Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeReMoMask: Retrieval-Augmented Masked Motion Generation
Text-to-Motion (T2M) generation aims to synthesize realistic and semantically aligned human motion sequences from natural language descriptions. However, current approaches face dual challenges: Generative models (e.g., diffusion models) suffer from limited diversity, error accumulation, and physical implausibility, while Retrieval-Augmented Generation (RAG) methods exhibit diffusion inertia, partial-mode collapse, and asynchronous artifacts. To address these limitations, we propose ReMoMask, a unified framework integrating three key innovations: 1) A Bidirectional Momentum Text-Motion Model decouples negative sample scale from batch size via momentum queues, substantially improving cross-modal retrieval precision; 2) A Semantic Spatio-temporal Attention mechanism enforces biomechanical constraints during part-level fusion to eliminate asynchronous artifacts; 3) RAG-Classier-Free Guidance incorporates minor unconditional generation to enhance generalization. Built upon MoMask's RVQ-VAE, ReMoMask efficiently generates temporally coherent motions in minimal steps. Extensive experiments on standard benchmarks demonstrate the state-of-the-art performance of ReMoMask, achieving a 3.88% and 10.97% improvement in FID scores on HumanML3D and KIT-ML, respectively, compared to the previous SOTA method RAG-T2M. Code: https://github.com/AIGeeksGroup/ReMoMask. Website: https://aigeeksgroup.github.io/ReMoMask.
Cross-modal RAG: Sub-dimensional Retrieval-Augmented Text-to-Image Generation
Text-to-image generation increasingly demands access to domain-specific, fine-grained, and rapidly evolving knowledge that pretrained models cannot fully capture. Existing Retrieval-Augmented Generation (RAG) methods attempt to address this by retrieving globally relevant images, but they fail when no single image contains all desired elements from a complex user query. We propose Cross-modal RAG, a novel framework that decomposes both queries and images into sub-dimensional components, enabling subquery-aware retrieval and generation. Our method introduces a hybrid retrieval strategy - combining a sub-dimensional sparse retriever with a dense retriever - to identify a Pareto-optimal set of images, each contributing complementary aspects of the query. During generation, a multimodal large language model is guided to selectively condition on relevant visual features aligned to specific subqueries, ensuring subquery-aware image synthesis. Extensive experiments on MS-COCO, Flickr30K, WikiArt, CUB, and ImageNet-LT demonstrate that Cross-modal RAG significantly outperforms existing baselines in both retrieval and generation quality, while maintaining high efficiency.
CCMB: A Large-scale Chinese Cross-modal Benchmark
Vision-language pre-training (VLP) on large-scale datasets has shown premier performance on various downstream tasks. In contrast to plenty of available benchmarks with English corpus, large-scale pre-training datasets and downstream datasets with Chinese corpus remain largely unexplored. In this work, we build a large-scale high-quality Chinese Cross-Modal Benchmark named CCMB for the research community, which contains the currently largest public pre-training dataset Zero and five human-annotated fine-tuning datasets for downstream tasks. Zero contains 250 million images paired with 750 million text descriptions, plus two of the five fine-tuning datasets are also currently the largest ones for Chinese cross-modal downstream tasks. Along with the CCMB, we also develop a VLP framework named R2D2, applying a pre-Ranking + Ranking strategy to learn powerful vision-language representations and a two-way distillation method (i.e., target-guided Distillation and feature-guided Distillation) to further enhance the learning capability. With the Zero and the R2D2 VLP framework, we achieve state-of-the-art performance on twelve downstream datasets from five broad categories of tasks including image-text retrieval, image-text matching, image caption, text-to-image generation, and zero-shot image classification. The datasets, models, and codes are available at https://github.com/yuxie11/R2D2
Retrieving Multimodal Information for Augmented Generation: A Survey
In this survey, we review methods that retrieve multimodal knowledge to assist and augment generative models. This group of works focuses on retrieving grounding contexts from external sources, including images, codes, tables, graphs, and audio. As multimodal learning and generative AI have become more and more impactful, such retrieval augmentation offers a promising solution to important concerns such as factuality, reasoning, interpretability, and robustness. We provide an in-depth review of retrieval-augmented generation in different modalities and discuss potential future directions. As this is an emerging field, we continue to add new papers and methods.
Probabilistic Embeddings for Cross-Modal Retrieval
Cross-modal retrieval methods build a common representation space for samples from multiple modalities, typically from the vision and the language domains. For images and their captions, the multiplicity of the correspondences makes the task particularly challenging. Given an image (respectively a caption), there are multiple captions (respectively images) that equally make sense. In this paper, we argue that deterministic functions are not sufficiently powerful to capture such one-to-many correspondences. Instead, we propose to use Probabilistic Cross-Modal Embedding (PCME), where samples from the different modalities are represented as probabilistic distributions in the common embedding space. Since common benchmarks such as COCO suffer from non-exhaustive annotations for cross-modal matches, we propose to additionally evaluate retrieval on the CUB dataset, a smaller yet clean database where all possible image-caption pairs are annotated. We extensively ablate PCME and demonstrate that it not only improves the retrieval performance over its deterministic counterpart but also provides uncertainty estimates that render the embeddings more interpretable. Code is available at https://github.com/naver-ai/pcme
How Does Generative Retrieval Scale to Millions of Passages?
Popularized by the Differentiable Search Index, the emerging paradigm of generative retrieval re-frames the classic information retrieval problem into a sequence-to-sequence modeling task, forgoing external indices and encoding an entire document corpus within a single Transformer. Although many different approaches have been proposed to improve the effectiveness of generative retrieval, they have only been evaluated on document corpora on the order of 100k in size. We conduct the first empirical study of generative retrieval techniques across various corpus scales, ultimately scaling up to the entire MS MARCO passage ranking task with a corpus of 8.8M passages and evaluating model sizes up to 11B parameters. We uncover several findings about scaling generative retrieval to millions of passages; notably, the central importance of using synthetic queries as document representations during indexing, the ineffectiveness of existing proposed architecture modifications when accounting for compute cost, and the limits of naively scaling model parameters with respect to retrieval performance. While we find that generative retrieval is competitive with state-of-the-art dual encoders on small corpora, scaling to millions of passages remains an important and unsolved challenge. We believe these findings will be valuable for the community to clarify the current state of generative retrieval, highlight the unique challenges, and inspire new research directions.
A Modern Perspective on Query Likelihood with Deep Generative Retrieval Models
Existing neural ranking models follow the text matching paradigm, where document-to-query relevance is estimated through predicting the matching score. Drawing from the rich literature of classical generative retrieval models, we introduce and formalize the paradigm of deep generative retrieval models defined via the cumulative probabilities of generating query terms. This paradigm offers a grounded probabilistic view on relevance estimation while still enabling the use of modern neural architectures. In contrast to the matching paradigm, the probabilistic nature of generative rankers readily offers a fine-grained measure of uncertainty. We adopt several current neural generative models in our framework and introduce a novel generative ranker (T-PGN), which combines the encoding capacity of Transformers with the Pointer Generator Network model. We conduct an extensive set of evaluation experiments on passage retrieval, leveraging the MS MARCO Passage Re-ranking and TREC Deep Learning 2019 Passage Re-ranking collections. Our results show the significantly higher performance of the T-PGN model when compared with other generative models. Lastly, we demonstrate that exploiting the uncertainty information of deep generative rankers opens new perspectives to query/collection understanding, and significantly improves the cut-off prediction task.
Beyond [CLS] through Ranking by Generation
Generative models for Information Retrieval, where ranking of documents is viewed as the task of generating a query from a document's language model, were very successful in various IR tasks in the past. However, with the advent of modern deep neural networks, attention has shifted to discriminative ranking functions that model the semantic similarity of documents and queries instead. Recently, deep generative models such as GPT2 and BART have been shown to be excellent text generators, but their effectiveness as rankers have not been demonstrated yet. In this work, we revisit the generative framework for information retrieval and show that our generative approaches are as effective as state-of-the-art semantic similarity-based discriminative models for the answer selection task. Additionally, we demonstrate the effectiveness of unlikelihood losses for IR.
DocMMIR: A Framework for Document Multi-modal Information Retrieval
The rapid advancement of unsupervised representation learning and large-scale pre-trained vision-language models has significantly improved cross-modal retrieval tasks. However, existing multi-modal information retrieval (MMIR) studies lack a comprehensive exploration of document-level retrieval and suffer from the absence of cross-domain datasets at this granularity. To address this limitation, we introduce DocMMIR, a novel multi-modal document retrieval framework designed explicitly to unify diverse document formats and domains, including Wikipedia articles, scientific papers (arXiv), and presentation slides, within a comprehensive retrieval scenario. We construct a large-scale cross-domain multimodal benchmark, comprising 450K samples, which systematically integrates textual and visual information. Our comprehensive experimental analysis reveals substantial limitations in current state-of-the-art MLLMs (CLIP, BLIP2, SigLIP-2, ALIGN) when applied to our tasks, with only CLIP demonstrating reasonable zero-shot performance. Furthermore, we conduct a systematic investigation of training strategies, including cross-modal fusion methods and loss functions, and develop a tailored approach to train CLIP on our benchmark. This results in a +31% improvement in MRR@10 compared to the zero-shot baseline. All our data and code are released in https://github.com/J1mL1/DocMMIR.
GENIUS: A Generative Framework for Universal Multimodal Search
Generative retrieval is an emerging approach in information retrieval that generates identifiers (IDs) of target data based on a query, providing an efficient alternative to traditional embedding-based retrieval methods. However, existing models are task-specific and fall short of embedding-based retrieval in performance. This paper proposes GENIUS, a universal generative retrieval framework supporting diverse tasks across multiple modalities and domains. At its core, GENIUS introduces modality-decoupled semantic quantization, transforming multimodal data into discrete IDs encoding both modality and semantics. Moreover, to enhance generalization, we propose a query augmentation that interpolates between a query and its target, allowing GENIUS to adapt to varied query forms. Evaluated on the M-BEIR benchmark, it surpasses prior generative methods by a clear margin. Unlike embedding-based retrieval, GENIUS consistently maintains high retrieval speed across database size, with competitive performance across multiple benchmarks. With additional re-ranking, GENIUS often achieves results close to those of embedding-based methods while preserving efficiency.
Recurrence-Enhanced Vision-and-Language Transformers for Robust Multimodal Document Retrieval
Cross-modal retrieval is gaining increasing efficacy and interest from the research community, thanks to large-scale training, novel architectural and learning designs, and its application in LLMs and multimodal LLMs. In this paper, we move a step forward and design an approach that allows for multimodal queries, composed of both an image and a text, and can search within collections of multimodal documents, where images and text are interleaved. Our model, ReT, employs multi-level representations extracted from different layers of both visual and textual backbones, both at the query and document side. To allow for multi-level and cross-modal understanding and feature extraction, ReT employs a novel Transformer-based recurrent cell that integrates both textual and visual features at different layers, and leverages sigmoidal gates inspired by the classical design of LSTMs. Extensive experiments on M2KR and M-BEIR benchmarks show that ReT achieves state-of-the-art performance across diverse settings. Our source code and trained models are publicly available at https://github.com/aimagelab/ReT.
UniversalRAG: Retrieval-Augmented Generation over Multiple Corpora with Diverse Modalities and Granularities
Retrieval-Augmented Generation (RAG) has shown substantial promise in improving factual accuracy by grounding model responses with external knowledge relevant to queries. However, most existing RAG approaches are limited to a text-only corpus, and while recent efforts have extended RAG to other modalities such as images and videos, they typically operate over a single modality-specific corpus. In contrast, real-world queries vary widely in the type of knowledge they require, which a single type of knowledge source cannot address. To address this, we introduce UniversalRAG, a novel RAG framework designed to retrieve and integrate knowledge from heterogeneous sources with diverse modalities and granularities. Specifically, motivated by the observation that forcing all modalities into a unified representation space derived from a single combined corpus causes a modality gap, where the retrieval tends to favor items from the same modality as the query, we propose a modality-aware routing mechanism that dynamically identifies the most appropriate modality-specific corpus and performs targeted retrieval within it. Also, beyond modality, we organize each modality into multiple granularity levels, enabling fine-tuned retrieval tailored to the complexity and scope of the query. We validate UniversalRAG on 8 benchmarks spanning multiple modalities, showing its superiority over modality-specific and unified baselines.
Audio Retrieval with Natural Language Queries: A Benchmark Study
The objectives of this work are cross-modal text-audio and audio-text retrieval, in which the goal is to retrieve the audio content from a pool of candidates that best matches a given written description and vice versa. Text-audio retrieval enables users to search large databases through an intuitive interface: they simply issue free-form natural language descriptions of the sound they would like to hear. To study the tasks of text-audio and audio-text retrieval, which have received limited attention in the existing literature, we introduce three challenging new benchmarks. We first construct text-audio and audio-text retrieval benchmarks from the AudioCaps and Clotho audio captioning datasets. Additionally, we introduce the SoundDescs benchmark, which consists of paired audio and natural language descriptions for a diverse collection of sounds that are complementary to those found in AudioCaps and Clotho. We employ these three benchmarks to establish baselines for cross-modal text-audio and audio-text retrieval, where we demonstrate the benefits of pre-training on diverse audio tasks. We hope that our benchmarks will inspire further research into audio retrieval with free-form text queries. Code, audio features for all datasets used, and the SoundDescs dataset are publicly available at https://github.com/akoepke/audio-retrieval-benchmark.
Re-ranking the Context for Multimodal Retrieval Augmented Generation
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge to generate a response within a context with improved accuracy and reduced hallucinations. However, multi-modal RAG systems face unique challenges: (i) the retrieval process may select irrelevant entries to user query (e.g., images, documents), and (ii) vision-language models or multi-modal language models like GPT-4o may hallucinate when processing these entries to generate RAG output. In this paper, we aim to address the first challenge, i.e, improving the selection of relevant context from the knowledge-base in retrieval phase of the multi-modal RAG. Specifically, we leverage the relevancy score (RS) measure designed in our previous work for evaluating the RAG performance to select more relevant entries in retrieval process. The retrieval based on embeddings, say CLIP-based embedding, and cosine similarity usually perform poorly particularly for multi-modal data. We show that by using a more advanced relevancy measure, one can enhance the retrieval process by selecting more relevant pieces from the knowledge-base and eliminate the irrelevant pieces from the context by adaptively selecting up-to-k entries instead of fixed number of entries. Our evaluation using COCO dataset demonstrates significant enhancement in selecting relevant context and accuracy of the generated response.
Multi-modal Retrieval Augmented Multi-modal Generation: Datasets, Evaluation Metrics and Strong Baselines
We present a systematic investigation of Multi-modal Retrieval Augmented Multi-modal Generation (M^2RAG), a novel task that enables foundation models to process multi-modal web content and generate multi-modal responses, which exhibits better information density and readability. Despite its potential impact, M^2RAG remains understudied, lacking comprehensive analysis and high-quality data resources. To address this gap, we establish a comprehensive benchmark through a rigorous data curation pipeline, and employ text-modal metrics and multi-modal metrics based on foundation models for evaluation. We further propose several strategies for foundation models to process M^2RAG effectively and construct a training set by filtering high-quality samples using designed metrics. Our extensive experiments demonstrate the reliability of our proposed metrics, a landscape of model performance within our designed strategies, and show that our fine-tuned 7B-8B models outperform the state-of-the-art GPT-4o model. Additionally, we perform fine-grained analyses across diverse domains and validate the effectiveness of our designs in data curation pipeline. All resources, including codes, datasets, and model weights, will be publicly released.
CorpusBrain: Pre-train a Generative Retrieval Model for Knowledge-Intensive Language Tasks
Knowledge-intensive language tasks (KILT) usually require a large body of information to provide correct answers. A popular paradigm to solve this problem is to combine a search system with a machine reader, where the former retrieves supporting evidences and the latter examines them to produce answers. Recently, the reader component has witnessed significant advances with the help of large-scale pre-trained generative models. Meanwhile most existing solutions in the search component rely on the traditional ``index-retrieve-then-rank'' pipeline, which suffers from large memory footprint and difficulty in end-to-end optimization. Inspired by recent efforts in constructing model-based IR models, we propose to replace the traditional multi-step search pipeline with a novel single-step generative model, which can dramatically simplify the search process and be optimized in an end-to-end manner. We show that a strong generative retrieval model can be learned with a set of adequately designed pre-training tasks, and be adopted to improve a variety of downstream KILT tasks with further fine-tuning. We name the pre-trained generative retrieval model as CorpusBrain as all information about the corpus is encoded in its parameters without the need of constructing additional index. Empirical results show that CorpusBrain can significantly outperform strong baselines for the retrieval task on the KILT benchmark and establish new state-of-the-art downstream performances. We also show that CorpusBrain works well under zero- and low-resource settings.
Modality Curation: Building Universal Embeddings for Advanced Multimodal Information Retrieval
Multimodal information retrieval (MIR) faces inherent challenges due to the heterogeneity of data sources and the complexity of cross-modal alignment. While previous studies have identified modal gaps in feature spaces, a systematic approach to address these challenges remains unexplored. In this work, we introduce UNITE, a universal framework that tackles these challenges through two critical yet underexplored aspects: data curation and modality-aware training configurations. Our work provides the first comprehensive analysis of how modality-specific data properties influence downstream task performance across diverse scenarios. Moreover, we propose Modal-Aware Masked Contrastive Learning (MAMCL) to mitigate the competitive relationships among the instances of different modalities. Our framework achieves state-of-the-art results on multiple multimodal retrieval benchmarks, outperforming existing methods by notable margins. Through extensive experiments, we demonstrate that strategic modality curation and tailored training protocols are pivotal for robust cross-modal representation learning. This work not only advances MIR performance but also provides a foundational blueprint for future research in multimodal systems. Our project is available at https://friedrichor.github.io/projects/UNITE.
Object-Aware Query Perturbation for Cross-Modal Image-Text Retrieval
The pre-trained vision and language (V\&L) models have substantially improved the performance of cross-modal image-text retrieval. In general, however, V\&L models have limited retrieval performance for small objects because of the rough alignment between words and the small objects in the image. In contrast, it is known that human cognition is object-centric, and we pay more attention to important objects, even if they are small. To bridge this gap between the human cognition and the V\&L model's capability, we propose a cross-modal image-text retrieval framework based on ``object-aware query perturbation.'' The proposed method generates a key feature subspace of the detected objects and perturbs the corresponding queries using this subspace to improve the object awareness in the image. In our proposed method, object-aware cross-modal image-text retrieval is possible while keeping the rich expressive power and retrieval performance of existing V\&L models without additional fine-tuning. Comprehensive experiments on four public datasets show that our method outperforms conventional algorithms.
NeighborRetr: Balancing Hub Centrality in Cross-Modal Retrieval
Cross-modal retrieval aims to bridge the semantic gap between different modalities, such as visual and textual data, enabling accurate retrieval across them. Despite significant advancements with models like CLIP that align cross-modal representations, a persistent challenge remains: the hubness problem, where a small subset of samples (hubs) dominate as nearest neighbors, leading to biased representations and degraded retrieval accuracy. Existing methods often mitigate hubness through post-hoc normalization techniques, relying on prior data distributions that may not be practical in real-world scenarios. In this paper, we directly mitigate hubness during training and introduce NeighborRetr, a novel method that effectively balances the learning of hubs and adaptively adjusts the relations of various kinds of neighbors. Our approach not only mitigates the hubness problem but also enhances retrieval performance, achieving state-of-the-art results on multiple cross-modal retrieval benchmarks. Furthermore, NeighborRetr demonstrates robust generalization to new domains with substantial distribution shifts, highlighting its effectiveness in real-world applications. We make our code publicly available at: https://github.com/zzezze/NeighborRetr .
VISTA: Visualized Text Embedding For Universal Multi-Modal Retrieval
Multi-modal retrieval becomes increasingly popular in practice. However, the existing retrievers are mostly text-oriented, which lack the capability to process visual information. Despite the presence of vision-language models like CLIP, the current methods are severely limited in representing the text-only and image-only data. In this work, we present a new embedding model VISTA for universal multi-modal retrieval. Our work brings forth threefold technical contributions. Firstly, we introduce a flexible architecture which extends a powerful text encoder with the image understanding capability by introducing visual token embeddings. Secondly, we develop two data generation strategies, which bring high-quality composed image-text to facilitate the training of the embedding model. Thirdly, we introduce a multi-stage training algorithm, which first aligns the visual token embedding with the text encoder using massive weakly labeled data, and then develops multi-modal representation capability using the generated composed image-text data. In our experiments, VISTA achieves superior performances across a variety of multi-modal retrieval tasks in both zero-shot and supervised settings. Our model, data, and source code are available at https://github.com/FlagOpen/FlagEmbedding.
LamRA: Large Multimodal Model as Your Advanced Retrieval Assistant
With the rapid advancement of multimodal information retrieval, increasingly complex retrieval tasks have emerged. Existing methods predominately rely on task-specific fine-tuning of vision-language models, often those trained with image-text contrastive learning. In this paper, we explore the possibility of re-purposing generative Large Multimodal Models (LMMs) for retrieval. This approach enables unifying all retrieval tasks under the same formulation and, more importantly, allows for extrapolation towards unseen retrieval tasks without additional training. Our contributions can be summarised in the following aspects: (i) We introduce LamRA, a versatile framework designed to empower LMMs with sophisticated retrieval and reranking capabilities. (ii) For retrieval, we adopt a two-stage training strategy comprising language-only pre-training and multimodal instruction tuning to progressively enhance LMM's retrieval performance. (iii) For reranking, we employ joint training for both pointwise and listwise reranking, offering two distinct ways to further boost the retrieval performance. (iv) Extensive experimental results underscore the efficacy of our method in handling more than ten retrieval tasks, demonstrating robust performance in both supervised and zero-shot settings, including scenarios involving previously unseen retrieval tasks.
End-to-end Knowledge Retrieval with Multi-modal Queries
We investigate knowledge retrieval with multi-modal queries, i.e. queries containing information split across image and text inputs, a challenging task that differs from previous work on cross-modal retrieval. We curate a new dataset called ReMuQ for benchmarking progress on this task. ReMuQ requires a system to retrieve knowledge from a large corpus by integrating contents from both text and image queries. We introduce a retriever model ``ReViz'' that can directly process input text and images to retrieve relevant knowledge in an end-to-end fashion without being dependent on intermediate modules such as object detectors or caption generators. We introduce a new pretraining task that is effective for learning knowledge retrieval with multimodal queries and also improves performance on downstream tasks. We demonstrate superior performance in retrieval on two datasets (ReMuQ and OK-VQA) under zero-shot settings as well as further improvements when finetuned on these datasets.
MORE: Multi-mOdal REtrieval Augmented Generative Commonsense Reasoning
Since commonsense information has been recorded significantly less frequently than its existence, language models pre-trained by text generation have difficulty to learn sufficient commonsense knowledge. Several studies have leveraged text retrieval to augment the models' commonsense ability. Unlike text, images capture commonsense information inherently but little effort has been paid to effectively utilize them. In this work, we propose a novel Multi-mOdal REtrieval (MORE) augmentation framework, to leverage both text and images to enhance the commonsense ability of language models. Extensive experiments on the Common-Gen task have demonstrated the efficacy of MORE based on the pre-trained models of both single and multiple modalities.
Re3val: Reinforced and Reranked Generative Retrieval
Generative retrieval models encode pointers to information in a corpus as an index within the model's parameters. These models serve as part of a larger pipeline, where retrieved information conditions generation for knowledge-intensive NLP tasks. However, we identify two limitations: the generative retrieval does not account for contextual information. Secondly, the retrieval can't be tuned for the downstream readers as decoding the page title is a non-differentiable operation. This paper introduces Re3val, trained with generative reranking and reinforcement learning using limited data. Re3val leverages context acquired via Dense Passage Retrieval to rerank the retrieved page titles and utilizes REINFORCE to maximize rewards generated by constrained decoding. Additionally, we generate questions from our pre-training dataset to mitigate epistemic uncertainty and bridge the domain gap between the pre-training and fine-tuning datasets. Subsequently, we extract and rerank contexts from the KILT database using the rerank page titles. Upon grounding the top five reranked contexts, Re3val demonstrates the Top 1 KILT scores compared to all other generative retrieval models across five KILT datasets.
Improving the Consistency in Cross-Lingual Cross-Modal Retrieval with 1-to-K Contrastive Learning
Cross-lingual Cross-modal Retrieval (CCR) is an essential task in web search, which aims to break the barriers between modality and language simultaneously and achieves image-text retrieval in the multi-lingual scenario with a single model. In recent years, excellent progress has been made based on cross-lingual cross-modal pre-training; particularly, the methods based on contrastive learning on large-scale data have significantly improved retrieval tasks. However, these methods directly follow the existing pre-training methods in the cross-lingual or cross-modal domain, leading to two problems of inconsistency in CCR: The methods with cross-lingual style suffer from the intra-modal error propagation, resulting in inconsistent recall performance across languages in the whole dataset. The methods with cross-modal style suffer from the inter-modal optimization direction bias, resulting in inconsistent rank across languages within each instance, which cannot be reflected by Recall@K. To solve these problems, we propose a simple but effective 1-to-K contrastive learning method, which treats each language equally and eliminates error propagation and optimization bias. In addition, we propose a new evaluation metric, Mean Rank Variance (MRV), to reflect the rank inconsistency across languages within each instance. Extensive experiments on four CCR datasets show that our method improves both recall rates and MRV with smaller-scale pre-trained data, achieving the new state-of-art.
Cross the Gap: Exposing the Intra-modal Misalignment in CLIP via Modality Inversion
Pre-trained multi-modal Vision-Language Models like CLIP are widely used off-the-shelf for a variety of applications. In this paper, we show that the common practice of individually exploiting the text or image encoders of these powerful multi-modal models is highly suboptimal for intra-modal tasks like image-to-image retrieval. We argue that this is inherently due to the CLIP-style inter-modal contrastive loss that does not enforce any intra-modal constraints, leading to what we call intra-modal misalignment. To demonstrate this, we leverage two optimization-based modality inversion techniques that map representations from their input modality to the complementary one without any need for auxiliary data or additional trained adapters. We empirically show that, in the intra-modal tasks of image-to-image and text-to-text retrieval, approaching these tasks inter-modally significantly improves performance with respect to intra-modal baselines on more than fifteen datasets. Additionally, we demonstrate that approaching a native inter-modal task (e.g. zero-shot image classification) intra-modally decreases performance, further validating our findings. Finally, we show that incorporating an intra-modal term in the pre-training objective or narrowing the modality gap between the text and image feature embedding spaces helps reduce the intra-modal misalignment. The code is publicly available at: https://github.com/miccunifi/Cross-the-Gap.
MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs
State-of-the-art retrieval models typically address a straightforward search scenario, where retrieval tasks are fixed (e.g., finding a passage to answer a specific question) and only a single modality is supported for both queries and retrieved results. This paper introduces techniques for advancing information retrieval with multimodal large language models (MLLMs), enabling a broader search scenario, termed universal multimodal retrieval, where multiple modalities and diverse retrieval tasks are accommodated. To this end, we first study fine-tuning an MLLM as a bi-encoder retriever on 10 datasets with 16 retrieval tasks. Our empirical results show that the fine-tuned MLLM retriever is capable of understanding challenging queries, composed of both text and image, but underperforms a smaller CLIP retriever in cross-modal retrieval tasks due to modality bias from MLLMs. To address the issue, we propose modality-aware hard negative mining to mitigate the modality bias exhibited by MLLM retrievers. Second, we propose to continually fine-tune the universal multimodal retriever to enhance its text retrieval capability while maintaining multimodal retrieval capability. As a result, our model, MM-Embed, achieves state-of-the-art performance on the multimodal retrieval benchmark M-BEIR, which spans multiple domains and tasks, while also surpassing the state-of-the-art text retrieval model, NV-Embed-v1, on MTEB retrieval benchmark. Finally, we explore to prompt the off-the-shelf MLLMs as the zero-shot rerankers to refine the ranking of the candidates from the multimodal retriever. We find that through prompt-and-reranking, MLLMs can further improve multimodal retrieval when the user queries (e.g., text-image composed queries) are more complex and challenging to understand. These findings also pave the way to advance universal multimodal retrieval in the future.
Cross-Modal Retrieval Meets Inference:Improving Zero-Shot Classification with Cross-Modal Retrieval
Contrastive language-image pre-training (CLIP) has demonstrated remarkable zero-shot classification ability, namely image classification using novel text labels. Existing works have attempted to enhance CLIP by fine-tuning on downstream tasks, but these have inadvertently led to performance degradation on unseen classes, thus harming zero-shot generalization. This paper aims to address this challenge by leveraging readily available image-text pairs from an external dataset for cross-modal guidance during inference. To this end, we propose X-MoRe, a novel inference method comprising two key steps: (1) cross-modal retrieval and (2) modal-confidence-based ensemble. Given a query image, we harness the power of CLIP's cross-modal representations to retrieve relevant textual information from an external image-text pair dataset. Then, we assign higher weights to the more reliable modality between the original query image and retrieved text, contributing to the final prediction. X-MoRe demonstrates robust performance across a diverse set of tasks without the need for additional training, showcasing the effectiveness of utilizing cross-modal features to maximize CLIP's zero-shot ability.
UniGen: A Unified Generative Framework for Retrieval and Question Answering with Large Language Models
Generative information retrieval, encompassing two major tasks of Generative Document Retrieval (GDR) and Grounded Answer Generation (GAR), has gained significant attention in the area of information retrieval and natural language processing. Existing methods for GDR and GAR rely on separate retrieval and reader modules, which hinder simultaneous optimization. To overcome this, we present UniGen, a Unified Generative framework for retrieval and question answering that integrates both tasks into a single generative model leveraging the capabilities of large language models. UniGen employs a shared encoder and two distinct decoders for generative retrieval and question answering. To facilitate the learning of both tasks, we introduce connectors, generated by large language models, to bridge the gaps between query inputs and generation targets, as well as between document identifiers and answers. Furthermore, we propose an iterative enhancement strategy that leverages generated answers and retrieved documents to iteratively improve both tasks. Through extensive experiments on the MS MARCO and NQ datasets, we demonstrate the effectiveness of UniGen, showcasing its superior performance in both the retrieval and the question answering tasks.
Joint Fusion and Encoding: Advancing Multimodal Retrieval from the Ground Up
Information retrieval is indispensable for today's Internet applications, yet traditional semantic matching techniques often fall short in capturing the fine-grained cross-modal interactions required for complex queries. Although late-fusion two-tower architectures attempt to bridge this gap by independently encoding visual and textual data before merging them at a high level, they frequently overlook the subtle interplay essential for comprehensive understanding. In this work, we rigorously assess these limitations and introduce a unified retrieval framework that fuses visual and textual cues from the ground up, enabling early cross-modal interactions for enhancing context interpretation. Through a two-stage training process--comprising post-training adaptation followed by instruction tuning--we adapt MLLMs as retrievers using a simple one-tower architecture. Our approach outperforms conventional methods across diverse retrieval scenarios, particularly when processing complex multi-modal inputs. Notably, the joint fusion encoder yields greater improvements on tasks that require modality fusion compared to those that do not, underscoring the transformative potential of early integration strategies and pointing toward a promising direction for contextually aware and effective information retrieval.
Towards Robust and Truly Large-Scale Audio-Sheet Music Retrieval
A range of applications of multi-modal music information retrieval is centred around the problem of connecting large collections of sheet music (images) to corresponding audio recordings, that is, identifying pairs of audio and score excerpts that refer to the same musical content. One of the typical and most recent approaches to this task employs cross-modal deep learning architectures to learn joint embedding spaces that link the two distinct modalities - audio and sheet music images. While there has been steady improvement on this front over the past years, a number of open problems still prevent large-scale employment of this methodology. In this article we attempt to provide an insightful examination of the current developments on audio-sheet music retrieval via deep learning methods. We first identify a set of main challenges on the road towards robust and large-scale cross-modal music retrieval in real scenarios. We then highlight the steps we have taken so far to address some of these challenges, documenting step-by-step improvement along several dimensions. We conclude by analysing the remaining challenges and present ideas for solving these, in order to pave the way to a unified and robust methodology for cross-modal music retrieval.
Audio Retrieval with Natural Language Queries
We consider the task of retrieving audio using free-form natural language queries. To study this problem, which has received limited attention in the existing literature, we introduce challenging new benchmarks for text-based audio retrieval using text annotations sourced from the Audiocaps and Clotho datasets. We then employ these benchmarks to establish baselines for cross-modal audio retrieval, where we demonstrate the benefits of pre-training on diverse audio tasks. We hope that our benchmarks will inspire further research into cross-modal text-based audio retrieval with free-form text queries.
Generating Synthetic Documents for Cross-Encoder Re-Rankers: A Comparative Study of ChatGPT and Human Experts
We investigate the usefulness of generative Large Language Models (LLMs) in generating training data for cross-encoder re-rankers in a novel direction: generating synthetic documents instead of synthetic queries. We introduce a new dataset, ChatGPT-RetrievalQA, and compare the effectiveness of models fine-tuned on LLM-generated and human-generated data. Data generated with generative LLMs can be used to augment training data, especially in domains with smaller amounts of labeled data. We build ChatGPT-RetrievalQA based on an existing dataset, human ChatGPT Comparison Corpus (HC3), consisting of public question collections with human responses and answers from ChatGPT. We fine-tune a range of cross-encoder re-rankers on either human-generated or ChatGPT-generated data. Our evaluation on MS MARCO DEV, TREC DL'19, and TREC DL'20 demonstrates that cross-encoder re-ranking models trained on ChatGPT responses are statistically significantly more effective zero-shot re-rankers than those trained on human responses. In a supervised setting, the human-trained re-rankers outperform the LLM-trained re-rankers. Our novel findings suggest that generative LLMs have high potential in generating training data for neural retrieval models. Further work is needed to determine the effect of factually wrong information in the generated responses and test our findings' generalizability with open-source LLMs. We release our data, code, and cross-encoders checkpoints for future work.
Safe-CLIP: Removing NSFW Concepts from Vision-and-Language Models
Large-scale vision-and-language models, such as CLIP, are typically trained on web-scale data, which can introduce inappropriate content and lead to the development of unsafe and biased behavior. This, in turn, hampers their applicability in sensitive and trustworthy contexts and could raise significant concerns in their adoption. Our research introduces a novel approach to enhancing the safety of vision-and-language models by diminishing their sensitivity to NSFW (not safe for work) inputs. In particular, our methodology seeks to sever "toxic" linguistic and visual concepts, unlearning the linkage between unsafe linguistic or visual items and unsafe regions of the embedding space. We show how this can be done by fine-tuning a CLIP model on synthetic data obtained from a large language model trained to convert between safe and unsafe sentences, and a text-to-image generator. We conduct extensive experiments on the resulting embedding space for cross-modal retrieval, text-to-image, and image-to-text generation, where we show that our model can be remarkably employed with pre-trained generative models. Our source code and trained models are available at: https://github.com/aimagelab/safe-clip.
From Matching to Generation: A Survey on Generative Information Retrieval
Information Retrieval (IR) systems are crucial tools for users to access information, which have long been dominated by traditional methods relying on similarity matching. With the advancement of pre-trained language models, generative information retrieval (GenIR) emerges as a novel paradigm, attracting increasing attention. Based on the form of information provided to users, current research in GenIR can be categorized into two aspects: (1) Generative Document Retrieval (GR) leverages the generative model's parameters for memorizing documents, enabling retrieval by directly generating relevant document identifiers without explicit indexing. (2) Reliable Response Generation employs language models to directly generate information users seek, breaking the limitations of traditional IR in terms of document granularity and relevance matching while offering flexibility, efficiency, and creativity to meet practical needs. This paper aims to systematically review the latest research progress in GenIR. We will summarize the advancements in GR regarding model training and structure, document identifier, incremental learning, etc., as well as progress in reliable response generation in aspects of internal knowledge memorization, external knowledge augmentation, etc. We also review the evaluation, challenges and future developments in GenIR systems. This review aims to offer a comprehensive reference for researchers, encouraging further development in the GenIR field. Github Repository: https://github.com/RUC-NLPIR/GenIR-Survey
A Survey on Knowledge-Oriented Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has gained significant attention in recent years for its potential to enhance natural language understanding and generation by combining large-scale retrieval systems with generative models. RAG leverages external knowledge sources, such as documents, databases, or structured data, to improve model performance and generate more accurate and contextually relevant outputs. This survey aims to provide a comprehensive overview of RAG by examining its fundamental components, including retrieval mechanisms, generation processes, and the integration between the two. We discuss the key characteristics of RAG, such as its ability to augment generative models with dynamic external knowledge, and the challenges associated with aligning retrieved information with generative objectives. We also present a taxonomy that categorizes RAG methods, ranging from basic retrieval-augmented approaches to more advanced models incorporating multi-modal data and reasoning capabilities. Additionally, we review the evaluation benchmarks and datasets commonly used to assess RAG systems, along with a detailed exploration of its applications in fields such as question answering, summarization, and information retrieval. Finally, we highlight emerging research directions and opportunities for improving RAG systems, such as enhanced retrieval efficiency, model interpretability, and domain-specific adaptations. This paper concludes by outlining the prospects for RAG in addressing real-world challenges and its potential to drive further advancements in natural language processing.
ConTra: (Con)text (Tra)nsformer for Cross-Modal Video Retrieval
In this paper, we re-examine the task of cross-modal clip-sentence retrieval, where the clip is part of a longer untrimmed video. When the clip is short or visually ambiguous, knowledge of its local temporal context (i.e. surrounding video segments) can be used to improve the retrieval performance. We propose Context Transformer (ConTra); an encoder architecture that models the interaction between a video clip and its local temporal context in order to enhance its embedded representations. Importantly, we supervise the context transformer using contrastive losses in the cross-modal embedding space. We explore context transformers for video and text modalities. Results consistently demonstrate improved performance on three datasets: YouCook2, EPIC-KITCHENS and a clip-sentence version of ActivityNet Captions. Exhaustive ablation studies and context analysis show the efficacy of the proposed method.
CLaMR: Contextualized Late-Interaction for Multimodal Content Retrieval
Online video web content is richly multimodal: a single video blends vision, speech, ambient audio, and on-screen text. Retrieval systems typically treat these modalities as independent retrieval sources, which can lead to noisy and subpar retrieval. We explore multimodal video content retrieval, where relevance can be scored from one particular modality or jointly across multiple modalities simultaneously. Consequently, an effective retriever must dynamically choose which modality (or set of modalities) best addresses the query. We introduce CLaMR, a multimodal, late-interaction retriever that jointly indexes 4 modalities: video frames, transcribed speech, on-screen text, and metadata. CLaMR jointly encodes all modalities with a unified multimodal backbone for improved contextualization and is trained to enhance dynamic modality selection via two key innovations. First, given the lack of training data for multimodal retrieval, we introduce MultiVENT 2.0++, a large-scale synthetic training dataset built on MultiVENT 2.0 (event-centric videos in various languages paired with queries) with modality-targeted queries. Next, we propose a modality-aware loss that jointly trains according to a standard contrastive objective alongside an objective for learning correct modality usage. On the test sets of MultiVENT 2.0++ and MSRVTT, conventional aggregation strategies, such as averaging similarities for baseline retrievers, degrade performance by introducing noise from irrelevant modalities. In contrast, CLaMR consistently outperforms existing retrievers: on MultiVENT 2.0++, CLaMR improves nDCG@10 by 25.6 over the best single-modality retriever and by 35.4 over the best multi-modality retriever. We illustrate CLaMR's downstream utility on long-video QA, retrieving relevant frames and obtaining a 3.50% boost over LanguageBind on Video-MME and 1.42% over dense sampling on LongVideoBench.
Generative Relevance Feedback with Large Language Models
Current query expansion models use pseudo-relevance feedback to improve first-pass retrieval effectiveness; however, this fails when the initial results are not relevant. Instead of building a language model from retrieved results, we propose Generative Relevance Feedback (GRF) that builds probabilistic feedback models from long-form text generated from Large Language Models. We study the effective methods for generating text by varying the zero-shot generation subtasks: queries, entities, facts, news articles, documents, and essays. We evaluate GRF on document retrieval benchmarks covering a diverse set of queries and document collections, and the results show that GRF methods significantly outperform previous PRF methods. Specifically, we improve MAP between 5-19% and NDCG@10 17-24% compared to RM3 expansion, and achieve the best R@1k effectiveness on all datasets compared to state-of-the-art sparse, dense, and expansion models.
A Unified Generative Retriever for Knowledge-Intensive Language Tasks via Prompt Learning
Knowledge-intensive language tasks (KILTs) benefit from retrieving high-quality relevant contexts from large external knowledge corpora. Learning task-specific retrievers that return relevant contexts at an appropriate level of semantic granularity, such as a document retriever, passage retriever, sentence retriever, and entity retriever, may help to achieve better performance on the end-to-end task. But a task-specific retriever usually has poor generalization ability to new domains and tasks, and it may be costly to deploy a variety of specialised retrievers in practice. We propose a unified generative retriever (UGR) that combines task-specific effectiveness with robust performance over different retrieval tasks in KILTs. To achieve this goal, we make two major contributions: (i) To unify different retrieval tasks into a single generative form, we introduce an n-gram-based identifier for relevant contexts at different levels of granularity in KILTs. And (ii) to address different retrieval tasks with a single model, we employ a prompt learning strategy and investigate three methods to design prompt tokens for each task. In this way, the proposed UGR model can not only share common knowledge across tasks for better generalization, but also perform different retrieval tasks effectively by distinguishing task-specific characteristics. We train UGR on a heterogeneous set of retrieval corpora with well-designed prompts in a supervised and multi-task fashion. Experimental results on the KILT benchmark demonstrate the effectiveness of UGR on in-domain datasets, out-of-domain datasets, and unseen tasks.
xRAG: Extreme Context Compression for Retrieval-augmented Generation with One Token
This paper introduces xRAG, an innovative context compression method tailored for retrieval-augmented generation. xRAG reinterprets document embeddings in dense retrieval--traditionally used solely for retrieval--as features from the retrieval modality. By employing a modality fusion methodology, xRAG seamlessly integrates these embeddings into the language model representation space, effectively eliminating the need for their textual counterparts and achieving an extreme compression rate. In xRAG, the only trainable component is the modality bridge, while both the retriever and the language model remain frozen. This design choice allows for the reuse of offline-constructed document embeddings and preserves the plug-and-play nature of retrieval augmentation. Experimental results demonstrate that xRAG achieves an average improvement of over 10% across six knowledge-intensive tasks, adaptable to various language model backbones, ranging from a dense 7B model to an 8x7B Mixture of Experts configuration. xRAG not only significantly outperforms previous context compression methods but also matches the performance of uncompressed models on several datasets, while reducing overall FLOPs by a factor of 3.53. Our work pioneers new directions in retrieval-augmented generation from the perspective of multimodality fusion, and we hope it lays the foundation for future efficient and scalable retrieval-augmented systems
Multi-Modal Generative Embedding Model
Most multi-modal tasks can be formulated into problems of either generation or embedding. Existing models usually tackle these two types of problems by decoupling language modules into a text decoder for generation, and a text encoder for embedding. To explore the minimalism of multi-modal paradigms, we attempt to achieve only one model per modality in this work. We propose a Multi-Modal Generative Embedding Model (MM-GEM), whereby the generative and embedding objectives are encapsulated in one Large Language Model. We also propose a PoolAggregator to boost efficiency and enable the ability of fine-grained embedding and generation. A surprising finding is that these two objectives do not significantly conflict with each other. For example, MM-GEM instantiated from ViT-Large and TinyLlama shows competitive performance on benchmarks for multimodal embedding models such as cross-modal retrieval and zero-shot classification, while has good ability of image captioning. Additionally, MM-GEM can seamlessly execute region-level image caption generation and retrieval tasks. Besides, the advanced text model in MM-GEM brings over 5% improvement in Recall@1 for long text and image retrieval.
Cross-modal Deep Metric Learning with Multi-task Regularization
DNN-based cross-modal retrieval has become a research hotspot, by which users can search results across various modalities like image and text. However, existing methods mainly focus on the pairwise correlation and reconstruction error of labeled data. They ignore the semantically similar and dissimilar constraints between different modalities, and cannot take advantage of unlabeled data. This paper proposes Cross-modal Deep Metric Learning with Multi-task Regularization (CDMLMR), which integrates quadruplet ranking loss and semi-supervised contrastive loss for modeling cross-modal semantic similarity in a unified multi-task learning architecture. The quadruplet ranking loss can model the semantically similar and dissimilar constraints to preserve cross-modal relative similarity ranking information. The semi-supervised contrastive loss is able to maximize the semantic similarity on both labeled and unlabeled data. Compared to the existing methods, CDMLMR exploits not only the similarity ranking information but also unlabeled cross-modal data, and thus boosts cross-modal retrieval accuracy.
Benchmarking Retrieval-Augmented Generation in Multi-Modal Contexts
This paper introduces Multi-Modal Retrieval-Augmented Generation (M^2RAG), a benchmark designed to evaluate the effectiveness of Multi-modal Large Language Models (MLLMs) in leveraging knowledge from multi-modal retrieval documents. The benchmark comprises four tasks: image captioning, multi-modal question answering, multi-modal fact verification, and image reranking. All tasks are set in an open-domain setting, requiring RAG models to retrieve query-relevant information from a multi-modal document collection and use it as input context for RAG modeling. To enhance the context utilization capabilities of MLLMs, we also introduce Multi-Modal Retrieval-Augmented Instruction Tuning (MM-RAIT), an instruction tuning method that optimizes MLLMs within multi-modal contexts. Our experiments show that MM-RAIT improves the performance of RAG systems by enabling them to effectively learn from multi-modal contexts. All data and code are available at https://github.com/NEUIR/M2RAG.
Evaluation of Retrieval-Augmented Generation: A Survey
Retrieval-Augmented Generation (RAG) has recently gained traction in natural language processing. Numerous studies and real-world applications are leveraging its ability to enhance generative models through external information retrieval. Evaluating these RAG systems, however, poses unique challenges due to their hybrid structure and reliance on dynamic knowledge sources. To better understand these challenges, we conduct A Unified Evaluation Process of RAG (Auepora) and aim to provide a comprehensive overview of the evaluation and benchmarks of RAG systems. Specifically, we examine and compare several quantifiable metrics of the Retrieval and Generation components, such as relevance, accuracy, and faithfulness, within the current RAG benchmarks, encompassing the possible output and ground truth pairs. We then analyze the various datasets and metrics, discuss the limitations of current benchmarks, and suggest potential directions to advance the field of RAG benchmarks.
ConTextual Masked Auto-Encoder for Dense Passage Retrieval
Dense passage retrieval aims to retrieve the relevant passages of a query from a large corpus based on dense representations (i.e., vectors) of the query and the passages. Recent studies have explored improving pre-trained language models to boost dense retrieval performance. This paper proposes CoT-MAE (ConTextual Masked Auto-Encoder), a simple yet effective generative pre-training method for dense passage retrieval. CoT-MAE employs an asymmetric encoder-decoder architecture that learns to compress the sentence semantics into a dense vector through self-supervised and context-supervised masked auto-encoding. Precisely, self-supervised masked auto-encoding learns to model the semantics of the tokens inside a text span, and context-supervised masked auto-encoding learns to model the semantical correlation between the text spans. We conduct experiments on large-scale passage retrieval benchmarks and show considerable improvements over strong baselines, demonstrating the high efficiency of CoT-MAE. Our code is available at https://github.com/caskcsg/ir/tree/main/cotmae.
IRGen: Generative Modeling for Image Retrieval
While generative modeling has become prevalent across numerous research fields, its integration into the realm of image retrieval remains largely unexplored and underjustified. In this paper, we present a novel methodology, reframing image retrieval as a variant of generative modeling and employing a sequence-to-sequence model. This approach is harmoniously aligned with the current trend towards unification in research, presenting a cohesive framework that allows for end-to-end differentiable searching. This, in turn, facilitates superior performance via direct optimization techniques. The development of our model, dubbed IRGen, addresses the critical technical challenge of converting an image into a concise sequence of semantic units, which is pivotal for enabling efficient and effective search. Extensive experiments demonstrate that our model achieves state-of-the-art performance on three widely-used image retrieval benchmarks as well as two million-scale datasets, yielding significant improvement compared to prior competitive retrieval methods. In addition, the notable surge in precision scores facilitated by generative modeling presents the potential to bypass the reranking phase, which is traditionally indispensable in practical retrieval workflows.
Deep Visual-Semantic Alignments for Generating Image Descriptions
We present a model that generates natural language descriptions of images and their regions. Our approach leverages datasets of images and their sentence descriptions to learn about the inter-modal correspondences between language and visual data. Our alignment model is based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural Networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding. We then describe a Multimodal Recurrent Neural Network architecture that uses the inferred alignments to learn to generate novel descriptions of image regions. We demonstrate that our alignment model produces state of the art results in retrieval experiments on Flickr8K, Flickr30K and MSCOCO datasets. We then show that the generated descriptions significantly outperform retrieval baselines on both full images and on a new dataset of region-level annotations.
Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking Agent
Large Language Models (LLMs) have demonstrated a remarkable ability to generalize zero-shot to various language-related tasks. This paper focuses on the study of exploring generative LLMs such as ChatGPT and GPT-4 for relevance ranking in Information Retrieval (IR). Surprisingly, our experiments reveal that properly instructed ChatGPT and GPT-4 can deliver competitive, even superior results than supervised methods on popular IR benchmarks. Notably, GPT-4 outperforms the fully fine-tuned monoT5-3B on MS MARCO by an average of 2.7 nDCG on TREC datasets, an average of 2.3 nDCG on eight BEIR datasets, and an average of 2.7 nDCG on ten low-resource languages Mr.TyDi. Subsequently, we delve into the potential for distilling the ranking capabilities of ChatGPT into a specialized model. Our small specialized model that trained on 10K ChatGPT generated data outperforms monoT5 trained on 400K annotated MS MARCO data on BEIR. The code to reproduce our results is available at www.github.com/sunnweiwei/RankGPT
Weakly supervised cross-modal learning in high-content screening
With the surge in available data from various modalities, there is a growing need to bridge the gap between different data types. In this work, we introduce a novel approach to learn cross-modal representations between image data and molecular representations for drug discovery. We propose EMM and IMM, two innovative loss functions built on top of CLIP that leverage weak supervision and cross sites replicates in High-Content Screening. Evaluating our model against known baseline on cross-modal retrieval, we show that our proposed approach allows to learn better representations and mitigate batch effect. In addition, we also present a preprocessing method for the JUMP-CP dataset that effectively reduce the required space from 85Tb to a mere usable 7Tb size, still retaining all perturbations and most of the information content.
UniIR: Training and Benchmarking Universal Multimodal Information Retrievers
Existing information retrieval (IR) models often assume a homogeneous format, limiting their applicability to diverse user needs, such as searching for images with text descriptions, searching for a news article with a headline image, or finding a similar photo with a query image. To approach such different information-seeking demands, we introduce UniIR, a unified instruction-guided multimodal retriever capable of handling eight distinct retrieval tasks across modalities. UniIR, a single retrieval system jointly trained on ten diverse multimodal-IR datasets, interprets user instructions to execute various retrieval tasks, demonstrating robust performance across existing datasets and zero-shot generalization to new tasks. Our experiments highlight that multi-task training and instruction tuning are keys to UniIR's generalization ability. Additionally, we construct the M-BEIR, a multimodal retrieval benchmark with comprehensive results, to standardize the evaluation of universal multimodal information retrieval.
LexSemBridge: Fine-Grained Dense Representation Enhancement through Token-Aware Embedding Augmentation
As queries in retrieval-augmented generation (RAG) pipelines powered by large language models (LLMs) become increasingly complex and diverse, dense retrieval models have demonstrated strong performance in semantic matching. Nevertheless, they often struggle with fine-grained retrieval tasks, where precise keyword alignment and span-level localization are required, even in cases with high lexical overlap that would intuitively suggest easier retrieval. To systematically evaluate this limitation, we introduce two targeted tasks, keyword retrieval and part-of-passage retrieval, designed to simulate practical fine-grained scenarios. Motivated by these observations, we propose LexSemBridge, a unified framework that enhances dense query representations through fine-grained, input-aware vector modulation. LexSemBridge constructs latent enhancement vectors from input tokens using three paradigms: Statistical (SLR), Learned (LLR), and Contextual (CLR), and integrates them with dense embeddings via element-wise interaction. Theoretically, we show that this modulation preserves the semantic direction while selectively amplifying discriminative dimensions. LexSemBridge operates as a plug-in without modifying the backbone encoder and naturally extends to both text and vision modalities. Extensive experiments across semantic and fine-grained retrieval tasks validate the effectiveness and generality of our approach. All code and models are publicly available at https://github.com/Jasaxion/LexSemBridge/
jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval
We introduce jina-embeddings-v4, a 3.8 billion parameter multimodal embedding model that unifies text and image representations through a novel architecture supporting both single-vector and multi-vector embeddings in the late interaction style. The model incorporates task-specific Low-Rank Adaptation (LoRA) adapters to optimize performance across diverse retrieval scenarios, including query-based information retrieval, cross-modal semantic similarity, and programming code search. Comprehensive evaluations demonstrate that jina-embeddings-v4 achieves state-of-the-art performance on both single- modal and cross-modal retrieval tasks, with particular strength in processing visually rich content such as tables, charts, diagrams, and mixed-media formats. To facilitate evaluation of this capability, we also introduce Jina-VDR, a novel benchmark specifically designed for visually rich image retrieval.
Enhancing Multimodal Query Representation via Visual Dialogues for End-to-End Knowledge Retrieval
Existing multimodal retrieval systems often rely on disjointed models for image comprehension, such as object detectors and caption generators, leading to cumbersome implementations and training processes. To overcome this limitation, we propose an end-to-end retrieval system, Ret-XKnow, to endow a text retriever with the ability to understand multimodal queries via dynamic modality interaction. Ret-XKnow leverages a partial convolution mechanism to focus on visual information relevant to the given textual query, thereby enhancing multimodal query representations. To effectively learn multimodal interaction, we also introduce the Visual Dialogue-to-Retrieval (ViD2R) dataset automatically constructed from visual dialogue datasets. Our dataset construction process ensures that the dialogues are transformed into suitable information retrieval tasks using a text retriever. We demonstrate that our approach not only significantly improves retrieval performance in zero-shot settings but also achieves substantial improvements in fine-tuning scenarios. Our code is publicly available: https://github.com/yeongjoonJu/Ret_XKnow.
Generation-Augmented Retrieval for Open-domain Question Answering
We propose Generation-Augmented Retrieval (GAR) for answering open-domain questions, which augments a query through text generation of heuristically discovered relevant contexts without external resources as supervision. We demonstrate that the generated contexts substantially enrich the semantics of the queries and GAR with sparse representations (BM25) achieves comparable or better performance than state-of-the-art dense retrieval methods such as DPR. We show that generating diverse contexts for a query is beneficial as fusing their results consistently yields better retrieval accuracy. Moreover, as sparse and dense representations are often complementary, GAR can be easily combined with DPR to achieve even better performance. GAR achieves state-of-the-art performance on Natural Questions and TriviaQA datasets under the extractive QA setup when equipped with an extractive reader, and consistently outperforms other retrieval methods when the same generative reader is used.
Closing the Modality Gap for Mixed Modality Search
Mixed modality search -- retrieving information across a heterogeneous corpus composed of images, texts, and multimodal documents -- is an important yet underexplored real-world application. In this work, we investigate how contrastive vision-language models, such as CLIP, perform on the mixed modality search task. Our analysis reveals a critical limitation: these models exhibit a pronounced modality gap in the embedding space, where image and text embeddings form distinct clusters, leading to intra-modal ranking bias and inter-modal fusion failure. To address this issue, we propose GR-CLIP, a lightweight post-hoc calibration method that removes the modality gap in CLIP's embedding space. Evaluated on MixBench -- the first benchmark specifically designed for mixed modality search -- GR-CLIP improves NDCG@10 by up to 26 percentage points over CLIP, surpasses recent vision-language generative embedding models by 4 percentage points, while using 75x less compute.
Semantic Models for the First-stage Retrieval: A Comprehensive Review
Multi-stage ranking pipelines have been a practical solution in modern search systems, where the first-stage retrieval is to return a subset of candidate documents, and latter stages attempt to re-rank those candidates. Unlike re-ranking stages going through quick technique shifts during past decades, the first-stage retrieval has long been dominated by classical term-based models. Unfortunately, these models suffer from the vocabulary mismatch problem, which may block re-ranking stages from relevant documents at the very beginning. Therefore, it has been a long-term desire to build semantic models for the first-stage retrieval that can achieve high recall efficiently. Recently, we have witnessed an explosive growth of research interests on the first-stage semantic retrieval models. We believe it is the right time to survey current status, learn from existing methods, and gain some insights for future development. In this paper, we describe the current landscape of the first-stage retrieval models under a unified framework to clarify the connection between classical term-based retrieval methods, early semantic retrieval methods and neural semantic retrieval methods. Moreover, we identify some open challenges and envision some future directions, with the hope of inspiring more researches on these important yet less investigated topics.
TVR-Ranking: A Dataset for Ranked Video Moment Retrieval with Imprecise Queries
In this paper, we propose the task of Ranked Video Moment Retrieval (RVMR) to locate a ranked list of matching moments from a collection of videos, through queries in natural language. Although a few related tasks have been proposed and studied by CV, NLP, and IR communities, RVMR is the task that best reflects the practical setting of moment search. To facilitate research in RVMR, we develop the TVR-Ranking dataset, based on the raw videos and existing moment annotations provided in the TVR dataset. Our key contribution is the manual annotation of relevance levels for 94,442 query-moment pairs. We then develop the NDCG@K, IoUgeq mu evaluation metric for this new task and conduct experiments to evaluate three baseline models. Our experiments show that the new RVMR task brings new challenges to existing models and we believe this new dataset contributes to the research on multi-modality search. The dataset is available at https://github.com/Ranking-VMR/TVR-Ranking
GenIR: Generative Visual Feedback for Mental Image Retrieval
Vision-language models (VLMs) have shown strong performance on text-to-image retrieval benchmarks. However, bridging this success to real-world applications remains a challenge. In practice, human search behavior is rarely a one-shot action. Instead, it is often a multi-round process guided by clues in mind, that is, a mental image ranging from vague recollections to vivid mental representations of the target image. Motivated by this gap, we study the task of Mental Image Retrieval (MIR), which targets the realistic yet underexplored setting where users refine their search for a mentally envisioned image through multi-round interactions with an image search engine. Central to successful interactive retrieval is the capability of machines to provide users with clear, actionable feedback; however, existing methods rely on indirect or abstract verbal feedback, which can be ambiguous, misleading, or ineffective for users to refine the query. To overcome this, we propose GenIR, a generative multi-round retrieval paradigm leveraging diffusion-based image generation to explicitly reify the AI system's understanding at each round. These synthetic visual representations provide clear, interpretable feedback, enabling users to refine their queries intuitively and effectively. We further introduce a fully automated pipeline to generate a high-quality multi-round MIR dataset. Experimental results demonstrate that GenIR significantly outperforms existing interactive methods in the MIR scenario. This work establishes a new task with a dataset and an effective generative retrieval method, providing a foundation for future research in this direction.
Evaluating Verifiability in Generative Search Engines
Generative search engines directly generate responses to user queries, along with in-line citations. A prerequisite trait of a trustworthy generative search engine is verifiability, i.e., systems should cite comprehensively (high citation recall; all statements are fully supported by citations) and accurately (high citation precision; every cite supports its associated statement). We conduct human evaluation to audit four popular generative search engines -- Bing Chat, NeevaAI, perplexity.ai, and YouChat -- across a diverse set of queries from a variety of sources (e.g., historical Google user queries, dynamically-collected open-ended questions on Reddit, etc.). We find that responses from existing generative search engines are fluent and appear informative, but frequently contain unsupported statements and inaccurate citations: on average, a mere 51.5% of generated sentences are fully supported by citations and only 74.5% of citations support their associated sentence. We believe that these results are concerningly low for systems that may serve as a primary tool for information-seeking users, especially given their facade of trustworthiness. We hope that our results further motivate the development of trustworthy generative search engines and help researchers and users better understand the shortcomings of existing commercial systems.
Balance Act: Mitigating Hubness in Cross-Modal Retrieval with Query and Gallery Banks
In this work, we present a post-processing solution to address the hubness problem in cross-modal retrieval, a phenomenon where a small number of gallery data points are frequently retrieved, resulting in a decline in retrieval performance. We first theoretically demonstrate the necessity of incorporating both the gallery and query data for addressing hubness as hubs always exhibit high similarity with gallery and query data. Second, building on our theoretical results, we propose a novel framework, Dual Bank Normalization (DBNorm). While previous work has attempted to alleviate hubness by only utilizing the query samples, DBNorm leverages two banks constructed from the query and gallery samples to reduce the occurrence of hubs during inference. Next, to complement DBNorm, we introduce two novel methods, dual inverted softmax and dual dynamic inverted softmax, for normalizing similarity based on the two banks. Specifically, our proposed methods reduce the similarity between hubs and queries while improving the similarity between non-hubs and queries. Finally, we present extensive experimental results on diverse language-grounded benchmarks, including text-image, text-video, and text-audio, demonstrating the superior performance of our approaches compared to previous methods in addressing hubness and boosting retrieval performance. Our code is available at https://github.com/yimuwangcs/Better_Cross_Modal_Retrieval.
Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering
Generative models for open domain question answering have proven to be competitive, without resorting to external knowledge. While promising, this approach requires to use models with billions of parameters, which are expensive to train and query. In this paper, we investigate how much these models can benefit from retrieving text passages, potentially containing evidence. We obtain state-of-the-art results on the Natural Questions and TriviaQA open benchmarks. Interestingly, we observe that the performance of this method significantly improves when increasing the number of retrieved passages. This is evidence that generative models are good at aggregating and combining evidence from multiple passages.
A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions
This paper presents a comprehensive study of Retrieval-Augmented Generation (RAG), tracing its evolution from foundational concepts to the current state of the art. RAG combines retrieval mechanisms with generative language models to enhance the accuracy of outputs, addressing key limitations of LLMs. The study explores the basic architecture of RAG, focusing on how retrieval and generation are integrated to handle knowledge-intensive tasks. A detailed review of the significant technological advancements in RAG is provided, including key innovations in retrieval-augmented language models and applications across various domains such as question-answering, summarization, and knowledge-based tasks. Recent research breakthroughs are discussed, highlighting novel methods for improving retrieval efficiency. Furthermore, the paper examines ongoing challenges such as scalability, bias, and ethical concerns in deployment. Future research directions are proposed, focusing on improving the robustness of RAG models, expanding the scope of application of RAG models, and addressing societal implications. This survey aims to serve as a foundational resource for researchers and practitioners in understanding the potential of RAG and its trajectory in natural language processing.
Tevatron 2.0: Unified Document Retrieval Toolkit across Scale, Language, and Modality
Recent advancements in large language models (LLMs) have driven interest in billion-scale retrieval models with strong generalization across retrieval tasks and languages. Additionally, progress in large vision-language models has created new opportunities for multimodal retrieval. In response, we have updated the Tevatron toolkit, introducing a unified pipeline that enables researchers to explore retriever models at different scales, across multiple languages, and with various modalities. This demo paper highlights the toolkit's key features, bridging academia and industry by supporting efficient training, inference, and evaluation of neural retrievers. We showcase a unified dense retriever achieving strong multilingual and multimodal effectiveness, and conduct a cross-modality zero-shot study to demonstrate its research potential. Alongside, we release OmniEmbed, to the best of our knowledge, the first embedding model that unifies text, image document, video, and audio retrieval, serving as a baseline for future research.
Self-Supervised Contrastive Learning for Robust Audio-Sheet Music Retrieval Systems
Linking sheet music images to audio recordings remains a key problem for the development of efficient cross-modal music retrieval systems. One of the fundamental approaches toward this task is to learn a cross-modal embedding space via deep neural networks that is able to connect short snippets of audio and sheet music. However, the scarcity of annotated data from real musical content affects the capability of such methods to generalize to real retrieval scenarios. In this work, we investigate whether we can mitigate this limitation with self-supervised contrastive learning, by exposing a network to a large amount of real music data as a pre-training step, by contrasting randomly augmented views of snippets of both modalities, namely audio and sheet images. Through a number of experiments on synthetic and real piano data, we show that pre-trained models are able to retrieve snippets with better precision in all scenarios and pre-training configurations. Encouraged by these results, we employ the snippet embeddings in the higher-level task of cross-modal piece identification and conduct more experiments on several retrieval configurations. In this task, we observe that the retrieval quality improves from 30% up to 100% when real music data is present. We then conclude by arguing for the potential of self-supervised contrastive learning for alleviating the annotated data scarcity in multi-modal music retrieval models.
Searching for Best Practices in Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) techniques have proven to be effective in integrating up-to-date information, mitigating hallucinations, and enhancing response quality, particularly in specialized domains. While many RAG approaches have been proposed to enhance large language models through query-dependent retrievals, these approaches still suffer from their complex implementation and prolonged response times. Typically, a RAG workflow involves multiple processing steps, each of which can be executed in various ways. Here, we investigate existing RAG approaches and their potential combinations to identify optimal RAG practices. Through extensive experiments, we suggest several strategies for deploying RAG that balance both performance and efficiency. Moreover, we demonstrate that multimodal retrieval techniques can significantly enhance question-answering capabilities about visual inputs and accelerate the generation of multimodal content using a "retrieval as generation" strategy.
Multi-task Retrieval for Knowledge-Intensive Tasks
Retrieving relevant contexts from a large corpus is a crucial step for tasks such as open-domain question answering and fact checking. Although neural retrieval outperforms traditional methods like tf-idf and BM25, its performance degrades considerably when applied to out-of-domain data. Driven by the question of whether a neural retrieval model can be universal and perform robustly on a wide variety of problems, we propose a multi-task trained model. Our approach not only outperforms previous methods in the few-shot setting, but also rivals specialised neural retrievers, even when in-domain training data is abundant. With the help of our retriever, we improve existing models for downstream tasks and closely match or improve the state of the art on multiple benchmarks.
Unified Multi-Modal Interleaved Document Representation for Information Retrieval
Information Retrieval (IR) methods aim to identify relevant documents in response to a given query, which have gained remarkable attention due to their successful application in various natural language tasks. However, existing approaches typically consider only the textual information within the documents, which overlooks the fact that documents can contain multiple modalities, including texts, images, and tables. Further, they often segment each long document into multiple discrete passages for embedding, preventing them from capturing the overall document context and interactions between paragraphs. We argue that these two limitations lead to suboptimal document representations for retrieval. In this work, to address them, we aim to produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities. Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse information retrieval scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information interleaved within the documents in a unified way.
Probing Representations Learned by Multimodal Recurrent and Transformer Models
Recent literature shows that large-scale language modeling provides excellent reusable sentence representations with both recurrent and self-attentive architectures. However, there has been less clarity on the commonalities and differences in the representational properties induced by the two architectures. It also has been shown that visual information serves as one of the means for grounding sentence representations. In this paper, we present a meta-study assessing the representational quality of models where the training signal is obtained from different modalities, in particular, language modeling, image features prediction, and both textual and multimodal machine translation. We evaluate textual and visual features of sentence representations obtained using predominant approaches on image retrieval and semantic textual similarity. Our experiments reveal that on moderate-sized datasets, a sentence counterpart in a target language or visual modality provides much stronger training signal for sentence representation than language modeling. Importantly, we observe that while the Transformer models achieve superior machine translation quality, representations from the recurrent neural network based models perform significantly better over tasks focused on semantic relevance.
Zero-shot Neural Passage Retrieval via Domain-targeted Synthetic Question Generation
A major obstacle to the wide-spread adoption of neural retrieval models is that they require large supervised training sets to surpass traditional term-based techniques, which are constructed from raw corpora. In this paper, we propose an approach to zero-shot learning for passage retrieval that uses synthetic question generation to close this gap. The question generation system is trained on general domain data, but is applied to documents in the targeted domain. This allows us to create arbitrarily large, yet noisy, question-passage relevance pairs that are domain specific. Furthermore, when this is coupled with a simple hybrid term-neural model, first-stage retrieval performance can be improved further. Empirically, we show that this is an effective strategy for building neural passage retrieval models in the absence of large training corpora. Depending on the domain, this technique can even approach the accuracy of supervised models.
CLaMP 3: Universal Music Information Retrieval Across Unaligned Modalities and Unseen Languages
CLaMP 3 is a unified framework developed to address challenges of cross-modal and cross-lingual generalization in music information retrieval. Using contrastive learning, it aligns all major music modalities--including sheet music, performance signals, and audio recordings--with multilingual text in a shared representation space, enabling retrieval across unaligned modalities with text as a bridge. It features a multilingual text encoder adaptable to unseen languages, exhibiting strong cross-lingual generalization. Leveraging retrieval-augmented generation, we curated M4-RAG, a web-scale dataset consisting of 2.31 million music-text pairs. This dataset is enriched with detailed metadata that represents a wide array of global musical traditions. To advance future research, we release WikiMT-X, a benchmark comprising 1,000 triplets of sheet music, audio, and richly varied text descriptions. Experiments show that CLaMP 3 achieves state-of-the-art performance on multiple MIR tasks, significantly surpassing previous strong baselines and demonstrating excellent generalization in multimodal and multilingual music contexts.
Ask in Any Modality: A Comprehensive Survey on Multimodal Retrieval-Augmented Generation
Large Language Models (LLMs) struggle with hallucinations and outdated knowledge due to their reliance on static training data. Retrieval-Augmented Generation (RAG) mitigates these issues by integrating external dynamic information enhancing factual and updated grounding. Recent advances in multimodal learning have led to the development of Multimodal RAG, incorporating multiple modalities such as text, images, audio, and video to enhance the generated outputs. However, cross-modal alignment and reasoning introduce unique challenges to Multimodal RAG, distinguishing it from traditional unimodal RAG. This survey offers a structured and comprehensive analysis of Multimodal RAG systems, covering datasets, metrics, benchmarks, evaluation, methodologies, and innovations in retrieval, fusion, augmentation, and generation. We precisely review training strategies, robustness enhancements, and loss functions, while also exploring the diverse Multimodal RAG scenarios. Furthermore, we discuss open challenges and future research directions to support advancements in this evolving field. This survey lays the foundation for developing more capable and reliable AI systems that effectively leverage multimodal dynamic external knowledge bases. Resources are available at https://github.com/llm-lab-org/Multimodal-RAG-Survey.
Towards Cross-modal Backward-compatible Representation Learning for Vision-Language Models
Modern retrieval systems often struggle with upgrading to new and more powerful models due to the incompatibility of embeddings between the old and new models. This necessitates a costly process known as backfilling, which involves re-computing the embeddings for a large number of data samples. In vision, Backward-compatible Training (BT) has been proposed to ensure that the new model aligns with the old model's embeddings. This paper extends the concept of vision-only BT to the field of cross-modal retrieval, marking the first attempt to address Cross-modal BT (XBT). Our goal is to achieve backward-compatibility between Vision-Language Pretraining (VLP) models, such as CLIP, for the cross-modal retrieval task. To address XBT challenges, we propose an efficient solution: a projection module that maps the new model's embeddings to those of the old model. This module, pretrained solely with text data, significantly reduces the number of image-text pairs required for XBT learning, and, once it is pretrained, it avoids using the old model during training. Furthermore, we utilize parameter-efficient training strategies that improve efficiency and preserve the off-the-shelf new model's knowledge by avoiding any modifications. Experimental results on cross-modal retrieval datasets demonstrate the effectiveness of XBT and its potential to enable backfill-free upgrades when a new VLP model emerges.
InvGC: Robust Cross-Modal Retrieval by Inverse Graph Convolution
Over recent decades, significant advancements in cross-modal retrieval are mainly driven by breakthroughs in visual and linguistic modeling. However, a recent study shows that multi-modal data representations tend to cluster within a limited convex cone (as representation degeneration problem), which hinders retrieval performance due to the inseparability of these representations. In our study, we first empirically validate the presence of the representation degeneration problem across multiple cross-modal benchmarks and methods. Next, to address it, we introduce a novel method, called InvGC, a post-processing technique inspired by graph convolution and average pooling. Specifically, InvGC defines the graph topology within the datasets and then applies graph convolution in a subtractive manner. This method effectively separates representations by increasing the distances between data points. To improve the efficiency and effectiveness of InvGC, we propose an advanced graph topology, LocalAdj, which only aims to increase the distances between each data point and its nearest neighbors. To understand why InvGC works, we present a detailed theoretical analysis, proving that the lower bound of recall will be improved after deploying InvGC. Extensive empirical results show that InvGC and InvGC w/LocalAdj significantly mitigate the representation degeneration problem, thereby enhancing retrieval performance. Our code is available at https://github.com/yimuwangcs/Better_Cross_Modal_Retrieval
Rethinking Benchmarks for Cross-modal Image-text Retrieval
Image-text retrieval, as a fundamental and important branch of information retrieval, has attracted extensive research attentions. The main challenge of this task is cross-modal semantic understanding and matching. Some recent works focus more on fine-grained cross-modal semantic matching. With the prevalence of large scale multimodal pretraining models, several state-of-the-art models (e.g. X-VLM) have achieved near-perfect performance on widely-used image-text retrieval benchmarks, i.e. MSCOCO-Test-5K and Flickr30K-Test-1K. In this paper, we review the two common benchmarks and observe that they are insufficient to assess the true capability of models on fine-grained cross-modal semantic matching. The reason is that a large amount of images and texts in the benchmarks are coarse-grained. Based on the observation, we renovate the coarse-grained images and texts in the old benchmarks and establish the improved benchmarks called MSCOCO-FG and Flickr30K-FG. Specifically, on the image side, we enlarge the original image pool by adopting more similar images. On the text side, we propose a novel semi-automatic renovation approach to refine coarse-grained sentences into finer-grained ones with little human effort. Furthermore, we evaluate representative image-text retrieval models on our new benchmarks to demonstrate the effectiveness of our method. We also analyze the capability of models on fine-grained semantic comprehension through extensive experiments. The results show that even the state-of-the-art models have much room for improvement in fine-grained semantic understanding, especially in distinguishing attributes of close objects in images. Our code and improved benchmark datasets are publicly available at: https://github.com/cwj1412/MSCOCO-Flikcr30K_FG, which we hope will inspire further in-depth research on cross-modal retrieval.
Query Expansion by Prompting Large Language Models
Query expansion is a widely used technique to improve the recall of search systems. In this paper, we propose an approach to query expansion that leverages the generative abilities of Large Language Models (LLMs). Unlike traditional query expansion approaches such as Pseudo-Relevance Feedback (PRF) that relies on retrieving a good set of pseudo-relevant documents to expand queries, we rely on the generative and creative abilities of an LLM and leverage the knowledge inherent in the model. We study a variety of different prompts, including zero-shot, few-shot and Chain-of-Thought (CoT). We find that CoT prompts are especially useful for query expansion as these prompts instruct the model to break queries down step-by-step and can provide a large number of terms related to the original query. Experimental results on MS-MARCO and BEIR demonstrate that query expansions generated by LLMs can be more powerful than traditional query expansion methods.
Cross Modal Retrieval with Querybank Normalisation
Profiting from large-scale training datasets, advances in neural architecture design and efficient inference, joint embeddings have become the dominant approach for tackling cross-modal retrieval. In this work we first show that, despite their effectiveness, state-of-the-art joint embeddings suffer significantly from the longstanding "hubness problem" in which a small number of gallery embeddings form the nearest neighbours of many queries. Drawing inspiration from the NLP literature, we formulate a simple but effective framework called Querybank Normalisation (QB-Norm) that re-normalises query similarities to account for hubs in the embedding space. QB-Norm improves retrieval performance without requiring retraining. Differently from prior work, we show that QB-Norm works effectively without concurrent access to any test set queries. Within the QB-Norm framework, we also propose a novel similarity normalisation method, the Dynamic Inverted Softmax, that is significantly more robust than existing approaches. We showcase QB-Norm across a range of cross modal retrieval models and benchmarks where it consistently enhances strong baselines beyond the state of the art. Code is available at https://vladbogo.github.io/QB-Norm/.
Unified Lexical Representation for Interpretable Visual-Language Alignment
Visual-Language Alignment (VLA) has gained a lot of attention since CLIP's groundbreaking work. Although CLIP performs well, the typical direct latent feature alignment lacks clarity in its representation and similarity scores. On the other hand, lexical representation, a vector whose element represents the similarity between the sample and a word from the vocabulary, is a natural sparse representation and interpretable, providing exact matches for individual words. However, lexical representations is difficult to learn due to no ground-truth supervision and false-discovery issues, and thus requires complex design to train effectively. In this paper, we introduce LexVLA, a more interpretable VLA framework by learning a unified lexical representation for both modalities without complex design. We use DINOv2 as our visual model for its local-inclined features and Llama 2, a generative language model, to leverage its in-context lexical prediction ability. To avoid the false discovery, we propose an overuse penalty to refrain the lexical representation from falsely frequently activating meaningless words. We demonstrate that these two pre-trained uni-modal models can be well-aligned by fine-tuning on modest multi-modal dataset and avoid intricate training configurations. On cross-modal retrieval benchmarks, LexVLA, trained on the CC-12M multi-modal dataset, outperforms baselines fine-tuned on larger datasets (e.g., YFCC15M) and those trained from scratch on even bigger datasets (e.g., 1.1B data, including CC-12M). We conduct extensive experiments to analyze LexVLA.
Where Does the Performance Improvement Come From? -- A Reproducibility Concern about Image-Text Retrieval
This article aims to provide the information retrieval community with some reflections on recent advances in retrieval learning by analyzing the reproducibility of image-text retrieval models. Due to the increase of multimodal data over the last decade, image-text retrieval has steadily become a major research direction in the field of information retrieval. Numerous researchers train and evaluate image-text retrieval algorithms using benchmark datasets such as MS-COCO and Flickr30k. Research in the past has mostly focused on performance, with multiple state-of-the-art methodologies being suggested in a variety of ways. According to their assertions, these techniques provide improved modality interactions and hence more precise multimodal representations. In contrast to previous works, we focus on the reproducibility of the approaches and the examination of the elements that lead to improved performance by pretrained and nonpretrained models in retrieving images and text. To be more specific, we first examine the related reproducibility concerns and explain why our focus is on image-text retrieval tasks. Second, we systematically summarize the current paradigm of image-text retrieval models and the stated contributions of those approaches. Third, we analyze various aspects of the reproduction of pretrained and nonpretrained retrieval models. To complete this, we conducted ablation experiments and obtained some influencing factors that affect retrieval recall more than the improvement claimed in the original paper. Finally, we present some reflections and challenges that the retrieval community should consider in the future. Our source code is publicly available at https://github.com/WangFei-2019/Image-text-Retrieval.
Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image Person Retrieval
Text-to-image person retrieval aims to identify the target person based on a given textual description query. The primary challenge is to learn the mapping of visual and textual modalities into a common latent space. Prior works have attempted to address this challenge by leveraging separately pre-trained unimodal models to extract visual and textual features. However, these approaches lack the necessary underlying alignment capabilities required to match multimodal data effectively. Besides, these works use prior information to explore explicit part alignments, which may lead to the distortion of intra-modality information. To alleviate these issues, we present IRRA: a cross-modal Implicit Relation Reasoning and Aligning framework that learns relations between local visual-textual tokens and enhances global image-text matching without requiring additional prior supervision. Specifically, we first design an Implicit Relation Reasoning module in a masked language modeling paradigm. This achieves cross-modal interaction by integrating the visual cues into the textual tokens with a cross-modal multimodal interaction encoder. Secondly, to globally align the visual and textual embeddings, Similarity Distribution Matching is proposed to minimize the KL divergence between image-text similarity distributions and the normalized label matching distributions. The proposed method achieves new state-of-the-art results on all three public datasets, with a notable margin of about 3%-9% for Rank-1 accuracy compared to prior methods.
Video-Text Retrieval by Supervised Sparse Multi-Grained Learning
While recent progress in video-text retrieval has been advanced by the exploration of better representation learning, in this paper, we present a novel multi-grained sparse learning framework, S3MA, to learn an aligned sparse space shared between the video and the text for video-text retrieval. The shared sparse space is initialized with a finite number of sparse concepts, each of which refers to a number of words. With the text data at hand, we learn and update the shared sparse space in a supervised manner using the proposed similarity and alignment losses. Moreover, to enable multi-grained alignment, we incorporate frame representations for better modeling the video modality and calculating fine-grained and coarse-grained similarities. Benefiting from the learned shared sparse space and multi-grained similarities, extensive experiments on several video-text retrieval benchmarks demonstrate the superiority of S3MA over existing methods. Our code is available at https://github.com/yimuwangcs/Better_Cross_Modal_Retrieval.
From Retrieval to Generation: Comparing Different Approaches
Knowledge-intensive tasks, particularly open-domain question answering (ODQA), document reranking, and retrieval-augmented language modeling, require a balance between retrieval accuracy and generative flexibility. Traditional retrieval models such as BM25 and Dense Passage Retrieval (DPR), efficiently retrieve from large corpora but often lack semantic depth. Generative models like GPT-4-o provide richer contextual understanding but face challenges in maintaining factual consistency. In this work, we conduct a systematic evaluation of retrieval-based, generation-based, and hybrid models, with a primary focus on their performance in ODQA and related retrieval-augmented tasks. Our results show that dense retrievers, particularly DPR, achieve strong performance in ODQA with a top-1 accuracy of 50.17\% on NQ, while hybrid models improve nDCG@10 scores on BEIR from 43.42 (BM25) to 52.59, demonstrating their strength in document reranking. Additionally, we analyze language modeling tasks using WikiText-103, showing that retrieval-based approaches like BM25 achieve lower perplexity compared to generative and hybrid methods, highlighting their utility in retrieval-augmented generation. By providing detailed comparisons and practical insights into the conditions where each approach excels, we aim to facilitate future optimizations in retrieval, reranking, and generative models for ODQA and related knowledge-intensive applications.
MRAMG-Bench: A BeyondText Benchmark for Multimodal Retrieval-Augmented Multimodal Generation
Recent advancements in Retrieval-Augmented Generation (RAG) have shown remarkable performance in enhancing response accuracy and relevance by integrating external knowledge into generative models. However, existing RAG methods primarily focus on providing text-only answers, even in multimodal retrieval-augmented generation scenarios. In this work, we introduce the Multimodal Retrieval-Augmented Multimodal Generation (MRAMG) task, which aims to generate answers that combine both text and images, fully leveraging the multimodal data within a corpus. Despite the importance of this task, there is a notable absence of a comprehensive benchmark to effectively evaluate MRAMG performance. To bridge this gap, we introduce the MRAMG-Bench, a carefully curated, human-annotated dataset comprising 4,346 documents, 14,190 images, and 4,800 QA pairs, sourced from three categories: Web Data, Academic Papers, and Lifestyle. The dataset incorporates diverse difficulty levels and complex multi-image scenarios, providing a robust foundation for evaluating multimodal generation tasks. To facilitate rigorous evaluation, our MRAMG-Bench incorporates a comprehensive suite of both statistical and LLM-based metrics, enabling a thorough analysis of the performance of popular generative models in the MRAMG task. Besides, we propose an efficient multimodal answer generation framework that leverages both LLMs and MLLMs to generate multimodal responses. Our datasets are available at: https://huggingface.co/MRAMG.
GLEN: Generative Retrieval via Lexical Index Learning
Generative retrieval shed light on a new paradigm of document retrieval, aiming to directly generate the identifier of a relevant document for a query. While it takes advantage of bypassing the construction of auxiliary index structures, existing studies face two significant challenges: (i) the discrepancy between the knowledge of pre-trained language models and identifiers and (ii) the gap between training and inference that poses difficulty in learning to rank. To overcome these challenges, we propose a novel generative retrieval method, namely Generative retrieval via LExical iNdex learning (GLEN). For training, GLEN effectively exploits a dynamic lexical identifier using a two-phase index learning strategy, enabling it to learn meaningful lexical identifiers and relevance signals between queries and documents. For inference, GLEN utilizes collision-free inference, using identifier weights to rank documents without additional overhead. Experimental results prove that GLEN achieves state-of-the-art or competitive performance against existing generative retrieval methods on various benchmark datasets, e.g., NQ320k, MS MARCO, and BEIR. The code is available at https://github.com/skleee/GLEN.
GME: Improving Universal Multimodal Retrieval by Multimodal LLMs
Universal Multimodal Retrieval (UMR) aims to enable search across various modalities using a unified model, where queries and candidates can consist of pure text, images, or a combination of both. Previous work has attempted to adopt multimodal large language models (MLLMs) to realize UMR using only text data. However, our preliminary experiments demonstrate that more diverse multimodal training data can further unlock the potential of MLLMs. Despite its effectiveness, the existing multimodal training data is highly imbalanced in terms of modality, which motivates us to develop a training data synthesis pipeline and construct a large-scale, high-quality fused-modal training dataset. Based on the synthetic training data, we develop the General Multimodal Embedder (GME), an MLLM-based dense retriever designed for UMR. Furthermore, we construct a comprehensive UMR Benchmark (UMRB) to evaluate the effectiveness of our approach. Experimental results show that our method achieves state-of-the-art performance among existing UMR methods. Last, we provide in-depth analyses of model scaling, training strategies, and perform ablation studies on both the model and synthetic data.
RAVEN: Multitask Retrieval Augmented Vision-Language Learning
The scaling of large language models to encode all the world's knowledge in model parameters is unsustainable and has exacerbated resource barriers. Retrieval-Augmented Generation (RAG) presents a potential solution, yet its application to vision-language models (VLMs) is under explored. Existing methods focus on models designed for single tasks. Furthermore, they're limited by the need for resource intensive pre training, additional parameter requirements, unaddressed modality prioritization and lack of clear benefit over non-retrieval baselines. This paper introduces RAVEN, a multitask retrieval augmented VLM framework that enhances base VLMs through efficient, task specific fine-tuning. By integrating retrieval augmented samples without the need for additional retrieval-specific parameters, we show that the model acquires retrieval properties that are effective across multiple tasks. Our results and extensive ablations across retrieved modalities for the image captioning and VQA tasks indicate significant performance improvements compared to non retrieved baselines +1 CIDEr on MSCOCO, +4 CIDEr on NoCaps and nearly a +3\% accuracy on specific VQA question types. This underscores the efficacy of applying RAG approaches to VLMs, marking a stride toward more efficient and accessible multimodal learning.
Learnable PINs: Cross-Modal Embeddings for Person Identity
We propose and investigate an identity sensitive joint embedding of face and voice. Such an embedding enables cross-modal retrieval from voice to face and from face to voice. We make the following four contributions: first, we show that the embedding can be learnt from videos of talking faces, without requiring any identity labels, using a form of cross-modal self-supervision; second, we develop a curriculum learning schedule for hard negative mining targeted to this task, that is essential for learning to proceed successfully; third, we demonstrate and evaluate cross-modal retrieval for identities unseen and unheard during training over a number of scenarios and establish a benchmark for this novel task; finally, we show an application of using the joint embedding for automatically retrieving and labelling characters in TV dramas.
Retrieval-based Disentangled Representation Learning with Natural Language Supervision
Disentangled representation learning remains challenging as the underlying factors of variation in the data do not naturally exist. The inherent complexity of real-world data makes it unfeasible to exhaustively enumerate and encapsulate all its variations within a finite set of factors. However, it is worth noting that most real-world data have linguistic equivalents, typically in the form of textual descriptions. These linguistic counterparts can represent the data and effortlessly decomposed into distinct tokens. In light of this, we present Vocabulary Disentangled Retrieval (VDR), a retrieval-based framework that harnesses natural language as proxies of the underlying data variation to drive disentangled representation learning. Our approach employ a bi-encoder model to represent both data and natural language in a vocabulary space, enabling the model to distinguish dimensions that capture intrinsic characteristics within data through its natural language counterpart, thus facilitating disentanglement. We extensively assess the performance of VDR across 15 retrieval benchmark datasets, covering text-to-text and cross-modal retrieval scenarios, as well as human evaluation. Our experimental results compellingly demonstrate the superiority of VDR over previous bi-encoder retrievers with comparable model size and training costs, achieving an impressive 8.7% improvement in NDCG@10 on the BEIR benchmark, a 5.3% increase on MS COCO, and a 6.0% increase on Flickr30k in terms of mean recall in the zero-shot setting. Moreover, The results from human evaluation indicate that interpretability of our method is on par with SOTA captioning models.
MultiVENT 2.0: A Massive Multilingual Benchmark for Event-Centric Video Retrieval
Efficiently retrieving and synthesizing information from large-scale multimodal collections has become a critical challenge. However, existing video retrieval datasets suffer from scope limitations, primarily focusing on matching descriptive but vague queries with small collections of professionally edited, English-centric videos. To address this gap, we introduce MultiVENT 2.0, a large-scale, multilingual event-centric video retrieval benchmark featuring a collection of more than 218,000 news videos and 3,906 queries targeting specific world events. These queries specifically target information found in the visual content, audio, embedded text, and text metadata of the videos, requiring systems leverage all these sources to succeed at the task. Preliminary results show that state-of-the-art vision-language models struggle significantly with this task, and while alternative approaches show promise, they are still insufficient to adequately address this problem. These findings underscore the need for more robust multimodal retrieval systems, as effective video retrieval is a crucial step towards multimodal content understanding and generation tasks.
LaT: Latent Translation with Cycle-Consistency for Video-Text Retrieval
Video-text retrieval is a class of cross-modal representation learning problems, where the goal is to select the video which corresponds to the text query between a given text query and a pool of candidate videos. The contrastive paradigm of vision-language pretraining has shown promising success with large-scale datasets and unified transformer architecture, and demonstrated the power of a joint latent space. Despite this, the intrinsic divergence between the visual domain and textual domain is still far from being eliminated, and projecting different modalities into a joint latent space might result in the distorting of the information inside the single modality. To overcome the above issue, we present a novel mechanism for learning the translation relationship from a source modality space S to a target modality space T without the need for a joint latent space, which bridges the gap between visual and textual domains. Furthermore, to keep cycle consistency between translations, we adopt a cycle loss involving both forward translations from S to the predicted target space T', and backward translations from T' back to S. Extensive experiments conducted on MSR-VTT, MSVD, and DiDeMo datasets demonstrate the superiority and effectiveness of our LaT approach compared with vanilla state-of-the-art methods.
On the Effectiveness of Integration Methods for Multimodal Dialogue Response Retrieval
Multimodal chatbots have become one of the major topics for dialogue systems in both research community and industry. Recently, researchers have shed light on the multimodality of responses as well as dialogue contexts. This work explores how a dialogue system can output responses in various modalities such as text and image. To this end, we first formulate a multimodal dialogue response retrieval task for retrieval-based systems as the combination of three subtasks. We then propose three integration methods based on a two-step approach and an end-to-end approach, and compare the merits and demerits of each method. Experimental results on two datasets demonstrate that the end-to-end approach achieves comparable performance without an intermediate step in the two-step approach. In addition, a parameter sharing strategy not only reduces the number of parameters but also boosts performance by transferring knowledge across the subtasks and the modalities.
Cross-Modal and Uni-Modal Soft-Label Alignment for Image-Text Retrieval
Current image-text retrieval methods have demonstrated impressive performance in recent years. However, they still face two problems: the inter-modal matching missing problem and the intra-modal semantic loss problem. These problems can significantly affect the accuracy of image-text retrieval. To address these challenges, we propose a novel method called Cross-modal and Uni-modal Soft-label Alignment (CUSA). Our method leverages the power of uni-modal pre-trained models to provide soft-label supervision signals for the image-text retrieval model. Additionally, we introduce two alignment techniques, Cross-modal Soft-label Alignment (CSA) and Uni-modal Soft-label Alignment (USA), to overcome false negatives and enhance similarity recognition between uni-modal samples. Our method is designed to be plug-and-play, meaning it can be easily applied to existing image-text retrieval models without changing their original architectures. Extensive experiments on various image-text retrieval models and datasets, we demonstrate that our method can consistently improve the performance of image-text retrieval and achieve new state-of-the-art results. Furthermore, our method can also boost the uni-modal retrieval performance of image-text retrieval models, enabling it to achieve universal retrieval. The code and supplementary files can be found at https://github.com/lerogo/aaai24_itr_cusa.
Generating Natural Questions About an Image
There has been an explosion of work in the vision & language community during the past few years from image captioning to video transcription, and answering questions about images. These tasks have focused on literal descriptions of the image. To move beyond the literal, we choose to explore how questions about an image are often directed at commonsense inference and the abstract events evoked by objects in the image. In this paper, we introduce the novel task of Visual Question Generation (VQG), where the system is tasked with asking a natural and engaging question when shown an image. We provide three datasets which cover a variety of images from object-centric to event-centric, with considerably more abstract training data than provided to state-of-the-art captioning systems thus far. We train and test several generative and retrieval models to tackle the task of VQG. Evaluation results show that while such models ask reasonable questions for a variety of images, there is still a wide gap with human performance which motivates further work on connecting images with commonsense knowledge and pragmatics. Our proposed task offers a new challenge to the community which we hope furthers interest in exploring deeper connections between vision & language.
SetCSE: Set Operations using Contrastive Learning of Sentence Embeddings
Taking inspiration from Set Theory, we introduce SetCSE, an innovative information retrieval framework. SetCSE employs sets to represent complex semantics and incorporates well-defined operations for structured information querying under the provided context. Within this framework, we introduce an inter-set contrastive learning objective to enhance comprehension of sentence embedding models concerning the given semantics. Furthermore, we present a suite of operations, including SetCSE intersection, difference, and operation series, that leverage sentence embeddings of the enhanced model for complex sentence retrieval tasks. Throughout this paper, we demonstrate that SetCSE adheres to the conventions of human language expressions regarding compounded semantics, provides a significant enhancement in the discriminatory capability of underlying sentence embedding models, and enables numerous information retrieval tasks involving convoluted and intricate prompts which cannot be achieved using existing querying methods.
MMKB-RAG: A Multi-Modal Knowledge-Based Retrieval-Augmented Generation Framework
Recent advancements in large language models (LLMs) and multi-modal LLMs have been remarkable. However, these models still rely solely on their parametric knowledge, which limits their ability to generate up-to-date information and increases the risk of producing erroneous content. Retrieval-Augmented Generation (RAG) partially mitigates these challenges by incorporating external data sources, yet the reliance on databases and retrieval systems can introduce irrelevant or inaccurate documents, ultimately undermining both performance and reasoning quality. In this paper, we propose Multi-Modal Knowledge-Based Retrieval-Augmented Generation (MMKB-RAG), a novel multi-modal RAG framework that leverages the inherent knowledge boundaries of models to dynamically generate semantic tags for the retrieval process. This strategy enables the joint filtering of retrieved documents, retaining only the most relevant and accurate references. Extensive experiments on knowledge-based visual question-answering tasks demonstrate the efficacy of our approach: on the E-VQA dataset, our method improves performance by +4.2% on the Single-Hop subset and +0.4% on the full dataset, while on the InfoSeek dataset, it achieves gains of +7.8% on the Unseen-Q subset, +8.2% on the Unseen-E subset, and +8.1% on the full dataset. These results highlight significant enhancements in both accuracy and robustness over the current state-of-the-art MLLM and RAG frameworks.
DialogCC: Large-Scale Multi-Modal Dialogue Dataset
As sharing images in an instant message is a crucial factor, there has been active research on learning a image-text multi-modal dialogue model. However, training a well-generalized multi-modal dialogue model is challenging because existing multi-modal dialogue datasets contain a small number of data, limited topics, and a restricted variety of images per dialogue. In this paper, we present a multi-modal dialogue dataset creation pipeline that involves matching large-scale images to dialogues based on CLIP similarity. Using this automatic pipeline, we propose a large-scale multi-modal dialogue dataset, DialogCC, which covers diverse real-world topics and various images per dialogue. With extensive experiments, we demonstrate that training a multi-modal dialogue model with our dataset can improve generalization performance. Additionally, existing models trained with our dataset achieve state-of-the-art performance on image and text retrieval tasks. The source code and the dataset will be released after publication.
Towards Text-Image Interleaved Retrieval
Current multimodal information retrieval studies mainly focus on single-image inputs, which limits real-world applications involving multiple images and text-image interleaved content. In this work, we introduce the text-image interleaved retrieval (TIIR) task, where the query and document are interleaved text-image sequences, and the model is required to understand the semantics from the interleaved context for effective retrieval. We construct a TIIR benchmark based on naturally interleaved wikiHow tutorials, where a specific pipeline is designed to generate interleaved queries. To explore the task, we adapt several off-the-shelf retrievers and build a dense baseline by interleaved multimodal large language model (MLLM). We then propose a novel Matryoshka Multimodal Embedder (MME), which compresses the number of visual tokens at different granularity, to address the challenge of excessive visual tokens in MLLM-based TIIR models. Experiments demonstrate that simple adaption of existing models does not consistently yield effective results. Our MME achieves significant improvements over the baseline by substantially fewer visual tokens. We provide extensive analysis and will release the dataset and code to facilitate future research.
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation
One of the challenges in information retrieval (IR) is the vocabulary mismatch problem, which happens when the terms between queries and documents are lexically different but semantically similar. While recent work has proposed to expand the queries or documents by enriching their representations with additional relevant terms to address this challenge, they usually require a large volume of query-document pairs to train an expansion model. In this paper, we propose an Unsupervised Document Expansion with Generation (UDEG) framework with a pre-trained language model, which generates diverse supplementary sentences for the original document without using labels on query-document pairs for training. For generating sentences, we further stochastically perturb their embeddings to generate more diverse sentences for document expansion. We validate our framework on two standard IR benchmark datasets. The results show that our framework significantly outperforms relevant expansion baselines for IR.
A Surprisingly Simple yet Effective Multi-Query Rewriting Method for Conversational Passage Retrieval
Conversational passage retrieval is challenging as it often requires the resolution of references to previous utterances and needs to deal with the complexities of natural language, such as coreference and ellipsis. To address these challenges, pre-trained sequence-to-sequence neural query rewriters are commonly used to generate a single de-contextualized query based on conversation history. Previous research shows that combining multiple query rewrites for the same user utterance has a positive effect on retrieval performance. We propose the use of a neural query rewriter to generate multiple queries and show how to integrate those queries in the passage retrieval pipeline efficiently. The main strength of our approach lies in its simplicity: it leverages how the beam search algorithm works and can produce multiple query rewrites at no additional cost. Our contributions further include devising ways to utilize multi-query rewrites in both sparse and dense first-pass retrieval. We demonstrate that applying our approach on top of a standard passage retrieval pipeline delivers state-of-the-art performance without sacrificing efficiency.
DuReader_retrieval: A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine
In this paper, we present DuReader_retrieval, a large-scale Chinese dataset for passage retrieval. DuReader_retrieval contains more than 90K queries and over 8M unique passages from a commercial search engine. To alleviate the shortcomings of other datasets and ensure the quality of our benchmark, we (1) reduce the false negatives in development and test sets by manually annotating results pooled from multiple retrievers, and (2) remove the training queries that are semantically similar to the development and testing queries. Additionally, we provide two out-of-domain testing sets for cross-domain evaluation, as well as a set of human translated queries for for cross-lingual retrieval evaluation. The experiments demonstrate that DuReader_retrieval is challenging and a number of problems remain unsolved, such as the salient phrase mismatch and the syntactic mismatch between queries and paragraphs. These experiments also show that dense retrievers do not generalize well across domains, and cross-lingual retrieval is essentially challenging. DuReader_retrieval is publicly available at https://github.com/baidu/DuReader/tree/master/DuReader-Retrieval.
Retrieving Texts based on Abstract Descriptions
In this work, we aim to connect two research areas: instruction models and retrieval-based models. While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for semantic retrieval. Similarity search over embedding vectors allows to index and query vectors, but the similarity reflected in the embedding is sub-optimal for many use cases. We identify the task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting an a large language model (LLM). While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model.
CONVERSER: Few-Shot Conversational Dense Retrieval with Synthetic Data Generation
Conversational search provides a natural interface for information retrieval (IR). Recent approaches have demonstrated promising results in applying dense retrieval to conversational IR. However, training dense retrievers requires large amounts of in-domain paired data. This hinders the development of conversational dense retrievers, as abundant in-domain conversations are expensive to collect. In this paper, we propose CONVERSER, a framework for training conversational dense retrievers with at most 6 examples of in-domain dialogues. Specifically, we utilize the in-context learning capability of large language models to generate conversational queries given a passage in the retrieval corpus. Experimental results on conversational retrieval benchmarks OR-QuAC and TREC CAsT 19 show that the proposed CONVERSER achieves comparable performance to fully-supervised models, demonstrating the effectiveness of our proposed framework in few-shot conversational dense retrieval. All source code and generated datasets are available at https://github.com/MiuLab/CONVERSER
Towards Unifying Medical Vision-and-Language Pre-training via Soft Prompts
Medical vision-and-language pre-training (Med-VLP) has shown promising improvements on many downstream medical tasks owing to its applicability to extracting generic representations from medical images and texts. Practically, there exist two typical types, i.e., the fusion-encoder type and the dual-encoder type, depending on whether a heavy fusion module is used. The former is superior at multi-modal tasks owing to the sufficient interaction between modalities; the latter is good at uni-modal and cross-modal tasks due to the single-modality encoding ability. To take advantage of these two types, we propose an effective yet straightforward scheme named PTUnifier to unify the two types. We first unify the input format by introducing visual and textual prompts, which serve as a feature bank that stores the most representative images/texts. By doing so, a single model could serve as a foundation model that processes various tasks adopting different input formats (i.e., image-only, text-only, and image-text-pair). Furthermore, we construct a prompt pool (instead of static ones) to improve diversity and scalability. Experimental results show that our approach achieves state-of-the-art results on a broad range of tasks, spanning uni-modal tasks (i.e., image/text classification and text summarization), cross-modal tasks (i.e., image-to-text generation and image-text/text-image retrieval), and multi-modal tasks (i.e., visual question answering), demonstrating the effectiveness of our approach. Note that the adoption of prompts is orthogonal to most existing Med-VLP approaches and could be a beneficial and complementary extension to these approaches.
VDocRAG: Retrieval-Augmented Generation over Visually-Rich Documents
We aim to develop a retrieval-augmented generation (RAG) framework that answers questions over a corpus of visually-rich documents presented in mixed modalities (e.g., charts, tables) and diverse formats (e.g., PDF, PPTX). In this paper, we introduce a new RAG framework, VDocRAG, which can directly understand varied documents and modalities in a unified image format to prevent missing information that occurs by parsing documents to obtain text. To improve the performance, we propose novel self-supervised pre-training tasks that adapt large vision-language models for retrieval by compressing visual information into dense token representations while aligning them with textual content in documents. Furthermore, we introduce OpenDocVQA, the first unified collection of open-domain document visual question answering datasets, encompassing diverse document types and formats. OpenDocVQA provides a comprehensive resource for training and evaluating retrieval and question answering models on visually-rich documents in an open-domain setting. Experiments show that VDocRAG substantially outperforms conventional text-based RAG and has strong generalization capability, highlighting the potential of an effective RAG paradigm for real-world documents.
Mr. TyDi: A Multi-lingual Benchmark for Dense Retrieval
We present Mr. TyDi, a multi-lingual benchmark dataset for mono-lingual retrieval in eleven typologically diverse languages, designed to evaluate ranking with learned dense representations. The goal of this resource is to spur research in dense retrieval techniques in non-English languages, motivated by recent observations that existing techniques for representation learning perform poorly when applied to out-of-distribution data. As a starting point, we provide zero-shot baselines for this new dataset based on a multi-lingual adaptation of DPR that we call "mDPR". Experiments show that although the effectiveness of mDPR is much lower than BM25, dense representations nevertheless appear to provide valuable relevance signals, improving BM25 results in sparse-dense hybrids. In addition to analyses of our results, we also discuss future challenges and present a research agenda in multi-lingual dense retrieval. Mr. TyDi can be downloaded at https://github.com/castorini/mr.tydi.
GuRE:Generative Query REwriter for Legal Passage Retrieval
Legal Passage Retrieval (LPR) systems are crucial as they help practitioners save time when drafting legal arguments. However, it remains an underexplored avenue. One primary reason is the significant vocabulary mismatch between the query and the target passage. To address this, we propose a simple yet effective method, the Generative query REwriter (GuRE). We leverage the generative capabilities of Large Language Models (LLMs) by training the LLM for query rewriting. "Rewritten queries" help retrievers to retrieve target passages by mitigating vocabulary mismatch. Experimental results show that GuRE significantly improves performance in a retriever-agnostic manner, outperforming all baseline methods. Further analysis reveals that different training objectives lead to distinct retrieval behaviors, making GuRE more suitable than direct retriever fine-tuning for real-world applications. Codes are avaiable at github.com/daehuikim/GuRE.
What If We Recaption Billions of Web Images with LLaMA-3?
Web-crawled image-text pairs are inherently noisy. Prior studies demonstrate that semantically aligning and enriching textual descriptions of these pairs can significantly enhance model training across various vision-language tasks, particularly text-to-image generation. However, large-scale investigations in this area remain predominantly closed-source. Our paper aims to bridge this community effort, leveraging the powerful and open-sourced LLaMA-3, a GPT-4 level LLM. Our recaptioning pipeline is simple: first, we fine-tune a LLaMA-3-8B powered LLaVA-1.5 and then employ it to recaption 1.3 billion images from the DataComp-1B dataset. Our empirical results confirm that this enhanced dataset, Recap-DataComp-1B, offers substantial benefits in training advanced vision-language models. For discriminative models like CLIP, we observe enhanced zero-shot performance in cross-modal retrieval tasks. For generative models like text-to-image Diffusion Transformers, the generated images exhibit a significant improvement in alignment with users' text instructions, especially in following complex queries. Our project page is https://www.haqtu.me/Recap-Datacomp-1B/
Beyond Text: Optimizing RAG with Multimodal Inputs for Industrial Applications
Large Language Models (LLMs) have demonstrated impressive capabilities in answering questions, but they lack domain-specific knowledge and are prone to hallucinations. Retrieval Augmented Generation (RAG) is one approach to address these challenges, while multimodal models are emerging as promising AI assistants for processing both text and images. In this paper we describe a series of experiments aimed at determining how to best integrate multimodal models into RAG systems for the industrial domain. The purpose of the experiments is to determine whether including images alongside text from documents within the industrial domain increases RAG performance and to find the optimal configuration for such a multimodal RAG system. Our experiments include two approaches for image processing and retrieval, as well as two LLMs (GPT4-Vision and LLaVA) for answer synthesis. These image processing strategies involve the use of multimodal embeddings and the generation of textual summaries from images. We evaluate our experiments with an LLM-as-a-Judge approach. Our results reveal that multimodal RAG can outperform single-modality RAG settings, although image retrieval poses a greater challenge than text retrieval. Additionally, leveraging textual summaries from images presents a more promising approach compared to the use of multimodal embeddings, providing more opportunities for future advancements.
CoRT: Complementary Rankings from Transformers
Many recent approaches towards neural information retrieval mitigate their computational costs by using a multi-stage ranking pipeline. In the first stage, a number of potentially relevant candidates are retrieved using an efficient retrieval model such as BM25. Although BM25 has proven decent performance as a first-stage ranker, it tends to miss relevant passages. In this context we propose CoRT, a simple neural first-stage ranking model that leverages contextual representations from pretrained language models such as BERT to complement term-based ranking functions while causing no significant delay at query time. Using the MS MARCO dataset, we show that CoRT significantly increases the candidate recall by complementing BM25 with missing candidates. Consequently, we find subsequent re-rankers achieve superior results with less candidates. We further demonstrate that passage retrieval using CoRT can be realized with surprisingly low latencies.
SimLM: Pre-training with Representation Bottleneck for Dense Passage Retrieval
In this paper, we propose SimLM (Similarity matching with Language Model pre-training), a simple yet effective pre-training method for dense passage retrieval. It employs a simple bottleneck architecture that learns to compress the passage information into a dense vector through self-supervised pre-training. We use a replaced language modeling objective, which is inspired by ELECTRA, to improve the sample efficiency and reduce the mismatch of the input distribution between pre-training and fine-tuning. SimLM only requires access to unlabeled corpus, and is more broadly applicable when there are no labeled data or queries. We conduct experiments on several large-scale passage retrieval datasets, and show substantial improvements over strong baselines under various settings. Remarkably, SimLM even outperforms multi-vector approaches such as ColBERTv2 which incurs significantly more storage cost.
Towards a Unified Language Model for Knowledge-Intensive Tasks Utilizing External Corpus
The advent of large language models (LLMs) has showcased their efficacy across various domains, yet they often hallucinate, especially in knowledge-intensive tasks that require external knowledge sources. To improve factual accuracy of language models, retrieval-augmented generation (RAG) has emerged as a popular solution. However, traditional retrieval modules often rely on large-scale document indexes, which can be disconnected from generative tasks. Through generative retrieval (GR) approach, language models can achieve superior retrieval performance by directly generating relevant document identifiers (DocIDs). However, the relationship between GR and downstream tasks, as well as the potential of LLMs in GR, remains unexplored. In this paper, we present a unified language model that utilizes external corpus to handle various knowledge-intensive tasks by seamlessly integrating generative retrieval, closed-book generation, and RAG. In order to achieve effective retrieval and generation through a unified continuous decoding process, we introduce the following mechanisms: (1) a ranking-oriented DocID decoding strategy, which improves ranking ability by directly learning from a DocID ranking list; (2) a continuous generation strategy to facilitate effective and efficient RAG; (3) well-designed auxiliary DocID understanding tasks to enhance the model's comprehension of DocIDs and their relevance to downstream tasks. Our approach is evaluated on the widely used KILT benchmark using two variants of backbone models: an encoder-decoder T5 model and a decoder-only LLM, Llama2. Experimental results showcase the superior performance of our models in both retrieval and downstream knowledge-intensive tasks.
Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking
Contrastive learning has gained widespread adoption for retrieval tasks due to its minimal requirement for manual annotations. However, popular contrastive frameworks typically learn from binary relevance, making them ineffective at incorporating direct fine-grained rankings. In this paper, we curate a large-scale dataset featuring detailed relevance scores for each query-document pair to facilitate future research and evaluation. Subsequently, we propose Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking (GCL), which is designed to learn from fine-grained rankings beyond binary relevance scores. Our results show that GCL achieves a 94.5% increase in NDCG@10 for in-domain and 26.3 to 48.8% increases for cold-start evaluations, all relative to the CLIP baseline and involving ground truth rankings.
Multivariate Representation Learning for Information Retrieval
Dense retrieval models use bi-encoder network architectures for learning query and document representations. These representations are often in the form of a vector representation and their similarities are often computed using the dot product function. In this paper, we propose a new representation learning framework for dense retrieval. Instead of learning a vector for each query and document, our framework learns a multivariate distribution and uses negative multivariate KL divergence to compute the similarity between distributions. For simplicity and efficiency reasons, we assume that the distributions are multivariate normals and then train large language models to produce mean and variance vectors for these distributions. We provide a theoretical foundation for the proposed framework and show that it can be seamlessly integrated into the existing approximate nearest neighbor algorithms to perform retrieval efficiently. We conduct an extensive suite of experiments on a wide range of datasets, and demonstrate significant improvements compared to competitive dense retrieval models.
Interactive Text-to-Image Retrieval with Large Language Models: A Plug-and-Play Approach
In this paper, we primarily address the issue of dialogue-form context query within the interactive text-to-image retrieval task. Our methodology, PlugIR, actively utilizes the general instruction-following capability of LLMs in two ways. First, by reformulating the dialogue-form context, we eliminate the necessity of fine-tuning a retrieval model on existing visual dialogue data, thereby enabling the use of any arbitrary black-box model. Second, we construct the LLM questioner to generate non-redundant questions about the attributes of the target image, based on the information of retrieval candidate images in the current context. This approach mitigates the issues of noisiness and redundancy in the generated questions. Beyond our methodology, we propose a novel evaluation metric, Best log Rank Integral (BRI), for a comprehensive assessment of the interactive retrieval system. PlugIR demonstrates superior performance compared to both zero-shot and fine-tuned baselines in various benchmarks. Additionally, the two methodologies comprising PlugIR can be flexibly applied together or separately in various situations. Our codes are available at https://github.com/Saehyung-Lee/PlugIR.
TEACHTEXT: CrossModal Generalized Distillation for Text-Video Retrieval
In recent years, considerable progress on the task of text-video retrieval has been achieved by leveraging large-scale pretraining on visual and audio datasets to construct powerful video encoders. By contrast, despite the natural symmetry, the design of effective algorithms for exploiting large-scale language pretraining remains under-explored. In this work, we are the first to investigate the design of such algorithms and propose a novel generalized distillation method, TeachText, which leverages complementary cues from multiple text encoders to provide an enhanced supervisory signal to the retrieval model. Moreover, we extend our method to video side modalities and show that we can effectively reduce the number of used modalities at test time without compromising performance. Our approach advances the state of the art on several video retrieval benchmarks by a significant margin and adds no computational overhead at test time. Last but not least, we show an effective application of our method for eliminating noise from retrieval datasets. Code and data can be found at https://www.robots.ox.ac.uk/~vgg/research/teachtext/.
Cross-modal Contrastive Learning for Speech Translation
How can we learn unified representations for spoken utterances and their written text? Learning similar representations for semantically similar speech and text is important for speech translation. To this end, we propose ConST, a cross-modal contrastive learning method for end-to-end speech-to-text translation. We evaluate ConST and a variety of previous baselines on a popular benchmark MuST-C. Experiments show that the proposed ConST consistently outperforms the previous methods on, and achieves an average BLEU of 29.4. The analysis further verifies that ConST indeed closes the representation gap of different modalities -- its learned representation improves the accuracy of cross-modal speech-text retrieval from 4% to 88%. Code and models are available at https://github.com/ReneeYe/ConST.
good4cir: Generating Detailed Synthetic Captions for Composed Image Retrieval
Composed image retrieval (CIR) enables users to search images using a reference image combined with textual modifications. Recent advances in vision-language models have improved CIR, but dataset limitations remain a barrier. Existing datasets often rely on simplistic, ambiguous, or insufficient manual annotations, hindering fine-grained retrieval. We introduce good4cir, a structured pipeline leveraging vision-language models to generate high-quality synthetic annotations. Our method involves: (1) extracting fine-grained object descriptions from query images, (2) generating comparable descriptions for target images, and (3) synthesizing textual instructions capturing meaningful transformations between images. This reduces hallucination, enhances modification diversity, and ensures object-level consistency. Applying our method improves existing datasets and enables creating new datasets across diverse domains. Results demonstrate improved retrieval accuracy for CIR models trained on our pipeline-generated datasets. We release our dataset construction framework to support further research in CIR and multi-modal retrieval.
Learning semantic sentence representations from visually grounded language without lexical knowledge
Current approaches to learning semantic representations of sentences often use prior word-level knowledge. The current study aims to leverage visual information in order to capture sentence level semantics without the need for word embeddings. We use a multimodal sentence encoder trained on a corpus of images with matching text captions to produce visually grounded sentence embeddings. Deep Neural Networks are trained to map the two modalities to a common embedding space such that for an image the corresponding caption can be retrieved and vice versa. We show that our model achieves results comparable to the current state-of-the-art on two popular image-caption retrieval benchmark data sets: MSCOCO and Flickr8k. We evaluate the semantic content of the resulting sentence embeddings using the data from the Semantic Textual Similarity benchmark task and show that the multimodal embeddings correlate well with human semantic similarity judgements. The system achieves state-of-the-art results on several of these benchmarks, which shows that a system trained solely on multimodal data, without assuming any word representations, is able to capture sentence level semantics. Importantly, this result shows that we do not need prior knowledge of lexical level semantics in order to model sentence level semantics. These findings demonstrate the importance of visual information in semantics.
Learning Diverse Document Representations with Deep Query Interactions for Dense Retrieval
In this paper, we propose a new dense retrieval model which learns diverse document representations with deep query interactions. Our model encodes each document with a set of generated pseudo-queries to get query-informed, multi-view document representations. It not only enjoys high inference efficiency like the vanilla dual-encoder models, but also enables deep query-document interactions in document encoding and provides multi-faceted representations to better match different queries. Experiments on several benchmarks demonstrate the effectiveness of the proposed method, out-performing strong dual encoder baselines.The code is available at \url{https://github.com/jordane95/dual-cross-encoder
Language-Guided Music Recommendation for Video via Prompt Analogies
We propose a method to recommend music for an input video while allowing a user to guide music selection with free-form natural language. A key challenge of this problem setting is that existing music video datasets provide the needed (video, music) training pairs, but lack text descriptions of the music. This work addresses this challenge with the following three contributions. First, we propose a text-synthesis approach that relies on an analogy-based prompting procedure to generate natural language music descriptions from a large-scale language model (BLOOM-176B) given pre-trained music tagger outputs and a small number of human text descriptions. Second, we use these synthesized music descriptions to train a new trimodal model, which fuses text and video input representations to query music samples. For training, we introduce a text dropout regularization mechanism which we show is critical to model performance. Our model design allows for the retrieved music audio to agree with the two input modalities by matching visual style depicted in the video and musical genre, mood, or instrumentation described in the natural language query. Third, to evaluate our approach, we collect a testing dataset for our problem by annotating a subset of 4k clips from the YT8M-MusicVideo dataset with natural language music descriptions which we make publicly available. We show that our approach can match or exceed the performance of prior methods on video-to-music retrieval while significantly improving retrieval accuracy when using text guidance.
Cross-View Image Retrieval -- Ground to Aerial Image Retrieval through Deep Learning
Cross-modal retrieval aims to measure the content similarity between different types of data. The idea has been previously applied to visual, text, and speech data. In this paper, we present a novel cross-modal retrieval method specifically for multi-view images, called Cross-view Image Retrieval CVIR. Our approach aims to find a feature space as well as an embedding space in which samples from street-view images are compared directly to satellite-view images (and vice-versa). For this comparison, a novel deep metric learning based solution "DeepCVIR" has been proposed. Previous cross-view image datasets are deficient in that they (1) lack class information; (2) were originally collected for cross-view image geolocalization task with coupled images; (3) do not include any images from off-street locations. To train, compare, and evaluate the performance of cross-view image retrieval, we present a new 6 class cross-view image dataset termed as CrossViewRet which comprises of images including freeway, mountain, palace, river, ship, and stadium with 700 high-resolution dual-view images for each class. Results show that the proposed DeepCVIR outperforms conventional matching approaches on the CVIR task for the given dataset and would also serve as the baseline for future research.
VideoRAG: Retrieval-Augmented Generation over Video Corpus
Retrieval-Augmented Generation (RAG) is a powerful strategy to address the issue of generating factually incorrect outputs in foundation models by retrieving external knowledge relevant to queries and incorporating it into their generation process. However, existing RAG approaches have primarily focused on textual information, with some recent advancements beginning to consider images, and they largely overlook videos, a rich source of multimodal knowledge capable of representing events, processes, and contextual details more effectively than any other modality. While a few recent studies explore the integration of videos in the response generation process, they either predefine query-associated videos without retrieving them according to queries, or convert videos into the textual descriptions without harnessing their multimodal richness. To tackle these, we introduce VideoRAG, a novel framework that not only dynamically retrieves relevant videos based on their relevance with queries but also utilizes both visual and textual information of videos in the output generation. Further, to operationalize this, our method revolves around the recent advance of Large Video Language Models (LVLMs), which enable the direct processing of video content to represent it for retrieval and seamless integration of the retrieved videos jointly with queries. We experimentally validate the effectiveness of VideoRAG, showcasing that it is superior to relevant baselines.
Factorising Meaning and Form for Intent-Preserving Paraphrasing
We propose a method for generating paraphrases of English questions that retain the original intent but use a different surface form. Our model combines a careful choice of training objective with a principled information bottleneck, to induce a latent encoding space that disentangles meaning and form. We train an encoder-decoder model to reconstruct a question from a paraphrase with the same meaning and an exemplar with the same surface form, leading to separated encoding spaces. We use a Vector-Quantized Variational Autoencoder to represent the surface form as a set of discrete latent variables, allowing us to use a classifier to select a different surface form at test time. Crucially, our method does not require access to an external source of target exemplars. Extensive experiments and a human evaluation show that we are able to generate paraphrases with a better tradeoff between semantic preservation and syntactic novelty compared to previous methods.
TextMatch: Enhancing Image-Text Consistency Through Multimodal Optimization
Text-to-image generative models excel in creating images from text but struggle with ensuring alignment and consistency between outputs and prompts. This paper introduces TextMatch, a novel framework that leverages multimodal optimization to address image-text discrepancies in text-to-image (T2I) generation and editing. TextMatch employs a scoring strategy powered by large language models (LLMs) and visual question-answering (VQA) models to evaluate semantic consistency between prompts and generated images. By integrating multimodal in-context learning and chain of thought reasoning, our method dynamically refines prompts through iterative optimization. This process ensures that the generated images better capture user intent of, resulting in higher fidelity and relevance. Extensive experiments demonstrate that TextMatch significantly improves text-image consistency across multiple benchmarks, establishing a reliable framework for advancing the capabilities of text-to-image generative models. Our code is available at https://anonymous.4open.science/r/TextMatch-F55C/.
Document Haystacks: Vision-Language Reasoning Over Piles of 1000+ Documents
Large multimodal models (LMMs) have achieved impressive progress in vision-language understanding, yet they face limitations in real-world applications requiring complex reasoning over a large number of images. Existing benchmarks for multi-image question-answering are limited in scope, each question is paired with only up to 30 images, which does not fully capture the demands of large-scale retrieval tasks encountered in the real-world usages. To reduce these gaps, we introduce two document haystack benchmarks, dubbed DocHaystack and InfoHaystack, designed to evaluate LMM performance on large-scale visual document retrieval and understanding. Additionally, we propose V-RAG, a novel, vision-centric retrieval-augmented generation (RAG) framework that leverages a suite of multimodal vision encoders, each optimized for specific strengths, and a dedicated question-document relevance module. V-RAG sets a new standard, with a 9% and 11% improvement in Recall@1 on the challenging DocHaystack-1000 and InfoHaystack-1000 benchmarks, respectively, compared to the previous best baseline models. Additionally, integrating V-RAG with LMMs enables them to efficiently operate across thousands of images, yielding significant improvements on our DocHaystack and InfoHaystack benchmarks. Our code and datasets are available at https://github.com/Vision-CAIR/dochaystacks
Large Language Models for Information Retrieval: A Survey
As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.
ImageRAG: Dynamic Image Retrieval for Reference-Guided Image Generation
Diffusion models enable high-quality and diverse visual content synthesis. However, they struggle to generate rare or unseen concepts. To address this challenge, we explore the usage of Retrieval-Augmented Generation (RAG) with image generation models. We propose ImageRAG, a method that dynamically retrieves relevant images based on a given text prompt, and uses them as context to guide the generation process. Prior approaches that used retrieved images to improve generation, trained models specifically for retrieval-based generation. In contrast, ImageRAG leverages the capabilities of existing image conditioning models, and does not require RAG-specific training. Our approach is highly adaptable and can be applied across different model types, showing significant improvement in generating rare and fine-grained concepts using different base models. Our project page is available at: https://rotem-shalev.github.io/ImageRAG
Beyond Contrastive Learning: A Variational Generative Model for Multilingual Retrieval
Contrastive learning has been successfully used for retrieval of semantically aligned sentences, but it often requires large batch sizes or careful engineering to work well. In this paper, we instead propose a generative model for learning multilingual text embeddings which can be used to retrieve or score sentence pairs. Our model operates on parallel data in N languages and, through an approximation we introduce, efficiently encourages source separation in this multilingual setting, separating semantic information that is shared between translations from stylistic or language-specific variation. We show careful large-scale comparisons between contrastive and generation-based approaches for learning multilingual text embeddings, a comparison that has not been done to the best of our knowledge despite the popularity of these approaches. We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval -- the last of which we introduce in this paper. Overall, our Variational Multilingual Source-Separation Transformer (VMSST) model outperforms both a strong contrastive and generative baseline on these tasks.
Towards Zero-shot Cross-lingual Image Retrieval
There has been a recent spike in interest in multi-modal Language and Vision problems. On the language side, most of these models primarily focus on English since most multi-modal datasets are monolingual. We try to bridge this gap with a zero-shot approach for learning multi-modal representations using cross-lingual pre-training on the text side. We present a simple yet practical approach for building a cross-lingual image retrieval model which trains on a monolingual training dataset but can be used in a zero-shot cross-lingual fashion during inference. We also introduce a new objective function which tightens the text embedding clusters by pushing dissimilar texts from each other. Finally, we introduce a new 1K multi-lingual MSCOCO2014 caption test dataset (XTD10) in 7 languages that we collected using a crowdsourcing platform. We use this as the test set for evaluating zero-shot model performance across languages. XTD10 dataset is made publicly available here: https://github.com/adobe-research/Cross-lingual-Test-Dataset-XTD10
CoLLM: A Large Language Model for Composed Image Retrieval
Composed Image Retrieval (CIR) is a complex task that aims to retrieve images based on a multimodal query. Typical training data consists of triplets containing a reference image, a textual description of desired modifications, and the target image, which are expensive and time-consuming to acquire. The scarcity of CIR datasets has led to zero-shot approaches utilizing synthetic triplets or leveraging vision-language models (VLMs) with ubiquitous web-crawled image-caption pairs. However, these methods have significant limitations: synthetic triplets suffer from limited scale, lack of diversity, and unnatural modification text, while image-caption pairs hinder joint embedding learning of the multimodal query due to the absence of triplet data. Moreover, existing approaches struggle with complex and nuanced modification texts that demand sophisticated fusion and understanding of vision and language modalities. We present CoLLM, a one-stop framework that effectively addresses these limitations. Our approach generates triplets on-the-fly from image-caption pairs, enabling supervised training without manual annotation. We leverage Large Language Models (LLMs) to generate joint embeddings of reference images and modification texts, facilitating deeper multimodal fusion. Additionally, we introduce Multi-Text CIR (MTCIR), a large-scale dataset comprising 3.4M samples, and refine existing CIR benchmarks (CIRR and Fashion-IQ) to enhance evaluation reliability. Experimental results demonstrate that CoLLM achieves state-of-the-art performance across multiple CIR benchmarks and settings. MTCIR yields competitive results, with up to 15% performance improvement. Our refined benchmarks provide more reliable evaluation metrics for CIR models, contributing to the advancement of this important field.
QuerYD: A video dataset with high-quality text and audio narrations
We introduce QuerYD, a new large-scale dataset for retrieval and event localisation in video. A unique feature of our dataset is the availability of two audio tracks for each video: the original audio, and a high-quality spoken description of the visual content. The dataset is based on YouDescribe, a volunteer project that assists visually-impaired people by attaching voiced narrations to existing YouTube videos. This ever-growing collection of videos contains highly detailed, temporally aligned audio and text annotations. The content descriptions are more relevant than dialogue, and more detailed than previous description attempts, which can be observed to contain many superficial or uninformative descriptions. To demonstrate the utility of the QuerYD dataset, we show that it can be used to train and benchmark strong models for retrieval and event localisation. Data, code and models are made publicly available, and we hope that QuerYD inspires further research on video understanding with written and spoken natural language.
Training a Utility-based Retriever Through Shared Context Attribution for Retrieval-Augmented Language Models
Retrieval-Augmented Language Models boost task performance, owing to the retriever that provides external knowledge. Although crucial, the retriever primarily focuses on semantics relevance, which may not always be effective for generation. Thus, utility-based retrieval has emerged as a promising topic, prioritizing passages that provides valid benefits for downstream tasks. However, due to insufficient understanding, capturing passage utility accurately remains unexplored. This work proposes SCARLet, a framework for training utility-based retrievers in RALMs, which incorporates two key factors, multi-task generalization and inter-passage interaction. First, SCARLet constructs shared context on which training data for various tasks is synthesized. This mitigates semantic bias from context differences, allowing retrievers to focus on learning task-specific utility for better task generalization. Next, SCARLet uses a perturbation-based attribution method to estimate passage-level utility for shared context, which reflects interactions between passages and provides more accurate feedback. We evaluate our approach on ten datasets across various tasks, both in-domain and out-of-domain, showing that retrievers trained by SCARLet consistently improve the overall performance of RALMs.
TVR: A Large-Scale Dataset for Video-Subtitle Moment Retrieval
We introduce TV show Retrieval (TVR), a new multimodal retrieval dataset. TVR requires systems to understand both videos and their associated subtitle (dialogue) texts, making it more realistic. The dataset contains 109K queries collected on 21.8K videos from 6 TV shows of diverse genres, where each query is associated with a tight temporal window. The queries are also labeled with query types that indicate whether each of them is more related to video or subtitle or both, allowing for in-depth analysis of the dataset and the methods that built on top of it. Strict qualification and post-annotation verification tests are applied to ensure the quality of the collected data. Further, we present several baselines and a novel Cross-modal Moment Localization (XML ) network for multimodal moment retrieval tasks. The proposed XML model uses a late fusion design with a novel Convolutional Start-End detector (ConvSE), surpassing baselines by a large margin and with better efficiency, providing a strong starting point for future work. We have also collected additional descriptions for each annotated moment in TVR to form a new multimodal captioning dataset with 262K captions, named TV show Caption (TVC). Both datasets are publicly available. TVR: https://tvr.cs.unc.edu, TVC: https://tvr.cs.unc.edu/tvc.html.
RAG-Check: Evaluating Multimodal Retrieval Augmented Generation Performance
Retrieval-augmented generation (RAG) improves large language models (LLMs) by using external knowledge to guide response generation, reducing hallucinations. However, RAG, particularly multi-modal RAG, can introduce new hallucination sources: (i) the retrieval process may select irrelevant pieces (e.g., documents, images) as raw context from the database, and (ii) retrieved images are processed into text-based context via vision-language models (VLMs) or directly used by multi-modal language models (MLLMs) like GPT-4o, which may hallucinate. To address this, we propose a novel framework to evaluate the reliability of multi-modal RAG using two performance measures: (i) the relevancy score (RS), assessing the relevance of retrieved entries to the query, and (ii) the correctness score (CS), evaluating the accuracy of the generated response. We train RS and CS models using a ChatGPT-derived database and human evaluator samples. Results show that both models achieve ~88% accuracy on test data. Additionally, we construct a 5000-sample human-annotated database evaluating the relevancy of retrieved pieces and the correctness of response statements. Our RS model aligns with human preferences 20% more often than CLIP in retrieval, and our CS model matches human preferences ~91% of the time. Finally, we assess various RAG systems' selection and generation performances using RS and CS.
Passage Summarization with Recurrent Models for Audio-Sheet Music Retrieval
Many applications of cross-modal music retrieval are related to connecting sheet music images to audio recordings. A typical and recent approach to this is to learn, via deep neural networks, a joint embedding space that correlates short fixed-size snippets of audio and sheet music by means of an appropriate similarity structure. However, two challenges that arise out of this strategy are the requirement of strongly aligned data to train the networks, and the inherent discrepancies of musical content between audio and sheet music snippets caused by local and global tempo differences. In this paper, we address these two shortcomings by designing a cross-modal recurrent network that learns joint embeddings that can summarize longer passages of corresponding audio and sheet music. The benefits of our method are that it only requires weakly aligned audio-sheet music pairs, as well as that the recurrent network handles the non-linearities caused by tempo variations between audio and sheet music. We conduct a number of experiments on synthetic and real piano data and scores, showing that our proposed recurrent method leads to more accurate retrieval in all possible configurations.
PC^2: Pseudo-Classification Based Pseudo-Captioning for Noisy Correspondence Learning in Cross-Modal Retrieval
In the realm of cross-modal retrieval, seamlessly integrating diverse modalities within multimedia remains a formidable challenge, especially given the complexities introduced by noisy correspondence learning (NCL). Such noise often stems from mismatched data pairs, which is a significant obstacle distinct from traditional noisy labels. This paper introduces Pseudo-Classification based Pseudo-Captioning (PC^2) framework to address this challenge. PC^2 offers a threefold strategy: firstly, it establishes an auxiliary "pseudo-classification" task that interprets captions as categorical labels, steering the model to learn image-text semantic similarity through a non-contrastive mechanism. Secondly, unlike prevailing margin-based techniques, capitalizing on PC^2's pseudo-classification capability, we generate pseudo-captions to provide more informative and tangible supervision for each mismatched pair. Thirdly, the oscillation of pseudo-classification is borrowed to assistant the correction of correspondence. In addition to technical contributions, we develop a realistic NCL dataset called Noise of Web (NoW), which could be a new powerful NCL benchmark where noise exists naturally. Empirical evaluations of PC^2 showcase marked improvements over existing state-of-the-art robust cross-modal retrieval techniques on both simulated and realistic datasets with various NCL settings. The contributed dataset and source code are released at https://github.com/alipay/PC2-NoiseofWeb.
JourneyDB: A Benchmark for Generative Image Understanding
While recent advancements in vision-language models have revolutionized multi-modal understanding, it remains unclear whether they possess the capabilities of comprehending the generated images. Compared to real data, synthetic images exhibit a higher degree of diversity in both content and style, for which there are significant difficulties for the models to fully apprehend. To this end, we present a large-scale dataset, JourneyDB, for multi-modal visual understanding in generative images. Our curated dataset covers 4 million diverse and high-quality generated images paired with the text prompts used to produce them. We further design 4 benchmarks to quantify the performance of generated image understanding in terms of both content and style interpretation. These benchmarks include prompt inversion, style retrieval, image captioning and visual question answering. Lastly, we assess the performance of current state-of-the-art multi-modal models when applied to JourneyDB, and provide an in-depth analysis of their strengths and limitations in generated content understanding. We hope the proposed dataset and benchmarks will facilitate the research in the field of generative content understanding. The dataset will be available on https://journeydb.github.io.
Any Information Is Just Worth One Single Screenshot: Unifying Search With Visualized Information Retrieval
With the popularity of multimodal techniques, it receives growing interests to acquire useful information in visual forms. In this work, we formally define an emerging IR paradigm called Visualized Information Retrieval, or Vis-IR, where multimodal information, such as texts, images, tables and charts, is jointly represented by a unified visual format called Screenshots, for various retrieval applications. We further make three key contributions for Vis-IR. First, we create VIRA (Vis-IR Aggregation), a large-scale dataset comprising a vast collection of screenshots from diverse sources, carefully curated into captioned and question-answer formats. Second, we develop UniSE (Universal Screenshot Embeddings), a family of retrieval models that enable screenshots to query or be queried across arbitrary data modalities. Finally, we construct MVRB (Massive Visualized IR Benchmark), a comprehensive benchmark covering a variety of task forms and application scenarios. Through extensive evaluations on MVRB, we highlight the deficiency from existing multimodal retrievers and the substantial improvements made by UniSE. Our work will be shared with the community, laying a solid foundation for this emerging field.
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
Pre-trained representations are becoming crucial for many NLP and perception tasks. While representation learning in NLP has transitioned to training on raw text without human annotations, visual and vision-language representations still rely heavily on curated training datasets that are expensive or require expert knowledge. For vision applications, representations are mostly learned using datasets with explicit class labels such as ImageNet or OpenImages. For vision-language, popular datasets like Conceptual Captions, MSCOCO, or CLIP all involve a non-trivial data collection (and cleaning) process. This costly curation process limits the size of datasets and hence hinders the scaling of trained models. In this paper, we leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps in the Conceptual Captions dataset. A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss. We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme. Our visual representation achieves strong performance when transferred to classification tasks such as ImageNet and VTAB. The aligned visual and language representations enables zero-shot image classification and also set new state-of-the-art results on Flickr30K and MSCOCO image-text retrieval benchmarks, even when compared with more sophisticated cross-attention models. The representations also enable cross-modality search with complex text and text + image queries.
Retrieval-Augmented Dynamic Prompt Tuning for Incomplete Multimodal Learning
Multimodal learning with incomplete modality is practical and challenging. Recently, researchers have focused on enhancing the robustness of pre-trained MultiModal Transformers (MMTs) under missing modality conditions by applying learnable prompts. However, these prompt-based methods face several limitations: (1) incomplete modalities provide restricted modal cues for task-specific inference, (2) dummy imputation for missing content causes information loss and introduces noise, and (3) static prompts are instance-agnostic, offering limited knowledge for instances with various missing conditions. To address these issues, we propose RAGPT, a novel Retrieval-AuGmented dynamic Prompt Tuning framework. RAGPT comprises three modules: (I) the multi-channel retriever, which identifies similar instances through a within-modality retrieval strategy, (II) the missing modality generator, which recovers missing information using retrieved contexts, and (III) the context-aware prompter, which captures contextual knowledge from relevant instances and generates dynamic prompts to largely enhance the MMT's robustness. Extensive experiments conducted on three real-world datasets show that RAGPT consistently outperforms all competitive baselines in handling incomplete modality problems. The code of our work and prompt-based baselines is available at https://github.com/Jian-Lang/RAGPT.
Diff4Steer: Steerable Diffusion Prior for Generative Music Retrieval with Semantic Guidance
Modern music retrieval systems often rely on fixed representations of user preferences, limiting their ability to capture users' diverse and uncertain retrieval needs. To address this limitation, we introduce Diff4Steer, a novel generative retrieval framework that employs lightweight diffusion models to synthesize diverse seed embeddings from user queries that represent potential directions for music exploration. Unlike deterministic methods that map user query to a single point in embedding space, Diff4Steer provides a statistical prior on the target modality (audio) for retrieval, effectively capturing the uncertainty and multi-faceted nature of user preferences. Furthermore, Diff4Steer can be steered by image or text inputs, enabling more flexible and controllable music discovery combined with nearest neighbor search. Our framework outperforms deterministic regression methods and LLM-based generative retrieval baseline in terms of retrieval and ranking metrics, demonstrating its effectiveness in capturing user preferences, leading to more diverse and relevant recommendations. Listening examples are available at tinyurl.com/diff4steer.
Toward Universal Text-to-Music Retrieval
This paper introduces effective design choices for text-to-music retrieval systems. An ideal text-based retrieval system would support various input queries such as pre-defined tags, unseen tags, and sentence-level descriptions. In reality, most previous works mainly focused on a single query type (tag or sentence) which may not generalize to another input type. Hence, we review recent text-based music retrieval systems using our proposed benchmark in two main aspects: input text representation and training objectives. Our findings enable a universal text-to-music retrieval system that achieves comparable retrieval performances in both tag- and sentence-level inputs. Furthermore, the proposed multimodal representation generalizes to 9 different downstream music classification tasks. We present the code and demo online.
ARAGOG: Advanced RAG Output Grading
Retrieval-Augmented Generation (RAG) is essential for integrating external knowledge into Large Language Model (LLM) outputs. While the literature on RAG is growing, it primarily focuses on systematic reviews and comparisons of new state-of-the-art (SoTA) techniques against their predecessors, with a gap in extensive experimental comparisons. This study begins to address this gap by assessing various RAG methods' impacts on retrieval precision and answer similarity. We found that Hypothetical Document Embedding (HyDE) and LLM reranking significantly enhance retrieval precision. However, Maximal Marginal Relevance (MMR) and Cohere rerank did not exhibit notable advantages over a baseline Naive RAG system, and Multi-query approaches underperformed. Sentence Window Retrieval emerged as the most effective for retrieval precision, despite its variable performance on answer similarity. The study confirms the potential of the Document Summary Index as a competent retrieval approach. All resources related to this research are publicly accessible for further investigation through our GitHub repository ARAGOG (https://github.com/predlico/ARAGOG). We welcome the community to further this exploratory study in RAG systems.
Large Language Models are Built-in Autoregressive Search Engines
Document retrieval is a key stage of standard Web search engines. Existing dual-encoder dense retrievers obtain representations for questions and documents independently, allowing for only shallow interactions between them. To overcome this limitation, recent autoregressive search engines replace the dual-encoder architecture by directly generating identifiers for relevant documents in the candidate pool. However, the training cost of such autoregressive search engines rises sharply as the number of candidate documents increases. In this paper, we find that large language models (LLMs) can follow human instructions to directly generate URLs for document retrieval. Surprisingly, when providing a few {Query-URL} pairs as in-context demonstrations, LLMs can generate Web URLs where nearly 90\% of the corresponding documents contain correct answers to open-domain questions. In this way, LLMs can be thought of as built-in search engines, since they have not been explicitly trained to map questions to document identifiers. Experiments demonstrate that our method can consistently achieve better retrieval performance than existing retrieval approaches by a significant margin on three open-domain question answering benchmarks, under both zero and few-shot settings. The code for this work can be found at https://github.com/Ziems/llm-url.
DeepStyle: Multimodal Search Engine for Fashion and Interior Design
In this paper, we propose a multimodal search engine that combines visual and textual cues to retrieve items from a multimedia database aesthetically similar to the query. The goal of our engine is to enable intuitive retrieval of fashion merchandise such as clothes or furniture. Existing search engines treat textual input only as an additional source of information about the query image and do not correspond to the real-life scenario where the user looks for 'the same shirt but of denim'. Our novel method, dubbed DeepStyle, mitigates those shortcomings by using a joint neural network architecture to model contextual dependencies between features of different modalities. We prove the robustness of this approach on two different challenging datasets of fashion items and furniture where our DeepStyle engine outperforms baseline methods by 18-21% on the tested datasets. Our search engine is commercially deployed and available through a Web-based application.
Composed Multi-modal Retrieval: A Survey of Approaches and Applications
With the rapid growth of multi-modal data from social media, short video platforms, and e-commerce, content-based retrieval has become essential for efficiently searching and utilizing heterogeneous information. Over time, retrieval techniques have evolved from Unimodal Retrieval (UR) to Cross-modal Retrieval (CR) and, more recently, to Composed Multi-modal Retrieval (CMR). CMR enables users to retrieve images or videos by integrating a reference visual input with textual modifications, enhancing search flexibility and precision. This paper provides a comprehensive review of CMR, covering its fundamental challenges, technical advancements, and categorization into supervised, zero-shot, and semi-supervised learning paradigms. We discuss key research directions, including data augmentation, model architecture, and loss optimization in supervised CMR, as well as transformation frameworks and external knowledge integration in zero-shot CMR. Additionally, we highlight the application potential of CMR in composed image retrieval, video retrieval, and person retrieval, which have significant implications for e-commerce, online search, and public security. Given its ability to refine and personalize search experiences, CMR is poised to become a pivotal technology in next-generation retrieval systems. A curated list of related works and resources is available at: https://github.com/kkzhang95/Awesome-Composed-Multi-modal-Retrieval
RREH: Reconstruction Relations Embedded Hashing for Semi-Paired Cross-Modal Retrieval
Known for efficient computation and easy storage, hashing has been extensively explored in cross-modal retrieval. The majority of current hashing models are predicated on the premise of a direct one-to-one mapping between data points. However, in real practice, data correspondence across modalities may be partially provided. In this research, we introduce an innovative unsupervised hashing technique designed for semi-paired cross-modal retrieval tasks, named Reconstruction Relations Embedded Hashing (RREH). RREH assumes that multi-modal data share a common subspace. For paired data, RREH explores the latent consistent information of heterogeneous modalities by seeking a shared representation. For unpaired data, to effectively capture the latent discriminative features, the high-order relationships between unpaired data and anchors are embedded into the latent subspace, which are computed by efficient linear reconstruction. The anchors are sampled from paired data, which improves the efficiency of hash learning. The RREH trains the underlying features and the binary encodings in a unified framework with high-order reconstruction relations preserved. With the well devised objective function and discrete optimization algorithm, RREH is designed to be scalable, making it suitable for large-scale datasets and facilitating efficient cross-modal retrieval. In the evaluation process, the proposed is tested with partially paired data to establish its superiority over several existing methods.
REAL-MM-RAG: A Real-World Multi-Modal Retrieval Benchmark
Accurate multi-modal document retrieval is crucial for Retrieval-Augmented Generation (RAG), yet existing benchmarks do not fully capture real-world challenges with their current design. We introduce REAL-MM-RAG, an automatically generated benchmark designed to address four key properties essential for real-world retrieval: (i) multi-modal documents, (ii) enhanced difficulty, (iii) Realistic-RAG queries and (iv) accurate labeling. Additionally, we propose a multi-difficulty-level scheme based on query rephrasing to evaluate models' semantic understanding beyond keyword matching. Our benchmark reveals significant model weaknesses, particularly in handling table-heavy documents and robustness to query rephrasing. To mitigate these shortcomings, we curate a rephrased training set and introduce a new finance-focused, table-heavy dataset. Fine-tuning on these datasets enables models to achieve state-of-the-art retrieval performance on REAL-MM-RAG benchmark. Our work offers a better way to evaluate and improve retrieval in multi-modal RAG systems while also providing training data and models that address current limitations.
AI-Generated Images Introduce Invisible Relevance Bias to Text-Image Retrieval
With the advancement of generation models, AI-generated content (AIGC) is becoming more realistic, flooding the Internet. A recent study suggests that this phenomenon causes source bias in text retrieval for web search. Specifically, neural retrieval models tend to rank generated texts higher than human-written texts. In this paper, we extend the study of this bias to cross-modal retrieval. Firstly, we successfully construct a suitable benchmark to explore the existence of the bias. Subsequent extensive experiments on this benchmark reveal that AI-generated images introduce an invisible relevance bias to text-image retrieval models. Specifically, our experiments show that text-image retrieval models tend to rank the AI-generated images higher than the real images, even though the AI-generated images do not exhibit more visually relevant features to the query than real images. This invisible relevance bias is prevalent across retrieval models with varying training data and architectures. Furthermore, our subsequent exploration reveals that the inclusion of AI-generated images in the training data of the retrieval models exacerbates the invisible relevance bias. The above phenomenon triggers a vicious cycle, which makes the invisible relevance bias become more and more serious. To elucidate the potential causes of invisible relevance and address the aforementioned issues, we introduce an effective training method aimed at alleviating the invisible relevance bias. Subsequently, we apply our proposed debiasing method to retroactively identify the causes of invisible relevance, revealing that the AI-generated images induce the image encoder to embed additional information into their representation. This information exhibits a certain consistency across generated images with different semantics and can make the retriever estimate a higher relevance score.
Large Language Models Know Your Contextual Search Intent: A Prompting Framework for Conversational Search
In this paper, we present a prompting framework called LLMCS that leverages large language models, such as code-davinci-002 of GPT-3, to perform few-shot conversational query rewriting for conversational search. We explore three prompting methods to generate multiple query rewrites and hypothetical responses, and propose aggregating them into an integrated representation that can robustly represent the user's real contextual search intent. Experimental results on two conversational search datasets, including CAst-19 and CAsT-20, show that our approach achieves significant improvements in search effectiveness over existing baselines and manual rewrites. Notably, LLMCS can significantly outperform the state-of-the-art baselines by up to +5.9\% and +32.9\% w.r.t. NDCG@3 on CAsT-19 and CAsT-20, highlighting the vast potential of large language models for conversational search. Our code will be released at https://github.com/kyriemao/LLMCS.
UATVR: Uncertainty-Adaptive Text-Video Retrieval
With the explosive growth of web videos and emerging large-scale vision-language pre-training models, e.g., CLIP, retrieving videos of interest with text instructions has attracted increasing attention. A common practice is to transfer text-video pairs to the same embedding space and craft cross-modal interactions with certain entities in specific granularities for semantic correspondence. Unfortunately, the intrinsic uncertainties of optimal entity combinations in appropriate granularities for cross-modal queries are understudied, which is especially critical for modalities with hierarchical semantics, e.g., video, text, etc. In this paper, we propose an Uncertainty-Adaptive Text-Video Retrieval approach, termed UATVR, which models each look-up as a distribution matching procedure. Concretely, we add additional learnable tokens in the encoders to adaptively aggregate multi-grained semantics for flexible high-level reasoning. In the refined embedding space, we represent text-video pairs as probabilistic distributions where prototypes are sampled for matching evaluation. Comprehensive experiments on four benchmarks justify the superiority of our UATVR, which achieves new state-of-the-art results on MSR-VTT (50.8%), VATEX (64.5%), MSVD (49.7%), and DiDeMo (45.8%). The code is available at https://github.com/bofang98/UATVR.
mRAG: Elucidating the Design Space of Multi-modal Retrieval-Augmented Generation
Large Vision-Language Models (LVLMs) have made remarkable strides in multimodal tasks such as visual question answering, visual grounding, and complex reasoning. However, they remain limited by static training data, susceptibility to hallucinations, and inability to verify claims against up-to-date, external evidence, compromising their performance in dynamic real-world applications. Retrieval-Augmented Generation (RAG) offers a practical solution to mitigate these challenges by allowing the LVLMs to access large-scale knowledge databases via retrieval mechanisms, thereby grounding model outputs in factual, contextually relevant information. Here in this paper, we conduct the first systematic dissection of the multimodal RAG pipeline for LVLMs, explicitly investigating (1) the retrieval phase: on the modality configurations and retrieval strategies, (2) the re-ranking stage: on strategies to mitigate positional biases and improve the relevance of retrieved evidence, and (3) the generation phase: we further investigate how to best integrate retrieved candidates into the final generation process. Finally, we extend to explore a unified agentic framework that integrates re-ranking and generation through self-reflection, enabling LVLMs to select relevant evidence and suppress irrelevant context dynamically. Our full-stack exploration of RAG for LVLMs yields substantial insights, resulting in an average performance boost of 5% without any fine-tuning.
From Word Vectors to Multimodal Embeddings: Techniques, Applications, and Future Directions For Large Language Models
Word embeddings and language models have transformed natural language processing (NLP) by facilitating the representation of linguistic elements in continuous vector spaces. This review visits foundational concepts such as the distributional hypothesis and contextual similarity, tracing the evolution from sparse representations like one-hot encoding to dense embeddings including Word2Vec, GloVe, and fastText. We examine both static and contextualized embeddings, underscoring advancements in models such as ELMo, BERT, and GPT and their adaptations for cross-lingual and personalized applications. The discussion extends to sentence and document embeddings, covering aggregation methods and generative topic models, along with the application of embeddings in multimodal domains, including vision, robotics, and cognitive science. Advanced topics such as model compression, interpretability, numerical encoding, and bias mitigation are analyzed, addressing both technical challenges and ethical implications. Additionally, we identify future research directions, emphasizing the need for scalable training techniques, enhanced interpretability, and robust grounding in non-textual modalities. By synthesizing current methodologies and emerging trends, this survey offers researchers and practitioners an in-depth resource to push the boundaries of embedding-based language models.
Generating Images with Multimodal Language Models
We propose a method to fuse frozen text-only large language models (LLMs) with pre-trained image encoder and decoder models, by mapping between their embedding spaces. Our model demonstrates a wide suite of multimodal capabilities: image retrieval, novel image generation, and multimodal dialogue. Ours is the first approach capable of conditioning on arbitrarily interleaved image and text inputs to generate coherent image (and text) outputs. To achieve strong performance on image generation, we propose an efficient mapping network to ground the LLM to an off-the-shelf text-to-image generation model. This mapping network translates hidden representations of text into the embedding space of the visual models, enabling us to leverage the strong text representations of the LLM for visual outputs. Our approach outperforms baseline generation models on tasks with longer and more complex language. In addition to novel image generation, our model is also capable of image retrieval from a prespecified dataset, and decides whether to retrieve or generate at inference time. This is done with a learnt decision module which conditions on the hidden representations of the LLM. Our model exhibits a wider range of capabilities compared to prior multimodal language models. It can process image-and-text inputs, and produce retrieved images, generated images, and generated text -- outperforming non-LLM based generation models across several text-to-image tasks that measure context dependence.
Hybrid Semantic Search: Unveiling User Intent Beyond Keywords
This paper addresses the limitations of traditional keyword-based search in understanding user intent and introduces a novel hybrid search approach that leverages the strengths of non-semantic search engines, Large Language Models (LLMs), and embedding models. The proposed system integrates keyword matching, semantic vector embeddings, and LLM-generated structured queries to deliver highly relevant and contextually appropriate search results. By combining these complementary methods, the hybrid approach effectively captures both explicit and implicit user intent.The paper further explores techniques to optimize query execution for faster response times and demonstrates the effectiveness of this hybrid search model in producing comprehensive and accurate search outcomes.
Enhancing Knowledge Retrieval with In-Context Learning and Semantic Search through Generative AI
Retrieving and extracting knowledge from extensive research documents and large databases presents significant challenges for researchers, students, and professionals in today's information-rich era. Existing retrieval systems, which rely on general-purpose Large Language Models (LLMs), often fail to provide accurate responses to domain-specific inquiries. Additionally, the high cost of pretraining or fine-tuning LLMs for specific domains limits their widespread adoption. To address these limitations, we propose a novel methodology that combines the generative capabilities of LLMs with the fast and accurate retrieval capabilities of vector databases. This advanced retrieval system can efficiently handle both tabular and non-tabular data, understand natural language user queries, and retrieve relevant information without fine-tuning. The developed model, Generative Text Retrieval (GTR), is adaptable to both unstructured and structured data with minor refinement. GTR was evaluated on both manually annotated and public datasets, achieving over 90% accuracy and delivering truthful outputs in 87% of cases. Our model achieved state-of-the-art performance with a Rouge-L F1 score of 0.98 on the MSMARCO dataset. The refined model, Generative Tabular Text Retrieval (GTR-T), demonstrated its efficiency in large database querying, achieving an Execution Accuracy (EX) of 0.82 and an Exact-Set-Match (EM) accuracy of 0.60 on the Spider dataset, using an open-source LLM. These efforts leverage Generative AI and In-Context Learning to enhance human-text interaction and make advanced AI capabilities more accessible. By integrating robust retrieval systems with powerful LLMs, our approach aims to democratize access to sophisticated AI tools, improving the efficiency, accuracy, and scalability of AI-driven information retrieval and database querying.
Query-Response Interactions by Multi-tasks in Semantic Search for Chatbot Candidate Retrieval
Semantic search for candidate retrieval is an important yet neglected problem in retrieval-based Chatbots, which aims to select a bunch of candidate responses efficiently from a large pool. The existing bottleneck is to ensure the model architecture having two points: 1) rich interactions between a query and a response to produce query-relevant responses; 2) ability of separately projecting the query and the response into latent spaces to apply efficiently in semantic search during online inference. To tackle this problem, we propose a novel approach, called Multitask-based Semantic Search Neural Network (MSSNN) for candidate retrieval, which accomplishes query-response interactions through multi-tasks. The method employs a Seq2Seq modeling task to learn a good query encoder, and then performs a word prediction task to build response embeddings, finally conducts a simple matching model to form the dot-product scorer. Experimental studies have demonstrated the potential of the proposed approach.
Self-supervised learning of visual features through embedding images into text topic spaces
End-to-end training from scratch of current deep architectures for new computer vision problems would require Imagenet-scale datasets, and this is not always possible. In this paper we present a method that is able to take advantage of freely available multi-modal content to train computer vision algorithms without human supervision. We put forward the idea of performing self-supervised learning of visual features by mining a large scale corpus of multi-modal (text and image) documents. We show that discriminative visual features can be learnt efficiently by training a CNN to predict the semantic context in which a particular image is more probable to appear as an illustration. For this we leverage the hidden semantic structures discovered in the text corpus with a well-known topic modeling technique. Our experiments demonstrate state of the art performance in image classification, object detection, and multi-modal retrieval compared to recent self-supervised or natural-supervised approaches.
SK-VQA: Synthetic Knowledge Generation at Scale for Training Context-Augmented Multimodal LLMs
Synthetic data generation has gained significant attention recently for its utility in training large vision and language models. However, the application of synthetic data to the training of multimodal context-augmented generation systems has been relatively unexplored. This gap in existing work is important because existing vision and language models (VLMs) are not trained specifically for context-augmented generation. Resources for adapting such models are therefore crucial for enabling their use in retrieval-augmented generation (RAG) settings, where a retriever is used to gather relevant information that is then subsequently provided to a generative model via context augmentation. To address this challenging problem, we generate SK-VQA: a large synthetic multimodal dataset containing over 2 million question-answer pairs which require external knowledge to determine the final answer. Our dataset is both larger and significantly more diverse than existing resources of its kind, possessing over 11x more unique questions and containing images from a greater variety of sources than previously-proposed datasets. Through extensive experiments, we demonstrate that our synthetic dataset can not only serve as a challenging benchmark, but is also highly effective for adapting existing generative multimodal models for context-augmented generation.
MRAG-Bench: Vision-Centric Evaluation for Retrieval-Augmented Multimodal Models
Existing multimodal retrieval benchmarks primarily focus on evaluating whether models can retrieve and utilize external textual knowledge for question answering. However, there are scenarios where retrieving visual information is either more beneficial or easier to access than textual data. In this paper, we introduce a multimodal retrieval-augmented generation benchmark, MRAG-Bench, in which we systematically identify and categorize scenarios where visually augmented knowledge is better than textual knowledge, for instance, more images from varying viewpoints. MRAG-Bench consists of 16,130 images and 1,353 human-annotated multiple-choice questions across 9 distinct scenarios. With MRAG-Bench, we conduct an evaluation of 10 open-source and 4 proprietary large vision-language models (LVLMs). Our results show that all LVLMs exhibit greater improvements when augmented with images compared to textual knowledge, confirming that MRAG-Bench is vision-centric. Additionally, we conduct extensive analysis with MRAG-Bench, which offers valuable insights into retrieval-augmented LVLMs. Notably, the top-performing model, GPT-4o, faces challenges in effectively leveraging retrieved knowledge, achieving only a 5.82% improvement with ground-truth information, in contrast to a 33.16% improvement observed in human participants. These findings highlight the importance of MRAG-Bench in encouraging the community to enhance LVLMs' ability to utilize retrieved visual knowledge more effectively.
Neural Passage Quality Estimation for Static Pruning
Neural networks -- especially those that use large, pre-trained language models -- have improved search engines in various ways. Most prominently, they can estimate the relevance of a passage or document to a user's query. In this work, we depart from this direction by exploring whether neural networks can effectively predict which of a document's passages are unlikely to be relevant to any query submitted to the search engine. We refer to this query-agnostic estimation of passage relevance as a passage's quality. We find that our novel methods for estimating passage quality allow passage corpora to be pruned considerably while maintaining statistically equivalent effectiveness; our best methods can consistently prune >25% of passages in a corpora, across various retrieval pipelines. Such substantial pruning reduces the operating costs of neural search engines in terms of computing resources, power usage, and carbon footprint -- both when processing queries (thanks to a smaller index size) and when indexing (lightweight models can prune low-quality passages prior to the costly dense or learned sparse encoding step). This work sets the stage for developing more advanced neural "learning-what-to-index" methods.
GEO: Generative Engine Optimization
The advent of large language models (LLMs) has ushered in a new paradigm of search engines that use generative models to gather and summarize information to answer user queries. This emerging technology, which we formalize under the unified framework of generative engines (GEs), can generate accurate and personalized responses, rapidly replacing traditional search engines like Google and Bing. Generative Engines typically satisfy queries by synthesizing information from multiple sources and summarizing them using LLMs. While this shift significantly improves user utility and generative search engine traffic, it poses a huge challenge for the third stakeholder - website and content creators. Given the black-box and fast-moving nature of generative engines, content creators have little to no control over when and how their content is displayed. With generative engines here to stay, we must ensure the creator economy is not disadvantaged. To address this, we introduce Generative Engine Optimization (GEO), the first novel paradigm to aid content creators in improving their content visibility in GE responses through a flexible black-box optimization framework for optimizing and defining visibility metrics. We facilitate systematic evaluation by introducing GEO-bench, a large-scale benchmark of diverse user queries across multiple domains, along with relevant web sources to answer these queries. Through rigorous evaluation, we demonstrate that GEO can boost visibility by up to 40\% in GE responses. Moreover, we show the efficacy of these strategies varies across domains, underscoring the need for domain-specific optimization methods. Our work opens a new frontier in information discovery systems, with profound implications for both developers of GEs and content creators.