- Booster: Tackling Harmful Fine-tuning for Large Language Models via Attenuating Harmful Perturbation Harmful fine-tuning issue qi2023fine poses serious safety concerns for Large language models' fine-tuning-as-a-service. While existing defenses huang2024vaccine,rosati2024representation have been proposed to mitigate the issue, their performances are still far away from satisfactory, and the root cause of the problem has not been fully recovered. For the first time in the literature, we in this paper show that harmful perturbation over the model weights should be the root cause of alignment-broken of harmful fine-tuning. In order to attenuate the negative impact of harmful perturbation, we propose an alignment-stage solution, dubbed Booster. Technically, along with the original alignment loss, we append a loss regularizer in the alignment stage's optimization. The regularizer ensures that the model's harmful loss reduction before/after simulated harmful perturbation is attenuated, thereby mitigating the subsequent fine-tuning risk. Empirical results show that Booster can effectively reduce the harmful score of the fine-tuned models while maintaining the performance of downstream tasks. Our code is available at https://github.com/git-disl/Booster. 5 authors · Sep 2, 2024
- SafeAligner: Safety Alignment against Jailbreak Attacks via Response Disparity Guidance As the development of large language models (LLMs) rapidly advances, securing these models effectively without compromising their utility has become a pivotal area of research. However, current defense strategies against jailbreak attacks (i.e., efforts to bypass security protocols) often suffer from limited adaptability, restricted general capability, and high cost. To address these challenges, we introduce SafeAligner, a methodology implemented at the decoding stage to fortify defenses against jailbreak attacks. We begin by developing two specialized models: the Sentinel Model, which is trained to foster safety, and the Intruder Model, designed to generate riskier responses. SafeAligner leverages the disparity in security levels between the responses from these models to differentiate between harmful and beneficial tokens, effectively guiding the safety alignment by altering the output token distribution of the target model. Extensive experiments show that SafeAligner can increase the likelihood of beneficial tokens, while reducing the occurrence of harmful ones, thereby ensuring secure alignment with minimal loss to generality. 13 authors · Jun 26, 2024
- A predict-and-optimize approach to profit-driven churn prevention In this paper, we introduce a novel predict-and-optimize method for profit-driven churn prevention. We frame the task of targeting customers for a retention campaign as a regret minimization problem. The main objective is to leverage individual customer lifetime values (CLVs) to ensure that only the most valuable customers are targeted. In contrast, many profit-driven strategies focus on churn probabilities while considering average CLVs. This often results in significant information loss due to data aggregation. Our proposed model aligns with the guidelines of Predict-and-Optimize (PnO) frameworks and can be efficiently solved using stochastic gradient descent methods. Results from 12 churn prediction datasets underscore the effectiveness of our approach, which achieves the best average performance compared to other well-established strategies in terms of average profit. 3 authors · Oct 10, 2023
- Proper losses for discrete generative models We initiate the study of proper losses for evaluating generative models in the discrete setting. Unlike traditional proper losses, we treat both the generative model and the target distribution as black-boxes, only assuming ability to draw i.i.d. samples. We define a loss to be black-box proper if the generative distribution that minimizes expected loss is equal to the target distribution. Using techniques from statistical estimation theory, we give a general construction and characterization of black-box proper losses: they must take a polynomial form, and the number of draws from the model and target distribution must exceed the degree of the polynomial. The characterization rules out a loss whose expectation is the cross-entropy between the target distribution and the model. By extending the construction to arbitrary sampling schemes such as Poisson sampling, however, we show that one can construct such a loss. 3 authors · Nov 7, 2022
- Fair Classifiers that Abstain without Harm In critical applications, it is vital for classifiers to defer decision-making to humans. We propose a post-hoc method that makes existing classifiers selectively abstain from predicting certain samples. Our abstaining classifier is incentivized to maintain the original accuracy for each sub-population (i.e. no harm) while achieving a set of group fairness definitions to a user specified degree. To this end, we design an Integer Programming (IP) procedure that assigns abstention decisions for each training sample to satisfy a set of constraints. To generalize the abstaining decisions to test samples, we then train a surrogate model to learn the abstaining decisions based on the IP solutions in an end-to-end manner. We analyze the feasibility of the IP procedure to determine the possible abstention rate for different levels of unfairness tolerance and accuracy constraint for achieving no harm. To the best of our knowledge, this work is the first to identify the theoretical relationships between the constraint parameters and the required abstention rate. Our theoretical results are important since a high abstention rate is often infeasible in practice due to a lack of human resources. Our framework outperforms existing methods in terms of fairness disparity without sacrificing accuracy at similar abstention rates. 6 authors · Oct 9, 2023
- Disposable Transfer Learning for Selective Source Task Unlearning Transfer learning is widely used for training deep neural networks (DNN) for building a powerful representation. Even after the pre-trained model is adapted for the target task, the representation performance of the feature extractor is retained to some extent. As the performance of the pre-trained model can be considered the private property of the owner, it is natural to seek the exclusive right of the generalized performance of the pre-trained weight. To address this issue, we suggest a new paradigm of transfer learning called disposable transfer learning (DTL), which disposes of only the source task without degrading the performance of the target task. To achieve knowledge disposal, we propose a novel loss named Gradient Collision loss (GC loss). GC loss selectively unlearns the source knowledge by leading the gradient vectors of mini-batches in different directions. Whether the model successfully unlearns the source task is measured by piggyback learning accuracy (PL accuracy). PL accuracy estimates the vulnerability of knowledge leakage by retraining the scrubbed model on a subset of source data or new downstream data. We demonstrate that GC loss is an effective approach to the DTL problem by showing that the model trained with GC loss retains the performance on the target task with a significantly reduced PL accuracy. 5 authors · Aug 19, 2023
1 Self-Compressing Neural Networks This work focuses on reducing neural network size, which is a major driver of neural network execution time, power consumption, bandwidth, and memory footprint. A key challenge is to reduce size in a manner that can be exploited readily for efficient training and inference without the need for specialized hardware. We propose Self-Compression: a simple, general method that simultaneously achieves two goals: (1) removing redundant weights, and (2) reducing the number of bits required to represent the remaining weights. This is achieved using a generalized loss function to minimize overall network size. In our experiments we demonstrate floating point accuracy with as few as 3% of the bits and 18% of the weights remaining in the network. 2 authors · Jan 30, 2023
1 Pruning On-the-Fly: A Recoverable Pruning Method without Fine-tuning Most existing pruning works are resource-intensive, requiring retraining or fine-tuning of the pruned models for accuracy. We propose a retraining-free pruning method based on hyperspherical learning and loss penalty terms. The proposed loss penalty term pushes some of the model weights far from zero, while the rest weight values are pushed near zero and can be safely pruned with no need for retraining and a negligible accuracy drop. In addition, our proposed method can instantly recover the accuracy of a pruned model by replacing the pruned values with their mean value. Our method obtains state-of-the-art results in retraining-free pruning and is evaluated on ResNet-18/50 and MobileNetV2 with ImageNet dataset. One can easily get a 50\% pruned ResNet18 model with a 0.47\% accuracy drop. With fine-tuning, the experiment results show that our method can significantly boost the accuracy of the pruned models compared with existing works. For example, the accuracy of a 70\% pruned (except the first convolutional layer) MobileNetV2 model only drops 3.5\%, much less than the 7\% sim 10\% accuracy drop with conventional methods. 2 authors · Dec 23, 2022
- LegendreTron: Uprising Proper Multiclass Loss Learning Loss functions serve as the foundation of supervised learning and are often chosen prior to model development. To avoid potentially ad hoc choices of losses, statistical decision theory describes a desirable property for losses known as properness, which asserts that Bayes' rule is optimal. Recent works have sought to learn losses and models jointly. Existing methods do this by fitting an inverse canonical link function which monotonically maps R to [0,1] to estimate probabilities for binary problems. In this paper, we extend monotonicity to maps between R^{C-1} and the projected probability simplex Delta^{C-1} by using monotonicity of gradients of convex functions. We present {\sc LegendreTron} as a novel and practical method that jointly learns proper canonical losses and probabilities for multiclass problems. Tested on a benchmark of domains with up to 1,000 classes, our experimental results show that our method consistently outperforms the natural multiclass baseline under a t-test at 99% significance on all datasets with greater than 10 classes. 4 authors · Jan 27, 2023
- Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning Safety aligned Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks qi2023fine-- a few harmful data mixed in the fine-tuning dataset can break the LLMs's safety alignment. Existing mitigation strategies include alignment stage solutions huang2024vaccine, rosati2024representation and fine-tuning stage solutions huang2024lazy,mukhoti2023fine. However, our evaluation shows that both categories of defenses fail when some specific training hyper-parameters are chosen -- a large learning rate or a large number of training epochs in the fine-tuning stage can easily invalidate the defense, which however, is necessary to guarantee finetune performance. To this end, we propose Antidote, a post-fine-tuning stage solution, which remains \textit{agnostic to the training hyper-parameters in the fine-tuning stage}. Antidote relies on the philosophy that by removing the harmful parameters, the harmful model can be recovered from the harmful behaviors, regardless of how those harmful parameters are formed in the fine-tuning stage. With this philosophy, we introduce a one-shot pruning stage after harmful fine-tuning to remove the harmful weights that are responsible for the generation of harmful content. Despite its embarrassing simplicity, empirical results show that Antidote can reduce harmful score while maintaining accuracy on downstream tasks.Our project page is at https://huangtiansheng.github.io/Antidote_gh_page/ 5 authors · Aug 18, 2024
- Tackling Data Heterogeneity in Federated Learning via Loss Decomposition Federated Learning (FL) is a rising approach towards collaborative and privacy-preserving machine learning where large-scale medical datasets remain localized to each client. However, the issue of data heterogeneity among clients often compels local models to diverge, leading to suboptimal global models. To mitigate the impact of data heterogeneity on FL performance, we start with analyzing how FL training influence FL performance by decomposing the global loss into three terms: local loss, distribution shift loss and aggregation loss. Remarkably, our loss decomposition reveals that existing local training-based FL methods attempt to reduce the distribution shift loss, while the global aggregation-based FL methods propose better aggregation strategies to reduce the aggregation loss. Nevertheless, a comprehensive joint effort to minimize all three terms is currently limited in the literature, leading to subpar performance when dealing with data heterogeneity challenges. To fill this gap, we propose a novel FL method based on global loss decomposition, called FedLD, to jointly reduce these three loss terms. Our FedLD involves a margin control regularization in local training to reduce the distribution shift loss, and a principal gradient-based server aggregation strategy to reduce the aggregation loss. Notably, under different levels of data heterogeneity, our strategies achieve better and more robust performance on retinal and chest X-ray classification compared to other FL algorithms. Our code is available at https://github.com/Zeng-Shuang/FedLD. 6 authors · Aug 22, 2024
1 LOss-Based SensiTivity rEgulaRization: towards deep sparse neural networks LOBSTER (LOss-Based SensiTivity rEgulaRization) is a method for training neural networks having a sparse topology. Let the sensitivity of a network parameter be the variation of the loss function with respect to the variation of the parameter. Parameters with low sensitivity, i.e. having little impact on the loss when perturbed, are shrunk and then pruned to sparsify the network. Our method allows to train a network from scratch, i.e. without preliminary learning or rewinding. Experiments on multiple architectures and datasets show competitive compression ratios with minimal computational overhead. 4 authors · Nov 16, 2020
- Refined Regret for Adversarial MDPs with Linear Function Approximation We consider learning in an adversarial Markov Decision Process (MDP) where the loss functions can change arbitrarily over K episodes and the state space can be arbitrarily large. We assume that the Q-function of any policy is linear in some known features, that is, a linear function approximation exists. The best existing regret upper bound for this setting (Luo et al., 2021) is of order mathcal O(K^{2/3}) (omitting all other dependencies), given access to a simulator. This paper provides two algorithms that improve the regret to mathcal O(sqrt K) in the same setting. Our first algorithm makes use of a refined analysis of the Follow-the-Regularized-Leader (FTRL) algorithm with the log-barrier regularizer. This analysis allows the loss estimators to be arbitrarily negative and might be of independent interest. Our second algorithm develops a magnitude-reduced loss estimator, further removing the polynomial dependency on the number of actions in the first algorithm and leading to the optimal regret bound (up to logarithmic terms and dependency on the horizon). Moreover, we also extend the first algorithm to simulator-free linear MDPs, which achieves mathcal O(K^{8/9}) regret and greatly improves over the best existing bound mathcal O(K^{14/15}). This algorithm relies on a better alternative to the Matrix Geometric Resampling procedure by Neu & Olkhovskaya (2020), which could again be of independent interest. 4 authors · Jan 30, 2023