new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 11

Neural Network Verification with Branch-and-Bound for General Nonlinearities

Branch-and-bound (BaB) is among the most effective techniques for neural network (NN) verification. However, existing works on BaB for NN verification have mostly focused on NNs with piecewise linear activations, especially ReLU networks. In this paper, we develop a general framework, named GenBaB, to conduct BaB on general nonlinearities to verify NNs with general architectures, based on linear bound propagation for NN verification. To decide which neuron to branch, we design a new branching heuristic which leverages linear bounds as shortcuts to efficiently estimate the potential improvement after branching. To decide nontrivial branching points for general nonlinear functions, we propose to pre-optimize branching points, which can be efficiently leveraged during verification with a lookup table. We demonstrate the effectiveness of our GenBaB on verifying a wide range of NNs, including NNs with activation functions such as Sigmoid, Tanh, Sine and GeLU, as well as NNs involving multi-dimensional nonlinear operations such as multiplications in LSTMs and Vision Transformers. Our framework also allows the verification of general nonlinear computation graphs and enables verification applications beyond simple NNs, particularly for AC Optimal Power Flow (ACOPF). GenBaB is part of the latest alpha,!beta-CROWN, the winner of the 4th and the 5th International Verification of Neural Networks Competition (VNN-COMP 2023 and 2024).

Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning

Open-source pre-trained Large Language Models (LLMs) exhibit strong language understanding and generation capabilities, making them highly successful in a variety of tasks. However, when used as agents for dealing with complex problems in the real world, their performance is far inferior to large commercial models such as ChatGPT and GPT-4. As intelligent agents, LLMs need to have the capabilities of task planning, long-term memory, and the ability to leverage external tools to achieve satisfactory performance. Various methods have been proposed to enhance the agent capabilities of LLMs. On the one hand, methods involve constructing agent-specific data and fine-tuning the models. On the other hand, some methods focus on designing prompts that effectively activate the reasoning abilities of the LLMs. We explore both strategies on the 7B and 13B models. We propose a comprehensive method for constructing agent-specific data using GPT-4. Through supervised fine-tuning with constructed data, we find that for these models with a relatively small number of parameters, supervised fine-tuning can significantly reduce hallucination outputs and formatting errors in agent tasks. Furthermore, techniques such as multi-path reasoning and task decomposition can effectively decrease problem complexity and enhance the performance of LLMs as agents. We evaluate our method on five agent tasks of AgentBench and achieve satisfactory results.

Experts Weights Averaging: A New General Training Scheme for Vision Transformers

Structural re-parameterization is a general training scheme for Convolutional Neural Networks (CNNs), which achieves performance improvement without increasing inference cost. As Vision Transformers (ViTs) are gradually surpassing CNNs in various visual tasks, one may question: if a training scheme specifically for ViTs exists that can also achieve performance improvement without increasing inference cost? Recently, Mixture-of-Experts (MoE) has attracted increasing attention, as it can efficiently scale up the capacity of Transformers at a fixed cost through sparsely activated experts. Considering that MoE can also be viewed as a multi-branch structure, can we utilize MoE to implement a ViT training scheme similar to structural re-parameterization? In this paper, we affirmatively answer these questions, with a new general training strategy for ViTs. Specifically, we decouple the training and inference phases of ViTs. During training, we replace some Feed-Forward Networks (FFNs) of the ViT with specially designed, more efficient MoEs that assign tokens to experts by random uniform partition, and perform Experts Weights Averaging (EWA) on these MoEs at the end of each iteration. After training, we convert each MoE into an FFN by averaging the experts, transforming the model back into original ViT for inference. We further provide a theoretical analysis to show why and how it works. Comprehensive experiments across various 2D and 3D visual tasks, ViT architectures, and datasets validate the effectiveness and generalizability of the proposed training scheme. Besides, our training scheme can also be applied to improve performance when fine-tuning ViTs. Lastly, but equally important, the proposed EWA technique can significantly improve the effectiveness of naive MoE in various 2D visual small datasets and 3D visual tasks.

Omni-Recon: Harnessing Image-based Rendering for General-Purpose Neural Radiance Fields

Recent breakthroughs in Neural Radiance Fields (NeRFs) have sparked significant demand for their integration into real-world 3D applications. However, the varied functionalities required by different 3D applications often necessitate diverse NeRF models with various pipelines, leading to tedious NeRF training for each target task and cumbersome trial-and-error experiments. Drawing inspiration from the generalization capability and adaptability of emerging foundation models, our work aims to develop one general-purpose NeRF for handling diverse 3D tasks. We achieve this by proposing a framework called Omni-Recon, which is capable of (1) generalizable 3D reconstruction and zero-shot multitask scene understanding, and (2) adaptability to diverse downstream 3D applications such as real-time rendering and scene editing. Our key insight is that an image-based rendering pipeline, with accurate geometry and appearance estimation, can lift 2D image features into their 3D counterparts, thus extending widely explored 2D tasks to the 3D world in a generalizable manner. Specifically, our Omni-Recon features a general-purpose NeRF model using image-based rendering with two decoupled branches: one complex transformer-based branch that progressively fuses geometry and appearance features for accurate geometry estimation, and one lightweight branch for predicting blending weights of source views. This design achieves state-of-the-art (SOTA) generalizable 3D surface reconstruction quality with blending weights reusable across diverse tasks for zero-shot multitask scene understanding. In addition, it can enable real-time rendering after baking the complex geometry branch into meshes, swift adaptation to achieve SOTA generalizable 3D understanding performance, and seamless integration with 2D diffusion models for text-guided 3D editing.

Mug-STAN: Adapting Image-Language Pretrained Models for General Video Understanding

Large-scale image-language pretrained models, e.g., CLIP, have demonstrated remarkable proficiency in acquiring general multi-modal knowledge through web-scale image-text data. Despite the impressive performance of image-language models on various image tasks, how to effectively expand them on general video understanding remains an area of ongoing exploration. In this paper, we investigate the image-to-video transferring from the perspective of the model and the data, unveiling two key obstacles impeding the adaptation of image-language models: non-generalizable temporal modeling and partially misaligned video-text data. To address these challenges, we propose Spatial-Temporal Auxiliary Network with Mutual-guided alignment module (Mug-STAN), a simple yet effective framework extending image-text model to diverse video tasks and video-text data.Specifically, STAN adopts a branch structure with decomposed spatial-temporal modules to enable generalizable temporal modeling, while Mug suppresses misalignment by introducing token-wise feature aggregation of either modality from the other. Extensive experimental results verify Mug-STAN significantly improves adaptation of language-image pretrained models such as CLIP and CoCa at both video-text post-pretraining and finetuning stages. With our solution, state-of-the-art zero-shot and finetuning results on various downstream datasets, including MSR-VTT, DiDeMo, LSMDC, Kinetics-400, Something-Something-2, HMDB-51, UCF- 101, and AVA, are achieved. Moreover, by integrating pretrained Mug-STAN with the emerging multimodal dialogue model, we can realize zero-shot video chatting. Codes are available at https://github.com/farewellthree/STAN

MindLLM: Pre-training Lightweight Large Language Model from Scratch, Evaluations and Domain Applications

Large Language Models (LLMs) have demonstrated remarkable performance across various natural language tasks, marking significant strides towards general artificial intelligence. While general artificial intelligence is leveraged by developing increasingly large-scale models, there could be another branch to develop lightweight custom models that better serve certain domains, taking into account the high cost of training and deploying LLMs and the scarcity of resources. In this paper, we present MindLLM, a novel series of bilingual lightweight large language models, trained from scratch, alleviating such burdens by offering models with 1.3 billion and 3 billion parameters. A thorough account of experiences accrued during large model development is given, covering every step of the process, including data construction, model architecture, evaluation, and applications. Such insights are hopefully valuable for fellow academics and developers. MindLLM consistently matches or surpasses the performance of other open-source larger models on some public benchmarks. We also introduce an innovative instruction tuning framework tailored for smaller models to enhance their capabilities efficiently. Moreover, we explore the application of MindLLM in specific vertical domains such as law and finance, underscoring the agility and adaptability of our lightweight models.

A New Dataset and Framework for Real-World Blurred Images Super-Resolution

Recent Blind Image Super-Resolution (BSR) methods have shown proficiency in general images. However, we find that the efficacy of recent methods obviously diminishes when employed on image data with blur, while image data with intentional blur constitute a substantial proportion of general data. To further investigate and address this issue, we developed a new super-resolution dataset specifically tailored for blur images, named the Real-world Blur-kept Super-Resolution (ReBlurSR) dataset, which consists of nearly 3000 defocus and motion blur image samples with diverse blur sizes and varying blur intensities. Furthermore, we propose a new BSR framework for blur images called Perceptual-Blur-adaptive Super-Resolution (PBaSR), which comprises two main modules: the Cross Disentanglement Module (CDM) and the Cross Fusion Module (CFM). The CDM utilizes a dual-branch parallelism to isolate conflicting blur and general data during optimization. The CFM fuses the well-optimized prior from these distinct domains cost-effectively and efficiently based on model interpolation. By integrating these two modules, PBaSR achieves commendable performance on both general and blur data without any additional inference and deployment cost and is generalizable across multiple model architectures. Rich experiments show that PBaSR achieves state-of-the-art performance across various metrics without incurring extra inference costs. Within the widely adopted LPIPS metrics, PBaSR achieves an improvement range of approximately 0.02-0.10 with diverse anchor methods and blur types, across both the ReBlurSR and multiple common general BSR benchmarks. Code here: https://github.com/Imalne/PBaSR.

Feature Selective Anchor-Free Module for Single-Shot Object Detection

We motivate and present feature selective anchor-free (FSAF) module, a simple and effective building block for single-shot object detectors. It can be plugged into single-shot detectors with feature pyramid structure. The FSAF module addresses two limitations brought up by the conventional anchor-based detection: 1) heuristic-guided feature selection; 2) overlap-based anchor sampling. The general concept of the FSAF module is online feature selection applied to the training of multi-level anchor-free branches. Specifically, an anchor-free branch is attached to each level of the feature pyramid, allowing box encoding and decoding in the anchor-free manner at an arbitrary level. During training, we dynamically assign each instance to the most suitable feature level. At the time of inference, the FSAF module can work jointly with anchor-based branches by outputting predictions in parallel. We instantiate this concept with simple implementations of anchor-free branches and online feature selection strategy. Experimental results on the COCO detection track show that our FSAF module performs better than anchor-based counterparts while being faster. When working jointly with anchor-based branches, the FSAF module robustly improves the baseline RetinaNet by a large margin under various settings, while introducing nearly free inference overhead. And the resulting best model can achieve a state-of-the-art 44.6% mAP, outperforming all existing single-shot detectors on COCO.

Hydra: Multi-head Low-rank Adaptation for Parameter Efficient Fine-tuning

The recent surge in large-scale foundation models has spurred the development of efficient methods for adapting these models to various downstream tasks. Low-rank adaptation methods, such as LoRA, have gained significant attention due to their outstanding parameter efficiency and no additional inference latency. This paper investigates a more general form of adapter module based on the analysis that parallel and sequential adaptation branches learn novel and general features during fine-tuning, respectively. The proposed method, named Hydra, due to its multi-head computational branches, combines parallel and sequential branch to integrate capabilities, which is more expressive than existing single branch methods and enables the exploration of a broader range of optimal points in the fine-tuning process. In addition, the proposed adaptation method explicitly leverages the pre-trained weights by performing a linear combination of the pre-trained features. It allows the learned features to have better generalization performance across diverse downstream tasks. Furthermore, we perform a comprehensive analysis of the characteristics of each adaptation branch with empirical evidence. Through an extensive range of experiments, encompassing comparisons and ablation studies, we substantiate the efficiency and demonstrate the superior performance of Hydra. This comprehensive evaluation underscores the potential impact and effectiveness of Hydra in a variety of applications. Our code is available on https://github.com/extremebird/Hydra

Self-regulating Prompts: Foundational Model Adaptation without Forgetting

Prompt learning has emerged as an efficient alternative for fine-tuning foundational models, such as CLIP, for various downstream tasks. Conventionally trained using the task-specific objective, i.e., cross-entropy loss, prompts tend to overfit downstream data distributions and find it challenging to capture task-agnostic general features from the frozen CLIP. This leads to the loss of the model's original generalization capability. To address this issue, our work introduces a self-regularization framework for prompting called PromptSRC (Prompting with Self-regulating Constraints). PromptSRC guides the prompts to optimize for both task-specific and task-agnostic general representations using a three-pronged approach by: (a) regulating prompted representations via mutual agreement maximization with the frozen model, (b) regulating with self-ensemble of prompts over the training trajectory to encode their complementary strengths, and (c) regulating with textual diversity to mitigate sample diversity imbalance with the visual branch. To the best of our knowledge, this is the first regularization framework for prompt learning that avoids overfitting by jointly attending to pre-trained model features, the training trajectory during prompting, and the textual diversity. PromptSRC explicitly steers the prompts to learn a representation space that maximizes performance on downstream tasks without compromising CLIP generalization. We perform extensive experiments on 4 benchmarks where PromptSRC overall performs favorably well compared to the existing methods. Our code and pre-trained models are publicly available at: https://github.com/muzairkhattak/PromptSRC.