- Cracking the Code of Juxtaposition: Can AI Models Understand the Humorous Contradictions Recent advancements in large multimodal language models have demonstrated remarkable proficiency across a wide range of tasks. Yet, these models still struggle with understanding the nuances of human humor through juxtaposition, particularly when it involves nonlinear narratives that underpin many jokes and humor cues. This paper investigates this challenge by focusing on comics with contradictory narratives, where each comic consists of two panels that create a humorous contradiction. We introduce the YesBut benchmark, which comprises tasks of varying difficulty aimed at assessing AI's capabilities in recognizing and interpreting these comics, ranging from literal content comprehension to deep narrative reasoning. Through extensive experimentation and analysis of recent commercial or open-sourced large (vision) language models, we assess their capability to comprehend the complex interplay of the narrative humor inherent in these comics. Our results show that even state-of-the-art models still lag behind human performance on this task. Our findings offer insights into the current limitations and potential improvements for AI in understanding human creative expressions. 8 authors · May 29, 2024
- Dutch Humor Detection by Generating Negative Examples Detecting if a text is humorous is a hard task to do computationally, as it usually requires linguistic and common sense insights. In machine learning, humor detection is usually modeled as a binary classification task, trained to predict if the given text is a joke or another type of text. Rather than using completely different non-humorous texts, we propose using text generation algorithms for imitating the original joke dataset to increase the difficulty for the learning algorithm. We constructed several different joke and non-joke datasets to test the humor detection abilities of different language technologies. In particular, we compare the humor detection capabilities of classic neural network approaches with the state-of-the-art Dutch language model RobBERT. In doing so, we create and compare the first Dutch humor detection systems. We found that while other language models perform well when the non-jokes came from completely different domains, RobBERT was the only one that was able to distinguish jokes from generated negative examples. This performance illustrates the usefulness of using text generation to create negative datasets for humor recognition, and also shows that transformer models are a large step forward in humor detection. 2 authors · Oct 26, 2020
- Self-contradictory Hallucinations of Large Language Models: Evaluation, Detection and Mitigation Large language models (large LMs) are susceptible to producing text with hallucinated content. Self-contradiction, where the LM generates two contradictory sentences within the same context, is an important form of hallucination. In this work, we present a comprehensive analysis on self-contradiction for state-of-the-art, instruction-tuned LMs, including evaluation, detection, and mitigation. To effectively trigger self-contradictions, we design a framework that constrains LMs to generate appropriate sentence pairs. Our evaluation on these sentence pairs reveals that self-contradictions occur frequently across different LMs for both famous and lesser-known topics. Next, we prompt the LMs to detect self-contradictions. Our results indicate that ChatGPT and GPT-4 are able to accurately identify self-contradictions, while Vicuna-13B struggles to do so. For example, with our best prompting method, ChatGPT achieves 91.0% precision and 80.5% recall on the sentence pairs generated by itself. To automatically mitigate self-contradictions, we develop an iterative algorithm that prompts the LMs to remove the detected self-contradictions from the generated text. Our algorithm successfully revises the text such that self-contradictions are significantly reduced, while maintaining its fluency and informativeness. Importantly, our entire pipeline of triggering, detecting, and mitigating self-contradictions is applicable to black-box LMs and does not require any external grounded knowledge. 4 authors · May 25, 2023
- Improving Bot Response Contradiction Detection via Utterance Rewriting Though chatbots based on large neural models can often produce fluent responses in open domain conversations, one salient error type is contradiction or inconsistency with the preceding conversation turns. Previous work has treated contradiction detection in bot responses as a task similar to natural language inference, e.g., detect the contradiction between a pair of bot utterances. However, utterances in conversations may contain co-references or ellipsis, and using these utterances as is may not always be sufficient for identifying contradictions. This work aims to improve the contradiction detection via rewriting all bot utterances to restore antecedents and ellipsis. We curated a new dataset for utterance rewriting and built a rewriting model on it. We empirically demonstrate that this model can produce satisfactory rewrites to make bot utterances more complete. Furthermore, using rewritten utterances improves contradiction detection performance significantly, e.g., the AUPR and joint accuracy scores (detecting contradiction along with evidence) increase by 6.5% and 4.5% (absolute increase), respectively. 4 authors · Jul 24, 2022