- Single-View Height Estimation with Conditional Diffusion Probabilistic Models Digital Surface Models (DSM) offer a wealth of height information for understanding the Earth's surface as well as monitoring the existence or change in natural and man-made structures. Classical height estimation requires multi-view geospatial imagery or LiDAR point clouds which can be expensive to acquire. Single-view height estimation using neural network based models shows promise however it can struggle with reconstructing high resolution features. The latest advancements in diffusion models for high resolution image synthesis and editing have yet to be utilized for remote sensing imagery, particularly height estimation. Our approach involves training a generative diffusion model to learn the joint distribution of optical and DSM images across both domains as a Markov chain. This is accomplished by minimizing a denoising score matching objective while being conditioned on the source image to generate realistic high resolution 3D surfaces. In this paper we experiment with conditional denoising diffusion probabilistic models (DDPM) for height estimation from a single remotely sensed image and show promising results on the Vaihingen benchmark dataset. 2 authors · Apr 25, 2023 1
- Conifer Seedling Detection in UAV-Imagery with RGB-Depth Information Monitoring of reforestation is currently being considerably streamlined through the use of drones and image recognition algorithms, which have already proven to be effective on colour imagery. In addition to colour imagery, elevation data is often also available. The primary aim of this work was to improve the performance of the faster-RCNN object detection algorithm by integrating this height information, which showed itself to notably improve performance. Interestingly, the structure of the network played a key role, with direct addition of the height information as a fourth image channel showing no improvement, while integration after the backbone network and before the region proposal network led to marked improvements. This effect persisted with very long training regimes. Increasing the resolution of this height information also showed little effect. 3 authors · Nov 22, 2021
1 Deep Height Decoupling for Precise Vision-based 3D Occupancy Prediction The task of vision-based 3D occupancy prediction aims to reconstruct 3D geometry and estimate its semantic classes from 2D color images, where the 2D-to-3D view transformation is an indispensable step. Most previous methods conduct forward projection, such as BEVPooling and VoxelPooling, both of which map the 2D image features into 3D grids. However, the current grid representing features within a certain height range usually introduces many confusing features that belong to other height ranges. To address this challenge, we present Deep Height Decoupling (DHD), a novel framework that incorporates explicit height prior to filter out the confusing features. Specifically, DHD first predicts height maps via explicit supervision. Based on the height distribution statistics, DHD designs Mask Guided Height Sampling (MGHS) to adaptively decouple the height map into multiple binary masks. MGHS projects the 2D image features into multiple subspaces, where each grid contains features within reasonable height ranges. Finally, a Synergistic Feature Aggregation (SFA) module is deployed to enhance the feature representation through channel and spatial affinities, enabling further occupancy refinement. On the popular Occ3D-nuScenes benchmark, our method achieves state-of-the-art performance even with minimal input frames. Source code is released at https://github.com/yanzq95/DHD. 6 authors · Sep 12, 2024