presence of hateful languages on social media has resulted in adverse effects on societal well-being. As a result, addressing this issue with high priority has become very important. Hate speech or offensive languages exist in both explicit and implicit forms, with the latter being more challenging to detect. Current research in this domain encounters several challenges. Firstly, the existing datasets primarily rely on the collection of texts containing explicit offensive keywords, making it challenging to capture implicitly offensive contents that are devoid of these keywords. Secondly, common methodologies tend to focus solely on textual analysis, neglecting the valuable insights that community information can provide. In this research paper, we introduce a novel dataset OffensiveLang, a community based implicit offensive language dataset generated by ChatGPT 3.5 containing data for 38 different target groups. Despite limitations in generating offensive texts using ChatGPT due to ethical constraints, we present a prompt-based approach that effectively generates implicit offensive languages. To ensure data quality, we evaluate the dataset with human. Additionally, we employ a prompt-based zero-shot method with ChatGPT and compare the detection results between human annotation and ChatGPT annotation. We utilize existing state-of-the-art models to see how effective they are in detecting such languages. The dataset is available here: https://github.com/AmitDasRup123/OffensiveLang

M2FNet: Multi-modal Fusion Network for Emotion Recognition in Conversation

Emotion Recognition in Conversations (ERC) is crucial in developing sympathetic human-machine interaction. In conversational videos, emotion can be present in multiple modalities, i.e., audio, video, and transcript. However, due to the inherent characteristics of these modalities, multi-modal ERC has always been considered a challenging undertaking. Existing ERC research focuses mainly on using text information in a discussion, ignoring the other two modalities. We anticipate that emotion recognition accuracy can be improved by employing a multi-modal approach. Thus, in this study, we propose a Multi-modal Fusion Network (M2FNet) that extracts emotion-relevant features from visual, audio, and text modality. It employs a multi-head attention-based fusion mechanism to combine emotion-rich latent representations of the input data. We introduce a new feature extractor to extract latent features from the audio and visual modality. The proposed feature extractor is trained with a novel adaptive margin-based triplet loss function to learn emotion-relevant features from the audio and visual data. In the domain of ERC, the existing methods perform well on one benchmark dataset but not on others. Our results show that the proposed M2FNet architecture outperforms all other methods in terms of weighted average F1 score on well-known MELD and IEMOCAP datasets and sets a new state-of-the-art performance in ERC.

SIGHT: A Large Annotated Dataset on Student Insights Gathered from Higher Education Transcripts

Lectures are a learning experience for both students and teachers. Students learn from teachers about the subject material, while teachers learn from students about how to refine their instruction. However, online student feedback is unstructured and abundant, making it challenging for teachers to learn and improve. We take a step towards tackling this challenge. First, we contribute a dataset for studying this problem: SIGHT is a large dataset of 288 math lecture transcripts and 15,784 comments collected from the Massachusetts Institute of Technology OpenCourseWare (MIT OCW) YouTube channel. Second, we develop a rubric for categorizing feedback types using qualitative analysis. Qualitative analysis methods are powerful in uncovering domain-specific insights, however they are costly to apply to large data sources. To overcome this challenge, we propose a set of best practices for using large language models (LLMs) to cheaply classify the comments at scale. We observe a striking correlation between the model's and humans' annotation: Categories with consistent human annotations (>0.9 inter-rater reliability, IRR) also display higher human-model agreement (>0.7), while categories with less consistent human annotations (0.7-0.8 IRR) correspondingly demonstrate lower human-model agreement (0.3-0.5). These techniques uncover useful student feedback from thousands of comments, costing around 0.002$ per comment. We conclude by discussing exciting future directions on using online student feedback and improving automated annotation techniques for qualitative research.

Introducing Three New Benchmark Datasets for Hierarchical Text Classification

Hierarchical Text Classification (HTC) is a natural language processing task with the objective to classify text documents into a set of classes from a structured class hierarchy. Many HTC approaches have been proposed which attempt to leverage the class hierarchy information in various ways to improve classification performance. Machine learning-based classification approaches require large amounts of training data and are most-commonly compared through three established benchmark datasets, which include the Web Of Science (WOS), Reuters Corpus Volume 1 Version 2 (RCV1-V2) and New York Times (NYT) datasets. However, apart from the RCV1-V2 dataset which is well-documented, these datasets are not accompanied with detailed description methodologies. In this paper, we introduce three new HTC benchmark datasets in the domain of research publications which comprise the titles and abstracts of papers from the Web of Science publication database. We first create two baseline datasets which use existing journal-and citation-based classification schemas. Due to the respective shortcomings of these two existing schemas, we propose an approach which combines their classifications to improve the reliability and robustness of the dataset. We evaluate the three created datasets with a clustering-based analysis and show that our proposed approach results in a higher quality dataset where documents that belong to the same class are semantically more similar compared to the other datasets. Finally, we provide the classification performance of four state-of-the-art HTC approaches on these three new datasets to provide baselines for future studies on machine learning-based techniques for scientific publication classification.

The Role of Deep Learning in Advancing Proactive Cybersecurity Measures for Smart Grid Networks: A Survey

As smart grids (SG) increasingly rely on advanced technologies like sensors and communication systems for efficient energy generation, distribution, and consumption, they become enticing targets for sophisticated cyberattacks. These evolving threats demand robust security measures to maintain the stability and resilience of modern energy systems. While extensive research has been conducted, a comprehensive exploration of proactive cyber defense strategies utilizing Deep Learning (DL) in {SG} remains scarce in the literature. This survey bridges this gap, studying the latest DL techniques for proactive cyber defense. The survey begins with an overview of related works and our distinct contributions, followed by an examination of SG infrastructure. Next, we classify various cyber defense techniques into reactive and proactive categories. A significant focus is placed on DL-enabled proactive defenses, where we provide a comprehensive taxonomy of DL approaches, highlighting their roles and relevance in the proactive security of SG. Subsequently, we analyze the most significant DL-based methods currently in use. Further, we explore Moving Target Defense, a proactive defense strategy, and its interactions with DL methodologies. We then provide an overview of benchmark datasets used in this domain to substantiate the discourse.{ This is followed by a critical discussion on their practical implications and broader impact on cybersecurity in Smart Grids.} The survey finally lists the challenges associated with deploying DL-based security systems within SG, followed by an outlook on future developments in this key field.

DailyDVS-200: A Comprehensive Benchmark Dataset for Event-Based Action Recognition

Neuromorphic sensors, specifically event cameras, revolutionize visual data acquisition by capturing pixel intensity changes with exceptional dynamic range, minimal latency, and energy efficiency, setting them apart from conventional frame-based cameras. The distinctive capabilities of event cameras have ignited significant interest in the domain of event-based action recognition, recognizing their vast potential for advancement. However, the development in this field is currently slowed by the lack of comprehensive, large-scale datasets, which are critical for developing robust recognition frameworks. To bridge this gap, we introduces DailyDVS-200, a meticulously curated benchmark dataset tailored for the event-based action recognition community. DailyDVS-200 is extensive, covering 200 action categories across real-world scenarios, recorded by 47 participants, and comprises more than 22,000 event sequences. This dataset is designed to reflect a broad spectrum of action types, scene complexities, and data acquisition diversity. Each sequence in the dataset is annotated with 14 attributes, ensuring a detailed characterization of the recorded actions. Moreover, DailyDVS-200 is structured to facilitate a wide range of research paths, offering a solid foundation for both validating existing approaches and inspiring novel methodologies. By setting a new benchmark in the field, we challenge the current limitations of neuromorphic data processing and invite a surge of new approaches in event-based action recognition techniques, which paves the way for future explorations in neuromorphic computing and beyond. The dataset and source code are available at https://github.com/QiWang233/DailyDVS-200.

Learning to Generate Semantic Layouts for Higher Text-Image Correspondence in Text-to-Image Synthesis

Existing text-to-image generation approaches have set high standards for photorealism and text-image correspondence, largely benefiting from web-scale text-image datasets, which can include up to 5~billion pairs. However, text-to-image generation models trained on domain-specific datasets, such as urban scenes, medical images, and faces, still suffer from low text-image correspondence due to the lack of text-image pairs. Additionally, collecting billions of text-image pairs for a specific domain can be time-consuming and costly. Thus, ensuring high text-image correspondence without relying on web-scale text-image datasets remains a challenging task. In this paper, we present a novel approach for enhancing text-image correspondence by leveraging available semantic layouts. Specifically, we propose a Gaussian-categorical diffusion process that simultaneously generates both images and corresponding layout pairs. Our experiments reveal that we can guide text-to-image generation models to be aware of the semantics of different image regions, by training the model to generate semantic labels for each pixel. We demonstrate that our approach achieves higher text-image correspondence compared to existing text-to-image generation approaches in the Multi-Modal CelebA-HQ and the Cityscapes dataset, where text-image pairs are scarce. Codes are available in this https://pmh9960.github.io/research/GCDP

MalCL: Leveraging GAN-Based Generative Replay to Combat Catastrophic Forgetting in Malware Classification

Continual Learning (CL) for malware classification tackles the rapidly evolving nature of malware threats and the frequent emergence of new types. Generative Replay (GR)-based CL systems utilize a generative model to produce synthetic versions of past data, which are then combined with new data to retrain the primary model. Traditional machine learning techniques in this domain often struggle with catastrophic forgetting, where a model's performance on old data degrades over time. In this paper, we introduce a GR-based CL system that employs Generative Adversarial Networks (GANs) with feature matching loss to generate high-quality malware samples. Additionally, we implement innovative selection schemes for replay samples based on the model's hidden representations. Our comprehensive evaluation across Windows and Android malware datasets in a class-incremental learning scenario -- where new classes are introduced continuously over multiple tasks -- demonstrates substantial performance improvements over previous methods. For example, our system achieves an average accuracy of 55% on Windows malware samples, significantly outperforming other GR-based models by 28%. This study provides practical insights for advancing GR-based malware classification systems. The implementation is available at https://github.com/MalwareReplayGAN/MalCLThe code will be made public upon the presentation of the paper.

MG-Verilog: Multi-grained Dataset Towards Enhanced LLM-assisted Verilog Generation

Large Language Models (LLMs) have recently shown promise in streamlining hardware design processes by encapsulating vast amounts of domain-specific data. In addition, they allow users to interact with the design processes through natural language instructions, thus making hardware design more accessible to developers. However, effectively leveraging LLMs in hardware design necessitates providing domain-specific data during inference (e.g., through in-context learning), fine-tuning, or pre-training. Unfortunately, existing publicly available hardware datasets are often limited in size, complexity, or detail, which hinders the effectiveness of LLMs in hardware design tasks. To address this issue, we first propose a set of criteria for creating high-quality hardware datasets that can effectively enhance LLM-assisted hardware design. Based on these criteria, we propose a Multi-Grained-Verilog (MG-Verilog) dataset, which encompasses descriptions at various levels of detail and corresponding code samples. To benefit the broader hardware design community, we have developed an open-source infrastructure that facilitates easy access, integration, and extension of the dataset to meet specific project needs. Furthermore, to fully exploit the potential of the MG-Verilog dataset, which varies in complexity and detail, we introduce a balanced fine-tuning scheme. This scheme serves as a unique use case to leverage the diverse levels of detail provided by the dataset. Extensive experiments demonstrate that the proposed dataset and fine-tuning scheme consistently improve the performance of LLMs in hardware design tasks.

Grounding Stylistic Domain Generalization with Quantitative Domain Shift Measures and Synthetic Scene Images

Domain Generalization (DG) is a challenging task in machine learning that requires a coherent ability to comprehend shifts across various domains through extraction of domain-invariant features. DG performance is typically evaluated by performing image classification in domains of various image styles. However, current methodology lacks quantitative understanding about shifts in stylistic domain, and relies on a vast amount of pre-training data, such as ImageNet1K, which are predominantly in photo-realistic style with weakly supervised class labels. Such a data-driven practice could potentially result in spurious correlation and inflated performance on DG benchmarks. In this paper, we introduce a new DG paradigm to address these risks. We first introduce two new quantitative measures ICV and IDD to describe domain shifts in terms of consistency of classes within one domain and similarity between two stylistic domains. We then present SuperMarioDomains (SMD), a novel synthetic multi-domain dataset sampled from video game scenes with more consistent classes and sufficient dissimilarity compared to ImageNet1K. We demonstrate our DG method SMOS. SMOS first uses SMD to train a precursor model, which is then used to ground the training on a DG benchmark. We observe that SMOS contributes to state-of-the-art performance across five DG benchmarks, gaining large improvements to performances on abstract domains along with on-par or slight improvements to those on photo-realistic domains. Our qualitative analysis suggests that these improvements can be attributed to reduced distributional divergence between originally distant domains. Our data are available at https://github.com/fpsluozi/SMD-SMOS .

Align With Purpose: Optimize Desired Properties in CTC Models with a General Plug-and-Play Framework

Connectionist Temporal Classification (CTC) is a widely used criterion for training supervised sequence-to-sequence (seq2seq) models. It enables learning the relations between input and output sequences, termed alignments, by marginalizing over perfect alignments (that yield the ground truth), at the expense of imperfect alignments. This binary differentiation of perfect and imperfect alignments falls short of capturing other essential alignment properties that hold significance in other real-world applications. Here we propose Align With Purpose, a general Plug-and-Play framework for enhancing a desired property in models trained with the CTC criterion. We do that by complementing the CTC with an additional loss term that prioritizes alignments according to a desired property. Our method does not require any intervention in the CTC loss function, enables easy optimization of a variety of properties, and allows differentiation between both perfect and imperfect alignments. We apply our framework in the domain of Automatic Speech Recognition (ASR) and show its generality in terms of property selection, architectural choice, and scale of training dataset (up to 280,000 hours). To demonstrate the effectiveness of our framework, we apply it to two unrelated properties: emission time and word error rate (WER). For the former, we report an improvement of up to 570ms in latency optimization with a minor reduction in WER, and for the latter, we report a relative improvement of 4.5% WER over the baseline models. To the best of our knowledge, these applications have never been demonstrated to work on a scale of data as large as ours. Notably, our method can be implemented using only a few lines of code, and can be extended to other alignment-free loss functions and to domains other than ASR.

AfriWOZ: Corpus for Exploiting Cross-Lingual Transferability for Generation of Dialogues in Low-Resource, African Languages

Dialogue generation is an important NLP task fraught with many challenges. The challenges become more daunting for low-resource African languages. To enable the creation of dialogue agents for African languages, we contribute the first high-quality dialogue datasets for 6 African languages: Swahili, Wolof, Hausa, Nigerian Pidgin English, Kinyarwanda & Yor\`ub\'a. These datasets consist of 1,500 turns each, which we translate from a portion of the English multi-domain MultiWOZ dataset. Subsequently, we investigate & analyze the effectiveness of modelling through transfer learning by utilziing state-of-the-art (SoTA) deep monolingual models: DialoGPT and BlenderBot. We compare the models with a simple seq2seq baseline using perplexity. Besides this, we conduct human evaluation of single-turn conversations by using majority votes and measure inter-annotator agreement (IAA). We find that the hypothesis that deep monolingual models learn some abstractions that generalize across languages holds. We observe human-like conversations, to different degrees, in 5 out of the 6 languages. The language with the most transferable properties is the Nigerian Pidgin English, with a human-likeness score of 78.1%, of which 34.4% are unanimous. We freely provide the datasets and host the model checkpoints/demos on the HuggingFace hub for public access.

MVHumanNet: A Large-scale Dataset of Multi-view Daily Dressing Human Captures

In this era, the success of large language models and text-to-image models can be attributed to the driving force of large-scale datasets. However, in the realm of 3D vision, while remarkable progress has been made with models trained on large-scale synthetic and real-captured object data like Objaverse and MVImgNet, a similar level of progress has not been observed in the domain of human-centric tasks partially due to the lack of a large-scale human dataset. Existing datasets of high-fidelity 3D human capture continue to be mid-sized due to the significant challenges in acquiring large-scale high-quality 3D human data. To bridge this gap, we present MVHumanNet, a dataset that comprises multi-view human action sequences of 4,500 human identities. The primary focus of our work is on collecting human data that features a large number of diverse identities and everyday clothing using a multi-view human capture system, which facilitates easily scalable data collection. Our dataset contains 9,000 daily outfits, 60,000 motion sequences and 645 million frames with extensive annotations, including human masks, camera parameters, 2D and 3D keypoints, SMPL/SMPLX parameters, and corresponding textual descriptions. To explore the potential of MVHumanNet in various 2D and 3D visual tasks, we conducted pilot studies on view-consistent action recognition, human NeRF reconstruction, text-driven view-unconstrained human image generation, as well as 2D view-unconstrained human image and 3D avatar generation. Extensive experiments demonstrate the performance improvements and effective applications enabled by the scale provided by MVHumanNet. As the current largest-scale 3D human dataset, we hope that the release of MVHumanNet data with annotations will foster further innovations in the domain of 3D human-centric tasks at scale.

EX-FEVER: A Dataset for Multi-hop Explainable Fact Verification

Fact verification aims to automatically probe the veracity of a claim based on several pieces of evidence. Existing works are always engaging in the accuracy improvement, let alone the explainability, a critical capability of fact verification system. Constructing an explainable fact verification system in a complex multi-hop scenario is consistently impeded by the absence of a relevant high-quality dataset. Previous dataset either suffer from excessive simplification or fail to incorporate essential considerations for explainability. To address this, we present EX-FEVER, a pioneering dataset for multi-hop explainable fact verification. With over 60,000 claims involving 2-hop and 3-hop reasoning, each is created by summarizing and modifying information from hyperlinked Wikipedia documents. Each instance is accompanied by a veracity label and an explanation that outlines the reasoning path supporting the veracity classification. Additionally, we demonstrate a novel baseline system on our EX-FEVER dataset, showcasing document retrieval, explanation generation, and claim verification and observe that existing fact verification models trained on previous datasets struggle to perform well on our dataset. Furthermore, we highlight the potential of utilizing Large Language Models in the fact verification task. We hope our dataset could make a significant contribution by providing ample opportunities to explore the integration of natural language explanations in the domain of fact verification.

Training and Evaluating Language Models with Template-based Data Generation

The rapid advancement of large language models (LLMs) such as GPT-3, PaLM, and Llama has significantly transformed natural language processing, showcasing remarkable capabilities in understanding and generating language. However, these models often struggle with tasks requiring complex reasoning, particularly in mathematical problem-solving, due in part to the scarcity of large-scale, high-quality, domain-specific datasets necessary for training sophisticated reasoning abilities. To address this limitation, we introduce Template-based Data Generation (TDG), a novel approach that leverages LLMs (GPT-4) to automatically generate parameterized meta-templates, which are then used to synthesize a vast array of high-quality problems and solutions. Leveraging TDG, we create TemplateMath Part I: TemplateGSM, a dataset comprising over 7 million synthetically generated grade school math problems--each accompanied by code-based and natural language solutions--with the potential to generate an effectively unlimited number more. This dataset alleviates the scarcity of large-scale mathematical datasets and serves as a valuable resource for pre-training, fine-tuning, and evaluating LLMs in mathematical reasoning. Our method not only enables the generation of virtually infinite data but also elevates data augmentation to a new level by using GPT-4 for meta-template generation, ensuring diverse and high-quality problem structures. The TemplateMath Part I: TemplateGSM dataset is publicly available at https://huggingface.co/datasets/math-ai/TemplateGSM. The code is available at https://github.com/iiis-ai/TemplateMath.

OutRank: Speeding up AutoML-based Model Search for Large Sparse Data sets with Cardinality-aware Feature Ranking

The design of modern recommender systems relies on understanding which parts of the feature space are relevant for solving a given recommendation task. However, real-world data sets in this domain are often characterized by their large size, sparsity, and noise, making it challenging to identify meaningful signals. Feature ranking represents an efficient branch of algorithms that can help address these challenges by identifying the most informative features and facilitating the automated search for more compact and better-performing models (AutoML). We introduce OutRank, a system for versatile feature ranking and data quality-related anomaly detection. OutRank was built with categorical data in mind, utilizing a variant of mutual information that is normalized with regard to the noise produced by features of the same cardinality. We further extend the similarity measure by incorporating information on feature similarity and combined relevance. The proposed approach's feasibility is demonstrated by speeding up the state-of-the-art AutoML system on a synthetic data set with no performance loss. Furthermore, we considered a real-life click-through-rate prediction data set where it outperformed strong baselines such as random forest-based approaches. The proposed approach enables exploration of up to 300% larger feature spaces compared to AutoML-only approaches, enabling faster search for better models on off-the-shelf hardware.

Biomedical Large Languages Models Seem not to be Superior to Generalist Models on Unseen Medical Data

Large language models (LLMs) have shown potential in biomedical applications, leading to efforts to fine-tune them on domain-specific data. However, the effectiveness of this approach remains unclear. This study evaluates the performance of biomedically fine-tuned LLMs against their general-purpose counterparts on a variety of clinical tasks. We evaluated their performance on clinical case challenges from the New England Journal of Medicine (NEJM) and the Journal of the American Medical Association (JAMA) and on several clinical tasks (e.g., information extraction, document summarization, and clinical coding). Using benchmarks specifically chosen to be likely outside the fine-tuning datasets of biomedical models, we found that biomedical LLMs mostly perform inferior to their general-purpose counterparts, especially on tasks not focused on medical knowledge. While larger models showed similar performance on case tasks (e.g., OpenBioLLM-70B: 66.4% vs. Llama-3-70B-Instruct: 65% on JAMA cases), smaller biomedical models showed more pronounced underperformance (e.g., OpenBioLLM-8B: 30% vs. Llama-3-8B-Instruct: 64.3% on NEJM cases). Similar trends were observed across the CLUE (Clinical Language Understanding Evaluation) benchmark tasks, with general-purpose models often performing better on text generation, question answering, and coding tasks. Our results suggest that fine-tuning LLMs to biomedical data may not provide the expected benefits and may potentially lead to reduced performance, challenging prevailing assumptions about domain-specific adaptation of LLMs and highlighting the need for more rigorous evaluation frameworks in healthcare AI. Alternative approaches, such as retrieval-augmented generation, may be more effective in enhancing the biomedical capabilities of LLMs without compromising their general knowledge.

Large Language Models as Data Preprocessors

Large Language Models (LLMs), typified by OpenAI's GPT series and Meta's LLaMA variants, have marked a significant advancement in artificial intelligence. Trained on vast amounts of text data, LLMs are capable of understanding and generating human-like text across a diverse range of topics. This study expands on the applications of LLMs, exploring their potential in data preprocessing, a critical stage in data mining and analytics applications. We delve into the applicability of state-of-the-art LLMs such as GPT-3.5, GPT-4, and Vicuna-13B for error detection, data imputation, schema matching, and entity matching tasks. Alongside showcasing the inherent capabilities of LLMs, we highlight their limitations, particularly in terms of computational expense and inefficiency. We propose an LLM-based framework for data preprocessing, which integrates cutting-edge prompt engineering techniques, coupled with traditional methods like contextualization and feature selection, to improve the performance and efficiency of these models. The effectiveness of LLMs in data preprocessing is evaluated through an experimental study spanning 12 datasets. GPT-4 emerged as a standout, achieving 100\% accuracy or F1 score on 4 datasets, suggesting LLMs' immense potential in these tasks. Despite certain limitations, our study underscores the promise of LLMs in this domain and anticipates future developments to overcome current hurdles.

One-Shot Generative Domain Adaptation

This work aims at transferring a Generative Adversarial Network (GAN) pre-trained on one image domain to a new domain referring to as few as just one target image. The main challenge is that, under limited supervision, it is extremely difficult to synthesize photo-realistic and highly diverse images, while acquiring representative characters of the target. Different from existing approaches that adopt the vanilla fine-tuning strategy, we import two lightweight modules to the generator and the discriminator respectively. Concretely, we introduce an attribute adaptor into the generator yet freeze its original parameters, through which it can reuse the prior knowledge to the most extent and hence maintain the synthesis quality and diversity. We then equip the well-learned discriminator backbone with an attribute classifier to ensure that the generator captures the appropriate characters from the reference. Furthermore, considering the poor diversity of the training data (i.e., as few as only one image), we propose to also constrain the diversity of the generative domain in the training process, alleviating the optimization difficulty. Our approach brings appealing results under various settings, substantially surpassing state-of-the-art alternatives, especially in terms of synthesis diversity. Noticeably, our method works well even with large domain gaps, and robustly converges within a few minutes for each experiment.

Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and Retrieval

While image retrieval and instance recognition techniques are progressing rapidly, there is a need for challenging datasets to accurately measure their performance -- while posing novel challenges that are relevant for practical applications. We introduce the Google Landmarks Dataset v2 (GLDv2), a new benchmark for large-scale, fine-grained instance recognition and image retrieval in the domain of human-made and natural landmarks. GLDv2 is the largest such dataset to date by a large margin, including over 5M images and 200k distinct instance labels. Its test set consists of 118k images with ground truth annotations for both the retrieval and recognition tasks. The ground truth construction involved over 800 hours of human annotator work. Our new dataset has several challenging properties inspired by real world applications that previous datasets did not consider: An extremely long-tailed class distribution, a large fraction of out-of-domain test photos and large intra-class variability. The dataset is sourced from Wikimedia Commons, the world's largest crowdsourced collection of landmark photos. We provide baseline results for both recognition and retrieval tasks based on state-of-the-art methods as well as competitive results from a public challenge. We further demonstrate the suitability of the dataset for transfer learning by showing that image embeddings trained on it achieve competitive retrieval performance on independent datasets. The dataset images, ground-truth and metric scoring code are available at https://github.com/cvdfoundation/google-landmark.

Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning

Deep Metric Learning (DML) has long attracted the attention of the machine learning community as a key objective. Existing solutions concentrate on fine-tuning the pre-trained models on conventional image datasets. As a result of the success of recent pre-trained models trained from larger-scale datasets, it is challenging to adapt the model to the DML tasks in the local data domain while retaining the previously gained knowledge. In this paper, we investigate parameter-efficient methods for fine-tuning the pre-trained model for DML tasks. In particular, we propose a novel and effective framework based on learning Visual Prompts (VPT) in the pre-trained Vision Transformers (ViT). Based on the conventional proxy-based DML paradigm, we augment the proxy by incorporating the semantic information from the input image and the ViT, in which we optimize the visual prompts for each class. We demonstrate that our new approximations with semantic information are superior to representative capabilities, thereby improving metric learning performance. We conduct extensive experiments to demonstrate that our proposed framework is effective and efficient by evaluating popular DML benchmarks. In particular, we demonstrate that our fine-tuning method achieves comparable or even better performance than recent state-of-the-art full fine-tuning works of DML while tuning only a small percentage of total parameters.

Open-Universe Indoor Scene Generation using LLM Program Synthesis and Uncurated Object Databases

We present a system for generating indoor scenes in response to text prompts. The prompts are not limited to a fixed vocabulary of scene descriptions, and the objects in generated scenes are not restricted to a fixed set of object categories -- we call this setting indoor scene generation. Unlike most prior work on indoor scene generation, our system does not require a large training dataset of existing 3D scenes. Instead, it leverages the world knowledge encoded in pre-trained large language models (LLMs) to synthesize programs in a domain-specific layout language that describe objects and spatial relations between them. Executing such a program produces a specification of a constraint satisfaction problem, which the system solves using a gradient-based optimization scheme to produce object positions and orientations. To produce object geometry, the system retrieves 3D meshes from a database. Unlike prior work which uses databases of category-annotated, mutually-aligned meshes, we develop a pipeline using vision-language models (VLMs) to retrieve meshes from massive databases of un-annotated, inconsistently-aligned meshes. Experimental evaluations show that our system outperforms generative models trained on 3D data for traditional, closed-universe scene generation tasks; it also outperforms a recent LLM-based layout generation method on open-universe scene generation.

Plutus: Benchmarking Large Language Models in Low-Resource Greek Finance

Despite Greece's pivotal role in the global economy, large language models (LLMs) remain underexplored for Greek financial context due to the linguistic complexity of Greek and the scarcity of domain-specific datasets. Previous efforts in multilingual financial natural language processing (NLP) have exposed considerable performance disparities, yet no dedicated Greek financial benchmarks or Greek-specific financial LLMs have been developed until now. To bridge this gap, we introduce Plutus-ben, the first Greek Financial Evaluation Benchmark, and Plutus-8B, the pioneering Greek Financial LLM, fine-tuned with Greek domain-specific data. Plutus-ben addresses five core financial NLP tasks in Greek: numeric and textual named entity recognition, question answering, abstractive summarization, and topic classification, thereby facilitating systematic and reproducible LLM assessments. To underpin these tasks, we present three novel, high-quality Greek financial datasets, thoroughly annotated by expert native Greek speakers, augmented by two existing resources. Our comprehensive evaluation of 22 LLMs on Plutus-ben reveals that Greek financial NLP remains challenging due to linguistic complexity, domain-specific terminology, and financial reasoning gaps. These findings underscore the limitations of cross-lingual transfer, the necessity for financial expertise in Greek-trained models, and the challenges of adapting financial LLMs to Greek text. We release Plutus-ben, Plutus-8B, and all associated datasets publicly to promote reproducible research and advance Greek financial NLP, fostering broader multilingual inclusivity in finance.

Horizon-Length Prediction: Advancing Fill-in-the-Middle Capabilities for Code Generation with Lookahead Planning

Fill-in-the-Middle (FIM) has become integral to code language models, enabling generation of missing code given both left and right contexts. However, the current FIM training paradigm, which reorders original training sequences and then performs regular next-token prediction (NTP), often leads to models struggling to generate content that aligns smoothly with the surrounding context. Crucially, while existing works rely on rule-based post-processing to circumvent this weakness, such methods are not practically usable in open-domain code completion tasks as they depend on restrictive, dataset-specific assumptions (e.g., generating the same number of lines as in the ground truth). Moreover, model performance on FIM tasks deteriorates significantly without these unrealistic assumptions. We hypothesize that NTP alone is insufficient for models to learn effective planning conditioned on the distant right context, a critical factor for successful code infilling. To overcome this, we propose Horizon-Length Prediction (HLP), a novel training objective that teaches models to predict the number of remaining middle tokens (i.e., horizon length) at each step. HLP advances FIM with lookahead planning, enabling models to inherently learn infilling boundaries for arbitrary left and right contexts without relying on dataset-specific post-processing. Our evaluation across different models and sizes shows that HLP significantly improves FIM performance by up to 24% relatively on diverse benchmarks, across file-level and repository-level, and without resorting to unrealistic post-processing methods. Furthermore, the enhanced planning capability gained through HLP boosts model performance on code reasoning. Importantly, HLP only incurs negligible training overhead and no additional inference cost, ensuring its practicality for real-world scenarios.

Efficient and Scalable Estimation of Tool Representations in Vector Space

Recent advancements in function calling and tool use have significantly enhanced the capabilities of large language models (LLMs) by enabling them to interact with external information sources and execute complex tasks. However, the limited context window of LLMs presents challenges when a large number of tools are available, necessitating efficient methods to manage prompt length and maintain accuracy. Existing approaches, such as fine-tuning LLMs or leveraging their reasoning capabilities, either require frequent retraining or incur significant latency overhead. A more efficient solution involves training smaller models to retrieve the most relevant tools for a given query, although this requires high quality, domain-specific data. To address those challenges, we present a novel framework for generating synthetic data for tool retrieval applications and an efficient data-driven tool retrieval strategy using small encoder models. Empowered by LLMs, we create ToolBank, a new tool retrieval dataset that reflects real human user usages. For tool retrieval methodologies, we propose novel approaches: (1) Tool2Vec: usage-driven tool embedding generation for tool retrieval, (2) ToolRefiner: a staged retrieval method that iteratively improves the quality of retrieved tools, and (3) MLC: framing tool retrieval as a multi-label classification problem. With these new methods, we achieve improvements of up to 27.28 in Recall@K on the ToolBench dataset and 30.5 in Recall@K on ToolBank. Additionally, we present further experimental results to rigorously validate our methods. Our code is available at https://github.com/SqueezeAILab/Tool2Vec

A Fast Fourier Convolutional Deep Neural Network For Accurate and Explainable Discrimination Of Wheat Yellow Rust And Nitrogen Deficiency From Sentinel-2 Time-Series Data

Accurate and timely detection of plant stress is essential for yield protection, allowing better-targeted intervention strategies. Recent advances in remote sensing and deep learning have shown great potential for rapid non-invasive detection of plant stress in a fully automated and reproducible manner. However, the existing models always face several challenges: 1) computational inefficiency and the misclassifications between the different stresses with similar symptoms; and 2) the poor interpretability of the host-stress interaction. In this work, we propose a novel fast Fourier Convolutional Neural Network (FFDNN) for accurate and explainable detection of two plant stresses with similar symptoms (i.e. Wheat Yellow Rust And Nitrogen Deficiency). Specifically, unlike the existing CNN models, the main components of the proposed model include: 1) a fast Fourier convolutional block, a newly fast Fourier transformation kernel as the basic perception unit, to substitute the traditional convolutional kernel to capture both local and global responses to plant stress in various time-scale and improve computing efficiency with reduced learning parameters in Fourier domain; 2) Capsule Feature Encoder to encapsulate the extracted features into a series of vector features to represent part-to-whole relationship with the hierarchical structure of the host-stress interactions of the specific stress. In addition, in order to alleviate over-fitting, a photochemical vegetation indices-based filter is placed as pre-processing operator to remove the non-photochemical noises from the input Sentinel-2 time series.

AirPhyNet: Harnessing Physics-Guided Neural Networks for Air Quality Prediction

Air quality prediction and modelling plays a pivotal role in public health and environment management, for individuals and authorities to make informed decisions. Although traditional data-driven models have shown promise in this domain, their long-term prediction accuracy can be limited, especially in scenarios with sparse or incomplete data and they often rely on black-box deep learning structures that lack solid physical foundation leading to reduced transparency and interpretability in predictions. To address these limitations, this paper presents a novel approach named Physics guided Neural Network for Air Quality Prediction (AirPhyNet). Specifically, we leverage two well-established physics principles of air particle movement (diffusion and advection) by representing them as differential equation networks. Then, we utilize a graph structure to integrate physics knowledge into a neural network architecture and exploit latent representations to capture spatio-temporal relationships within the air quality data. Experiments on two real-world benchmark datasets demonstrate that AirPhyNet outperforms state-of-the-art models for different testing scenarios including different lead time (24h, 48h, 72h), sparse data and sudden change prediction, achieving reduction in prediction errors up to 10%. Moreover, a case study further validates that our model captures underlying physical processes of particle movement and generates accurate predictions with real physical meaning.

PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation

In the domain of medical imaging, many supervised learning based methods for segmentation face several challenges such as high variability in annotations from multiple experts, paucity of labelled data and class imbalanced datasets. These issues may result in segmentations that lack the requisite precision for clinical analysis and can be misleadingly overconfident without associated uncertainty quantification. We propose the PULASki for biomedical image segmentation that accurately captures variability in expert annotations, even in small datasets. Our approach makes use of an improved loss function based on statistical distances in a conditional variational autoencoder structure (Probabilistic UNet), which improves learning of the conditional decoder compared to the standard cross-entropy particularly in class imbalanced problems. We analyse our method for two structurally different segmentation tasks (intracranial vessel and multiple sclerosis (MS) lesion) and compare our results to four well-established baselines in terms of quantitative metrics and qualitative output. Empirical results demonstrate the PULASKi method outperforms all baselines at the 5\% significance level. The generated segmentations are shown to be much more anatomically plausible than in the 2D case, particularly for the vessel task. Our method can also be applied to a wide range of multi-label segmentation tasks and and is useful for downstream tasks such as hemodynamic modelling (computational fluid dynamics and data assimilation), clinical decision making, and treatment planning.

MedSumm: A Multimodal Approach to Summarizing Code-Mixed Hindi-English Clinical Queries

In the healthcare domain, summarizing medical questions posed by patients is critical for improving doctor-patient interactions and medical decision-making. Although medical data has grown in complexity and quantity, the current body of research in this domain has primarily concentrated on text-based methods, overlooking the integration of visual cues. Also prior works in the area of medical question summarisation have been limited to the English language. This work introduces the task of multimodal medical question summarization for codemixed input in a low-resource setting. To address this gap, we introduce the Multimodal Medical Codemixed Question Summarization MMCQS dataset, which combines Hindi-English codemixed medical queries with visual aids. This integration enriches the representation of a patient's medical condition, providing a more comprehensive perspective. We also propose a framework named MedSumm that leverages the power of LLMs and VLMs for this task. By utilizing our MMCQS dataset, we demonstrate the value of integrating visual information from images to improve the creation of medically detailed summaries. This multimodal strategy not only improves healthcare decision-making but also promotes a deeper comprehension of patient queries, paving the way for future exploration in personalized and responsive medical care. Our dataset, code, and pre-trained models will be made publicly available.

DVPT: Dynamic Visual Prompt Tuning of Large Pre-trained Models for Medical Image Analysis

Limited labeled data makes it hard to train models from scratch in medical domain, and an important paradigm is pre-training and then fine-tuning. Large pre-trained models contain rich representations, which can be adapted to downstream medical tasks. However, existing methods either tune all the parameters or the task-specific layers of the pre-trained models, ignoring the input variations of medical images, and thus they are not efficient or effective. In this work, we aim to study parameter-efficient fine-tuning (PEFT) for medical image analysis, and propose a dynamic visual prompt tuning method, named DVPT. It can extract knowledge beneficial to downstream tasks from large models with a few trainable parameters. Firstly, the frozen features are transformed by an lightweight bottleneck layer to learn the domain-specific distribution of downstream medical tasks, and then a few learnable visual prompts are used as dynamic queries and then conduct cross-attention with the transformed features, attempting to acquire sample-specific knowledge that are suitable for each sample. Finally, the features are projected to original feature dimension and aggregated with the frozen features. This DVPT module can be shared between different Transformer layers, further reducing the trainable parameters. To validate DVPT, we conduct extensive experiments with different pre-trained models on medical classification and segmentation tasks. We find such PEFT method can not only efficiently adapt the pre-trained models to the medical domain, but also brings data efficiency with partial labeled data. For example, with 0.5\% extra trainable parameters, our method not only outperforms state-of-the-art PEFT methods, even surpasses the full fine-tuning by more than 2.20\% Kappa score on medical classification task. It can saves up to 60\% labeled data and 99\% storage cost of ViT-B/16.

Visual Counter Turing Test (VCT^2): Discovering the Challenges for AI-Generated Image Detection and Introducing Visual AI Index (V_AI)

The proliferation of AI techniques for image generation, coupled with their increasing accessibility, has raised significant concerns about the potential misuse of these images to spread misinformation. Recent AI-generated image detection (AGID) methods include CNNDetection, NPR, DM Image Detection, Fake Image Detection, DIRE, LASTED, GAN Image Detection, AIDE, SSP, DRCT, RINE, OCC-CLIP, De-Fake, and Deep Fake Detection. However, we argue that the current state-of-the-art AGID techniques are inadequate for effectively detecting contemporary AI-generated images and advocate for a comprehensive reevaluation of these methods. We introduce the Visual Counter Turing Test (VCT^2), a benchmark comprising ~130K images generated by contemporary text-to-image models (Stable Diffusion 2.1, Stable Diffusion XL, Stable Diffusion 3, DALL-E 3, and Midjourney 6). VCT^2 includes two sets of prompts sourced from tweets by the New York Times Twitter account and captions from the MS COCO dataset. We also evaluate the performance of the aforementioned AGID techniques on the VCT^2 benchmark, highlighting their ineffectiveness in detecting AI-generated images. As image-generative AI models continue to evolve, the need for a quantifiable framework to evaluate these models becomes increasingly critical. To meet this need, we propose the Visual AI Index (V_AI), which assesses generated images from various visual perspectives, including texture complexity and object coherence, setting a new standard for evaluating image-generative AI models. To foster research in this domain, we make our https://huggingface.co/datasets/anonymous1233/COCO_AI and https://huggingface.co/datasets/anonymous1233/twitter_AI datasets publicly available.

RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture

There are two common ways in which developers are incorporating proprietary and domain-specific data when building applications of Large Language Models (LLMs): Retrieval-Augmented Generation (RAG) and Fine-Tuning. RAG augments the prompt with the external data, while fine-Tuning incorporates the additional knowledge into the model itself. However, the pros and cons of both approaches are not well understood. In this paper, we propose a pipeline for fine-tuning and RAG, and present the tradeoffs of both for multiple popular LLMs, including Llama2-13B, GPT-3.5, and GPT-4. Our pipeline consists of multiple stages, including extracting information from PDFs, generating questions and answers, using them for fine-tuning, and leveraging GPT-4 for evaluating the results. We propose metrics to assess the performance of different stages of the RAG and fine-Tuning pipeline. We conduct an in-depth study on an agricultural dataset. Agriculture as an industry has not seen much penetration of AI, and we study a potentially disruptive application - what if we could provide location-specific insights to a farmer? Our results show the effectiveness of our dataset generation pipeline in capturing geographic-specific knowledge, and the quantitative and qualitative benefits of RAG and fine-tuning. We see an accuracy increase of over 6 p.p. when fine-tuning the model and this is cumulative with RAG, which increases accuracy by 5 p.p. further. In one particular experiment, we also demonstrate that the fine-tuned model leverages information from across geographies to answer specific questions, increasing answer similarity from 47% to 72%. Overall, the results point to how systems built using LLMs can be adapted to respond and incorporate knowledge across a dimension that is critical for a specific industry, paving the way for further applications of LLMs in other industrial domains.

Fast Registration of Photorealistic Avatars for VR Facial Animation

Virtual Reality (VR) bares promise of social interactions that can feel more immersive than other media. Key to this is the ability to accurately animate a photorealistic avatar of one's likeness while wearing a VR headset. Although high quality registration of person-specific avatars to headset-mounted camera (HMC) images is possible in an offline setting, the performance of generic realtime models are significantly degraded. Online registration is also challenging due to oblique camera views and differences in modality. In this work, we first show that the domain gap between the avatar and headset-camera images is one of the primary sources of difficulty, where a transformer-based architecture achieves high accuracy on domain-consistent data, but degrades when the domain-gap is re-introduced. Building on this finding, we develop a system design that decouples the problem into two parts: 1) an iterative refinement module that takes in-domain inputs, and 2) a generic avatar-guided image-to-image style transfer module that is conditioned on current estimation of expression and head pose. These two modules reinforce each other, as image style transfer becomes easier when close-to-ground-truth examples are shown, and better domain-gap removal helps registration. Our system produces high-quality results efficiently, obviating the need for costly offline registration to generate personalized labels. We validate the accuracy and efficiency of our approach through extensive experiments on a commodity headset, demonstrating significant improvements over direct regression methods as well as offline registration.

CyberPal.AI: Empowering LLMs with Expert-Driven Cybersecurity Instructions

Large Language Models (LLMs) have significantly advanced natural language processing (NLP), providing versatile capabilities across various applications. However, their application to complex, domain-specific tasks, such as cyber-security, often faces substantial challenges. In this study, we introduce SecKnowledge and CyberPal.AI to address these challenges and train security-expert LLMs. SecKnowledge is a domain-knowledge-driven cyber-security instruction dataset, meticulously designed using years of accumulated expert knowledge in the domain through a multi-phase generation process. CyberPal.AI refers to a family of LLMs fine-tuned using SecKnowledge, aimed at building security-specialized LLMs capable of answering and following complex security-related instructions. Additionally, we introduce SecKnowledge-Eval, a comprehensive and diverse cyber-security evaluation benchmark, composed of an extensive set of cyber-security tasks we specifically developed to assess LLMs in the field of cyber-security, along with other publicly available security benchmarks. Our results show a significant average improvement of up to 24% over the baseline models, underscoring the benefits of our expert-driven instruction dataset generation process. These findings contribute to the advancement of AI-based cyber-security applications, paving the way for security-expert LLMs that can enhance threat-hunting and investigation processes.

Reprogramming under constraints: Revisiting efficient and reliable transferability of lottery tickets

In the era of foundation models with huge pre-training budgets, the downstream tasks have been shifted to the narrative of efficient and fast adaptation. For classification-based tasks in the domain of computer vision, the two most efficient approaches have been linear probing (LP) and visual prompting/reprogramming (VP); the former aims to learn a classifier in the form of a linear head on the features extracted by the pre-trained model, while the latter maps the input data to the domain of the source data on which the model was originally pre-trained on. Although extensive studies have demonstrated the differences between LP and VP in terms of downstream performance, we explore the capabilities of the two aforementioned methods via the sparsity axis: (a) Data sparsity: the impact of few-shot adaptation and (b) Model sparsity: the impact of lottery tickets (LT). We demonstrate that LT are not universal reprogrammers, i.e., for certain target datasets, reprogramming an LT yields significantly lower performance than the reprogrammed dense model although their corresponding upstream performance is similar. Further, we demonstrate that the calibration of dense models is always superior to that of their lottery ticket counterparts under both LP and VP regimes. Our empirical study opens a new avenue of research into VP for sparse models and encourages further understanding of the performance beyond the accuracy achieved by VP under constraints of sparsity. Code and logs can be accessed at https://github.com/landskape-ai/Reprogram_LT.

Training-Free Unsupervised Prompt for Vision-Language Models

Prompt learning has become the most effective paradigm for adapting large pre-trained vision-language models (VLMs) to downstream tasks. Recently, unsupervised prompt tuning methods, such as UPL and POUF, directly leverage pseudo-labels as supervisory information to fine-tune additional adaptation modules on unlabeled data. However, inaccurate pseudo labels easily misguide the tuning process and result in poor representation capabilities. In light of this, we propose Training-Free Unsupervised Prompts (TFUP), which maximally preserves the inherent representation capabilities and enhances them with a residual connection to similarity-based prediction probabilities in a training-free and labeling-free manner. Specifically, we integrate both instance confidence and prototype scores to select representative samples, which are used to customize a reliable Feature Cache Model (FCM) for training-free inference. Then, we design a Multi-level Similarity Measure (MSM) that considers both feature-level and semantic-level similarities to calculate the distance between each test image and the cached sample as the weight of the corresponding cached label to generate similarity-based prediction probabilities. In this way, TFUP achieves surprising performance, even surpassing the training-base method on multiple classification datasets. Based on our TFUP, we propose a training-based approach (TFUP-T) to further boost the adaptation performance. In addition to the standard cross-entropy loss, TFUP-T adopts an additional marginal distribution entropy loss to constrain the model from a global perspective. Our TFUP-T achieves new state-of-the-art classification performance compared to unsupervised and few-shot adaptation approaches on multiple benchmarks. In particular, TFUP-T improves the classification accuracy of POUF by 3.3% on the most challenging Domain-Net dataset.

Goal-Conditioned Imitation Learning using Score-based Diffusion Policies

We propose a new policy representation based on score-based diffusion models (SDMs). We apply our new policy representation in the domain of Goal-Conditioned Imitation Learning (GCIL) to learn general-purpose goal-specified policies from large uncurated datasets without rewards. Our new goal-conditioned policy architecture "BEhavior generation with ScOre-based Diffusion Policies" (BESO) leverages a generative, score-based diffusion model as its policy. BESO decouples the learning of the score model from the inference sampling process, and, hence allows for fast sampling strategies to generate goal-specified behavior in just 3 denoising steps, compared to 30+ steps of other diffusion based policies. Furthermore, BESO is highly expressive and can effectively capture multi-modality present in the solution space of the play data. Unlike previous methods such as Latent Plans or C-Bet, BESO does not rely on complex hierarchical policies or additional clustering for effective goal-conditioned behavior learning. Finally, we show how BESO can even be used to learn a goal-independent policy from play-data using classifier-free guidance. To the best of our knowledge this is the first work that a) represents a behavior policy based on such a decoupled SDM b) learns an SDM based policy in the domain of GCIL and c) provides a way to simultaneously learn a goal-dependent and a goal-independent policy from play-data. We evaluate BESO through detailed simulation and show that it consistently outperforms several state-of-the-art goal-conditioned imitation learning methods on challenging benchmarks. We additionally provide extensive ablation studies and experiments to demonstrate the effectiveness of our method for goal-conditioned behavior generation. Demonstrations and Code are available at https://intuitive-robots.github.io/beso-website/

UpCycling: Semi-supervised 3D Object Detection without Sharing Raw-level Unlabeled Scenes

Semi-supervised Learning (SSL) has received increasing attention in autonomous driving to reduce the enormous burden of 3D annotation. In this paper, we propose UpCycling, a novel SSL framework for 3D object detection with zero additional raw-level point cloud: learning from unlabeled de-identified intermediate features (i.e., smashed data) to preserve privacy. Since these intermediate features are naturally produced by the inference pipeline, no additional computation is required on autonomous vehicles. However, generating effective consistency loss for unlabeled feature-level scene turns out to be a critical challenge. The latest SSL frameworks for 3D object detection that enforce consistency regularization between different augmentations of an unlabeled raw-point scene become detrimental when applied to intermediate features. To solve the problem, we introduce a novel combination of hybrid pseudo labels and feature-level Ground Truth sampling (F-GT), which safely augments unlabeled multi-type 3D scene features and provides high-quality supervision. We implement UpCycling on two representative 3D object detection models: SECOND-IoU and PV-RCNN. Experiments on widely-used datasets (Waymo, KITTI, and Lyft) verify that UpCycling outperforms other augmentation methods applied at the feature level. In addition, while preserving privacy, UpCycling performs better or comparably to the state-of-the-art methods that utilize raw-level unlabeled data in both domain adaptation and partial-label scenarios.

VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images

Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision-support systems for diagnosis, surgery planning, and population-based analysis on spine and bone health. However, designing automated algorithms for spine processing is challenging predominantly due to considerable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data. Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020, with a call for algorithms towards labelling and segmentation of vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel-level by a human-machine hybrid algorithm (https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked on these datasets. In this work, we present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view. We also evaluate the generalisability of the approaches to an implicit domain shift in data by evaluating the top performing algorithms of one challenge iteration on data from the other iteration. The principal takeaway from VerSe: the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly identify vertebrae in cases of rare anatomical variations. The content and code concerning VerSe can be accessed at: https://github.com/anjany/verse.

Deep Learning for Personalized Electrocardiogram Diagnosis: A Review

The electrocardiogram (ECG) remains a fundamental tool in cardiac diagnostics, yet its interpretation traditionally reliant on the expertise of cardiologists. The emergence of deep learning has heralded a revolutionary era in medical data analysis, particularly in the domain of ECG diagnostics. However, inter-patient variability prohibit the generalibility of ECG-AI model trained on a population dataset, hence degrade the performance of ECG-AI on specific patient or patient group. Many studies have address this challenge using different deep learning technologies. This comprehensive review systematically synthesizes research from a wide range of studies to provide an in-depth examination of cutting-edge deep-learning techniques in personalized ECG diagnosis. The review outlines a rigorous methodology for the selection of pertinent scholarly articles and offers a comprehensive overview of deep learning approaches applied to personalized ECG diagnostics. Moreover, the challenges these methods encounter are investigated, along with future research directions, culminating in insights into how the integration of deep learning can transform personalized ECG diagnosis and enhance cardiac care. By emphasizing both the strengths and limitations of current methodologies, this review underscores the immense potential of deep learning to refine and redefine ECG analysis in clinical practice, paving the way for more accurate, efficient, and personalized cardiac diagnostics.

Zipper: A Multi-Tower Decoder Architecture for Fusing Modalities

Integrating multiple generative foundation models, especially those trained on different modalities, into something greater than the sum of its parts poses significant challenges. Two key hurdles are the availability of aligned data (concepts that contain similar meaning but is expressed differently in different modalities), and effectively leveraging unimodal representations in cross-domain generative tasks, without compromising their original unimodal capabilities. We propose Zipper, a multi-tower decoder architecture that addresses these concerns by using cross-attention to flexibly compose multimodal generative models from independently pre-trained unimodal decoders. In our experiments fusing speech and text modalities, we show the proposed architecture performs very competitively in scenarios with limited aligned text-speech data. We also showcase the flexibility of our model to selectively maintain unimodal (e.g., text-to-text generation) generation performance by freezing the corresponding modal tower (e.g. text). In cross-modal tasks such as automatic speech recognition (ASR) where the output modality is text, we show that freezing the text backbone results in negligible performance degradation. In cross-modal tasks such as text-to-speech generation (TTS) where the output modality is speech, we show that using a pre-trained speech backbone results in superior performance to the baseline.

ClimateGPT: Towards AI Synthesizing Interdisciplinary Research on Climate Change

This paper introduces ClimateGPT, a model family of domain-specific large language models that synthesize interdisciplinary research on climate change. We trained two 7B models from scratch on a science-oriented dataset of 300B tokens. For the first model, the 4.2B domain-specific tokens were included during pre-training and the second was adapted to the climate domain after pre-training. Additionally, ClimateGPT-7B, 13B and 70B are continuously pre-trained from Llama~2 on a domain-specific dataset of 4.2B tokens. Each model is instruction fine-tuned on a high-quality and human-generated domain-specific dataset that has been created in close cooperation with climate scientists. To reduce the number of hallucinations, we optimize the model for retrieval augmentation and propose a hierarchical retrieval strategy. To increase the accessibility of our model to non-English speakers, we propose to make use of cascaded machine translation and show that this approach can perform comparably to natively multilingual models while being easier to scale to a large number of languages. Further, to address the intrinsic interdisciplinary aspect of climate change we consider different research perspectives. Therefore, the model can produce in-depth answers focusing on different perspectives in addition to an overall answer. We propose a suite of automatic climate-specific benchmarks to evaluate LLMs. On these benchmarks, ClimateGPT-7B performs on par with the ten times larger Llama-2-70B Chat model while not degrading results on general domain benchmarks. Our human evaluation confirms the trends we saw in our benchmarks. All models were trained and evaluated using renewable energy and are released publicly.

RAFT: Rationale adaptor for few-shot abusive language detection

Abusive language is a concerning problem in online social media. Past research on detecting abusive language covers different platforms, languages, demographies, etc. However, models trained using these datasets do not perform well in cross-domain evaluation settings. To overcome this, a common strategy is to use a few samples from the target domain to train models to get better performance in that domain (cross-domain few-shot training). However, this might cause the models to overfit the artefacts of those samples. A compelling solution could be to guide the models toward rationales, i.e., spans of text that justify the text's label. This method has been found to improve model performance in the in-domain setting across various NLP tasks. In this paper, we propose RAFT (Rationale Adaptor for Few-shoT classification) for abusive language detection. We first build a multitask learning setup to jointly learn rationales, targets, and labels, and find a significant improvement of 6% macro F1 on the rationale detection task over training solely rationale classifiers. We introduce two rationale-integrated BERT-based architectures (the RAFT models) and evaluate our systems over five different abusive language datasets, finding that in the few-shot classification setting, RAFT-based models outperform baseline models by about 7% in macro F1 scores and perform competitively to models finetuned on other source domains. Furthermore, RAFT-based models outperform LIME/SHAP-based approaches in terms of plausibility and are close in performance in terms of faithfulness.

SINet: Extreme Lightweight Portrait Segmentation Networks with Spatial Squeeze Modules and Information Blocking Decoder

Designing a lightweight and robust portrait segmentation algorithm is an important task for a wide range of face applications. However, the problem has been considered as a subset of the object segmentation problem and less handled in the semantic segmentation field. Obviously, portrait segmentation has its unique requirements. First, because the portrait segmentation is performed in the middle of a whole process of many real-world applications, it requires extremely lightweight models. Second, there has not been any public datasets in this domain that contain a sufficient number of images with unbiased statistics. To solve the first problem, we introduce the new extremely lightweight portrait segmentation model SINet, containing an information blocking decoder and spatial squeeze modules. The information blocking decoder uses confidence estimates to recover local spatial information without spoiling global consistency. The spatial squeeze module uses multiple receptive fields to cope with various sizes of consistency in the image. To tackle the second problem, we propose a simple method to create additional portrait segmentation data which can improve accuracy on the EG1800 dataset. In our qualitative and quantitative analysis on the EG1800 dataset, we show that our method outperforms various existing lightweight segmentation models. Our method reduces the number of parameters from 2.1M to 86.9K (around 95.9% reduction), while maintaining the accuracy under an 1% margin from the state-of-the-art portrait segmentation method. We also show our model is successfully executed on a real mobile device with 100.6 FPS. In addition, we demonstrate that our method can be used for general semantic segmentation on the Cityscapes dataset. The code and dataset are available in https://github.com/HYOJINPARK/ExtPortraitSeg .

Thought Cloning: Learning to Think while Acting by Imitating Human Thinking

Language is often considered a key aspect of human thinking, providing us with exceptional abilities to generalize, explore, plan, replan, and adapt to new situations. However, Reinforcement Learning (RL) agents are far from human-level performance in any of these abilities. We hypothesize one reason for such cognitive deficiencies is that they lack the benefits of thinking in language and that we can improve AI agents by training them to think like humans do. We introduce a novel Imitation Learning framework, Thought Cloning, where the idea is to not just clone the behaviors of human demonstrators, but also the thoughts humans have as they perform these behaviors. While we expect Thought Cloning to truly shine at scale on internet-sized datasets of humans thinking out loud while acting (e.g. online videos with transcripts), here we conduct experiments in a domain where the thinking and action data are synthetically generated. Results reveal that Thought Cloning learns much faster than Behavioral Cloning and its performance advantage grows the further out of distribution test tasks are, highlighting its ability to better handle novel situations. Thought Cloning also provides important benefits for AI Safety and Interpretability, and makes it easier to debug and improve AI. Because we can observe the agent's thoughts, we can (1) more easily diagnose why things are going wrong, making it easier to fix the problem, (2) steer the agent by correcting its thinking, or (3) prevent it from doing unsafe things it plans to do. Overall, by training agents how to think as well as behave, Thought Cloning creates safer, more powerful agents.

Selective Annotation Makes Language Models Better Few-Shot Learners

Many recent approaches to natural language tasks are built on the remarkable abilities of large language models. Large language models can perform in-context learning, where they learn a new task from a few task demonstrations, without any parameter updates. This work examines the implications of in-context learning for the creation of datasets for new natural language tasks. Departing from recent in-context learning methods, we formulate an annotation-efficient, two-step framework: selective annotation that chooses a pool of examples to annotate from unlabeled data in advance, followed by prompt retrieval that retrieves task examples from the annotated pool at test time. Based on this framework, we propose an unsupervised, graph-based selective annotation method, voke-k, to select diverse, representative examples to annotate. Extensive experiments on 10 datasets (covering classification, commonsense reasoning, dialogue, and text/code generation) demonstrate that our selective annotation method improves the task performance by a large margin. On average, vote-k achieves a 12.9%/11.4% relative gain under an annotation budget of 18/100, as compared to randomly selecting examples to annotate. Compared to state-of-the-art supervised finetuning approaches, it yields similar performance with 10-100x less annotation cost across 10 tasks. We further analyze the effectiveness of our framework in various scenarios: language models with varying sizes, alternative selective annotation methods, and cases where there is a test data domain shift. We hope that our studies will serve as a basis for data annotations as large language models are increasingly applied to new tasks. Our code is available at https://github.com/HKUNLP/icl-selective-annotation.

Zero-Shot Code Representation Learning via Prompt Tuning

Learning code representations has been the core prerequisite of many software engineering tasks such as code clone detection and code generation. State-of-the-art program representation techniques mainly utilize pre-trained language models (PLMs) such as CodeBERT. A Transformer encoder is firstly pre-trained on a large-scale code corpus to acquire general knowledge about source code. The pre-trained model is then fine-tuned on specific tasks using an amount of labeled data. However, gathering training samples for the downstream tasks can be prohibitively expensive and impractical for domain-specific languages or project-specific tasks. Besides, pre-training and downstream tasks are usually heterogeneous, which makes it difficult to fully explore the knowledge learned during pre-training. In this paper, we propose Zecoler, a zero-shot approach for learning code representations. Zecoler is built upon a pre-trained programming language model. In order to elicit knowledge from the PLMs efficiently, Zecoler casts the downstream tasks to the same form of pre-training objectives by inserting train-able prompts into the original input. These prompts can guide PLMs on how to generate better results. Subsequently, we employ the prompt tuning technique to search for the optimal prompts for PLMs automatically. This enables the representation model to efficiently fit the downstream tasks through fine-tuning on the dataset in source language domain and then reuse the pre-trained knowledge for the target domain in a zero-shot style. We evaluate Zecoler in five code intelligence tasks including code clone detection, code search, method name prediction, code summarization, and code generation. The results show that our approach significantly outperforms baseline models under the zero-shot setting.

TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs

Artificial Intelligence (AI) has made incredible progress recently. On the one hand, advanced foundation models like ChatGPT can offer powerful conversation, in-context learning and code generation abilities on a broad range of open-domain tasks. They can also generate high-level solution outlines for domain-specific tasks based on the common sense knowledge they have acquired. However, they still face difficulties with some specialized tasks because they lack enough domain-specific data during pre-training or they often have errors in their neural network computations on those tasks that need accurate executions. On the other hand, there are also many existing models and systems (symbolic-based or neural-based) that can do some domain-specific tasks very well. However, due to the different implementation or working mechanisms, they are not easily accessible or compatible with foundation models. Therefore, there is a clear and pressing need for a mechanism that can leverage foundation models to propose task solution outlines and then automatically match some of the sub-tasks in the outlines to the off-the-shelf models and systems with special functionalities to complete them. Inspired by this, we introduce TaskMatrix.AI as a new AI ecosystem that connects foundation models with millions of APIs for task completion. Unlike most previous work that aimed to improve a single AI model, TaskMatrix.AI focuses more on using existing foundation models (as a brain-like central system) and APIs of other AI models and systems (as sub-task solvers) to achieve diversified tasks in both digital and physical domains. As a position paper, we will present our vision of how to build such an ecosystem, explain each key component, and use study cases to illustrate both the feasibility of this vision and the main challenges we need to address next.

Mixed Precision Training of Convolutional Neural Networks using Integer Operations

The state-of-the-art (SOTA) for mixed precision training is dominated by variants of low precision floating point operations, and in particular, FP16 accumulating into FP32 Micikevicius et al. (2017). On the other hand, while a lot of research has also happened in the domain of low and mixed-precision Integer training, these works either present results for non-SOTA networks (for instance only AlexNet for ImageNet-1K), or relatively small datasets (like CIFAR-10). In this work, we train state-of-the-art visual understanding neural networks on the ImageNet-1K dataset, with Integer operations on General Purpose (GP) hardware. In particular, we focus on Integer Fused-Multiply-and-Accumulate (FMA) operations which take two pairs of INT16 operands and accumulate results into an INT32 output.We propose a shared exponent representation of tensors and develop a Dynamic Fixed Point (DFP) scheme suitable for common neural network operations. The nuances of developing an efficient integer convolution kernel is examined, including methods to handle overflow of the INT32 accumulator. We implement CNN training for ResNet-50, GoogLeNet-v1, VGG-16 and AlexNet; and these networks achieve or exceed SOTA accuracy within the same number of iterations as their FP32 counterparts without any change in hyper-parameters and with a 1.8X improvement in end-to-end training throughput. To the best of our knowledge these results represent the first INT16 training results on GP hardware for ImageNet-1K dataset using SOTA CNNs and achieve highest reported accuracy using half-precision

Transferable Tactile Transformers for Representation Learning Across Diverse Sensors and Tasks

This paper presents T3: Transferable Tactile Transformers, a framework for tactile representation learning that scales across multi-sensors and multi-tasks. T3 is designed to overcome the contemporary issue that camera-based tactile sensing is extremely heterogeneous, i.e. sensors are built into different form factors, and existing datasets were collected for disparate tasks. T3 captures the shared latent information across different sensor-task pairings by constructing a shared trunk transformer with sensor-specific encoders and task-specific decoders. The pre-training of T3 utilizes a novel Foundation Tactile (FoTa) dataset, which is aggregated from several open-sourced datasets and it contains over 3 million data points gathered from 13 sensors and 11 tasks. FoTa is the largest and most diverse dataset in tactile sensing to date and it is made publicly available in a unified format. Across various sensors and tasks, experiments show that T3 pre-trained with FoTa achieved zero-shot transferability in certain sensor-task pairings, can be further fine-tuned with small amounts of domain-specific data, and its performance scales with bigger network sizes. T3 is also effective as a tactile encoder for long horizon contact-rich manipulation. Results from sub-millimeter multi-pin electronics insertion tasks show that T3 achieved a task success rate 25% higher than that of policies trained with tactile encoders trained from scratch, or 53% higher than without tactile sensing. Data, code, and model checkpoints are open-sourced at https://t3.alanz.info.

The HalluRAG Dataset: Detecting Closed-Domain Hallucinations in RAG Applications Using an LLM's Internal States

Detecting hallucinations in large language models (LLMs) is critical for enhancing their reliability and trustworthiness. Most research focuses on hallucinations as deviations from information seen during training. However, the opaque nature of an LLM's parametric knowledge complicates the understanding of why generated texts appear ungrounded: The LLM might not have picked up the necessary knowledge from large and often inaccessible datasets, or the information might have been changed or contradicted during further training. Our focus is on hallucinations involving information not used in training, which we determine by using recency to ensure the information emerged after a cut-off date. This study investigates these hallucinations by detecting them at sentence level using different internal states of various LLMs. We present HalluRAG, a dataset designed to train classifiers on these hallucinations. Depending on the model and quantization, MLPs trained on HalluRAG detect hallucinations with test accuracies ranging up to 75 %, with Mistral-7B-Instruct-v0.1 achieving the highest test accuracies. Our results show that IAVs detect hallucinations as effectively as CEVs and reveal that answerable and unanswerable prompts are encoded differently as separate classifiers for these categories improved accuracy. However, HalluRAG showed some limited generalizability, advocating for more diversity in datasets on hallucinations.