new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 11

Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement

The ability to derive underlying principles from a handful of observations and then generalize to novel situations -- known as inductive reasoning -- is central to human intelligence. Prior work suggests that language models (LMs) often fall short on inductive reasoning, despite achieving impressive success on research benchmarks. In this work, we conduct a systematic study of the inductive reasoning capabilities of LMs through iterative hypothesis refinement, a technique that more closely mirrors the human inductive process than standard input-output prompting. Iterative hypothesis refinement employs a three-step process: proposing, selecting, and refining hypotheses in the form of textual rules. By examining the intermediate rules, we observe that LMs are phenomenal hypothesis proposers (i.e., generating candidate rules), and when coupled with a (task-specific) symbolic interpreter that is able to systematically filter the proposed set of rules, this hybrid approach achieves strong results across inductive reasoning benchmarks that require inducing causal relations, language-like instructions, and symbolic concepts. However, they also behave as puzzling inductive reasoners, showing notable performance gaps between rule induction (i.e., identifying plausible rules) and rule application (i.e., applying proposed rules to instances), suggesting that LMs are proposing hypotheses without being able to actually apply the rules. Through empirical and human analyses, we further reveal several discrepancies between the inductive reasoning processes of LMs and humans, shedding light on both the potentials and limitations of using LMs in inductive reasoning tasks.

Why think step by step? Reasoning emerges from the locality of experience

Humans have a powerful and mysterious capacity to reason. By working through a series of purely mental steps, we can make inferences we would not be capable of making directly -- despite the fact that we get no additional data from the world. Similarly, when large language models generate a series of intermediate steps (a chain of thought) before answering a question, they often produce better answers than they otherwise would. We investigate why and how chain-of-thought reasoning is useful in language models, testing the hypothesis that reasoning is effective when training data consists of local clusters of variables that influence each other strongly. These training conditions enable the chaining of accurate local inferences in order to estimate relationships between variables that were not seen together in training. We prove that there will exist a "reasoning gap", where reasoning through intermediate variables improves inference, for the simple case of an autoregressive density estimator trained on local samples from a chain-structured probabilistic model. We then test our hypothesis empirically in more complex models, training an autoregressive language model on samples from Bayes nets but only including a subset of variables in each sample. We test language models' ability to match conditional probabilities with and without intermediate reasoning steps, finding that intermediate steps are only helpful when the training data is locally structured with respect to dependencies between variables and that the combination of locally-structured observations and reasoning is much more data-efficient than training on all variables. Our results illustrate how the effectiveness of reasoning step by step is rooted in the local statistical structure of the training data.

MOOSE-Chem: Large Language Models for Rediscovering Unseen Chemistry Scientific Hypotheses

Scientific discovery contributes largely to human society's prosperity, and recent progress shows that LLMs could potentially catalyze this process. However, it is still unclear whether LLMs can discover novel and valid hypotheses in chemistry. In this work, we investigate this central research question: Can LLMs automatically discover novel and valid chemistry research hypotheses given only a chemistry research background (consisting of a research question and/or a background survey), without limitation on the domain of the research question? After extensive discussions with chemistry experts, we propose an assumption that a majority of chemistry hypotheses can be resulted from a research background and several inspirations. With this key insight, we break the central question into three smaller fundamental questions. In brief, they are: (1) given a background question, whether LLMs can retrieve good inspirations; (2) with background and inspirations, whether LLMs can lead to hypothesis; and (3) whether LLMs can identify good hypotheses to rank them higher. To investigate these questions, we construct a benchmark consisting of 51 chemistry papers published in Nature, Science, or a similar level in 2024 (all papers are only available online since 2024). Every paper is divided by chemistry PhD students into three components: background, inspirations, and hypothesis. The goal is to rediscover the hypothesis, given only the background and a large randomly selected chemistry literature corpus consisting the ground truth inspiration papers, with LLMs trained with data up to 2023. We also develop an LLM-based multi-agent framework that leverages the assumption, consisting of three stages reflecting the three smaller questions. The proposed method can rediscover many hypotheses with very high similarity with the ground truth ones, covering the main innovations.

Automatic Chain of Thought Prompting in Large Language Models

Large language models (LLMs) can perform complex reasoning by generating intermediate reasoning steps. Providing these steps for prompting demonstrations is called chain-of-thought (CoT) prompting. CoT prompting has two major paradigms. One leverages a simple prompt like "Let's think step by step" to facilitate step-by-step thinking before answering a question. The other uses a few manual demonstrations one by one, each composed of a question and a reasoning chain that leads to an answer. The superior performance of the second paradigm hinges on the hand-crafting of task-specific demonstrations one by one. We show that such manual efforts may be eliminated by leveraging LLMs with the "Let's think step by step" prompt to generate reasoning chains for demonstrations one by one, i.e., let's think not just step by step, but also one by one. However, these generated chains often come with mistakes. To mitigate the effect of such mistakes, we find that diversity matters for automatically constructing demonstrations. We propose an automatic CoT prompting method: Auto-CoT. It samples questions with diversity and generates reasoning chains to construct demonstrations. On ten public benchmark reasoning tasks with GPT-3, Auto-CoT consistently matches or exceeds the performance of the CoT paradigm that requires manual designs of demonstrations. Code is available at https://github.com/amazon-research/auto-cot

Learning to Generate Research Idea with Dynamic Control

The rapid advancements in large language models (LLMs) have demonstrated their potential to accelerate scientific discovery, particularly in automating the process of research ideation. LLM-based systems have shown promise in generating hypotheses and research ideas. However, current approaches predominantly rely on prompting-based pre-trained models, limiting their ability to optimize generated content effectively. Moreover, they also lack the capability to deal with the complex interdependence and inherent restrictions among novelty, feasibility, and effectiveness, which remains challenging due to the inherent trade-offs among these dimensions, such as the innovation-feasibility conflict. To address these limitations, we for the first time propose fine-tuning LLMs to be better idea proposers and introduce a novel framework that employs a two-stage approach combining Supervised Fine-Tuning (SFT) and controllable Reinforcement Learning (RL). In the SFT stage, the model learns foundational patterns from pairs of research papers and follow-up ideas. In the RL stage, multi-dimensional reward modeling, guided by fine-grained feedback, evaluates and optimizes the generated ideas across key metrics. Dimensional controllers enable dynamic adjustment of generation, while a sentence-level decoder ensures context-aware emphasis during inference. Our framework provides a balanced approach to research ideation, achieving high-quality outcomes by dynamically navigating the trade-offs among novelty, feasibility, and effectiveness.

Analysis on Riemann Hypothesis with Cross Entropy Optimization and Reasoning

In this paper, we present a novel framework for the analysis of Riemann Hypothesis [27], which is composed of three key components: a) probabilistic modeling with cross entropy optimization and reasoning; b) the application of the law of large numbers; c) the application of mathematical inductions. The analysis is mainly conducted by virtue of probabilistic modeling of cross entropy optimization and reasoning with rare event simulation techniques. The application of the law of large numbers [2, 3, 6] and the application of mathematical inductions make the analysis of Riemann Hypothesis self-contained and complete to make sure that the whole complex plane is covered as conjectured in Riemann Hypothesis. We also discuss the method of enhanced top-p sampling with large language models (LLMs) for reasoning, where next token prediction is not just based on the estimated probabilities of each possible token in the current round but also based on accumulated path probabilities among multiple top-k chain of thoughts (CoTs) paths. The probabilistic modeling of cross entropy optimization and reasoning may suit well with the analysis of Riemann Hypothesis as Riemann Zeta functions are inherently dealing with the sums of infinite components of a complex number series. We hope that our analysis in this paper could shed some light on some of the insights of Riemann Hypothesis. The framework and techniques presented in this paper, coupled with recent developments with chain of thought (CoT) or diagram of thought (DoT) reasoning in large language models (LLMs) with reinforcement learning (RL) [1, 7, 18, 21, 24, 34, 39-41], could pave the way for eventual proof of Riemann Hypothesis [27].

Tortured phrases: A dubious writing style emerging in science. Evidence of critical issues affecting established journals

Probabilistic text generators have been used to produce fake scientific papers for more than a decade. Such nonsensical papers are easily detected by both human and machine. Now more complex AI-powered generation techniques produce texts indistinguishable from that of humans and the generation of scientific texts from a few keywords has been documented. Our study introduces the concept of tortured phrases: unexpected weird phrases in lieu of established ones, such as 'counterfeit consciousness' instead of 'artificial intelligence.' We combed the literature for tortured phrases and study one reputable journal where these concentrated en masse. Hypothesising the use of advanced language models we ran a detector on the abstracts of recent articles of this journal and on several control sets. The pairwise comparisons reveal a concentration of abstracts flagged as 'synthetic' in the journal. We also highlight irregularities in its operation, such as abrupt changes in editorial timelines. We substantiate our call for investigation by analysing several individual dubious articles, stressing questionable features: tortured writing style, citation of non-existent literature, and unacknowledged image reuse. Surprisingly, some websites offer to rewrite texts for free, generating gobbledegook full of tortured phrases. We believe some authors used rewritten texts to pad their manuscripts. We wish to raise the awareness on publications containing such questionable AI-generated or rewritten texts that passed (poor) peer review. Deception with synthetic texts threatens the integrity of the scientific literature.

Towards Large Reasoning Models: A Survey of Reinforced Reasoning with Large Language Models

Language has long been conceived as an essential tool for human reasoning. The breakthrough of Large Language Models (LLMs) has sparked significant research interest in leveraging these models to tackle complex reasoning tasks. Researchers have moved beyond simple autoregressive token generation by introducing the concept of "thought" -- a sequence of tokens representing intermediate steps in the reasoning process. This innovative paradigm enables LLMs' to mimic complex human reasoning processes, such as tree search and reflective thinking. Recently, an emerging trend of learning to reason has applied reinforcement learning (RL) to train LLMs to master reasoning processes. This approach enables the automatic generation of high-quality reasoning trajectories through trial-and-error search algorithms, significantly expanding LLMs' reasoning capacity by providing substantially more training data. Furthermore, recent studies demonstrate that encouraging LLMs to "think" with more tokens during test-time inference can further significantly boost reasoning accuracy. Therefore, the train-time and test-time scaling combined to show a new research frontier -- a path toward Large Reasoning Model. The introduction of OpenAI's o1 series marks a significant milestone in this research direction. In this survey, we present a comprehensive review of recent progress in LLM reasoning. We begin by introducing the foundational background of LLMs and then explore the key technical components driving the development of large reasoning models, with a focus on automated data construction, learning-to-reason techniques, and test-time scaling. We also analyze popular open-source projects at building large reasoning models, and conclude with open challenges and future research directions.

The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery

One of the grand challenges of artificial general intelligence is developing agents capable of conducting scientific research and discovering new knowledge. While frontier models have already been used as aids to human scientists, e.g. for brainstorming ideas, writing code, or prediction tasks, they still conduct only a small part of the scientific process. This paper presents the first comprehensive framework for fully automatic scientific discovery, enabling frontier large language models to perform research independently and communicate their findings. We introduce The AI Scientist, which generates novel research ideas, writes code, executes experiments, visualizes results, describes its findings by writing a full scientific paper, and then runs a simulated review process for evaluation. In principle, this process can be repeated to iteratively develop ideas in an open-ended fashion, acting like the human scientific community. We demonstrate its versatility by applying it to three distinct subfields of machine learning: diffusion modeling, transformer-based language modeling, and learning dynamics. Each idea is implemented and developed into a full paper at a cost of less than $15 per paper. To evaluate the generated papers, we design and validate an automated reviewer, which we show achieves near-human performance in evaluating paper scores. The AI Scientist can produce papers that exceed the acceptance threshold at a top machine learning conference as judged by our automated reviewer. This approach signifies the beginning of a new era in scientific discovery in machine learning: bringing the transformative benefits of AI agents to the entire research process of AI itself, and taking us closer to a world where endless affordable creativity and innovation can be unleashed on the world's most challenging problems. Our code is open-sourced at https://github.com/SakanaAI/AI-Scientist

Specializing Smaller Language Models towards Multi-Step Reasoning

The surprising ability of Large Language Models (LLMs) to perform well on complex reasoning with only few-shot chain-of-thought prompts is believed to emerge only in very large-scale models (100+ billion parameters). We show that such abilities can, in fact, be distilled down from GPT-3.5 (ge 175B) to T5 variants (le 11B). We propose model specialization, to specialize the model's ability towards a target task. The hypothesis is that large models (commonly viewed as larger than 100B) have strong modeling power, but are spread on a large spectrum of tasks. Small models (commonly viewed as smaller than 10B) have limited model capacity, but if we concentrate their capacity on a specific target task, the model can achieve a decent improved performance. We use multi-step math reasoning as our testbed because it is a very typical emergent ability. We show two important aspects of model abilities: (1). there exists a very complex balance/ tradeoff between language models' multi-dimensional abilities; (2). by paying the price of decreased generic ability, we can clearly lift up the scaling curve of models smaller than 10B towards a specialized multi-step math reasoning ability. We further give comprehensive discussions about important design choices for better generalization, including the tuning data format, the start model checkpoint, and a new model selection method. We hope our practice and discoveries can serve as an important attempt towards specialized smaller models in the new research paradigm set by LLMs.

LIMO: Less is More for Reasoning

We present a fundamental discovery that challenges our understanding of how complex reasoning emerges in large language models. While conventional wisdom suggests that sophisticated reasoning tasks demand extensive training data (>100,000 examples), we demonstrate that complex mathematical reasoning abilities can be effectively elicited with surprisingly few examples. Through comprehensive experiments, our proposed model LIMO demonstrates unprecedented performance in mathematical reasoning. With merely 817 curated training samples, LIMO achieves 57.1% accuracy on AIME and 94.8% on MATH, improving from previous SFT-based models' 6.5% and 59.2% respectively, while only using 1% of the training data required by previous approaches. LIMO demonstrates exceptional out-of-distribution generalization, achieving 40.5% absolute improvement across 10 diverse benchmarks, outperforming models trained on 100x more data, challenging the notion that SFT leads to memorization rather than generalization. Based on these results, we propose the Less-Is-More Reasoning Hypothesis (LIMO Hypothesis): In foundation models where domain knowledge has been comprehensively encoded during pre-training, sophisticated reasoning capabilities can emerge through minimal but precisely orchestrated demonstrations of cognitive processes. This hypothesis posits that the elicitation threshold for complex reasoning is determined by two key factors: (1) the completeness of the model's encoded knowledge foundation during pre-training, and (2) the effectiveness of post-training examples as "cognitive templates" that show the model how to utilize its knowledge base to solve complex reasoning tasks. To facilitate reproducibility and future research in data-efficient reasoning, we release LIMO as a comprehensive open-source suite at https://github.com/GAIR-NLP/LIMO.

Preserving Statistical Validity in Adaptive Data Analysis

A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of m adaptively chosen functions on an unknown distribution given n random samples. We show that, surprisingly, there is a way to estimate an exponential in n number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question.

Towards an AI co-scientist

Scientific discovery relies on scientists generating novel hypotheses that undergo rigorous experimental validation. To augment this process, we introduce an AI co-scientist, a multi-agent system built on Gemini 2.0. The AI co-scientist is intended to help uncover new, original knowledge and to formulate demonstrably novel research hypotheses and proposals, building upon prior evidence and aligned to scientist-provided research objectives and guidance. The system's design incorporates a generate, debate, and evolve approach to hypothesis generation, inspired by the scientific method and accelerated by scaling test-time compute. Key contributions include: (1) a multi-agent architecture with an asynchronous task execution framework for flexible compute scaling; (2) a tournament evolution process for self-improving hypotheses generation. Automated evaluations show continued benefits of test-time compute, improving hypothesis quality. While general purpose, we focus development and validation in three biomedical areas: drug repurposing, novel target discovery, and explaining mechanisms of bacterial evolution and anti-microbial resistance. For drug repurposing, the system proposes candidates with promising validation findings, including candidates for acute myeloid leukemia that show tumor inhibition in vitro at clinically applicable concentrations. For novel target discovery, the AI co-scientist proposed new epigenetic targets for liver fibrosis, validated by anti-fibrotic activity and liver cell regeneration in human hepatic organoids. Finally, the AI co-scientist recapitulated unpublished experimental results via a parallel in silico discovery of a novel gene transfer mechanism in bacterial evolution. These results, detailed in separate, co-timed reports, demonstrate the potential to augment biomedical and scientific discovery and usher an era of AI empowered scientists.

Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems

Recently, slow-thinking reasoning systems, such as o1, have demonstrated remarkable capabilities in solving complex reasoning tasks. These systems typically engage in an extended thinking process before responding to a query, allowing them to generate more thorough, accurate, and well-reasoned solutions. These systems are primarily developed and maintained by industry, with their core techniques not publicly disclosed. In response, an increasing number of studies from the research community aim to explore the technical foundations underlying these powerful reasoning systems. Building on these prior efforts, this paper presents a reproduction report on implementing o1-like reasoning systems. We introduce an "imitate, explore, and self-improve" framework as our primary technical approach to train the reasoning model. In the initial phase, we use distilled long-form thought data to fine-tune the reasoning model, enabling it to invoke a slow-thinking mode. The model is then encouraged to explore challenging problems by generating multiple rollouts, which can result in increasingly more high-quality trajectories that lead to correct answers. Furthermore, the model undergoes self-improvement by iteratively refining its training dataset. To verify the effectiveness of this approach, we conduct extensive experiments on three challenging benchmarks. The experimental results demonstrate that our approach achieves competitive performance compared to industry-level reasoning systems on these benchmarks.

Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers

Recent advancements in large language models (LLMs) have sparked optimism about their potential to accelerate scientific discovery, with a growing number of works proposing research agents that autonomously generate and validate new ideas. Despite this, no evaluations have shown that LLM systems can take the very first step of producing novel, expert-level ideas, let alone perform the entire research process. We address this by establishing an experimental design that evaluates research idea generation while controlling for confounders and performs the first head-to-head comparison between expert NLP researchers and an LLM ideation agent. By recruiting over 100 NLP researchers to write novel ideas and blind reviews of both LLM and human ideas, we obtain the first statistically significant conclusion on current LLM capabilities for research ideation: we find LLM-generated ideas are judged as more novel (p < 0.05) than human expert ideas while being judged slightly weaker on feasibility. Studying our agent baselines closely, we identify open problems in building and evaluating research agents, including failures of LLM self-evaluation and their lack of diversity in generation. Finally, we acknowledge that human judgements of novelty can be difficult, even by experts, and propose an end-to-end study design which recruits researchers to execute these ideas into full projects, enabling us to study whether these novelty and feasibility judgements result in meaningful differences in research outcome.

Concise and Organized Perception Facilitates Large Language Models for Deductive Reasoning

Exploiting large language models (LLMs) to tackle deductive reasoning has garnered growing attention. It still remains highly challenging to achieve satisfactory results in complex deductive problems, characterized by plenty of premises (i.e., facts or rules) entailing intricate relationships among entities and requiring multi-hop reasoning. One intuitive solution is to decompose the original task into smaller sub-tasks, and then chain the multiple casual reasoning steps together in a forward (e.g., Selection-Inference) or backward (e.g., LAMBADA) direction. However, these techniques inevitably necessitate a large number of overall stages, leading to computationally expensive operations and a higher possibility of making misleading steps. In addition to stage-by-stage decomposition, we draw inspiration from another aspect of human problem-solving. Humans tend to distill the most relevant information and organize their thoughts systematically (e.g., creating mind maps), which assists them in answering questions or drawing conclusions precisely and quickly. In light of this, we propose a novel reasoning approach named Concise and Organized Perception (COP). COP carefully analyzes the given statements to efficiently identify the most pertinent information while eliminating redundancy. It then prompts the LLMs in a more organized form that adapts to the model's inference process. By perceiving concise and organized proofs, the deductive reasoning abilities of LLMs can be better elicited, and the risk of acquiring errors caused by excessive reasoning stages is mitigated. Furthermore, our approach can be combined with the aforementioned ones to further boost their performance. Extensive experimental results on three popular deductive benchmarks (i.e., ProofWriter, PrOntoQA and PrOntoQA-OOD) show that COP significantly outperforms previous state-of-the-art methods.

Unlock Predictable Scaling from Emergent Abilities

The scientific scale-up of large language models (LLMs) necessitates a comprehensive understanding of their scaling properties. However, the existing literature on the scaling properties only yields an incomplete answer: optimization loss decreases predictably as the model size increases, in line with established scaling law; yet no scaling law for task has been established and the task performances are far from predictable during scaling. Task performances typically show minor gains on small models until they improve dramatically once models exceed a size threshold, exemplifying the ``emergent abilities''. In this study, we discover that small models, although they exhibit minor performance, demonstrate critical and consistent task performance improvements that are not captured by conventional evaluation strategies due to insufficient measurement resolution. To measure such improvements, we introduce PassUntil, an evaluation strategy through massive sampling in the decoding phase. We conduct quantitative investigations into the scaling law of task performance. Firstly, a strict task scaling law is identified, enhancing the predictability of task performances. Remarkably, we are able to predict the performance of the 2.4B model on code generation with merely 0.05\% deviation before training starts. Secondly, underpinned by PassUntil, we observe concrete evidence of emergent abilities and ascertain that they are not in conflict with the continuity of performance improvement. Their semblance to break-through is that their scaling curve cannot be fitted by standard scaling law function. We then introduce a mathematical definition for the emergent abilities. Through the definition, we refute a prevalent ``multi-step reasoning hypothesis'' regarding the genesis of emergent abilities and propose a new hypothesis with a satisfying fit to the observed scaling curve.

Detecting Fallacies in Climate Misinformation: A Technocognitive Approach to Identifying Misleading Argumentation

Misinformation about climate change is a complex societal issue requiring holistic, interdisciplinary solutions at the intersection between technology and psychology. One proposed solution is a "technocognitive" approach, involving the synthesis of psychological and computer science research. Psychological research has identified that interventions in response to misinformation require both fact-based (e.g., factual explanations) and technique-based (e.g., explanations of misleading techniques) content. However, little progress has been made on documenting and detecting fallacies in climate misinformation. In this study, we apply a previously developed critical thinking methodology for deconstructing climate misinformation, in order to develop a dataset mapping different types of climate misinformation to reasoning fallacies. This dataset is used to train a model to detect fallacies in climate misinformation. Our study shows F1 scores that are 2.5 to 3.5 better than previous works. The fallacies that are easiest to detect include fake experts and anecdotal arguments, while fallacies that require background knowledge, such as oversimplification, misrepresentation, and slothful induction, are relatively more difficult to detect. This research lays the groundwork for development of solutions where automatically detected climate misinformation can be countered with generative technique-based corrections.

Can Language Models Falsify? Evaluating Algorithmic Reasoning with Counterexample Creation

There is growing excitement about the potential of Language Models (LMs) to accelerate scientific discovery. Falsifying hypotheses is key to scientific progress, as it allows claims to be iteratively refined over time. This process requires significant researcher effort, reasoning, and ingenuity. Yet current benchmarks for LMs predominantly assess their ability to generate solutions rather than challenge them. We advocate for developing benchmarks that evaluate this inverse capability - creating counterexamples for subtly incorrect solutions. To demonstrate this approach, we start with the domain of algorithmic problem solving, where counterexamples can be evaluated automatically using code execution. Specifically, we introduce REFUTE, a dynamically updating benchmark that includes recent problems and incorrect submissions from programming competitions, where human experts successfully identified counterexamples. Our analysis finds that the best reasoning agents, even OpenAI o3-mini (high) with code execution feedback, can create counterexamples for only <9% of incorrect solutions in REFUTE, even though ratings indicate its ability to solve up to 48% of these problems from scratch. We hope our work spurs progress in evaluating and enhancing LMs' ability to falsify incorrect solutions - a capability that is crucial for both accelerating research and making models self-improve through reliable reflective reasoning.

Hypothesis Search: Inductive Reasoning with Language Models

Inductive reasoning is a core problem-solving capacity: humans can identify underlying principles from a few examples, which can then be robustly generalized to novel scenarios. Recent work has evaluated large language models (LLMs) on inductive reasoning tasks by directly prompting them yielding "in context learning." This can work well for straightforward inductive tasks, but performs very poorly on more complex tasks such as the Abstraction and Reasoning Corpus (ARC). In this work, we propose to improve the inductive reasoning ability of LLMs by generating explicit hypotheses at multiple levels of abstraction: we prompt the LLM to propose multiple abstract hypotheses about the problem, in natural language, then implement the natural language hypotheses as concrete Python programs. These programs can be directly verified by running on the observed examples and generalized to novel inputs. Because of the prohibitive cost of generation with state-of-the-art LLMs, we consider a middle step to filter the set of hypotheses that will be implemented into programs: we either ask the LLM to summarize into a smaller set of hypotheses, or ask human annotators to select a subset of the hypotheses. We verify our pipeline's effectiveness on the ARC visual inductive reasoning benchmark, its variant 1D-ARC, and string transformation dataset SyGuS. On a random 40-problem subset of ARC, our automated pipeline using LLM summaries achieves 27.5% accuracy, significantly outperforming the direct prompting baseline (accuracy of 12.5%). With the minimal human input of selecting from LLM-generated candidates, the performance is boosted to 37.5%. (And we argue this is a lower bound on the performance of our approach without filtering.) Our ablation studies show that abstract hypothesis generation and concrete program representations are both beneficial for LLMs to perform inductive reasoning tasks.

Deductive Verification of Chain-of-Thought Reasoning

Large Language Models (LLMs) significantly benefit from Chain-of-Thought (CoT) prompting in performing various reasoning tasks. While CoT allows models to produce more comprehensive reasoning processes, its emphasis on intermediate reasoning steps can inadvertently introduce hallucinations and accumulated errors, thereby limiting models' ability to solve complex reasoning tasks. Inspired by how humans engage in careful and meticulous deductive logical reasoning processes to solve tasks, we seek to enable language models to perform explicit and rigorous deductive reasoning, and also ensure the trustworthiness of their reasoning process through self-verification. However, directly verifying the validity of an entire deductive reasoning process is challenging, even with advanced models like ChatGPT. In light of this, we propose to decompose a reasoning verification process into a series of step-by-step subprocesses, each only receiving their necessary context and premises. To facilitate this procedure, we propose Natural Program, a natural language-based deductive reasoning format. Our approach enables models to generate precise reasoning steps where subsequent steps are more rigorously grounded on prior steps. It also empowers language models to carry out reasoning self-verification in a step-by-step manner. By integrating this verification process into each deductive reasoning stage, we significantly enhance the rigor and trustfulness of generated reasoning steps. Along this process, we also improve the answer correctness on complex reasoning tasks. Code will be released at https://github.com/lz1oceani/verify_cot.

Calibrated Language Models Must Hallucinate

Recent language models have a mysterious tendency to generate false but plausible-sounding text. Such "hallucinations" are an obstacle to the usability of language-based AI systems and can harm people who rely upon their outputs. This work shows shows that there is an inherent statistical reason that pretrained language models hallucinate certain types of facts, having nothing to do with the transformer LM architecture or data quality. For "arbitrary" facts whose veracity cannot be determined from the training data, we show that hallucination is necessary for language models that satisfy a statistical calibration condition appropriate for generative language models. Specifically, if the maximum probability of any fact is bounded, we show that the probability of generating a hallucination is close to the fraction of facts that occur exactly once in the training data (a "Good-Turing" estimate), even assuming ideal training data without errors. One conclusion is that models pretrained to be sufficiently good predictors (i.e., calibrated) may require post-training to mitigate hallucinations on the type of arbitrary facts that tend to appear once in the training set. However, our analysis also suggests that there is no statistical reason that pretraining will lead to hallucination on facts that tend to appear more than once in the training data (like references to publications such as articles and books, whose hallucinations have been particularly notable and problematic) or on systematic facts (like arithmetic calculations). Therefore, different architectures and learning algorithms may mitigate these latter types of hallucinations.

Chain of Ideas: Revolutionizing Research in Novel Idea Development with LLM Agents

Effective research ideation is a critical step for scientific research. However, the exponential increase in scientific literature makes it challenging for researchers to stay current with recent advances and identify meaningful research directions. Recent developments in large language models~(LLMs) suggest a promising avenue for automating the generation of novel research ideas. However, existing methods for idea generation either trivially prompt LLMs or directly expose LLMs to extensive literature without indicating useful information. Inspired by the research process of human researchers, we propose a Chain-of-Ideas~(CoI) agent, an LLM-based agent that organizes relevant literature in a chain structure to effectively mirror the progressive development in a research domain. This organization facilitates LLMs to capture the current advancements in research, thereby enhancing their ideation capabilities. Furthermore, we propose Idea Arena, an evaluation protocol that can comprehensively evaluate idea generation methods from different perspectives, aligning closely with the preferences of human researchers. Experimental results indicate that the CoI agent consistently outperforms other methods and shows comparable quality as humans in research idea generation. Moreover, our CoI agent is budget-friendly, with a minimum cost of \$0.50 to generate a candidate idea and its corresponding experimental design.

Early warning signals: The charted and uncharted territories

The realization that complex systems such as ecological communities can collapse or shift regimes suddenly and without rapid external forcing poses a serious challenge to our understanding and management of the natural world. The potential to identify early warning signals that would allow researchers and managers to predict such events before they happen has therefore been an invaluable discovery that offers a way forward in spite of such seemingly unpredictable behavior. Research into early warning signals has demonstrated that it is possible to define and detect such early warning signals in advance of a transition in certain contexts. Here we describe the pattern emerging as research continues to explore just how far we can generalize these results. A core of examples emerges that shares three properties: the phenomenon of rapid regime shifts, a pattern of 'critical slowing down' that can be used to detect the approaching shift, and a mechanism of bifurcation driving the sudden change. As research has expanded beyond these core examples, it is becoming clear that not all systems that show regime shifts exhibit critical slowing down, or vice versa. Even when systems exhibit critical slowing down, statistical detection is a challenge. We review the literature that explores these edge cases and highlight the need for (a) new early warning behaviors that can be used in cases where rapid shifts do not exhibit critical slowing down, (b) the development of methods to identify which behavior might be an appropriate signal when encountering a novel system; bearing in mind that a positive indication for some systems is a negative indication in others, and (c) statistical methods that can distinguish between signatures of early warning behaviors and noise.

IDEA:Enhancing the Rule Learning Ability of Language Agents through Induction, Deduction, and Abduction

While large language models (LLMs) have been thoroughly evaluated for deductive and inductive reasoning, their proficiency in abductive reasoning and holistic rule learning in interactive environments remains less explored. This work introduces RULEARN, a novel benchmark specifically designed to assess the rule-learning ability of LLMs in interactive settings. In RULEARN, agents interact with the environment to gather observations and discern patterns, using these insights to solve problems. To further enhance the rule-learning capabilities of LLM agents within this benchmark, we propose IDEA agent, which integrates Induction, Deduction, and Abduction processes. IDEA agent refines this approach by leveraging a structured reasoning sequence: generating hypotheses through abduction, testing them via deduction, and refining them based on feedback from induction. This sequence enables agents to dynamically establish and apply rules, mimicking human-like reasoning processes. Our evaluation of five representative LLMs indicates that while these models can generate plausible initial hypotheses, they often struggle with strategic interaction within the environment, effective incorporation of feedback, and adaptive refinement of their hypotheses. IDEA agent demonstrates significantly improved performance on the RULEARN benchmark, offering valuable insights for the development of agents capable of human-like rule-learning in real-world scenarios. We will release our code and data.

The Impact of Reasoning Step Length on Large Language Models

Chain of Thought (CoT) is significant in improving the reasoning abilities of large language models (LLMs). However, the correlation between the effectiveness of CoT and the length of reasoning steps in prompts remains largely unknown. To shed light on this, we have conducted several empirical experiments to explore the relations. Specifically, we design experiments that expand and compress the rationale reasoning steps within CoT demonstrations, while keeping all other factors constant. We have the following key findings. First, the results indicate that lengthening the reasoning steps in prompts, even without adding new information into the prompt, considerably enhances LLMs' reasoning abilities across multiple datasets. Alternatively, shortening the reasoning steps, even while preserving the key information, significantly diminishes the reasoning abilities of models. This finding highlights the importance of the number of steps in CoT prompts and provides practical guidance to make better use of LLMs' potential in complex problem-solving scenarios. Second, we also investigated the relationship between the performance of CoT and the rationales used in demonstrations. Surprisingly, the result shows that even incorrect rationales can yield favorable outcomes if they maintain the requisite length of inference. Third, we observed that the advantages of increasing reasoning steps are task-dependent: simpler tasks require fewer steps, whereas complex tasks gain significantly from longer inference sequences.

Modeling of learning curves with applications to pos tagging

An algorithm to estimate the evolution of learning curves on the whole of a training data base, based on the results obtained from a portion and using a functional strategy, is introduced. We approximate iteratively the sought value at the desired time, independently of the learning technique used and once a point in the process, called prediction level, has been passed. The proposal proves to be formally correct with respect to our working hypotheses and includes a reliable proximity condition. This allows the user to fix a convergence threshold with respect to the accuracy finally achievable, which extends the concept of stopping criterion and seems to be effective even in the presence of distorting observations. Our aim is to evaluate the training effort, supporting decision making in order to reduce the need for both human and computational resources during the learning process. The proposal is of interest in at least three operational procedures. The first is the anticipation of accuracy gain, with the purpose of measuring how much work is needed to achieve a certain degree of performance. The second relates the comparison of efficiency between systems at training time, with the objective of completing this task only for the one that best suits our requirements. The prediction of accuracy is also a valuable item of information for customizing systems, since we can estimate in advance the impact of settings on both the performance and the development costs. Using the generation of part-of-speech taggers as an example application, the experimental results are consistent with our expectations.

Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models

Large Language Models (LLMs) have achieved remarkable success in reasoning tasks with the development of prompting methods. However, existing prompting approaches cannot reuse insights of solving similar problems and suffer from accumulated errors in multi-step reasoning, since they prompt LLMs to reason from scratch. To address these issues, we propose \textit{Thought Propagation (TP)}, which explores the analogous problems and leverages their solutions to enhance the complex reasoning ability of LLMs. These analogous problems are related to the input one, with reusable solutions and problem-solving strategies. Thus, it is promising to propagate insights of solving previous analogous problems to inspire new problem-solving. To achieve this, TP first prompts LLMs to propose and solve a set of analogous problems that are related to the input one. Then, TP reuses the results of analogous problems to directly yield a new solution or derive a knowledge-intensive plan for execution to amend the initial solution obtained from scratch. TP is compatible with existing prompting approaches, allowing plug-and-play generalization and enhancement in a wide range of tasks without much labor in task-specific prompt engineering. Experiments across three challenging tasks demonstrate TP enjoys a substantial improvement over the baselines by an average of 12\% absolute increase in finding the optimal solutions in Shortest-path Reasoning, 13\% improvement of human preference in Creative Writing, and 15\% enhancement in the task completion rate of LLM-Agent Planning.

Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search

Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains. Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities. This typically involves extensive sampling at inference time guided by an external LLM verifier, resulting in a two-player system. Despite external guidance, the effectiveness of this system demonstrates the potential of a single LLM to tackle complex tasks. Thus, we pose a new research problem: Can we internalize the searching capabilities to fundamentally enhance the reasoning abilities of a single LLM? This work explores an orthogonal direction focusing on post-training LLMs for autoregressive searching (i.e., an extended reasoning process with self-reflection and self-exploration of new strategies). To achieve this, we propose the Chain-of-Action-Thought (COAT) reasoning and a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning. Our approach results in Satori, a 7B LLM trained on open-source models and data. Extensive empirical evaluations demonstrate that Satori achieves state-of-the-art performance on mathematical reasoning benchmarks while exhibits strong generalization to out-of-domain tasks. Code, data, and models will be fully open-sourced.

BoxingGym: Benchmarking Progress in Automated Experimental Design and Model Discovery

Understanding the world and explaining it with scientific theories is a central aspiration of artificial intelligence research. Proposing theories, designing experiments to test them, and then revising them based on data are fundamental to scientific discovery. Despite the significant promise of LLM-based scientific agents, no benchmarks systematically test LLM's ability to propose scientific models, collect experimental data, and revise them in light of new data. We introduce BoxingGym, a benchmark with 10 environments for systematically evaluating both experimental design (e.g. collecting data to test a scientific theory) and model discovery (e.g. proposing and revising scientific theories). To enable tractable and quantitative evaluation, we implement each environment as a generative probabilistic model with which a scientific agent can run interactive experiments. These probabilistic models are drawn from various real-world scientific domains ranging from psychology to ecology. To quantitatively evaluate a scientific agent's ability to collect informative experimental data, we compute the expected information gain (EIG), an information-theoretic quantity which measures how much an experiment reduces uncertainty about the parameters of a generative model. A good scientific theory is a concise and predictive explanation. Therefore, to quantitatively evaluate model discovery, we ask a scientific agent to explain their model and then assess whether this explanation enables another scientific agent to make reliable predictions about this environment. In addition to this explanation-based evaluation, we compute standard model evaluation metrics such as prediction errors. We find that current LLMs, such as GPT-4o, struggle with both experimental design and model discovery. We find that augmenting the LLM-based agent with an explicit statistical model does not reliably improve these results.

Evidence to Generate (E2G): A Single-agent Two-step Prompting for Context Grounded and Retrieval Augmented Reasoning

While chain-of-thought (CoT) prompting has revolutionized how LLMs perform reasoning tasks, its current methods and variations (e.g, Self-consistency, ReACT, Reflexion, Tree-of-Thoughts (ToT), Cumulative Reasoning (CR)) suffer from limitations like slowness, limited context grounding, hallucination and inconsistent outputs. To overcome these challenges, we introduce Evidence to Generate (E2G), a novel single-agent, two-step prompting framework. Instead of unverified reasoning claims, this innovative approach leverages the power of "evidence for decision making" by first focusing exclusively on the thought sequences (the series of intermediate steps) explicitly mentioned in the context which then serve as extracted evidence, guiding the LLM's output generation process with greater precision and efficiency. This simple yet powerful approach unlocks the true potential of chain-of-thought like prompting, paving the way for faster, more reliable, and more contextually aware reasoning in LLMs. \tool achieves remarkable results robustly across a wide range of knowledge-intensive reasoning and generation tasks, surpassing baseline approaches with state-of-the-art LLMs. For example, (i) on LogiQA benchmark using GPT-4 as backbone model, \tool achieves a new state-of-the Accuracy of 53.8% exceeding CoT by 18%, ToT by 11%, CR by 9% (ii) a variant of E2G with PaLM2 outperforms the variable-shot performance of Gemini Ultra by 0.9 F1 points, reaching an F1 score of 83.3 on a subset of DROP.

Igniting Language Intelligence: The Hitchhiker's Guide From Chain-of-Thought Reasoning to Language Agents

Large language models (LLMs) have dramatically enhanced the field of language intelligence, as demonstrably evidenced by their formidable empirical performance across a spectrum of complex reasoning tasks. Additionally, theoretical proofs have illuminated their emergent reasoning capabilities, providing a compelling showcase of their advanced cognitive abilities in linguistic contexts. Critical to their remarkable efficacy in handling complex reasoning tasks, LLMs leverage the intriguing chain-of-thought (CoT) reasoning techniques, obliging them to formulate intermediate steps en route to deriving an answer. The CoT reasoning approach has not only exhibited proficiency in amplifying reasoning performance but also in enhancing interpretability, controllability, and flexibility. In light of these merits, recent research endeavors have extended CoT reasoning methodologies to nurture the development of autonomous language agents, which adeptly adhere to language instructions and execute actions within varied environments. This survey paper orchestrates a thorough discourse, penetrating vital research dimensions, encompassing: (i) the foundational mechanics of CoT techniques, with a focus on elucidating the circumstances and justification behind its efficacy; (ii) the paradigm shift in CoT; and (iii) the burgeoning of language agents fortified by CoT approaches. Prospective research avenues envelop explorations into generalization, efficiency, customization, scaling, and safety. This paper caters to a wide audience, including beginners seeking comprehensive knowledge of CoT reasoning and language agents, as well as experienced researchers interested in foundational mechanics and engaging in cutting-edge discussions on these topics. A repository for the related papers is available at https://github.com/Zoeyyao27/CoT-Igniting-Agent.

Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data

Learning causal structure from observational data often assumes that we observe independent and identically distributed (i.\,i.\,d) data. The traditional approach aims to find a graphical representation that encodes the same set of conditional independence relationships as those present in the observed distribution. It is known that under i.\,i.\,d assumption, even with infinite data, there is a limit to how fine-grained a causal structure we can identify. To overcome this limitation, recent work has explored using data originating from different, related environments to learn richer causal structure. These approaches implicitly rely on the independent causal mechanisms (ICM) principle, which postulates that the mechanism giving rise to an effect given its causes and the mechanism which generates the causes do not inform or influence each other. Thus, components of the causal model can independently change from environment to environment. Despite its wide application in machine learning and causal inference, there is a lack of statistical formalization of the ICM principle and how it enables identification of richer causal structures from grouped data. Here we present new causal de Finetti theorems which offer a first statistical formalization of ICM principle and show how causal structure identification is possible from exchangeable data. Our work provides theoretical justification for a broad range of techniques leveraging multi-environment data to learn causal structure.

Language Models as Inductive Reasoners

Inductive reasoning is a core component of human intelligence. In the past research of inductive reasoning within computer science, formal language is used as representations of knowledge (facts and rules, more specifically). However, formal language can cause systematic problems for inductive reasoning such as disability of handling raw input such as natural language, sensitiveness to mislabeled data, and incapacity to handle ambiguous input. To this end, we propose a new paradigm (task) for inductive reasoning, which is to induce natural language rules from natural language facts, and create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language. New automatic metrics are also proposed and analysed for the evaluation of this task. With DEER, we investigate a modern approach for inductive reasoning where we use natural language as representation for knowledge instead of formal language and use pretrained language models as ''reasoners''. Moreover, we provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts. We also propose a new framework drawing insights from philosophy literature for this task, which we show in the experiment section that surpasses baselines in both automatic and human evaluations. We discuss about our future perspectives for inductive reasoning in Section 7. Dataset and code are available at https://github.com/ZonglinY/Inductive_Reasoning.

Which Side Are You On? A Multi-task Dataset for End-to-End Argument Summarisation and Evaluation

With the recent advances of large language models (LLMs), it is no longer infeasible to build an automated debate system that helps people to synthesise persuasive arguments. Previous work attempted this task by integrating multiple components. In our work, we introduce an argument mining dataset that captures the end-to-end process of preparing an argumentative essay for a debate, which covers the tasks of claim and evidence identification (Task 1 ED), evidence convincingness ranking (Task 2 ECR), argumentative essay summarisation and human preference ranking (Task 3 ASR) and metric learning for automated evaluation of resulting essays, based on human feedback along argument quality dimensions (Task 4 SQE). Our dataset contains 14k examples of claims that are fully annotated with the various properties supporting the aforementioned tasks. We evaluate multiple generative baselines for each of these tasks, including representative LLMs. We find, that while they show promising results on individual tasks in our benchmark, their end-to-end performance on all four tasks in succession deteriorates significantly, both in automated measures as well as in human-centred evaluation. This challenge presented by our proposed dataset motivates future research on end-to-end argument mining and summarisation. The repository of this project is available at https://github.com/HarrywillDr/ArgSum-Datatset

Dolphin: Closed-loop Open-ended Auto-research through Thinking, Practice, and Feedback

The scientific research paradigm is undergoing a profound transformation owing to the development of Artificial Intelligence (AI). Recent works demonstrate that various AI-assisted research methods can largely improve research efficiency by improving data analysis, accelerating computation, and fostering novel idea generation. To further move towards the ultimate goal (i.e., automatic scientific research), in this paper, we propose Dolphin, the first closed-loop open-ended auto-research framework to further build the entire process of human scientific research. Dolphin can generate research ideas, perform experiments, and get feedback from experimental results to generate higher-quality ideas. More specifically, Dolphin first generates novel ideas based on relevant papers which are ranked by the topic and task attributes. Then, the codes are automatically generated and debugged with the exception-traceback-guided local code structure. Finally, Dolphin automatically analyzes the results of each idea and feeds the results back to the next round of idea generation. Experiments are conducted on the benchmark datasets of different topics and results show that Dolphin can generate novel ideas continuously and complete the experiment in a loop. We highlight that Dolphin can automatically propose methods that are comparable to the state-of-the-art in some tasks such as 2D image classification and 3D point classification.

Quiet-STaR: Language Models Can Teach Themselves to Think Before Speaking

When writing and talking, people sometimes pause to think. Although reasoning-focused works have often framed reasoning as a method of answering questions or completing agentic tasks, reasoning is implicit in almost all written text. For example, this applies to the steps not stated between the lines of a proof or to the theory of mind underlying a conversation. In the Self-Taught Reasoner (STaR, Zelikman et al. 2022), useful thinking is learned by inferring rationales from few-shot examples in question-answering and learning from those that lead to a correct answer. This is a highly constrained setting -- ideally, a language model could instead learn to infer unstated rationales in arbitrary text. We present Quiet-STaR, a generalization of STaR in which LMs learn to generate rationales at each token to explain future text, improving their predictions. We address key challenges, including 1) the computational cost of generating continuations, 2) the fact that the LM does not initially know how to generate or use internal thoughts, and 3) the need to predict beyond individual next tokens. To resolve these, we propose a tokenwise parallel sampling algorithm, using learnable tokens indicating a thought's start and end, and an extended teacher-forcing technique. Encouragingly, generated rationales disproportionately help model difficult-to-predict tokens and improve the LM's ability to directly answer difficult questions. In particular, after continued pretraining of an LM on a corpus of internet text with Quiet-STaR, we find zero-shot improvements on GSM8K (5.9%rightarrow10.9%) and CommonsenseQA (36.3%rightarrow47.2%) and observe a perplexity improvement of difficult tokens in natural text. Crucially, these improvements require no fine-tuning on these tasks. Quiet-STaR marks a step towards LMs that can learn to reason in a more general and scalable way.

Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying

Studies have underscored how, regardless of the recent breakthrough and swift advances in AI research, even state-of-the-art Large Language models (LLMs) continue to struggle when performing logical and mathematical reasoning. The results seem to suggest that LLMs still work as (highly advanced) data pattern identifiers, scoring poorly when attempting to generalise and solve reasoning problems the models have never previously seen or that are not close to samples presented in their training data. To address this compelling concern, this paper makes use of the notion of critical questions from the literature on argumentation theory, focusing in particular on Toulmin's model of argumentation. We show that employing these critical questions can improve the reasoning capabilities of LLMs. By probing the rationale behind the models' reasoning process, the LLM can assess whether some logical mistake is occurring and correct it before providing the final reply to the user prompt. The underlying idea is drawn from the gold standard of any valid argumentative procedure: the conclusion is valid if it is entailed by accepted premises. Or, to paraphrase such Aristotelian principle in a real-world approximation, characterised by incomplete information and presumptive logic, the conclusion is valid if not proved otherwise. This approach successfully steers the models' output through a reasoning pipeline, resulting in better performance against the baseline and its Chain-of-Thought (CoT) implementation. To this end, an extensive evaluation of the proposed approach on the MT-Bench Reasoning and Math tasks across a range of LLMs is provided.

Training Large Language Models to Reason in a Continuous Latent Space

Large language models (LLMs) are restricted to reason in the "language space", where they typically express the reasoning process with a chain-of-thought (CoT) to solve a complex reasoning problem. However, we argue that language space may not always be optimal for reasoning. For example, most word tokens are primarily for textual coherence and not essential for reasoning, while some critical tokens require complex planning and pose huge challenges to LLMs. To explore the potential of LLM reasoning in an unrestricted latent space instead of using natural language, we introduce a new paradigm Coconut (Chain of Continuous Thought). We utilize the last hidden state of the LLM as a representation of the reasoning state (termed "continuous thought"). Rather than decoding this into a word token, we feed it back to the LLM as the subsequent input embedding directly in the continuous space. Experiments show that Coconut can effectively augment the LLM on several reasoning tasks. This novel latent reasoning paradigm leads to emergent advanced reasoning patterns: the continuous thought can encode multiple alternative next reasoning steps, allowing the model to perform a breadth-first search (BFS) to solve the problem, rather than prematurely committing to a single deterministic path like CoT. Coconut outperforms CoT in certain logical reasoning tasks that require substantial backtracking during planning, with fewer thinking tokens during inference. These findings demonstrate the promise of latent reasoning and offer valuable insights for future research.

The Consciousness Prior

A new prior is proposed for learning representations of high-level concepts of the kind we manipulate with language. This prior can be combined with other priors in order to help disentangling abstract factors from each other. It is inspired by cognitive neuroscience theories of consciousness, seen as a bottleneck through which just a few elements, after having been selected by attention from a broader pool, are then broadcast and condition further processing, both in perception and decision-making. The set of recently selected elements one becomes aware of is seen as forming a low-dimensional conscious state. This conscious state is combining the few concepts constituting a conscious thought, i.e., what one is immediately conscious of at a particular moment. We claim that this architectural and information-processing constraint corresponds to assumptions about the joint distribution between high-level concepts. To the extent that these assumptions are generally true (and the form of natural language seems consistent with them), they can form a useful prior for representation learning. A low-dimensional thought or conscious state is analogous to a sentence: it involves only a few variables and yet can make a statement with very high probability of being true. This is consistent with a joint distribution (over high-level concepts) which has the form of a sparse factor graph, i.e., where the dependencies captured by each factor of the factor graph involve only very few variables while creating a strong dip in the overall energy function. The consciousness prior also makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules, albeit capturing uncertainty as well as efficient search mechanisms implemented by attention mechanisms.

A Hierarchical Bayesian Model for Deep Few-Shot Meta Learning

We propose a novel hierarchical Bayesian model for learning with a large (possibly infinite) number of tasks/episodes, which suits well the few-shot meta learning problem. We consider episode-wise random variables to model episode-specific target generative processes, where these local random variables are governed by a higher-level global random variate. The global variable helps memorize the important information from historic episodes while controlling how much the model needs to be adapted to new episodes in a principled Bayesian manner. Within our model framework, the prediction on a novel episode/task can be seen as a Bayesian inference problem. However, a main obstacle in learning with a large/infinite number of local random variables in online nature, is that one is not allowed to store the posterior distribution of the current local random variable for frequent future updates, typical in conventional variational inference. We need to be able to treat each local variable as a one-time iterate in the optimization. We propose a Normal-Inverse-Wishart model, for which we show that this one-time iterate optimization becomes feasible due to the approximate closed-form solutions for the local posterior distributions. The resulting algorithm is more attractive than the MAML in that it is not required to maintain computational graphs for the whole gradient optimization steps per episode. Our approach is also different from existing Bayesian meta learning methods in that unlike dealing with a single random variable for the whole episodes, our approach has a hierarchical structure that allows one-time episodic optimization, desirable for principled Bayesian learning with many/infinite tasks. The code is available at https://github.com/minyoungkim21/niwmeta.

Calibrating Reasoning in Language Models with Internal Consistency

Large language models (LLMs) have demonstrated impressive capabilities in various reasoning tasks, aided by techniques like chain-of-thought (CoT) prompting that elicits verbalized reasoning. However, LLMs often generate text with obvious mistakes and contradictions, raising doubts about their ability to robustly process and utilize generated rationales. In this work, we investigate CoT reasoning in LLMs through the lens of internal representations, focusing on how these representations are influenced by generated rationales. Our preliminary analysis reveals that while generated rationales improve answer accuracy, inconsistencies emerge between the model's internal representations in middle layers and those in final layers, potentially undermining the reliability of their reasoning processes. To address this, we propose internal consistency as a measure of the model's confidence by examining the agreement of latent predictions decoded from intermediate layers. Extensive empirical studies across different models and datasets demonstrate that internal consistency effectively distinguishes between correct and incorrect reasoning paths. Motivated by this, we propose a new approach to calibrate CoT reasoning by up-weighting reasoning paths with high internal consistency, resulting in a significant boost in reasoning performance. Further analysis uncovers distinct patterns in attention and feed-forward modules across layers, providing insights into the emergence of internal inconsistency. In summary, our results demonstrate the potential of using internal representations for self-evaluation of LLMs.

The Generative AI Paradox: "What It Can Create, It May Not Understand"

The recent wave of generative AI has sparked unprecedented global attention, with both excitement and concern over potentially superhuman levels of artificial intelligence: models now take only seconds to produce outputs that would challenge or exceed the capabilities even of expert humans. At the same time, models still show basic errors in understanding that would not be expected even in non-expert humans. This presents us with an apparent paradox: how do we reconcile seemingly superhuman capabilities with the persistence of errors that few humans would make? In this work, we posit that this tension reflects a divergence in the configuration of intelligence in today's generative models relative to intelligence in humans. Specifically, we propose and test the Generative AI Paradox hypothesis: generative models, having been trained directly to reproduce expert-like outputs, acquire generative capabilities that are not contingent upon -- and can therefore exceed -- their ability to understand those same types of outputs. This contrasts with humans, for whom basic understanding almost always precedes the ability to generate expert-level outputs. We test this hypothesis through controlled experiments analyzing generation vs. understanding in generative models, across both language and image modalities. Our results show that although models can outperform humans in generation, they consistently fall short of human capabilities in measures of understanding, as well as weaker correlation between generation and understanding performance, and more brittleness to adversarial inputs. Our findings support the hypothesis that models' generative capability may not be contingent upon understanding capability, and call for caution in interpreting artificial intelligence by analogy to human intelligence.

Multiple Choice Questions: Reasoning Makes Large Language Models (LLMs) More Self-Confident Even When They Are Wrong

One of the most widely used methods to evaluate LLMs are Multiple Choice Question (MCQ) tests. MCQ benchmarks enable the testing of LLM knowledge on almost any topic at scale as the results can be processed automatically. To help the LLM answer, a few examples called few shots can be included in the prompt. Moreover, the LLM can be asked to answer the question directly with the selected option or to first provide the reasoning and then the selected answer, which is known as chain of thought. In addition to checking whether the selected answer is correct, the evaluation can look at the LLM-estimated probability of its response as an indication of the confidence of the LLM in the response. In this paper, we study how the LLM confidence in its answer depends on whether the model has been asked to answer directly or to provide the reasoning before answering. The results of the evaluation of questions on a wide range of topics in seven different models show that LLMs are more confident in their answers when they provide reasoning before the answer. This occurs regardless of whether the selected answer is correct. Our hypothesis is that this behavior is due to the reasoning that modifies the probability of the selected answer, as the LLM predicts the answer based on the input question and the reasoning that supports the selection made. Therefore, LLM estimated probabilities seem to have intrinsic limitations that should be understood in order to use them in evaluation procedures. Interestingly, the same behavior has been observed in humans, for whom explaining an answer increases confidence in its correctness.

MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset

To enable Large Language Models (LLMs) to function as conscious agents with generalizable reasoning capabilities, it is crucial that they possess the reasoning ability to comprehend situational changes (transitions) in distribution triggered by environmental factors or actions from other agents. Despite its fundamental significance, this ability remains underexplored due to the complexity of modeling infinite possible changes in an event and their associated distributions, coupled with the lack of benchmark data with situational transitions. Addressing these gaps, we propose a novel formulation of reasoning with distributional changes as a three-step discriminative process, termed as MetAphysical ReaSoning. We then introduce the first-ever benchmark, MARS, comprising three tasks corresponding to each step. These tasks systematically assess LLMs' capabilities in reasoning the plausibility of (i) changes in actions, (ii) states caused by changed actions, and (iii) situational transitions driven by changes in action. Extensive evaluations with 20 (L)LMs of varying sizes and methods indicate that all three tasks in this process pose significant challenges, even for state-of-the-art LLMs and LMs after fine-tuning. Further analyses reveal potential causes for the underperformance of LLMs and demonstrate that pre-training them on large-scale conceptualization taxonomies can potentially enhance their metaphysical reasoning capabilities. Our data and models are publicly accessible at https://github.com/HKUST-KnowComp/MARS.

CycleResearcher: Improving Automated Research via Automated Review

The automation of scientific discovery has been a long-standing goal within the research community, driven by the potential to accelerate knowledge creation. While significant progress has been made using commercial large language models (LLMs) as research assistants or idea generators, the possibility of automating the entire research process with open-source LLMs remains largely unexplored. This paper explores the feasibility of using open-source post-trained LLMs as autonomous agents capable of performing the full cycle of automated research and review, from literature review and manuscript preparation to peer review and paper revision. Our iterative preference training framework consists of CycleResearcher, which conducts research tasks, and CycleReviewer, which simulates the peer review process, providing iterative feedback via reinforcement learning. To train these models, we develop two new datasets, Review-5k and Research-14k, reflecting real-world machine learning research and peer review dynamics. Our results demonstrate that CycleReviewer achieves a 26.89\% improvement in mean absolute error (MAE) over individual human reviewers in predicting paper scores, indicating that LLMs can surpass expert-level performance in research evaluation. In research, the papers generated by the CycleResearcher model achieved a score of 5.36 in simulated peer reviews, surpassing the preprint level of 5.24 from human experts and approaching the accepted paper level of 5.69. This work represents a significant step toward fully automated scientific inquiry, providing ethical safeguards and advancing AI-driven research capabilities. The code, dataset and model weight are released at http://github/minjun-zhu/Researcher.

Inference Scaling scriptsizeFLaws: The Limits of LLM Resampling with Imperfect Verifiers

Recent research has generated hope that inference scaling could allow weaker language models to match or exceed the accuracy of stronger models, such as by repeatedly sampling solutions to a coding problem until it passes unit tests. The central thesis of this paper is that there is no free lunch for inference scaling: indefinite accuracy improvement through resampling can only be realized if the "verifier" (in this case, a set of unit tests) is perfect. When the verifier is imperfect, as it almost always is in domains such as reasoning or coding (for example, unit tests have imperfect coverage), there is a nonzero probability of false positives: incorrect solutions that pass the verifier. Resampling cannot decrease this probability, so it imposes an upper bound to the accuracy of resampling-based inference scaling even with an infinite compute budget. We find that there is a very strong correlation between the model's single-sample accuracy (i.e. accuracy without unit tests) and its false positive rate on coding benchmarks HumanEval and MBPP, whose unit tests have limited coverage. Therefore, no amount of inference scaling of weaker models can enable them to match the single-sample accuracy of a sufficiently strong model (Fig. 1a). When we consider that false positives have a negative utility compared to abstaining from producing a solution, it bends the inference scaling curve further downward. Empirically, we find that the optimal number of samples can be less than 10 under realistic assumptions (Fig. 1b). Finally, we show that beyond accuracy, false positives may have other undesirable qualities, such as poor adherence to coding style conventions.

CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning

Program synthesis or code generation aims to generate a program that satisfies a problem specification. Recent approaches using large-scale pretrained language models (LMs) have shown promising results, yet they have some critical limitations. In particular, they often follow a standard supervised fine-tuning procedure to train a code generation model only from the pairs of natural-language problem descriptions and ground-truth programs. Such paradigm largely ignores some important but potentially useful signals in the problem specification such as unit tests, which thus often results in poor performance when solving complex unseen coding tasks. To address the limitations, we propose "CodeRL", a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning (RL). Specifically, during training, we treat the code-generating LM as an actor network, and introduce a critic network that is trained to predict the functional correctness of generated programs and provide dense feedback signals to the actor. During inference, we introduce a new generation procedure with a critical sampling strategy that allows a model to automatically regenerate programs based on feedback from example unit tests and critic scores. For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives, larger model sizes, and better pretraining data. Our method not only achieves new SOTA results on the challenging APPS benchmark, but also shows strong zero-shot transfer capability with new SOTA results on the simpler MBPP benchmark.

How AI Ideas Affect the Creativity, Diversity, and Evolution of Human Ideas: Evidence From a Large, Dynamic Experiment

Exposure to large language model output is rapidly increasing. How will seeing AI-generated ideas affect human ideas? We conducted an experiment (800+ participants, 40+ countries) where participants viewed creative ideas that were from ChatGPT or prior experimental participants and then brainstormed their own idea. We varied the number of AI-generated examples (none, low, or high exposure) and if the examples were labeled as 'AI' (disclosure). Our dynamic experiment design -- ideas from prior participants in an experimental condition are used as stimuli for future participants in the same experimental condition -- mimics the interdependent process of cultural creation: creative ideas are built upon prior ideas. Hence, we capture the compounding effects of having LLMs 'in the culture loop'. We find that high AI exposure (but not low AI exposure) did not affect the creativity of individual ideas but did increase the average amount and rate of change of collective idea diversity. AI made ideas different, not better. There were no main effects of disclosure. We also found that self-reported creative people were less influenced by knowing an idea was from AI, and that participants were more likely to knowingly adopt AI ideas when the task was difficult. Our findings suggest that introducing AI ideas into society may increase collective diversity but not individual creativity.

Learning dynamic representations of the functional connectome in neurobiological networks

The static synaptic connectivity of neuronal circuits stands in direct contrast to the dynamics of their function. As in changing community interactions, different neurons can participate actively in various combinations to effect behaviors at different times. We introduce an unsupervised approach to learn the dynamic affinities between neurons in live, behaving animals, and to reveal which communities form among neurons at different times. The inference occurs in two major steps. First, pairwise non-linear affinities between neuronal traces from brain-wide calcium activity are organized by non-negative tensor factorization (NTF). Each factor specifies which groups of neurons are most likely interacting for an inferred interval in time, and for which animals. Finally, a generative model that allows for weighted community detection is applied to the functional motifs produced by NTF to reveal a dynamic functional connectome. Since time codes the different experimental variables (e.g., application of chemical stimuli), this provides an atlas of neural motifs active during separate stages of an experiment (e.g., stimulus application or spontaneous behaviors). Results from our analysis are experimentally validated, confirming that our method is able to robustly predict causal interactions between neurons to generate behavior. Code is available at https://github.com/dyballa/dynamic-connectomes.

Towards Exact Computation of Inductive Bias

Much research in machine learning involves finding appropriate inductive biases (e.g. convolutional neural networks, momentum-based optimizers, transformers) to promote generalization on tasks. However, quantification of the amount of inductive bias associated with these architectures and hyperparameters has been limited. We propose a novel method for efficiently computing the inductive bias required for generalization on a task with a fixed training data budget; formally, this corresponds to the amount of information required to specify well-generalizing models within a specific hypothesis space of models. Our approach involves modeling the loss distribution of random hypotheses drawn from a hypothesis space to estimate the required inductive bias for a task relative to these hypotheses. Unlike prior work, our method provides a direct estimate of inductive bias without using bounds and is applicable to diverse hypothesis spaces. Moreover, we derive approximation error bounds for our estimation approach in terms of the number of sampled hypotheses. Consistent with prior results, our empirical results demonstrate that higher dimensional tasks require greater inductive bias. We show that relative to other expressive model classes, neural networks as a model class encode large amounts of inductive bias. Furthermore, our measure quantifies the relative difference in inductive bias between different neural network architectures. Our proposed inductive bias metric provides an information-theoretic interpretation of the benefits of specific model architectures for certain tasks and provides a quantitative guide to developing tasks requiring greater inductive bias, thereby encouraging the development of more powerful inductive biases.

Emergence of Hidden Capabilities: Exploring Learning Dynamics in Concept Space

Modern generative models demonstrate impressive capabilities, likely stemming from an ability to identify and manipulate abstract concepts underlying their training data. However, fundamental questions remain: what determines the concepts a model learns, the order in which it learns them, and its ability to manipulate those concepts? To address these questions, we propose analyzing a model's learning dynamics via a framework we call the concept space, where each axis represents an independent concept underlying the data generating process. By characterizing learning dynamics in this space, we identify how the speed at which a concept is learned, and hence the order of concept learning, is controlled by properties of the data we term concept signal. Further, we observe moments of sudden turns in the direction of a model's learning dynamics in concept space. Surprisingly, these points precisely correspond to the emergence of hidden capabilities, i.e., where latent interventions show the model possesses the capability to manipulate a concept, but these capabilities cannot yet be elicited via naive input prompting. While our results focus on synthetically defined toy datasets, we hypothesize a general claim on emergence of hidden capabilities may hold: generative models possess latent capabilities that emerge suddenly and consistently during training, though a model might not exhibit these capabilities under naive input prompting.

Do Large Language Models Latently Perform Multi-Hop Reasoning?

We study whether Large Language Models (LLMs) latently perform multi-hop reasoning with complex prompts such as "The mother of the singer of 'Superstition' is". We look for evidence of a latent reasoning pathway where an LLM (1) latently identifies "the singer of 'Superstition'" as Stevie Wonder, the bridge entity, and (2) uses its knowledge of Stevie Wonder's mother to complete the prompt. We analyze these two hops individually and consider their co-occurrence as indicative of latent multi-hop reasoning. For the first hop, we test if changing the prompt to indirectly mention the bridge entity instead of any other entity increases the LLM's internal recall of the bridge entity. For the second hop, we test if increasing this recall causes the LLM to better utilize what it knows about the bridge entity. We find strong evidence of latent multi-hop reasoning for the prompts of certain relation types, with the reasoning pathway used in more than 80% of the prompts. However, the utilization is highly contextual, varying across different types of prompts. Also, on average, the evidence for the second hop and the full multi-hop traversal is rather moderate and only substantial for the first hop. Moreover, we find a clear scaling trend with increasing model size for the first hop of reasoning but not for the second hop. Our experimental findings suggest potential challenges and opportunities for future development and applications of LLMs.

CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities

Recent large language models (LLMs) have shown indications of mathematical reasoning ability. However it has not been clear how they would fare on more challenging competition-level problems. And while self-generated verbalizations of intermediate reasoning steps (i.e., chain-of-thought prompting) have been shown to be helpful, whether LLMs can make use of helpful side information such as problem-specific hints has not been investigated before. In this paper, we propose a challenging benchmark dataset for enabling such analyses. The Concept and Hint-Annotated Math Problems (CHAMP) consists of high school math competition problems, annotated with concepts, or general math facts, and hints, or problem-specific tricks. These annotations allow us to explore the effects of additional information, such as relevant hints, misleading concepts, or related problems. This benchmark is difficult, with the best model only scoring 58.1% in standard settings. With concepts and hints, performance sometimes improves, indicating that some models can make use of such side information. We further annotate model-generated solutions for their correctness. Using this corpus, we find that models often arrive at the correct final answer through wrong reasoning steps. In addition, we test whether models are able to verify these solutions, and find that most models struggle. The dataset and code are available on the project website.

SMART: Self-learning Meta-strategy Agent for Reasoning Tasks

Tasks requiring deductive reasoning, especially those involving multiple steps, often demand adaptive strategies such as intermediate generation of rationales or programs, as no single approach is universally optimal. While Language Models (LMs) can enhance their outputs through iterative self-refinement and strategy adjustments, they frequently fail to apply the most effective strategy in their first attempt. This inefficiency raises the question: Can LMs learn to select the optimal strategy in the first attempt, without a need for refinement? To address this challenge, we introduce SMART (Self-learning Meta-strategy Agent for Reasoning Tasks), a novel framework that enables LMs to autonomously learn and select the most effective strategies for various reasoning tasks. We model the strategy selection process as a Markov Decision Process and leverage reinforcement learning-driven continuous self-improvement to allow the model to find the suitable strategy to solve a given task. Unlike traditional self-refinement methods that rely on multiple inference passes or external feedback, SMART allows an LM to internalize the outcomes of its own reasoning processes and adjust its strategy accordingly, aiming for correct solutions on the first attempt. Our experiments across various reasoning datasets and with different model architectures demonstrate that SMART significantly enhances the ability of models to choose optimal strategies without external guidance (+15 points on the GSM8K dataset). By achieving higher accuracy with a single inference pass, SMART not only improves performance but also reduces computational costs for refinement-based strategies, paving the way for more efficient and intelligent reasoning in LMs.

LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems

Interestingly, LLMs yet struggle with some basic tasks that humans find trivial to handle, e.g., counting the number of character r's in the word "strawberry". There are several popular conjectures (e.g., tokenization, architecture and training data) regarding the reason for deficiency of LLMs in simple word-based counting problems, sharing the similar belief that such failure stems from model pretraining hence probably inevitable during deployment. In this paper, we carefully design multiple evaluation settings to investigate validity of prevalent conjectures. Meanwhile, we measure transferability of advanced mathematical and coding reasoning capabilities from specialized LLMs to simple counting tasks. Although specialized LLMs suffer from counting problems as well, we find conjectures about inherent deficiency of LLMs invalid and further seek opportunities to elicit knowledge and capabilities from LLMs that are beneficial to counting tasks. Compared with strategies such as finetuning and in-context learning that are commonly adopted to enhance performance on new or challenging tasks, we show that engaging reasoning is the most robust and efficient way to help LLMs better perceive tasks with more accurate responses. We hope our conjecture validation design could provide insights into the study of future critical failure modes of LLMs. Based on challenges in transferring advanced capabilities to much simpler tasks, we call for more attention to model capability acquisition and evaluation. We also highlight the importance of cultivating consciousness of "reasoning before responding" during model pretraining.

B4: Towards Optimal Assessment of Plausible Code Solutions with Plausible Tests

Selecting the best code solution from multiple generated ones is an essential task in code generation, which can be achieved by using some reliable validators (e.g., developer-written test cases) for assistance. Since reliable test cases are not always available and can be expensive to build in practice, researchers propose to automatically generate test cases to assess code solutions. However, when both code solutions and test cases are plausible and not reliable, selecting the best solution becomes challenging. Although some heuristic strategies have been proposed to tackle this problem, they lack a strong theoretical guarantee and it is still an open question whether an optimal selection strategy exists. Our work contributes in two ways. First, we show that within a Bayesian framework, the optimal selection strategy can be defined based on the posterior probability of the observed passing states between solutions and tests. The problem of identifying the best solution is then framed as an integer programming problem. Second, we propose an efficient approach for approximating this optimal (yet uncomputable) strategy, where the approximation error is bounded by the correctness of prior knowledge. We then incorporate effective prior knowledge to tailor code generation tasks. Both theoretical and empirical studies confirm that existing heuristics are limited in selecting the best solutions with plausible test cases. Our proposed approximated optimal strategy B4 significantly surpasses existing heuristics in selecting code solutions generated by large language models (LLMs) with LLM-generated tests, achieving a relative performance improvement by up to 50% over the strongest heuristic and 246% over the random selection in the most challenging scenarios. Our code is publicly available at https://github.com/ZJU-CTAG/B4.

Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models

Large language models (LLMs) have recently been shown to deliver impressive performance in various NLP tasks. To tackle multi-step reasoning tasks, few-shot chain-of-thought (CoT) prompting includes a few manually crafted step-by-step reasoning demonstrations which enable LLMs to explicitly generate reasoning steps and improve their reasoning task accuracy. To eliminate the manual effort, Zero-shot-CoT concatenates the target problem statement with "Let's think step by step" as an input prompt to LLMs. Despite the success of Zero-shot-CoT, it still suffers from three pitfalls: calculation errors, missing-step errors, and semantic misunderstanding errors. To address the missing-step errors, we propose Plan-and-Solve (PS) Prompting. It consists of two components: first, devising a plan to divide the entire task into smaller subtasks, and then carrying out the subtasks according to the plan. To address the calculation errors and improve the quality of generated reasoning steps, we extend PS prompting with more detailed instructions and derive PS+ prompting. We evaluate our proposed prompting strategy on ten datasets across three reasoning problems. The experimental results over GPT-3 show that our proposed zero-shot prompting consistently outperforms Zero-shot-CoT across all datasets by a large margin, is comparable to or exceeds Zero-shot-Program-of-Thought Prompting, and has comparable performance with 8-shot CoT prompting on the math reasoning problem. The code can be found at https://github.com/AGI-Edgerunners/Plan-and-Solve-Prompting.

ThinkSum: Probabilistic reasoning over sets using large language models

Large language models (LLMs) have a substantial capacity for high-level analogical reasoning: reproducing patterns in linear text that occur in their training data (zero-shot evaluation) or in the provided context (few-shot in-context learning). However, recent studies show that even the more advanced LLMs fail in scenarios that require reasoning over multiple objects or facts and making sequences of logical deductions. We propose a two-stage probabilistic inference paradigm, ThinkSum, which reasons over sets of objects or facts in a structured manner. In the first stage (Think - retrieval of associations), a LLM is queried in parallel over a set of phrases extracted from the prompt or an auxiliary model call. In the second stage (Sum - probabilistic inference or reasoning), the results of these queries are aggregated to make the final prediction. We demonstrate the possibilities and advantages of ThinkSum on the BIG-bench suite of LLM evaluation tasks, achieving improvements over the state of the art using GPT-family models on thirteen difficult tasks, often with far smaller model variants. We also compare and contrast ThinkSum with other proposed modifications to direct prompting of LLMs, such as variants of chain-of-thought prompting. Our results suggest that because the probabilistic inference in ThinkSum is performed outside of calls to the LLM, ThinkSum is less sensitive to prompt design, yields more interpretable predictions, and can be flexibly combined with latent variable models to extract structured knowledge from LLMs. Overall, our proposed paradigm represents a promising approach for enhancing the reasoning capabilities of LLMs.

Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step

Chain-of-Thought (CoT) reasoning has been extensively explored in large models to tackle complex understanding tasks. However, it still remains an open question whether such strategies can be applied to verifying and reinforcing image generation scenarios. In this paper, we provide the first comprehensive investigation of the potential of CoT reasoning to enhance autoregressive image generation. We focus on three techniques: scaling test-time computation for verification, aligning model preferences with Direct Preference Optimization (DPO), and integrating these techniques for complementary effects. Our results demonstrate that these approaches can be effectively adapted and combined to significantly improve image generation performance. Furthermore, given the pivotal role of reward models in our findings, we propose the Potential Assessment Reward Model (PARM) and PARM++, specialized for autoregressive image generation. PARM adaptively assesses each generation step through a potential assessment approach, merging the strengths of existing reward models, and PARM++ further introduces a reflection mechanism to self-correct the generated unsatisfactory image. Using our investigated reasoning strategies, we enhance a baseline model, Show-o, to achieve superior results, with a significant +24% improvement on the GenEval benchmark, surpassing Stable Diffusion 3 by +15%. We hope our study provides unique insights and paves a new path for integrating CoT reasoning with autoregressive image generation. Code and models are released at https://github.com/ZiyuGuo99/Image-Generation-CoT

Thought-Path Contrastive Learning via Premise-Oriented Data Augmentation for Logical Reading Comprehension

Logical reading comprehension is a challenging task that entails grasping the underlying semantics of text and applying reasoning to deduce the correct answer. Prior researches have primarily focused on enhancing logical reasoning capabilities through Chain-of-Thought (CoT) or data augmentation. However, previous work constructing chain-of-thought rationales concentrates solely on analyzing correct options, neglecting the incorrect alternatives. Addtionally, earlier efforts on data augmentation by altering contexts rely on rule-based methods, which result in generated contexts that lack diversity and coherence. To address these issues, we propose a Premise-Oriented Data Augmentation (PODA) framework. This framework can generate CoT rationales including analyses for both correct and incorrect options, while constructing diverse and high-quality counterfactual contexts from incorrect candidate options. We integrate summarizing premises and identifying premises for each option into rationales. Subsequently, we employ multi-step prompts with identified premises to construct counterfactual context. To facilitate the model's capabilities to better differentiate the reasoning process associated with each option, we introduce a novel thought-path contrastive learning method that compares reasoning paths between the original and counterfactual samples. Experimental results on three representative LLMs demonstrate that our method can improve the baselines substantially across two challenging logical reasoning benchmarks (ReClor and LogiQA 2.0). The data and code are released at https://github.com/lalalamdbf/TPReasoner.

AlphaMath Almost Zero: process Supervision without process

Recent advancements in large language models (LLMs) have substantially enhanced their mathematical reasoning abilities. However, these models still struggle with complex problems that require multiple reasoning steps, frequently leading to logical or numerical errors. While numerical mistakes can be largely addressed by integrating a code interpreter, identifying logical errors within intermediate steps is more challenging. Moreover, manually annotating these steps for training is not only expensive but also labor-intensive, requiring the expertise of professional annotators. In our study, we introduce an innovative approach that bypasses the need for process annotations (from human or GPTs) by utilizing the Monte Carlo Tree Search (MCTS) framework. This technique automatically generates both the process supervision and the step-level evaluation signals. Our method iteratively trains the policy and value models, leveraging the capabilities of a well-pretrained LLM to progressively enhance its mathematical reasoning skills. Furthermore, we propose an efficient inference strategy-step-level beam search, where the value model is crafted to assist the policy model (i.e., LLM) in navigating more effective reasoning paths, rather than solely relying on prior probabilities. The experimental results on both in-domain and out-of-domain datasets demonstrate that even without GPT-4 or human-annotated process supervision, our AlphaMath framework achieves comparable or superior results to previous state-of-the-art methods.

Causal Inference by String Diagram Surgery

Extracting causal relationships from observed correlations is a growing area in probabilistic reasoning, originating with the seminal work of Pearl and others from the early 1990s. This paper develops a new, categorically oriented view based on a clear distinction between syntax (string diagrams) and semantics (stochastic matrices), connected via interpretations as structure-preserving functors. A key notion in the identification of causal effects is that of an intervention, whereby a variable is forcefully set to a particular value independent of any prior propensities. We represent the effect of such an intervention as an endofunctor which performs `string diagram surgery' within the syntactic category of string diagrams. This diagram surgery in turn yields a new, interventional distribution via the interpretation functor. While in general there is no way to compute interventional distributions purely from observed data, we show that this is possible in certain special cases using a calculational tool called comb disintegration. We demonstrate the use of this technique on a well-known toy example, where we predict the causal effect of smoking on cancer in the presence of a confounding common cause. After developing this specific example, we show this technique provides simple sufficient conditions for computing interventions which apply to a wide variety of situations considered in the causal inference literature.

Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve

The widespread adoption of large language models (LLMs) makes it important to recognize their strengths and limitations. We argue that in order to develop a holistic understanding of these systems we need to consider the problem that they were trained to solve: next-word prediction over Internet text. By recognizing the pressures that this task exerts we can make predictions about the strategies that LLMs will adopt, allowing us to reason about when they will succeed or fail. This approach - which we call the teleological approach - leads us to identify three factors that we hypothesize will influence LLM accuracy: the probability of the task to be performed, the probability of the target output, and the probability of the provided input. We predict that LLMs will achieve higher accuracy when these probabilities are high than when they are low - even in deterministic settings where probability should not matter. To test our predictions, we evaluate two LLMs (GPT-3.5 and GPT-4) on eleven tasks, and we find robust evidence that LLMs are influenced by probability in the ways that we have hypothesized. In many cases, the experiments reveal surprising failure modes. For instance, GPT-4's accuracy at decoding a simple cipher is 51% when the output is a high-probability word sequence but only 13% when it is low-probability. These results show that AI practitioners should be careful about using LLMs in low-probability situations. More broadly, we conclude that we should not evaluate LLMs as if they are humans but should instead treat them as a distinct type of system - one that has been shaped by its own particular set of pressures.