new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 14

Machine Learning Modeling for Multi-order Human Visual Motion Processing

Our research aims to develop machines that learn to perceive visual motion as do humans. While recent advances in computer vision (CV) have enabled DNN-based models to accurately estimate optical flow in naturalistic images, a significant disparity remains between CV models and the biological visual system in both architecture and behavior. This disparity includes humans' ability to perceive the motion of higher-order image features (second-order motion), which many CV models fail to capture because of their reliance on the intensity conservation law. Our model architecture mimics the cortical V1-MT motion processing pathway, utilizing a trainable motion energy sensor bank and a recurrent graph network. Supervised learning employing diverse naturalistic videos allows the model to replicate psychophysical and physiological findings about first-order (luminance-based) motion perception. For second-order motion, inspired by neuroscientific findings, the model includes an additional sensing pathway with nonlinear preprocessing before motion energy sensing, implemented using a simple multilayer 3D CNN block. When exploring how the brain acquired the ability to perceive second-order motion in natural environments, in which pure second-order signals are rare, we hypothesized that second-order mechanisms were critical when estimating robust object motion amidst optical fluctuations, such as highlights on glossy surfaces. We trained our dual-pathway model on novel motion datasets with varying material properties of moving objects. We found that training to estimate object motion from non-Lambertian materials naturally endowed the model with the capacity to perceive second-order motion, as can humans. The resulting model effectively aligns with biological systems while generalizing to both first- and second-order motion phenomena in natural scenes.

Boosting 3D Object Generation through PBR Materials

Automatic 3D content creation has gained increasing attention recently, due to its potential in various applications such as video games, film industry, and AR/VR. Recent advancements in diffusion models and multimodal models have notably improved the quality and efficiency of 3D object generation given a single RGB image. However, 3D objects generated even by state-of-the-art methods are still unsatisfactory compared to human-created assets. Considering only textures instead of materials makes these methods encounter challenges in photo-realistic rendering, relighting, and flexible appearance editing. And they also suffer from severe misalignment between geometry and high-frequency texture details. In this work, we propose a novel approach to boost the quality of generated 3D objects from the perspective of Physics-Based Rendering (PBR) materials. By analyzing the components of PBR materials, we choose to consider albedo, roughness, metalness, and bump maps. For albedo and bump maps, we leverage Stable Diffusion fine-tuned on synthetic data to extract these values, with novel usages of these fine-tuned models to obtain 3D consistent albedo UV and bump UV for generated objects. In terms of roughness and metalness maps, we adopt a semi-automatic process to provide room for interactive adjustment, which we believe is more practical. Extensive experiments demonstrate that our model is generally beneficial for various state-of-the-art generation methods, significantly boosting the quality and realism of their generated 3D objects, with natural relighting effects and substantially improved geometry.