Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRAG Playground: A Framework for Systematic Evaluation of Retrieval Strategies and Prompt Engineering in RAG Systems
We present RAG Playground, an open-source framework for systematic evaluation of Retrieval-Augmented Generation (RAG) systems. The framework implements and compares three retrieval approaches: naive vector search, reranking, and hybrid vector-keyword search, combined with ReAct agents using different prompting strategies. We introduce a comprehensive evaluation framework with novel metrics and provide empirical results comparing different language models (Llama 3.1 and Qwen 2.5) across various retrieval configurations. Our experiments demonstrate significant performance improvements through hybrid search methods and structured self-evaluation prompting, achieving up to 72.7% pass rate on our multi-metric evaluation framework. The results also highlight the importance of prompt engineering in RAG systems, with our custom-prompted agents showing consistent improvements in retrieval accuracy and response quality.
ELMES: An Automated Framework for Evaluating Large Language Models in Educational Scenarios
The emergence of Large Language Models (LLMs) presents transformative opportunities for education, generating numerous novel application scenarios. However, significant challenges remain: evaluation metrics vary substantially across different educational scenarios, while many emerging scenarios lack appropriate assessment metrics. Current benchmarks predominantly measure general intelligence rather than pedagogical capabilities. To address this gap, we introduce ELMES, an open-source automated evaluation framework specifically designed for assessing LLMs in educational settings. ELMES features a modular architecture that enables researchers to create dynamic, multi-agent dialogues through simple configuration files, facilitating flexible scenario design without requiring extensive programming expertise. The framework incorporates a hybrid evaluation engine that objectively quantifies traditionally subjective pedagogical metrics using an LLM-as-a-Judge methodology. We conduct systematic benchmarking of state-of-the-art LLMs across four critical educational scenarios: Knowledge Point Explanation, Guided Problem-Solving Teaching, Interdisciplinary Lesson Plan Generation, and Contextualized Question Generation, employing fine-grained metrics developed in collaboration with education specialists. Our results demonstrate distinct capability distributions among models, revealing context-specific strengths and limitations. ELMES provides educators and researchers with an accessible evaluation framework that significantly reduces adaptation barriers for diverse educational applications while advancing the practical implementation of LLMs in pedagogy. The framework is publicly available at https://github.com/sii-research/elmes.git.
Hi3DEval: Advancing 3D Generation Evaluation with Hierarchical Validity
Despite rapid advances in 3D content generation, quality assessment for the generated 3D assets remains challenging. Existing methods mainly rely on image-based metrics and operate solely at the object level, limiting their ability to capture spatial coherence, material authenticity, and high-fidelity local details. 1) To address these challenges, we introduce Hi3DEval, a hierarchical evaluation framework tailored for 3D generative content. It combines both object-level and part-level evaluation, enabling holistic assessments across multiple dimensions as well as fine-grained quality analysis. Additionally, we extend texture evaluation beyond aesthetic appearance by explicitly assessing material realism, focusing on attributes such as albedo, saturation, and metallicness. 2) To support this framework, we construct Hi3DBench, a large-scale dataset comprising diverse 3D assets and high-quality annotations, accompanied by a reliable multi-agent annotation pipeline. We further propose a 3D-aware automated scoring system based on hybrid 3D representations. Specifically, we leverage video-based representations for object-level and material-subject evaluations to enhance modeling of spatio-temporal consistency and employ pretrained 3D features for part-level perception. Extensive experiments demonstrate that our approach outperforms existing image-based metrics in modeling 3D characteristics and achieves superior alignment with human preference, providing a scalable alternative to manual evaluations. The project page is available at https://zyh482.github.io/Hi3DEval/.
HyDRA: A Hybrid-Driven Reasoning Architecture for Verifiable Knowledge Graphs
The synergy between symbolic knowledge, often represented by Knowledge Graphs (KGs), and the generative capabilities of neural networks is central to advancing neurosymbolic AI. A primary bottleneck in realizing this potential is the difficulty of automating KG construction, which faces challenges related to output reliability, consistency, and verifiability. These issues can manifest as structural inconsistencies within the generated graphs, such as the formation of disconnected isolated islands of data or the inaccurate conflation of abstract classes with specific instances. To address these challenges, we propose HyDRA, a Hybrid-Driven Reasoning Architecture designed for verifiable KG automation. Given a domain or an initial set of documents, HyDRA first constructs an ontology via a panel of collaborative neurosymbolic agents. These agents collaboratively agree on a set of competency questions (CQs) that define the scope and requirements the ontology must be able to answer. Given these CQs, we build an ontology graph that subsequently guides the automated extraction of triplets for KG generation from arbitrary documents. Inspired by design-by-contracts (DbC) principles, our method leverages verifiable contracts as the primary control mechanism to steer the generative process of Large Language Models (LLMs). To verify the output of our approach, we extend beyond standard benchmarks and propose an evaluation framework that assesses the functional correctness of the resulting KG by leveraging symbolic verifications as described by the neurosymbolic AI framework, SymbolicAI. This work contributes a hybrid-driven architecture for improving the reliability of automated KG construction and the exploration of evaluation methods for measuring the functional integrity of its output. The code is publicly available.
HyPA-RAG: A Hybrid Parameter Adaptive Retrieval-Augmented Generation System for AI Legal and Policy Applications
Large Language Models (LLMs) face limitations in AI legal and policy applications due to outdated knowledge, hallucinations, and poor reasoning in complex contexts. Retrieval-Augmented Generation (RAG) systems address these issues by incorporating external knowledge, but suffer from retrieval errors, ineffective context integration, and high operational costs. This paper presents the Hybrid Parameter-Adaptive RAG (HyPA-RAG) system, designed for the AI legal domain, with NYC Local Law 144 (LL144) as the test case. HyPA-RAG integrates a query complexity classifier for adaptive parameter tuning, a hybrid retrieval approach combining dense, sparse, and knowledge graph methods, and a comprehensive evaluation framework with tailored question types and metrics. Testing on LL144 demonstrates that HyPA-RAG enhances retrieval accuracy, response fidelity, and contextual precision, offering a robust and adaptable solution for high-stakes legal and policy applications.
PIRB: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods
We present Polish Information Retrieval Benchmark (PIRB), a comprehensive evaluation framework encompassing 41 text information retrieval tasks for Polish. The benchmark incorporates existing datasets as well as 10 new, previously unpublished datasets covering diverse topics such as medicine, law, business, physics, and linguistics. We conduct an extensive evaluation of over 20 dense and sparse retrieval models, including the baseline models trained by us as well as other available Polish and multilingual methods. Finally, we introduce a three-step process for training highly effective language-specific retrievers, consisting of knowledge distillation, supervised fine-tuning, and building sparse-dense hybrid retrievers using a lightweight rescoring model. In order to validate our approach, we train new text encoders for Polish and compare their results with previously evaluated methods. Our dense models outperform the best solutions available to date, and the use of hybrid methods further improves their performance.
Comparative Study and Framework for Automated Summariser Evaluation: LangChain and Hybrid Algorithms
Automated Essay Score (AES) is proven to be one of the cutting-edge technologies. Scoring techniques are used for various purposes. Reliable scores are calculated based on influential variables. Such variables can be computed by different methods based on the domain. The research is concentrated on the user's understanding of a given topic. The analysis is based on a scoring index by using Large Language Models. The user can then compare and contrast the understanding of a topic that they recently learned. The results are then contributed towards learning analytics and progression is made for enhancing the learning ability. In this research, the focus is on summarizing a PDF document and gauging a user's understanding of its content. The process involves utilizing a Langchain tool to summarize the PDF and extract the essential information. By employing this technique, the research aims to determine how well the user comprehends the summarized content.
A hybrid deep-learning-metaheuristic framework for bi-level network design problems
This study proposes a hybrid deep-learning-metaheuristic framework with a bi-level architecture for road network design problems (NDPs). We train a graph neural network (GNN) to approximate the solution of the user equilibrium (UE) traffic assignment problem and use inferences made by the trained model to calculate fitness function evaluations of a genetic algorithm (GA) to approximate solutions for NDPs. Using three test networks, two NDP variants and an exact solver as benchmark, we show that on average, our proposed framework can provide solutions within 1.5% gap of the best results in less than 0.5% of the time used by the exact solution procedure. Our framework can be utilized within an expert system for infrastructure planning to determine the best infrastructure planning and management decisions under different scenarios. Given the flexibility of the framework, it can easily be adapted to many other decision problems that can be modeled as bi-level problems on graphs. Moreover, we foreseen interesting future research directions, thus we also put forward a brief research agenda for this topic. The key observation from our research that can shape future research is that the fitness function evaluation time using the inferences made by the GNN model was in the order of milliseconds, which points to an opportunity and a need for novel heuristics that 1) can cope well with noisy fitness function values provided by deep learning models, and 2) can use the significantly enlarged efficiency of the evaluation step to explore the search space effectively (rather than efficiently). This opens a new avenue for a modern class of metaheuristics that are crafted for use with AI-powered predictors.
Deep-Q Learning with Hybrid Quantum Neural Network on Solving Maze Problems
Quantum computing holds great potential for advancing the limitations of machine learning algorithms to handle higher dimensions of data and reduce overall training parameters in deep learning (DL) models. This study uses a trainable variational quantum circuit (VQC) on a gate-based quantum computing model to investigate the potential for quantum benefit in a model-free reinforcement learning problem. Through a comprehensive investigation and evaluation of the current model and capabilities of quantum computers, we designed and trained a novel hybrid quantum neural network based on the latest Qiskit and PyTorch framework. We compared its performance with a full-classical CNN with and without an incorporated VQC. Our research provides insights into the potential of deep quantum learning to solve a maze problem and, potentially, other reinforcement learning problems. We conclude that reinforcement learning problems can be practical with reasonable training epochs. Moreover, a comparative study of full-classical and hybrid quantum neural networks is discussed to understand these two approaches' performance, advantages, and disadvantages to deep-Q learning problems, especially on larger-scale maze problems larger than 4x4.
A Hybrid Framework for Real-Time Data Drift and Anomaly Identification Using Hierarchical Temporal Memory and Statistical Tests
Data Drift is the phenomenon where the generating model behind the data changes over time. Due to data drift, any model built on the past training data becomes less relevant and inaccurate over time. Thus, detecting and controlling for data drift is critical in machine learning models. Hierarchical Temporal Memory (HTM) is a machine learning model developed by Jeff Hawkins, inspired by how the human brain processes information. It is a biologically inspired model of memory that is similar in structure to the neocortex, and whose performance is claimed to be comparable to state of the art models in detecting anomalies in time series data. Another unique benefit of HTMs is its independence from training and testing cycle; all the learning takes place online with streaming data and no separate training and testing cycle is required. In sequential learning paradigm, Sequential Probability Ratio Test (SPRT) offers some unique benefit for online learning and inference. This paper proposes a novel hybrid framework combining HTM and SPRT for real-time data drift detection and anomaly identification. Unlike existing data drift methods, our approach eliminates frequent retraining and ensures low false positive rates. HTMs currently work with one dimensional or univariate data. In a second study, we also propose an application of HTM in multidimensional supervised scenario for anomaly detection by combining the outputs of multiple HTM columns, one for each dimension of the data, through a neural network. Experimental evaluations demonstrate that the proposed method outperforms conventional drift detection techniques like the Kolmogorov-Smirnov (KS) test, Wasserstein distance, and Population Stability Index (PSI) in terms of accuracy, adaptability, and computational efficiency. Our experiments also provide insights into optimizing hyperparameters for real-time deployment in domains such as Telecom.
TailorKV: A Hybrid Framework for Long-Context Inference via Tailored KV Cache Optimization
The Key-Value (KV) cache in generative large language models (LLMs) introduces substantial memory overhead. Existing works mitigate this burden by offloading or compressing the KV cache. However, loading the entire cache incurs significant latency due to PCIe bandwidth bottlenecks in CPU-GPU communication, while aggressive compression causes notable performance degradation. We identify that certain layers in the LLM need to maintain global information and are unsuitable for selective loading. In contrast, other layers primarily focus on a few tokens with dominant activations that potentially incur substantial quantization error. This observation leads to a key insight that loading dominant tokens and quantizing all tokens can complement each other. Building on this insight, we propose a hybrid compression method, TailorKV, which seamlessly integrates quantization and offloading. TailorKV develops an inference framework along with a hardware-friendly implementation that leverages these complementary characteristics. Extensive long-context evaluations exhibit that TailorKV achieves nearly lossless performance under aggressive compression settings, outperforming the state-of-the-art. Particularly, the Llama-3.1-8B with 128k context can be served within a single RTX 3090 GPU, reaching 82 ms per token during decoding.
POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation
Multi-agent reinforcement learning (MARL) has recently excelled in solving challenging cooperative and competitive multi-agent problems in various environments with, mostly, few agents and full observability. Moreover, a range of crucial robotics-related tasks, such as multi-robot navigation and obstacle avoidance, that have been conventionally approached with the classical non-learnable methods (e.g., heuristic search) is currently suggested to be solved by the learning-based or hybrid methods. Still, in this domain, it is hard, not to say impossible, to conduct a fair comparison between classical, learning-based, and hybrid approaches due to the lack of a unified framework that supports both learning and evaluation. To this end, we introduce POGEMA, a set of comprehensive tools that includes a fast environment for learning, a generator of problem instances, the collection of pre-defined ones, a visualization toolkit, and a benchmarking tool that allows automated evaluation. We introduce and specify an evaluation protocol defining a range of domain-related metrics computed on the basics of the primary evaluation indicators (such as success rate and path length), allowing a fair multi-fold comparison. The results of such a comparison, which involves a variety of state-of-the-art MARL, search-based, and hybrid methods, are presented.
The Science of Evaluating Foundation Models
The emergent phenomena of large foundation models have revolutionized natural language processing. However, evaluating these models presents significant challenges due to their size, capabilities, and deployment across diverse applications. Existing literature often focuses on individual aspects, such as benchmark performance or specific tasks, but fails to provide a cohesive process that integrates the nuances of diverse use cases with broader ethical and operational considerations. This work focuses on three key aspects: (1) Formalizing the Evaluation Process by providing a structured framework tailored to specific use-case contexts, (2) Offering Actionable Tools and Frameworks such as checklists and templates to ensure thorough, reproducible, and practical evaluations, and (3) Surveying Recent Work with a targeted review of advancements in LLM evaluation, emphasizing real-world applications.
A System for Comprehensive Assessment of RAG Frameworks
Retrieval Augmented Generation (RAG) has emerged as a standard paradigm for enhancing the factual accuracy and contextual relevance of Large Language Models (LLMs) by integrating retrieval mechanisms. However, existing evaluation frameworks fail to provide a holistic black-box approach to assessing RAG systems, especially in real-world deployment scenarios. To address this gap, we introduce SCARF (System for Comprehensive Assessment of RAG Frameworks), a modular and flexible evaluation framework designed to benchmark deployed RAG applications systematically. SCARF provides an end-to-end, black-box evaluation methodology, enabling a limited-effort comparison across diverse RAG frameworks. Our framework supports multiple deployment configurations and facilitates automated testing across vector databases and LLM serving strategies, producing a detailed performance report. Moreover, SCARF integrates practical considerations such as response coherence, providing a scalable and adaptable solution for researchers and industry professionals evaluating RAG applications. Using the REST APIs interface, we demonstrate how SCARF can be applied to real-world scenarios, showcasing its flexibility in assessing different RAG frameworks and configurations. SCARF is available at GitHub repository.
CheckEval: Robust Evaluation Framework using Large Language Model via Checklist
We introduce CheckEval, a novel evaluation framework using Large Language Models, addressing the challenges of ambiguity and inconsistency in current evaluation methods. CheckEval addresses these challenges by dividing evaluation criteria into detailed sub-aspects and constructing a checklist of Boolean questions for each, simplifying the evaluation. This approach not only renders the process more interpretable but also significantly enhances the robustness and reliability of results by focusing on specific evaluation dimensions. Validated through a focused case study using the SummEval benchmark, CheckEval indicates a strong correlation with human judgments. Furthermore, it demonstrates a highly consistent Inter-Annotator Agreement. These findings highlight the effectiveness of CheckEval for objective, flexible, and precise evaluations. By offering a customizable and interactive framework, CheckEval sets a new standard for the use of LLMs in evaluation, responding to the evolving needs of the field and establishing a clear method for future LLM-based evaluation.
A Survey on LLM-as-a-Judge
Accurate and consistent evaluation is crucial for decision-making across numerous fields, yet it remains a challenging task due to inherent subjectivity, variability, and scale. Large Language Models (LLMs) have achieved remarkable success across diverse domains, leading to the emergence of "LLM-as-a-Judge," where LLMs are employed as evaluators for complex tasks. With their ability to process diverse data types and provide scalable, cost-effective, and consistent assessments, LLMs present a compelling alternative to traditional expert-driven evaluations. However, ensuring the reliability of LLM-as-a-Judge systems remains a significant challenge that requires careful design and standardization. This paper provides a comprehensive survey of LLM-as-a-Judge, addressing the core question: How can reliable LLM-as-a-Judge systems be built? We explore strategies to enhance reliability, including improving consistency, mitigating biases, and adapting to diverse assessment scenarios. Additionally, we propose methodologies for evaluating the reliability of LLM-as-a-Judge systems, supported by a novel benchmark designed for this purpose. To advance the development and real-world deployment of LLM-as-a-Judge systems, we also discussed practical applications, challenges, and future directions. This survey serves as a foundational reference for researchers and practitioners in this rapidly evolving field.
A Comprehensive Survey of Evaluation Techniques for Recommendation Systems
The effectiveness of recommendation systems is pivotal to user engagement and satisfaction in online platforms. As these recommendation systems increasingly influence user choices, their evaluation transcends mere technical performance and becomes central to business success. This paper addresses the multifaceted nature of recommendations system evaluation by introducing a comprehensive suite of metrics, each tailored to capture a distinct aspect of system performance. We discuss * Similarity Metrics: to quantify the precision of content-based filtering mechanisms and assess the accuracy of collaborative filtering techniques. * Candidate Generation Metrics: to evaluate how effectively the system identifies a broad yet relevant range of items. * Predictive Metrics: to assess the accuracy of forecasted user preferences. * Ranking Metrics: to evaluate the effectiveness of the order in which recommendations are presented. * Business Metrics: to align the performance of the recommendation system with economic objectives. Our approach emphasizes the contextual application of these metrics and their interdependencies. In this paper, we identify the strengths and limitations of current evaluation practices and highlight the nuanced trade-offs that emerge when optimizing recommendation systems across different metrics. The paper concludes by proposing a framework for selecting and interpreting these metrics to not only improve system performance but also to advance business goals. This work is to aid researchers and practitioners in critically assessing recommendation systems and fosters the development of more nuanced, effective, and economically viable personalization strategies. Our code is available at GitHub - https://github.com/aryan-jadon/Evaluation-Metrics-for-Recommendation-Systems.
TF1-EN-3M: Three Million Synthetic Moral Fables for Training Small, Open Language Models
Moral stories are a time-tested vehicle for transmitting values, yet modern NLP lacks a large, structured corpus that couples coherent narratives with explicit ethical lessons. We close this gap with TF1-EN-3M, the first open dataset of three million English-language fables generated exclusively by instruction-tuned models no larger than 8B parameters. Each story follows a six-slot scaffold (character -> trait -> setting -> conflict -> resolution -> moral), produced through a combinatorial prompt engine that guarantees genre fidelity while covering a broad thematic space. A hybrid evaluation pipeline blends (i) a GPT-based critic that scores grammar, creativity, moral clarity, and template adherence with (ii) reference-free diversity and readability metrics. Among ten open-weight candidates, an 8B-parameter Llama-3 variant delivers the best quality-speed trade-off, producing high-scoring fables on a single consumer GPU (<24 GB VRAM) at approximately 13.5 cents per 1,000 fables. We release the dataset, generation code, evaluation scripts, and full metadata under a permissive license, enabling exact reproducibility and cost benchmarking. TF1-EN-3M opens avenues for research in instruction following, narrative intelligence, value alignment, and child-friendly educational AI, demonstrating that large-scale moral storytelling no longer requires proprietary giant models.
FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models
The rapid development of large language model (LLM) evaluation methodologies and datasets has led to a profound challenge: integrating state-of-the-art evaluation techniques cost-effectively while ensuring reliability, reproducibility, and efficiency. Currently, there is a notable absence of a unified and adaptable framework that seamlessly integrates various evaluation approaches. Moreover, the reliability of evaluation findings is often questionable due to potential data contamination, with the evaluation efficiency commonly overlooked when facing the substantial costs associated with LLM inference. In response to these challenges, we introduce FreeEval, a modular and scalable framework crafted to enable trustworthy and efficient automatic evaluations of LLMs. Firstly, FreeEval's unified abstractions simplify the integration and improve the transparency of diverse evaluation methodologies, encompassing dynamic evaluation that demand sophisticated LLM interactions. Secondly, the framework integrates meta-evaluation techniques like human evaluation and data contamination detection, which, along with dynamic evaluation modules in the platform, enhance the fairness of the evaluation outcomes. Lastly, FreeEval is designed with a high-performance infrastructure, including distributed computation and caching strategies, enabling extensive evaluations across multi-node, multi-GPU clusters for open-source and proprietary LLMs.
Can LLMs Be Trusted for Evaluating RAG Systems? A Survey of Methods and Datasets
Retrieval-Augmented Generation (RAG) has advanced significantly in recent years. The complexity of RAG systems, which involve multiple components-such as indexing, retrieval, and generation-along with numerous other parameters, poses substantial challenges for systematic evaluation and quality enhancement. Previous research highlights that evaluating RAG systems is essential for documenting advancements, comparing configurations, and identifying effective approaches for domain-specific applications. This study systematically reviews 63 academic articles to provide a comprehensive overview of state-of-the-art RAG evaluation methodologies, focusing on four key areas: datasets, retrievers, indexing and databases, and the generator component. We observe the feasibility of an automated evaluation approach for each component of a RAG system, leveraging an LLM capable of both generating evaluation datasets and conducting evaluations. In addition, we found that further practical research is essential to provide companies with clear guidance on the do's and don'ts of implementing and evaluating RAG systems. By synthesizing evaluation approaches for key RAG components and emphasizing the creation and adaptation of domain-specific datasets for benchmarking, we contribute to the advancement of systematic evaluation methods and the improvement of evaluation rigor for RAG systems. Furthermore, by examining the interplay between automated approaches leveraging LLMs and human judgment, we contribute to the ongoing discourse on balancing automation and human input, clarifying their respective contributions, limitations, and challenges in achieving robust and reliable evaluations.
Hybrid Semantic Search: Unveiling User Intent Beyond Keywords
This paper addresses the limitations of traditional keyword-based search in understanding user intent and introduces a novel hybrid search approach that leverages the strengths of non-semantic search engines, Large Language Models (LLMs), and embedding models. The proposed system integrates keyword matching, semantic vector embeddings, and LLM-generated structured queries to deliver highly relevant and contextually appropriate search results. By combining these complementary methods, the hybrid approach effectively captures both explicit and implicit user intent.The paper further explores techniques to optimize query execution for faster response times and demonstrates the effectiveness of this hybrid search model in producing comprehensive and accurate search outcomes.
RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation
Despite Retrieval-Augmented Generation (RAG) has shown promising capability in leveraging external knowledge, a comprehensive evaluation of RAG systems is still challenging due to the modular nature of RAG, evaluation of long-form responses and reliability of measurements. In this paper, we propose a fine-grained evaluation framework, RAGChecker, that incorporates a suite of diagnostic metrics for both the retrieval and generation modules. Meta evaluation verifies that RAGChecker has significantly better correlations with human judgments than other evaluation metrics. Using RAGChecker, we evaluate 8 RAG systems and conduct an in-depth analysis of their performance, revealing insightful patterns and trade-offs in the design choices of RAG architectures. The metrics of RAGChecker can guide researchers and practitioners in developing more effective RAG systems.
AgentSims: An Open-Source Sandbox for Large Language Model Evaluation
With ChatGPT-like large language models (LLM) prevailing in the community, how to evaluate the ability of LLMs is an open question. Existing evaluation methods suffer from following shortcomings: (1) constrained evaluation abilities, (2) vulnerable benchmarks, (3) unobjective metrics. We suggest that task-based evaluation, where LLM agents complete tasks in a simulated environment, is a one-for-all solution to solve above problems. We present AgentSims, an easy-to-use infrastructure for researchers from all disciplines to test the specific capacities they are interested in. Researchers can build their evaluation tasks by adding agents and buildings on an interactive GUI or deploy and test new support mechanisms, i.e. memory, planning and tool-use systems, by a few lines of codes. Our demo is available at https://agentsims.com .
CIBench: Evaluating Your LLMs with a Code Interpreter Plugin
While LLM-Based agents, which use external tools to solve complex problems, have made significant progress, benchmarking their ability is challenging, thereby hindering a clear understanding of their limitations. In this paper, we propose an interactive evaluation framework, named CIBench, to comprehensively assess LLMs' ability to utilize code interpreters for data science tasks. Our evaluation framework includes an evaluation dataset and two evaluation modes. The evaluation dataset is constructed using an LLM-human cooperative approach and simulates an authentic workflow by leveraging consecutive and interactive IPython sessions. The two evaluation modes assess LLMs' ability with and without human assistance. We conduct extensive experiments to analyze the ability of 24 LLMs on CIBench and provide valuable insights for future LLMs in code interpreter utilization.
Evaluating the Social Impact of Generative AI Systems in Systems and Society
Generative AI systems across modalities, ranging from text (including code), image, audio, and video, have broad social impacts, but there is no official standard for means of evaluating those impacts or for which impacts should be evaluated. In this paper, we present a guide that moves toward a standard approach in evaluating a base generative AI system for any modality in two overarching categories: what can be evaluated in a base system independent of context and what can be evaluated in a societal context. Importantly, this refers to base systems that have no predetermined application or deployment context, including a model itself, as well as system components, such as training data. Our framework for a base system defines seven categories of social impact: bias, stereotypes, and representational harms; cultural values and sensitive content; disparate performance; privacy and data protection; financial costs; environmental costs; and data and content moderation labor costs. Suggested methods for evaluation apply to listed generative modalities and analyses of the limitations of existing evaluations serve as a starting point for necessary investment in future evaluations. We offer five overarching categories for what can be evaluated in a broader societal context, each with its own subcategories: trustworthiness and autonomy; inequality, marginalization, and violence; concentration of authority; labor and creativity; and ecosystem and environment. Each subcategory includes recommendations for mitigating harm.
Re-evaluating Open-ended Evaluation of Large Language Models
Evaluation has traditionally focused on ranking candidates for a specific skill. Modern generalist models, such as Large Language Models (LLMs), decidedly outpace this paradigm. Open-ended evaluation systems, where candidate models are compared on user-submitted prompts, have emerged as a popular solution. Despite their many advantages, we show that the current Elo-based rating systems can be susceptible to and even reinforce biases in data, intentional or accidental, due to their sensitivity to redundancies. To address this issue, we propose evaluation as a 3-player game, and introduce novel game-theoretic solution concepts to ensure robustness to redundancy. We show that our method leads to intuitive ratings and provide insights into the competitive landscape of LLM development.
Why Settle for One? Text-to-ImageSet Generation and Evaluation
Despite remarkable progress in Text-to-Image models, many real-world applications require generating coherent image sets with diverse consistency requirements. Existing consistent methods often focus on a specific domain with specific aspects of consistency, which significantly constrains their generalizability to broader applications. In this paper, we propose a more challenging problem, Text-to-ImageSet (T2IS) generation, which aims to generate sets of images that meet various consistency requirements based on user instructions. To systematically study this problem, we first introduce T2IS-Bench with 596 diverse instructions across 26 subcategories, providing comprehensive coverage for T2IS generation. Building on this, we propose T2IS-Eval, an evaluation framework that transforms user instructions into multifaceted assessment criteria and employs effective evaluators to adaptively assess consistency fulfillment between criteria and generated sets. Subsequently, we propose AutoT2IS, a training-free framework that maximally leverages pretrained Diffusion Transformers' in-context capabilities to harmonize visual elements to satisfy both image-level prompt alignment and set-level visual consistency. Extensive experiments on T2IS-Bench reveal that diverse consistency challenges all existing methods, while our AutoT2IS significantly outperforms current generalized and even specialized approaches. Our method also demonstrates the ability to enable numerous underexplored real-world applications, confirming its substantial practical value. Visit our project in https://chengyou-jia.github.io/T2IS-Home.
DeepScholar-Bench: A Live Benchmark and Automated Evaluation for Generative Research Synthesis
The ability to research and synthesize knowledge is central to human expertise and progress. An emerging class of systems promises these exciting capabilities through generative research synthesis, performing retrieval over the live web and synthesizing discovered sources into long-form, cited summaries. However, evaluating such systems remains an open challenge: existing question-answering benchmarks focus on short-form factual responses, while expert-curated datasets risk staleness and data contamination. Both fail to capture the complexity and evolving nature of real research synthesis tasks. In this work, we introduce DeepScholar-bench, a live benchmark and holistic, automated evaluation framework designed to evaluate generative research synthesis. DeepScholar-bench draws queries from recent, high-quality ArXiv papers and focuses on a real research synthesis task: generating the related work sections of a paper by retrieving, synthesizing, and citing prior research. Our evaluation framework holistically assesses performance across three key dimensions, knowledge synthesis, retrieval quality, and verifiability. We also develop DeepScholar-base, a reference pipeline implemented efficiently using the LOTUS API. Using the DeepScholar-bench framework, we perform a systematic evaluation of prior open-source systems, search AI's, OpenAI's DeepResearch, and DeepScholar-base. We find that DeepScholar-base establishes a strong baseline, attaining competitive or higher performance than each other method. We also find that DeepScholar-bench remains far from saturated, with no system exceeding a score of 19% across all metrics. These results underscore the difficulty of DeepScholar-bench, as well as its importance for progress towards AI systems capable of generative research synthesis. We make our code available at https://github.com/guestrin-lab/deepscholar-bench.
Eureka: Evaluating and Understanding Large Foundation Models
Rigorous and reproducible evaluation is critical for assessing the state of the art and for guiding scientific advances in Artificial Intelligence. Evaluation is challenging in practice due to several reasons, including benchmark saturation, lack of transparency in methods used for measurement, development challenges in extracting measurements for generative tasks, and, more generally, the extensive number of capabilities required for a well-rounded comparison across models. We make three contributions to alleviate the above challenges. First, we present Eureka, an open-source framework for standardizing evaluations of large foundation models beyond single-score reporting and rankings. Second, we introduce Eureka-Bench as an extensible collection of benchmarks testing capabilities that (i) are still challenging for state-of-the-art models and (ii) represent fundamental but overlooked language and multimodal capabilities. The inherent space for improvement in non-saturated benchmarks enables us to discover meaningful differences between models at a capability level. Third, using Eureka, we conduct an analysis of 12 state-of-the-art models, providing in-depth insights into failure understanding and model comparison, which can be leveraged to plan targeted improvements. In contrast to recent trends in reports and leaderboards showing absolute rankings and claims for one model or another to be the best, our analysis shows that there is no such best model. Different models have different strengths, but there are models that appear more often than others as best performers for some capabilities. Despite the recent improvements, current models still struggle with several fundamental capabilities including detailed image understanding, benefiting from multimodal input when available rather than fully relying on language, factuality and grounding for information retrieval, and over refusals.
REAL: Benchmarking Autonomous Agents on Deterministic Simulations of Real Websites
We introduce REAL, a benchmark and framework for multi-turn agent evaluations on deterministic simulations of real-world websites. REAL comprises high-fidelity, deterministic replicas of 11 widely-used websites across domains such as e-commerce, travel, communication, and professional networking. We also release a benchmark consisting of 112 practical tasks that mirror everyday complex user interactions requiring both accurate information retrieval and state-changing actions. All interactions occur within this fully controlled setting, eliminating safety risks and enabling robust, reproducible evaluation of agent capability and reliability. Our novel evaluation framework combines programmatic checks of website state for action-based tasks with rubric-guided LLM-based judgments for information retrieval. The framework supports both open-source and proprietary agent systems through a flexible evaluation harness that accommodates black-box commands within browser environments, allowing research labs to test agentic systems without modification. Our empirical results show that frontier language models achieve at most a 41% success rate on REAL, highlighting critical gaps in autonomous web navigation and task completion capabilities. Our framework supports easy integration of new tasks, reproducible evaluation, and scalable post-training data generation, marking a significant step forward in evaluating and advancing agent capabilities.
Advancing Retrieval-Augmented Generation for Structured Enterprise and Internal Data
Organizations increasingly rely on proprietary enterprise data, including HR records, structured reports, and tabular documents, for critical decision-making. While Large Language Models (LLMs) have strong generative capabilities, they are limited by static pretraining, short context windows, and challenges in processing heterogeneous data formats. Conventional Retrieval-Augmented Generation (RAG) frameworks address some of these gaps but often struggle with structured and semi-structured data. This work proposes an advanced RAG framework that combines hybrid retrieval strategies using dense embeddings (all-mpnet-base-v2) and BM25, enhanced by metadata-aware filtering with SpaCy NER and cross-encoder reranking. The framework applies semantic chunking to maintain textual coherence and retains tabular data structures to preserve row-column integrity. Quantized indexing optimizes retrieval efficiency, while human-in-the-loop feedback and conversation memory improve adaptability. Experiments on enterprise datasets show notable improvements: Precision@5 increased by 15 percent (90 versus 75), Recall@5 by 13 percent (87 versus 74), and Mean Reciprocal Rank by 16 percent (0.85 versus 0.69). Qualitative evaluations show higher scores in Faithfulness (4.6 versus 3.0), Completeness (4.2 versus 2.5), and Relevance (4.5 versus 3.2) on a 5-point Likert scale. These results demonstrate the framework's effectiveness in delivering accurate, comprehensive, and contextually relevant responses for enterprise tasks. Future work includes extending to multimodal data and integrating agent-based retrieval. The source code will be released at https://github.com/CheerlaChandana/Enterprise-Chatbot
Rethinking Model Evaluation as Narrowing the Socio-Technical Gap
The recent development of generative and large language models (LLMs) poses new challenges for model evaluation that the research community and industry are grappling with. While the versatile capabilities of these models ignite excitement, they also inevitably make a leap toward homogenization: powering a wide range of applications with a single, often referred to as ``general-purpose'', model. In this position paper, we argue that model evaluation practices must take on a critical task to cope with the challenges and responsibilities brought by this homogenization: providing valid assessments for whether and how much human needs in downstream use cases can be satisfied by the given model (socio-technical gap). By drawing on lessons from the social sciences, human-computer interaction (HCI), and the interdisciplinary field of explainable AI (XAI), we urge the community to develop evaluation methods based on real-world socio-requirements and embrace diverse evaluation methods with an acknowledgment of trade-offs between realism to socio-requirements and pragmatic costs to conduct the evaluation. By mapping HCI and current NLG evaluation methods, we identify opportunities for evaluation methods for LLMs to narrow the socio-technical gap and pose open questions.
Can Large Language Models be Trusted for Evaluation? Scalable Meta-Evaluation of LLMs as Evaluators via Agent Debate
Despite the utility of Large Language Models (LLMs) across a wide range of tasks and scenarios, developing a method for reliably evaluating LLMs across varied contexts continues to be challenging. Modern evaluation approaches often use LLMs to assess responses generated by LLMs. However, the meta-evaluation conducted to assess the effectiveness of these LLMs as evaluators is typically constrained by the coverage of existing benchmarks or requires extensive human annotation. This underscores the urgency of methods for scalable meta-evaluation that can effectively, reliably, and efficiently evaluate the performance of LLMs as evaluators across diverse tasks and scenarios, particularly in potentially new, user-defined scenarios. To fill this gap, we propose ScaleEval, an agent-debate-assisted meta-evaluation framework that leverages the capabilities of multiple communicative LLM agents. This framework supports multi-round discussions to assist human annotators in discerning the most capable LLMs as evaluators, which significantly eases their workload in cases that used to require large-scale annotations during meta-evaluation. We release the code for our framework, which is publicly available at: https://github.com/GAIR-NLP/scaleeval.
Know When to Fuse: Investigating Non-English Hybrid Retrieval in the Legal Domain
Hybrid search has emerged as an effective strategy to offset the limitations of different matching paradigms, especially in out-of-domain contexts where notable improvements in retrieval quality have been observed. However, existing research predominantly focuses on a limited set of retrieval methods, evaluated in pairs on domain-general datasets exclusively in English. In this work, we study the efficacy of hybrid search across a variety of prominent retrieval models within the unexplored field of law in the French language, assessing both zero-shot and in-domain scenarios. Our findings reveal that in a zero-shot context, fusing different domain-general models consistently enhances performance compared to using a standalone model, regardless of the fusion method. Surprisingly, when models are trained in-domain, we find that fusion generally diminishes performance relative to using the best single system, unless fusing scores with carefully tuned weights. These novel insights, among others, expand the applicability of prior findings across a new field and language, and contribute to a deeper understanding of hybrid search in non-English specialized domains.
Adaptively evaluating models with task elicitation
Manual curation of evaluation datasets is struggling to keep up with the rapidly expanding capabilities and deployment scenarios of language models. Towards scalable model profiling, we introduce and validate a framework for evaluating LLMs, called Adaptive Evaluations. Adaptive evaluations use scaffolded language models (evaluator agents) to search through a target model's behavior on a domain dataset and create difficult questions (tasks) that can discover and probe the model's failure modes. We find that frontier models lack consistency when adaptively probed with our framework on a diverse suite of datasets and tasks, including but not limited to legal reasoning, forecasting, and online harassment. Generated questions pass human validity checks and often transfer to other models with different capability profiles, demonstrating that adaptive evaluations can also be used to create difficult domain-specific datasets.
Fusion-Eval: Integrating Evaluators with LLMs
Evaluating Large Language Models (LLMs) is a complex task, especially considering the intricacies of natural language understanding and the expectations for high-level reasoning. Traditional evaluations typically lean on human-based, model-based, or automatic-metrics-based paradigms, each with its own advantages and shortcomings. We introduce "Fusion-Eval", a system that employs LLMs not solely for direct evaluations, but to skillfully integrate insights from diverse evaluators. This gives Fusion-Eval flexibility, enabling it to work effectively across diverse tasks and make optimal use of multiple references. In testing on the SummEval dataset, Fusion-Eval achieved a Spearman correlation of 0.96, outperforming other evaluators. The success of Fusion-Eval underscores the potential of LLMs to produce evaluations that closely align human perspectives, setting a new standard in the field of LLM evaluation.
LatteReview: A Multi-Agent Framework for Systematic Review Automation Using Large Language Models
Systematic literature reviews and meta-analyses are essential for synthesizing research insights, but they remain time-intensive and labor-intensive due to the iterative processes of screening, evaluation, and data extraction. This paper introduces and evaluates LatteReview, a Python-based framework that leverages large language models (LLMs) and multi-agent systems to automate key elements of the systematic review process. Designed to streamline workflows while maintaining rigor, LatteReview utilizes modular agents for tasks such as title and abstract screening, relevance scoring, and structured data extraction. These agents operate within orchestrated workflows, supporting sequential and parallel review rounds, dynamic decision-making, and iterative refinement based on user feedback. LatteReview's architecture integrates LLM providers, enabling compatibility with both cloud-based and locally hosted models. The framework supports features such as Retrieval-Augmented Generation (RAG) for incorporating external context, multimodal reviews, Pydantic-based validation for structured inputs and outputs, and asynchronous programming for handling large-scale datasets. The framework is available on the GitHub repository, with detailed documentation and an installable package.
ConSiDERS-The-Human Evaluation Framework: Rethinking Human Evaluation for Generative Large Language Models
In this position paper, we argue that human evaluation of generative large language models (LLMs) should be a multidisciplinary undertaking that draws upon insights from disciplines such as user experience research and human behavioral psychology to ensure that the experimental design and results are reliable. The conclusions from these evaluations, thus, must consider factors such as usability, aesthetics, and cognitive biases. We highlight how cognitive biases can conflate fluent information and truthfulness, and how cognitive uncertainty affects the reliability of rating scores such as Likert. Furthermore, the evaluation should differentiate the capabilities and weaknesses of increasingly powerful large language models -- which requires effective test sets. The scalability of human evaluation is also crucial to wider adoption. Hence, to design an effective human evaluation system in the age of generative NLP, we propose the ConSiDERS-The-Human evaluation framework consisting of 6 pillars -- Consistency, Scoring Criteria, Differentiating, User Experience, Responsible, and Scalability.
Balancing Specialized and General Skills in LLMs: The Impact of Modern Tuning and Data Strategy
This paper introduces a multifaceted methodology for fine-tuning and evaluating large language models (LLMs) for specialized monetization tasks. The goal is to balance general language proficiency with domain-specific skills. The methodology has three main components: 1) Carefully blending in-domain and general-purpose data during fine-tuning to achieve an optimal balance between general and specialized capabilities; 2) Designing a comprehensive evaluation framework with 45 questions tailored to assess performance on functionally relevant dimensions like reliability, consistency, and business impact; 3) Analyzing how model size and continual training influence metrics to guide efficient resource allocation during fine-tuning. The paper details the design, data collection, analytical techniques, and results validating the proposed frameworks. It aims to provide businesses and researchers with actionable insights on effectively adapting LLMs for specialized contexts. We also intend to make public the comprehensive evaluation framework, which includes the 45 tailored questions and their respective scoring guidelines, to foster transparency and collaboration in adapting LLMs for specialized tasks.
RAVine: Reality-Aligned Evaluation for Agentic Search
Agentic search, as a more autonomous and adaptive paradigm of retrieval augmentation, is driving the evolution of intelligent search systems. However, existing evaluation frameworks fail to align well with the goals of agentic search. First, the complex queries commonly used in current benchmarks often deviate from realistic user search scenarios. Second, prior approaches tend to introduce noise when extracting ground truth for end-to-end evaluations, leading to distorted assessments at a fine-grained level. Third, most current frameworks focus solely on the quality of final answers, neglecting the evaluation of the iterative process inherent to agentic search. To address these limitations, we propose RAVine -- a Reality-Aligned eValuation framework for agentic LLMs with search. RAVine targets multi-point queries and long-form answers that better reflect user intents, and introduces an attributable ground truth construction strategy to enhance the accuracy of fine-grained evaluation. Moreover, RAVine examines model's interaction with search tools throughout the iterative process, and accounts for factors of efficiency. We benchmark a series of models using RAVine and derive several insights, which we hope will contribute to advancing the development of agentic search systems. The code and datasets are available at https://github.com/SwordFaith/RAVine.
EvalLM: Interactive Evaluation of Large Language Model Prompts on User-Defined Criteria
By simply composing prompts, developers can prototype novel generative applications with Large Language Models (LLMs). To refine prototypes into products, however, developers must iteratively revise prompts by evaluating outputs to diagnose weaknesses. Formative interviews (N=8) revealed that developers invest significant effort in manually evaluating outputs as they assess context-specific and subjective criteria. We present EvalLM, an interactive system for iteratively refining prompts by evaluating multiple outputs on user-defined criteria. By describing criteria in natural language, users can employ the system's LLM-based evaluator to get an overview of where prompts excel or fail, and improve these based on the evaluator's feedback. A comparative study (N=12) showed that EvalLM, when compared to manual evaluation, helped participants compose more diverse criteria, examine twice as many outputs, and reach satisfactory prompts with 59% fewer revisions. Beyond prompts, our work can be extended to augment model evaluation and alignment in specific application contexts.
Automated Review Generation Method Based on Large Language Models
Literature research, vital for scientific work, faces the challenge of the surging torrent of information in the vast ocean of literature exceeding researchers' processing capabilities. To address this issue, we present an automated review generation method based on Large Language Models (LLMs), aimed at overcoming efficiency bottlenecks in literature processing and reducing cognitive load. Our statistically validated evaluation framework demonstrates that the generated reviews match or exceed manual quality, offering broad applicability across research fields due to minimal domain knowledge requirements. In a case study on propane dehydrogenation (PDH) catalysts, our method swiftly analyzed 343 articles, averaging seconds per article per LLM account, producing comprehensive reviews spanning 35 topics. Extended analysis of 1041 articles provided deep insights into catalysts' composition, structure, and performance. Recognizing LLMs' hallucinations, we implemented a multi-layered quality control strategy, effectively mitigating risks and ensuring reliability, as quantitatively demonstrated through manual verification. Expert verification confirms the accuracy and citation integrity of generated reviews, demonstrating LLM hallucination risks reduced to below 0.5\% with over 95\% confidence. Released Windows application enables one-click review generation, aiding researchers in tracking advancements and recommending literature. This approach showcases LLMs' role in enhancing scientific research productivity and sets the stage for further exploration.
BatchEval: Towards Human-like Text Evaluation
Significant progress has been made in automatic text evaluation with the introduction of large language models (LLMs) as evaluators. However, current sample-wise evaluation paradigm suffers from the following issues: (1) Sensitive to prompt design; (2) Poor resistance to noise; (3) Inferior ensemble performance with static reference. Inspired by the fact that humans treat both criterion definition and inter sample comparison as references for evaluation, we propose BatchEval, a paradigm that conducts batch-wise evaluation iteratively to alleviate the above problems. We explore variants under this paradigm and confirm the optimal settings are two stage procedure with heterogeneous batch composition strategy and decimal scoring format. Comprehensive experiments across 3 LLMs on 4 text evaluation tasks demonstrate that BatchEval outperforms state-of-the-art methods by 10.5% on Pearson correlations with only 64% API cost on average. Further analyses have been conducted to verify the robustness, generalization, and working mechanism of BatchEval.
How to Evaluate Entity Resolution Systems: An Entity-Centric Framework with Application to Inventor Name Disambiguation
Entity resolution (record linkage, microclustering) systems are notoriously difficult to evaluate. Looking for a needle in a haystack, traditional evaluation methods use sophisticated, application-specific sampling schemes to find matching pairs of records among an immense number of non-matches. We propose an alternative that facilitates the creation of representative, reusable benchmark data sets without necessitating complex sampling schemes. These benchmark data sets can then be used for model training and a variety of evaluation tasks. Specifically, we propose an entity-centric data labeling methodology that integrates with a unified framework for monitoring summary statistics, estimating key performance metrics such as cluster and pairwise precision and recall, and analyzing root causes for errors. We validate the framework in an application to inventor name disambiguation and through simulation studies. Software: https://github.com/OlivierBinette/er-evaluation/
Eka-Eval : A Comprehensive Evaluation Framework for Large Language Models in Indian Languages
The rapid advancement of Large Language Models (LLMs) has intensified the need for evaluation frameworks that go beyond English centric benchmarks and address the requirements of linguistically diverse regions such as India. We present EKA-EVAL, a unified and production-ready evaluation framework that integrates over 35 benchmarks, including 10 Indic-specific datasets, spanning categories like reasoning, mathematics, tool use, long-context understanding, and reading comprehension. Compared to existing Indian language evaluation tools, EKA-EVAL offers broader benchmark coverage, with built-in support for distributed inference, quantization, and multi-GPU usage. Our systematic comparison positions EKA-EVAL as the first end-to-end, extensible evaluation suite tailored for both global and Indic LLMs, significantly lowering the barrier to multilingual benchmarking. The framework is open-source and publicly available at https://github.com/lingo-iitgn/ eka-eval and a part of ongoing EKA initiative (https://eka.soket.ai), which aims to scale up to over 100 benchmarks and establish a robust, multilingual evaluation ecosystem for LLMs.
An Analysis of Fusion Functions for Hybrid Retrieval
We study hybrid search in text retrieval where lexical and semantic search are fused together with the intuition that the two are complementary in how they model relevance. In particular, we examine fusion by a convex combination (CC) of lexical and semantic scores, as well as the Reciprocal Rank Fusion (RRF) method, and identify their advantages and potential pitfalls. Contrary to existing studies, we find RRF to be sensitive to its parameters; that the learning of a CC fusion is generally agnostic to the choice of score normalization; that CC outperforms RRF in in-domain and out-of-domain settings; and finally, that CC is sample efficient, requiring only a small set of training examples to tune its only parameter to a target domain.
MSRS: Evaluating Multi-Source Retrieval-Augmented Generation
Retrieval-augmented systems are typically evaluated in settings where information required to answer the query can be found within a single source or the answer is short-form or factoid-based. However, many real-world applications demand the ability to integrate and summarize information scattered across multiple sources, where no single source is sufficient to respond to the user's question. In such settings, the retrieval component of a RAG pipeline must recognize a variety of relevance signals, and the generation component must connect and synthesize information across multiple sources. We present a scalable framework for constructing evaluation benchmarks that challenge RAG systems to integrate information across distinct sources and generate long-form responses. Using our framework, we build two new benchmarks on Multi-Source Retrieval and Synthesis: MSRS-Story and MSRS-Meet, representing narrative synthesis and summarization tasks, respectively, that require retrieval from large collections. Our extensive experiments with various RAG pipelines -- including sparse and dense retrievers combined with frontier LLMs -- reveal that generation quality is highly dependent on retrieval effectiveness, which varies greatly by task. While multi-source synthesis proves challenging even in an oracle retrieval setting, we find that reasoning models significantly outperform standard LLMs at this distinct step.
An Empirical Study of LLM-as-a-Judge: How Design Choices Impact Evaluation Reliability
As large language models (LLMs) continue to advance, reliable evaluation methods are essential particularly for open-ended, instruction-following tasks. LLM-as-a-Judge enables automatic evaluation using LLMs as evaluators, but its reliability remains uncertain. In this work, we analyze key factors affecting its trustworthiness, focusing on alignment with human judgments and evaluation consistency. Using BIGGENBench and EvalBiasBench, we study the effects of evaluation design, decoding strategies, and Chain-of-Tought (CoT) reasoning in evaluation. Our results show that evaluation criteria are critical for reliability, non-deterministic sampling improves alignment with human preferences over deterministic evaluation, and CoT reasoning offers minimal gains when clear evaluation criteria are present.
Bridging the Gap in XAI-Why Reliable Metrics Matter for Explainability and Compliance
This position paper emphasizes the critical gap in the evaluation of Explainable AI (XAI) due to the lack of standardized and reliable metrics, which diminishes its practical value, trustworthiness, and ability to meet regulatory requirements. Current evaluation methods are often fragmented, subjective, and biased, making them prone to manipulation and complicating the assessment of complex models. A central issue is the absence of a ground truth for explanations, complicating comparisons across various XAI approaches. To address these challenges, we advocate for widespread research into developing robust, context-sensitive evaluation metrics. These metrics should be resistant to manipulation, relevant to each use case, and based on human judgment and real-world applicability. We also recommend creating domain-specific evaluation benchmarks that align with the user and regulatory needs of sectors such as healthcare and finance. By encouraging collaboration among academia, industry, and regulators, we can create standards that balance flexibility and consistency, ensuring XAI explanations are meaningful, trustworthy, and compliant with evolving regulations.
Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences
Due to the cumbersome nature of human evaluation and limitations of code-based evaluation, Large Language Models (LLMs) are increasingly being used to assist humans in evaluating LLM outputs. Yet LLM-generated evaluators simply inherit all the problems of the LLMs they evaluate, requiring further human validation. We present a mixed-initiative approach to ``validate the validators'' -- aligning LLM-generated evaluation functions (be it prompts or code) with human requirements. Our interface, EvalGen, provides automated assistance to users in generating evaluation criteria and implementing assertions. While generating candidate implementations (Python functions, LLM grader prompts), EvalGen asks humans to grade a subset of LLM outputs; this feedback is used to select implementations that better align with user grades. A qualitative study finds overall support for EvalGen but underscores the subjectivity and iterative process of alignment. In particular, we identify a phenomenon we dub criteria drift: users need criteria to grade outputs, but grading outputs helps users define criteria. What is more, some criteria appears dependent on the specific LLM outputs observed (rather than independent criteria that can be defined a priori), raising serious questions for approaches that assume the independence of evaluation from observation of model outputs. We present our interface and implementation details, a comparison of our algorithm with a baseline approach, and implications for the design of future LLM evaluation assistants.
StructEval: Deepen and Broaden Large Language Model Assessment via Structured Evaluation
Evaluation is the baton for the development of large language models. Current evaluations typically employ a single-item assessment paradigm for each atomic test objective, which struggles to discern whether a model genuinely possesses the required capabilities or merely memorizes/guesses the answers to specific questions. To this end, we propose a novel evaluation framework referred to as StructEval. Starting from an atomic test objective, StructEval deepens and broadens the evaluation by conducting a structured assessment across multiple cognitive levels and critical concepts, and therefore offers a comprehensive, robust and consistent evaluation for LLMs. Experiments on three widely-used benchmarks demonstrate that StructEval serves as a reliable tool for resisting the risk of data contamination and reducing the interference of potential biases, thereby providing more reliable and consistent conclusions regarding model capabilities. Our framework also sheds light on the design of future principled and trustworthy LLM evaluation protocols.
Large Language Models are not Fair Evaluators
In this paper, we uncover a systematic bias in the evaluation paradigm of adopting large language models~(LLMs), e.g., GPT-4, as a referee to score and compare the quality of responses generated by candidate models. We find that the quality ranking of candidate responses can be easily hacked by simply altering their order of appearance in the context. This manipulation allows us to skew the evaluation result, making one model appear considerably superior to the other, e.g., Vicuna-13B could beat ChatGPT on 66 over 80 tested queries with ChatGPT as an evaluator. To address this issue, we propose a calibration framework with three simple yet effective strategies: 1) Multiple Evidence Calibration, which requires the evaluator model to generate multiple evaluation evidence before assigning ratings; 2) Balanced Position Calibration, which aggregates results across various orders to determine the final score; 3) Human-in-the-Loop Calibration, which introduces a balanced position diversity entropy to measure the difficulty of each example and seeks human assistance when needed. We also manually annotate the "win/tie/lose" outcomes of responses from ChatGPT and Vicuna-13B in the Vicuna Benchmark's question prompt, and extensive experiments demonstrate that our approach successfully mitigates evaluation bias, resulting in closer alignment with human judgments. We release our code and human annotation at https://github.com/i-Eval/FairEval to facilitate future research.
MixEval-X: Any-to-Any Evaluations from Real-World Data Mixtures
Perceiving and generating diverse modalities are crucial for AI models to effectively learn from and engage with real-world signals, necessitating reliable evaluations for their development. We identify two major issues in current evaluations: (1) inconsistent standards, shaped by different communities with varying protocols and maturity levels; and (2) significant query, grading, and generalization biases. To address these, we introduce MixEval-X, the first any-to-any real-world benchmark designed to optimize and standardize evaluations across input and output modalities. We propose multi-modal benchmark mixture and adaptation-rectification pipelines to reconstruct real-world task distributions, ensuring evaluations generalize effectively to real-world use cases. Extensive meta-evaluations show our approach effectively aligns benchmark samples with real-world task distributions and the model rankings correlate strongly with that of crowd-sourced real-world evaluations (up to 0.98). We provide comprehensive leaderboards to rerank existing models and organizations and offer insights to enhance understanding of multi-modal evaluations and inform future research.
A Methodology for Evaluating RAG Systems: A Case Study On Configuration Dependency Validation
Retrieval-augmented generation (RAG) is an umbrella of different components, design decisions, and domain-specific adaptations to enhance the capabilities of large language models and counter their limitations regarding hallucination and outdated and missing knowledge. Since it is unclear which design decisions lead to a satisfactory performance, developing RAG systems is often experimental and needs to follow a systematic and sound methodology to gain sound and reliable results. However, there is currently no generally accepted methodology for RAG evaluation despite a growing interest in this technology. In this paper, we propose a first blueprint of a methodology for a sound and reliable evaluation of RAG systems and demonstrate its applicability on a real-world software engineering research task: the validation of configuration dependencies across software technologies. In summary, we make two novel contributions: (i) A novel, reusable methodological design for evaluating RAG systems, including a demonstration that represents a guideline, and (ii) a RAG system, which has been developed following this methodology, that achieves the highest accuracy in the field of dependency validation. For the blueprint's demonstration, the key insights are the crucial role of choosing appropriate baselines and metrics, the necessity for systematic RAG refinements derived from qualitative failure analysis, as well as the reporting practices of key design decision to foster replication and evaluation.
LMMs-Eval: Reality Check on the Evaluation of Large Multimodal Models
The advances of large foundation models necessitate wide-coverage, low-cost, and zero-contamination benchmarks. Despite continuous exploration of language model evaluations, comprehensive studies on the evaluation of Large Multi-modal Models (LMMs) remain limited. In this work, we introduce LMMS-EVAL, a unified and standardized multimodal benchmark framework with over 50 tasks and more than 10 models to promote transparent and reproducible evaluations. Although LMMS-EVAL offers comprehensive coverage, we find it still falls short in achieving low cost and zero contamination. To approach this evaluation trilemma, we further introduce LMMS-EVAL LITE, a pruned evaluation toolkit that emphasizes both coverage and efficiency. Additionally, we present Multimodal LIVEBENCH that utilizes continuously updating news and online forums to assess models' generalization abilities in the wild, featuring a low-cost and zero-contamination evaluation approach. In summary, our work highlights the importance of considering the evaluation trilemma and provides practical solutions to navigate the trade-offs in evaluating large multi-modal models, paving the way for more effective and reliable benchmarking of LMMs. We opensource our codebase and maintain leaderboard of LIVEBENCH at https://github.com/EvolvingLMMs-Lab/lmms-eval and https://huggingface.co/spaces/lmms-lab/LiveBench.
MTalk-Bench: Evaluating Speech-to-Speech Models in Multi-Turn Dialogues via Arena-style and Rubrics Protocols
The rapid advancement of speech-to-speech (S2S) large language models (LLMs) has significantly improved real-time spoken interaction. However, current evaluation frameworks remain inadequate for assessing performance in complex, multi-turn dialogues. To address this, we introduce MTalk-Bench, a multi-turn S2S benchmark covering three core dimensions: Semantic Information, Paralinguistic Information, and Ambient Sound. Each dimension includes nine realistic scenarios, along with targeted tasks to assess specific capabilities such as reasoning. Our dual-method evaluation framework combines Arena-style evaluation (pairwise comparison) and Rubrics-based evaluation (absolute scoring) for relative and absolute assessment. The benchmark includes both model and human outputs, evaluated by human evaluators and LLMs. Experimental results reveal two sets of findings. Overall performance of S2S LLMs: (1) models excel at semantic information processing yet underperform on paralinguistic information and ambient sounds perception; (2) models typically regain coherence by increasing response length, sacrificing efficiency in multi-turn dialogues; (3) modality-aware, task-specific designs outperform brute scaling. Evaluation framework and reliability: (1) Arena and Rubrics yield consistent, complementary rankings, but reliable distinctions emerge only when performance gaps are large; (2) LLM-as-a-judge aligns with humans when gaps are clear or criteria explicit, but exhibits position and length biases and is reliable on nonverbal evaluation only with text annotations. These results highlight current limitations in S2S evaluation and the need for more robust, speech-aware assessment frameworks.
CoFE-RAG: A Comprehensive Full-chain Evaluation Framework for Retrieval-Augmented Generation with Enhanced Data Diversity
Retrieval-Augmented Generation (RAG) aims to enhance large language models (LLMs) to generate more accurate and reliable answers with the help of the retrieved context from external knowledge sources, thereby reducing the incidence of hallucinations. Despite the advancements, evaluating these systems remains a crucial research area due to the following issues: (1) Limited data diversity: The insufficient diversity of knowledge sources and query types constrains the applicability of RAG systems; (2) Obscure problems location: Existing evaluation methods have difficulty in locating the stage of the RAG pipeline where problems occur; (3) Unstable retrieval evaluation: These methods often fail to effectively assess retrieval performance, particularly when the chunking strategy changes. To tackle these challenges, we propose a Comprehensive Full-chain Evaluation (CoFE-RAG) framework to facilitate thorough evaluation across the entire RAG pipeline, including chunking, retrieval, reranking, and generation. To effectively evaluate the first three phases, we introduce multi-granularity keywords, including coarse-grained and fine-grained keywords, to assess the retrieved context instead of relying on the annotation of golden chunks. Moreover, we release a holistic benchmark dataset tailored for diverse data scenarios covering a wide range of document formats and query types. We demonstrate the utility of the CoFE-RAG framework by conducting experiments to evaluate each stage of RAG systems. Our evaluation method provides unique insights into the effectiveness of RAG systems in handling diverse data scenarios, offering a more nuanced understanding of their capabilities and limitations.
MCP-Universe: Benchmarking Large Language Models with Real-World Model Context Protocol Servers
The Model Context Protocol has emerged as a transformative standard for connecting large language models to external data sources and tools, rapidly gaining adoption across major AI providers and development platforms. However, existing benchmarks are overly simplistic and fail to capture real application challenges such as long-horizon reasoning and large, unfamiliar tool spaces. To address this critical gap, we introduce MCP-Universe, the first comprehensive benchmark specifically designed to evaluate LLMs in realistic and hard tasks through interaction with real-world MCP servers. Our benchmark encompasses 6 core domains spanning 11 different MCP servers: Location Navigation, Repository Management, Financial Analysis, 3D Design, Browser Automation, and Web Searching. To ensure rigorous evaluation, we implement execution-based evaluators, including format evaluators for agent format compliance, static evaluators for time-invariant content matching, and dynamic evaluators that automatically retrieve real-time ground truth for temporally sensitive tasks. Through extensive evaluation of leading LLMs, we find that even SOTA models such as GPT-5 (43.72%), Grok-4 (33.33%) and Claude-4.0-Sonnet (29.44%) exhibit significant performance limitations. In addition, our benchmark poses a significant long-context challenge for LLM agents, as the number of input tokens increases rapidly with the number of interaction steps. Moreover, it introduces an unknown-tools challenge, as LLM agents often lack familiarity with the precise usage of the MCP servers. Notably, enterprise-level agents like Cursor cannot achieve better performance than standard ReAct frameworks. Beyond evaluation, we open-source our extensible evaluation framework with UI support, enabling researchers and practitioners to seamlessly integrate new agents and MCP servers while fostering innovation in the rapidly evolving MCP ecosystem.
Does Context Matter? ContextualJudgeBench for Evaluating LLM-based Judges in Contextual Settings
The large language model (LLM)-as-judge paradigm has been used to meet the demand for a cheap, reliable, and fast evaluation of model outputs during AI system development and post-deployment monitoring. While judge models -- LLMs finetuned to specialize in assessing and critiquing model outputs -- have been touted as general purpose evaluators, they are typically evaluated only on non-contextual scenarios, such as instruction following. The omission of contextual settings -- those where external information is used as context to generate an output -- is surprising given the increasing prevalence of retrieval-augmented generation (RAG) and summarization use cases. Contextual assessment is uniquely challenging, as evaluation often depends on practitioner priorities, leading to conditional evaluation criteria (e.g., comparing responses based on factuality and then considering completeness if they are equally factual). To address the gap, we propose ContextualJudgeBench, a judge benchmark with 2,000 challenging response pairs across eight splits inspired by real-world contextual evaluation scenarios. We build our benchmark with a multi-pronged data construction pipeline that leverages both existing human annotations and model-based perturbations. Our comprehensive study across 11 judge models and 9 general purpose models, reveals that the contextual information and its assessment criteria present a significant challenge to even state-of-the-art models. For example, OpenAI's o1, the best-performing model, barely reaches 55% consistent accuracy.
Large Language Models Are State-of-the-Art Evaluators of Code Generation
Recent advancements in the field of natural language generation have facilitated the use of large language models to assess the quality of generated text. Although these models have shown promising results in tasks such as machine translation and summarization, their applicability in code generation tasks remains limited without human involvement. The complexity of programming concepts required for such tasks makes it difficult to develop evaluation metrics that align with human judgment. Token-matching-based metrics, such as BLEU, have demonstrated weak correlations with human practitioners in code generation tasks. Moreover, the utilization of human-written test suites to evaluate functional correctness can be challenging in domains with low resources. To overcome these obstacles, we propose a new evaluation framework based on the GPT-3.5 (GPT-3.5-turbo), for code generation assessments. Our framework addresses the limitations of existing approaches by achieving superior correlations with functional correctness and human preferences, without the need for test oracles or references. We evaluate the efficacy of our framework on two different tasks and four programming languages, comparing its performance with the state-of-the-art CodeBERTScore metric, which relies on a pre-trained model. Our results demonstrate that our framework surpasses CodeBERTScore, delivering high levels of accuracy and consistency across various programming languages and tasks. We also make our evaluation framework and datasets available to the public at https://github.com/terryyz/llm-code-eval, encouraging further research in the evaluation of code generation.
How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark
The emergence of large language models (LLMs) has significantly pushed the frontiers of program synthesis. Advancement of LLM-based program synthesis calls for a thorough evaluation of LLM-generated code. Most evaluation frameworks focus on the (functional) correctness of generated code; efficiency, as an important measure of code quality, has been overlooked in existing evaluations. In this work, we develop ENAMEL (EfficeNcy AutoMatic EvaLuator), a rigorous and high-standard benchmark for evaluating the capability of LLMs in generating efficient code. Firstly, we propose a new efficiency metric called eff@k, which generalizes the pass@k metric from correctness to efficiency and appropriately handles right-censored execution time. Furthermore, we derive an unbiased and variance-reduced estimator of eff@k via Rao--Blackwellization; we also provide a numerically stable implementation for the new estimator. Secondly, to set a high-standard for efficiency evaluation, we employ a human expert to design best algorithms and implementations as our reference solutions of efficiency, many of which are much more efficient than existing canonical solutions in HumanEval and HumanEval+. Moreover, to ensure a rigorous evaluation, we employ a human expert to curate strong test case generators to filter out wrong code and differentiate suboptimal algorithms. An extensive study across 30 popular LLMs using our benchmark ENAMEL shows that LLMs still fall short of generating expert-level efficient code. Using two subsets of our problem set, we demonstrate that such deficiency is because current LLMs struggle in designing advanced algorithms and are barely aware of implementation optimization. Our benchmark is publicly available at https://github.com/q-rz/enamel .
A Comprehensive Evaluation framework of Alignment Techniques for LLMs
As Large Language Models (LLMs) become increasingly integrated into real-world applications, ensuring their outputs align with human values and safety standards has become critical. The field has developed diverse alignment approaches including traditional fine-tuning methods (RLHF, instruction tuning), post-hoc correction systems, and inference-time interventions, each with distinct advantages and limitations. However, the lack of unified evaluation frameworks makes it difficult to systematically compare these paradigms and guide deployment decisions. This paper introduces a multi-dimensional evaluation of alignment techniques for LLMs, a comprehensive evaluation framework that provides a systematic comparison across all major alignment paradigms. Our framework assesses methods along four key dimensions: alignment detection, alignment quality, computational efficiency, and robustness. Through experiments across diverse base models and alignment strategies, we demonstrate the utility of our framework in identifying strengths and limitations of current state-of-the-art models, providing valuable insights for future research directions.
Retrieval Augmented Generation Evaluation in the Era of Large Language Models: A Comprehensive Survey
Recent advancements in Retrieval-Augmented Generation (RAG) have revolutionized natural language processing by integrating Large Language Models (LLMs) with external information retrieval, enabling accurate, up-to-date, and verifiable text generation across diverse applications. However, evaluating RAG systems presents unique challenges due to their hybrid architecture that combines retrieval and generation components, as well as their dependence on dynamic knowledge sources in the LLM era. In response, this paper provides a comprehensive survey of RAG evaluation methods and frameworks, systematically reviewing traditional and emerging evaluation approaches, for system performance, factual accuracy, safety, and computational efficiency in the LLM era. We also compile and categorize the RAG-specific datasets and evaluation frameworks, conducting a meta-analysis of evaluation practices in high-impact RAG research. To the best of our knowledge, this work represents the most comprehensive survey for RAG evaluation, bridging traditional and LLM-driven methods, and serves as a critical resource for advancing RAG development.
JudgeBench: A Benchmark for Evaluating LLM-based Judges
LLM-based judges have emerged as a scalable alternative to human evaluation and are increasingly used to assess, compare, and improve models. However, the reliability of LLM-based judges themselves is rarely scrutinized. As LLMs become more advanced, their responses grow more sophisticated, requiring stronger judges to evaluate them. Existing benchmarks primarily focus on a judge's alignment with human preferences, but often fail to account for more challenging tasks where crowdsourced human preference is a poor indicator of factual and logical correctness. To address this, we propose a novel evaluation framework to objectively evaluate LLM-based judges. Based on this framework, we propose JudgeBench, a benchmark for evaluating LLM-based judges on challenging response pairs spanning knowledge, reasoning, math, and coding. JudgeBench leverages a novel pipeline for converting existing difficult datasets into challenging response pairs with preference labels reflecting objective correctness. Our comprehensive evaluation on a collection of prompted judges, fine-tuned judges, multi-agent judges, and reward models shows that JudgeBench poses a significantly greater challenge than previous benchmarks, with many strong models (e.g., GPT-4o) performing just slightly better than random guessing. Overall, JudgeBench offers a reliable platform for assessing increasingly advanced LLM-based judges. Data and code are available at https://github.com/ScalerLab/JudgeBench .
Shai: A large language model for asset management
This paper introduces "Shai" a 10B level large language model specifically designed for the asset management industry, built upon an open-source foundational model. With continuous pre-training and fine-tuning using a targeted corpus, Shai demonstrates enhanced performance in tasks relevant to its domain, outperforming baseline models. Our research includes the development of an innovative evaluation framework, which integrates professional qualification exams, tailored tasks, open-ended question answering, and safety assessments, to comprehensively assess Shai's capabilities. Furthermore, we discuss the challenges and implications of utilizing large language models like GPT-4 for performance assessment in asset management, suggesting a combination of automated evaluation and human judgment. Shai's development, showcasing the potential and versatility of 10B-level large language models in the financial sector with significant performance and modest computational requirements, hopes to provide practical insights and methodologies to assist industry peers in their similar endeavors.
Learning to Align Multi-Faceted Evaluation: A Unified and Robust Framework
Large Language Models (LLMs) are being used more and more extensively for automated evaluation in various scenarios. Previous studies have attempted to fine-tune open-source LLMs to replicate the evaluation explanations and judgments of powerful proprietary models, such as GPT-4. However, these methods are largely limited to text-based analyses under predefined general criteria, resulting in reduced adaptability for unseen instructions and demonstrating instability in evaluating adherence to quantitative and structural constraints. To address these limitations, we propose a novel evaluation framework, ARJudge, that adaptively formulates evaluation criteria and synthesizes both text-based and code-driven analyses to evaluate LLM responses. ARJudge consists of two components: a fine-tuned Analyzer that generates multi-faceted evaluation analyses and a tuning-free Refiner that combines and refines all analyses to make the final judgment. We construct a Composite Analysis Corpus that integrates tasks for evaluation criteria generation alongside text-based and code-driven analysis generation to train the Analyzer. Our results demonstrate that ARJudge outperforms existing fine-tuned evaluators in effectiveness and robustness. Furthermore, it demonstrates the importance of multi-faceted evaluation and code-driven analyses in enhancing evaluation capabilities.
On the Trustworthiness of Generative Foundation Models: Guideline, Assessment, and Perspective
Generative Foundation Models (GenFMs) have emerged as transformative tools. However, their widespread adoption raises critical concerns regarding trustworthiness across dimensions. This paper presents a comprehensive framework to address these challenges through three key contributions. First, we systematically review global AI governance laws and policies from governments and regulatory bodies, as well as industry practices and standards. Based on this analysis, we propose a set of guiding principles for GenFMs, developed through extensive multidisciplinary collaboration that integrates technical, ethical, legal, and societal perspectives. Second, we introduce TrustGen, the first dynamic benchmarking platform designed to evaluate trustworthiness across multiple dimensions and model types, including text-to-image, large language, and vision-language models. TrustGen leverages modular components--metadata curation, test case generation, and contextual variation--to enable adaptive and iterative assessments, overcoming the limitations of static evaluation methods. Using TrustGen, we reveal significant progress in trustworthiness while identifying persistent challenges. Finally, we provide an in-depth discussion of the challenges and future directions for trustworthy GenFMs, which reveals the complex, evolving nature of trustworthiness, highlighting the nuanced trade-offs between utility and trustworthiness, and consideration for various downstream applications, identifying persistent challenges and providing a strategic roadmap for future research. This work establishes a holistic framework for advancing trustworthiness in GenAI, paving the way for safer and more responsible integration of GenFMs into critical applications. To facilitate advancement in the community, we release the toolkit for dynamic evaluation.
GroUSE: A Benchmark to Evaluate Evaluators in Grounded Question Answering
Retrieval-Augmented Generation (RAG) has emerged as a common paradigm to use Large Language Models (LLMs) alongside private and up-to-date knowledge bases. In this work, we address the challenges of using LLM-as-a-Judge when evaluating grounded answers generated by RAG systems. To assess the calibration and discrimination capabilities of judge models, we identify 7 generator failure modes and introduce GroUSE (Grounded QA Unitary Scoring of Evaluators), a meta-evaluation benchmark of 144 unit tests. This benchmark reveals that existing automated RAG evaluation frameworks often overlook important failure modes, even when using GPT-4 as a judge. To improve on the current design of automated RAG evaluation frameworks, we propose a novel pipeline and find that while closed models perform well on GroUSE, state-of-the-art open-source judges do not generalize to our proposed criteria, despite strong correlation with GPT-4's judgement. Our findings suggest that correlation with GPT-4 is an incomplete proxy for the practical performance of judge models and should be supplemented with evaluations on unit tests for precise failure mode detection. We further show that finetuning Llama-3 on GPT-4's reasoning traces significantly boosts its evaluation capabilities, improving upon both correlation with GPT-4's evaluations and calibration on reference situations.
RAGBench: Explainable Benchmark for Retrieval-Augmented Generation Systems
Retrieval-Augmented Generation (RAG) has become a standard architectural pattern for incorporating domain-specific knowledge into user-facing chat applications powered by Large Language Models (LLMs). RAG systems are characterized by (1) a document retriever that queries a domain-specific corpus for context information relevant to an input query, and (2) an LLM that generates a response based on the provided query and context. However, comprehensive evaluation of RAG systems remains a challenge due to the lack of unified evaluation criteria and annotated datasets. In response, we introduce RAGBench: the first comprehensive, large-scale RAG benchmark dataset of 100k examples. It covers five unique industry-specific domains and various RAG task types. RAGBench examples are sourced from industry corpora such as user manuals, making it particularly relevant for industry applications. Further, we formalize the TRACe evaluation framework: a set of explainable and actionable RAG evaluation metrics applicable across all RAG domains. We release the labeled dataset at https://huggingface.co/datasets/rungalileo/ragbench. RAGBench explainable labels facilitate holistic evaluation of RAG systems, enabling actionable feedback for continuous improvement of production applications. Thorough extensive benchmarking, we find that LLM-based RAG evaluation methods struggle to compete with a finetuned RoBERTa model on the RAG evaluation task. We identify areas where existing approaches fall short and propose the adoption of RAGBench with TRACe towards advancing the state of RAG evaluation systems.
Evaluating Large Language Models at Evaluating Instruction Following
As research in large language models (LLMs) continues to accelerate, LLM-based evaluation has emerged as a scalable and cost-effective alternative to human evaluations for comparing the ever increasing list of models. This paper investigates the efficacy of these "LLM evaluators", particularly in using them to assess instruction following, a metric that gauges how closely generated text adheres to the given instruction. We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs. The authors manually curated 419 pairs of outputs, one adhering to instructions while the other diverging, yet may possess deceptive qualities that mislead an LLM evaluator, e.g., a more engaging tone. Contrary to existing meta-evaluation, we discover that different evaluators (i.e., combinations of LLMs and prompts) exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement. We also present a novel suite of prompting strategies that further close the gap between LLM and human evaluators. With LLMBar, we hope to offer more insight into LLM evaluators and foster future research in developing better instruction-following models.
A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems
Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.
AI Idea Bench 2025: AI Research Idea Generation Benchmark
Large-scale Language Models (LLMs) have revolutionized human-AI interaction and achieved significant success in the generation of novel ideas. However, current assessments of idea generation overlook crucial factors such as knowledge leakage in LLMs, the absence of open-ended benchmarks with grounded truth, and the limited scope of feasibility analysis constrained by prompt design. These limitations hinder the potential of uncovering groundbreaking research ideas. In this paper, we present AI Idea Bench 2025, a framework designed to quantitatively evaluate and compare the ideas generated by LLMs within the domain of AI research from diverse perspectives. The framework comprises a comprehensive dataset of 3,495 AI papers and their associated inspired works, along with a robust evaluation methodology. This evaluation system gauges idea quality in two dimensions: alignment with the ground-truth content of the original papers and judgment based on general reference material. AI Idea Bench 2025's benchmarking system stands to be an invaluable resource for assessing and comparing idea-generation techniques, thereby facilitating the automation of scientific discovery.
GPT-4V(ision) is a Human-Aligned Evaluator for Text-to-3D Generation
Despite recent advances in text-to-3D generative methods, there is a notable absence of reliable evaluation metrics. Existing metrics usually focus on a single criterion each, such as how well the asset aligned with the input text. These metrics lack the flexibility to generalize to different evaluation criteria and might not align well with human preferences. Conducting user preference studies is an alternative that offers both adaptability and human-aligned results. User studies, however, can be very expensive to scale. This paper presents an automatic, versatile, and human-aligned evaluation metric for text-to-3D generative models. To this end, we first develop a prompt generator using GPT-4V to generate evaluating prompts, which serve as input to compare text-to-3D models. We further design a method instructing GPT-4V to compare two 3D assets according to user-defined criteria. Finally, we use these pairwise comparison results to assign these models Elo ratings. Experimental results suggest our metric strongly align with human preference across different evaluation criteria.
HREF: Human Response-Guided Evaluation of Instruction Following in Language Models
Evaluating the capability of Large Language Models (LLMs) in following instructions has heavily relied on a powerful LLM as the judge, introducing unresolved biases that deviate the judgments from human judges. In this work, we reevaluate various choices for automatic evaluation on a wide range of instruction-following tasks. We experiment with methods that leverage human-written responses and observe that they enhance the reliability of automatic evaluations across a wide range of tasks, resulting in up to a 3.2% improvement in agreement with human judges. We also discovered that human-written responses offer an orthogonal perspective to model-generated responses in following instructions and should be used as an additional context when comparing model responses. Based on these observations, we develop a new evaluation benchmark, Human Response-Guided Evaluation of Instruction Following (HREF), comprising 4,258 samples across 11 task categories with a composite evaluation setup, employing a composite evaluation setup that selects the most reliable method for each category. In addition to providing reliable evaluation, HREF emphasizes individual task performance and is free from contamination. Finally, we study the impact of key design choices in HREF, including the size of the evaluation set, the judge model, the baseline model, and the prompt template. We host a live leaderboard that evaluates LLMs on the private evaluation set of HREF.
From Rankings to Insights: Evaluation Should Shift Focus from Leaderboard to Feedback
Automatic evaluation benchmarks such as MT-Bench, Arena-Hard, and Auto-Arena are seeing growing adoption for the evaluation of Large Language Models (LLMs). Existing research has primarily focused on approximating human-based model rankings using limited data and LLM-as-a-Judge. However, the fundamental premise of these studies, which attempts to replicate human rankings, is flawed. Specifically, these benchmarks typically offer only overall scores, limiting their utility to leaderboard rankings, rather than providing feedback that can guide model optimization and support model profiling. Therefore, we advocate for an evaluation paradigm shift from approximating human-based model rankings to providing feedback with analytical value. To this end, we introduce Feedbacker, an evaluation framework that provides comprehensive and fine-grained results, thereby enabling thorough identification of a model's specific strengths and weaknesses. Such feedback not only supports the targeted optimization of the model but also enhances the understanding of its behavior. Feedbacker comprises three key components: an extensible tree-based query taxonomy builder, an automated query synthesis scheme, and a suite of visualization and analysis tools. Furthermore, we propose a novel LLM-as-a-Judge method: PC2 (Pre-Comparison-derived Criteria) pointwise evaluation. This method derives evaluation criteria by pre-comparing the differences between several auxiliary responses, achieving the accuracy of pairwise evaluation while maintaining the time complexity of pointwise evaluation. Finally, leveraging the evaluation results of 17 mainstream LLMs, we demonstrate the usage of Feedbacker and highlight its effectiveness and potential. Our homepage project is available at https://liudan193.github.io/Feedbacker.
Toward Verifiable and Reproducible Human Evaluation for Text-to-Image Generation
Human evaluation is critical for validating the performance of text-to-image generative models, as this highly cognitive process requires deep comprehension of text and images. However, our survey of 37 recent papers reveals that many works rely solely on automatic measures (e.g., FID) or perform poorly described human evaluations that are not reliable or repeatable. This paper proposes a standardized and well-defined human evaluation protocol to facilitate verifiable and reproducible human evaluation in future works. In our pilot data collection, we experimentally show that the current automatic measures are incompatible with human perception in evaluating the performance of the text-to-image generation results. Furthermore, we provide insights for designing human evaluation experiments reliably and conclusively. Finally, we make several resources publicly available to the community to facilitate easy and fast implementations.
PRE: A Peer Review Based Large Language Model Evaluator
The impressive performance of large language models (LLMs) has attracted considerable attention from the academic and industrial communities. Besides how to construct and train LLMs, how to effectively evaluate and compare the capacity of LLMs has also been well recognized as an important yet difficult problem. Existing paradigms rely on either human annotators or model-based evaluators to evaluate the performance of LLMs on different tasks. However, these paradigms often suffer from high cost, low generalizability, and inherited biases in practice, which make them incapable of supporting the sustainable development of LLMs in long term. In order to address these issues, inspired by the peer review systems widely used in academic publication process, we propose a novel framework that can automatically evaluate LLMs through a peer-review process. Specifically, for the evaluation of a specific task, we first construct a small qualification exam to select "reviewers" from a couple of powerful LLMs. Then, to actually evaluate the "submissions" written by different candidate LLMs, i.e., the evaluatees, we use the reviewer LLMs to rate or compare the submissions. The final ranking of evaluatee LLMs is generated based on the results provided by all reviewers. We conducted extensive experiments on text summarization tasks with eleven LLMs including GPT-4. The results demonstrate the existence of biasness when evaluating using a single LLM. Also, our PRE model outperforms all the baselines, illustrating the effectiveness of the peer review mechanism.
MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities
We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models. Code and data are available at https://github.com/yuweihao/MM-Vet.
TimeSeriesGym: A Scalable Benchmark for (Time Series) Machine Learning Engineering Agents
We introduce TimeSeriesGym, a scalable benchmarking framework for evaluating Artificial Intelligence (AI) agents on time series machine learning engineering challenges. Existing benchmarks lack scalability, focus narrowly on model building in well-defined settings, and evaluate only a limited set of research artifacts (e.g., CSV submission files). To make AI agent benchmarking more relevant to the practice of machine learning engineering, our framework scales along two critical dimensions. First, recognizing that effective ML engineering requires a range of diverse skills, TimeSeriesGym incorporates challenges from diverse sources spanning multiple domains and tasks. We design challenges to evaluate both isolated capabilities (including data handling, understanding research repositories, and code translation) and their combinations, and rather than addressing each challenge independently, we develop tools that support designing multiple challenges at scale. Second, we implement evaluation mechanisms for multiple research artifacts, including submission files, code, and models, using both precise numeric measures and more flexible LLM-based evaluation approaches. This dual strategy balances objective assessment with contextual judgment. Although our initial focus is on time series applications, our framework can be readily extended to other data modalities, broadly enhancing the comprehensiveness and practical utility of agentic AI evaluation. We open-source our benchmarking framework to facilitate future research on the ML engineering capabilities of AI agents.
Large Language Models for Automated Open-domain Scientific Hypotheses Discovery
Hypothetical induction is recognized as the main reasoning type when scientists make observations about the world and try to propose hypotheses to explain those observations. Past research on hypothetical induction is under a constrained setting: (1) the observation annotations in the dataset are carefully manually handpicked sentences (resulting in a close-domain setting); and (2) the ground truth hypotheses are mostly commonsense knowledge, making the task less challenging. In this work, we tackle these problems by proposing the first dataset for social science academic hypotheses discovery, with the final goal to create systems that automatically generate valid, novel, and helpful scientific hypotheses, given only a pile of raw web corpus. Unlike previous settings, the new dataset requires (1) using open-domain data (raw web corpus) as observations; and (2) proposing hypotheses even new to humanity. A multi-module framework is developed for the task, including three different feedback mechanisms to boost performance, which exhibits superior performance in terms of both GPT-4 based and expert-based evaluation. To the best of our knowledge, this is the first work showing that LLMs are able to generate novel (''not existing in literature'') and valid (''reflecting reality'') scientific hypotheses.
RMIT-ADM+S at the SIGIR 2025 LiveRAG Challenge
This paper presents the RMIT--ADM+S participation in the SIGIR 2025 LiveRAG Challenge. Our Generation-Retrieval-Augmented Generation (GRAG) approach relies on generating a hypothetical answer that is used in the retrieval phase, alongside the original question. GRAG also incorporates a pointwise large language model (LLM)-based re-ranking step prior to final answer generation. We describe the system architecture and the rationale behind our design choices. In particular, a systematic evaluation using the Grid of Points (GoP) framework and N-way ANOVA enabled comparison across multiple configurations, including query variant generation, question decomposition, rank fusion strategies, and prompting techniques for answer generation. Our system achieved a Relevance score of 1.199 and a Faithfulness score of 0.477 on the private leaderboard, placing among the top four finalists in the LiveRAG 2025 Challenge.
MIRAGE-Bench: Automatic Multilingual Benchmark Arena for Retrieval-Augmented Generation Systems
Traditional Retrieval-Augmented Generation (RAG) benchmarks rely on different heuristic-based metrics for evaluation, but these require human preferences as ground truth for reference. In contrast, arena-based benchmarks, where two models compete each other, require an expensive Large Language Model (LLM) as a judge for a reliable evaluation. We present an easy and efficient technique to get the best of both worlds. The idea is to train a learning to rank model as a "surrogate" judge using RAG-based evaluation heuristics as input, to produce a synthetic arena-based leaderboard. Using this idea, We develop MIRAGE-Bench, a standardized arena-based multilingual RAG benchmark for 18 diverse languages on Wikipedia. The benchmark is constructed using MIRACL, a retrieval dataset, and extended for multilingual generation evaluation. MIRAGE-Bench evaluates RAG extensively coupling both heuristic features and LLM as a judge evaluator. In our work, we benchmark 19 diverse multilingual-focused LLMs, and achieve a high correlation (Kendall Tau (tau) = 0.909) using our surrogate judge learned using heuristic features with pairwise evaluations and between GPT-4o as a teacher on the MIRAGE-Bench leaderboard using the Bradley-Terry framework. We observe proprietary and large open-source LLMs currently dominate in multilingual RAG. MIRAGE-Bench is available at: https://github.com/vectara/mirage-bench.
Holistic Evaluation for Interleaved Text-and-Image Generation
Interleaved text-and-image generation has been an intriguing research direction, where the models are required to generate both images and text pieces in an arbitrary order. Despite the emerging advancements in interleaved generation, the progress in its evaluation still significantly lags behind. Existing evaluation benchmarks do not support arbitrarily interleaved images and text for both inputs and outputs, and they only cover a limited number of domains and use cases. Also, current works predominantly use similarity-based metrics which fall short in assessing the quality in open-ended scenarios. To this end, we introduce InterleavedBench, the first benchmark carefully curated for the evaluation of interleaved text-and-image generation. InterleavedBench features a rich array of tasks to cover diverse real-world use cases. In addition, we present InterleavedEval, a strong reference-free metric powered by GPT-4o to deliver accurate and explainable evaluation. We carefully define five essential evaluation aspects for InterleavedEval, including text quality, perceptual quality, image coherence, text-image coherence, and helpfulness, to ensure a comprehensive and fine-grained assessment. Through extensive experiments and rigorous human evaluation, we show that our benchmark and metric can effectively evaluate the existing models with a strong correlation with human judgments surpassing previous reference-based metrics. We also provide substantial findings and insights to foster future research in interleaved generation and its evaluation.
Benchmarking Agentic Workflow Generation
Large Language Models (LLMs), with their exceptional ability to handle a wide range of tasks, have driven significant advancements in tackling reasoning and planning tasks, wherein decomposing complex problems into executable workflows is a crucial step in this process. Existing workflow evaluation frameworks either focus solely on holistic performance or suffer from limitations such as restricted scenario coverage, simplistic workflow structures, and lax evaluation standards. To this end, we introduce WorFBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures. Additionally, we present WorFEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms to accurately quantify the LLM agent's workflow generation capabilities. Through comprehensive evaluations across different types of LLMs, we discover distinct gaps between the sequence planning capabilities and graph planning capabilities of LLM agents, with even GPT-4 exhibiting a gap of around 15%. We also train two open-source models and evaluate their generalization abilities on held-out tasks. Furthermore, we observe that the generated workflows can enhance downstream tasks, enabling them to achieve superior performance with less time during inference. Code and dataset will be available at https://github.com/zjunlp/WorFBench.
TransBench: Benchmarking Machine Translation for Industrial-Scale Applications
Machine translation (MT) has become indispensable for cross-border communication in globalized industries like e-commerce, finance, and legal services, with recent advancements in large language models (LLMs) significantly enhancing translation quality. However, applying general-purpose MT models to industrial scenarios reveals critical limitations due to domain-specific terminology, cultural nuances, and stylistic conventions absent in generic benchmarks. Existing evaluation frameworks inadequately assess performance in specialized contexts, creating a gap between academic benchmarks and real-world efficacy. To address this, we propose a three-level translation capability framework: (1) Basic Linguistic Competence, (2) Domain-Specific Proficiency, and (3) Cultural Adaptation, emphasizing the need for holistic evaluation across these dimensions. We introduce TransBench, a benchmark tailored for industrial MT, initially targeting international e-commerce with 17,000 professionally translated sentences spanning 4 main scenarios and 33 language pairs. TransBench integrates traditional metrics (BLEU, TER) with Marco-MOS, a domain-specific evaluation model, and provides guidelines for reproducible benchmark construction. Our contributions include: (1) a structured framework for industrial MT evaluation, (2) the first publicly available benchmark for e-commerce translation, (3) novel metrics probing multi-level translation quality, and (4) open-sourced evaluation tools. This work bridges the evaluation gap, enabling researchers and practitioners to systematically assess and enhance MT systems for industry-specific needs.
Auto Arena of LLMs: Automating LLM Evaluations with Agent Peer-battles and Committee Discussions
As LLMs evolve on a daily basis, there is an urgent need for a trustworthy evaluation method that can provide robust evaluation results in a timely fashion. Currently, as static benchmarks are prone to contamination concerns, users tend to trust human voting platforms, such as Chatbot Arena. However, human annotations require extensive manual efforts. To provide an automatic, robust, and trustworthy evaluation framework, we innovatively propose the Auto-Arena of LLMs, which automates the entire evaluation process with LLM agents. Firstly, an examiner LLM devises queries. Then, a pair of candidate LLMs engage in a multi-round peer-battle around the query, during which the LLM's true performance gaps become visible. Finally, a committee of LLM judges collectively discuss and determine the winner, which alleviates bias and promotes fairness. In our extensive experiment on the 17 newest LLMs, Auto-Arena shows the highest correlation with human preferences, providing a promising alternative to human evaluation platforms.
RocketEval: Efficient Automated LLM Evaluation via Grading Checklist
Evaluating large language models (LLMs) in diverse and challenging scenarios is essential to align them with human preferences. To mitigate the prohibitive costs associated with human evaluations, utilizing a powerful LLM as a judge has emerged as a favored approach. Nevertheless, this methodology encounters several challenges, including substantial expenses, concerns regarding privacy and security, and reproducibility. In this paper, we propose a straightforward, replicable, and accurate automated evaluation method by leveraging a lightweight LLM as the judge, named RocketEval. Initially, we identify that the performance disparity between lightweight and powerful LLMs in evaluation tasks primarily stems from their ability to conduct comprehensive analyses, which is not easily enhanced through techniques such as chain-of-thought reasoning. By reframing the evaluation task as a multi-faceted Q&A using an instance-specific checklist, we demonstrate that the limited judgment accuracy of lightweight LLMs is largely attributes to high uncertainty and positional bias. To address these challenges, we introduce an automated evaluation process grounded in checklist grading, which is designed to accommodate a variety of scenarios and questions. This process encompasses the creation of checklists, the grading of these checklists by lightweight LLMs, and the reweighting of checklist items to align with the supervised annotations. Our experiments carried out on the automated evaluation benchmarks, MT-Bench and WildBench datasets, reveal that RocketEval, when using Gemma-2-2B as the judge, achieves a high correlation (0.965) with human preferences, which is comparable to GPT-4o. Moreover, RocketEval provides a cost reduction exceeding 50-fold for large-scale evaluation and comparison scenarios. Our code is available at https://github.com/Joinn99/RocketEval-ICLR .
RAGAS: Automated Evaluation of Retrieval Augmented Generation
We introduce RAGAs (Retrieval Augmented Generation Assessment), a framework for reference-free evaluation of Retrieval Augmented Generation (RAG) pipelines. RAG systems are composed of a retrieval and an LLM based generation module, and provide LLMs with knowledge from a reference textual database, which enables them to act as a natural language layer between a user and textual databases, reducing the risk of hallucinations. Evaluating RAG architectures is, however, challenging because there are several dimensions to consider: the ability of the retrieval system to identify relevant and focused context passages, the ability of the LLM to exploit such passages in a faithful way, or the quality of the generation itself. With RAGAs, we put forward a suite of metrics which can be used to evaluate these different dimensions without having to rely on ground truth human annotations. We posit that such a framework can crucially contribute to faster evaluation cycles of RAG architectures, which is especially important given the fast adoption of LLMs.
Rethinking Human Evaluation Protocol for Text-to-Video Models: Enhancing Reliability,Reproducibility, and Practicality
Recent text-to-video (T2V) technology advancements, as demonstrated by models such as Gen2, Pika, and Sora, have significantly broadened its applicability and popularity. Despite these strides, evaluating these models poses substantial challenges. Primarily, due to the limitations inherent in automatic metrics, manual evaluation is often considered a superior method for assessing T2V generation. However, existing manual evaluation protocols face reproducibility, reliability, and practicality issues. To address these challenges, this paper introduces the Text-to-Video Human Evaluation (T2VHE) protocol, a comprehensive and standardized protocol for T2V models. The T2VHE protocol includes well-defined metrics, thorough annotator training, and an effective dynamic evaluation module. Experimental results demonstrate that this protocol not only ensures high-quality annotations but can also reduce evaluation costs by nearly 50%. We will open-source the entire setup of the T2VHE protocol, including the complete protocol workflow, the dynamic evaluation component details, and the annotation interface code. This will help communities establish more sophisticated human assessment protocols.
MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria
Multimodal large language models (MLLMs) have broadened the scope of AI applications. Existing automatic evaluation methodologies for MLLMs are mainly limited in evaluating queries without considering user experiences, inadequately addressing the nuances of creative and associative multimodal tasks. However, the open-ended and subjective nature of such tasks poses a significant challenge to the evaluation methodology, where it is difficult to define the ground-truth answers for them. To this end, in our paper, we propose a new evaluation paradigm for MLLMs, which is evaluating MLLMs with per-sample criteria using potent MLLM as the judge. To validate the feasibility and effectiveness of this paradigm, we design a benchmark, dubbed MLLM-Bench, by curating the evaluation samples across six comprehensive cognitive levels. We benchmark 21 popular MLLMs in a pairwise-comparison fashion, showing diverse performance across models. Moreover, the validity of our benchmark manifests itself in reaching 88.02% agreement with human evaluation. We contend that the proposed paradigm explores the potential of MLLMs as effective evaluation tools with the help of per-sample criteria. See online leaderboard at https://mllm-bench.llmzoo.com.
Vote'n'Rank: Revision of Benchmarking with Social Choice Theory
The development of state-of-the-art systems in different applied areas of machine learning (ML) is driven by benchmarks, which have shaped the paradigm of evaluating generalisation capabilities from multiple perspectives. Although the paradigm is shifting towards more fine-grained evaluation across diverse tasks, the delicate question of how to aggregate the performances has received particular interest in the community. In general, benchmarks follow the unspoken utilitarian principles, where the systems are ranked based on their mean average score over task-specific metrics. Such aggregation procedure has been viewed as a sub-optimal evaluation protocol, which may have created the illusion of progress. This paper proposes Vote'n'Rank, a framework for ranking systems in multi-task benchmarks under the principles of the social choice theory. We demonstrate that our approach can be efficiently utilised to draw new insights on benchmarking in several ML sub-fields and identify the best-performing systems in research and development case studies. The Vote'n'Rank's procedures are more robust than the mean average while being able to handle missing performance scores and determine conditions under which the system becomes the winner.
Survey on Evaluation of LLM-based Agents
The emergence of LLM-based agents represents a paradigm shift in AI, enabling autonomous systems to plan, reason, use tools, and maintain memory while interacting with dynamic environments. This paper provides the first comprehensive survey of evaluation methodologies for these increasingly capable agents. We systematically analyze evaluation benchmarks and frameworks across four critical dimensions: (1) fundamental agent capabilities, including planning, tool use, self-reflection, and memory; (2) application-specific benchmarks for web, software engineering, scientific, and conversational agents; (3) benchmarks for generalist agents; and (4) frameworks for evaluating agents. Our analysis reveals emerging trends, including a shift toward more realistic, challenging evaluations with continuously updated benchmarks. We also identify critical gaps that future research must address-particularly in assessing cost-efficiency, safety, and robustness, and in developing fine-grained, and scalable evaluation methods. This survey maps the rapidly evolving landscape of agent evaluation, reveals the emerging trends in the field, identifies current limitations, and proposes directions for future research.
STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases
Answering real-world user queries, such as product search, often requires accurate retrieval of information from semi-structured knowledge bases or databases that involve blend of unstructured (e.g., textual descriptions of products) and structured (e.g., entity relations of products) information. However, previous works have mostly studied textual and relational retrieval tasks as separate topics. To address the gap, we develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Relational Knowledge Bases. We design a novel pipeline to synthesize natural and realistic user queries that integrate diverse relational information and complex textual properties, as well as their ground-truth answers. Moreover, we rigorously conduct human evaluation to validate the quality of our benchmark, which covers a variety of practical applications, including product recommendations, academic paper searches, and precision medicine inquiries. Our benchmark serves as a comprehensive testbed for evaluating the performance of retrieval systems, with an emphasis on retrieval approaches driven by large language models (LLMs). Our experiments suggest that the STARK datasets present significant challenges to the current retrieval and LLM systems, indicating the demand for building more capable retrieval systems that can handle both textual and relational aspects.
Vi(E)va LLM! A Conceptual Stack for Evaluating and Interpreting Generative AI-based Visualizations
The automatic generation of visualizations is an old task that, through the years, has shown more and more interest from the research and practitioner communities. Recently, large language models (LLM) have become an interesting option for supporting generative tasks related to visualization, demonstrating initial promising results. At the same time, several pitfalls, like the multiple ways of instructing an LLM to generate the desired result, the different perspectives leading the generation (code-based, image-based, grammar-based), and the presence of hallucinations even for the visualization generation task, make their usage less affordable than expected. Following similar initiatives for benchmarking LLMs, this paper copes with the problem of modeling the evaluation of a generated visualization through an LLM. We propose a theoretical evaluation stack, EvaLLM, that decomposes the evaluation effort in its atomic components, characterizes their nature, and provides an overview of how to implement and interpret them. We also designed and implemented an evaluation platform that provides a benchmarking resource for the visualization generation task. The platform supports automatic and manual scoring conducted by multiple assessors to support a fine-grained and semantic evaluation based on the EvaLLM stack. Two case studies on GPT3.5-turbo with Code Interpreter and Llama2-70-b models show the benefits of EvaLLM and illustrate interesting results on the current state-of-the-art LLM-generated visualizations.
SciEval: A Multi-Level Large Language Model Evaluation Benchmark for Scientific Research
Recently, there has been growing interest in using Large Language Models (LLMs) for scientific research. Numerous benchmarks have been proposed to evaluate the ability of LLMs for scientific research. However, current benchmarks are mostly based on pre-collected objective questions. This design suffers from data leakage problem and lacks the evaluation of subjective Q/A ability. In this paper, we propose SciEval, a comprehensive and multi-disciplinary evaluation benchmark to address these issues. Based on Bloom's taxonomy, SciEval covers four dimensions to systematically evaluate scientific research ability. In particular, we design a "dynamic" subset based on scientific principles to prevent evaluation from potential data leakage. Both objective and subjective questions are included in SciEval. These characteristics make SciEval a more effective benchmark for scientific research ability evaluation of LLMs. Comprehensive experiments on most advanced LLMs show that, although GPT-4 achieves SOTA performance compared to other LLMs, there is still substantial room for improvement, especially for dynamic questions. The data and codes are now publicly available.
Pistis-RAG: A Scalable Cascading Framework Towards Trustworthy Retrieval-Augmented Generation
In Greek mythology, Pistis symbolized good faith, trust, and reliability, echoing the core principles of RAG in LLM systems. Pistis-RAG, a scalable multi-stage framework, effectively addresses the challenges of large-scale retrieval-augmented generation (RAG). Each stage plays a distinct role: matching refines the search space, pre-ranking prioritizes semantically relevant documents, and ranking aligns with the large language model's (LLM) preferences. The reasoning and aggregating stage supports the implementation of complex chain-of-thought (CoT) methods within this cascading structure. We argue that the lack of strong alignment between LLMs and the external knowledge ranking methods used in RAG tasks is relevant to the reliance on the model-centric paradigm in RAG frameworks. A content-centric approach would prioritize seamless integration between the LLMs and external information sources, optimizing the content transformation process for each specific task. Critically, our ranking stage deviates from traditional RAG approaches by recognizing that semantic relevance alone may not directly translate to improved generation. This is due to the sensitivity of the few-shot prompt order, as highlighted in prior work lu2021fantastically. Current RAG frameworks fail to account for this crucial factor. We introduce a novel ranking stage specifically designed for RAG systems. It adheres to information retrieval principles while considering the unique business scenario captured by LLM preferences and user feedback. Our approach integrates in-context learning (ICL) methods and reasoning steps to incorporate user feedback, ensuring efficient alignment. Experiments on the MMLU benchmark demonstrate a 9.3\% performance improvement. The model and code will be open-sourced on GitHub. Experiments on real-world, large-scale data validate our framework's scalability.
GLIDER: Grading LLM Interactions and Decisions using Explainable Ranking
The LLM-as-judge paradigm is increasingly being adopted for automated evaluation of model outputs. While LLM judges have shown promise on constrained evaluation tasks, closed source LLMs display critical shortcomings when deployed in real world applications due to challenges of fine grained metrics and explainability, while task specific evaluation models lack cross-domain generalization. We introduce GLIDER, a powerful 3B evaluator LLM that can score any text input and associated context on arbitrary user defined criteria. GLIDER shows higher Pearson's correlation than GPT-4o on FLASK and greatly outperforms prior evaluation models, achieving comparable performance to LLMs 17x its size. GLIDER supports fine-grained scoring, multilingual reasoning, span highlighting and was trained on 685 domains and 183 criteria. Extensive qualitative analysis shows that GLIDER scores are highly correlated with human judgments, with 91.3% human agreement. We have open-sourced GLIDER to facilitate future research.
OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain
As a typical and practical application of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) techniques have gained extensive attention, particularly in vertical domains where LLMs may lack domain-specific knowledge. In this paper, we introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain. Our benchmark is characterized by its multi-dimensional evaluation framework, including (1) a matrix-based RAG scenario evaluation system that categorizes queries into five task classes and 16 financial topics, leading to a structured assessment of diverse query scenarios; (2) a multi-dimensional evaluation data generation approach, which combines GPT-4-based automatic generation and human annotation, achieving an 87.47\% acceptance ratio in human evaluations on generated instances; (3) a multi-stage evaluation system that evaluates both retrieval and generation performance, result in a comprehensive evaluation on the RAG pipeline; and (4) robust evaluation metrics derived from rule-based and LLM-based ones, enhancing the reliability of assessments through manual annotations and supervised fine-tuning of an LLM evaluator. Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets and highlights the performance variations of RAG systems across diverse topics and tasks, revealing significant opportunities for RAG models to improve their capabilities in vertical domains. We open source the code of our benchmark in https://github.com/RUC-NLPIR/OmniEval{https://github.com/RUC-NLPIR/OmniEval}.
Automated Peer Reviewing in Paper SEA: Standardization, Evaluation, and Analysis
In recent years, the rapid increase in scientific papers has overwhelmed traditional review mechanisms, resulting in varying quality of publications. Although existing methods have explored the capabilities of Large Language Models (LLMs) for automated scientific reviewing, their generated contents are often generic or partial. To address the issues above, we introduce an automated paper reviewing framework SEA. It comprises of three modules: Standardization, Evaluation, and Analysis, which are represented by models SEA-S, SEA-E, and SEA-A, respectively. Initially, SEA-S distills data standardization capabilities of GPT-4 for integrating multiple reviews for a paper. Then, SEA-E utilizes standardized data for fine-tuning, enabling it to generate constructive reviews. Finally, SEA-A introduces a new evaluation metric called mismatch score to assess the consistency between paper contents and reviews. Moreover, we design a self-correction strategy to enhance the consistency. Extensive experimental results on datasets collected from eight venues show that SEA can generate valuable insights for authors to improve their papers.
Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation
Program synthesis has been long studied with recent approaches focused on directly using the power of Large Language Models (LLMs) to generate code. Programming benchmarks, with curated synthesis problems and test-cases, are used to measure the performance of various LLMs on code synthesis. However, these test-cases can be limited in both quantity and quality for fully assessing the functional correctness of the generated code. Such limitation in the existing benchmarks begs the following question: In the era of LLMs, is the code generated really correct? To answer this, we propose EvalPlus -- a code synthesis evaluation framework to rigorously benchmark the functional correctness of LLM-synthesized code. EvalPlus augments a given evaluation dataset with large amounts of test-cases newly produced by an automatic test input generator, powered by both LLM- and mutation-based strategies. While EvalPlus is general, we extend the test-cases of the popular HumanEval benchmark by 80x to build HumanEval+. Our extensive evaluation across 26 popular LLMs (e.g., GPT-4 and ChatGPT) demonstrates that HumanEval+ is able to catch significant amounts of previously undetected wrong code synthesized by LLMs, reducing the pass@k by up-to 19.3-28.9%. We also surprisingly found that test insufficiency can lead to mis-ranking. For example, both WizardCoder-CodeLlama and Phind-CodeLlama now outperform ChatGPT on HumanEval+, while none of them could on HumanEval. Our work not only indicates that prior popular code synthesis evaluation results do not accurately reflect the true performance of LLMs for code synthesis, but also opens up a new direction to improve such programming benchmarks through automated testing. We have open-sourced our tools, enhanced datasets as well as all LLM-generated code at https://github.com/evalplus/evalplus to facilitate and accelerate future LLM-for-code research.
DSGram: Dynamic Weighting Sub-Metrics for Grammatical Error Correction in the Era of Large Language Models
Evaluating the performance of Grammatical Error Correction (GEC) models has become increasingly challenging, as large language model (LLM)-based GEC systems often produce corrections that diverge from provided gold references. This discrepancy undermines the reliability of traditional reference-based evaluation metrics. In this study, we propose a novel evaluation framework for GEC models, DSGram, integrating Semantic Coherence, Edit Level, and Fluency, and utilizing a dynamic weighting mechanism. Our framework employs the Analytic Hierarchy Process (AHP) in conjunction with large language models to ascertain the relative importance of various evaluation criteria. Additionally, we develop a dataset incorporating human annotations and LLM-simulated sentences to validate our algorithms and fine-tune more cost-effective models. Experimental results indicate that our proposed approach enhances the effectiveness of GEC model evaluations.
TRUE: Re-evaluating Factual Consistency Evaluation
Grounded text generation systems often generate text that contains factual inconsistencies, hindering their real-world applicability. Automatic factual consistency evaluation may help alleviate this limitation by accelerating evaluation cycles, filtering inconsistent outputs and augmenting training data. While attracting increasing attention, such evaluation metrics are usually developed and evaluated in silo for a single task or dataset, slowing their adoption. Moreover, previous meta-evaluation protocols focused on system-level correlations with human annotations, which leave the example-level accuracy of such metrics unclear. In this work, we introduce TRUE: a comprehensive survey and assessment of factual consistency metrics on a standardized collection of existing texts from diverse tasks, manually annotated for factual consistency. Our standardization enables an example-level meta-evaluation protocol that is more actionable and interpretable than previously reported correlations, yielding clearer quality measures. Across diverse state-of-the-art metrics and 11 datasets we find that large-scale NLI and question generation-and-answering-based approaches achieve strong and complementary results. We recommend those methods as a starting point for model and metric developers, and hope TRUE will foster progress towards even better evaluation methods.
ConAIR:Consistency-Augmented Iterative Interaction Framework to Enhance the Reliability of Code Generation
Code generation techniques generate code snippets automatically based on the problem requirements in natural language. Recently, large language models (LLMs) achieve the SOTA performance on code generation. However, LLMs still struggle at times to generate accurate code, which diminishes their promised efficiency as developers must spend significant effort evaluating and debugging the generated code. To improve the reliability and quality of the generated codes, researchers propose to leverage Consistency to obtain a better code based on generating and ranking multiple candidates. The existing approach is problematic as Consistency thinks a code is better when (1) the code pass more tests (inter-consistency) (2) more codes share the same behavior (intra-consistency). However, because the tests are also generated by LLMs, they could be wrong as well. As a result, majority voting based on testing results is unreliable. Relying solely on consistency is insufficient to address this issue; integrating user feedback is essential for effectively guiding consistency. We show that with minimal human effort, performance can be significantly enhanced. We propose Consistency-Augmented Iterative Interaction Framework to Enhance the Reliability of Code Generation, ConAIR, which is an approach that aims to improve the performance of a code generator through two distinctive ingredients, i.e., (1) lightweight user effort for validating the correctness of selected tests; and (2) a dynamic strategy for ranking, localizing and correcting multiple tests and codes. Overall, we propose a lightweight interaction framework that incorporates user feedback to correct identified tests and guide the iterative process. The iteration rounds are only 4 in average with the help of consistency. With only lightweight human efforts, we can achieve an improvement of 33% towards the base model.
GenCRF: Generative Clustering and Reformulation Framework for Enhanced Intent-Driven Information Retrieval
Query reformulation is a well-known problem in Information Retrieval (IR) aimed at enhancing single search successful completion rate by automatically modifying user's input query. Recent methods leverage Large Language Models (LLMs) to improve query reformulation, but often generate limited and redundant expansions, potentially constraining their effectiveness in capturing diverse intents. In this paper, we propose GenCRF: a Generative Clustering and Reformulation Framework to capture diverse intentions adaptively based on multiple differentiated, well-generated queries in the retrieval phase for the first time. GenCRF leverages LLMs to generate variable queries from the initial query using customized prompts, then clusters them into groups to distinctly represent diverse intents. Furthermore, the framework explores to combine diverse intents query with innovative weighted aggregation strategies to optimize retrieval performance and crucially integrates a novel Query Evaluation Rewarding Model (QERM) to refine the process through feedback loops. Empirical experiments on the BEIR benchmark demonstrate that GenCRF achieves state-of-the-art performance, surpassing previous query reformulation SOTAs by up to 12% on nDCG@10. These techniques can be adapted to various LLMs, significantly boosting retriever performance and advancing the field of Information Retrieval.
RAG Does Not Work for Enterprises
Retrieval-Augmented Generation (RAG) improves the accuracy and relevance of large language model outputs by incorporating knowledge retrieval. However, implementing RAG in enterprises poses challenges around data security, accuracy, scalability, and integration. This paper explores the unique requirements for enterprise RAG, surveys current approaches and limitations, and discusses potential advances in semantic search, hybrid queries, and optimized retrieval. It proposes an evaluation framework to validate enterprise RAG solutions, including quantitative testing, qualitative analysis, ablation studies, and industry case studies. This framework aims to help demonstrate the ability of purpose-built RAG architectures to deliver accuracy and relevance improvements with enterprise-grade security, compliance and integration. The paper concludes with implications for enterprise deployments, limitations, and future research directions. Close collaboration between researchers and industry partners may accelerate progress in developing and deploying retrieval-augmented generation technology.
State of What Art? A Call for Multi-Prompt LLM Evaluation
Recent advances in large language models (LLMs) have led to the development of various evaluation benchmarks. These benchmarks typically rely on a single instruction template for evaluating all LLMs on a specific task. In this paper, we comprehensively analyze the brittleness of results obtained via single-prompt evaluations across 6.5M instances, involving 20 different LLMs and 39 tasks from 3 benchmarks. To improve robustness of the analysis, we propose to evaluate LLMs with a set of diverse prompts instead. We discuss tailored evaluation metrics for specific use cases (e.g., LLM developers vs. developers interested in a specific downstream task), ensuring a more reliable and meaningful assessment of LLM capabilities. We then implement these criteria and conduct evaluations of multiple models, providing insights into the true strengths and limitations of current LLMs.
SymbioticRAG: Enhancing Document Intelligence Through Human-LLM Symbiotic Collaboration
We present SymbioticRAG, a novel framework that fundamentally reimagines Retrieval-Augmented Generation~(RAG) systems by establishing a bidirectional learning relationship between humans and machines. Our approach addresses two critical challenges in current RAG systems: the inherently human-centered nature of relevance determination and users' progression from "unconscious incompetence" in query formulation. SymbioticRAG introduces a two-tier solution where Level 1 enables direct human curation of retrieved content through interactive source document exploration, while Level 2 aims to build personalized retrieval models based on captured user interactions. We implement Level 1 through three key components: (1)~a comprehensive document processing pipeline with specialized models for layout detection, OCR, and extraction of tables, formulas, and figures; (2)~an extensible retriever module supporting multiple retrieval strategies; and (3)~an interactive interface that facilitates both user engagement and interaction data logging. We experiment Level 2 implementation via a retriever strategy incorporated LLM summarized user intention from user interaction logs. To maintain high-quality data preparation, we develop a human-on-the-loop validation interface that improves pipeline output while advancing research in specialized extraction tasks. Evaluation across three scenarios (literature review, geological exploration, and education) demonstrates significant improvements in retrieval relevance and user satisfaction compared to traditional RAG approaches. To facilitate broader research and further advancement of SymbioticRAG Level 2 implementation, we will make our system openly accessible to the research community.
Evalverse: Unified and Accessible Library for Large Language Model Evaluation
This paper introduces Evalverse, a novel library that streamlines the evaluation of Large Language Models (LLMs) by unifying disparate evaluation tools into a single, user-friendly framework. Evalverse enables individuals with limited knowledge of artificial intelligence to easily request LLM evaluations and receive detailed reports, facilitated by an integration with communication platforms like Slack. Thus, Evalverse serves as a powerful tool for the comprehensive assessment of LLMs, offering both researchers and practitioners a centralized and easily accessible evaluation framework. Finally, we also provide a demo video for Evalverse, showcasing its capabilities and implementation in a two-minute format.
LaajMeter: A Framework for LaaJ Evaluation
Large Language Models (LLMs) are increasingly used as evaluators in natural language processing tasks, a paradigm known as LLM-as-a-Judge (LaaJ). While effective in general domains, LaaJs pose significant challenges in domain-specific contexts, where annotated data is scarce and expert evaluation is costly. In such cases, meta-evaluation is often performed using metrics that have not been validated for the specific domain in which they are applied. As a result, it becomes difficult to determine which metrics effectively identify LaaJ quality, and further, what threshold indicates sufficient evaluator performance. In this work, we introduce LaaJMeter, a simulation-based framework for controlled meta-evaluation of LaaJs. LaaJMeter enables engineers to generate synthetic data representing virtual models and judges, allowing systematic analysis of evaluation metrics under realistic conditions. This helps practitioners validate and refine LaaJs for specific evaluation tasks: they can test whether their metrics correctly distinguish between better and worse (virtual) LaaJs, and estimate appropriate thresholds for evaluator adequacy. We demonstrate the utility of LaaJMeter in a code translation task involving a legacy programming language, showing how different metrics vary in sensitivity to evaluator quality. Our results highlight the limitations of common metrics and the importance of principled metric selection. LaaJMeter provides a scalable and extensible solution for assessing LaaJs in low-resource settings, contributing to the broader effort to ensure trustworthy and reproducible evaluation in NLP.
CreAgent: Towards Long-Term Evaluation of Recommender System under Platform-Creator Information Asymmetry
Ensuring the long-term sustainability of recommender systems (RS) emerges as a crucial issue. Traditional offline evaluation methods for RS typically focus on immediate user feedback, such as clicks, but they often neglect the long-term impact of content creators. On real-world content platforms, creators can strategically produce and upload new items based on user feedback and preference trends. While previous studies have attempted to model creator behavior, they often overlook the role of information asymmetry. This asymmetry arises because creators primarily have access to feedback on the items they produce, while platforms possess data on the entire spectrum of user feedback. Current RS simulators, however, fail to account for this asymmetry, leading to inaccurate long-term evaluations. To address this gap, we propose CreAgent, a Large Language Model (LLM)-empowered creator simulation agent. By incorporating game theory's belief mechanism and the fast-and-slow thinking framework, CreAgent effectively simulates creator behavior under conditions of information asymmetry. Additionally, we enhance CreAgent's simulation ability by fine-tuning it using Proximal Policy Optimization (PPO). Our credibility validation experiments show that CreAgent aligns well with the behaviors between real-world platform and creator, thus improving the reliability of long-term RS evaluations. Moreover, through the simulation of RS involving CreAgents, we can explore how fairness- and diversity-aware RS algorithms contribute to better long-term performance for various stakeholders. CreAgent and the simulation platform are publicly available at https://github.com/shawnye2000/CreAgent.
SciArena: An Open Evaluation Platform for Foundation Models in Scientific Literature Tasks
We present SciArena, an open and collaborative platform for evaluating foundation models on scientific literature tasks. Unlike traditional benchmarks for scientific literature understanding and synthesis, SciArena engages the research community directly, following the Chatbot Arena evaluation approach of community voting on model comparisons. By leveraging collective intelligence, SciArena offers a community-driven evaluation of model performance on open-ended scientific tasks that demand literature-grounded, long-form responses. The platform currently supports 23 open-source and proprietary foundation models and has collected over 13,000 votes from trusted researchers across diverse scientific domains. We analyze the data collected so far and confirm that the submitted questions are diverse, aligned with real-world literature needs, and that participating researchers demonstrate strong self-consistency and inter-annotator agreement in their evaluations. We discuss the results and insights based on the model ranking leaderboard. To further promote research in building model-based automated evaluation systems for literature tasks, we release SciArena-Eval, a meta-evaluation benchmark based on our collected preference data. The benchmark measures the accuracy of models in judging answer quality by comparing their pairwise assessments with human votes. Our experiments highlight the benchmark's challenges and emphasize the need for more reliable automated evaluation methods.
AbGen: Evaluating Large Language Models in Ablation Study Design and Evaluation for Scientific Research
We introduce AbGen, the first benchmark designed to evaluate the capabilities of LLMs in designing ablation studies for scientific research. AbGen consists of 1,500 expert-annotated examples derived from 807 NLP papers. In this benchmark, LLMs are tasked with generating detailed ablation study designs for a specified module or process based on the given research context. Our evaluation of leading LLMs, such as DeepSeek-R1-0528 and o4-mini, highlights a significant performance gap between these models and human experts in terms of the importance, faithfulness, and soundness of the ablation study designs. Moreover, we demonstrate that current automated evaluation methods are not reliable for our task, as they show a significant discrepancy when compared to human assessment. To better investigate this, we develop AbGen-Eval, a meta-evaluation benchmark designed to assess the reliability of commonly used automated evaluation systems in measuring LLM performance on our task. We investigate various LLM-as-Judge systems on AbGen-Eval, providing insights for future research on developing more effective and reliable LLM-based evaluation systems for complex scientific tasks.
MINT: Evaluating LLMs in Multi-turn Interaction with Tools and Language Feedback
To solve complex tasks, large language models (LLMs) often require multiple rounds of interactions with the user, sometimes assisted by external tools. However, current evaluation protocols often emphasize benchmark performance with single-turn exchanges, neglecting the nuanced interactions among the user, LLMs, and external tools, while also underestimating the importance of natural language feedback from users. These oversights contribute to discrepancies between research benchmark evaluations and real-world use cases. We introduce MINT, a benchmark that evaluates LLMs' ability to solve tasks with multi-turn interactions by (1) using tools and (2) leveraging natural language feedback. To ensure reproducibility, we provide an evaluation framework where LLMs can access tools by executing Python code and receive users' natural language feedback simulated by GPT-4. We repurpose a diverse set of established evaluation datasets focusing on reasoning, coding, and decision-making and carefully curate them into a compact subset for efficient evaluation. Our analysis of 20 open- and closed-source LLMs offers intriguing findings. (a) LLMs generally benefit from tools and language feedback, with performance gains (absolute, same below) of 1-8% for each turn of tool use and 2-17% with natural language feedback. (b) Better single-turn performance does not guarantee better multi-turn performance. (c) Surprisingly, on the LLMs evaluated, supervised instruction-finetuning (SIFT) and reinforcement learning from human feedback (RLHF) generally hurt multi-turn capabilities. We expect MINT can help measure progress and incentivize research in improving LLMs' capabilities in multi-turn interactions, especially for open-source communities where multi-turn human evaluation can be less accessible compared to commercial LLMs with a larger user base.
ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate
Text evaluation has historically posed significant challenges, often demanding substantial labor and time cost. With the emergence of large language models (LLMs), researchers have explored LLMs' potential as alternatives for human evaluation. While these single-agent-based approaches show promise, experimental results suggest that further advancements are needed to bridge the gap between their current effectiveness and human-level evaluation quality. Recognizing that best practices of human evaluation processes often involve multiple human annotators collaborating in the evaluation, we resort to a multi-agent debate framework, moving beyond single-agent prompting strategies. The multi-agent-based approach enables a group of LLMs to synergize with an array of intelligent counterparts, harnessing their distinct capabilities and expertise to enhance efficiency and effectiveness in handling intricate tasks. In this paper, we construct a multi-agent referee team called ChatEval to autonomously discuss and evaluate the quality of generated responses from different models on open-ended questions and traditional natural language generation (NLG) tasks. Our analysis shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments. Our code is available at https://github.com/chanchimin/ChatEval.
LiveMCPBench: Can Agents Navigate an Ocean of MCP Tools?
With the rapid development of Model Context Protocol (MCP), the number of MCP servers has surpassed 10,000. However, existing MCP benchmarks are limited to single-server settings with only a few tools, hindering effective evaluation of agent capabilities in large-scale, real-world scenarios. To address this limitation, we present LiveMCPBench, the first comprehensive benchmark comprising 95 real-world tasks grounded in the MCP ecosystem, designed to evaluate LLM agents at scale across diverse servers. To support a scalable and reproducible evaluation pipeline in large-scale MCP environments, we curate LiveMCPTool, a diverse and readily deployable collection of 70 MCP servers and 527 tools. Furthermore, we introduce LiveMCPEval, an LLM-as-a-Judge framework that enables automated and adaptive evaluation in dynamic, time-varying task environments, achieving 81% agreement with human reviewers. Finally, we propose the MCP Copilot Agent, a multi-step agent that routes tools for dynamic planning and executes tools for API interaction across the entire LiveMCPTool suite. Our evaluation covers 10 leading models, with the best-performing model (Claude-Sonnet-4) reaching a 78.95% success rate. However, we observe large performance variance across models, and several widely-used models perform poorly in LiveMCPBench's complex, tool-rich environments. Overall, LiveMCPBench offers the first unified framework for benchmarking LLM agents in realistic, tool-rich, and dynamic MCP environments, laying a solid foundation for scalable and reproducible research on agent capabilities. Our code and data will be publicly available at https://icip-cas.github.io/LiveMCPBench.
An Actionable Framework for Assessing Bias and Fairness in Large Language Model Use Cases
Large language models (LLMs) can exhibit bias in a variety of ways. Such biases can create or exacerbate unfair outcomes for certain groups within a protected attribute, including, but not limited to sex, race, sexual orientation, or age. In this paper, we propose a decision framework that allows practitioners to determine which bias and fairness metrics to use for a specific LLM use case. To establish the framework, we define bias and fairness risks for LLMs, map those risks to a taxonomy of LLM use cases, and then define various metrics to assess each type of risk. Instead of focusing solely on the model itself, we account for both prompt-specific- and model-specific-risk by defining evaluations at the level of an LLM use case, characterized by a model and a population of prompts. Furthermore, because all of the evaluation metrics are calculated solely using the LLM output, our proposed framework is highly practical and easily actionable for practitioners. For streamlined implementation, all evaluation metrics included in the framework are offered in this paper's companion Python toolkit, LangFair. Finally, our experiments demonstrate substantial variation in bias and fairness across use cases, underscoring the importance of use-case-level assessments.
WeQA: A Benchmark for Retrieval Augmented Generation in Wind Energy Domain
In the rapidly evolving landscape of Natural Language Processing (NLP) and text generation, the emergence of Retrieval Augmented Generation (RAG) presents a promising avenue for improving the quality and reliability of generated text by leveraging information retrieved from user specified database. Benchmarking is essential to evaluate and compare the performance of the different RAG configurations in terms of retriever and generator, providing insights into their effectiveness, scalability, and suitability for the specific domain and applications. In this paper, we present a comprehensive framework to generate a domain relevant RAG benchmark. Our framework is based on automatic question-answer generation with Human (domain experts)-AI Large Language Model (LLM) teaming. As a case study, we demonstrate the framework by introducing WeQA, a first-of-its-kind benchmark on the wind energy domain which comprises of multiple scientific documents/reports related to environmental impact of wind energy projects. Our framework systematically evaluates RAG performance using diverse metrics and multiple question types with varying complexity level. We also demonstrate the performance of different models on our benchmark.
Towards Reliable Evaluation of Behavior Steering Interventions in LLMs
Representation engineering methods have recently shown promise for enabling efficient steering of model behavior. However, evaluation pipelines for these methods have primarily relied on subjective demonstrations, instead of quantitative, objective metrics. We aim to take a step towards addressing this issue by advocating for four properties missing from current evaluations: (i) contexts sufficiently similar to downstream tasks should be used for assessing intervention quality; (ii) model likelihoods should be accounted for; (iii) evaluations should allow for standardized comparisons across different target behaviors; and (iv) baseline comparisons should be offered. We introduce an evaluation pipeline grounded in these criteria, offering both a quantitative and visual analysis of how effectively a given method works. We use this pipeline to evaluate two representation engineering methods on how effectively they can steer behaviors such as truthfulness and corrigibility, finding that some interventions are less effective than previously reported.
The ELEVATE-AI LLMs Framework: An Evaluation Framework for Use of Large Language Models in HEOR: an ISPOR Working Group Report
Introduction. Generative Artificial Intelligence, particularly large language models (LLMs), offers transformative potential for Health Economics and Outcomes Research (HEOR). However, evaluating the quality, transparency, and rigor of LLM-assisted research lacks standardized guidance. This article introduces the ELEVATE AI LLMs framework and checklist, designed to support researchers and reviewers in assessing LLM use in HEOR. Methods. The ELEVATE AI LLMs framework was developed through a targeted review of existing guidelines and evaluation frameworks. The framework comprises ten evaluation domains, including model characteristics, accuracy, comprehensiveness, and fairness. The accompanying checklist operationalizes the framework. To validate the framework, we applied it to two published studies, demonstrating its usability across different HEOR tasks. Results. The ELEVATE AI LLMs framework provides a comprehensive structure for evaluating LLM-assisted research, while the checklist facilitates practical application. Validation of the framework and checklist on studies of systematic literature reviews and health economic modeling highlighted their ability to identify strengths and gaps in reporting. Limitations. While the ELEVATE AI LLMs framework provides robust guidance, its broader generalizability and applicability to diverse HEOR tasks require further empirical testing. Additionally, several metrics adapted from computer science need further validation in HEOR contexts. Conclusion. The ELEVATE AI LLMs framework and checklist fill a critical gap in HEOR by offering structured guidance for evaluating LLM-assisted research. By promoting transparency, accuracy, and reproducibility, they aim to standardize and improve the integration of LLMs into HEOR, ensuring their outputs meet the field's rigorous standards.
How to Evaluate Your Dialogue Models: A Review of Approaches
Evaluating the quality of a dialogue system is an understudied problem. The recent evolution of evaluation method motivated this survey, in which an explicit and comprehensive analysis of the existing methods is sought. We are first to divide the evaluation methods into three classes, i.e., automatic evaluation, human-involved evaluation and user simulator based evaluation. Then, each class is covered with main features and the related evaluation metrics. The existence of benchmarks, suitable for the evaluation of dialogue techniques are also discussed in detail. Finally, some open issues are pointed out to bring the evaluation method into a new frontier.
ReIFE: Re-evaluating Instruction-Following Evaluation
The automatic evaluation of instruction following typically involves using large language models (LLMs) to assess response quality. However, there is a lack of comprehensive evaluation of these LLM-based evaluators across two dimensions: the base LLMs and the evaluation protocols. Therefore, we present a thorough meta-evaluation of instruction following, including 25 base LLMs and 15 recently proposed evaluation protocols, on 4 human-annotated datasets, assessing the evaluation accuracy of the LLM-evaluators. Our evaluation allows us to identify the best-performing base LLMs and evaluation protocols with a high degree of robustness. Moreover, our large-scale evaluation reveals: (1) Base LLM performance ranking remains largely consistent across evaluation protocols, with less capable LLMs showing greater improvement from protocol enhancements; (2) Robust evaluation of evaluation protocols requires many base LLMs with varying capability levels, as protocol effectiveness can depend on the base LLM used; (3) Evaluation results on different datasets are not always consistent, so a rigorous evaluation requires multiple datasets with distinctive features. We release our meta-evaluation suite ReIFE, which provides the codebase and evaluation result collection for more than 500 LLM-evaluator configurations, to support future research in instruction-following evaluation.
AIR-Bench: Automated Heterogeneous Information Retrieval Benchmark
Evaluation plays a crucial role in the advancement of information retrieval (IR) models. However, current benchmarks, which are based on predefined domains and human-labeled data, face limitations in addressing evaluation needs for emerging domains both cost-effectively and efficiently. To address this challenge, we propose the Automated Heterogeneous Information Retrieval Benchmark (AIR-Bench). AIR-Bench is distinguished by three key features: 1) Automated. The testing data in AIR-Bench is automatically generated by large language models (LLMs) without human intervention. 2) Heterogeneous. The testing data in AIR-Bench is generated with respect to diverse tasks, domains and languages. 3) Dynamic. The domains and languages covered by AIR-Bench are constantly augmented to provide an increasingly comprehensive evaluation benchmark for community developers. We develop a reliable and robust data generation pipeline to automatically create diverse and high-quality evaluation datasets based on real-world corpora. Our findings demonstrate that the generated testing data in AIR-Bench aligns well with human-labeled testing data, making AIR-Bench a dependable benchmark for evaluating IR models. The resources in AIR-Bench are publicly available at https://github.com/AIR-Bench/AIR-Bench.
MLR-Bench: Evaluating AI Agents on Open-Ended Machine Learning Research
Recent advancements in AI agents have demonstrated their growing potential to drive and support scientific discovery. In this work, we introduce MLR-Bench, a comprehensive benchmark for evaluating AI agents on open-ended machine learning research. MLR-Bench includes three key components: (1) 201 research tasks sourced from NeurIPS, ICLR, and ICML workshops covering diverse ML topics; (2) MLR-Judge, an automated evaluation framework combining LLM-based reviewers with carefully designed review rubrics to assess research quality; and (3) MLR-Agent, a modular agent scaffold capable of completing research tasks through four stages: idea generation, proposal formulation, experimentation, and paper writing. Our framework supports both stepwise assessment across these distinct research stages, and end-to-end evaluation of the final research paper. We then use MLR-Bench to evaluate six frontier LLMs and an advanced coding agent, finding that while LLMs are effective at generating coherent ideas and well-structured papers, current coding agents frequently (e.g., in 80% of the cases) produce fabricated or invalidated experimental results--posing a major barrier to scientific reliability. We validate MLR-Judge through human evaluation, showing high agreement with expert reviewers, supporting its potential as a scalable tool for research evaluation. We open-source MLR-Bench to help the community benchmark, diagnose, and improve AI research agents toward trustworthy and transparent scientific discovery.
Evaluating RAG-Fusion with RAGElo: an Automated Elo-based Framework
Challenges in the automated evaluation of Retrieval-Augmented Generation (RAG) Question-Answering (QA) systems include hallucination problems in domain-specific knowledge and the lack of gold standard benchmarks for company internal tasks. This results in difficulties in evaluating RAG variations, like RAG-Fusion (RAGF), in the context of a product QA task at Infineon Technologies. To solve these problems, we propose a comprehensive evaluation framework, which leverages Large Language Models (LLMs) to generate large datasets of synthetic queries based on real user queries and in-domain documents, uses LLM-as-a-judge to rate retrieved documents and answers, evaluates the quality of answers, and ranks different variants of Retrieval-Augmented Generation (RAG) agents with RAGElo's automated Elo-based competition. LLM-as-a-judge rating of a random sample of synthetic queries shows a moderate, positive correlation with domain expert scoring in relevance, accuracy, completeness, and precision. While RAGF outperformed RAG in Elo score, a significance analysis against expert annotations also shows that RAGF significantly outperforms RAG in completeness, but underperforms in precision. In addition, Infineon's RAGF assistant demonstrated slightly higher performance in document relevance based on MRR@5 scores. We find that RAGElo positively aligns with the preferences of human annotators, though due caution is still required. Finally, RAGF's approach leads to more complete answers based on expert annotations and better answers overall based on RAGElo's evaluation criteria.
MM-Eval: A Multilingual Meta-Evaluation Benchmark for LLM-as-a-Judge and Reward Models
Large language models (LLMs) are commonly used as evaluators in tasks (e.g., reward modeling, LLM-as-a-judge), where they act as proxies for human preferences or judgments. This leads to the need for meta-evaluation: evaluating the credibility of LLMs as evaluators. However, existing benchmarks primarily focus on English, offering limited insight into LLMs' effectiveness as evaluators in non-English contexts. To address this, we introduce MM-Eval, a multilingual meta-evaluation benchmark that covers 18 languages across six categories. MM-Eval evaluates various dimensions, including language-specific challenges like linguistics and language hallucinations. Evaluation results show that both proprietary and open-source language models have considerable room for improvement. Further analysis reveals a tendency for these models to assign middle-ground scores to low-resource languages. We publicly release our benchmark and code.
MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs
As a prominent direction of Artificial General Intelligence (AGI), Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia. Building upon pre-trained LLMs, this family of models further develops multimodal perception and reasoning capabilities that are impressive, such as writing code given a flow chart or creating stories based on an image. In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models. Distinct from the traditional train-eval-test paradigm that only favors a single task like image classification, the versatility of MLLMs has spurred the rise of various new benchmarks and evaluation methods. In this paper, we aim to present a comprehensive survey of MLLM evaluation, discussing four key aspects: 1) the summarised benchmarks types divided by the evaluation capabilities, including foundation capabilities, model self-analysis, and extented applications; 2) the typical process of benchmark counstruction, consisting of data collection, annotation, and precautions; 3) the systematic evaluation manner composed of judge, metric, and toolkit; 4) the outlook for the next benchmark. This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods, thereby driving the progress of MLLM research.
Med-CoDE: Medical Critique based Disagreement Evaluation Framework
The emergence of large language models (LLMs) has significantly influenced numerous fields, including healthcare, by enhancing the capabilities of automated systems to process and generate human-like text. However, despite their advancements, the reliability and accuracy of LLMs in medical contexts remain critical concerns. Current evaluation methods often lack robustness and fail to provide a comprehensive assessment of LLM performance, leading to potential risks in clinical settings. In this work, we propose Med-CoDE, a specifically designed evaluation framework for medical LLMs to address these challenges. The framework leverages a critique-based approach to quantitatively measure the degree of disagreement between model-generated responses and established medical ground truths. This framework captures both accuracy and reliability in medical settings. The proposed evaluation framework aims to fill the existing gap in LLM assessment by offering a systematic method to evaluate the quality and trustworthiness of medical LLMs. Through extensive experiments and case studies, we illustrate the practicality of our framework in providing a comprehensive and reliable evaluation of medical LLMs.
Vibe-Eval: A hard evaluation suite for measuring progress of multimodal language models
We introduce Vibe-Eval: a new open benchmark and framework for evaluating multimodal chat models. Vibe-Eval consists of 269 visual understanding prompts, including 100 of hard difficulty, complete with gold-standard responses authored by experts. Vibe-Eval is open-ended and challenging with dual objectives: (i) vibe checking multimodal chat models for day-to-day tasks and (ii) rigorously testing and probing the capabilities of present frontier models. Notably, our hard set contains >50% questions that all frontier models answer incorrectly. We explore the nuances of designing, evaluating, and ranking models on ultra challenging prompts. We also discuss trade-offs between human and automatic evaluation, and show that automatic model evaluation using Reka Core roughly correlates to human judgment. We offer free API access for the purpose of lightweight evaluation and plan to conduct formal human evaluations for public models that perform well on the Vibe-Eval's automatic scores. We release the evaluation code and data, see https://github.com/reka-ai/reka-vibe-eval
PromptSuite: A Task-Agnostic Framework for Multi-Prompt Generation
Evaluating LLMs with a single prompt has proven unreliable, with small changes leading to significant performance differences. However, generating the prompt variations needed for a more robust multi-prompt evaluation is challenging, limiting its adoption in practice. To address this, we introduce PromptSuite, a framework that enables the automatic generation of various prompts. PromptSuite is flexible - working out of the box on a wide range of tasks and benchmarks. It follows a modular prompt design, allowing controlled perturbations to each component, and is extensible, supporting the addition of new components and perturbation types. Through a series of case studies, we show that PromptSuite provides meaningful variations to support strong evaluation practices. It is available through both a Python API: https://github.com/eliyahabba/PromptSuite, and a user-friendly web interface: https://promptsuite.streamlit.app/
ONEBench to Test Them All: Sample-Level Benchmarking Over Open-Ended Capabilities
Traditional fixed test sets fall short in evaluating open-ended capabilities of foundation models. To address this, we propose ONEBench(OpeN-Ended Benchmarking), a new testing paradigm that consolidates individual evaluation datasets into a unified, ever-expanding sample pool. ONEBench allows users to generate custom, open-ended evaluation benchmarks from this pool, corresponding to specific capabilities of interest. By aggregating samples across test sets, ONEBench enables the assessment of diverse capabilities beyond those covered by the original test sets, while mitigating overfitting and dataset bias. Most importantly, it frames model evaluation as a collective process of selecting and aggregating sample-level tests. The shift from task-specific benchmarks to ONEBench introduces two challenges: (1)heterogeneity and (2)incompleteness. Heterogeneity refers to the aggregation over diverse metrics, while incompleteness describes comparing models evaluated on different data subsets. To address these challenges, we explore algorithms to aggregate sparse measurements into reliable model scores. Our aggregation algorithm ensures identifiability(asymptotically recovering ground-truth scores) and rapid convergence, enabling accurate model ranking with less data. On homogenous datasets, we show our aggregation algorithm provides rankings that highly correlate with those produced by average scores. We also demonstrate robustness to ~95% of measurements missing, reducing evaluation cost by up to 20x with little-to-no change in model rankings. We introduce ONEBench-LLM for language models and ONEBench-LMM for vision-language models, unifying evaluations across these domains. Overall, we present a technique for open-ended evaluation, which can aggregate over incomplete, heterogeneous sample-level measurements to continually grow a benchmark alongside the rapidly developing foundation models.
Evaluating Text Creativity across Diverse Domains: A Dataset and Large Language Model Evaluator
Creativity evaluation remains a challenging frontier for large language models (LLMs). Current evaluations heavily rely on inefficient and costly human judgments, hindering progress in enhancing machine creativity. While automated methods exist, ranging from psychological testing to heuristic- or prompting-based approaches, they often lack generalizability or alignment with human judgment. To address these issues, in this paper, we propose a novel pairwise-comparison framework for assessing textual creativity, leveraging shared contextual instructions to improve evaluation consistency. We introduce CreataSet, a large-scale dataset with 100K+ human-level and 1M+ synthetic creative instruction-response pairs spanning diverse open-domain tasks. Through training on CreataSet, we develop an LLM-based evaluator named CrEval. CrEval demonstrates remarkable superiority over existing methods in alignment with human judgments. Experimental results underscore the indispensable significance of integrating both human-generated and synthetic data in training highly robust evaluators, and showcase the practical utility of CrEval in boosting the creativity of LLMs. We will release all data, code, and models publicly soon to support further research.
Automatic benchmarking of large multimodal models via iterative experiment programming
Assessing the capabilities of large multimodal models (LMMs) often requires the creation of ad-hoc evaluations. Currently, building new benchmarks requires tremendous amounts of manual work for each specific analysis. This makes the evaluation process tedious and costly. In this paper, we present APEx, Automatic Programming of Experiments, the first framework for automatic benchmarking of LMMs. Given a research question expressed in natural language, APEx leverages a large language model (LLM) and a library of pre-specified tools to generate a set of experiments for the model at hand, and progressively compile a scientific report. The report drives the testing procedure: based on the current status of the investigation, APEx chooses which experiments to perform and whether the results are sufficient to draw conclusions. Finally, the LLM refines the report, presenting the results to the user in natural language. Thanks to its modularity, our framework is flexible and extensible as new tools become available. Empirically, APEx reproduces the findings of existing studies while allowing for arbitrary analyses and hypothesis testing.
NeuroNet: A Novel Hybrid Self-Supervised Learning Framework for Sleep Stage Classification Using Single-Channel EEG
The classification of sleep stages is a pivotal aspect of diagnosing sleep disorders and evaluating sleep quality. However, the conventional manual scoring process, conducted by clinicians, is time-consuming and prone to human bias. Recent advancements in deep learning have substantially propelled the automation of sleep stage classification. Nevertheless, challenges persist, including the need for large datasets with labels and the inherent biases in human-generated annotations. This paper introduces NeuroNet, a self-supervised learning (SSL) framework designed to effectively harness unlabeled single-channel sleep electroencephalogram (EEG) signals by integrating contrastive learning tasks and masked prediction tasks. NeuroNet demonstrates superior performance over existing SSL methodologies through extensive experimentation conducted across three polysomnography (PSG) datasets. Additionally, this study proposes a Mamba-based temporal context module to capture the relationships among diverse EEG epochs. Combining NeuroNet with the Mamba-based temporal context module has demonstrated the capability to achieve, or even surpass, the performance of the latest supervised learning methodologies, even with a limited amount of labeled data. This study is expected to establish a new benchmark in sleep stage classification, promising to guide future research and applications in the field of sleep analysis.
MCP-Bench: Benchmarking Tool-Using LLM Agents with Complex Real-World Tasks via MCP Servers
We introduce MCP-Bench, a benchmark for evaluating large language models (LLMs) on realistic, multi-step tasks that demand tool use, cross-tool coordination, precise parameter control, and planning/reasoning for solving tasks. Built on the Model Context Protocol (MCP), MCP-Bench connects LLMs to 28 representative live MCP servers spanning 250 tools across domains such as finance, traveling, scientific computing, and academic search. Unlike prior API-based benchmarks, each MCP server provides a set of complementary tools designed to work together, enabling the construction of authentic, multi-step tasks with rich input-output coupling. Tasks in MCP-Bench test agents' ability to retrieve relevant tools from fuzzy instructions without explicit tool names, plan multi-hop execution trajectories for complex objectives, ground responses in intermediate tool outputs, and orchestrate cross-domain workflows - capabilities not adequately evaluated by existing benchmarks that rely on explicit tool specifications, shallow few-step workflows, and isolated domain operations. We propose a multi-faceted evaluation framework covering tool-level schema understanding and usage, trajectory-level planning, and task completion. Experiments on 20 advanced LLMs reveal persistent challenges in MCP-Bench. Code and data: https://github.com/Accenture/mcp-bench.
Why Do Multi-Agent LLM Systems Fail?
Despite growing enthusiasm for Multi-Agent Systems (MAS), where multiple LLM agents collaborate to accomplish tasks, their performance gains across popular benchmarks remain minimal compared to single-agent frameworks. This gap highlights the need to analyze the challenges hindering MAS effectiveness. In this paper, we present the first comprehensive study of MAS challenges. We analyze five popular MAS frameworks across over 150 tasks, involving six expert human annotators. We identify 14 unique failure modes and propose a comprehensive taxonomy applicable to various MAS frameworks. This taxonomy emerges iteratively from agreements among three expert annotators per study, achieving a Cohen's Kappa score of 0.88. These fine-grained failure modes are organized into 3 categories, (i) specification and system design failures, (ii) inter-agent misalignment, and (iii) task verification and termination. To support scalable evaluation, we integrate MASFT with LLM-as-a-Judge. We also explore if identified failures could be easily prevented by proposing two interventions: improved specification of agent roles and enhanced orchestration strategies. Our findings reveal that identified failures require more complex solutions, highlighting a clear roadmap for future research. We open-source our dataset and LLM annotator.
You Don't Know Until You Click:Automated GUI Testing for Production-Ready Software Evaluation
Large Language Models (LLMs) and code agents in software development are rapidly evolving from generating isolated code snippets to producing full-fledged software applications with graphical interfaces, interactive logic, and dynamic behaviors. However, current benchmarks fall short in evaluating such production-ready software, as they often rely on static checks or binary pass/fail scripts, failing to capture the interactive behaviors and runtime dynamics that define real-world usability - qualities that only emerge when an application is actively used. This is the blind spot of current evaluation: you don't know if an app works until you click through it, interact with it, and observe how it responds. To bridge this gap, we introduce RealDevWorld, a novel evaluation framework for automated end-to-end assessment of LLMs' ability to generate production-ready repositories from scratch. It features two key components: (1) RealDevBench, a diverse collection of 194 open-ended software engineering tasks across multiple domains, incorporating multimodal elements to reflect real-world complexity; and (2) AppEvalPilot, a new agent-as-a-judge evaluation system that simulates realistic, GUI-based user interactions to automatically and holistically assess software functional correctness, visual fidelity, and runtime behavior. The framework delivers fine-grained, task-specific diagnostic feedback, supporting nuanced evaluation beyond simple success/failure judgments. Empirical results show that RealDevWorld delivers effective, automatic, and human-aligned evaluations, achieving an accuracy of 0.92 and a correlation of 0.85 with expert human assessments, while significantly reducing the reliance on manual review. This enables scalable, human-aligned assessment of production-level software generated by LLMs. Our code is available on GitHub.
LLMs-as-Judges: A Comprehensive Survey on LLM-based Evaluation Methods
The rapid advancement of Large Language Models (LLMs) has driven their expanding application across various fields. One of the most promising applications is their role as evaluators based on natural language responses, referred to as ''LLMs-as-judges''. This framework has attracted growing attention from both academia and industry due to their excellent effectiveness, ability to generalize across tasks, and interpretability in the form of natural language. This paper presents a comprehensive survey of the LLMs-as-judges paradigm from five key perspectives: Functionality, Methodology, Applications, Meta-evaluation, and Limitations. We begin by providing a systematic definition of LLMs-as-Judges and introduce their functionality (Why use LLM judges?). Then we address methodology to construct an evaluation system with LLMs (How to use LLM judges?). Additionally, we investigate the potential domains for their application (Where to use LLM judges?) and discuss methods for evaluating them in various contexts (How to evaluate LLM judges?). Finally, we provide a detailed analysis of the limitations of LLM judges and discuss potential future directions. Through a structured and comprehensive analysis, we aim aims to provide insights on the development and application of LLMs-as-judges in both research and practice. We will continue to maintain the relevant resource list at https://github.com/CSHaitao/Awesome-LLMs-as-Judges.
ReviewRL: Towards Automated Scientific Review with RL
Peer review is essential for scientific progress but faces growing challenges due to increasing submission volumes and reviewer fatigue. Existing automated review approaches struggle with factual accuracy, rating consistency, and analytical depth, often generating superficial or generic feedback lacking the insights characteristic of high-quality human reviews. We introduce ReviewRL, a reinforcement learning framework for generating comprehensive and factually grounded scientific paper reviews. Our approach combines: (1) an ArXiv-MCP retrieval-augmented context generation pipeline that incorporates relevant scientific literature, (2) supervised fine-tuning that establishes foundational reviewing capabilities, and (3) a reinforcement learning procedure with a composite reward function that jointly enhances review quality and rating accuracy. Experiments on ICLR 2025 papers demonstrate that ReviewRL significantly outperforms existing methods across both rule-based metrics and model-based quality assessments. ReviewRL establishes a foundational framework for RL-driven automatic critique generation in scientific discovery, demonstrating promising potential for future development in this domain. The implementation of ReviewRL will be released at GitHub.
Evaluating D-MERIT of Partial-annotation on Information Retrieval
Retrieval models are often evaluated on partially-annotated datasets. Each query is mapped to a few relevant texts and the remaining corpus is assumed to be irrelevant. As a result, models that successfully retrieve false negatives are punished in evaluation. Unfortunately, completely annotating all texts for every query is not resource efficient. In this work, we show that using partially-annotated datasets in evaluation can paint a distorted picture. We curate D-MERIT, a passage retrieval evaluation set from Wikipedia, aspiring to contain all relevant passages for each query. Queries describe a group (e.g., ``journals about linguistics'') and relevant passages are evidence that entities belong to the group (e.g., a passage indicating that Language is a journal about linguistics). We show that evaluating on a dataset containing annotations for only a subset of the relevant passages might result in misleading ranking of the retrieval systems and that as more relevant texts are included in the evaluation set, the rankings converge. We propose our dataset as a resource for evaluation and our study as a recommendation for balance between resource-efficiency and reliable evaluation when annotating evaluation sets for text retrieval.
IQA-EVAL: Automatic Evaluation of Human-Model Interactive Question Answering
To evaluate Large Language Models (LLMs) for question answering (QA), traditional methods typically focus on directly assessing the immediate responses generated by the models based on the given question and context. In the common use case of humans seeking AI assistant's help in finding information, these non-interactive evaluations do not account for the dynamic nature of human-model conversations, and interaction-aware evaluations have shown that accurate QA models are preferred by humans (Lee et al., 2023). Recent works in human-computer interaction (HCI) have employed human evaluators to conduct interactions and evaluations, but they are often prohibitively expensive and time-consuming to scale. In this work, we introduce an automatic evaluation framework IQA-EVAL to Interactive Question Answering Evaluation. More specifically, we introduce LLM-based Evaluation Agent (LEA) that can: (1) simulate human behaviors to generate interactions with IQA models; (2) automatically evaluate the generated interactions. Moreover, we propose assigning personas to LEAs to better simulate groups of real human evaluators. We show that: (1) our evaluation framework with GPT-4 (or Claude) as the backbone model achieves a high correlation with human evaluations on the IQA task; (2) assigning personas to LEA to better represent the crowd further significantly improves correlations. Finally, we use our automatic metric to evaluate five recent representative LLMs with over 1000 questions from complex and ambiguous question answering tasks, which comes with a substantial cost of $5k if evaluated by humans.
TP-Eval: Tap Multimodal LLMs' Potential in Evaluation by Customizing Prompts
Recently, multimodal large language models (MLLMs) have received much attention for their impressive capabilities. The evaluation of MLLMs is becoming critical to analyzing attributes of MLLMs and providing valuable insights. However, current benchmarks overlook the problem of prompt sensitivity - minor prompt variations may lead to significant performance fluctuations. Thus, inappropriate prompts may obscure the models' capabilities, underestimating the models' performance. Moreover, different models have different preferences for different prompts, and thus, using the same prompt for all models will cause evaluation bias. This paper analyzes this deficiency in existing benchmarks and further introduces a new evaluation framework named TP-Eval, which introduces a prompt customization method to reduce evaluation biases and tap models' potential. TP-Eval will rewrite the original prompts to different customized prompts for different models. In particular, we propose some well-designed modules for prompt customization tailored to the scenario of MLLM evaluation. Extensive experiments demonstrate the effectiveness of our approach to uncovering models' capabilities, and TP-Eval should benefit the community in developing more comprehensive and convincing MLLM evaluation benchmarks.
A Closer Look into Automatic Evaluation Using Large Language Models
Using large language models (LLMs) to evaluate text quality has recently gained popularity. Some prior works explore the idea of using LLMs for evaluation, while they differ in some details of the evaluation process. In this paper, we analyze LLM evaluation (Chiang and Lee, 2023) and G-Eval (Liu et al., 2023), and we discuss how those details in the evaluation process change how well the ratings given by LLMs correlate with human ratings. We find that the auto Chain-of-Thought (CoT) used in G-Eval does not always make G-Eval more aligned with human ratings. We also show that forcing the LLM to output only a numeric rating, as in G-Eval, is suboptimal. Last, we reveal that asking the LLM to explain its own ratings consistently improves the correlation between the ChatGPT and human ratings and pushes state-of-the-art (SoTA) correlations on two meta-evaluation datasets.
Leveraging Large Language Models for Enhanced Product Descriptions in eCommerce
In the dynamic field of eCommerce, the quality and comprehensiveness of product descriptions are pivotal for enhancing search visibility and customer engagement. Effective product descriptions can address the 'cold start' problem, align with market trends, and ultimately lead to increased click-through rates. Traditional methods for crafting these descriptions often involve significant human effort and may lack both consistency and scalability. This paper introduces a novel methodology for automating product description generation using the LLAMA 2.0 7B language model. We train the model on a dataset of authentic product descriptions from Walmart, one of the largest eCommerce platforms. The model is then fine-tuned for domain-specific language features and eCommerce nuances to enhance its utility in sales and user engagement. We employ multiple evaluation metrics, including NDCG, customer click-through rates, and human assessments, to validate the effectiveness of our approach. Our findings reveal that the system is not only scalable but also significantly reduces the human workload involved in creating product descriptions. This study underscores the considerable potential of large language models like LLAMA 2.0 7B in automating and optimizing various facets of eCommerce platforms, offering significant business impact, including improved search functionality and increased sales.
Elo Uncovered: Robustness and Best Practices in Language Model Evaluation
In Natural Language Processing (NLP), the Elo rating system, originally designed for ranking players in dynamic games such as chess, is increasingly being used to evaluate Large Language Models (LLMs) through "A vs B" paired comparisons. However, while popular, the system's suitability for assessing entities with constant skill levels, such as LLMs, remains relatively unexplored. We study two fundamental axioms that evaluation methods should adhere to: reliability and transitivity. We conduct extensive evaluation of Elo behaviour, illustrating that individual Elo computations exhibit volatility and delving into the impact of varying the Elo rating system's hyperparameters. We show that these axioms are not always satisfied raising questions about the reliability of current comparative evaluations of LLMs. If the current use of Elo scores is intended to substitute the costly head-to-head comparison of LLMs, it is crucial to ensure the ranking is as robust as possible. Guided by the axioms, our findings offer concrete guidelines for enhancing the reliability of LLM evaluation methods, suggesting a need for reassessment of existing comparative approaches.
Efficient Telecom Specific LLM: TSLAM-Mini with QLoRA and Digital Twin Data
General-purpose large language models (LLMs), despite their broad capabilities accrued from open-world data, frequently exhibit suboptimal performance when confronted with the nuanced and specialized demands inherent in real-time telecommunications applications. This investigation addresses this critical limitation through the meticulous fine-tuning of TSLAM-Mini developed by NetoAI, a compact (3.8-billion parameter) causal language model architecturally derived from Phi-4 Mini Instruct 4B. The fine-tuning regimen leverages a bespoke dataset comprising 100,000 samples, strategically engineered to address 20 pivotal telecommunications use-cases, encompassing domains such as Network Fundamentals, IP Routing, MPLS, Network Security, Automation, OSS/BSS, RAN, Mobile Core, Satellite Communications, and Ethical AI. This dataset was curated utilizing NetoAI's DigiTwin platform, enriched with granular insights from venerated network Subject Matter Experts (SMEs) and authoritative RFC documents, thereby capturing high-fidelity representations of real-world network dynamics through simulations inspired by digital twin paradigms. Employing Quantized Low-Rank Adaptation (QLoRA), a state-of-the-art Parameter Efficient Fine-Tuning (PEFT) technique, we achieved substantial training efficiency and enabled prospective deployment on resource-constrained hardware. A novel evaluation framework, predicated on a high-capacity LLM (Qwen3-235B-A22B) functioning as an automated adjudicator, was instituted to rigorously assess instruction-following fidelity and response quality across the specified telecom use-cases. Empirical results unequivocally demonstrate TSLAM-Mini's superior aptitude in telecom-centric applications, underscoring the profound efficacy of domain-specific datasets and PEFT methodologies for advancing intelligent network management.
Rethinking Scale: The Efficacy of Fine-Tuned Open-Source LLMs in Large-Scale Reproducible Social Science Research
Large Language Models (LLMs) are distinguished by their architecture, which dictates their parameter size and performance capabilities. Social scientists have increasingly adopted LLMs for text classification tasks, which are difficult to scale with human coders. While very large, closed-source models often deliver superior performance, their use presents significant risks. These include lack of transparency, potential exposure of sensitive data, challenges to replicability, and dependence on proprietary systems. Additionally, their high costs make them impractical for large-scale research projects. In contrast, open-source models, although available in various sizes, may underperform compared to commercial alternatives if used without further fine-tuning. However, open-source models offer distinct advantages: they can be run locally (ensuring data privacy), fine-tuned for specific tasks, shared within the research community, and integrated into reproducible workflows. This study demonstrates that small, fine-tuned open-source LLMs can achieve equal or superior performance to models such as ChatGPT-4. We further explore the relationship between training set size and fine-tuning efficacy in open-source models. Finally, we propose a hybrid workflow that leverages the strengths of both open and closed models, offering a balanced approach to performance, transparency, and reproducibility.
Lessons from the Trenches on Reproducible Evaluation of Language Models
Effective evaluation of language models remains an open challenge in NLP. Researchers and engineers face methodological issues such as the sensitivity of models to evaluation setup, difficulty of proper comparisons across methods, and the lack of reproducibility and transparency. In this paper we draw on three years of experience in evaluating large language models to provide guidance and lessons for researchers. First, we provide an overview of common challenges faced in language model evaluation. Second, we delineate best practices for addressing or lessening the impact of these challenges on research. Third, we present the Language Model Evaluation Harness (lm-eval): an open source library for independent, reproducible, and extensible evaluation of language models that seeks to address these issues. We describe the features of the library as well as case studies in which the library has been used to alleviate these methodological concerns.
Retrieval-Augmented Generation for Large Language Models: A Survey
Large language models (LLMs) demonstrate powerful capabilities, but they still face challenges in practical applications, such as hallucinations, slow knowledge updates, and lack of transparency in answers. Retrieval-Augmented Generation (RAG) refers to the retrieval of relevant information from external knowledge bases before answering questions with LLMs. RAG has been demonstrated to significantly enhance answer accuracy, reduce model hallucination, particularly for knowledge-intensive tasks. By citing sources, users can verify the accuracy of answers and increase trust in model outputs. It also facilitates knowledge updates and the introduction of domain-specific knowledge. RAG effectively combines the parameterized knowledge of LLMs with non-parameterized external knowledge bases, making it one of the most important methods for implementing large language models. This paper outlines the development paradigms of RAG in the era of LLMs, summarizing three paradigms: Naive RAG, Advanced RAG, and Modular RAG. It then provides a summary and organization of the three main components of RAG: retriever, generator, and augmentation methods, along with key technologies in each component. Furthermore, it discusses how to evaluate the effectiveness of RAG models, introducing two evaluation methods for RAG, emphasizing key metrics and abilities for evaluation, and presenting the latest automatic evaluation framework. Finally, potential future research directions are introduced from three aspects: vertical optimization, horizontal scalability, and the technical stack and ecosystem of RAG.
PPTAgent: Generating and Evaluating Presentations Beyond Text-to-Slides
Automatically generating presentations from documents is a challenging task that requires balancing content quality, visual design, and structural coherence. Existing methods primarily focus on improving and evaluating the content quality in isolation, often overlooking visual design and structural coherence, which limits their practical applicability. To address these limitations, we propose PPTAgent, which comprehensively improves presentation generation through a two-stage, edit-based approach inspired by human workflows. PPTAgent first analyzes reference presentations to understand their structural patterns and content schemas, then drafts outlines and generates slides through code actions to ensure consistency and alignment. To comprehensively evaluate the quality of generated presentations, we further introduce PPTEval, an evaluation framework that assesses presentations across three dimensions: Content, Design, and Coherence. Experiments show that PPTAgent significantly outperforms traditional automatic presentation generation methods across all three dimensions. The code and data are available at https://github.com/icip-cas/PPTAgent.
Evaluating Large Language Models: A Comprehensive Survey
Large language models (LLMs) have demonstrated remarkable capabilities across a broad spectrum of tasks. They have attracted significant attention and been deployed in numerous downstream applications. Nevertheless, akin to a double-edged sword, LLMs also present potential risks. They could suffer from private data leaks or yield inappropriate, harmful, or misleading content. Additionally, the rapid progress of LLMs raises concerns about the potential emergence of superintelligent systems without adequate safeguards. To effectively capitalize on LLM capacities as well as ensure their safe and beneficial development, it is critical to conduct a rigorous and comprehensive evaluation of LLMs. This survey endeavors to offer a panoramic perspective on the evaluation of LLMs. We categorize the evaluation of LLMs into three major groups: knowledge and capability evaluation, alignment evaluation and safety evaluation. In addition to the comprehensive review on the evaluation methodologies and benchmarks on these three aspects, we collate a compendium of evaluations pertaining to LLMs' performance in specialized domains, and discuss the construction of comprehensive evaluation platforms that cover LLM evaluations on capabilities, alignment, safety, and applicability. We hope that this comprehensive overview will stimulate further research interests in the evaluation of LLMs, with the ultimate goal of making evaluation serve as a cornerstone in guiding the responsible development of LLMs. We envision that this will channel their evolution into a direction that maximizes societal benefit while minimizing potential risks. A curated list of related papers has been publicly available at https://github.com/tjunlp-lab/Awesome-LLMs-Evaluation-Papers.
Not All Metrics Are Guilty: Improving NLG Evaluation by Diversifying References
Most research about natural language generation (NLG) relies on evaluation benchmarks with limited references for a sample, which may result in poor correlations with human judgements. The underlying reason is that one semantic meaning can actually be expressed in different forms, and the evaluation with a single or few references may not accurately reflect the quality of the model's hypotheses. To address this issue, this paper presents a simple and effective method, named Div-Ref, to enhance existing evaluation benchmarks by enriching the number of references. We leverage large language models (LLMs) to diversify the expression of a single reference into multiple high-quality ones to cover the semantic space of the reference sentence as much as possible. We conduct comprehensive experiments to empirically demonstrate that diversifying the expression of reference can significantly enhance the correlation between automatic evaluation and human evaluation. This idea is compatible with recent LLM-based evaluation which can similarly derive advantages from incorporating multiple references. We strongly encourage future generation benchmarks to include more references, even if they are generated by LLMs, which is once for all. We release all the code and data at https://github.com/RUCAIBox/Div-Ref to facilitate research.
KPEval: Towards Fine-grained Semantic-based Evaluation of Keyphrase Extraction and Generation Systems
Despite the significant advancements in keyphrase extraction and keyphrase generation methods, the predominant approach for evaluation only relies on exact matching with human references and disregards reference-free attributes. This scheme fails to recognize systems that generate keyphrases that are semantically equivalent to the references or keyphrases that have practical utility. To better understand the strengths and weaknesses of different keyphrase systems, we propose a comprehensive evaluation framework consisting of six critical dimensions: naturalness, faithfulness, saliency, coverage, diversity, and utility. For each dimension, we discuss the desiderata and design semantic-based metrics that align with the evaluation objectives. Rigorous meta-evaluation studies demonstrate that our evaluation strategy correlates better with human preferences compared to a range of previously used metrics. Using this framework, we re-evaluate 18 keyphrase systems and further discover that (1) the best model differs in different dimensions, with pre-trained language models achieving the best in most dimensions; (2) the utility in downstream tasks does not always correlate well with reference-based metrics; and (3) large language models exhibit a strong performance in reference-free evaluation.
Zero-shot Benchmarking: A Framework for Flexible and Scalable Automatic Evaluation of Language Models
As language models improve and become capable of performing more complex tasks across modalities, evaluating them automatically becomes increasingly challenging. Developing strong and robust task-specific automatic metrics gets harder, and human-annotated test sets -- which are expensive to create -- saturate more quickly. A compelling alternative is to design reliable strategies to automate the creation of test data and evaluation, but previous attempts either rely on pre-existing data, or focus solely on individual tasks. We present Zero-shot Benchmarking (ZSB), a framework for creating high-quality benchmarks for any task by leveraging language models for both synthetic test data creation and evaluation. ZSB is simple and flexible: it requires only the creation of a prompt for data generation and one for evaluation; it is scalable to tasks and languages where collecting real-world data is costly or impractical; it is model-agnostic, allowing the creation of increasingly challenging benchmarks as models improve. To assess the effectiveness of our framework, we create benchmarks for five text-only tasks and a multi-modal one: general capabilities in four languages (English, Chinese, French, and Korean), translation, and general vision-language capabilities in English. We then rank a broad range of open and closed systems on our benchmarks. ZSB rankings consistently correlate strongly with human rankings, outperforming widely-adopted standard benchmarks. Through ablations, we find that strong benchmarks can be created with open models, and that judge model size and dataset variety are crucial drivers of performance. We release all our benchmarks, and code to reproduce our experiments and to produce new benchmarks.
Can Large Multimodal Models Actively Recognize Faulty Inputs? A Systematic Evaluation Framework of Their Input Scrutiny Ability
Large Multimodal Models (LMMs) have witnessed remarkable growth, showcasing formidable capabilities in handling intricate multimodal tasks with exceptional performance. Recent research has underscored the inclination of large language models to passively accept defective inputs, often resulting in futile reasoning on invalid prompts. However, the same critical question of whether LMMs can actively detect and scrutinize erroneous inputs still remains unexplored. To address this gap, we introduce the Input Scrutiny Ability Evaluation Framework (ISEval), which encompasses seven categories of flawed premises and three evaluation metrics. Our extensive evaluation of ten advanced LMMs has identified key findings. Most models struggle to actively detect flawed textual premises without guidance, which reflects a strong reliance on explicit prompts for premise error identification. Error type affects performance: models excel at identifying logical fallacies but struggle with surface-level linguistic errors and certain conditional flaws. Modality trust varies-Gemini 2.5 pro and Claude Sonnet 4 balance visual and textual info, while aya-vision-8b over-rely on text in conflicts. These insights underscore the urgent need to enhance LMMs' proactive verification of input validity and shed novel insights into mitigating the problem. The code is available at https://github.com/MLGroupJLU/LMM_ISEval.
Toward an Evaluation Science for Generative AI Systems
There is an increasing imperative to anticipate and understand the performance and safety of generative AI systems in real-world deployment contexts. However, the current evaluation ecosystem is insufficient: Commonly used static benchmarks face validity challenges, and ad hoc case-by-case audits rarely scale. In this piece, we advocate for maturing an evaluation science for generative AI systems. While generative AI creates unique challenges for system safety engineering and measurement science, the field can draw valuable insights from the development of safety evaluation practices in other fields, including transportation, aerospace, and pharmaceutical engineering. In particular, we present three key lessons: Evaluation metrics must be applicable to real-world performance, metrics must be iteratively refined, and evaluation institutions and norms must be established. Applying these insights, we outline a concrete path toward a more rigorous approach for evaluating generative AI systems.
WebCanvas: Benchmarking Web Agents in Online Environments
For web agents to be practically useful, they must adapt to the continuously evolving web environment characterized by frequent updates to user interfaces and content. However, most existing benchmarks only capture the static aspects of the web. To bridge this gap, we introduce WebCanvas, an innovative online evaluation framework for web agents that effectively addresses the dynamic nature of web interactions. WebCanvas contains three main components to facilitate realistic assessments: (1) A novel evaluation metric which reliably capture critical intermediate actions or states necessary for task completions while disregarding noise caused by insignificant events or changed web-elements. (2) A benchmark dataset called Mind2Web-Live, a refined version of original Mind2Web static dataset containing 542 tasks with 2439 intermediate evaluation states; (3) Lightweight and generalizable annotation tools and testing pipelines that enables the community to collect and maintain the high-quality, up-to-date dataset. Building on WebCanvas, we open-source an agent framework with extensible modules for reasoning, providing a foundation for the community to conduct online inference and evaluations. Our best-performing agent achieves a task success rate of 23.1% and a task completion rate of 48.8% on the Mind2Web-Live test set. Additionally, we analyze the performance discrepancies across various websites, domains, and experimental environments. We encourage the community to contribute further insights on online agent evaluation, thereby advancing this field of research.
POLYRAG: Integrating Polyviews into Retrieval-Augmented Generation for Medical Applications
Large language models (LLMs) have become a disruptive force in the industry, introducing unprecedented capabilities in natural language processing, logical reasoning and so on. However, the challenges of knowledge updates and hallucination issues have limited the application of LLMs in medical scenarios, where retrieval-augmented generation (RAG) can offer significant assistance. Nevertheless, existing retrieve-then-read approaches generally digest the retrieved documents, without considering the timeliness, authoritativeness and commonality of retrieval. We argue that these approaches can be suboptimal, especially in real-world applications where information from different sources might conflict with each other and even information from the same source in different time scale might be different, and totally relying on this would deteriorate the performance of RAG approaches. We propose PolyRAG that carefully incorporate judges from different perspectives and finally integrate the polyviews for retrieval augmented generation in medical applications. Due to the scarcity of real-world benchmarks for evaluation, to bridge the gap we propose PolyEVAL, a benchmark consists of queries and documents collected from real-world medical scenarios (including medical policy, hospital & doctor inquiry and healthcare) with multiple tagging (e.g., timeliness, authoritativeness) on them. Extensive experiments and analysis on PolyEVAL have demonstrated the superiority of PolyRAG.
Déjà Vu: Multilingual LLM Evaluation through the Lens of Machine Translation Evaluation
Generation capabilities and language coverage of multilingual large language models (mLLMs) are advancing rapidly. However, evaluation practices for generative abilities of mLLMs are still lacking comprehensiveness, scientific rigor, and consistent adoption across research labs, which undermines their potential to meaningfully guide mLLM development. We draw parallels with machine translation (MT) evaluation, a field that faced similar challenges and has, over decades, developed transparent reporting standards and reliable evaluations for multilingual generative models. Through targeted experiments across key stages of the generative evaluation pipeline, we demonstrate how best practices from MT evaluation can deepen the understanding of quality differences between models. Additionally, we identify essential components for robust meta-evaluation of mLLMs, ensuring the evaluation methods themselves are rigorously assessed. We distill these insights into a checklist of actionable recommendations for mLLM research and development.
UTMath: Math Evaluation with Unit Test via Reasoning-to-Coding Thoughts
The evaluation of mathematical reasoning capabilities is essential for advancing Artificial General Intelligence (AGI). While Large Language Models (LLMs) have shown impressive performance in solving mathematical problems, existing benchmarks such as GSM8K and MATH present limitations, including narrow problem definitions with specific numbers and reliance on predetermined rules that hinder accurate assessments of reasoning and adaptability. This paper introduces the UTMath Benchmark, which robustly evaluates the models through extensive unit tests. It consists of 1,053 problems across 9 mathematical domains, with over 68 test cases per problem. We propose an innovative evaluation framework inspired by unit testing in software development, focusing on both accuracy and reliability of results. Furthermore, we introduce the Reasoning-to-Coding of Thoughts (RCoT) approach, which encourages LLMs to perform explicit reasoning before generating code, leading to generating more advanced solution and improved performance. Furthermore, we are releasing not only the UTMath benchmark but also the UTMath-Train training dataset (more than 70k samples), to support the community in further exploring mathematical reasoning.
Datasheets Aren't Enough: DataRubrics for Automated Quality Metrics and Accountability
High-quality datasets are fundamental to training and evaluating machine learning models, yet their creation-especially with accurate human annotations-remains a significant challenge. Many dataset paper submissions lack originality, diversity, or rigorous quality control, and these shortcomings are often overlooked during peer review. Submissions also frequently omit essential details about dataset construction and properties. While existing tools such as datasheets aim to promote transparency, they are largely descriptive and do not provide standardized, measurable methods for evaluating data quality. Similarly, metadata requirements at conferences promote accountability but are inconsistently enforced. To address these limitations, this position paper advocates for the integration of systematic, rubric-based evaluation metrics into the dataset review process-particularly as submission volumes continue to grow. We also explore scalable, cost-effective methods for synthetic data generation, including dedicated tools and LLM-as-a-judge approaches, to support more efficient evaluation. As a call to action, we introduce DataRubrics, a structured framework for assessing the quality of both human- and model-generated datasets. Leveraging recent advances in LLM-based evaluation, DataRubrics offers a reproducible, scalable, and actionable solution for dataset quality assessment, enabling both authors and reviewers to uphold higher standards in data-centric research. We also release code to support reproducibility of LLM-based evaluations at https://github.com/datarubrics/datarubrics.
DeepResearchGym: A Free, Transparent, and Reproducible Evaluation Sandbox for Deep Research
Deep research systems represent an emerging class of agentic information retrieval methods that generate comprehensive and well-supported reports to complex queries. However, most existing frameworks rely on dynamic commercial search APIs, which pose reproducibility and transparency challenges in addition to their cost. To address these limitations, we introduce DeepResearchGym, an open-source sandbox that combines a reproducible search API with a rigorous evaluation protocol for benchmarking deep research systems. The API indexes large-scale public web corpora, namely ClueWeb22 and FineWeb, using a state-of-the-art dense retriever and approximate nearest neighbor search via DiskANN. It achieves lower latency than popular commercial APIs while ensuring stable document rankings across runs, and is freely available for research use. To evaluate deep research systems' outputs, we extend the Researchy Questions benchmark with automatic metrics through LLM-as-a-judge assessments to measure alignment with users' information needs, retrieval faithfulness, and report quality. Experimental results show that systems integrated with DeepResearchGym achieve performance comparable to those using commercial APIs, with performance rankings remaining consistent across evaluation metrics. A human evaluation study further confirms that our automatic protocol aligns with human preferences, validating the framework's ability to help support controlled assessment of deep research systems. Our code and API documentation are available at https://www.deepresearchgym.ai.
Chain of Ideas: Revolutionizing Research in Novel Idea Development with LLM Agents
Effective research ideation is a critical step for scientific research. However, the exponential increase in scientific literature makes it challenging for researchers to stay current with recent advances and identify meaningful research directions. Recent developments in large language models~(LLMs) suggest a promising avenue for automating the generation of novel research ideas. However, existing methods for idea generation either trivially prompt LLMs or directly expose LLMs to extensive literature without indicating useful information. Inspired by the research process of human researchers, we propose a Chain-of-Ideas~(CoI) agent, an LLM-based agent that organizes relevant literature in a chain structure to effectively mirror the progressive development in a research domain. This organization facilitates LLMs to capture the current advancements in research, thereby enhancing their ideation capabilities. Furthermore, we propose Idea Arena, an evaluation protocol that can comprehensively evaluate idea generation methods from different perspectives, aligning closely with the preferences of human researchers. Experimental results indicate that the CoI agent consistently outperforms other methods and shows comparable quality as humans in research idea generation. Moreover, our CoI agent is budget-friendly, with a minimum cost of \$0.50 to generate a candidate idea and its corresponding experimental design.
How to Select Datapoints for Efficient Human Evaluation of NLG Models?
Human evaluation is the gold-standard for evaluating text generation models. It is also expensive, and to fit budgetary constraints, a random subset of the test data is often chosen in practice. The randomly selected data may not accurately represent test performance, making this approach economically inefficient for model comparison. Thus, in this work, we develop a suite of selectors to get the most informative datapoints for human evaluation while taking the evaluation costs into account. We show that selectors based on variance in automated metric scores, diversity in model outputs, or Item Response Theory outperform random selection. We further develop an approach to distill these selectors to the scenario where the model outputs are not yet available. In particular, we introduce source-based estimators, which predict item usefulness for human evaluation just based on the source texts. We demonstrate the efficacy of our selectors in two common NLG tasks, machine translation and summarization, and show that up to only ~50% of the test data is needed to produce the same evaluation result as the entire data. Our implementations are published in the subset2evaluate package.
Autonomous Evaluation and Refinement of Digital Agents
We show that domain-general automatic evaluators can significantly improve the performance of agents for web navigation and device control. We experiment with multiple evaluation models that trade off between inference cost, modularity of design, and accuracy. We validate the performance of these models in several popular benchmarks for digital agents, finding between 74.4 and 92.9% agreement with oracle evaluation metrics. Finally, we use these evaluators to improve the performance of existing agents via fine-tuning and inference-time guidance. Without any additional supervision, we improve state-of-the-art performance by 29% on the popular benchmark WebArena, and achieve a 75% relative improvement in a challenging domain transfer scenario.
Evaluation of Retrieval-Augmented Generation: A Survey
Retrieval-Augmented Generation (RAG) has recently gained traction in natural language processing. Numerous studies and real-world applications are leveraging its ability to enhance generative models through external information retrieval. Evaluating these RAG systems, however, poses unique challenges due to their hybrid structure and reliance on dynamic knowledge sources. To better understand these challenges, we conduct A Unified Evaluation Process of RAG (Auepora) and aim to provide a comprehensive overview of the evaluation and benchmarks of RAG systems. Specifically, we examine and compare several quantifiable metrics of the Retrieval and Generation components, such as relevance, accuracy, and faithfulness, within the current RAG benchmarks, encompassing the possible output and ground truth pairs. We then analyze the various datasets and metrics, discuss the limitations of current benchmarks, and suggest potential directions to advance the field of RAG benchmarks.
AlphaEval: A Comprehensive and Efficient Evaluation Framework for Formula Alpha Mining
Formula alpha mining, which generates predictive signals from financial data, is critical for quantitative investment. Although various algorithmic approaches-such as genetic programming, reinforcement learning, and large language models-have significantly expanded the capacity for alpha discovery, systematic evaluation remains a key challenge. Existing evaluation metrics predominantly include backtesting and correlation-based measures. Backtesting is computationally intensive, inherently sequential, and sensitive to specific strategy parameters. Correlation-based metrics, though efficient, assess only predictive ability and overlook other crucial properties such as temporal stability, robustness, diversity, and interpretability. Additionally, the closed-source nature of most existing alpha mining models hinders reproducibility and slows progress in this field. To address these issues, we propose AlphaEval, a unified, parallelizable, and backtest-free evaluation framework for automated alpha mining models. AlphaEval assesses the overall quality of generated alphas along five complementary dimensions: predictive power, stability, robustness to market perturbations, financial logic, and diversity. Extensive experiments across representative alpha mining algorithms demonstrate that AlphaEval achieves evaluation consistency comparable to comprehensive backtesting, while providing more comprehensive insights and higher efficiency. Furthermore, AlphaEval effectively identifies superior alphas compared to traditional single-metric screening approaches. All implementations and evaluation tools are open-sourced to promote reproducibility and community engagement.
ReliableEval: A Recipe for Stochastic LLM Evaluation via Method of Moments
LLMs are highly sensitive to prompt phrasing, yet standard benchmarks typically report performance using a single prompt, raising concerns about the reliability of such evaluations. In this work, we argue for a stochastic method of moments evaluation over the space of meaning-preserving prompt perturbations. We introduce a formal definition of reliable evaluation that accounts for prompt sensitivity, and suggest ReliableEval - a method for estimating the number of prompt resamplings needed to obtain meaningful results. Using our framework, we stochastically evaluate five frontier LLMs and find that even top-performing models like GPT-4o and Claude-3.7-Sonnet exhibit substantial prompt sensitivity. Our approach is model-, task-, and metric-agnostic, offering a recipe for meaningful and robust LLM evaluation.
ImagenHub: Standardizing the evaluation of conditional image generation models
Recently, a myriad of conditional image generation and editing models have been developed to serve different downstream tasks, including text-to-image generation, text-guided image editing, subject-driven image generation, control-guided image generation, etc. However, we observe huge inconsistencies in experimental conditions: datasets, inference, and evaluation metrics - render fair comparisons difficult. This paper proposes ImagenHub, which is a one-stop library to standardize the inference and evaluation of all the conditional image generation models. Firstly, we define seven prominent tasks and curate high-quality evaluation datasets for them. Secondly, we built a unified inference pipeline to ensure fair comparison. Thirdly, we design two human evaluation scores, i.e. Semantic Consistency and Perceptual Quality, along with comprehensive guidelines to evaluate generated images. We train expert raters to evaluate the model outputs based on the proposed metrics. Our human evaluation achieves a high inter-worker agreement of Krippendorff's alpha on 76% models with a value higher than 0.4. We comprehensively evaluated a total of around 30 models and observed three key takeaways: (1) the existing models' performance is generally unsatisfying except for Text-guided Image Generation and Subject-driven Image Generation, with 74% models achieving an overall score lower than 0.5. (2) we examined the claims from published papers and found 83% of them hold with a few exceptions. (3) None of the existing automatic metrics has a Spearman's correlation higher than 0.2 except subject-driven image generation. Moving forward, we will continue our efforts to evaluate newly published models and update our leaderboard to keep track of the progress in conditional image generation.
A Survey on Evaluation of Large Language Models
Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: https://github.com/MLGroupJLU/LLM-eval-survey.
Improving Interpersonal Communication by Simulating Audiences with Language Models
How do we communicate with others to achieve our goals? We use our prior experience or advice from others, or construct a candidate utterance by predicting how it will be received. However, our experiences are limited and biased, and reasoning about potential outcomes can be difficult and cognitively challenging. In this paper, we explore how we can leverage Large Language Model (LLM) simulations to help us communicate better. We propose the Explore-Generate-Simulate (EGS) framework, which takes as input any scenario where an individual is communicating to an audience with a goal they want to achieve. EGS (1) explores the solution space by producing a diverse set of advice relevant to the scenario, (2) generates communication candidates conditioned on subsets of the advice, and (3) simulates the reactions from various audiences to determine both the best candidate and advice to use. We evaluate the framework on eight scenarios spanning the ten fundamental processes of interpersonal communication. For each scenario, we collect a dataset of human evaluations across candidates and baselines, and showcase that our framework's chosen candidate is preferred over popular generation mechanisms including Chain-of-Thought. We also find that audience simulations achieve reasonably high agreement with human raters across 5 of the 8 scenarios. Finally, we demonstrate the generality of our framework by applying it to real-world scenarios described by users on web forums. Through evaluations and demonstrations, we show that EGS enhances the effectiveness and outcomes of goal-oriented communication across a variety of situations, thus opening up new possibilities for the application of large language models in revolutionizing communication and decision-making processes.
The Open Source Advantage in Large Language Models (LLMs)
Large language models (LLMs) mark a key shift in natural language processing (NLP), having advanced text generation, translation, and domain-specific reasoning. Closed-source models like GPT-4, powered by proprietary datasets and extensive computational resources, lead with state-of-the-art performance today. However, they face criticism for their "black box" nature and for limiting accessibility in a manner that hinders reproducibility and equitable AI development. By contrast, open-source initiatives like LLaMA and BLOOM prioritize democratization through community-driven development and computational efficiency. These models have significantly reduced performance gaps, particularly in linguistic diversity and domain-specific applications, while providing accessible tools for global researchers and developers. Notably, both paradigms rely on foundational architectural innovations, such as the Transformer framework by Vaswani et al. (2017). Closed-source models excel by scaling effectively, while open-source models adapt to real-world applications in underrepresented languages and domains. Techniques like Low-Rank Adaptation (LoRA) and instruction-tuning datasets enable open-source models to achieve competitive results despite limited resources. To be sure, the tension between closed-source and open-source approaches underscores a broader debate on transparency versus proprietary control in AI. Ethical considerations further highlight this divide. Closed-source systems restrict external scrutiny, while open-source models promote reproducibility and collaboration but lack standardized auditing documentation frameworks to mitigate biases. Hybrid approaches that leverage the strengths of both paradigms are likely to shape the future of LLM innovation, ensuring accessibility, competitive technical performance, and ethical deployment.
LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content
The large-scale training of multi-modal models on data scraped from the web has shown outstanding utility in infusing these models with the required world knowledge to perform effectively on multiple downstream tasks. However, one downside of scraping data from the web can be the potential sacrifice of the benchmarks on which the abilities of these models are often evaluated. To safeguard against test data contamination and to truly test the abilities of these foundation models we propose LiveXiv: A scalable evolving live benchmark based on scientific ArXiv papers. LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs (VQA). This is done without any human-in-the-loop, using the multi-modal content in the manuscripts, like graphs, charts, and tables. Moreover, we introduce an efficient evaluation approach that estimates the performance of all models on the evolving benchmark using evaluations of only a subset of models. This significantly reduces the overall evaluation cost. We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities, avoiding contamination. Lastly, in our commitment to high quality, we have collected and evaluated a manually verified subset. By comparing its overall results to our automatic annotations, we have found that the performance variance is indeed minimal (<2.5%). Our dataset is available online on HuggingFace, and our code will be available here.
An Evaluation Protocol for Generative Conversational Systems
There is a multitude of novel generative models for open-domain conversational systems; however, there is no systematic evaluation of different systems. Systematic comparisons require consistency in experimental design, evaluation sets, conversational systems and their outputs, and statistical analysis. We lay out a protocol for the evaluation of conversational models using head-to-head pairwise comparison. We analyze ten recent models that claim state-of-the-art performance using a paired head-to-head performance (win-loss-tie) on five evaluation datasets. Our findings show that DialoGPT and Blender are superior systems using Bradley-Terry model and TrueSkill ranking methods. These findings demonstrate the feasibility of our protocol to evaluate conversational agents and evaluation sets. Finally, we make all code and evaluations publicly available for researchers to compare their model to other state-of-the-art dialog models.
FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research
With the advent of Large Language Models (LLMs), the potential of Retrieval Augmented Generation (RAG) techniques have garnered considerable research attention. Numerous novel algorithms and models have been introduced to enhance various aspects of RAG systems. However, the absence of a standardized framework for implementation, coupled with the inherently intricate RAG process, makes it challenging and time-consuming for researchers to compare and evaluate these approaches in a consistent environment. Existing RAG toolkits like LangChain and LlamaIndex, while available, are often heavy and unwieldy, failing to meet the personalized needs of researchers. In response to this challenge, we propose FlashRAG, an efficient and modular open-source toolkit designed to assist researchers in reproducing existing RAG methods and in developing their own RAG algorithms within a unified framework. Our toolkit implements 12 advanced RAG methods and has gathered and organized 32 benchmark datasets. Our toolkit has various features, including customizable modular framework, rich collection of pre-implemented RAG works, comprehensive datasets, efficient auxiliary pre-processing scripts, and extensive and standard evaluation metrics. Our toolkit and resources are available at https://github.com/RUC-NLPIR/FlashRAG.
GPTScore: Evaluate as You Desire
Generative Artificial Intelligence (AI) has enabled the development of sophisticated models that are capable of producing high-caliber text, images, and other outputs through the utilization of large pre-trained models. Nevertheless, assessing the quality of the generation is an even more arduous task than the generation itself, and this issue has not been given adequate consideration recently. This paper proposes a novel evaluation framework, GPTScore, which utilizes the emergent abilities (e.g., zero-shot instruction) of generative pre-trained models to score generated texts. There are 19 pre-trained models explored in this paper, ranging in size from 80M (e.g., FLAN-T5-small) to 175B (e.g., GPT3). Experimental results on four text generation tasks, 22 evaluation aspects, and corresponding 37 datasets demonstrate that this approach can effectively allow us to achieve what one desires to evaluate for texts simply by natural language instructions. This nature helps us overcome several long-standing challenges in text evaluation--how to achieve customized, multi-faceted evaluation without the need for annotated samples. We make our code publicly available at https://github.com/jinlanfu/GPTScore.
Toward Stable and Consistent Evaluation Results: A New Methodology for Base Model Evaluation
This paper poses two critical issues in evaluating base models (without post-training): (1) Unstable evaluation during training: in the early stages of pre-training, the models lack the capability to answer questions as required, leading to unstable evaluation results. This instability makes it difficult to provide solid conclusions to guide the training, especially for key experiments such as data ablation and scaling law. (2) Inconsistency between base and instruct models: base models generally exhibit poorer evaluation performance compared to corresponding instruct models. This gap poses a challenge for assessing whether a base model with better evaluation can truly lead to a better instruct model. To address these issues, we propose Base model Oriented Systematic Evaluation (BOSE), a method specifically designed to optimize the evaluation of base models. Specifically, BOSE introduces two key innovations: In-Context Light-instruction Prompt (ICLiP) for open-ended tasks and Blank-ppl for multi-choice tasks with candidate options, which transforms the standard perplexity (ppl) metric into a fill-in-the-blank format to mitigate early-stage evaluation fluctuations. Furthermore, we are the first to propose Kendall's rank correlation to quantitatively measure the evaluation stability and consistency. Experimental results demonstrate that BOSE significantly enhances both the stability of evaluations during pre-training and the consistency between base and instruct models, thereby providing more reliable guidance for the LLMs' training.
Improving Model Evaluation using SMART Filtering of Benchmark Datasets
One of the most challenging problems facing NLP today is evaluation. Some of the most pressing issues pertain to benchmark saturation, data contamination, and diversity in the quality of test examples. To address these concerns, we propose Selection Methodology for Accurate, Reduced, and Targeted (SMART) filtering, a novel approach to select a high-quality subset of examples from existing benchmark datasets by systematically removing less informative and less challenging examples. Our approach applies three filtering criteria, removing (i) easy examples, (ii) data-contaminated examples, and (iii) examples that are similar to each other based on distance in an embedding space. We demonstrate the effectiveness of SMART on three multiple choice QA datasets, where our methodology increases efficiency by reducing dataset size by 48\% on average, while increasing Pearson correlation with rankings from ChatBot Arena, a more open-ended human evaluation setting. Our method enables us to be more efficient, whether using SMART to make new benchmarks more challenging or to revitalize older datasets, while still preserving the relative model rankings.
MME-Unify: A Comprehensive Benchmark for Unified Multimodal Understanding and Generation Models
Existing MLLM benchmarks face significant challenges in evaluating Unified MLLMs (U-MLLMs) due to: 1) lack of standardized benchmarks for traditional tasks, leading to inconsistent comparisons; 2) absence of benchmarks for mixed-modality generation, which fails to assess multimodal reasoning capabilities. We present a comprehensive evaluation framework designed to systematically assess U-MLLMs. Our benchmark includes: Standardized Traditional Task Evaluation. We sample from 12 datasets, covering 10 tasks with 30 subtasks, ensuring consistent and fair comparisons across studies." 2. Unified Task Assessment. We introduce five novel tasks testing multimodal reasoning, including image editing, commonsense QA with image generation, and geometric reasoning. 3. Comprehensive Model Benchmarking. We evaluate 12 leading U-MLLMs, such as Janus-Pro, EMU3, VILA-U, and Gemini2-flash, alongside specialized understanding (e.g., Claude-3.5-Sonnet) and generation models (e.g., DALL-E-3). Our findings reveal substantial performance gaps in existing U-MLLMs, highlighting the need for more robust models capable of handling mixed-modality tasks effectively. The code and evaluation data can be found in https://mme-unify.github.io/.
Chatbot Arena Meets Nuggets: Towards Explanations and Diagnostics in the Evaluation of LLM Responses
Battles, or side-by-side comparisons in so called arenas that elicit human preferences, have emerged as a popular approach to assessing the output quality of LLMs. Recently, this idea has been extended to retrieval-augmented generation (RAG) systems. While undoubtedly representing an advance in evaluation, battles have at least two drawbacks, particularly in the context of complex information-seeking queries: they are neither explanatory nor diagnostic. Recently, the nugget evaluation methodology has emerged as a promising approach to evaluate the quality of RAG answers. Nuggets decompose long-form LLM-generated answers into atomic facts, highlighting important pieces of information necessary in a "good" response. In this work, we apply our AutoNuggetizer framework to analyze data from roughly 7K Search Arena battles provided by LMArena in a fully automatic manner. Our results show a significant correlation between nugget scores and human preferences, showcasing promise in our approach to explainable and diagnostic system evaluations.
KoLA: Carefully Benchmarking World Knowledge of Large Language Models
The unprecedented performance of large language models (LLMs) necessitates improvements in evaluations. Rather than merely exploring the breadth of LLM abilities, we believe meticulous and thoughtful designs are essential to thorough, unbiased, and applicable evaluations. Given the importance of world knowledge to LLMs, we construct a Knowledge-oriented LLM Assessment benchmark (KoLA), in which we carefully design three crucial factors: (1) For ability modeling, we mimic human cognition to form a four-level taxonomy of knowledge-related abilities, covering 19 tasks. (2) For data, to ensure fair comparisons, we use both Wikipedia, a corpus prevalently pre-trained by LLMs, along with continuously collected emerging corpora, aiming to evaluate the capacity to handle unseen data and evolving knowledge. (3) For evaluation criteria, we adopt a contrastive system, including overall standard scores for better numerical comparability across tasks and models and a unique self-contrast metric for automatically evaluating knowledge hallucination. We evaluate 21 open-source and commercial LLMs and obtain some intriguing findings. The KoLA dataset and open-participation leaderboard are publicly released at https://kola.xlore.cn and will be continuously updated to provide references for developing LLMs and knowledge-related systems.
From Theory to Practice: Plug and Play with Succinct Data Structures
Engineering efficient implementations of compact and succinct structures is a time-consuming and challenging task, since there is no standard library of easy-to- use, highly optimized, and composable components. One consequence is that measuring the practical impact of new theoretical proposals is a difficult task, since older base- line implementations may not rely on the same basic components, and reimplementing from scratch can be very time-consuming. In this paper we present a framework for experimentation with succinct data structures, providing a large set of configurable components, together with tests, benchmarks, and tools to analyze resource requirements. We demonstrate the functionality of the framework by recomposing succinct solutions for document retrieval.
UBENCH: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions
The rapid development of large language models (LLMs) has shown promising practical results. However, their low interpretability often leads to errors in unforeseen circumstances, limiting their utility. Many works have focused on creating comprehensive evaluation systems, but previous benchmarks have primarily assessed problem-solving abilities while neglecting the response's uncertainty, which may result in unreliability. Recent methods for measuring LLM reliability are resource-intensive and unable to test black-box models. To address this, we propose UBENCH, a comprehensive benchmark for evaluating LLM reliability. UBENCH includes 3,978 multiple-choice questions covering knowledge, language, understanding, and reasoning abilities. Experimental results show that UBENCH has achieved state-of-the-art performance, while its single-sampling method significantly saves computational resources compared to baseline methods that require multiple samplings. Additionally, based on UBENCH, we evaluate the reliability of 15 popular LLMs, finding GLM4 to be the most outstanding, closely followed by GPT-4. We also explore the impact of Chain-of-Thought prompts, role-playing prompts, option order, and temperature on LLM reliability, analyzing the varying effects on different LLMs.
A Meta-Evaluation of Style and Attribute Transfer Metrics
LLMs make it easy to rewrite text in any style, be it more polite, persuasive, or more positive. We present a large-scale study of evaluation metrics for style and attribute transfer with a focus on content preservation; meaning content not attributed to the style shift is preserved. The de facto evaluation approach uses lexical or semantic similarity metrics often between source sentences and rewrites. While these metrics are not designed to distinguish between style or content differences, empirical meta-evaluation shows a reasonable correlation to human judgment. In fact, recent works find that LLMs prompted as evaluators are only comparable to semantic similarity metrics, even though intuitively, the LLM approach should better fit the task. To investigate this discrepancy, we benchmark 8 metrics for evaluating content preservation on existing datasets and additionally construct a new test set that better aligns with the meta-evaluation aim. Indeed, we then find that the empirical conclusion aligns with the intuition: content preservation metrics for style/attribute transfer must be conditional on the style shift. To support this, we propose a new efficient zero-shot evaluation method using the likelihood of the next token. We hope our meta-evaluation can foster more research on evaluating content preservation metrics, and also to ensure fair evaluation of methods for conducting style transfer.
Two-layer retrieval augmented generation framework for low-resource medical question-answering: proof of concept using Reddit data
Retrieval augmented generation (RAG) provides the capability to constrain generative model outputs, and mitigate the possibility of hallucination, by providing relevant in-context text. The number of tokens a generative large language model (LLM) can incorporate as context is finite, thus limiting the volume of knowledge from which to generate an answer. We propose a two-layer RAG framework for query-focused answer generation and evaluate a proof-of-concept for this framework in the context of query-focused summary generation from social media forums, focusing on emerging drug-related information. The evaluations demonstrate the effectiveness of the two-layer framework in resource constrained settings to enable researchers in obtaining near real-time data from users.
A Sober Look at Progress in Language Model Reasoning: Pitfalls and Paths to Reproducibility
Reasoning has emerged as the next major frontier for language models (LMs), with rapid advances from both academic and industrial labs. However, this progress often outpaces methodological rigor, with many evaluations relying on benchmarking practices that lack transparency, robustness, or statistical grounding. In this work, we conduct a comprehensive empirical study and find that current mathematical reasoning benchmarks are highly sensitive to subtle implementation choices - including decoding parameters, random seeds, prompt formatting, and even hardware and software-framework configurations. Performance gains reported in recent studies frequently hinge on unclear comparisons or unreported sources of variance. To address these issues, we propose a standardized evaluation framework with clearly defined best practices and reporting standards. Using this framework, we reassess recent methods and find that reinforcement learning (RL) approaches yield only modest improvements - far below prior claims - and are prone to overfitting, especially on small-scale benchmarks like AIME24. In contrast, supervised finetuning (SFT) methods show consistently stronger generalization. To foster reproducibility, we release all code, prompts, and model outputs, for reasoning benchmarks, establishing more rigorous foundations for future work.
WritingBench: A Comprehensive Benchmark for Generative Writing
Recent advancements in large language models (LLMs) have significantly enhanced text generation capabilities, yet evaluating their performance in generative writing remains a challenge. Existing benchmarks primarily focus on generic text generation or limited in writing tasks, failing to capture the diverse requirements of high-quality written contents across various domains. To bridge this gap, we present WritingBench, a comprehensive benchmark designed to evaluate LLMs across 6 core writing domains and 100 subdomains, encompassing creative, persuasive, informative, and technical writing. We further propose a query-dependent evaluation framework that empowers LLMs to dynamically generate instance-specific assessment criteria. This framework is complemented by a fine-tuned critic model for criteria-aware scoring, enabling evaluations in style, format and length. The framework's validity is further demonstrated by its data curation capability, which enables 7B-parameter models to approach state-of-the-art (SOTA) performance. We open-source the benchmark, along with evaluation tools and modular framework components, to advance the development of LLMs in writing.
Instruction-Following Evaluation for Large Language Models
One core capability of Large Language Models (LLMs) is to follow natural language instructions. However, the evaluation of such abilities is not standardized: Human evaluations are expensive, slow, and not objectively reproducible, while LLM-based auto-evaluation is potentially biased or limited by the ability of the evaluator LLM. To overcome these issues, we introduce Instruction-Following Eval (IFEval) for large language models. IFEval is a straightforward and easy-to-reproduce evaluation benchmark. It focuses on a set of "verifiable instructions" such as "write in more than 400 words" and "mention the keyword of AI at least 3 times". We identified 25 types of those verifiable instructions and constructed around 500 prompts, with each prompt containing one or more verifiable instructions. We show evaluation results of two widely available LLMs on the market. Our code and data can be found at https://github.com/google-research/google-research/tree/master/instruction_following_eval
Accelerating Unbiased LLM Evaluation via Synthetic Feedback
When developing new large language models (LLMs), a key step is evaluating their final performance, often by computing the win-rate against a reference model based on external feedback. Human feedback is the gold standard, particularly for capturing nuanced qualities like coherence, readability, and alignment with human expectations. However, human evaluations are costly -- even for large tech companies -- and when conducted with active users, they may negatively impact user experience. A promising alternative is synthetic feedback, where evaluations are conducted by other large language models, including reward models. While this eliminates the need for costly human annotations, it introduces biases that may distort the evaluation process. In this work, we propose a statistically principled framework that integrates human and synthetic feedback to reduce reliance on human annotations while maintaining unbiased win-rate calculations. Our experiments demonstrate a reduction in human annotations by up to 12.2% with an off-the-shelf synthetic evaluator and up to 24.8% with a finetuned variant. Apart from being generalizable, scalable, and free of hyper-parameter tuning, our method offers predictable annotation savings, which can be estimated based on data-dependent characteristics.
Omni-Thinker: Scaling Cross-Domain Generalization in LLMs via Multi-Task RL with Hybrid Rewards
The advancement of general-purpose artificial intelligence relies on large language models (LLMs) that excel across a wide range of tasks, from structured reasoning to creative generation. However, post-training methods like Supervised Fine-Tuning (SFT) often struggle with generalization, favoring memorization over transferable learning. In this work, we introduce Omni-Thinker, a unified reinforcement learning (RL) framework that enhances LLM performance across diverse tasks by combining rule-based verifiable rewards with generative preference signals via LLM-as-a-Judge evaluations. Our approach enables consistent optimization across task types and scales RL-based training to subjective domains. We further investigate training strategies, demonstrating that a curriculum-based progression that orders tasks from structured to open-ended improves performance and reduces forgetting. Experimental results across four domains reveal that curriculum learning improves performance by 5.2% over joint training and 9.1% over model merging. These results highlight the importance of task-aware sampling and hybrid supervision in scaling RL-based post-training for general-purpose LLMs.
RAG Foundry: A Framework for Enhancing LLMs for Retrieval Augmented Generation
Implementing Retrieval-Augmented Generation (RAG) systems is inherently complex, requiring deep understanding of data, use cases, and intricate design decisions. Additionally, evaluating these systems presents significant challenges, necessitating assessment of both retrieval accuracy and generative quality through a multi-faceted approach. We introduce RAG Foundry, an open-source framework for augmenting large language models for RAG use cases. RAG Foundry integrates data creation, training, inference and evaluation into a single workflow, facilitating the creation of data-augmented datasets for training and evaluating large language models in RAG settings. This integration enables rapid prototyping and experimentation with various RAG techniques, allowing users to easily generate datasets and train RAG models using internal or specialized knowledge sources. We demonstrate the framework effectiveness by augmenting and fine-tuning Llama-3 and Phi-3 models with diverse RAG configurations, showcasing consistent improvements across three knowledge-intensive datasets. Code is released as open-source in https://github.com/IntelLabs/RAGFoundry.
FEET: A Framework for Evaluating Embedding Techniques
In this study, we introduce FEET, a standardized protocol designed to guide the development and benchmarking of foundation models. While numerous benchmark datasets exist for evaluating these models, we propose a structured evaluation protocol across three distinct scenarios to gain a comprehensive understanding of their practical performance. We define three primary use cases: frozen embeddings, few-shot embeddings, and fully fine-tuned embeddings. Each scenario is detailed and illustrated through two case studies: one in sentiment analysis and another in the medical domain, demonstrating how these evaluations provide a thorough assessment of foundation models' effectiveness in research applications. We recommend this protocol as a standard for future research aimed at advancing representation learning models.
MEGA-Bench: Scaling Multimodal Evaluation to over 500 Real-World Tasks
We present MEGA-Bench, an evaluation suite that scales multimodal evaluation to over 500 real-world tasks, to address the highly heterogeneous daily use cases of end users. Our objective is to optimize for a set of high-quality data samples that cover a highly diverse and rich set of multimodal tasks, while enabling cost-effective and accurate model evaluation. In particular, we collected 505 realistic tasks encompassing over 8,000 samples from 16 expert annotators to extensively cover the multimodal task space. Instead of unifying these problems into standard multi-choice questions (like MMMU, MMBench, and MMT-Bench), we embrace a wide range of output formats like numbers, phrases, code, \LaTeX, coordinates, JSON, free-form, etc. To accommodate these formats, we developed over 40 metrics to evaluate these tasks. Unlike existing benchmarks, MEGA-Bench offers a fine-grained capability report across multiple dimensions (e.g., application, input type, output format, skill), allowing users to interact with and visualize model capabilities in depth. We evaluate a wide variety of frontier vision-language models on MEGA-Bench to understand their capabilities across these dimensions.
ESGenius: Benchmarking LLMs on Environmental, Social, and Governance (ESG) and Sustainability Knowledge
We introduce ESGenius, a comprehensive benchmark for evaluating and enhancing the proficiency of Large Language Models (LLMs) in Environmental, Social and Governance (ESG) and sustainability-focused question answering. ESGenius comprises two key components: (i) ESGenius-QA, a collection of 1 136 multiple-choice questions generated by LLMs and rigorously validated by domain experts, covering a broad range of ESG pillars and sustainability topics. Each question is systematically linked to its corresponding source text, enabling transparent evaluation and supporting retrieval-augmented generation (RAG) methods; and (ii) ESGenius-Corpus, a meticulously curated repository of 231 foundational frameworks, standards, reports and recommendation documents from seven authoritative sources. Moreover, to fully assess the capabilities and adaptation potential of the model, we implement a rigorous two-stage evaluation protocol -- Zero-Shot and RAG. Extensive experiments across 50 LLMs (ranging from 0.5 B to 671 B parameters) demonstrate that state-of-the-art models achieve only moderate performance in zero-shot settings, with accuracies typically around 55--70\%, highlighting ESGenius's challenging nature for LLMs in interdisciplinary contexts. However, models employing RAG show significant performance improvements, particularly for smaller models. For example, "DeepSeek-R1-Distill-Qwen-14B" improves from 63.82\% (zero-shot) to 80.46\% with RAG. These results underscore the necessity of grounding responses in authoritative sources for enhanced ESG understanding. To the best of our knowledge, ESGenius is the first benchmark curated for LLMs and the relevant enhancement technologies that focuses on ESG and sustainability topics.
Reasoning Is Not All You Need: Examining LLMs for Multi-Turn Mental Health Conversations
Limited access to mental healthcare, extended wait times, and increasing capabilities of Large Language Models (LLMs) has led individuals to turn to LLMs for fulfilling their mental health needs. However, examining the multi-turn mental health conversation capabilities of LLMs remains under-explored. Existing evaluation frameworks typically focus on diagnostic accuracy and win-rates and often overlook alignment with patient-specific goals, values, and personalities required for meaningful conversations. To address this, we introduce MedAgent, a novel framework for synthetically generating realistic, multi-turn mental health sensemaking conversations and use it to create the Mental Health Sensemaking Dialogue (MHSD) dataset, comprising over 2,200 patient-LLM conversations. Additionally, we present MultiSenseEval, a holistic framework to evaluate the multi-turn conversation abilities of LLMs in healthcare settings using human-centric criteria. Our findings reveal that frontier reasoning models yield below-par performance for patient-centric communication and struggle at advanced diagnostic capabilities with average score of 31%. Additionally, we observed variation in model performance based on patient's persona and performance drop with increasing turns in the conversation. Our work provides a comprehensive synthetic data generation framework, a dataset and evaluation framework for assessing LLMs in multi-turn mental health conversations.
SciVer: Evaluating Foundation Models for Multimodal Scientific Claim Verification
We introduce SciVer, the first benchmark specifically designed to evaluate the ability of foundation models to verify claims within a multimodal scientific context. SciVer consists of 3,000 expert-annotated examples over 1,113 scientific papers, covering four subsets, each representing a common reasoning type in multimodal scientific claim verification. To enable fine-grained evaluation, each example includes expert-annotated supporting evidence. We assess the performance of 21 state-of-the-art multimodal foundation models, including o4-mini, Gemini-2.5-Flash, Llama-3.2-Vision, and Qwen2.5-VL. Our experiment reveals a substantial performance gap between these models and human experts on SciVer. Through an in-depth analysis of retrieval-augmented generation (RAG), and human-conducted error evaluations, we identify critical limitations in current open-source models, offering key insights to advance models' comprehension and reasoning in multimodal scientific literature tasks.
Beyond Efficiency: A Systematic Survey of Resource-Efficient Large Language Models
The burgeoning field of Large Language Models (LLMs), exemplified by sophisticated models like OpenAI's ChatGPT, represents a significant advancement in artificial intelligence. These models, however, bring forth substantial challenges in the high consumption of computational, memory, energy, and financial resources, especially in environments with limited resource capabilities. This survey aims to systematically address these challenges by reviewing a broad spectrum of techniques designed to enhance the resource efficiency of LLMs. We categorize methods based on their optimization focus: computational, memory, energy, financial, and network resources and their applicability across various stages of an LLM's lifecycle, including architecture design, pretraining, finetuning, and system design. Additionally, the survey introduces a nuanced categorization of resource efficiency techniques by their specific resource types, which uncovers the intricate relationships and mappings between various resources and corresponding optimization techniques. A standardized set of evaluation metrics and datasets is also presented to facilitate consistent and fair comparisons across different models and techniques. By offering a comprehensive overview of the current sota and identifying open research avenues, this survey serves as a foundational reference for researchers and practitioners, aiding them in developing more sustainable and efficient LLMs in a rapidly evolving landscape.
Evaluating Language Models for Efficient Code Generation
We introduce Differential Performance Evaluation (DPE), a framework designed to reliably evaluate Large Language Models (LLMs) for efficient code generation. Traditional coding benchmarks often fail to provide reliable insights into code efficiency, due to their reliance on simplistic test inputs and the absence of effective compound metrics. DPE addresses these issues by focusing on efficiency-demanding programming tasks and establishing an insightful compound metric for performance evaluation. DPE operates in two phases: To curate efficiency datasets, it selects efficiency-demanding tasks from existing coding benchmarks and generates computationally expensive inputs to stress the efficiency of LLM solutions. To assess the code efficiency, DPE profiles the new solution and compares it globally against a set of reference solutions that exhibit distinct efficiency levels, where the matched level defines its efficiency score. As a proof of concept, we use DPE to create EvalPerf, a benchmark with 121 performance-challenging coding tasks. Our comprehensive evaluation draws interesting findings on the efficiency impact of model sizes, instruction tuning, and prompting. For example, while the scaling law fails to account for code efficiency, general instruction tuning benefits both code correctness and efficiency. We also evaluate the evaluation by examining the effectiveness of DPE, showing that EvalPerf is reliable and convenient to use even across platforms.
FLEX: Expert-level False-Less EXecution Metric for Reliable Text-to-SQL Benchmark
Text-to-SQL technology has become crucial for translating natural language into SQL queries in various industries, enabling non-technical users to perform complex data operations. The need for accurate evaluation methods has increased as these systems have grown more sophisticated. However, we found that the Execution Accuracy (EX), the most promising evaluation metric, still shows a substantial portion of false positives and negatives compared to human evaluation. Thus, this paper introduces FLEX (False-Less EXecution), a novel approach to evaluating text-to-SQL systems using large language models (LLMs) to emulate human expert-level evaluation of SQL queries. Our method shows significantly higher agreement with human expert judgments, improving Cohen's kappa from 61 to 78.17. Re-evaluating top-performing models on the Spider and BIRD benchmarks using FLEX reveals substantial shifts in performance rankings, with an average performance decrease of 3.15 due to false positive corrections and an increase of 6.07 from addressing false negatives. This work contributes to a more accurate and nuanced evaluation of text-to-SQL systems, potentially reshaping our understanding of state-of-the-art performance in this field.
RevisEval: Improving LLM-as-a-Judge via Response-Adapted References
With significant efforts in recent studies, LLM-as-a-Judge has become a cost-effective alternative to human evaluation for assessing the text generation quality in a wide range of tasks. However, there still remains a reliability gap between LLM-as-a-Judge and human evaluation. One important reason is the lack of guided oracles in the evaluation process. Motivated by the role of reference pervasively used in classic text evaluation, we introduce RevisEval, a novel text generation evaluation paradigm via the response-adapted references. RevisEval is driven by the key observation that an ideal reference should maintain the necessary relevance to the response to be evaluated. Specifically, RevisEval leverages the text revision capabilities of large language models (LLMs) to adaptively revise the response, then treat the revised text as the reference (response-adapted reference) for the subsequent evaluation. Extensive experiments demonstrate that RevisEval outperforms traditional reference-free and reference-based evaluation paradigms that use LLM-as-a-Judge across NLG tasks and open-ended instruction-following tasks. More importantly, our response-adapted references can further boost the classical text metrics, e.g., BLEU and BERTScore, compared to traditional references and even rival the LLM-as-a-Judge. A detailed analysis is also conducted to confirm RevisEval's effectiveness in bias reduction, the impact of inference cost, and reference relevance.
TRAIL: Trace Reasoning and Agentic Issue Localization
The increasing adoption of agentic workflows across diverse domains brings a critical need to scalably and systematically evaluate the complex traces these systems generate. Current evaluation methods depend on manual, domain-specific human analysis of lengthy workflow traces - an approach that does not scale with the growing complexity and volume of agentic outputs. Error analysis in these settings is further complicated by the interplay of external tool outputs and language model reasoning, making it more challenging than traditional software debugging. In this work, we (1) articulate the need for robust and dynamic evaluation methods for agentic workflow traces, (2) introduce a formal taxonomy of error types encountered in agentic systems, and (3) present a set of 148 large human-annotated traces (TRAIL) constructed using this taxonomy and grounded in established agentic benchmarks. To ensure ecological validity, we curate traces from both single and multi-agent systems, focusing on real-world applications such as software engineering and open-world information retrieval. Our evaluations reveal that modern long context LLMs perform poorly at trace debugging, with the best Gemini-2.5-pro model scoring a mere 11% on TRAIL. Our dataset and code are made publicly available to support and accelerate future research in scalable evaluation for agentic workflows.
Fighting Bias with Bias: Promoting Model Robustness by Amplifying Dataset Biases
NLP models often rely on superficial cues known as dataset biases to achieve impressive performance, and can fail on examples where these biases do not hold. Recent work sought to develop robust, unbiased models by filtering biased examples from training sets. In this work, we argue that such filtering can obscure the true capabilities of models to overcome biases, which might never be removed in full from the dataset. We suggest that in order to drive the development of models robust to subtle biases, dataset biases should be amplified in the training set. We introduce an evaluation framework defined by a bias-amplified training set and an anti-biased test set, both automatically extracted from existing datasets. Experiments across three notions of bias, four datasets and two models show that our framework is substantially more challenging for models than the original data splits, and even more challenging than hand-crafted challenge sets. Our evaluation framework can use any existing dataset, even those considered obsolete, to test model robustness. We hope our work will guide the development of robust models that do not rely on superficial biases and correlations. To this end, we publicly release our code and data.
T-Eval: Evaluating the Tool Utilization Capability Step by Step
Large language models (LLM) have achieved remarkable performance on various NLP tasks and are augmented by tools for broader applications. Yet, how to evaluate and analyze the tool-utilization capability of LLMs is still under-explored. In contrast to previous works that evaluate models holistically, we comprehensively decompose the tool utilization into multiple sub-processes, including instruction following, planning, reasoning, retrieval, understanding, and review. Based on that, we further introduce T-Eval to evaluate the tool utilization capability step by step. T-Eval disentangles the tool utilization evaluation into several sub-domains along model capabilities, facilitating the inner understanding of both holistic and isolated competency of LLMs. We conduct extensive experiments on T-Eval and in-depth analysis of various LLMs. T-Eval not only exhibits consistency with the outcome-oriented evaluation but also provides a more fine-grained analysis of the capabilities of LLMs, providing a new perspective in LLM evaluation on tool-utilization ability. The benchmark will be available at https://github.com/open-compass/T-Eval.
Synthetic Dialogue Dataset Generation using LLM Agents
Linear programming (LP) problems are pervasive in real-life applications. However, despite their apparent simplicity, an untrained user may find it difficult to determine the linear model of their specific problem. We envisage the creation of a goal-oriented conversational agent that will engage in conversation with the user to elicit all information required so that a subsequent agent can generate the linear model. In this paper, we present an approach for the generation of sample dialogues that can be used to develop and train such a conversational agent. Using prompt engineering, we develop two agents that "talk" to each other, one acting as the conversational agent, and the other acting as the user. Using a set of text descriptions of linear problems from NL4Opt available to the user only, the agent and the user engage in conversation until the agent has retrieved all key information from the original problem description. We also propose an extrinsic evaluation of the dialogues by assessing how well the summaries generated by the dialogues match the original problem descriptions. We conduct human and automatic evaluations, including an evaluation approach that uses GPT-4 to mimic the human evaluation metrics. The evaluation results show an overall good quality of the dialogues, though research is still needed to improve the quality of the GPT-4 evaluation metrics. The resulting dialogues, including the human annotations of a subset, are available to the research community. The conversational agent used for the generation of the dialogues can be used as a baseline.
Mobile-Env: An Evaluation Platform and Benchmark for Interactive Agents in LLM Era
Diverse evaluation benchmarks play a crucial role to assess a wide range of capabilities of large language models (LLM). Although plenty of endeavors have been dedicated to building valuable benchmarks, there is still little work aiming at evaluating the capability of LLM in multistep interactive environments. Noticing that LLM requires a text representation of the environment observations for interaction, we choose to fill such a blank by building a novel benchmark based on the information user interface (InfoUI). InfoUI consists of rich text contents and can be represented in some text formats, thus is suitable for the assessment of interaction ability of LLM. Additionally, the complex structures of InfoUI can further raise a challenge for LLM to understand structured texts rather than plain texts. An interaction platform is always used to evaluate an agent, however, there is still a lack of a satisfactory interaction platform dedicated to InfoUI. Consequently, we propose to build a novel easily-extendable, adaptable, and close-to-reality interaction platform, Mobile-Env, to provide a base for an appropriate benchmark. Based on Mobile-Env, an InfoUI task set WikiHow is then built to establish a benchmark for the multistep interaction capability of LLM in structured text-based environments. Agents based on a series of LLMs are tested on the task set to obtain an insight into the potential and challenge of LLM for InfoUI interaction. It is sincerely welcome that the community contribute new environments and new task sets for Mobile-Env to provide better test benchmarks and facilitate the development of the corresponding domains.
Automatic Evaluation Metrics for Artificially Generated Scientific Research
Foundation models are increasingly used in scientific research, but evaluating AI-generated scientific work remains challenging. While expert reviews are costly, large language models (LLMs) as proxy reviewers have proven to be unreliable. To address this, we investigate two automatic evaluation metrics, specifically citation count prediction and review score prediction. We parse all papers of OpenReview and augment each submission with its citation count, reference, and research hypothesis. Our findings reveal that citation count prediction is more viable than review score prediction, and predicting scores is more difficult purely from the research hypothesis than from the full paper. Furthermore, we show that a simple prediction model based solely on title and abstract outperforms LLM-based reviewers, though it still falls short of human-level consistency.
Ready Jurist One: Benchmarking Language Agents for Legal Intelligence in Dynamic Environments
The gap between static benchmarks and the dynamic nature of real-world legal practice poses a key barrier to advancing legal intelligence. To this end, we introduce J1-ENVS, the first interactive and dynamic legal environment tailored for LLM-based agents. Guided by legal experts, it comprises six representative scenarios from Chinese legal practices across three levels of environmental complexity. We further introduce J1-EVAL, a fine-grained evaluation framework, designed to assess both task performance and procedural compliance across varying levels of legal proficiency. Extensive experiments on 17 LLM agents reveal that, while many models demonstrate solid legal knowledge, they struggle with procedural execution in dynamic settings. Even the SOTA model, GPT-4o, falls short of 60% overall performance. These findings highlight persistent challenges in achieving dynamic legal intelligence and offer valuable insights to guide future research.
OffsetBias: Leveraging Debiased Data for Tuning Evaluators
Employing Large Language Models (LLMs) to assess the quality of generated responses, such as prompting instruct-tuned models or fine-tuning judge models, has become a widely adopted evaluation method. It is also known that such evaluators are vulnerable to biases, such as favoring longer responses. While it is important to overcome this problem, the specifics of these biases remain under-explored. In this work, we qualitatively identify six types of biases inherent in various judge models. We propose EvalBiasBench as a meta-evaluation collection of hand-crafted test cases for each bias type. Additionally, we present de-biasing dataset construction methods and the associated preference dataset OffsetBias. Experimental results demonstrate that fine-tuning on our dataset significantly enhances the robustness of judge models against biases and improves performance across most evaluation scenarios. We release our datasets and the fine-tuned judge model to public.
SAGEval: The frontiers of Satisfactory Agent based NLG Evaluation for reference-free open-ended text
Large Language Model (LLM) integrations into applications like Microsoft365 suite and Google Workspace for creating/processing documents, emails, presentations, etc. has led to considerable enhancements in productivity and time savings. But as these integrations become more more complex, it is paramount to ensure that the quality of output from the LLM-integrated applications are relevant and appropriate for use. Identifying the need to develop robust evaluation approaches for natural language generation, wherein references/ground labels doesn't exist or isn't amply available, this paper introduces a novel framework called "SAGEval" which utilizes a critiquing Agent to provide feedback on scores generated by LLM evaluators. We show that the critiquing Agent is able to rectify scores from LLM evaluators, in absence of references/ground-truth labels, thereby reducing the need for labeled data even for complex NLG evaluation scenarios, like the generation of JSON-structured forms/surveys with responses in different styles like multiple choice, likert ratings, single choice questions, etc.
F-Eval: Asssessing Fundamental Abilities with Refined Evaluation Methods
Large language models (LLMs) garner significant attention for their unprecedented performance, leading to an increasing number of researches evaluating LLMs. However, these evaluation benchmarks are limited to assessing the instruction-following capabilities, overlooking the fundamental abilities that emerge during the pre-training stage. Previous subjective evaluation methods mainly reply on scoring by API models. However, in the absence of references, large models have shown limited ability to discern subtle differences. To bridge the gap, we propose F-Eval, a bilingual evaluation benchmark to evaluate the fundamental abilities, including expression, commonsense and logic. The tasks in F-Eval include multi-choice objective tasks, open-ended objective tasks, reference-based subjective tasks and reference-free subjective tasks. For reference-free subjective tasks, we devise new evaluation methods, serving as alternatives to scoring by API models. We conduct evaluations on 13 advanced LLMs. Results show that our evaluation methods show higher correlation coefficients and larger distinction than other evaluators. Additionally, we discuss the influence of different model sizes, dimensions, and normalization methods. We anticipate that F-Eval will facilitate the study of LLMs' fundamental abilities.
Adding Error Bars to Evals: A Statistical Approach to Language Model Evaluations
Evaluations are critical for understanding the capabilities of large language models (LLMs). Fundamentally, evaluations are experiments; but the literature on evaluations has largely ignored the literature from other sciences on experiment analysis and planning. This article shows researchers with some training in statistics how to think about and analyze data from language model evaluations. Conceptualizing evaluation questions as having been drawn from an unseen super-population, we present formulas for analyzing evaluation data, measuring differences between two models, and planning an evaluation experiment. We make a number of specific recommendations for running language model evaluations and reporting experiment results in a way that minimizes statistical noise and maximizes informativeness.
Prometheus 2: An Open Source Language Model Specialized in Evaluating Other Language Models
Proprietary LMs such as GPT-4 are often employed to assess the quality of responses from various LMs. However, concerns including transparency, controllability, and affordability strongly motivate the development of open-source LMs specialized in evaluations. On the other hand, existing open evaluator LMs exhibit critical shortcomings: 1) they issue scores that significantly diverge from those assigned by humans, and 2) they lack the flexibility to perform both direct assessment and pairwise ranking, the two most prevalent forms of assessment. Additionally, they do not possess the ability to evaluate based on custom evaluation criteria, focusing instead on general attributes like helpfulness and harmlessness. To address these issues, we introduce Prometheus 2, a more powerful evaluator LM than its predecessor that closely mirrors human and GPT-4 judgements. Moreover, it is capable of processing both direct assessment and pair-wise ranking formats grouped with a user-defined evaluation criteria. On four direct assessment benchmarks and four pairwise ranking benchmarks, Prometheus 2 scores the highest correlation and agreement with humans and proprietary LM judges among all tested open evaluator LMs. Our models, code, and data are all publicly available at https://github.com/prometheus-eval/prometheus-eval.
A Toolbox for Surfacing Health Equity Harms and Biases in Large Language Models
Large language models (LLMs) hold immense promise to serve complex health information needs but also have the potential to introduce harm and exacerbate health disparities. Reliably evaluating equity-related model failures is a critical step toward developing systems that promote health equity. In this work, we present resources and methodologies for surfacing biases with potential to precipitate equity-related harms in long-form, LLM-generated answers to medical questions and then conduct an empirical case study with Med-PaLM 2, resulting in the largest human evaluation study in this area to date. Our contributions include a multifactorial framework for human assessment of LLM-generated answers for biases, and EquityMedQA, a collection of seven newly-released datasets comprising both manually-curated and LLM-generated questions enriched for adversarial queries. Both our human assessment framework and dataset design process are grounded in an iterative participatory approach and review of possible biases in Med-PaLM 2 answers to adversarial queries. Through our empirical study, we find that the use of a collection of datasets curated through a variety of methodologies, coupled with a thorough evaluation protocol that leverages multiple assessment rubric designs and diverse rater groups, surfaces biases that may be missed via narrower evaluation approaches. Our experience underscores the importance of using diverse assessment methodologies and involving raters of varying backgrounds and expertise. We emphasize that while our framework can identify specific forms of bias, it is not sufficient to holistically assess whether the deployment of an AI system promotes equitable health outcomes. We hope the broader community leverages and builds on these tools and methods towards realizing a shared goal of LLMs that promote accessible and equitable healthcare for all.
Skill Discovery for Software Scripting Automation via Offline Simulations with LLMs
Scripting interfaces enable users to automate tasks and customize software workflows, but creating scripts traditionally requires programming expertise and familiarity with specific APIs, posing barriers for many users. While Large Language Models (LLMs) can generate code from natural language queries, runtime code generation is severely limited due to unverified code, security risks, longer response times, and higher computational costs. To bridge the gap, we propose an offline simulation framework to curate a software-specific skillset, a collection of verified scripts, by exploiting LLMs and publicly available scripting guides. Our framework comprises two components: (1) task creation, using top-down functionality guidance and bottom-up API synergy exploration to generate helpful tasks; and (2) skill generation with trials, refining and validating scripts based on execution feedback. To efficiently navigate the extensive API landscape, we introduce a Graph Neural Network (GNN)-based link prediction model to capture API synergy, enabling the generation of skills involving underutilized APIs and expanding the skillset's diversity. Experiments with Adobe Illustrator demonstrate that our framework significantly improves automation success rates, reduces response time, and saves runtime token costs compared to traditional runtime code generation. This is the first attempt to use software scripting interfaces as a testbed for LLM-based systems, highlighting the advantages of leveraging execution feedback in a controlled environment and offering valuable insights into aligning AI capabilities with user needs in specialized software domains.
BEATS: Bias Evaluation and Assessment Test Suite for Large Language Models
In this research, we introduce BEATS, a novel framework for evaluating Bias, Ethics, Fairness, and Factuality in Large Language Models (LLMs). Building upon the BEATS framework, we present a bias benchmark for LLMs that measure performance across 29 distinct metrics. These metrics span a broad range of characteristics, including demographic, cognitive, and social biases, as well as measures of ethical reasoning, group fairness, and factuality related misinformation risk. These metrics enable a quantitative assessment of the extent to which LLM generated responses may perpetuate societal prejudices that reinforce or expand systemic inequities. To achieve a high score on this benchmark a LLM must show very equitable behavior in their responses, making it a rigorous standard for responsible AI evaluation. Empirical results based on data from our experiment show that, 37.65\% of outputs generated by industry leading models contained some form of bias, highlighting a substantial risk of using these models in critical decision making systems. BEATS framework and benchmark offer a scalable and statistically rigorous methodology to benchmark LLMs, diagnose factors driving biases, and develop mitigation strategies. With the BEATS framework, our goal is to help the development of more socially responsible and ethically aligned AI models.
Sample-Efficient Human Evaluation of Large Language Models via Maximum Discrepancy Competition
Reliable evaluation of large language models (LLMs) is impeded by two key challenges: objective metrics often fail to reflect human perception of natural language, and exhaustive human labeling is prohibitively expensive. Here, we propose a sample-efficient human evaluation method for LLMs based on the principle of MAximum Discrepancy (MAD) Competition. Our method automatically and adaptively selects a compact set of input instructions that maximize semantic discrepancy between pairs of LLM responses. Human evaluators then perform three-alternative forced choices on these paired responses, which are aggregated into a global ranking using Elo rating. We apply our approach to compare eight widely used LLMs across four tasks: scientific knowledge understanding, mathematical reasoning, creative and functional writing, and code generation and explanation. Experimental results show that our sample-efficient evaluation method recovers "gold-standard" model rankings with a handful of MAD-selected instructions, reveals respective strengths and weaknesses of each LLM, and offers nuanced insights to guide future LLM development. Code is available at https://github.com/weiji-Feng/MAD-Eval .
MCPEval: Automatic MCP-based Deep Evaluation for AI Agent Models
The rapid rise of Large Language Models (LLMs)-based intelligent agents underscores the need for robust, scalable evaluation frameworks. Existing methods rely on static benchmarks and labor-intensive data collection, limiting practical assessment. We introduce \oursystemname, an open-source Model Context Protocol (MCP)-based framework that automates end-to-end task generation and deep evaluation of LLM agents across diverse domains. MCPEval standardizes metrics, seamlessly integrates with native agent tools, and eliminates manual effort in building evaluation pipelines. Empirical results across five real-world domains show its effectiveness in revealing nuanced, domain-specific performance. We publicly release MCPEval https://github.com/SalesforceAIResearch/MCPEval to promote reproducible and standardized LLM agent evaluation.
Eye of Judgement: Dissecting the Evaluation of Russian-speaking LLMs with POLLUX
We introduce POLLUX, a comprehensive open-source benchmark designed to evaluate the generative capabilities of large language models (LLMs) in Russian. Our main contribution is a novel evaluation methodology that enhances the interpretability of LLM assessment. For each task type, we define a set of detailed criteria and develop a scoring protocol where models evaluate responses and provide justifications for their ratings. This enables transparent, criteria-driven evaluation beyond traditional resource-consuming, side-by-side human comparisons. POLLUX includes a detailed, fine-grained taxonomy of 35 task types covering diverse generative domains such as code generation, creative writing, and practical assistant use cases, totaling 2,100 manually crafted and professionally authored prompts. Each task is categorized by difficulty (easy/medium/hard), with experts constructing the dataset entirely from scratch. We also release a family of LLM-as-a-Judge (7B and 32B) evaluators trained for nuanced assessment of generative outputs. This approach provides scalable, interpretable evaluation and annotation tools for model development, effectively replacing costly and less precise human judgments.
SciNews: From Scholarly Complexities to Public Narratives -- A Dataset for Scientific News Report Generation
Scientific news reports serve as a bridge, adeptly translating complex research articles into reports that resonate with the broader public. The automated generation of such narratives enhances the accessibility of scholarly insights. In this paper, we present a new corpus to facilitate this paradigm development. Our corpus comprises a parallel compilation of academic publications and their corresponding scientific news reports across nine disciplines. To demonstrate the utility and reliability of our dataset, we conduct an extensive analysis, highlighting the divergences in readability and brevity between scientific news narratives and academic manuscripts. We benchmark our dataset employing state-of-the-art text generation models. The evaluation process involves both automatic and human evaluation, which lays the groundwork for future explorations into the automated generation of scientific news reports. The dataset and code related to this work are available at https://dongqi.me/projects/SciNews.
Are We on the Right Way for Assessing Document Retrieval-Augmented Generation?
Retrieval-Augmented Generation (RAG) systems using Multimodal Large Language Models (MLLMs) show great promise for complex document understanding, yet their development is critically hampered by inadequate evaluation. Current benchmarks often focus on specific part of document RAG system and use synthetic data with incomplete ground truth and evidence labels, therefore failing to reflect real-world bottlenecks and challenges. To overcome these limitations, we introduce Double-Bench: a new large-scale, multilingual, and multimodal evaluation system that is able to produce fine-grained assessment to each component within document RAG systems. It comprises 3,276 documents (72,880 pages) and 5,168 single- and multi-hop queries across 6 languages and 4 document types with streamlined dynamic update support for potential data contamination issues. Queries are grounded in exhaustively scanned evidence pages and verified by human experts to ensure maximum quality and completeness. Our comprehensive experiments across 9 state-of-the-art embedding models, 4 MLLMs and 4 end-to-end document RAG frameworks demonstrate the gap between text and visual embedding models is narrowing, highlighting the need in building stronger document retrieval models. Our findings also reveal the over-confidence dilemma within current document RAG frameworks that tend to provide answer even without evidence support. We hope our fully open-source Double-Bench provide a rigorous foundation for future research in advanced document RAG systems. We plan to retrieve timely corpus and release new benchmarks on an annual basis.
ODIN: Disentangled Reward Mitigates Hacking in RLHF
In this work, we study the issue of reward hacking on the response length, a challenge emerging in Reinforcement Learning from Human Feedback (RLHF) on LLMs. A well-formatted, verbose but less helpful response from the LLMs can often deceive LLMs or even human evaluators to achieve high scores. The same issue also holds for some reward models in RL. To address the challenges in both training and evaluation, we establish a more reliable evaluation protocol for comparing different training configurations, which inspects the trade-off between LLM evaluation score and response length obtained by varying training hyperparameters. Based on this evaluation, we conduct large-scale studies, where the results shed insights into the efficacy of hyperparameters and tricks used in RL on mitigating length bias. We further propose to improve the reward model by jointly training two linear heads on shared feature representations to predict the rewards, one trained to correlate with length, and the other trained to decorrelate with length and therefore focus more on the actual content. We then discard the length head in RL to prevent reward hacking on length. Experiments demonstrate that our approach almost eliminates the reward correlation with length, and improves the obtained policy by a significant margin.
From Generation to Judgment: Opportunities and Challenges of LLM-as-a-judge
Assessment and evaluation have long been critical challenges in artificial intelligence (AI) and natural language processing (NLP). However, traditional methods, whether matching-based or embedding-based, often fall short of judging subtle attributes and delivering satisfactory results. Recent advancements in Large Language Models (LLMs) inspire the "LLM-as-a-judge" paradigm, where LLMs are leveraged to perform scoring, ranking, or selection across various tasks and applications. This paper provides a comprehensive survey of LLM-based judgment and assessment, offering an in-depth overview to advance this emerging field. We begin by giving detailed definitions from both input and output perspectives. Then we introduce a comprehensive taxonomy to explore LLM-as-a-judge from three dimensions: what to judge, how to judge and where to judge. Finally, we compile benchmarks for evaluating LLM-as-a-judge and highlight key challenges and promising directions, aiming to provide valuable insights and inspire future research in this promising research area. Paper list and more resources about LLM-as-a-judge can be found at https://github.com/llm-as-a-judge/Awesome-LLM-as-a-judge and https://llm-as-a-judge.github.io.
ChatGPT4PCG 2 Competition: Prompt Engineering for Science Birds Level Generation
This paper presents the second ChatGPT4PCG competition at the 2024 IEEE Conference on Games. In this edition of the competition, we follow the first edition, but make several improvements and changes. We introduce a new evaluation metric along with allowing a more flexible format for participants' submissions and making several improvements to the evaluation pipeline. Continuing from the first edition, we aim to foster and explore the realm of prompt engineering (PE) for procedural content generation (PCG). While the first competition saw success, it was hindered by various limitations; we aim to mitigate these limitations in this edition. We introduce diversity as a new metric to discourage submissions aimed at producing repetitive structures. Furthermore, we allow submission of a Python program instead of a prompt text file for greater flexibility in implementing advanced PE approaches, which may require control flow, including conditions and iterations. We also make several improvements to the evaluation pipeline with a better classifier for similarity evaluation and better-performing function signatures. We thoroughly evaluate the effectiveness of the new metric and the improved classifier. Additionally, we perform an ablation study to select a function signature to instruct ChatGPT for level generation. Finally, we provide implementation examples of various PE techniques in Python and evaluate their preliminary performance. We hope this competition serves as a resource and platform for learning about PE and PCG in general.
Music Arena: Live Evaluation for Text-to-Music
We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare, as study protocols may differ across systems. Moreover, human preferences might help researchers align their TTM systems or improve automatic evaluation metrics, but an open and renewable source of preferences does not currently exist. We aim to fill these gaps by offering *live* evaluation for TTM. In Music Arena, real-world users input text prompts of their choosing and compare outputs from two TTM systems, and their preferences are used to compile a leaderboard. While Music Arena follows recent evaluation trends in other AI domains, we also design it with key features tailored to music: an LLM-based routing system to navigate the heterogeneous type signatures of TTM systems, and the collection of *detailed* preferences including listening data and natural language feedback. We also propose a rolling data release policy with user privacy guarantees, providing a renewable source of preference data and increasing platform transparency. Through its standardized evaluation protocol, transparent data access policies, and music-specific features, Music Arena not only addresses key challenges in the TTM ecosystem but also demonstrates how live evaluation can be thoughtfully adapted to unique characteristics of specific AI domains. Music Arena is available at: https://music-arena.org
LitLLMs, LLMs for Literature Review: Are we there yet?
Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially due to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract. We decompose the task into two components: 1. Retrieving related works given a query abstract, and 2. Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components. For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods, while providing insights into the LLM's decision-making process. In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review. To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations. We release this evaluation protocol to promote additional research and development in this regard. Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning. Our project page including a demonstration system and toolkit can be accessed here: https://litllm.github.io.
LLM-as-an-Interviewer: Beyond Static Testing Through Dynamic LLM Evaluation
We introduce LLM-as-an-Interviewer, a novel paradigm for evaluating large language models (LLMs). This approach leverages multi-turn interactions where the LLM interviewer actively provides feedback on responses and poses follow-up questions to the evaluated LLM. At the start of the interview, the LLM interviewer dynamically modifies datasets to generate initial questions, mitigating data contamination. We apply the LLM-as-an-Interviewer framework to evaluate six models on the MATH and DepthQA tasks. Our results show that the framework effectively provides insights into LLM performance, including the quality of initial responses, adaptability to feedback, and ability to address follow-up queries like clarification or additional knowledge requests. The framework also addresses key limitations of conventional methods like LLM-as-a-Judge, including verbosity bias and inconsistency across runs. Finally, we propose the Interview Report, which aggregates insights from the interview process, providing examples and a comprehensive analysis of the LLM's strengths and weaknesses. This report offers a detailed snapshot of the model's real-world applicability. The code for our framework is publicly available at https://github.com/interview-eval/.
Checklist Engineering Empowers Multilingual LLM Judges
Automated text evaluation has long been a central issue in Natural Language Processing (NLP). Recently, the field has shifted toward using Large Language Models (LLMs) as evaluators-a trend known as the LLM-as-a-Judge paradigm. While promising and easily adaptable across tasks, this approach has seen limited exploration in multilingual contexts. Existing multilingual studies often rely on proprietary models or require extensive training data for fine-tuning, raising concerns about cost, time, and efficiency. In this paper, we propose Checklist Engineering based LLM-as-a-Judge (CE-Judge), a training-free framework that uses checklist intuition for multilingual evaluation with an open-source model. Experiments across multiple languages and three benchmark datasets, under both pointwise and pairwise settings, show that our method generally surpasses the baselines and performs on par with the GPT-4o model.
Cross-Lingual Auto Evaluation for Assessing Multilingual LLMs
Evaluating machine-generated text remains a significant challenge in NLP, especially for non-English languages. Current methodologies, including automated metrics, human assessments, and LLM-based evaluations, predominantly focus on English, revealing a significant gap in multilingual evaluation frameworks. We introduce the Cross Lingual Auto Evaluation (CIA) Suite, an extensible framework that includes evaluator LLMs (Hercule) and a novel test set (Recon) specifically designed for multilingual evaluation. Our test set features 500 human-annotated instructions spanning various task capabilities along with human judgment scores across six languages. This would enable benchmarking of general-purpose multilingual LLMs and facilitate meta-evaluation of Evaluator LLMs. The proposed model, Hercule, is a cross-lingual evaluation model that addresses the scarcity of reference answers in the target language by learning to assign scores to responses based on easily available reference answers in English. Our experiments demonstrate that Hercule aligns more closely with human judgments compared to proprietary models, demonstrating the effectiveness of such cross-lingual evaluation in low resource scenarios. Further, it is also effective in zero-shot evaluation on unseen languages. This study is the first comprehensive examination of cross-lingual evaluation using LLMs, presenting a scalable and effective approach for multilingual assessment. All code, datasets, and models will be publicly available to enable further research in this important area.
Towards a Realistic Long-Term Benchmark for Open-Web Research Agents
We present initial results of a forthcoming benchmark for evaluating LLM agents on white-collar tasks of economic value. We evaluate agents on real-world "messy" open-web research tasks of the type that are routine in finance and consulting. In doing so, we lay the groundwork for an LLM agent evaluation suite where good performance directly corresponds to a large economic and societal impact. We built and tested several agent architectures with o1-preview, GPT-4o, Claude-3.5 Sonnet, Llama 3.1 (405b), and GPT-4o-mini. On average, LLM agents powered by Claude-3.5 Sonnet and o1-preview substantially outperformed agents using GPT-4o, with agents based on Llama 3.1 (405b) and GPT-4o-mini lagging noticeably behind. Across LLMs, a ReAct architecture with the ability to delegate subtasks to subagents performed best. In addition to quantitative evaluations, we qualitatively assessed the performance of the LLM agents by inspecting their traces and reflecting on their observations. Our evaluation represents the first in-depth assessment of agents' abilities to conduct challenging, economically valuable analyst-style research on the real open web.
Search Engines in an AI Era: The False Promise of Factual and Verifiable Source-Cited Responses
Large Language Model (LLM)-based applications are graduating from research prototypes to products serving millions of users, influencing how people write and consume information. A prominent example is the appearance of Answer Engines: LLM-based generative search engines supplanting traditional search engines. Answer engines not only retrieve relevant sources to a user query but synthesize answer summaries that cite the sources. To understand these systems' limitations, we first conducted a study with 21 participants, evaluating interactions with answer vs. traditional search engines and identifying 16 answer engine limitations. From these insights, we propose 16 answer engine design recommendations, linked to 8 metrics. An automated evaluation implementing our metrics on three popular engines (You.com, Perplexity.ai, BingChat) quantifies common limitations (e.g., frequent hallucination, inaccurate citation) and unique features (e.g., variation in answer confidence), with results mirroring user study insights. We release our Answer Engine Evaluation benchmark (AEE) to facilitate transparent evaluation of LLM-based applications.
Finding Blind Spots in Evaluator LLMs with Interpretable Checklists
Large Language Models (LLMs) are increasingly relied upon to evaluate text outputs of other LLMs, thereby influencing leaderboards and development decisions. However, concerns persist over the accuracy of these assessments and the potential for misleading conclusions. In this work, we investigate the effectiveness of LLMs as evaluators for text generation tasks. We propose FBI, a novel framework designed to examine the proficiency of Evaluator LLMs in assessing four critical abilities in other LLMs: factual accuracy, instruction following, coherence in long-form writing, and reasoning proficiency. By introducing targeted perturbations in answers generated by LLMs, that clearly impact one of these key capabilities, we test whether an Evaluator LLM can detect these quality drops. By creating a total of 2400 perturbed answers covering 22 perturbation categories, we conduct a comprehensive study using different evaluation strategies on five prominent LLMs commonly used as evaluators in the literature. Our findings reveal significant shortcomings in current Evaluator LLMs, which failed to identify quality drops in over 50\% of cases on average. Single-answer and pairwise evaluations demonstrated notable limitations, whereas reference-based evaluations showed comparatively better performance. These results underscore the unreliable nature of current Evaluator LLMs and advocate for cautious implementation in practical applications. Code and data are available at https://github.com/AI4Bharat/FBI.
StableToolBench: Towards Stable Large-Scale Benchmarking on Tool Learning of Large Language Models
Large Language Models (LLMs) have witnessed remarkable advancements in recent years, prompting the exploration of tool learning, which integrates LLMs with external tools to address diverse real-world challenges. Assessing the capability of LLMs to utilise tools necessitates large-scale and stable benchmarks. However, previous works relied on either hand-crafted online tools with limited scale, or large-scale real online APIs suffering from instability of API status. To address this problem, we introduce StableToolBench, a benchmark evolving from ToolBench, proposing a virtual API server and stable evaluation system. The virtual API server contains a caching system and API simulators which are complementary to alleviate the change in API status. Meanwhile, the stable evaluation system designs solvable pass and win rates using GPT-4 as the automatic evaluator to eliminate the randomness during evaluation. Experimental results demonstrate the stability of StableToolBench, and further discuss the effectiveness of API simulators, the caching system, and the evaluator system.
Sel3DCraft: Interactive Visual Prompts for User-Friendly Text-to-3D Generation
Text-to-3D (T23D) generation has transformed digital content creation, yet remains bottlenecked by blind trial-and-error prompting processes that yield unpredictable results. While visual prompt engineering has advanced in text-to-image domains, its application to 3D generation presents unique challenges requiring multi-view consistency evaluation and spatial understanding. We present Sel3DCraft, a visual prompt engineering system for T23D that transforms unstructured exploration into a guided visual process. Our approach introduces three key innovations: a dual-branch structure combining retrieval and generation for diverse candidate exploration; a multi-view hybrid scoring approach that leverages MLLMs with innovative high-level metrics to assess 3D models with human-expert consistency; and a prompt-driven visual analytics suite that enables intuitive defect identification and refinement. Extensive testing and user studies demonstrate that Sel3DCraft surpasses other T23D systems in supporting creativity for designers.
CAME: Contrastive Automated Model Evaluation
The Automated Model Evaluation (AutoEval) framework entertains the possibility of evaluating a trained machine learning model without resorting to a labeled testing set. Despite the promise and some decent results, the existing AutoEval methods heavily rely on computing distribution shifts between the unlabelled testing set and the training set. We believe this reliance on the training set becomes another obstacle in shipping this technology to real-world ML development. In this work, we propose Contrastive Automatic Model Evaluation (CAME), a novel AutoEval framework that is rid of involving training set in the loop. The core idea of CAME bases on a theoretical analysis which bonds the model performance with a contrastive loss. Further, with extensive empirical validation, we manage to set up a predictable relationship between the two, simply by deducing on the unlabeled/unseen testing set. The resulting framework CAME establishes a new SOTA results for AutoEval by surpassing prior work significantly.