Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRevisiting Weakly Supervised Pre-Training of Visual Perception Models
Model pre-training is a cornerstone of modern visual recognition systems. Although fully supervised pre-training on datasets like ImageNet is still the de-facto standard, recent studies suggest that large-scale weakly supervised pre-training can outperform fully supervised approaches. This paper revisits weakly-supervised pre-training of models using hashtag supervision with modern versions of residual networks and the largest-ever dataset of images and corresponding hashtags. We study the performance of the resulting models in various transfer-learning settings including zero-shot transfer. We also compare our models with those obtained via large-scale self-supervised learning. We find our weakly-supervised models to be very competitive across all settings, and find they substantially outperform their self-supervised counterparts. We also include an investigation into whether our models learned potentially troubling associations or stereotypes. Overall, our results provide a compelling argument for the use of weakly supervised learning in the development of visual recognition systems. Our models, Supervised Weakly through hashtAGs (SWAG), are available publicly.
3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training
While making a tremendous impact in various fields, deep neural networks usually require large amounts of labeled data for training which are expensive to collect in many applications, especially in the medical domain. Unlabeled data, on the other hand, is much more abundant. Semi-supervised learning techniques, such as co-training, could provide a powerful tool to leverage unlabeled data. In this paper, we propose a novel framework, uncertainty-aware multi-view co-training (UMCT), to address semi-supervised learning on 3D data, such as volumetric data from medical imaging. In our work, co-training is achieved by exploiting multi-viewpoint consistency of 3D data. We generate different views by rotating or permuting the 3D data and utilize asymmetrical 3D kernels to encourage diversified features in different sub-networks. In addition, we propose an uncertainty-weighted label fusion mechanism to estimate the reliability of each view's prediction with Bayesian deep learning. As one view requires the supervision from other views in co-training, our self-adaptive approach computes a confidence score for the prediction of each unlabeled sample in order to assign a reliable pseudo label. Thus, our approach can take advantage of unlabeled data during training. We show the effectiveness of our proposed semi-supervised method on several public datasets from medical image segmentation tasks (NIH pancreas & LiTS liver tumor dataset). Meanwhile, a fully-supervised method based on our approach achieved state-of-the-art performances on both the LiTS liver tumor segmentation and the Medical Segmentation Decathlon (MSD) challenge, demonstrating the robustness and value of our framework, even when fully supervised training is feasible.
SCOT: Self-Supervised Contrastive Pretraining For Zero-Shot Compositional Retrieval
Compositional image retrieval (CIR) is a multimodal learning task where a model combines a query image with a user-provided text modification to retrieve a target image. CIR finds applications in a variety of domains including product retrieval (e-commerce) and web search. Existing methods primarily focus on fully-supervised learning, wherein models are trained on datasets of labeled triplets such as FashionIQ and CIRR. This poses two significant challenges: (i) curating such triplet datasets is labor intensive; and (ii) models lack generalization to unseen objects and domains. In this work, we propose SCOT (Self-supervised COmpositional Training), a novel zero-shot compositional pretraining strategy that combines existing large image-text pair datasets with the generative capabilities of large language models to contrastively train an embedding composition network. Specifically, we show that the text embedding from a large-scale contrastively-pretrained vision-language model can be utilized as proxy target supervision during compositional pretraining, replacing the target image embedding. In zero-shot settings, this strategy surpasses SOTA zero-shot compositional retrieval methods as well as many fully-supervised methods on standard benchmarks such as FashionIQ and CIRR.
SelfPose3d: Self-Supervised Multi-Person Multi-View 3d Pose Estimation
We present a new self-supervised approach, SelfPose3d, for estimating 3d poses of multiple persons from multiple camera views. Unlike current state-of-the-art fully-supervised methods, our approach does not require any 2d or 3d ground-truth poses and uses only the multi-view input images from a calibrated camera setup and 2d pseudo poses generated from an off-the-shelf 2d human pose estimator. We propose two self-supervised learning objectives: self-supervised person localization in 3d space and self-supervised 3d pose estimation. We achieve self-supervised 3d person localization by training the model on synthetically generated 3d points, serving as 3d person root positions, and on the projected root-heatmaps in all the views. We then model the 3d poses of all the localized persons with a bottleneck representation, map them onto all views obtaining 2d joints, and render them using 2d Gaussian heatmaps in an end-to-end differentiable manner. Afterwards, we use the corresponding 2d joints and heatmaps from the pseudo 2d poses for learning. To alleviate the intrinsic inaccuracy of the pseudo labels, we propose an adaptive supervision attention mechanism to guide the self-supervision. Our experiments and analysis on three public benchmark datasets, including Panoptic, Shelf, and Campus, show the effectiveness of our approach, which is comparable to fully-supervised methods. Code: https://github.com/CAMMA-public/SelfPose3D. Video demo: https://youtu.be/GAqhmUIr2E8.
Weakly Supervised 3D Open-vocabulary Segmentation
Open-vocabulary segmentation of 3D scenes is a fundamental function of human perception and thus a crucial objective in computer vision research. However, this task is heavily impeded by the lack of large-scale and diverse 3D open-vocabulary segmentation datasets for training robust and generalizable models. Distilling knowledge from pre-trained 2D open-vocabulary segmentation models helps but it compromises the open-vocabulary feature as the 2D models are mostly finetuned with close-vocabulary datasets. We tackle the challenges in 3D open-vocabulary segmentation by exploiting pre-trained foundation models CLIP and DINO in a weakly supervised manner. Specifically, given only the open-vocabulary text descriptions of the objects in a scene, we distill the open-vocabulary multimodal knowledge and object reasoning capability of CLIP and DINO into a neural radiance field (NeRF), which effectively lifts 2D features into view-consistent 3D segmentation. A notable aspect of our approach is that it does not require any manual segmentation annotations for either the foundation models or the distillation process. Extensive experiments show that our method even outperforms fully supervised models trained with segmentation annotations in certain scenes, suggesting that 3D open-vocabulary segmentation can be effectively learned from 2D images and text-image pairs. Code is available at https://github.com/Kunhao-Liu/3D-OVS.
Joint-task Self-supervised Learning for Temporal Correspondence
This paper proposes to learn reliable dense correspondence from videos in a self-supervised manner. Our learning process integrates two highly related tasks: tracking large image regions and establishing fine-grained pixel-level associations between consecutive video frames. We exploit the synergy between both tasks through a shared inter-frame affinity matrix, which simultaneously models transitions between video frames at both the region- and pixel-levels. While region-level localization helps reduce ambiguities in fine-grained matching by narrowing down search regions; fine-grained matching provides bottom-up features to facilitate region-level localization. Our method outperforms the state-of-the-art self-supervised methods on a variety of visual correspondence tasks, including video-object and part-segmentation propagation, keypoint tracking, and object tracking. Our self-supervised method even surpasses the fully-supervised affinity feature representation obtained from a ResNet-18 pre-trained on the ImageNet.
Weakly Supervised Fine-grained Scene Graph Generation via Large Language Model
Weakly-Supervised Scene Graph Generation (WSSGG) research has recently emerged as an alternative to the fully-supervised approach that heavily relies on costly annotations. In this regard, studies on WSSGG have utilized image captions to obtain unlocalized triplets while primarily focusing on grounding the unlocalized triplets over image regions. However, they have overlooked the two issues involved in the triplet formation process from the captions: 1) Semantic over-simplification issue arises when extracting triplets from captions, where fine-grained predicates in captions are undesirably converted into coarse-grained predicates, resulting in a long-tailed predicate distribution, and 2) Low-density scene graph issue arises when aligning the triplets in the caption with entity/predicate classes of interest, where many triplets are discarded and not used in training, leading to insufficient supervision. To tackle the two issues, we propose a new approach, i.e., Large Language Model for weakly-supervised SGG (LLM4SGG), where we mitigate the two issues by leveraging the LLM's in-depth understanding of language and reasoning ability during the extraction of triplets from captions and alignment of entity/predicate classes with target data. To further engage the LLM in these processes, we adopt the idea of Chain-of-Thought and the in-context few-shot learning strategy. To validate the effectiveness of LLM4SGG, we conduct extensive experiments on Visual Genome and GQA datasets, showing significant improvements in both Recall@K and mean Recall@K compared to the state-of-the-art WSSGG methods. A further appeal is that LLM4SGG is data-efficient, enabling effective model training with a small amount of training images.
Action Segmentation with Joint Self-Supervised Temporal Domain Adaptation
Despite the recent progress of fully-supervised action segmentation techniques, the performance is still not fully satisfactory. One main challenge is the problem of spatiotemporal variations (e.g. different people may perform the same activity in various ways). Therefore, we exploit unlabeled videos to address this problem by reformulating the action segmentation task as a cross-domain problem with domain discrepancy caused by spatio-temporal variations. To reduce the discrepancy, we propose Self-Supervised Temporal Domain Adaptation (SSTDA), which contains two self-supervised auxiliary tasks (binary and sequential domain prediction) to jointly align cross-domain feature spaces embedded with local and global temporal dynamics, achieving better performance than other Domain Adaptation (DA) approaches. On three challenging benchmark datasets (GTEA, 50Salads, and Breakfast), SSTDA outperforms the current state-of-the-art method by large margins (e.g. for the F1@25 score, from 59.6% to 69.1% on Breakfast, from 73.4% to 81.5% on 50Salads, and from 83.6% to 89.1% on GTEA), and requires only 65% of the labeled training data for comparable performance, demonstrating the usefulness of adapting to unlabeled target videos across variations. The source code is available at https://github.com/cmhungsteve/SSTDA.
Self-supervised Learning to Bring Dual Reversed Rolling Shutter Images Alive
Modern consumer cameras usually employ the rolling shutter (RS) mechanism, where images are captured by scanning scenes row-by-row, yielding RS distortions for dynamic scenes. To correct RS distortions, existing methods adopt a fully supervised learning manner, where high framerate global shutter (GS) images should be collected as ground-truth supervision. In this paper, we propose a Self-supervised learning framework for Dual reversed RS distortions Correction (SelfDRSC), where a DRSC network can be learned to generate a high framerate GS video only based on dual RS images with reversed distortions. In particular, a bidirectional distortion warping module is proposed for reconstructing dual reversed RS images, and then a self-supervised loss can be deployed to train DRSC network by enhancing the cycle consistency between input and reconstructed dual reversed RS images. Besides start and end RS scanning time, GS images at arbitrary intermediate scanning time can also be supervised in SelfDRSC, thus enabling the learned DRSC network to generate a high framerate GS video. Moreover, a simple yet effective self-distillation strategy is introduced in self-supervised loss for mitigating boundary artifacts in generated GS images. On synthetic dataset, SelfDRSC achieves better or comparable quantitative metrics in comparison to state-of-the-art methods trained in the full supervision manner. On real-world RS cases, our SelfDRSC can produce high framerate GS videos with finer correction textures and better temporary consistency. The source code and trained models are made publicly available at https://github.com/shangwei5/SelfDRSC.
ColloSSL: Collaborative Self-Supervised Learning for Human Activity Recognition
A major bottleneck in training robust Human-Activity Recognition models (HAR) is the need for large-scale labeled sensor datasets. Because labeling large amounts of sensor data is an expensive task, unsupervised and semi-supervised learning techniques have emerged that can learn good features from the data without requiring any labels. In this paper, we extend this line of research and present a novel technique called Collaborative Self-Supervised Learning (ColloSSL) which leverages unlabeled data collected from multiple devices worn by a user to learn high-quality features of the data. A key insight that underpins the design of ColloSSL is that unlabeled sensor datasets simultaneously captured by multiple devices can be viewed as natural transformations of each other, and leveraged to generate a supervisory signal for representation learning. We present three technical innovations to extend conventional self-supervised learning algorithms to a multi-device setting: a Device Selection approach which selects positive and negative devices to enable contrastive learning, a Contrastive Sampling algorithm which samples positive and negative examples in a multi-device setting, and a loss function called Multi-view Contrastive Loss which extends standard contrastive loss to a multi-device setting. Our experimental results on three multi-device datasets show that ColloSSL outperforms both fully-supervised and semi-supervised learning techniques in majority of the experiment settings, resulting in an absolute increase of upto 7.9% in F_1 score compared to the best performing baselines. We also show that ColloSSL outperforms the fully-supervised methods in a low-data regime, by just using one-tenth of the available labeled data in the best case.
Self-supervised Label Augmentation via Input Transformations
Self-supervised learning, which learns by constructing artificial labels given only the input signals, has recently gained considerable attention for learning representations with unlabeled datasets, i.e., learning without any human-annotated supervision. In this paper, we show that such a technique can be used to significantly improve the model accuracy even under fully-labeled datasets. Our scheme trains the model to learn both original and self-supervised tasks, but is different from conventional multi-task learning frameworks that optimize the summation of their corresponding losses. Our main idea is to learn a single unified task with respect to the joint distribution of the original and self-supervised labels, i.e., we augment original labels via self-supervision of input transformation. This simple, yet effective approach allows to train models easier by relaxing a certain invariant constraint during learning the original and self-supervised tasks simultaneously. It also enables an aggregated inference which combines the predictions from different augmentations to improve the prediction accuracy. Furthermore, we propose a novel knowledge transfer technique, which we refer to as self-distillation, that has the effect of the aggregated inference in a single (faster) inference. We demonstrate the large accuracy improvement and wide applicability of our framework on various fully-supervised settings, e.g., the few-shot and imbalanced classification scenarios.
Self-Supervised U-Net for Segmenting Flat and Sessile Polyps
Colorectal Cancer(CRC) poses a great risk to public health. It is the third most common cause of cancer in the US. Development of colorectal polyps is one of the earliest signs of cancer. Early detection and resection of polyps can greatly increase survival rate to 90%. Manual inspection can cause misdetections because polyps vary in color, shape, size and appearance. To this end, Computer-Aided Diagnosis systems(CADx) has been proposed that detect polyps by processing the colonoscopic videos. The system acts a secondary check to help clinicians reduce misdetections so that polyps may be resected before they transform to cancer. Polyps vary in color, shape, size, texture and appearance. As a result, the miss rate of polyps is between 6% and 27% despite the prominence of CADx solutions. Furthermore, sessile and flat polyps which have diameter less than 10 mm are more likely to be undetected. Convolutional Neural Networks(CNN) have shown promising results in polyp segmentation. However, all of these works have a supervised approach and are limited by the size of the dataset. It was observed that smaller datasets reduce the segmentation accuracy of ResUNet++. We train a U-Net to inpaint randomly dropped out pixels in the image as a proxy task. The dataset we use for pre-training is Kvasir-SEG dataset. This is followed by a supervised training on the limited Kvasir-Sessile dataset. Our experimental results demonstrate that with limited annotated dataset and a larger unlabeled dataset, self-supervised approach is a better alternative than fully supervised approach. Specifically, our self-supervised U-Net performs better than five segmentation models which were trained in supervised manner on the Kvasir-Sessile dataset.
S4C: Self-Supervised Semantic Scene Completion with Neural Fields
3D semantic scene understanding is a fundamental challenge in computer vision. It enables mobile agents to autonomously plan and navigate arbitrary environments. SSC formalizes this challenge as jointly estimating dense geometry and semantic information from sparse observations of a scene. Current methods for SSC are generally trained on 3D ground truth based on aggregated LiDAR scans. This process relies on special sensors and annotation by hand which are costly and do not scale well. To overcome this issue, our work presents the first self-supervised approach to SSC called S4C that does not rely on 3D ground truth data. Our proposed method can reconstruct a scene from a single image and only relies on videos and pseudo segmentation ground truth generated from off-the-shelf image segmentation network during training. Unlike existing methods, which use discrete voxel grids, we represent scenes as implicit semantic fields. This formulation allows querying any point within the camera frustum for occupancy and semantic class. Our architecture is trained through rendering-based self-supervised losses. Nonetheless, our method achieves performance close to fully supervised state-of-the-art methods. Additionally, our method demonstrates strong generalization capabilities and can synthesize accurate segmentation maps for far away viewpoints.
Weakly-Supervised Action Localization by Hierarchically-structured Latent Attention Modeling
Weakly-supervised action localization aims to recognize and localize action instancese in untrimmed videos with only video-level labels. Most existing models rely on multiple instance learning(MIL), where the predictions of unlabeled instances are supervised by classifying labeled bags. The MIL-based methods are relatively well studied with cogent performance achieved on classification but not on localization. Generally, they locate temporal regions by the video-level classification but overlook the temporal variations of feature semantics. To address this problem, we propose a novel attention-based hierarchically-structured latent model to learn the temporal variations of feature semantics. Specifically, our model entails two components, the first is an unsupervised change-points detection module that detects change-points by learning the latent representations of video features in a temporal hierarchy based on their rates of change, and the second is an attention-based classification model that selects the change-points of the foreground as the boundaries. To evaluate the effectiveness of our model, we conduct extensive experiments on two benchmark datasets, THUMOS-14 and ActivityNet-v1.3. The experiments show that our method outperforms current state-of-the-art methods, and even achieves comparable performance with fully-supervised methods.
Self-Supervised Learning with Cluster-Aware-DINO for High-Performance Robust Speaker Verification
Automatic speaker verification task has made great achievements using deep learning approaches with the large-scale manually annotated dataset. However, it's very difficult and expensive to collect a large amount of well-labeled data for system building. In this paper, we propose a novel and advanced self-supervised learning framework which can construct a high performance speaker verification system without using any labeled data. To avoid the impact of false negative pairs, we adopt the self-distillation with no labels (DINO) framework as the initial model, which can be trained without exploiting negative pairs. Then, we introduce a cluster-aware training strategy for DINO to improve the diversity of data. In the iteration learning stage, due to a mass of unreliable labels from clustering, the quality of pseudo labels is important for the system training. This motivates us to propose dynamic loss-gate and label correction (DLG-LC) methods to alleviate the performance degradation caused by unreliable labels. More specifically, we model the loss distribution with GMM and obtain the loss-gate threshold dynamically to distinguish the reliable and unreliable labels. Besides, we adopt the model predictions to correct the unreliable label, for better utilizing the unreliable data rather than dropping them directly. Moreover, we extend the DLG-LC to multi-modality to further improve the performance. The experiments are performed on the commonly used Voxceleb dataset. Compared to the best-known self-supervised speaker verification system, our proposed method obtain 22.17%, 27.94% and 25.56% relative EER improvement on Vox-O, Vox-E and Vox-H test sets, even with fewer iterations, smaller models, and simpler clustering methods. More importantly, the newly proposed system even achieves comparable results with the fully supervised system, but without using any human labeled data.
The Perils of Learning From Unlabeled Data: Backdoor Attacks on Semi-supervised Learning
Semi-supervised machine learning (SSL) is gaining popularity as it reduces the cost of training ML models. It does so by using very small amounts of (expensive, well-inspected) labeled data and large amounts of (cheap, non-inspected) unlabeled data. SSL has shown comparable or even superior performances compared to conventional fully-supervised ML techniques. In this paper, we show that the key feature of SSL that it can learn from (non-inspected) unlabeled data exposes SSL to strong poisoning attacks. In fact, we argue that, due to its reliance on non-inspected unlabeled data, poisoning is a much more severe problem in SSL than in conventional fully-supervised ML. Specifically, we design a backdoor poisoning attack on SSL that can be conducted by a weak adversary with no knowledge of target SSL pipeline. This is unlike prior poisoning attacks in fully-supervised settings that assume strong adversaries with practically-unrealistic capabilities. We show that by poisoning only 0.2% of the unlabeled training data, our attack can cause misclassification of more than 80% of test inputs (when they contain the adversary's backdoor trigger). Our attacks remain effective across twenty combinations of benchmark datasets and SSL algorithms, and even circumvent the state-of-the-art defenses against backdoor attacks. Our work raises significant concerns about the practical utility of existing SSL algorithms.
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Self-supervision provides effective representations for downstream tasks without requiring labels. However, existing approaches lag behind fully supervised training and are often not thought beneficial beyond obviating or reducing the need for annotations. We find that self-supervision can benefit robustness in a variety of ways, including robustness to adversarial examples, label corruption, and common input corruptions. Additionally, self-supervision greatly benefits out-of-distribution detection on difficult, near-distribution outliers, so much so that it exceeds the performance of fully supervised methods. These results demonstrate the promise of self-supervision for improving robustness and uncertainty estimation and establish these tasks as new axes of evaluation for future self-supervised learning research.
Weakly-supervised Automated Audio Captioning via text only training
In recent years, datasets of paired audio and captions have enabled remarkable success in automatically generating descriptions for audio clips, namely Automated Audio Captioning (AAC). However, it is labor-intensive and time-consuming to collect a sufficient number of paired audio and captions. Motivated by the recent advances in Contrastive Language-Audio Pretraining (CLAP), we propose a weakly-supervised approach to train an AAC model assuming only text data and a pre-trained CLAP model, alleviating the need for paired target data. Our approach leverages the similarity between audio and text embeddings in CLAP. During training, we learn to reconstruct the text from the CLAP text embedding, and during inference, we decode using the audio embeddings. To mitigate the modality gap between the audio and text embeddings we employ strategies to bridge the gap during training and inference stages. We evaluate our proposed method on Clotho and AudioCaps datasets demonstrating its ability to achieve a relative performance of up to ~83% compared to fully supervised approaches trained with paired target data.
GaPro: Box-Supervised 3D Point Cloud Instance Segmentation Using Gaussian Processes as Pseudo Labelers
Instance segmentation on 3D point clouds (3DIS) is a longstanding challenge in computer vision, where state-of-the-art methods are mainly based on full supervision. As annotating ground truth dense instance masks is tedious and expensive, solving 3DIS with weak supervision has become more practical. In this paper, we propose GaPro, a new instance segmentation for 3D point clouds using axis-aligned 3D bounding box supervision. Our two-step approach involves generating pseudo labels from box annotations and training a 3DIS network with the resulting labels. Additionally, we employ the self-training strategy to improve the performance of our method further. We devise an effective Gaussian Process to generate pseudo instance masks from the bounding boxes and resolve ambiguities when they overlap, resulting in pseudo instance masks with their uncertainty values. Our experiments show that GaPro outperforms previous weakly supervised 3D instance segmentation methods and has competitive performance compared to state-of-the-art fully supervised ones. Furthermore, we demonstrate the robustness of our approach, where we can adapt various state-of-the-art fully supervised methods to the weak supervision task by using our pseudo labels for training. The source code and trained models are available at https://github.com/VinAIResearch/GaPro.
Semi-Supervised RF Fingerprinting with Consistency-Based Regularization
As a promising non-password authentication technology, radio frequency (RF) fingerprinting can greatly improve wireless security. Recent work has shown that RF fingerprinting based on deep learning can significantly outperform conventional approaches. The superiority, however, is mainly attributed to supervised learning using a large amount of labeled data, and it significantly degrades if only limited labeled data is available, making many existing algorithms lack practicability. Considering that it is often easier to obtain enough unlabeled data in practice with minimal resources, we leverage deep semi-supervised learning for RF fingerprinting, which largely relies on a composite data augmentation scheme designed for radio signals, combined with two popular techniques: consistency-based regularization and pseudo-labeling. Experimental results on both simulated and real-world datasets demonstrate that our proposed method for semi-supervised RF fingerprinting is far superior to other competing ones, and it can achieve remarkable performance almost close to that of fully supervised learning with a very limited number of examples.
LaserMix for Semi-Supervised LiDAR Semantic Segmentation
Densely annotating LiDAR point clouds is costly, which restrains the scalability of fully-supervised learning methods. In this work, we study the underexplored semi-supervised learning (SSL) in LiDAR segmentation. Our core idea is to leverage the strong spatial cues of LiDAR point clouds to better exploit unlabeled data. We propose LaserMix to mix laser beams from different LiDAR scans, and then encourage the model to make consistent and confident predictions before and after mixing. Our framework has three appealing properties: 1) Generic: LaserMix is agnostic to LiDAR representations (e.g., range view and voxel), and hence our SSL framework can be universally applied. 2) Statistically grounded: We provide a detailed analysis to theoretically explain the applicability of the proposed framework. 3) Effective: Comprehensive experimental analysis on popular LiDAR segmentation datasets (nuScenes, SemanticKITTI, and ScribbleKITTI) demonstrates our effectiveness and superiority. Notably, we achieve competitive results over fully-supervised counterparts with 2x to 5x fewer labels and improve the supervised-only baseline significantly by 10.8% on average. We hope this concise yet high-performing framework could facilitate future research in semi-supervised LiDAR segmentation. Code is publicly available.
Hierarchical Point-based Active Learning for Semi-supervised Point Cloud Semantic Segmentation
Impressive performance on point cloud semantic segmentation has been achieved by fully-supervised methods with large amounts of labelled data. As it is labour-intensive to acquire large-scale point cloud data with point-wise labels, many attempts have been made to explore learning 3D point cloud segmentation with limited annotations. Active learning is one of the effective strategies to achieve this purpose but is still under-explored. The most recent methods of this kind measure the uncertainty of each pre-divided region for manual labelling but they suffer from redundant information and require additional efforts for region division. This paper aims at addressing this issue by developing a hierarchical point-based active learning strategy. Specifically, we measure the uncertainty for each point by a hierarchical minimum margin uncertainty module which considers the contextual information at multiple levels. Then, a feature-distance suppression strategy is designed to select important and representative points for manual labelling. Besides, to better exploit the unlabelled data, we build a semi-supervised segmentation framework based on our active strategy. Extensive experiments on the S3DIS and ScanNetV2 datasets demonstrate that the proposed framework achieves 96.5% and 100% performance of fully-supervised baseline with only 0.07% and 0.1% training data, respectively, outperforming the state-of-the-art weakly-supervised and active learning methods. The code will be available at https://github.com/SmiletoE/HPAL.
Weakly-supervised 3D Pose Transfer with Keypoints
The main challenges of 3D pose transfer are: 1) Lack of paired training data with different characters performing the same pose; 2) Disentangling pose and shape information from the target mesh; 3) Difficulty in applying to meshes with different topologies. We thus propose a novel weakly-supervised keypoint-based framework to overcome these difficulties. Specifically, we use a topology-agnostic keypoint detector with inverse kinematics to compute transformations between the source and target meshes. Our method only requires supervision on the keypoints, can be applied to meshes with different topologies and is shape-invariant for the target which allows extraction of pose-only information from the target meshes without transferring shape information. We further design a cycle reconstruction to perform self-supervised pose transfer without the need for ground truth deformed mesh with the same pose and shape as the target and source, respectively. We evaluate our approach on benchmark human and animal datasets, where we achieve superior performance compared to the state-of-the-art unsupervised approaches and even comparable performance with the fully supervised approaches. We test on the more challenging Mixamo dataset to verify our approach's ability in handling meshes with different topologies and complex clothes. Cross-dataset evaluation further shows the strong generalization ability of our approach.
Holistically-Attracted Wireframe Parsing: From Supervised to Self-Supervised Learning
This paper presents Holistically-Attracted Wireframe Parsing (HAWP) for 2D images using both fully supervised and self-supervised learning paradigms. At the core is a parsimonious representation that encodes a line segment using a closed-form 4D geometric vector, which enables lifting line segments in wireframe to an end-to-end trainable holistic attraction field that has built-in geometry-awareness, context-awareness and robustness. The proposed HAWP consists of three components: generating line segment and end-point proposal, binding line segment and end-point, and end-point-decoupled lines-of-interest verification. For self-supervised learning, a simulation-to-reality pipeline is exploited in which a HAWP is first trained using synthetic data and then used to ``annotate" wireframes in real images with Homographic Adaptation. With the self-supervised annotations, a HAWP model for real images is trained from scratch. In experiments, the proposed HAWP achieves state-of-the-art performance in both the Wireframe dataset and the YorkUrban dataset in fully-supervised learning. It also demonstrates a significantly better repeatability score than prior arts with much more efficient training in self-supervised learning. Furthermore, the self-supervised HAWP shows great potential for general wireframe parsing without onerous wireframe labels.
OPERA: Omni-Supervised Representation Learning with Hierarchical Supervisions
The pretrain-finetune paradigm in modern computer vision facilitates the success of self-supervised learning, which tends to achieve better transferability than supervised learning. However, with the availability of massive labeled data, a natural question emerges: how to train a better model with both self and full supervision signals? In this paper, we propose Omni-suPErvised Representation leArning with hierarchical supervisions (OPERA) as a solution. We provide a unified perspective of supervisions from labeled and unlabeled data and propose a unified framework of fully supervised and self-supervised learning. We extract a set of hierarchical proxy representations for each image and impose self and full supervisions on the corresponding proxy representations. Extensive experiments on both convolutional neural networks and vision transformers demonstrate the superiority of OPERA in image classification, segmentation, and object detection. Code is available at: https://github.com/wangck20/OPERA.
Supervised Contrastive Learning
Contrastive learning applied to self-supervised representation learning has seen a resurgence in recent years, leading to state of the art performance in the unsupervised training of deep image models. Modern batch contrastive approaches subsume or significantly outperform traditional contrastive losses such as triplet, max-margin and the N-pairs loss. In this work, we extend the self-supervised batch contrastive approach to the fully-supervised setting, allowing us to effectively leverage label information. Clusters of points belonging to the same class are pulled together in embedding space, while simultaneously pushing apart clusters of samples from different classes. We analyze two possible versions of the supervised contrastive (SupCon) loss, identifying the best-performing formulation of the loss. On ResNet-200, we achieve top-1 accuracy of 81.4% on the ImageNet dataset, which is 0.8% above the best number reported for this architecture. We show consistent outperformance over cross-entropy on other datasets and two ResNet variants. The loss shows benefits for robustness to natural corruptions and is more stable to hyperparameter settings such as optimizers and data augmentations. Our loss function is simple to implement, and reference TensorFlow code is released at https://t.ly/supcon.
MotionMix: Weakly-Supervised Diffusion for Controllable Motion Generation
Controllable generation of 3D human motions becomes an important topic as the world embraces digital transformation. Existing works, though making promising progress with the advent of diffusion models, heavily rely on meticulously captured and annotated (e.g., text) high-quality motion corpus, a resource-intensive endeavor in the real world. This motivates our proposed MotionMix, a simple yet effective weakly-supervised diffusion model that leverages both noisy and unannotated motion sequences. Specifically, we separate the denoising objectives of a diffusion model into two stages: obtaining conditional rough motion approximations in the initial T-T^* steps by learning the noisy annotated motions, followed by the unconditional refinement of these preliminary motions during the last T^* steps using unannotated motions. Notably, though learning from two sources of imperfect data, our model does not compromise motion generation quality compared to fully supervised approaches that access gold data. Extensive experiments on several benchmarks demonstrate that our MotionMix, as a versatile framework, consistently achieves state-of-the-art performances on text-to-motion, action-to-motion, and music-to-dance tasks. Project page: https://nhathoang2002.github.io/MotionMix-page/
GeoAdapt: Self-Supervised Test-Time Adaption in LiDAR Place Recognition Using Geometric Priors
LiDAR place recognition approaches based on deep learning suffer a significant degradation in performance when there is a shift between the distribution of the training and testing datasets, with re-training often required to achieve top performance. However, obtaining accurate ground truth on new environments can be prohibitively expensive, especially in complex or GPS-deprived environments. To address this issue we propose GeoAdapt, which introduces a novel auxiliary classification head to generate pseudo-labels for re-training on unseen environments in a self-supervised manner. GeoAdapt uses geometric consistency as a prior to improve the robustness of our generated pseudo-labels against domain shift, improving the performance and reliability of our Test-Time Adaptation approach. Comprehensive experiments show that GeoAdapt significantly boosts place recognition performance across moderate to severe domain shifts, and is competitive with fully supervised test-time adaptation approaches. Our code will be available at https://github.com/csiro-robotics/GeoAdapt.
OmniSat: Self-Supervised Modality Fusion for Earth Observation
The field of Earth Observations (EO) offers a wealth of data from diverse sensors, presenting a great opportunity for advancing self-supervised multimodal learning. However, current multimodal EO datasets and models focus on a single data type, either mono-date images or time series, which limits their expressivity. We introduce OmniSat, a novel architecture that exploits the spatial alignment between multiple EO modalities to learn expressive multimodal representations without labels. To demonstrate the advantages of combining modalities of different natures, we augment two existing datasets with new modalities. As demonstrated on three downstream tasks: forestry, land cover classification, and crop mapping. OmniSat can learn rich representations in an unsupervised manner, leading to improved performance in the semi- and fully-supervised settings, even when only one modality is available for inference. The code and dataset are available at github.com/gastruc/OmniSat.
Leveraging Self-Supervised Learning for Scene Classification in Child Sexual Abuse Imagery
Crime in the 21st century is split into a virtual and real world. However, the former has become a global menace to people's well-being and security in the latter. The challenges it presents must be faced with unified global cooperation, and we must rely more than ever on automated yet trustworthy tools to combat the ever-growing nature of online offenses. Over 10 million child sexual abuse reports are submitted to the US National Center for Missing \& Exploited Children every year, and over 80% originate from online sources. Therefore, investigation centers cannot manually process and correctly investigate all imagery. In light of that, reliable automated tools that can securely and efficiently deal with this data are paramount. In this sense, the scene classification task looks for contextual cues in the environment, being able to group and classify child sexual abuse data without requiring to be trained on sensitive material. The scarcity and limitations of working with child sexual abuse images lead to self-supervised learning, a machine-learning methodology that leverages unlabeled data to produce powerful representations that can be more easily transferred to downstream tasks. This work shows that self-supervised deep learning models pre-trained on scene-centric data can reach 71.6% balanced accuracy on our indoor scene classification task and, on average, 2.2 percentage points better performance than a fully supervised version. We cooperate with Brazilian Federal Police experts to evaluate our indoor classification model on actual child abuse material. The results demonstrate a notable discrepancy between the features observed in widely used scene datasets and those depicted on sensitive materials.
S$^3$AD: Semi-supervised Small Apple Detection in Orchard Environments
Crop detection is integral for precision agriculture applications such as automated yield estimation or fruit picking. However, crop detection, e.g., apple detection in orchard environments remains challenging due to a lack of large-scale datasets and the small relative size of the crops in the image. In this work, we address these challenges by reformulating the apple detection task in a semi-supervised manner. To this end, we provide the large, high-resolution dataset MAD comprising 105 labeled images with 14,667 annotated apple instances and 4,440 unlabeled images. Utilizing this dataset, we also propose a novel Semi-Supervised Small Apple Detection system S^3AD based on contextual attention and selective tiling to improve the challenging detection of small apples, while limiting the computational overhead. We conduct an extensive evaluation on MAD and the MSU dataset, showing that S^3AD substantially outperforms strong fully-supervised baselines, including several small object detection systems, by up to 14.9%. Additionally, we exploit the detailed annotations of our dataset w.r.t. apple properties to analyze the influence of relative size or level of occlusion on the results of various systems, quantifying current challenges.
TreeFormer: a Semi-Supervised Transformer-based Framework for Tree Counting from a Single High Resolution Image
Automatic tree density estimation and counting using single aerial and satellite images is a challenging task in photogrammetry and remote sensing, yet has an important role in forest management. In this paper, we propose the first semisupervised transformer-based framework for tree counting which reduces the expensive tree annotations for remote sensing images. Our method, termed as TreeFormer, first develops a pyramid tree representation module based on transformer blocks to extract multi-scale features during the encoding stage. Contextual attention-based feature fusion and tree density regressor modules are further designed to utilize the robust features from the encoder to estimate tree density maps in the decoder. Moreover, we propose a pyramid learning strategy that includes local tree density consistency and local tree count ranking losses to utilize unlabeled images into the training process. Finally, the tree counter token is introduced to regulate the network by computing the global tree counts for both labeled and unlabeled images. Our model was evaluated on two benchmark tree counting datasets, Jiangsu, and Yosemite, as well as a new dataset, KCL-London, created by ourselves. Our TreeFormer outperforms the state of the art semi-supervised methods under the same setting and exceeds the fully-supervised methods using the same number of labeled images. The codes and datasets are available at https://github.com/HAAClassic/TreeFormer.
MAPConNet: Self-supervised 3D Pose Transfer with Mesh and Point Contrastive Learning
3D pose transfer is a challenging generation task that aims to transfer the pose of a source geometry onto a target geometry with the target identity preserved. Many prior methods require keypoint annotations to find correspondence between the source and target. Current pose transfer methods allow end-to-end correspondence learning but require the desired final output as ground truth for supervision. Unsupervised methods have been proposed for graph convolutional models but they require ground truth correspondence between the source and target inputs. We present a novel self-supervised framework for 3D pose transfer which can be trained in unsupervised, semi-supervised, or fully supervised settings without any correspondence labels. We introduce two contrastive learning constraints in the latent space: a mesh-level loss for disentangling global patterns including pose and identity, and a point-level loss for discriminating local semantics. We demonstrate quantitatively and qualitatively that our method achieves state-of-the-art results in supervised 3D pose transfer, with comparable results in unsupervised and semi-supervised settings. Our method is also generalisable to unseen human and animal data with complex topologies.
WPS-SAM: Towards Weakly-Supervised Part Segmentation with Foundation Models
Segmenting and recognizing diverse object parts is crucial in computer vision and robotics. Despite significant progress in object segmentation, part-level segmentation remains underexplored due to complex boundaries and scarce annotated data. To address this, we propose a novel Weakly-supervised Part Segmentation (WPS) setting and an approach called WPS-SAM, built on the large-scale pre-trained vision foundation model, Segment Anything Model (SAM). WPS-SAM is an end-to-end framework designed to extract prompt tokens directly from images and perform pixel-level segmentation of part regions. During its training phase, it only uses weakly supervised labels in the form of bounding boxes or points. Extensive experiments demonstrate that, through exploiting the rich knowledge embedded in pre-trained foundation models, WPS-SAM outperforms other segmentation models trained with pixel-level strong annotations. Specifically, WPS-SAM achieves 68.93% mIOU and 79.53% mACC on the PartImageNet dataset, surpassing state-of-the-art fully supervised methods by approximately 4% in terms of mIOU.
HebDB: a Weakly Supervised Dataset for Hebrew Speech Processing
We present HebDB, a weakly supervised dataset for spoken language processing in the Hebrew language. HebDB offers roughly 2500 hours of natural and spontaneous speech recordings in the Hebrew language, consisting of a large variety of speakers and topics. We provide raw recordings together with a pre-processed, weakly supervised, and filtered version. The goal of HebDB is to further enhance research and development of spoken language processing tools for the Hebrew language. Hence, we additionally provide two baseline systems for Automatic Speech Recognition (ASR): (i) a self-supervised model; and (ii) a fully supervised model. We present the performance of these two methods optimized on HebDB and compare them to current multi-lingual ASR alternatives. Results suggest the proposed method reaches better results than the evaluated baselines considering similar model sizes. Dataset, code, and models are publicly available under https://pages.cs.huji.ac.il/adiyoss-lab/HebDB/.
Turning to a Teacher for Timestamp Supervised Temporal Action Segmentation
Temporal action segmentation in videos has drawn much attention recently. Timestamp supervision is a cost-effective way for this task. To obtain more information to optimize the model, the existing method generated pseudo frame-wise labels iteratively based on the output of a segmentation model and the timestamp annotations. However, this practice may introduce noise and oscillation during the training, and lead to performance degeneration. To address this problem, we propose a new framework for timestamp supervised temporal action segmentation by introducing a teacher model parallel to the segmentation model to help stabilize the process of model optimization. The teacher model can be seen as an ensemble of the segmentation model, which helps to suppress the noise and to improve the stability of pseudo labels. We further introduce a segmentally smoothing loss, which is more focused and cohesive, to enforce the smooth transition of the predicted probabilities within action instances. The experiments on three datasets show that our method outperforms the state-of-the-art method and performs comparably against the fully-supervised methods at a much lower annotation cost.
Semixup: In- and Out-of-Manifold Regularization for Deep Semi-Supervised Knee Osteoarthritis Severity Grading from Plain Radiographs
Knee osteoarthritis (OA) is one of the highest disability factors in the world. This musculoskeletal disorder is assessed from clinical symptoms, and typically confirmed via radiographic assessment. This visual assessment done by a radiologist requires experience, and suffers from moderate to high inter-observer variability. The recent literature has shown that deep learning methods can reliably perform the OA severity assessment according to the gold standard Kellgren-Lawrence (KL) grading system. However, these methods require large amounts of labeled data, which are costly to obtain. In this study, we propose the Semixup algorithm, a semi-supervised learning (SSL) approach to leverage unlabeled data. Semixup relies on consistency regularization using in- and out-of-manifold samples, together with interpolated consistency. On an independent test set, our method significantly outperformed other state-of-the-art SSL methods in most cases. Finally, when compared to a well-tuned fully supervised baseline that yielded a balanced accuracy (BA) of 70.9pm0.8% on the test set, Semixup had comparable performance -- BA of 71pm0.8% (p=0.368) while requiring 6 times less labeled data. These results show that our proposed SSL method allows building fully automatic OA severity assessment tools with datasets that are available outside research settings.
Navigating Data Heterogeneity in Federated Learning: A Semi-Supervised Approach for Object Detection
Federated Learning (FL) has emerged as a potent framework for training models across distributed data sources while maintaining data privacy. Nevertheless, it faces challenges with limited high-quality labels and non-IID client data, particularly in applications like autonomous driving. To address these hurdles, we navigate the uncharted waters of Semi-Supervised Federated Object Detection (SSFOD). We present a pioneering SSFOD framework, designed for scenarios where labeled data reside only at the server while clients possess unlabeled data. Notably, our method represents the inaugural implementation of SSFOD for clients with 0% labeled non-IID data, a stark contrast to previous studies that maintain some subset of labels at each client. We propose FedSTO, a two-stage strategy encompassing Selective Training followed by Orthogonally enhanced full-parameter training, to effectively address data shift (e.g. weather conditions) between server and clients. Our contributions include selectively refining the backbone of the detector to avert overfitting, orthogonality regularization to boost representation divergence, and local EMA-driven pseudo label assignment to yield high-quality pseudo labels. Extensive validation on prominent autonomous driving datasets (BDD100K, Cityscapes, and SODA10M) attests to the efficacy of our approach, demonstrating state-of-the-art results. Remarkably, FedSTO, using just 20-30% of labels, performs nearly as well as fully-supervised centralized training methods.
A foundation model utilizing chest CT volumes and radiology reports for supervised-level zero-shot detection of abnormalities
A major challenge in computational research in 3D medical imaging is the lack of comprehensive datasets. Addressing this issue, our study introduces CT-RATE, the first 3D medical imaging dataset that pairs images with textual reports. CT-RATE consists of 25,692 non-contrast chest CT volumes, expanded to 50,188 through various reconstructions, from 21,304 unique patients, along with corresponding radiology text reports. Leveraging CT-RATE, we developed CT-CLIP, a CT-focused contrastive language-image pre-training framework. As a versatile, self-supervised model, CT-CLIP is designed for broad application and does not require task-specific training. Remarkably, CT-CLIP outperforms state-of-the-art, fully supervised methods in multi-abnormality detection across all key metrics, thus eliminating the need for manual annotation. We also demonstrate its utility in case retrieval, whether using imagery or textual queries, thereby advancing knowledge dissemination. The open-source release of CT-RATE and CT-CLIP marks a significant advancement in medical AI, enhancing 3D imaging analysis and fostering innovation in healthcare.
Towards Generic Image Manipulation Detection with Weakly-Supervised Self-Consistency Learning
As advanced image manipulation techniques emerge, detecting the manipulation becomes increasingly important. Despite the success of recent learning-based approaches for image manipulation detection, they typically require expensive pixel-level annotations to train, while exhibiting degraded performance when testing on images that are differently manipulated compared with training images. To address these limitations, we propose weakly-supervised image manipulation detection, such that only binary image-level labels (authentic or tampered with) are required for training purpose. Such a weakly-supervised setting can leverage more training images and has the potential to adapt quickly to new manipulation techniques. To improve the generalization ability, we propose weakly-supervised self-consistency learning (WSCL) to leverage the weakly annotated images. Specifically, two consistency properties are learned: multi-source consistency (MSC) and inter-patch consistency (IPC). MSC exploits different content-agnostic information and enables cross-source learning via an online pseudo label generation and refinement process. IPC performs global pair-wise patch-patch relationship reasoning to discover a complete region of manipulation. Extensive experiments validate that our WSCL, even though is weakly supervised, exhibits competitive performance compared with fully-supervised counterpart under both in-distribution and out-of-distribution evaluations, as well as reasonable manipulation localization ability.
Two-Stream Consensus Network for Weakly-Supervised Temporal Action Localization
Weakly-supervised Temporal Action Localization (W-TAL) aims to classify and localize all action instances in an untrimmed video under only video-level supervision. However, without frame-level annotations, it is challenging for W-TAL methods to identify false positive action proposals and generate action proposals with precise temporal boundaries. In this paper, we present a Two-Stream Consensus Network (TSCN) to simultaneously address these challenges. The proposed TSCN features an iterative refinement training method, where a frame-level pseudo ground truth is iteratively updated, and used to provide frame-level supervision for improved model training and false positive action proposal elimination. Furthermore, we propose a new attention normalization loss to encourage the predicted attention to act like a binary selection, and promote the precise localization of action instance boundaries. Experiments conducted on the THUMOS14 and ActivityNet datasets show that the proposed TSCN outperforms current state-of-the-art methods, and even achieves comparable results with some recent fully-supervised methods.
Electrocardiogram Report Generation and Question Answering via Retrieval-Augmented Self-Supervised Modeling
Interpreting electrocardiograms (ECGs) and generating comprehensive reports remain challenging tasks in cardiology, often requiring specialized expertise and significant time investment. To address these critical issues, we propose ECG-ReGen, a retrieval-based approach for ECG-to-text report generation and question answering. Our method leverages a self-supervised learning for the ECG encoder, enabling efficient similarity searches and report retrieval. By combining pre-training with dynamic retrieval and Large Language Model (LLM)-based refinement, ECG-ReGen effectively analyzes ECG data and answers related queries, with the potential of improving patient care. Experiments conducted on the PTB-XL and MIMIC-IV-ECG datasets demonstrate superior performance in both in-domain and cross-domain scenarios for report generation. Furthermore, our approach exhibits competitive performance on ECG-QA dataset compared to fully supervised methods when utilizing off-the-shelf LLMs for zero-shot question answering. This approach, effectively combining self-supervised encoder and LLMs, offers a scalable and efficient solution for accurate ECG interpretation, holding significant potential to enhance clinical decision-making.
Wearable data from subjects playing Super Mario, sitting university exams, or performing physical exercise help detect acute mood episodes via self-supervised learning
Personal sensing, leveraging data passively and near-continuously collected with wearables from patients in their ecological environment, is a promising paradigm to monitor mood disorders (MDs), a major determinant of worldwide disease burden. However, collecting and annotating wearable data is very resource-intensive. Studies of this kind can thus typically afford to recruit only a couple dozens of patients. This constitutes one of the major obstacles to applying modern supervised machine learning techniques to MDs detection. In this paper, we overcome this data bottleneck and advance the detection of MDs acute episode vs stable state from wearables data on the back of recent advances in self-supervised learning (SSL). This leverages unlabelled data to learn representations during pre-training, subsequently exploited for a supervised task. First, we collected open-access datasets recording with an Empatica E4 spanning different, unrelated to MD monitoring, personal sensing tasks -- from emotion recognition in Super Mario players to stress detection in undergraduates -- and devised a pre-processing pipeline performing on-/off-body detection, sleep-wake detection, segmentation, and (optionally) feature extraction. With 161 E4-recorded subjects, we introduce E4SelfLearning, the largest to date open access collection, and its pre-processing pipeline. Second, we show that SSL confidently outperforms fully-supervised pipelines using either our novel E4-tailored Transformer architecture (E4mer) or classical baseline XGBoost: 81.23% against 75.35% (E4mer) and 72.02% (XGBoost) correctly classified recording segments from 64 (half acute, half stable) patients. Lastly, we illustrate that SSL performance is strongly associated with the specific surrogate task employed for pre-training as well as with unlabelled data availability.
Point-DETR3D: Leveraging Imagery Data with Spatial Point Prior for Weakly Semi-supervised 3D Object Detection
Training high-accuracy 3D detectors necessitates massive labeled 3D annotations with 7 degree-of-freedom, which is laborious and time-consuming. Therefore, the form of point annotations is proposed to offer significant prospects for practical applications in 3D detection, which is not only more accessible and less expensive but also provides strong spatial information for object localization. In this paper, we empirically discover that it is non-trivial to merely adapt Point-DETR to its 3D form, encountering two main bottlenecks: 1) it fails to encode strong 3D prior into the model, and 2) it generates low-quality pseudo labels in distant regions due to the extreme sparsity of LiDAR points. To overcome these challenges, we introduce Point-DETR3D, a teacher-student framework for weakly semi-supervised 3D detection, designed to fully capitalize on point-wise supervision within a constrained instance-wise annotation budget.Different from Point-DETR which encodes 3D positional information solely through a point encoder, we propose an explicit positional query initialization strategy to enhance the positional prior. Considering the low quality of pseudo labels at distant regions produced by the teacher model, we enhance the detector's perception by incorporating dense imagery data through a novel Cross-Modal Deformable RoI Fusion (D-RoI).Moreover, an innovative point-guided self-supervised learning technique is proposed to allow for fully exploiting point priors, even in student models.Extensive experiments on representative nuScenes dataset demonstrate our Point-DETR3D obtains significant improvements compared to previous works. Notably, with only 5% of labeled data, Point-DETR3D achieves over 90% performance of its fully supervised counterpart.
Sample, Crop, Track: Self-Supervised Mobile 3D Object Detection for Urban Driving LiDAR
Deep learning has led to great progress in the detection of mobile (i.e. movement-capable) objects in urban driving scenes in recent years. Supervised approaches typically require the annotation of large training sets; there has thus been great interest in leveraging weakly, semi- or self-supervised methods to avoid this, with much success. Whilst weakly and semi-supervised methods require some annotation, self-supervised methods have used cues such as motion to relieve the need for annotation altogether. However, a complete absence of annotation typically degrades their performance, and ambiguities that arise during motion grouping can inhibit their ability to find accurate object boundaries. In this paper, we propose a new self-supervised mobile object detection approach called SCT. This uses both motion cues and expected object sizes to improve detection performance, and predicts a dense grid of 3D oriented bounding boxes to improve object discovery. We significantly outperform the state-of-the-art self-supervised mobile object detection method TCR on the KITTI tracking benchmark, and achieve performance that is within 30% of the fully supervised PV-RCNN++ method for IoUs <= 0.5.
Space Engage: Collaborative Space Supervision for Contrastive-based Semi-Supervised Semantic Segmentation
Semi-Supervised Semantic Segmentation (S4) aims to train a segmentation model with limited labeled images and a substantial volume of unlabeled images. To improve the robustness of representations, powerful methods introduce a pixel-wise contrastive learning approach in latent space (i.e., representation space) that aggregates the representations to their prototypes in a fully supervised manner. However, previous contrastive-based S4 methods merely rely on the supervision from the model's output (logits) in logit space during unlabeled training. In contrast, we utilize the outputs in both logit space and representation space to obtain supervision in a collaborative way. The supervision from two spaces plays two roles: 1) reduces the risk of over-fitting to incorrect semantic information in logits with the help of representations; 2) enhances the knowledge exchange between the two spaces. Furthermore, unlike previous approaches, we use the similarity between representations and prototypes as a new indicator to tilt training those under-performing representations and achieve a more efficient contrastive learning process. Results on two public benchmarks demonstrate the competitive performance of our method compared with state-of-the-art methods.
Leveraging Inpainting for Single-Image Shadow Removal
Fully-supervised shadow removal methods achieve the best restoration qualities on public datasets but still generate some shadow remnants. One of the reasons is the lack of large-scale shadow & shadow-free image pairs. Unsupervised methods can alleviate the issue but their restoration qualities are much lower than those of fully-supervised methods. In this work, we find that pretraining shadow removal networks on the image inpainting dataset can reduce the shadow remnants significantly: a naive encoder-decoder network gets competitive restoration quality w.r.t. the state-of-the-art methods via only 10% shadow & shadow-free image pairs. After analyzing networks with/without inpainting pre-training via the information stored in the weight (IIW), we find that inpainting pretraining improves restoration quality in non-shadow regions and enhances the generalization ability of networks significantly. Additionally, shadow removal fine-tuning enables networks to fill in the details of shadow regions. Inspired by these observations we formulate shadow removal as an adaptive fusion task that takes advantage of both shadow removal and image inpainting. Specifically, we develop an adaptive fusion network consisting of two encoders, an adaptive fusion block, and a decoder. The two encoders are responsible for extracting the feature from the shadow image and the shadow-masked image respectively. The adaptive fusion block is responsible for combining these features in an adaptive manner. Finally, the decoder converts the adaptive fused features to the desired shadow-free result. The extensive experiments show that our method empowered with inpainting outperforms all state-of-the-art methods.
Generalized Few-Shot Point Cloud Segmentation Via Geometric Words
Existing fully-supervised point cloud segmentation methods suffer in the dynamic testing environment with emerging new classes. Few-shot point cloud segmentation algorithms address this problem by learning to adapt to new classes at the sacrifice of segmentation accuracy for the base classes, which severely impedes its practicality. This largely motivates us to present the first attempt at a more practical paradigm of generalized few-shot point cloud segmentation, which requires the model to generalize to new categories with only a few support point clouds and simultaneously retain the capability to segment base classes. We propose the geometric words to represent geometric components shared between the base and novel classes, and incorporate them into a novel geometric-aware semantic representation to facilitate better generalization to the new classes without forgetting the old ones. Moreover, we introduce geometric prototypes to guide the segmentation with geometric prior knowledge. Extensive experiments on S3DIS and ScanNet consistently illustrate the superior performance of our method over baseline methods. Our code is available at: https://github.com/Pixie8888/GFS-3DSeg_GWs.
ZeroI2V: Zero-Cost Adaptation of Pre-trained Transformers from Image to Video
Adapting image models to the video domain has emerged as an efficient paradigm for solving video recognition tasks. Due to the huge number of parameters and effective transferability of image models, performing full fine-tuning is less efficient and even unnecessary. Thus, recent research is shifting its focus toward parameter-efficient image-to-video adaptation. However, these adaptation strategies inevitably introduce extra computational costs to deal with the domain gap and temporal modeling in videos. In this paper, we present a new adaptation paradigm (ZeroI2V) to transfer the image transformers to video recognition tasks (i.e., introduce zero extra cost to the original models during inference). To achieve this goal, we present two core designs. First, to capture the dynamics in videos and reduce the difficulty of image-to-video adaptation, we exploit the flexibility of self-attention and introduce spatial-temporal dual-headed attention (STDHA). This approach efficiently endows the image transformers with temporal modeling capability at zero extra parameters and computation. Second, to handle the domain gap between images and videos, we propose a linear adaption strategy that utilizes lightweight densely placed linear adapters to fully transfer the frozen image models to video recognition. Thanks to the customized linear design, all newly added adapters could be easily merged with the original modules through structural reparameterization after training, enabling zero extra cost during inference. Extensive experiments on representative fully-supervised and few-shot video recognition benchmarks showcase that ZeroI2V can match or even outperform previous state-of-the-art methods while enjoying superior parameter and inference efficiency.
ZEETAD: Adapting Pretrained Vision-Language Model for Zero-Shot End-to-End Temporal Action Detection
Temporal action detection (TAD) involves the localization and classification of action instances within untrimmed videos. While standard TAD follows fully supervised learning with closed-set setting on large training data, recent zero-shot TAD methods showcase the promising open-set setting by leveraging large-scale contrastive visual-language (ViL) pretrained models. However, existing zero-shot TAD methods have limitations on how to properly construct the strong relationship between two interdependent tasks of localization and classification and adapt ViL model to video understanding. In this work, we present ZEETAD, featuring two modules: dual-localization and zero-shot proposal classification. The former is a Transformer-based module that detects action events while selectively collecting crucial semantic embeddings for later recognition. The latter one, CLIP-based module, generates semantic embeddings from text and frame inputs for each temporal unit. Additionally, we enhance discriminative capability on unseen classes by minimally updating the frozen CLIP encoder with lightweight adapters. Extensive experiments on THUMOS14 and ActivityNet-1.3 datasets demonstrate our approach's superior performance in zero-shot TAD and effective knowledge transfer from ViL models to unseen action categories.
Multi-Document Summarization with Centroid-Based Pretraining
In multi-document summarization (MDS), the input is a cluster of documents, and the output is the cluster summary. In this paper, we focus on pretraining objectives for MDS. Specifically, we introduce a simple pretraining objective of choosing the ROUGE-based centroid of each document cluster as a proxy for its summary. Our objective thus does not require human written summaries and can be used for pretraining on a dataset containing only clusters of documents. Through zero-shot and fully supervised experiments on multiple MDS datasets, we show that our model Centrum is better or comparable to a state-of-the-art model. We release our pretrained and finetuned models at https://github.com/ratishsp/centrum.
Interaction-Aware Prompting for Zero-Shot Spatio-Temporal Action Detection
The goal of spatial-temporal action detection is to determine the time and place where each person's action occurs in a video and classify the corresponding action category. Most of the existing methods adopt fully-supervised learning, which requires a large amount of training data, making it very difficult to achieve zero-shot learning. In this paper, we propose to utilize a pre-trained visual-language model to extract the representative image and text features, and model the relationship between these features through different interaction modules to obtain the interaction feature. In addition, we use this feature to prompt each label to obtain more appropriate text features. Finally, we calculate the similarity between the interaction feature and the text feature for each label to determine the action category. Our experiments on J-HMDB and UCF101-24 datasets demonstrate that the proposed interaction module and prompting make the visual-language features better aligned, thus achieving excellent accuracy for zero-shot spatio-temporal action detection. The code will be available at https://github.com/webber2933/iCLIP.
MixSup: Mixed-grained Supervision for Label-efficient LiDAR-based 3D Object Detection
Label-efficient LiDAR-based 3D object detection is currently dominated by weakly/semi-supervised methods. Instead of exclusively following one of them, we propose MixSup, a more practical paradigm simultaneously utilizing massive cheap coarse labels and a limited number of accurate labels for Mixed-grained Supervision. We start by observing that point clouds are usually textureless, making it hard to learn semantics. However, point clouds are geometrically rich and scale-invariant to the distances from sensors, making it relatively easy to learn the geometry of objects, such as poses and shapes. Thus, MixSup leverages massive coarse cluster-level labels to learn semantics and a few expensive box-level labels to learn accurate poses and shapes. We redesign the label assignment in mainstream detectors, which allows them seamlessly integrated into MixSup, enabling practicality and universality. We validate its effectiveness in nuScenes, Waymo Open Dataset, and KITTI, employing various detectors. MixSup achieves up to 97.31% of fully supervised performance, using cheap cluster annotations and only 10% box annotations. Furthermore, we propose PointSAM based on the Segment Anything Model for automated coarse labeling, further reducing the annotation burden. The code is available at https://github.com/BraveGroup/PointSAM-for-MixSup.
Lip2Vec: Efficient and Robust Visual Speech Recognition via Latent-to-Latent Visual to Audio Representation Mapping
Visual Speech Recognition (VSR) differs from the common perception tasks as it requires deeper reasoning over the video sequence, even by human experts. Despite the recent advances in VSR, current approaches rely on labeled data to fully train or finetune their models predicting the target speech. This hinders their ability to generalize well beyond the training set and leads to performance degeneration under out-of-distribution challenging scenarios. Unlike previous works that involve auxiliary losses or complex training procedures and architectures, we propose a simple approach, named Lip2Vec that is based on learning a prior model. Given a robust visual speech encoder, this network maps the encoded latent representations of the lip sequence to their corresponding latents from the audio pair, which are sufficiently invariant for effective text decoding. The generated audio representation is then decoded to text using an off-the-shelf Audio Speech Recognition (ASR) model. The proposed model compares favorably with fully-supervised learning methods on the LRS3 dataset achieving 26 WER. Unlike SoTA approaches, our model keeps a reasonable performance on the VoxCeleb test set. We believe that reprogramming the VSR as an ASR task narrows the performance gap between the two and paves the way for more flexible formulations of lip reading.
Optimizing Language Model's Reasoning Abilities with Weak Supervision
While Large Language Models (LLMs) have demonstrated proficiency in handling complex queries, much of the past work has depended on extensively annotated datasets by human experts. However, this reliance on fully-supervised annotations poses scalability challenges, particularly as models and data requirements grow. To mitigate this, we explore the potential of enhancing LLMs' reasoning abilities with minimal human supervision. In this work, we introduce self-reinforcement, which begins with Supervised Fine-Tuning (SFT) of the model using a small collection of annotated questions. Then it iteratively improves LLMs by learning from the differences in responses from the SFT and unfinetuned models on unlabeled questions. Our approach provides an efficient approach without relying heavily on extensive human-annotated explanations. However, current reasoning benchmarks typically only include golden-reference answers or rationales. Therefore, we present PuzzleBen, a weakly supervised benchmark that comprises 25,147 complex questions, answers, and human-generated rationales across various domains, such as brainteasers, puzzles, riddles, parajumbles, and critical reasoning tasks. A unique aspect of our dataset is the inclusion of 10,000 unannotated questions, enabling us to explore utilizing fewer supersized data to boost LLMs' inference capabilities. Our experiments underscore the significance of PuzzleBen, as well as the effectiveness of our methodology as a promising direction in future endeavors. Our dataset and code will be published soon on Anonymity Link.
Medical Image Segmentation with SAM-generated Annotations
The field of medical image segmentation is hindered by the scarcity of large, publicly available annotated datasets. Not all datasets are made public for privacy reasons, and creating annotations for a large dataset is time-consuming and expensive, as it requires specialized expertise to accurately identify regions of interest (ROIs) within the images. To address these challenges, we evaluate the performance of the Segment Anything Model (SAM) as an annotation tool for medical data by using it to produce so-called "pseudo labels" on the Medical Segmentation Decathlon (MSD) computed tomography (CT) tasks. The pseudo labels are then used in place of ground truth labels to train a UNet model in a weakly-supervised manner. We experiment with different prompt types on SAM and find that the bounding box prompt is a simple yet effective method for generating pseudo labels. This method allows us to develop a weakly-supervised model that performs comparably to a fully supervised model.
Towards Zero-Shot Multimodal Machine Translation
Current multimodal machine translation (MMT) systems rely on fully supervised data (i.e models are trained on sentences with their translations and accompanying images). However, this type of data is costly to collect, limiting the extension of MMT to other language pairs for which such data does not exist. In this work, we propose a method to bypass the need for fully supervised data to train MMT systems, using multimodal English data only. Our method, called ZeroMMT, consists in adapting a strong text-only machine translation (MT) model by training it on a mixture of two objectives: visually conditioned masked language modelling and the Kullback-Leibler divergence between the original and new MMT outputs. We evaluate on standard MMT benchmarks and the recently released CoMMuTE, a contrastive benchmark aiming to evaluate how well models use images to disambiguate English sentences. We obtain disambiguation performance close to state-of-the-art MMT models trained additionally on fully supervised examples. To prove that our method generalizes to languages with no fully supervised training data available, we extend the CoMMuTE evaluation dataset to three new languages: Arabic, Russian and Chinese. We further show that we can control the trade-off between disambiguation capabilities and translation fidelity at inference time using classifier-free guidance and without any additional data. Our code, data and trained models are publicly accessible.
RenderOcc: Vision-Centric 3D Occupancy Prediction with 2D Rendering Supervision
3D occupancy prediction holds significant promise in the fields of robot perception and autonomous driving, which quantifies 3D scenes into grid cells with semantic labels. Recent works mainly utilize complete occupancy labels in 3D voxel space for supervision. However, the expensive annotation process and sometimes ambiguous labels have severely constrained the usability and scalability of 3D occupancy models. To address this, we present RenderOcc, a novel paradigm for training 3D occupancy models only using 2D labels. Specifically, we extract a NeRF-style 3D volume representation from multi-view images, and employ volume rendering techniques to establish 2D renderings, thus enabling direct 3D supervision from 2D semantics and depth labels. Additionally, we introduce an Auxiliary Ray method to tackle the issue of sparse viewpoints in autonomous driving scenarios, which leverages sequential frames to construct comprehensive 2D rendering for each object. To our best knowledge, RenderOcc is the first attempt to train multi-view 3D occupancy models only using 2D labels, reducing the dependence on costly 3D occupancy annotations. Extensive experiments demonstrate that RenderOcc achieves comparable performance to models fully supervised with 3D labels, underscoring the significance of this approach in real-world applications.
Knowledge-enhanced Agents for Interactive Text Games
Communication via natural language is a crucial aspect of intelligence, and it requires computational models to learn and reason about world concepts, with varying levels of supervision. While there has been significant progress made on fully-supervised non-interactive tasks, such as question-answering and procedural text understanding, much of the community has turned to various sequential interactive tasks, as in semi-Markov text-based games, which have revealed limitations of existing approaches in terms of coherence, contextual awareness, and their ability to learn effectively from the environment. In this paper, we propose a framework for enabling improved functional grounding of agents in text-based games. Specifically, we consider two forms of domain knowledge that we inject into learning-based agents: memory of previous correct actions and affordances of relevant objects in the environment. Our framework supports three representative model classes: `pure' reinforcement learning (RL) agents, RL agents enhanced with knowledge graphs, and agents equipped with language models. Furthermore, we devise multiple injection strategies for the above domain knowledge types and agent architectures, including injection via knowledge graphs and augmentation of the existing input encoding strategies. We perform all experiments on the ScienceWorld text-based game environment, to illustrate the performance of various model configurations in challenging science-related instruction-following tasks. Our findings provide crucial insights on the development of effective natural language processing systems for interactive contexts.
Video Action Recognition with Attentive Semantic Units
Visual-Language Models (VLMs) have significantly advanced action video recognition. Supervised by the semantics of action labels, recent works adapt the visual branch of VLMs to learn video representations. Despite the effectiveness proved by these works, we believe that the potential of VLMs has yet to be fully harnessed. In light of this, we exploit the semantic units (SU) hiding behind the action labels and leverage their correlations with fine-grained items in frames for more accurate action recognition. SUs are entities extracted from the language descriptions of the entire action set, including body parts, objects, scenes, and motions. To further enhance the alignments between visual contents and the SUs, we introduce a multi-region module (MRA) to the visual branch of the VLM. The MRA allows the perception of region-aware visual features beyond the original global feature. Our method adaptively attends to and selects relevant SUs with visual features of frames. With a cross-modal decoder, the selected SUs serve to decode spatiotemporal video representations. In summary, the SUs as the medium can boost discriminative ability and transferability. Specifically, in fully-supervised learning, our method achieved 87.8\% top-1 accuracy on Kinetics-400. In K=2 few-shot experiments, our method surpassed the previous state-of-the-art by +7.1% and +15.0% on HMDB-51 and UCF-101, respectively.
Pixel is All You Need: Adversarial Trajectory-Ensemble Active Learning for Salient Object Detection
Although weakly-supervised techniques can reduce the labeling effort, it is unclear whether a saliency model trained with weakly-supervised data (e.g., point annotation) can achieve the equivalent performance of its fully-supervised version. This paper attempts to answer this unexplored question by proving a hypothesis: there is a point-labeled dataset where saliency models trained on it can achieve equivalent performance when trained on the densely annotated dataset. To prove this conjecture, we proposed a novel yet effective adversarial trajectory-ensemble active learning (ATAL). Our contributions are three-fold: 1) Our proposed adversarial attack triggering uncertainty can conquer the overconfidence of existing active learning methods and accurately locate these uncertain pixels. {2)} Our proposed trajectory-ensemble uncertainty estimation method maintains the advantages of the ensemble networks while significantly reducing the computational cost. {3)} Our proposed relationship-aware diversity sampling algorithm can conquer oversampling while boosting performance. Experimental results show that our ATAL can find such a point-labeled dataset, where a saliency model trained on it obtained 97% -- 99% performance of its fully-supervised version with only ten annotated points per image.
Expanding Language-Image Pretrained Models for General Video Recognition
Contrastive language-image pretraining has shown great success in learning visual-textual joint representation from web-scale data, demonstrating remarkable "zero-shot" generalization ability for various image tasks. However, how to effectively expand such new language-image pretraining methods to video domains is still an open problem. In this work, we present a simple yet effective approach that adapts the pretrained language-image models to video recognition directly, instead of pretraining a new model from scratch. More concretely, to capture the long-range dependencies of frames along the temporal dimension, we propose a cross-frame attention mechanism that explicitly exchanges information across frames. Such module is lightweight and can be plugged into pretrained language-image models seamlessly. Moreover, we propose a video-specific prompting scheme, which leverages video content information for generating discriminative textual prompts. Extensive experiments demonstrate that our approach is effective and can be generalized to different video recognition scenarios. In particular, under fully-supervised settings, our approach achieves a top-1 accuracy of 87.1% on Kinectics-400, while using 12 times fewer FLOPs compared with Swin-L and ViViT-H. In zero-shot experiments, our approach surpasses the current state-of-the-art methods by +7.6% and +14.9% in terms of top-1 accuracy under two popular protocols. In few-shot scenarios, our approach outperforms previous best methods by +32.1% and +23.1% when the labeled data is extremely limited. Code and models are available at https://aka.ms/X-CLIP
Learning Invariant World State Representations with Predictive Coding
Self-supervised learning methods overcome the key bottleneck for building more capable AI: limited availability of labeled data. However, one of the drawbacks of self-supervised architectures is that the representations that they learn are implicit and it is hard to extract meaningful information about the encoded world states, such as 3D structure of the visual scene encoded in a depth map. Moreover, in the visual domain such representations only rarely undergo evaluations that may be critical for downstream tasks, such as vision for autonomous cars. Herein, we propose a framework for evaluating visual representations for illumination invariance in the context of depth perception. We develop a new predictive coding-based architecture and a hybrid fully-supervised/self-supervised learning method. We propose a novel architecture that extends the predictive coding approach: PRedictive Lateral bottom-Up and top-Down Encoder-decoder Network (PreludeNet), which explicitly learns to infer and predict depth from video frames. In PreludeNet, the encoder's stack of predictive coding layers is trained in a self-supervised manner, while the predictive decoder is trained in a supervised manner to infer or predict the depth. We evaluate the robustness of our model on a new synthetic dataset, in which lighting conditions (such as overall illumination, and effect of shadows) can be be parametrically adjusted while keeping all other aspects of the world constant. PreludeNet achieves both competitive depth inference performance and next frame prediction accuracy. We also show how this new network architecture, coupled with the hybrid fully-supervised/self-supervised learning method, achieves balance between the said performance and invariance to changes in lighting. The proposed framework for evaluating visual representations can be extended to diverse task domains and invariance tests.
Zero-Shot Video Question Answering via Frozen Bidirectional Language Models
Video question answering (VideoQA) is a complex task that requires diverse multi-modal data for training. Manual annotation of question and answers for videos, however, is tedious and prohibits scalability. To tackle this problem, recent methods consider zero-shot settings with no manual annotation of visual question-answer. In particular, a promising approach adapts frozen autoregressive language models pretrained on Web-scale text-only data to multi-modal inputs. In contrast, we here build on frozen bidirectional language models (BiLM) and show that such an approach provides a stronger and cheaper alternative for zero-shot VideoQA. In particular, (i) we combine visual inputs with the frozen BiLM using light trainable modules, (ii) we train such modules using Web-scraped multi-modal data, and finally (iii) we perform zero-shot VideoQA inference through masked language modeling, where the masked text is the answer to a given question. Our proposed approach, FrozenBiLM, outperforms the state of the art in zero-shot VideoQA by a significant margin on a variety of datasets, including LSMDC-FiB, iVQA, MSRVTT-QA, MSVD-QA, ActivityNet-QA, TGIF-FrameQA, How2QA and TVQA. It also demonstrates competitive performance in the few-shot and fully-supervised setting. Our code and models are publicly available at https://github.com/antoyang/FrozenBiLM.
Manifold Characteristics That Predict Downstream Task Performance
Pretraining methods are typically compared by evaluating the accuracy of linear classifiers, transfer learning performance, or visually inspecting the representation manifold's (RM) lower-dimensional projections. We show that the differences between methods can be understood more clearly by investigating the RM directly, which allows for a more detailed comparison. To this end, we propose a framework and new metric to measure and compare different RMs. We also investigate and report on the RM characteristics for various pretraining methods. These characteristics are measured by applying sequentially larger local alterations to the input data, using white noise injections and Projected Gradient Descent (PGD) adversarial attacks, and then tracking each datapoint. We calculate the total distance moved for each datapoint and the relative change in distance between successive alterations. We show that self-supervised methods learn an RM where alterations lead to large but constant size changes, indicating a smoother RM than fully supervised methods. We then combine these measurements into one metric, the Representation Manifold Quality Metric (RMQM), where larger values indicate larger and less variable step sizes, and show that RMQM correlates positively with performance on downstream tasks.
Generalized Radiograph Representation Learning via Cross-supervision between Images and Free-text Radiology Reports
Pre-training lays the foundation for recent successes in radiograph analysis supported by deep learning. It learns transferable image representations by conducting large-scale fully-supervised or self-supervised learning on a source domain. However, supervised pre-training requires a complex and labor intensive two-stage human-assisted annotation process while self-supervised learning cannot compete with the supervised paradigm. To tackle these issues, we propose a cross-supervised methodology named REviewing FreE-text Reports for Supervision (REFERS), which acquires free supervision signals from original radiology reports accompanying the radiographs. The proposed approach employs a vision transformer and is designed to learn joint representations from multiple views within every patient study. REFERS outperforms its transfer learning and self-supervised learning counterparts on 4 well-known X-ray datasets under extremely limited supervision. Moreover, REFERS even surpasses methods based on a source domain of radiographs with human-assisted structured labels. Thus REFERS has the potential to replace canonical pre-training methodologies.
D3G: Exploring Gaussian Prior for Temporal Sentence Grounding with Glance Annotation
Temporal sentence grounding (TSG) aims to locate a specific moment from an untrimmed video with a given natural language query. Recently, weakly supervised methods still have a large performance gap compared to fully supervised ones, while the latter requires laborious timestamp annotations. In this study, we aim to reduce the annotation cost yet keep competitive performance for TSG task compared to fully supervised ones. To achieve this goal, we investigate a recently proposed glance-supervised temporal sentence grounding task, which requires only single frame annotation (referred to as glance annotation) for each query. Under this setup, we propose a Dynamic Gaussian prior based Grounding framework with Glance annotation (D3G), which consists of a Semantic Alignment Group Contrastive Learning module (SA-GCL) and a Dynamic Gaussian prior Adjustment module (DGA). Specifically, SA-GCL samples reliable positive moments from a 2D temporal map via jointly leveraging Gaussian prior and semantic consistency, which contributes to aligning the positive sentence-moment pairs in the joint embedding space. Moreover, to alleviate the annotation bias resulting from glance annotation and model complex queries consisting of multiple events, we propose the DGA module, which adjusts the distribution dynamically to approximate the ground truth of target moments. Extensive experiments on three challenging benchmarks verify the effectiveness of the proposed D3G. It outperforms the state-of-the-art weakly supervised methods by a large margin and narrows the performance gap compared to fully supervised methods. Code is available at https://github.com/solicucu/D3G.
SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with Motion-Aware Memory
The Segment Anything Model 2 (SAM 2) has demonstrated strong performance in object segmentation tasks but faces challenges in visual object tracking, particularly when managing crowded scenes with fast-moving or self-occluding objects. Furthermore, the fixed-window memory approach in the original model does not consider the quality of memories selected to condition the image features for the next frame, leading to error propagation in videos. This paper introduces SAMURAI, an enhanced adaptation of SAM 2 specifically designed for visual object tracking. By incorporating temporal motion cues with the proposed motion-aware memory selection mechanism, SAMURAI effectively predicts object motion and refines mask selection, achieving robust, accurate tracking without the need for retraining or fine-tuning. SAMURAI operates in real-time and demonstrates strong zero-shot performance across diverse benchmark datasets, showcasing its ability to generalize without fine-tuning. In evaluations, SAMURAI achieves significant improvements in success rate and precision over existing trackers, with a 7.1% AUC gain on LaSOT_{ext} and a 3.5% AO gain on GOT-10k. Moreover, it achieves competitive results compared to fully supervised methods on LaSOT, underscoring its robustness in complex tracking scenarios and its potential for real-world applications in dynamic environments. Code and results are available at https://github.com/yangchris11/samurai.
Learning Transferable Visual Models From Natural Language Supervision
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at https://github.com/OpenAI/CLIP.
Recognize Anything: A Strong Image Tagging Model
We present the Recognize Anything Model (RAM): a strong foundation model for image tagging. RAM can recognize any common category with high accuracy. RAM introduces a new paradigm for image tagging, leveraging large-scale image-text pairs for training instead of manual annotations. The development of RAM comprises four key steps. Firstly, annotation-free image tags are obtained at scale through automatic text semantic parsing. Subsequently, a preliminary model is trained for automatic annotation by unifying the caption and tagging tasks, supervised by the original texts and parsed tags, respectively. Thirdly, a data engine is employed to generate additional annotations and clean incorrect ones. Lastly, the model is retrained with the processed data and fine-tuned using a smaller but higher-quality dataset. We evaluate the tagging capabilities of RAM on numerous benchmarks and observe impressive zero-shot performance, significantly outperforming CLIP and BLIP. Remarkably, RAM even surpasses the fully supervised manners and exhibits competitive performance with the Google API. We are releasing the RAM at https://recognize-anything.github.io/ to foster the advancements of large models in computer vision.
Real3D: Scaling Up Large Reconstruction Models with Real-World Images
The default strategy for training single-view Large Reconstruction Models (LRMs) follows the fully supervised route using large-scale datasets of synthetic 3D assets or multi-view captures. Although these resources simplify the training procedure, they are hard to scale up beyond the existing datasets and they are not necessarily representative of the real distribution of object shapes. To address these limitations, in this paper, we introduce Real3D, the first LRM system that can be trained using single-view real-world images. Real3D introduces a novel self-training framework that can benefit from both the existing synthetic data and diverse single-view real images. We propose two unsupervised losses that allow us to supervise LRMs at the pixel- and semantic-level, even for training examples without ground-truth 3D or novel views. To further improve performance and scale up the image data, we develop an automatic data curation approach to collect high-quality examples from in-the-wild images. Our experiments show that Real3D consistently outperforms prior work in four diverse evaluation settings that include real and synthetic data, as well as both in-domain and out-of-domain shapes. Code and model can be found here: https://hwjiang1510.github.io/Real3D/
SeeGround: See and Ground for Zero-Shot Open-Vocabulary 3D Visual Grounding
3D Visual Grounding (3DVG) aims to locate objects in 3D scenes based on textual descriptions, which is essential for applications like augmented reality and robotics. Traditional 3DVG approaches rely on annotated 3D datasets and predefined object categories, limiting scalability and adaptability. To overcome these limitations, we introduce SeeGround, a zero-shot 3DVG framework leveraging 2D Vision-Language Models (VLMs) trained on large-scale 2D data. We propose to represent 3D scenes as a hybrid of query-aligned rendered images and spatially enriched text descriptions, bridging the gap between 3D data and 2D-VLMs input formats. We propose two modules: the Perspective Adaptation Module, which dynamically selects viewpoints for query-relevant image rendering, and the Fusion Alignment Module, which integrates 2D images with 3D spatial descriptions to enhance object localization. Extensive experiments on ScanRefer and Nr3D demonstrate that our approach outperforms existing zero-shot methods by large margins. Notably, we exceed weakly supervised methods and rival some fully supervised ones, outperforming previous SOTA by 7.7% on ScanRefer and 7.1% on Nr3D, showcasing its effectiveness.
One Graph Model for Cross-domain Dynamic Link Prediction
This work proposes DyExpert, a dynamic graph model for cross-domain link prediction. It can explicitly model historical evolving processes to learn the evolution pattern of a specific downstream graph and subsequently make pattern-specific link predictions. DyExpert adopts a decode-only transformer and is capable of efficiently parallel training and inference by conditioned link generation that integrates both evolution modeling and link prediction. DyExpert is trained by extensive dynamic graphs across diverse domains, comprising 6M dynamic edges. Extensive experiments on eight untrained graphs demonstrate that DyExpert achieves state-of-the-art performance in cross-domain link prediction. Compared to the advanced baseline under the same setting, DyExpert achieves an average of 11.40% improvement Average Precision across eight graphs. More impressive, it surpasses the fully supervised performance of 8 advanced baselines on 6 untrained graphs.
CiteSum: Citation Text-guided Scientific Extreme Summarization and Domain Adaptation with Limited Supervision
Scientific extreme summarization (TLDR) aims to form ultra-short summaries of scientific papers. Previous efforts on curating scientific TLDR datasets failed to scale up due to the heavy human annotation and domain expertise required. In this paper, we propose a simple yet effective approach to automatically extracting TLDR summaries for scientific papers from their citation texts. Based on the proposed approach, we create a new benchmark CiteSum without human annotation, which is around 30 times larger than the previous human-curated dataset SciTLDR. We conduct a comprehensive analysis of CiteSum, examining its data characteristics and establishing strong baselines. We further demonstrate the usefulness of CiteSum by adapting models pre-trained on CiteSum (named CITES) to new tasks and domains with limited supervision. For scientific extreme summarization, CITES outperforms most fully-supervised methods on SciTLDR without any fine-tuning and obtains state-of-the-art results with only 128 examples. For news extreme summarization, CITES achieves significant gains on XSum over its base model (not pre-trained on CiteSum), e.g., +7.2 ROUGE-1 zero-shot performance and state-of-the-art few-shot performance. For news headline generation, CITES performs the best among unsupervised and zero-shot methods on Gigaword. Our dataset and code can be found at https://github.com/morningmoni/CiteSum.
Action Segmentation with Mixed Temporal Domain Adaptation
The main progress for action segmentation comes from densely-annotated data for fully-supervised learning. Since manual annotation for frame-level actions is time-consuming and challenging, we propose to exploit auxiliary unlabeled videos, which are much easier to obtain, by shaping this problem as a domain adaptation (DA) problem. Although various DA techniques have been proposed in recent years, most of them have been developed only for the spatial direction. Therefore, we propose Mixed Temporal Domain Adaptation (MTDA) to jointly align frame- and video-level embedded feature spaces across domains, and further integrate with the domain attention mechanism to focus on aligning the frame-level features with higher domain discrepancy, leading to more effective domain adaptation. Finally, we evaluate our proposed methods on three challenging datasets (GTEA, 50Salads, and Breakfast), and validate that MTDA outperforms the current state-of-the-art methods on all three datasets by large margins (e.g. 6.4% gain on F1@50 and 6.8% gain on the edit score for GTEA).
Annotator: A Generic Active Learning Baseline for LiDAR Semantic Segmentation
Active learning, a label-efficient paradigm, empowers models to interactively query an oracle for labeling new data. In the realm of LiDAR semantic segmentation, the challenges stem from the sheer volume of point clouds, rendering annotation labor-intensive and cost-prohibitive. This paper presents Annotator, a general and efficient active learning baseline, in which a voxel-centric online selection strategy is tailored to efficiently probe and annotate the salient and exemplar voxel girds within each LiDAR scan, even under distribution shift. Concretely, we first execute an in-depth analysis of several common selection strategies such as Random, Entropy, Margin, and then develop voxel confusion degree (VCD) to exploit the local topology relations and structures of point clouds. Annotator excels in diverse settings, with a particular focus on active learning (AL), active source-free domain adaptation (ASFDA), and active domain adaptation (ADA). It consistently delivers exceptional performance across LiDAR semantic segmentation benchmarks, spanning both simulation-to-real and real-to-real scenarios. Surprisingly, Annotator exhibits remarkable efficiency, requiring significantly fewer annotations, e.g., just labeling five voxels per scan in the SynLiDAR-to-SemanticKITTI task. This results in impressive performance, achieving 87.8% fully-supervised performance under AL, 88.5% under ASFDA, and 94.4% under ADA. We envision that Annotator will offer a simple, general, and efficient solution for label-efficient 3D applications. Project page: https://binhuixie.github.io/annotator-web
Three Pillars improving Vision Foundation Model Distillation for Lidar
Self-supervised image backbones can be used to address complex 2D tasks (e.g., semantic segmentation, object discovery) very efficiently and with little or no downstream supervision. Ideally, 3D backbones for lidar should be able to inherit these properties after distillation of these powerful 2D features. The most recent methods for image-to-lidar distillation on autonomous driving data show promising results, obtained thanks to distillation methods that keep improving. Yet, we still notice a large performance gap when measuring the quality of distilled and fully supervised features by linear probing. In this work, instead of focusing only on the distillation method, we study the effect of three pillars for distillation: the 3D backbone, the pretrained 2D backbones, and the pretraining dataset. In particular, thanks to our scalable distillation method named ScaLR, we show that scaling the 2D and 3D backbones and pretraining on diverse datasets leads to a substantial improvement of the feature quality. This allows us to significantly reduce the gap between the quality of distilled and fully-supervised 3D features, and to improve the robustness of the pretrained backbones to domain gaps and perturbations.
Nebula: Self-Attention for Dynamic Malware Analysis
Dynamic analysis enables detecting Windows malware by executing programs in a controlled environment and logging their actions. Previous work has proposed training machine learning models, i.e., convolutional and long short-term memory networks, on homogeneous input features like runtime APIs to either detect or classify malware, neglecting other relevant information coming from heterogeneous data like network and file operations. To overcome these issues, we introduce Nebula, a versatile, self-attention Transformer-based neural architecture that generalizes across different behavioral representations and formats, combining diverse information from dynamic log reports. Nebula is composed by several components needed to tokenize, filter, normalize and encode data to feed the transformer architecture. We firstly perform a comprehensive ablation study to evaluate their impact on the performance of the whole system, highlighting which components can be used as-is, and which must be enriched with specific domain knowledge. We perform extensive experiments on both malware detection and classification tasks, using three datasets acquired from different dynamic analyses platforms, show that, on average, Nebula outperforms state-of-the-art models at low false positive rates, with a peak of 12% improvement. Moreover, we showcase how self-supervised learning pre-training matches the performance of fully-supervised models with only 20% of training data, and we inspect the output of Nebula through explainable AI techniques, pinpointing how attention is focusing on specific tokens correlated to malicious activities of malware families. To foster reproducibility, we open-source our findings and models at https://github.com/dtrizna/nebula.
Object-Centric Multiple Object Tracking
Unsupervised object-centric learning methods allow the partitioning of scenes into entities without additional localization information and are excellent candidates for reducing the annotation burden of multiple-object tracking (MOT) pipelines. Unfortunately, they lack two key properties: objects are often split into parts and are not consistently tracked over time. In fact, state-of-the-art models achieve pixel-level accuracy and temporal consistency by relying on supervised object detection with additional ID labels for the association through time. This paper proposes a video object-centric model for MOT. It consists of an index-merge module that adapts the object-centric slots into detection outputs and an object memory module that builds complete object prototypes to handle occlusions. Benefited from object-centric learning, we only require sparse detection labels (0%-6.25%) for object localization and feature binding. Relying on our self-supervised Expectation-Maximization-inspired loss for object association, our approach requires no ID labels. Our experiments significantly narrow the gap between the existing object-centric model and the fully supervised state-of-the-art and outperform several unsupervised trackers.
Referring Image Segmentation Using Text Supervision
Existing Referring Image Segmentation (RIS) methods typically require expensive pixel-level or box-level annotations for supervision. In this paper, we observe that the referring texts used in RIS already provide sufficient information to localize the target object. Hence, we propose a novel weakly-supervised RIS framework to formulate the target localization problem as a classification process to differentiate between positive and negative text expressions. While the referring text expressions for an image are used as positive expressions, the referring text expressions from other images can be used as negative expressions for this image. Our framework has three main novelties. First, we propose a bilateral prompt method to facilitate the classification process, by harmonizing the domain discrepancy between visual and linguistic features. Second, we propose a calibration method to reduce noisy background information and improve the correctness of the response maps for target object localization. Third, we propose a positive response map selection strategy to generate high-quality pseudo-labels from the enhanced response maps, for training a segmentation network for RIS inference. For evaluation, we propose a new metric to measure localization accuracy. Experiments on four benchmarks show that our framework achieves promising performances to existing fully-supervised RIS methods while outperforming state-of-the-art weakly-supervised methods adapted from related areas. Code is available at https://github.com/fawnliu/TRIS.
Point-Query Quadtree for Crowd Counting, Localization, and More
We show that crowd counting can be viewed as a decomposable point querying process. This formulation enables arbitrary points as input and jointly reasons whether the points are crowd and where they locate. The querying processing, however, raises an underlying problem on the number of necessary querying points. Too few imply underestimation; too many increase computational overhead. To address this dilemma, we introduce a decomposable structure, i.e., the point-query quadtree, and propose a new counting model, termed Point quEry Transformer (PET). PET implements decomposable point querying via data-dependent quadtree splitting, where each querying point could split into four new points when necessary, thus enabling dynamic processing of sparse and dense regions. Such a querying process yields an intuitive, universal modeling of crowd as both the input and output are interpretable and steerable. We demonstrate the applications of PET on a number of crowd-related tasks, including fully-supervised crowd counting and localization, partial annotation learning, and point annotation refinement, and also report state-of-the-art performance. For the first time, we show that a single counting model can address multiple crowd-related tasks across different learning paradigms. Code is available at https://github.com/cxliu0/PET.
LightDepth: Single-View Depth Self-Supervision from Illumination Decline
Single-view depth estimation can be remarkably effective if there is enough ground-truth depth data for supervised training. However, there are scenarios, especially in medicine in the case of endoscopies, where such data cannot be obtained. In such cases, multi-view self-supervision and synthetic-to-real transfer serve as alternative approaches, however, with a considerable performance reduction in comparison to supervised case. Instead, we propose a single-view self-supervised method that achieves a performance similar to the supervised case. In some medical devices, such as endoscopes, the camera and light sources are co-located at a small distance from the target surfaces. Thus, we can exploit that, for any given albedo and surface orientation, pixel brightness is inversely proportional to the square of the distance to the surface, providing a strong single-view self-supervisory signal. In our experiments, our self-supervised models deliver accuracies comparable to those of fully supervised ones, while being applicable without depth ground-truth data.
SkeletonMAE: Graph-based Masked Autoencoder for Skeleton Sequence Pre-training
Skeleton sequence representation learning has shown great advantages for action recognition due to its promising ability to model human joints and topology. However, the current methods usually require sufficient labeled data for training computationally expensive models, which is labor-intensive and time-consuming. Moreover, these methods ignore how to utilize the fine-grained dependencies among different skeleton joints to pre-train an efficient skeleton sequence learning model that can generalize well across different datasets. In this paper, we propose an efficient skeleton sequence learning framework, named Skeleton Sequence Learning (SSL). To comprehensively capture the human pose and obtain discriminative skeleton sequence representation, we build an asymmetric graph-based encoder-decoder pre-training architecture named SkeletonMAE, which embeds skeleton joint sequence into Graph Convolutional Network (GCN) and reconstructs the masked skeleton joints and edges based on the prior human topology knowledge. Then, the pre-trained SkeletonMAE encoder is integrated with the Spatial-Temporal Representation Learning (STRL) module to build the SSL framework. Extensive experimental results show that our SSL generalizes well across different datasets and outperforms the state-of-the-art self-supervised skeleton-based action recognition methods on FineGym, Diving48, NTU 60 and NTU 120 datasets. Additionally, we obtain comparable performance to some fully supervised methods. The code is avaliable at https://github.com/HongYan1123/SkeletonMAE.
ScatterNeRF: Seeing Through Fog with Physically-Based Inverse Neural Rendering
Vision in adverse weather conditions, whether it be snow, rain, or fog is challenging. In these scenarios, scattering and attenuation severly degrades image quality. Handling such inclement weather conditions, however, is essential to operate autonomous vehicles, drones and robotic applications where human performance is impeded the most. A large body of work explores removing weather-induced image degradations with dehazing methods. Most methods rely on single images as input and struggle to generalize from synthetic fully-supervised training approaches or to generate high fidelity results from unpaired real-world datasets. With data as bottleneck and most of today's training data relying on good weather conditions with inclement weather as outlier, we rely on an inverse rendering approach to reconstruct the scene content. We introduce ScatterNeRF, a neural rendering method which adequately renders foggy scenes and decomposes the fog-free background from the participating media-exploiting the multiple views from a short automotive sequence without the need for a large training data corpus. Instead, the rendering approach is optimized on the multi-view scene itself, which can be typically captured by an autonomous vehicle, robot or drone during operation. Specifically, we propose a disentangled representation for the scattering volume and the scene objects, and learn the scene reconstruction with physics-inspired losses. We validate our method by capturing multi-view In-the-Wild data and controlled captures in a large-scale fog chamber.
Evaluating Synthetic Pre-Training for Handwriting Processing Tasks
In this work, we explore massive pre-training on synthetic word images for enhancing the performance on four benchmark downstream handwriting analysis tasks. To this end, we build a large synthetic dataset of word images rendered in several handwriting fonts, which offers a complete supervision signal. We use it to train a simple convolutional neural network (ConvNet) with a fully supervised objective. The vector representations of the images obtained from the pre-trained ConvNet can then be considered as encodings of the handwriting style. We exploit such representations for Writer Retrieval, Writer Identification, Writer Verification, and Writer Classification and demonstrate that our pre-training strategy allows extracting rich representations of the writers' style that enable the aforementioned tasks with competitive results with respect to task-specific State-of-the-Art approaches.
Unsupervised Self-Driving Attention Prediction via Uncertainty Mining and Knowledge Embedding
Predicting attention regions of interest is an important yet challenging task for self-driving systems. Existing methodologies rely on large-scale labeled traffic datasets that are labor-intensive to obtain. Besides, the huge domain gap between natural scenes and traffic scenes in current datasets also limits the potential for model training. To address these challenges, we are the first to introduce an unsupervised way to predict self-driving attention by uncertainty modeling and driving knowledge integration. Our approach's Uncertainty Mining Branch (UMB) discovers commonalities and differences from multiple generated pseudo-labels achieved from models pre-trained on natural scenes by actively measuring the uncertainty. Meanwhile, our Knowledge Embedding Block (KEB) bridges the domain gap by incorporating driving knowledge to adaptively refine the generated pseudo-labels. Quantitative and qualitative results with equivalent or even more impressive performance compared to fully-supervised state-of-the-art approaches across all three public datasets demonstrate the effectiveness of the proposed method and the potential of this direction. The code will be made publicly available.
Active Learning Through a Covering Lens
Deep active learning aims to reduce the annotation cost for the training of deep models, which is notoriously data-hungry. Until recently, deep active learning methods were ineffectual in the low-budget regime, where only a small number of examples are annotated. The situation has been alleviated by recent advances in representation and self-supervised learning, which impart the geometry of the data representation with rich information about the points. Taking advantage of this progress, we study the problem of subset selection for annotation through a "covering" lens, proposing ProbCover - a new active learning algorithm for the low budget regime, which seeks to maximize Probability Coverage. We then describe a dual way to view the proposed formulation, from which one can derive strategies suitable for the high budget regime of active learning, related to existing methods like Coreset. We conclude with extensive experiments, evaluating ProbCover in the low-budget regime. We show that our principled active learning strategy improves the state-of-the-art in the low-budget regime in several image recognition benchmarks. This method is especially beneficial in the semi-supervised setting, allowing state-of-the-art semi-supervised methods to match the performance of fully supervised methods, while using much fewer labels nonetheless. Code is available at https://github.com/avihu111/TypiClust.
DeViDe: Faceted medical knowledge for improved medical vision-language pre-training
Vision-language pre-training for chest X-rays has made significant strides, primarily by utilizing paired radiographs and radiology reports. However, existing approaches often face challenges in encoding medical knowledge effectively. While radiology reports provide insights into the current disease manifestation, medical definitions (as used by contemporary methods) tend to be overly abstract, creating a gap in knowledge. To address this, we propose DeViDe, a novel transformer-based method that leverages radiographic descriptions from the open web. These descriptions outline general visual characteristics of diseases in radiographs, and when combined with abstract definitions and radiology reports, provide a holistic snapshot of knowledge. DeViDe incorporates three key features for knowledge-augmented vision language alignment: First, a large-language model-based augmentation is employed to homogenise medical knowledge from diverse sources. Second, this knowledge is aligned with image information at various levels of granularity. Third, a novel projection layer is proposed to handle the complexity of aligning each image with multiple descriptions arising in a multi-label setting. In zero-shot settings, DeViDe performs comparably to fully supervised models on external datasets and achieves state-of-the-art results on three large-scale datasets. Additionally, fine-tuning DeViDe on four downstream tasks and six segmentation tasks showcases its superior performance across data from diverse distributions.
Don't Stop Pretraining? Make Prompt-based Fine-tuning Powerful Learner
Language models (LMs) trained on vast quantities of unlabelled data have greatly advanced the field of natural language processing (NLP). In this study, we re-visit the widely accepted notion in NLP that continued pre-training LMs on task-related texts improves the performance of fine-tuning (FT) in downstream tasks. Through experiments on eight single-sentence tasks and eight sentence-pair tasks in both semi-supervised and fully-supervised settings, we find that conventional continued pre-training does not consistently provide benefits and can even be detrimental for sentence-pair tasks or when prompt-based FT is used. To tackle these issues, we propose Prompt-based Continued Pre-training (PCP), which combines the idea of instruction tuning with conventional continued pre-training. Our approach aims to improve the performance of prompt-based FT by presenting both task-related texts and prompt templates to LMs through unsupervised pre-training objectives before fine-tuning for the target task. Our empirical evaluations on 21 benchmarks demonstrate that the PCP consistently improves the performance of state-of-the-art prompt-based FT approaches (up to 20.1% absolute) in both semi-supervised and fully-supervised settings, even with only hundreds of unlabelled examples. Additionally, prompt-based FT with the PCP outperforms state-of-the-art semi-supervised approaches with greater simplicity, eliminating the need for an iterative process and extra data augmentation. Our further analysis explores the performance lower bound of the PCP and reveals that the advantages of PCP persist across different sizes of models and datasets.
MetaOcc: Surround-View 4D Radar and Camera Fusion Framework for 3D Occupancy Prediction with Dual Training Strategies
3D occupancy prediction is crucial for autonomous driving perception. Fusion of 4D radar and camera provides a potential solution of robust occupancy prediction on serve weather with least cost. How to achieve effective multi-modal feature fusion and reduce annotation costs remains significant challenges. In this work, we propose MetaOcc, a novel multi-modal occupancy prediction framework that fuses surround-view cameras and 4D radar for comprehensive environmental perception. We first design a height self-attention module for effective 3D feature extraction from sparse radar points. Then, a local-global fusion mechanism is proposed to adaptively capture modality contributions while handling spatio-temporal misalignments. Temporal alignment and fusion module is employed to further aggregate historical feature. Furthermore, we develop a semi-supervised training procedure leveraging open-set segmentor and geometric constraints for pseudo-label generation, enabling robust perception with limited annotations. Extensive experiments on OmniHD-Scenes dataset demonstrate that MetaOcc achieves state-of-the-art performance, surpassing previous methods by significant margins. Notably, as the first semi-supervised 4D radar and camera fusion-based occupancy prediction approach, MetaOcc maintains 92.5% of the fully-supervised performance while using only 50% of ground truth annotations, establishing a new benchmark for multi-modal 3D occupancy prediction. Code and data are available at https://github.com/LucasYang567/MetaOcc.
FDGATII : Fast Dynamic Graph Attention with Initial Residual and Identity Mapping
While Graph Neural Networks have gained popularity in multiple domains, graph-structured input remains a major challenge due to (a) over-smoothing, (b) noisy neighbours (heterophily), and (c) the suspended animation problem. To address all these problems simultaneously, we propose a novel graph neural network FDGATII, inspired by attention mechanism's ability to focus on selective information supplemented with two feature preserving mechanisms. FDGATII combines Initial Residuals and Identity Mapping with the more expressive dynamic self-attention to handle noise prevalent from the neighbourhoods in heterophilic data sets. By using sparse dynamic attention, FDGATII is inherently parallelizable in design, whist efficient in operation; thus theoretically able to scale to arbitrary graphs with ease. Our approach has been extensively evaluated on 7 datasets. We show that FDGATII outperforms GAT and GCN based benchmarks in accuracy and performance on fully supervised tasks, obtaining state-of-the-art results on Chameleon and Cornell datasets with zero domain-specific graph pre-processing, and demonstrate its versatility and fairness.
MPN: Multimodal Parallel Network for Audio-Visual Event Localization
Audio-visual event localization aims to localize an event that is both audible and visible in the wild, which is a widespread audio-visual scene analysis task for unconstrained videos. To address this task, we propose a Multimodal Parallel Network (MPN), which can perceive global semantics and unmixed local information parallelly. Specifically, our MPN framework consists of a classification subnetwork to predict event categories and a localization subnetwork to predict event boundaries. The classification subnetwork is constructed by the Multimodal Co-attention Module (MCM) and obtains global contexts. The localization subnetwork consists of Multimodal Bottleneck Attention Module (MBAM), which is designed to extract fine-grained segment-level contents. Extensive experiments demonstrate that our framework achieves the state-of-the-art performance both in fully supervised and weakly supervised settings on the Audio-Visual Event (AVE) dataset.
Exploiting saliency for object segmentation from image level labels
There have been remarkable improvements in the semantic labelling task in the recent years. However, the state of the art methods rely on large-scale pixel-level annotations. This paper studies the problem of training a pixel-wise semantic labeller network from image-level annotations of the present object classes. Recently, it has been shown that high quality seeds indicating discriminative object regions can be obtained from image-level labels. Without additional information, obtaining the full extent of the object is an inherently ill-posed problem due to co-occurrences. We propose using a saliency model as additional information and hereby exploit prior knowledge on the object extent and image statistics. We show how to combine both information sources in order to recover 80% of the fully supervised performance - which is the new state of the art in weakly supervised training for pixel-wise semantic labelling. The code is available at https://goo.gl/KygSeb.
Foreground-Background Separation through Concept Distillation from Generative Image Foundation Models
Curating datasets for object segmentation is a difficult task. With the advent of large-scale pre-trained generative models, conditional image generation has been given a significant boost in result quality and ease of use. In this paper, we present a novel method that enables the generation of general foreground-background segmentation models from simple textual descriptions, without requiring segmentation labels. We leverage and explore pre-trained latent diffusion models, to automatically generate weak segmentation masks for concepts and objects. The masks are then used to fine-tune the diffusion model on an inpainting task, which enables fine-grained removal of the object, while at the same time providing a synthetic foreground and background dataset. We demonstrate that using this method beats previous methods in both discriminative and generative performance and closes the gap with fully supervised training while requiring no pixel-wise object labels. We show results on the task of segmenting four different objects (humans, dogs, cars, birds) and a use case scenario in medical image analysis. The code is available at https://github.com/MischaD/fobadiffusion.
HERMES: temporal-coHERent long-forM understanding with Episodes and Semantics
Existing research often treats long-form videos as extended short videos, leading to several limitations: inadequate capture of long-range dependencies, inefficient processing of redundant information, and failure to extract high-level semantic concepts. To address these issues, we propose a novel approach that more accurately reflects human cognition. This paper introduces HERMES: temporal-coHERent long-forM understanding with Episodes and Semantics, a model that simulates episodic memory accumulation to capture action sequences and reinforces them with semantic knowledge dispersed throughout the video. Our work makes two key contributions: First, we develop an Episodic COmpressor (ECO) that efficiently aggregates crucial representations from micro to semi-macro levels, overcoming the challenge of long-range dependencies. Second, we propose a Semantics ReTRiever (SeTR) that enhances these aggregated representations with semantic information by focusing on the broader context, dramatically reducing feature dimensionality while preserving relevant macro-level information. This addresses the issues of redundancy and lack of high-level concept extraction. Extensive experiments demonstrate that HERMES achieves state-of-the-art performance across multiple long-video understanding benchmarks in both zero-shot and fully-supervised settings.
SAMPro3D: Locating SAM Prompts in 3D for Zero-Shot Scene Segmentation
We introduce SAMPro3D for zero-shot 3D indoor scene segmentation. Given the 3D point cloud and multiple posed 2D frames of 3D scenes, our approach segments 3D scenes by applying the pretrained Segment Anything Model (SAM) to 2D frames. Our key idea involves locating 3D points in scenes as natural 3D prompts to align their projected pixel prompts across frames, ensuring frame-consistency in both pixel prompts and their SAM-predicted masks. Moreover, we suggest filtering out low-quality 3D prompts based on feedback from all 2D frames, for enhancing segmentation quality. We also propose to consolidate different 3D prompts if they are segmenting the same object, bringing a more comprehensive segmentation. Notably, our method does not require any additional training on domain-specific data, enabling us to preserve the zero-shot power of SAM. Extensive qualitative and quantitative results show that our method consistently achieves higher quality and more diverse segmentation than previous zero-shot or fully supervised approaches, and in many cases even surpasses human-level annotations. The project page can be accessed at https://mutianxu.github.io/sampro3d/.
Exploring Different Levels of Supervision for Detecting and Localizing Solar Panels on Remote Sensing Imagery
This study investigates object presence detection and localization in remote sensing imagery, focusing on solar panel recognition. We explore different levels of supervision, evaluating three models: a fully supervised object detector, a weakly supervised image classifier with CAM-based localization, and a minimally supervised anomaly detector. The classifier excels in binary presence detection (0.79 F1-score), while the object detector (0.72) offers precise localization. The anomaly detector requires more data for viable performance. Fusion of model results shows potential accuracy gains. CAM impacts localization modestly, with GradCAM, GradCAM++, and HiResCAM yielding superior results. Notably, the classifier remains robust with less data, in contrast to the object detector.
Zero-Shot Audio Captioning Using Soft and Hard Prompts
In traditional audio captioning methods, a model is usually trained in a fully supervised manner using a human-annotated dataset containing audio-text pairs and then evaluated on the test sets from the same dataset. Such methods have two limitations. First, these methods are often data-hungry and require time-consuming and expensive human annotations to obtain audio-text pairs. Second, these models often suffer from performance degradation in cross-domain scenarios, i.e., when the input audio comes from a different domain than the training set, which, however, has received little attention. We propose an effective audio captioning method based on the contrastive language-audio pre-training (CLAP) model to address these issues. Our proposed method requires only textual data for training, enabling the model to generate text from the textual feature in the cross-modal semantic space.In the inference stage, the model generates the descriptive text for the given audio from the audio feature by leveraging the audio-text alignment from CLAP.We devise two strategies to mitigate the discrepancy between text and audio embeddings: a mixed-augmentation-based soft prompt and a retrieval-based acoustic-aware hard prompt. These approaches are designed to enhance the generalization performance of our proposed model, facilitating the model to generate captions more robustly and accurately. Extensive experiments on AudioCaps and Clotho benchmarks show the effectiveness of our proposed method, which outperforms other zero-shot audio captioning approaches for in-domain scenarios and outperforms the compared methods for cross-domain scenarios, underscoring the generalization ability of our method.
Label-Agnostic Forgetting: A Supervision-Free Unlearning in Deep Models
Machine unlearning aims to remove information derived from forgotten data while preserving that of the remaining dataset in a well-trained model. With the increasing emphasis on data privacy, several approaches to machine unlearning have emerged. However, these methods typically rely on complete supervision throughout the unlearning process. Unfortunately, obtaining such supervision, whether for the forgetting or remaining data, can be impractical due to the substantial cost associated with annotating real-world datasets. This challenge prompts us to propose a supervision-free unlearning approach that operates without the need for labels during the unlearning process. Specifically, we introduce a variational approach to approximate the distribution of representations for the remaining data. Leveraging this approximation, we adapt the original model to eliminate information from the forgotten data at the representation level. To further address the issue of lacking supervision information, which hinders alignment with ground truth, we introduce a contrastive loss to facilitate the matching of representations between the remaining data and those of the original model, thus preserving predictive performance. Experimental results across various unlearning tasks demonstrate the effectiveness of our proposed method, Label-Agnostic Forgetting (LAF) without using any labels, which achieves comparable performance to state-of-the-art methods that rely on full supervision information. Furthermore, our approach excels in semi-supervised scenarios, leveraging limited supervision information to outperform fully supervised baselines. This work not only showcases the viability of supervision-free unlearning in deep models but also opens up a new possibility for future research in unlearning at the representation level.
Stance Reasoner: Zero-Shot Stance Detection on Social Media with Explicit Reasoning
Social media platforms are rich sources of opinionated content. Stance detection allows the automatic extraction of users' opinions on various topics from such content. We focus on zero-shot stance detection, where the model's success relies on (a) having knowledge about the target topic; and (b) learning general reasoning strategies that can be employed for new topics. We present Stance Reasoner, an approach to zero-shot stance detection on social media that leverages explicit reasoning over background knowledge to guide the model's inference about the document's stance on a target. Specifically, our method uses a pre-trained language model as a source of world knowledge, with the chain-of-thought in-context learning approach to generate intermediate reasoning steps. Stance Reasoner outperforms the current state-of-the-art models on 3 Twitter datasets, including fully supervised models. It can better generalize across targets, while at the same time providing explicit and interpretable explanations for its predictions.
SeiT++: Masked Token Modeling Improves Storage-efficient Training
Recent advancements in Deep Neural Network (DNN) models have significantly improved performance across computer vision tasks. However, achieving highly generalizable and high-performing vision models requires expansive datasets, resulting in significant storage requirements. This storage challenge is a critical bottleneck for scaling up models. A recent breakthrough by SeiT proposed the use of Vector-Quantized (VQ) feature vectors (i.e., tokens) as network inputs for vision classification. This approach achieved 90% of the performance of a model trained on full-pixel images with only 1% of the storage. While SeiT needs labeled data, its potential in scenarios beyond fully supervised learning remains largely untapped. In this paper, we extend SeiT by integrating Masked Token Modeling (MTM) for self-supervised pre-training. Recognizing that self-supervised approaches often demand more data due to the lack of labels, we introduce TokenAdapt and ColorAdapt. These methods facilitate comprehensive token-friendly data augmentation, effectively addressing the increased data requirements of self-supervised learning. We evaluate our approach across various scenarios, including storage-efficient ImageNet-1k classification, fine-grained classification, ADE-20k semantic segmentation, and robustness benchmarks. Experimental results demonstrate consistent performance improvement in diverse experiments, validating the effectiveness of our method. Code is available at https://github.com/naver-ai/seit.
OST: Refining Text Knowledge with Optimal Spatio-Temporal Descriptor for General Video Recognition
Due to the resource-intensive nature of training vision-language models on expansive video data, a majority of studies have centered on adapting pre-trained image-language models to the video domain. Dominant pipelines propose to tackle the visual discrepancies with additional temporal learners while overlooking the substantial discrepancy for web-scaled descriptive narratives and concise action category names, leading to less distinct semantic space and potential performance limitations. In this work, we prioritize the refinement of text knowledge to facilitate generalizable video recognition. To address the limitations of the less distinct semantic space of category names, we prompt a large language model (LLM) to augment action class names into Spatio-Temporal Descriptors thus bridging the textual discrepancy and serving as a knowledge base for general recognition. Moreover, to assign the best descriptors with different video instances, we propose Optimal Descriptor Solver, forming the video recognition problem as solving the optimal matching flow across frame-level representations and descriptors. Comprehensive evaluations in zero-shot, few-shot, and fully supervised video recognition highlight the effectiveness of our approach. Our best model achieves a state-of-the-art zero-shot accuracy of 75.1% on Kinetics-600.
SNIP: Bridging Mathematical Symbolic and Numeric Realms with Unified Pre-training
In an era where symbolic mathematical equations are indispensable for modeling complex natural phenomena, scientific inquiry often involves collecting observations and translating them into mathematical expressions. Recently, deep learning has emerged as a powerful tool for extracting insights from data. However, existing models typically specialize in either numeric or symbolic domains, and are usually trained in a supervised manner tailored to specific tasks. This approach neglects the substantial benefits that could arise from a task-agnostic unified understanding between symbolic equations and their numeric counterparts. To bridge the gap, we introduce SNIP, a Symbolic-Numeric Integrated Pre-training, which employs joint contrastive learning between symbolic and numeric domains, enhancing their mutual similarities in the pre-trained embeddings. By performing latent space analysis, we observe that SNIP provides cross-domain insights into the representations, revealing that symbolic supervision enhances the embeddings of numeric data and vice versa. We evaluate SNIP across diverse tasks, including symbolic-to-numeric mathematical property prediction and numeric-to-symbolic equation discovery, commonly known as symbolic regression. Results show that SNIP effectively transfers to various tasks, consistently outperforming fully supervised baselines and competing strongly with established task-specific methods, especially in few-shot learning scenarios where available data is limited.
Towards LLM-based Fact Verification on News Claims with a Hierarchical Step-by-Step Prompting Method
While large pre-trained language models (LLMs) have shown their impressive capabilities in various NLP tasks, they are still under-explored in the misinformation domain. In this paper, we examine LLMs with in-context learning (ICL) for news claim verification, and find that only with 4-shot demonstration examples, the performance of several prompting methods can be comparable with previous supervised models. To further boost performance, we introduce a Hierarchical Step-by-Step (HiSS) prompting method which directs LLMs to separate a claim into several subclaims and then verify each of them via multiple questions-answering steps progressively. Experiment results on two public misinformation datasets show that HiSS prompting outperforms state-of-the-art fully-supervised approach and strong few-shot ICL-enabled baselines.
CONVERSER: Few-Shot Conversational Dense Retrieval with Synthetic Data Generation
Conversational search provides a natural interface for information retrieval (IR). Recent approaches have demonstrated promising results in applying dense retrieval to conversational IR. However, training dense retrievers requires large amounts of in-domain paired data. This hinders the development of conversational dense retrievers, as abundant in-domain conversations are expensive to collect. In this paper, we propose CONVERSER, a framework for training conversational dense retrievers with at most 6 examples of in-domain dialogues. Specifically, we utilize the in-context learning capability of large language models to generate conversational queries given a passage in the retrieval corpus. Experimental results on conversational retrieval benchmarks OR-QuAC and TREC CAsT 19 show that the proposed CONVERSER achieves comparable performance to fully-supervised models, demonstrating the effectiveness of our proposed framework in few-shot conversational dense retrieval. All source code and generated datasets are available at https://github.com/MiuLab/CONVERSER
The RoboDepth Challenge: Methods and Advancements Towards Robust Depth Estimation
Accurate depth estimation under out-of-distribution (OoD) scenarios, such as adverse weather conditions, sensor failure, and noise contamination, is desirable for safety-critical applications. Existing depth estimation systems, however, suffer inevitably from real-world corruptions and perturbations and are struggled to provide reliable depth predictions under such cases. In this paper, we summarize the winning solutions from the RoboDepth Challenge -- an academic competition designed to facilitate and advance robust OoD depth estimation. This challenge was developed based on the newly established KITTI-C and NYUDepth2-C benchmarks. We hosted two stand-alone tracks, with an emphasis on robust self-supervised and robust fully-supervised depth estimation, respectively. Out of more than two hundred participants, nine unique and top-performing solutions have appeared, with novel designs ranging from the following aspects: spatial- and frequency-domain augmentations, masked image modeling, image restoration and super-resolution, adversarial training, diffusion-based noise suppression, vision-language pre-training, learned model ensembling, and hierarchical feature enhancement. Extensive experimental analyses along with insightful observations are drawn to better understand the rationale behind each design. We hope this challenge could lay a solid foundation for future research on robust and reliable depth estimation and beyond. The datasets, competition toolkit, workshop recordings, and source code from the winning teams are publicly available on the challenge website.
CTVIS: Consistent Training for Online Video Instance Segmentation
The discrimination of instance embeddings plays a vital role in associating instances across time for online video instance segmentation (VIS). Instance embedding learning is directly supervised by the contrastive loss computed upon the contrastive items (CIs), which are sets of anchor/positive/negative embeddings. Recent online VIS methods leverage CIs sourced from one reference frame only, which we argue is insufficient for learning highly discriminative embeddings. Intuitively, a possible strategy to enhance CIs is replicating the inference phase during training. To this end, we propose a simple yet effective training strategy, called Consistent Training for Online VIS (CTVIS), which devotes to aligning the training and inference pipelines in terms of building CIs. Specifically, CTVIS constructs CIs by referring inference the momentum-averaged embedding and the memory bank storage mechanisms, and adding noise to the relevant embeddings. Such an extension allows a reliable comparison between embeddings of current instances and the stable representations of historical instances, thereby conferring an advantage in modeling VIS challenges such as occlusion, re-identification, and deformation. Empirically, CTVIS outstrips the SOTA VIS models by up to +5.0 points on three VIS benchmarks, including YTVIS19 (55.1% AP), YTVIS21 (50.1% AP) and OVIS (35.5% AP). Furthermore, we find that pseudo-videos transformed from images can train robust models surpassing fully-supervised ones.
KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection
Achieving a reliable LiDAR-based object detector in autonomous driving is paramount, but its success hinges on obtaining large amounts of precise 3D annotations. Active learning (AL) seeks to mitigate the annotation burden through algorithms that use fewer labels and can attain performance comparable to fully supervised learning. Although AL has shown promise, current approaches prioritize the selection of unlabeled point clouds with high uncertainty and/or diversity, leading to the selection of more instances for labeling and reduced computational efficiency. In this paper, we resort to a novel kernel coding rate maximization (KECOR) strategy which aims to identify the most informative point clouds to acquire labels through the lens of information theory. Greedy search is applied to seek desired point clouds that can maximize the minimal number of bits required to encode the latent features. To determine the uniqueness and informativeness of the selected samples from the model perspective, we construct a proxy network of the 3D detector head and compute the outer product of Jacobians from all proxy layers to form the empirical neural tangent kernel (NTK) matrix. To accommodate both one-stage (i.e., SECOND) and two-stage detectors (i.e., PVRCNN), we further incorporate the classification entropy maximization and well trade-off between detection performance and the total number of bounding boxes selected for annotation. Extensive experiments conducted on two 3D benchmarks and a 2D detection dataset evidence the superiority and versatility of the proposed approach. Our results show that approximately 44% box-level annotation costs and 26% computational time are reduced compared to the state-of-the-art AL method, without compromising detection performance.
SDC-UDA: Volumetric Unsupervised Domain Adaptation Framework for Slice-Direction Continuous Cross-Modality Medical Image Segmentation
Recent advances in deep learning-based medical image segmentation studies achieve nearly human-level performance in fully supervised manner. However, acquiring pixel-level expert annotations is extremely expensive and laborious in medical imaging fields. Unsupervised domain adaptation (UDA) can alleviate this problem, which makes it possible to use annotated data in one imaging modality to train a network that can successfully perform segmentation on target imaging modality with no labels. In this work, we propose SDC-UDA, a simple yet effective volumetric UDA framework for slice-direction continuous cross-modality medical image segmentation which combines intra- and inter-slice self-attentive image translation, uncertainty-constrained pseudo-label refinement, and volumetric self-training. Our method is distinguished from previous methods on UDA for medical image segmentation in that it can obtain continuous segmentation in the slice direction, thereby ensuring higher accuracy and potential in clinical practice. We validate SDC-UDA with multiple publicly available cross-modality medical image segmentation datasets and achieve state-of-the-art segmentation performance, not to mention the superior slice-direction continuity of prediction compared to previous studies.
Monte Carlo Linear Clustering with Single-Point Supervision is Enough for Infrared Small Target Detection
Single-frame infrared small target (SIRST) detection aims at separating small targets from clutter backgrounds on infrared images. Recently, deep learning based methods have achieved promising performance on SIRST detection, but at the cost of a large amount of training data with expensive pixel-level annotations. To reduce the annotation burden, we propose the first method to achieve SIRST detection with single-point supervision. The core idea of this work is to recover the per-pixel mask of each target from the given single point label by using clustering approaches, which looks simple but is indeed challenging since targets are always insalient and accompanied with background clutters. To handle this issue, we introduce randomness to the clustering process by adding noise to the input images, and then obtain much more reliable pseudo masks by averaging the clustered results. Thanks to this "Monte Carlo" clustering approach, our method can accurately recover pseudo masks and thus turn arbitrary fully supervised SIRST detection networks into weakly supervised ones with only single point annotation. Experiments on four datasets demonstrate that our method can be applied to existing SIRST detection networks to achieve comparable performance with their fully supervised counterparts, which reveals that single-point supervision is strong enough for SIRST detection. Our code will be available at: https://github.com/YeRen123455/SIRST-Single-Point-Supervision.
Audio-Visual Segmentation with Semantics
We propose a new problem called audio-visual segmentation (AVS), in which the goal is to output a pixel-level map of the object(s) that produce sound at the time of the image frame. To facilitate this research, we construct the first audio-visual segmentation benchmark, i.e., AVSBench, providing pixel-wise annotations for sounding objects in audible videos. It contains three subsets: AVSBench-object (Single-source subset, Multi-sources subset) and AVSBench-semantic (Semantic-labels subset). Accordingly, three settings are studied: 1) semi-supervised audio-visual segmentation with a single sound source; 2) fully-supervised audio-visual segmentation with multiple sound sources, and 3) fully-supervised audio-visual semantic segmentation. The first two settings need to generate binary masks of sounding objects indicating pixels corresponding to the audio, while the third setting further requires generating semantic maps indicating the object category. To deal with these problems, we propose a new baseline method that uses a temporal pixel-wise audio-visual interaction module to inject audio semantics as guidance for the visual segmentation process. We also design a regularization loss to encourage audio-visual mapping during training. Quantitative and qualitative experiments on AVSBench compare our approach to several existing methods for related tasks, demonstrating that the proposed method is promising for building a bridge between the audio and pixel-wise visual semantics. Code is available at https://github.com/OpenNLPLab/AVSBench. Online benchmark is available at http://www.avlbench.opennlplab.cn.
Collaborative Propagation on Multiple Instance Graphs for 3D Instance Segmentation with Single-point Supervision
Instance segmentation on 3D point clouds has been attracting increasing attention due to its wide applications, especially in scene understanding areas. However, most existing methods operate on fully annotated data while manually preparing ground-truth labels at point-level is very cumbersome and labor-intensive. To address this issue, we propose a novel weakly supervised method RWSeg that only requires labeling one object with one point. With these sparse weak labels, we introduce a unified framework with two branches to propagate semantic and instance information respectively to unknown regions using self-attention and a cross-graph random walk method. Specifically, we propose a Cross-graph Competing Random Walks (CRW) algorithm that encourages competition among different instance graphs to resolve ambiguities in closely placed objects, improving instance assignment accuracy. RWSeg generates high-quality instance-level pseudo labels. Experimental results on ScanNet-v2 and S3DIS datasets show that our approach achieves comparable performance with fully-supervised methods and outperforms previous weakly-supervised methods by a substantial margin.
Overcoming Catastrophic Forgetting in Zero-Shot Cross-Lingual Generation
In this paper, we explore the challenging problem of performing a generative task in a target language when labeled data is only available in English, using summarization as a case study. We assume a strict setting with no access to parallel data or machine translation and find that common transfer learning approaches struggle in this setting, as a generative multilingual model fine-tuned purely on English catastrophically forgets how to generate non-English. Given the recent rise of parameter-efficient adaptation techniques, we conduct the first investigation into how one such method, prompt tuning (Lester et al., 2021), can overcome catastrophic forgetting to enable zero-shot cross-lingual generation. Our experiments show that parameter-efficient prompt tuning provides gains over standard fine-tuning when transferring between less-related languages, e.g., from English to Thai. However, a significant gap still remains between these methods and fully-supervised baselines. To improve cross-lingual transfer further, we explore several approaches, including: (1) mixing in unlabeled multilingual data, and (2) explicitly factoring prompts into recombinable language and task components. Our approaches can provide further quality gains, suggesting that robust zero-shot cross-lingual generation is within reach.
Active Learning for Domain Adaptation: An Energy-Based Approach
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of target data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at https://github.com/BIT-DA/EADA.
Routing with Self-Attention for Multimodal Capsule Networks
The task of multimodal learning has seen a growing interest recently as it allows for training neural architectures based on different modalities such as vision, text, and audio. One challenge in training such models is that they need to jointly learn semantic concepts and their relationships across different input representations. Capsule networks have been shown to perform well in context of capturing the relation between low-level input features and higher-level concepts. However, capsules have so far mainly been used only in small-scale fully supervised settings due to the resource demand of conventional routing algorithms. We present a new multimodal capsule network that allows us to leverage the strength of capsules in the context of a multimodal learning framework on large amounts of video data. To adapt the capsules to large-scale input data, we propose a novel routing by self-attention mechanism that selects relevant capsules which are then used to generate a final joint multimodal feature representation. This allows not only for robust training with noisy video data, but also to scale up the size of the capsule network compared to traditional routing methods while still being computationally efficient. We evaluate the proposed architecture by pretraining it on a large-scale multimodal video dataset and applying it on four datasets in two challenging downstream tasks. Results show that the proposed multimodal capsule network is not only able to improve results compared to other routing techniques, but also achieves competitive performance on the task of multimodal learning.
Grounded Language-Image Pre-training
This paper presents a grounded language-image pre-training (GLIP) model for learning object-level, language-aware, and semantic-rich visual representations. GLIP unifies object detection and phrase grounding for pre-training. The unification brings two benefits: 1) it allows GLIP to learn from both detection and grounding data to improve both tasks and bootstrap a good grounding model; 2) GLIP can leverage massive image-text pairs by generating grounding boxes in a self-training fashion, making the learned representation semantic-rich. In our experiments, we pre-train GLIP on 27M grounding data, including 3M human-annotated and 24M web-crawled image-text pairs. The learned representations demonstrate strong zero-shot and few-shot transferability to various object-level recognition tasks. 1) When directly evaluated on COCO and LVIS (without seeing any images in COCO during pre-training), GLIP achieves 49.8 AP and 26.9 AP, respectively, surpassing many supervised baselines. 2) After fine-tuned on COCO, GLIP achieves 60.8 AP on val and 61.5 AP on test-dev, surpassing prior SoTA. 3) When transferred to 13 downstream object detection tasks, a 1-shot GLIP rivals with a fully-supervised Dynamic Head. Code is released at https://github.com/microsoft/GLIP.
Local or Global: Selective Knowledge Assimilation for Federated Learning with Limited Labels
Many existing FL methods assume clients with fully-labeled data, while in realistic settings, clients have limited labels due to the expensive and laborious process of labeling. Limited labeled local data of the clients often leads to their local model having poor generalization abilities to their larger unlabeled local data, such as having class-distribution mismatch with the unlabeled data. As a result, clients may instead look to benefit from the global model trained across clients to leverage their unlabeled data, but this also becomes difficult due to data heterogeneity across clients. In our work, we propose FedLabel where clients selectively choose the local or global model to pseudo-label their unlabeled data depending on which is more of an expert of the data. We further utilize both the local and global models' knowledge via global-local consistency regularization which minimizes the divergence between the two models' outputs when they have identical pseudo-labels for the unlabeled data. Unlike other semi-supervised FL baselines, our method does not require additional experts other than the local or global model, nor require additional parameters to be communicated. We also do not assume any server-labeled data or fully labeled clients. For both cross-device and cross-silo settings, we show that FedLabel outperforms other semi-supervised FL baselines by 8-24%, and even outperforms standard fully supervised FL baselines (100% labeled data) with only 5-20% of labeled data.
Robust Speech Recognition via Large-Scale Weak Supervision
We study the capabilities of speech processing systems trained simply to predict large amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual and multitask supervision, the resulting models generalize well to standard benchmarks and are often competitive with prior fully supervised results but in a zero-shot transfer setting without the need for any fine-tuning. When compared to humans, the models approach their accuracy and robustness. We are releasing models and inference code to serve as a foundation for further work on robust speech processing.
MaskRIS: Semantic Distortion-aware Data Augmentation for Referring Image Segmentation
Referring Image Segmentation (RIS) is an advanced vision-language task that involves identifying and segmenting objects within an image as described by free-form text descriptions. While previous studies focused on aligning visual and language features, exploring training techniques, such as data augmentation, remains underexplored. In this work, we explore effective data augmentation for RIS and propose a novel training framework called Masked Referring Image Segmentation (MaskRIS). We observe that the conventional image augmentations fall short of RIS, leading to performance degradation, while simple random masking significantly enhances the performance of RIS. MaskRIS uses both image and text masking, followed by Distortion-aware Contextual Learning (DCL) to fully exploit the benefits of the masking strategy. This approach can improve the model's robustness to occlusions, incomplete information, and various linguistic complexities, resulting in a significant performance improvement. Experiments demonstrate that MaskRIS can easily be applied to various RIS models, outperforming existing methods in both fully supervised and weakly supervised settings. Finally, MaskRIS achieves new state-of-the-art performance on RefCOCO, RefCOCO+, and RefCOCOg datasets. Code is available at https://github.com/naver-ai/maskris.
OpenShape: Scaling Up 3D Shape Representation Towards Open-World Understanding
We introduce OpenShape, a method for learning multi-modal joint representations of text, image, and point clouds. We adopt the commonly used multi-modal contrastive learning framework for representation alignment, but with a specific focus on scaling up 3D representations to enable open-world 3D shape understanding. To achieve this, we scale up training data by ensembling multiple 3D datasets and propose several strategies to automatically filter and enrich noisy text descriptions. We also explore and compare strategies for scaling 3D backbone networks and introduce a novel hard negative mining module for more efficient training. We evaluate OpenShape on zero-shot 3D classification benchmarks and demonstrate its superior capabilities for open-world recognition. Specifically, OpenShape achieves a zero-shot accuracy of 46.8% on the 1,156-category Objaverse-LVIS benchmark, compared to less than 10% for existing methods. OpenShape also achieves an accuracy of 85.3% on ModelNet40, outperforming previous zero-shot baseline methods by 20% and performing on par with some fully-supervised methods. Furthermore, we show that our learned embeddings encode a wide range of visual and semantic concepts (e.g., subcategories, color, shape, style) and facilitate fine-grained text-3D and image-3D interactions. Due to their alignment with CLIP embeddings, our learned shape representations can also be integrated with off-the-shelf CLIP-based models for various applications, such as point cloud captioning and point cloud-conditioned image generation.
Segment Anything
We introduce the Segment Anything (SA) project: a new task, model, and dataset for image segmentation. Using our efficient model in a data collection loop, we built the largest segmentation dataset to date (by far), with over 1 billion masks on 11M licensed and privacy respecting images. The model is designed and trained to be promptable, so it can transfer zero-shot to new image distributions and tasks. We evaluate its capabilities on numerous tasks and find that its zero-shot performance is impressive -- often competitive with or even superior to prior fully supervised results. We are releasing the Segment Anything Model (SAM) and corresponding dataset (SA-1B) of 1B masks and 11M images at https://segment-anything.com to foster research into foundation models for computer vision.
Segment Any 3D Object with Language
In this paper, we investigate Open-Vocabulary 3D Instance Segmentation (OV-3DIS) with free-form language instructions. Earlier works that rely on only annotated base categories for training suffer from limited generalization to unseen novel categories. Recent works mitigate poor generalizability to novel categories by generating class-agnostic masks or projecting generalized masks from 2D to 3D, but disregard semantic or geometry information, leading to sub-optimal performance. Instead, generating generalizable but semantic-related masks directly from 3D point clouds would result in superior outcomes. In this paper, we introduce Segment any 3D Object with LanguagE (SOLE), which is a semantic and geometric-aware visual-language learning framework with strong generalizability by generating semantic-related masks directly from 3D point clouds. Specifically, we propose a multimodal fusion network to incorporate multimodal semantics in both backbone and decoder. In addition, to align the 3D segmentation model with various language instructions and enhance the mask quality, we introduce three types of multimodal associations as supervision. Our SOLE outperforms previous methods by a large margin on ScanNetv2, ScanNet200, and Replica benchmarks, and the results are even close to the fully-supervised counterpart despite the absence of class annotations in the training. Furthermore, extensive qualitative results demonstrate the versatility of our SOLE to language instructions.
Changen2: Multi-Temporal Remote Sensing Generative Change Foundation Model
Our understanding of the temporal dynamics of the Earth's surface has been advanced by deep vision models, which often require lots of labeled multi-temporal images for training. However, collecting, preprocessing, and annotating multi-temporal remote sensing images at scale is non-trivial since it is expensive and knowledge-intensive. In this paper, we present change data generators based on generative models, which are cheap and automatic, alleviating these data problems. Our main idea is to simulate a stochastic change process over time. We describe the stochastic change process as a probabilistic graphical model (GPCM), which factorizes the complex simulation problem into two more tractable sub-problems, i.e., change event simulation and semantic change synthesis. To solve these two problems, we present Changen2, a GPCM with a resolution-scalable diffusion transformer which can generate time series of images and their semantic and change labels from labeled or unlabeled single-temporal images. Changen2 is a generative change foundation model that can be trained at scale via self-supervision, and can produce change supervisory signals from unlabeled single-temporal images. Unlike existing foundation models, Changen2 synthesizes change data to train task-specific foundation models for change detection. The resulting model possesses inherent zero-shot change detection capabilities and excellent transferability. Experiments suggest Changen2 has superior spatiotemporal scalability, e.g., Changen2 model trained on 256^2 pixel single-temporal images can yield time series of any length and resolutions of 1,024^2 pixels. Changen2 pre-trained models exhibit superior zero-shot performance (narrowing the performance gap to 3% on LEVIR-CD and approximately 10% on both S2Looking and SECOND, compared to fully supervised counterparts) and transferability across multiple types of change tasks.
Instruction Tuned Models are Quick Learners
Instruction tuning of language models has demonstrated the ability to enhance model generalization to unseen tasks via in-context learning using a few examples. However, typical supervised learning still requires a plethora of downstream training data for finetuning. Often in real-world situations, there is a scarcity of data available for finetuning, falling somewhere between few shot inference and fully supervised finetuning. In this work, we demonstrate the sample efficiency of instruction tuned models over various tasks by estimating the minimal downstream training data required by them to perform transfer learning and match the performance of state-of-the-art (SOTA) supervised models. We conduct experiments on 119 tasks from Super Natural Instructions (SuperNI) in both the single task learning (STL) and multi task learning (MTL) settings. Our findings reveal that, in the STL setting, instruction tuned models equipped with 25% of the downstream train data surpass the SOTA performance on the downstream tasks. In the MTL setting, an instruction tuned model trained on only 6% of downstream training data achieve SOTA, while using 100% of the training data results in a 3.69% points improvement (ROUGE-L 74.68) over the previous SOTA. We conduct an analysis on T5 vs Tk-Instruct by developing several baselines to demonstrate that instruction tuning aids in increasing both sample efficiency and transfer learning. Additionally, we observe a consistent ~4% performance increase in both settings when pre-finetuning is performed with instructions. Finally, we conduct a categorical study and find that contrary to previous results, tasks in the question rewriting and title generation categories suffer from instruction tuning.
Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning
Recent studies have revealed the intriguing few-shot learning ability of pretrained language models (PLMs): They can quickly adapt to a new task when fine-tuned on a small amount of labeled data formulated as prompts, without requiring abundant task-specific annotations. Despite their promising performance, most existing few-shot approaches that only learn from the small training set still underperform fully supervised training by nontrivial margins. In this work, we study few-shot learning with PLMs from a different perspective: We first tune an autoregressive PLM on the few-shot samples and then use it as a generator to synthesize a large amount of novel training samples which augment the original training set. To encourage the generator to produce label-discriminative samples, we train it via weighted maximum likelihood where the weight of each token is automatically adjusted based on a discriminative meta-learning objective. A classification PLM can then be fine-tuned on both the few-shot and the synthetic samples with regularization for better generalization and stability. Our approach FewGen achieves an overall better result across seven classification tasks of the GLUE benchmark than existing few-shot learning methods, improving no-augmentation methods by 5+ average points, and outperforming augmentation methods by 3+ average points.
AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning
Standard fine-tuning of large pre-trained language models (PLMs) for downstream tasks requires updating hundreds of millions to billions of parameters, and storing a large copy of the PLM weights for every task resulting in increased cost for storing, sharing and serving the models. To address this, parameter-efficient fine-tuning (PEFT) techniques were introduced where small trainable components are injected in the PLM and updated during fine-tuning. We propose AdaMix as a general PEFT method that tunes a mixture of adaptation modules -- given the underlying PEFT method of choice -- introduced in each Transformer layer while keeping most of the PLM weights frozen. For instance, AdaMix can leverage a mixture of adapters like Houlsby or a mixture of low rank decomposition matrices like LoRA to improve downstream task performance over the corresponding PEFT methods for fully supervised and few-shot NLU and NLG tasks. Further, we design AdaMix such that it matches the same computational cost and the number of tunable parameters as the underlying PEFT method. By only tuning 0.1-0.2% of PLM parameters, we show that AdaMix outperforms SOTA parameter-efficient fine-tuning and full model fine-tuning for both NLU and NLG tasks.
DeiT III: Revenge of the ViT
A Vision Transformer (ViT) is a simple neural architecture amenable to serve several computer vision tasks. It has limited built-in architectural priors, in contrast to more recent architectures that incorporate priors either about the input data or of specific tasks. Recent works show that ViTs benefit from self-supervised pre-training, in particular BerT-like pre-training like BeiT. In this paper, we revisit the supervised training of ViTs. Our procedure builds upon and simplifies a recipe introduced for training ResNet-50. It includes a new simple data-augmentation procedure with only 3 augmentations, closer to the practice in self-supervised learning. Our evaluations on Image classification (ImageNet-1k with and without pre-training on ImageNet-21k), transfer learning and semantic segmentation show that our procedure outperforms by a large margin previous fully supervised training recipes for ViT. It also reveals that the performance of our ViT trained with supervision is comparable to that of more recent architectures. Our results could serve as better baselines for recent self-supervised approaches demonstrated on ViT.
Generation of microbial colonies dataset with deep learning style transfer
We introduce an effective strategy to generate an annotated synthetic dataset of microbiological images of Petri dishes that can be used to train deep learning models in a fully supervised fashion. The developed generator employs traditional computer vision algorithms together with a neural style transfer method for data augmentation. We show that the method is able to synthesize a dataset of realistic looking images that can be used to train a neural network model capable of localising, segmenting, and classifying five different microbial species. Our method requires significantly fewer resources to obtain a useful dataset than collecting and labeling a whole large set of real images with annotations. We show that starting with only 100 real images, we can generate data to train a detector that achieves comparable results (detection mAP = 0.416, and counting MAE = 4.49) to the same detector but trained on a real, several dozen times bigger dataset (mAP = 0.520, MAE = 4.31), containing over 7k images. We prove the usefulness of the method in microbe detection and segmentation, but we expect that it is general and flexible and can also be applicable in other domains of science and industry to detect various objects.
FlexVAR: Flexible Visual Autoregressive Modeling without Residual Prediction
This work challenges the residual prediction paradigm in visual autoregressive modeling and presents FlexVAR, a new Flexible Visual AutoRegressive image generation paradigm. FlexVAR facilitates autoregressive learning with ground-truth prediction, enabling each step to independently produce plausible images. This simple, intuitive approach swiftly learns visual distributions and makes the generation process more flexible and adaptable. Trained solely on low-resolution images (leq 256px), FlexVAR can: (1) Generate images of various resolutions and aspect ratios, even exceeding the resolution of the training images. (2) Support various image-to-image tasks, including image refinement, in/out-painting, and image expansion. (3) Adapt to various autoregressive steps, allowing for faster inference with fewer steps or enhancing image quality with more steps. Our 1.0B model outperforms its VAR counterpart on the ImageNet 256times256 benchmark. Moreover, when zero-shot transfer the image generation process with 13 steps, the performance further improves to 2.08 FID, outperforming state-of-the-art autoregressive models AiM/VAR by 0.25/0.28 FID and popular diffusion models LDM/DiT by 1.52/0.19 FID, respectively. When transferring our 1.0B model to the ImageNet 512times512 benchmark in a zero-shot manner, FlexVAR achieves competitive results compared to the VAR 2.3B model, which is a fully supervised model trained at 512times512 resolution.
Leveraging Temporal Contextualization for Video Action Recognition
We propose a novel framework for video understanding, called Temporally Contextualized CLIP (TC-CLIP), which leverages essential temporal information through global interactions in a spatio-temporal domain within a video. To be specific, we introduce Temporal Contextualization (TC), a layer-wise temporal information infusion mechanism for videos, which 1) extracts core information from each frame, 2) connects relevant information across frames for the summarization into context tokens, and 3) leverages the context tokens for feature encoding. Furthermore, the Video-conditional Prompting (VP) module processes context tokens to generate informative prompts in the text modality. Extensive experiments in zero-shot, few-shot, base-to-novel, and fully-supervised action recognition validate the effectiveness of our model. Ablation studies for TC and VP support our design choices. Our project page with the source code is available at https://github.com/naver-ai/tc-clip
EAGLE: A Domain Generalization Framework for AI-generated Text Detection
With the advancement in capabilities of Large Language Models (LLMs), one major step in the responsible and safe use of such LLMs is to be able to detect text generated by these models. While supervised AI-generated text detectors perform well on text generated by older LLMs, with the frequent release of new LLMs, building supervised detectors for identifying text from such new models would require new labeled training data, which is infeasible in practice. In this work, we tackle this problem and propose a domain generalization framework for the detection of AI-generated text from unseen target generators. Our proposed framework, EAGLE, leverages the labeled data that is available so far from older language models and learns features invariant across these generators, in order to detect text generated by an unknown target generator. EAGLE learns such domain-invariant features by combining the representational power of self-supervised contrastive learning with domain adversarial training. Through our experiments we demonstrate how EAGLE effectively achieves impressive performance in detecting text generated by unseen target generators, including recent state-of-the-art ones such as GPT-4 and Claude, reaching detection scores of within 4.7% of a fully supervised detector.
CLAP: Learning Transferable Binary Code Representations with Natural Language Supervision
Binary code representation learning has shown significant performance in binary analysis tasks. But existing solutions often have poor transferability, particularly in few-shot and zero-shot scenarios where few or no training samples are available for the tasks. To address this problem, we present CLAP (Contrastive Language-Assembly Pre-training), which employs natural language supervision to learn better representations of binary code (i.e., assembly code) and get better transferability. At the core, our approach boosts superior transfer learning capabilities by effectively aligning binary code with their semantics explanations (in natural language), resulting a model able to generate better embeddings for binary code. To enable this alignment training, we then propose an efficient dataset engine that could automatically generate a large and diverse dataset comprising of binary code and corresponding natural language explanations. We have generated 195 million pairs of binary code and explanations and trained a prototype of CLAP. The evaluations of CLAP across various downstream tasks in binary analysis all demonstrate exceptional performance. Notably, without any task-specific training, CLAP is often competitive with a fully supervised baseline, showing excellent transferability. We release our pre-trained model and code at https://github.com/Hustcw/CLAP.
TrafficMOT: A Challenging Dataset for Multi-Object Tracking in Complex Traffic Scenarios
Multi-object tracking in traffic videos is a crucial research area, offering immense potential for enhancing traffic monitoring accuracy and promoting road safety measures through the utilisation of advanced machine learning algorithms. However, existing datasets for multi-object tracking in traffic videos often feature limited instances or focus on single classes, which cannot well simulate the challenges encountered in complex traffic scenarios. To address this gap, we introduce TrafficMOT, an extensive dataset designed to encompass diverse traffic situations with complex scenarios. To validate the complexity and challenges presented by TrafficMOT, we conducted comprehensive empirical studies using three different settings: fully-supervised, semi-supervised, and a recent powerful zero-shot foundation model Tracking Anything Model (TAM). The experimental results highlight the inherent complexity of this dataset, emphasising its value in driving advancements in the field of traffic monitoring and multi-object tracking.
Domain Adaptive Few-Shot Open-Set Learning
Few-shot learning has made impressive strides in addressing the crucial challenges of recognizing unknown samples from novel classes in target query sets and managing visual shifts between domains. However, existing techniques fall short when it comes to identifying target outliers under domain shifts by learning to reject pseudo-outliers from the source domain, resulting in an incomplete solution to both problems. To address these challenges comprehensively, we propose a novel approach called Domain Adaptive Few-Shot Open Set Recognition (DA-FSOS) and introduce a meta-learning-based architecture named DAFOSNET. During training, our model learns a shared and discriminative embedding space while creating a pseudo open-space decision boundary, given a fully-supervised source domain and a label-disjoint few-shot target domain. To enhance data density, we use a pair of conditional adversarial networks with tunable noise variances to augment both domains closed and pseudo-open spaces. Furthermore, we propose a domain-specific batch-normalized class prototypes alignment strategy to align both domains globally while ensuring class-discriminativeness through novel metric objectives. Our training approach ensures that DAFOS-NET can generalize well to new scenarios in the target domain. We present three benchmarks for DA-FSOS based on the Office-Home, mini-ImageNet/CUB, and DomainNet datasets and demonstrate the efficacy of DAFOS-NET through extensive experimentation
ConDA: Contrastive Domain Adaptation for AI-generated Text Detection
Large language models (LLMs) are increasingly being used for generating text in a variety of use cases, including journalistic news articles. Given the potential malicious nature in which these LLMs can be used to generate disinformation at scale, it is important to build effective detectors for such AI-generated text. Given the surge in development of new LLMs, acquiring labeled training data for supervised detectors is a bottleneck. However, there might be plenty of unlabeled text data available, without information on which generator it came from. In this work we tackle this data problem, in detecting AI-generated news text, and frame the problem as an unsupervised domain adaptation task. Here the domains are the different text generators, i.e. LLMs, and we assume we have access to only the labeled source data and unlabeled target data. We develop a Contrastive Domain Adaptation framework, called ConDA, that blends standard domain adaptation techniques with the representation power of contrastive learning to learn domain invariant representations that are effective for the final unsupervised detection task. Our experiments demonstrate the effectiveness of our framework, resulting in average performance gains of 31.7% from the best performing baselines, and within 0.8% margin of a fully supervised detector. All our code and data is available at https://github.com/AmritaBh/ConDA-gen-text-detection.
Tracking without Label: Unsupervised Multiple Object Tracking via Contrastive Similarity Learning
Unsupervised learning is a challenging task due to the lack of labels. Multiple Object Tracking (MOT), which inevitably suffers from mutual object interference, occlusion, etc., is even more difficult without label supervision. In this paper, we explore the latent consistency of sample features across video frames and propose an Unsupervised Contrastive Similarity Learning method, named UCSL, including three contrast modules: self-contrast, cross-contrast, and ambiguity contrast. Specifically, i) self-contrast uses intra-frame direct and inter-frame indirect contrast to obtain discriminative representations by maximizing self-similarity. ii) Cross-contrast aligns cross- and continuous-frame matching results, mitigating the persistent negative effect caused by object occlusion. And iii) ambiguity contrast matches ambiguous objects with each other to further increase the certainty of subsequent object association through an implicit manner. On existing benchmarks, our method outperforms the existing unsupervised methods using only limited help from ReID head, and even provides higher accuracy than lots of fully supervised methods.
LoCoOp: Few-Shot Out-of-Distribution Detection via Prompt Learning
We present a novel vision-language prompt learning approach for few-shot out-of-distribution (OOD) detection. Few-shot OOD detection aims to detect OOD images from classes that are unseen during training using only a few labeled in-distribution (ID) images. While prompt learning methods such as CoOp have shown effectiveness and efficiency in few-shot ID classification, they still face limitations in OOD detection due to the potential presence of ID-irrelevant information in text embeddings. To address this issue, we introduce a new approach called Local regularized Context Optimization (LoCoOp), which performs OOD regularization that utilizes the portions of CLIP local features as OOD features during training. CLIP's local features have a lot of ID-irrelevant nuisances (e.g., backgrounds), and by learning to push them away from the ID class text embeddings, we can remove the nuisances in the ID class text embeddings and enhance the separation between ID and OOD. Experiments on the large-scale ImageNet OOD detection benchmarks demonstrate the superiority of our LoCoOp over zero-shot, fully supervised detection methods and prompt learning methods. Notably, even in a one-shot setting -- just one label per class, LoCoOp outperforms existing zero-shot and fully supervised detection methods. The code will be available via https://github.com/AtsuMiyai/LoCoOp.
GrowSP: Unsupervised Semantic Segmentation of 3D Point Clouds
We study the problem of 3D semantic segmentation from raw point clouds. Unlike existing methods which primarily rely on a large amount of human annotations for training neural networks, we propose the first purely unsupervised method, called GrowSP, to successfully identify complex semantic classes for every point in 3D scenes, without needing any type of human labels or pretrained models. The key to our approach is to discover 3D semantic elements via progressive growing of superpoints. Our method consists of three major components, 1) the feature extractor to learn per-point features from input point clouds, 2) the superpoint constructor to progressively grow the sizes of superpoints, and 3) the semantic primitive clustering module to group superpoints into semantic elements for the final semantic segmentation. We extensively evaluate our method on multiple datasets, demonstrating superior performance over all unsupervised baselines and approaching the classic fully-supervised PointNet. We hope our work could inspire more advanced methods for unsupervised 3D semantic learning.
Better Low-Resource Entity Recognition Through Translation and Annotation Fusion
Pre-trained multilingual language models have enabled significant advancements in cross-lingual transfer. However, these models often exhibit a performance disparity when transferring from high-resource languages to low-resource languages, especially for languages that are underrepresented or not in the pre-training data. Motivated by the superior performance of these models on high-resource languages compared to low-resource languages, we introduce a Translation-and-fusion framework, which translates low-resource language text into a high-resource language for annotation using fully supervised models before fusing the annotations back into the low-resource language. Based on this framework, we present TransFusion, a model trained to fuse predictions from a high-resource language to make robust predictions on low-resource languages. We evaluate our methods on two low-resource named entity recognition (NER) datasets, MasakhaNER2.0 and LORELEI NER, covering 25 languages, and show consistent improvement up to +16 F_1 over English fine-tuning systems, achieving state-of-the-art performance compared to Translate-train systems. Our analysis depicts the unique advantages of the TransFusion method which is robust to translation errors and source language prediction errors, and complimentary to adapted multilingual language models.
Interpretable Unified Language Checking
Despite recent concerns about undesirable behaviors generated by large language models (LLMs), including non-factual, biased, and hateful language, we find LLMs are inherent multi-task language checkers based on their latent representations of natural and social knowledge. We present an interpretable, unified, language checking (UniLC) method for both human and machine-generated language that aims to check if language input is factual and fair. While fairness and fact-checking tasks have been handled separately with dedicated models, we find that LLMs can achieve high performance on a combination of fact-checking, stereotype detection, and hate speech detection tasks with a simple, few-shot, unified set of prompts. With the ``1/2-shot'' multi-task language checking method proposed in this work, the GPT3.5-turbo model outperforms fully supervised baselines on several language tasks. The simple approach and results suggest that based on strong latent knowledge representations, an LLM can be an adaptive and explainable tool for detecting misinformation, stereotypes, and hate speech.
MAtch, eXpand and Improve: Unsupervised Finetuning for Zero-Shot Action Recognition with Language Knowledge
Large scale Vision-Language (VL) models have shown tremendous success in aligning representations between visual and text modalities. This enables remarkable progress in zero-shot recognition, image generation & editing, and many other exciting tasks. However, VL models tend to over-represent objects while paying much less attention to verbs, and require additional tuning on video data for best zero-shot action recognition performance. While previous work relied on large-scale, fully-annotated data, in this work we propose an unsupervised approach. We adapt a VL model for zero-shot and few-shot action recognition using a collection of unlabeled videos and an unpaired action dictionary. Based on that, we leverage Large Language Models and VL models to build a text bag for each unlabeled video via matching, text expansion and captioning. We use those bags in a Multiple Instance Learning setup to adapt an image-text backbone to video data. Although finetuned on unlabeled video data, our resulting models demonstrate high transferability to numerous unseen zero-shot downstream tasks, improving the base VL model performance by up to 14\%, and even comparing favorably to fully-supervised baselines in both zero-shot and few-shot video recognition transfer. The code will be released later at https://github.com/wlin-at/MAXI.
Guiding Large Language Models via Directional Stimulus Prompting
We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs. Instead of directly adjusting LLMs, our method employs a small tunable policy model (e.g., T5) to generate an auxiliary directional stimulus prompt for each input instance. These directional stimulus prompts act as nuanced, instance-specific hints and clues to guide LLMs in generating desired outcomes, such as including specific keywords in the generated summary. Our approach sidesteps the challenges of direct LLM tuning by optimizing the policy model to explore directional stimulus prompts that align LLMs with desired behaviors. The policy model can be optimized through 1) supervised fine-tuning using labeled data and 2) reinforcement learning from offline or online rewards based on the LLM's output. We assess our method across summarization, dialogue response generation, and chain-of-thought reasoning tasks. Our experiments demonstrate that the framework consistently improves LLMs' (e.g., ChatGPT, Codex, InstructGPT) performance on these supervised tasks using minimal labeled data. Notably, using just 80 dialogues on the MultiWOZ dataset, our approach enhances ChatGPT's performance by an impressive 41.4%, matching or surpassing some fully supervised start-of-the-art models. Additionally, the instance-specific chain-of-thought prompt generated by our approach improves InstructGPT's reasoning accuracy compared to human-crafted or automatically generated prompts. The code and data are publicly available at https://github.com/Leezekun/Directional-Stimulus-Prompting.
Fine-tuned CLIP Models are Efficient Video Learners
Large-scale multi-modal training with image-text pairs imparts strong generalization to CLIP model. Since training on a similar scale for videos is infeasible, recent approaches focus on the effective transfer of image-based CLIP to the video domain. In this pursuit, new parametric modules are added to learn temporal information and inter-frame relationships which require meticulous design efforts. Furthermore, when the resulting models are learned on videos, they tend to overfit on the given task distribution and lack in generalization aspect. This begs the following question: How to effectively transfer image-level CLIP representations to videos? In this work, we show that a simple Video Fine-tuned CLIP (ViFi-CLIP) baseline is generally sufficient to bridge the domain gap from images to videos. Our qualitative analysis illustrates that the frame-level processing from CLIP image-encoder followed by feature pooling and similarity matching with corresponding text embeddings helps in implicitly modeling the temporal cues within ViFi-CLIP. Such fine-tuning helps the model to focus on scene dynamics, moving objects and inter-object relationships. For low-data regimes where full fine-tuning is not viable, we propose a `bridge and prompt' approach that first uses fine-tuning to bridge the domain gap and then learns prompts on language and vision side to adapt CLIP representations. We extensively evaluate this simple yet strong baseline on zero-shot, base-to-novel generalization, few-shot and fully supervised settings across five video benchmarks. Our code is available at https://github.com/muzairkhattak/ViFi-CLIP.
QAmeleon: Multilingual QA with Only 5 Examples
The availability of large, high-quality datasets has been one of the main drivers of recent progress in question answering (QA). Such annotated datasets however are difficult and costly to collect, and rarely exist in languages other than English, rendering QA technology inaccessible to underrepresented languages. An alternative to building large monolingual training datasets is to leverage pre-trained language models (PLMs) under a few-shot learning setting. Our approach, QAmeleon, uses a PLM to automatically generate multilingual data upon which QA models are trained, thus avoiding costly annotation. Prompt tuning the PLM for data synthesis with only five examples per language delivers accuracy superior to translation-based baselines, bridges nearly 60% of the gap between an English-only baseline and a fully supervised upper bound trained on almost 50,000 hand labeled examples, and always leads to substantial improvements compared to fine-tuning a QA model directly on labeled examples in low resource settings. Experiments on the TyDiQA-GoldP and MLQA benchmarks show that few-shot prompt tuning for data synthesis scales across languages and is a viable alternative to large-scale annotation.
AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning
Standard fine-tuning of large pre-trained language models (PLMs) for downstream tasks requires updating hundreds of millions to billions of parameters, and storing a large copy of the PLM weights for every task resulting in increased cost for storing, sharing and serving the models. To address this, parameter-efficient fine-tuning (PEFT) techniques were introduced where small trainable components are injected in the PLM and updated during fine-tuning. We propose AdaMix as a general PEFT method that tunes a mixture of adaptation modules -- given the underlying PEFT method of choice -- introduced in each Transformer layer while keeping most of the PLM weights frozen. For instance, AdaMix can leverage a mixture of adapters like Houlsby or a mixture of low rank decomposition matrices like LoRA to improve downstream task performance over the corresponding PEFT methods for fully supervised and few-shot NLU and NLG tasks. Further, we design AdaMix such that it matches the same computational cost and the number of tunable parameters as the underlying PEFT method. By only tuning 0.1-0.2% of PLM parameters, we show that AdaMix outperforms SOTA parameter-efficient fine-tuning and full model fine-tuning for both NLU and NLG tasks.
Collecting The Puzzle Pieces: Disentangled Self-Driven Human Pose Transfer by Permuting Textures
Human pose transfer synthesizes new view(s) of a person for a given pose. Recent work achieves this via self-reconstruction, which disentangles a person's pose and texture information by breaking the person down into parts, then recombines them for reconstruction. However, part-level disentanglement preserves some pose information that can create unwanted artifacts. In this paper, we propose Pose Transfer by Permuting Textures (PT^2), an approach for self-driven human pose transfer that disentangles pose from texture at the patch-level. Specifically, we remove pose from an input image by permuting image patches so only texture information remains. Then we reconstruct the input image by sampling from the permuted textures for patch-level disentanglement. To reduce noise and recover clothing shape information from the permuted patches, we employ encoders with multiple kernel sizes in a triple branch network. On DeepFashion and Market-1501, PT^2 reports significant gains on automatic metrics over other self-driven methods, and even outperforms some fully-supervised methods. A user study also reports images generated by our method are preferred in 68% of cases over self-driven approaches from prior work. Code is available at https://github.com/NannanLi999/pt_square.
Wav2CLIP: Learning Robust Audio Representations From CLIP
We propose Wav2CLIP, a robust audio representation learning method by distilling from Contrastive Language-Image Pre-training (CLIP). We systematically evaluate Wav2CLIP on a variety of audio tasks including classification, retrieval, and generation, and show that Wav2CLIP can outperform several publicly available pre-trained audio representation algorithms. Wav2CLIP projects audio into a shared embedding space with images and text, which enables multimodal applications such as zero-shot classification, and cross-modal retrieval. Furthermore, Wav2CLIP needs just ~10% of the data to achieve competitive performance on downstream tasks compared with fully supervised models, and is more efficient to pre-train than competing methods as it does not require learning a visual model in concert with an auditory model. Finally, we demonstrate image generation from Wav2CLIP as qualitative assessment of the shared embedding space. Our code and model weights are open sourced and made available for further applications.
DRAEM -- A discriminatively trained reconstruction embedding for surface anomaly detection
Visual surface anomaly detection aims to detect local image regions that significantly deviate from normal appearance. Recent surface anomaly detection methods rely on generative models to accurately reconstruct the normal areas and to fail on anomalies. These methods are trained only on anomaly-free images, and often require hand-crafted post-processing steps to localize the anomalies, which prohibits optimizing the feature extraction for maximal detection capability. In addition to reconstructive approach, we cast surface anomaly detection primarily as a discriminative problem and propose a discriminatively trained reconstruction anomaly embedding model (DRAEM). The proposed method learns a joint representation of an anomalous image and its anomaly-free reconstruction, while simultaneously learning a decision boundary between normal and anomalous examples. The method enables direct anomaly localization without the need for additional complicated post-processing of the network output and can be trained using simple and general anomaly simulations. On the challenging MVTec anomaly detection dataset, DRAEM outperforms the current state-of-the-art unsupervised methods by a large margin and even delivers detection performance close to the fully-supervised methods on the widely used DAGM surface-defect detection dataset, while substantially outperforming them in localization accuracy.
Unsupervised Document Embedding via Contrastive Augmentation
We present a contrasting learning approach with data augmentation techniques to learn document representations in an unsupervised manner. Inspired by recent contrastive self-supervised learning algorithms used for image and NLP pretraining, we hypothesize that high-quality document embedding should be invariant to diverse paraphrases that preserve the semantics of the original document. With different backbones and contrastive learning frameworks, our study reveals the enormous benefits of contrastive augmentation for document representation learning with two additional insights: 1) including data augmentation in a contrastive way can substantially improve the embedding quality in unsupervised document representation learning, and 2) in general, stochastic augmentations generated by simple word-level manipulation work much better than sentence-level and document-level ones. We plug our method into a classifier and compare it with a broad range of baseline methods on six benchmark datasets. Our method can decrease the classification error rate by up to 6.4% over the SOTA approaches on the document classification task, matching or even surpassing fully-supervised methods.
Fine-Tuning Pre-trained Language Model with Weak Supervision: A Contrastive-Regularized Self-Training Approach
Fine-tuned pre-trained language models (LMs) have achieved enormous success in many natural language processing (NLP) tasks, but they still require excessive labeled data in the fine-tuning stage. We study the problem of fine-tuning pre-trained LMs using only weak supervision, without any labeled data. This problem is challenging because the high capacity of LMs makes them prone to overfitting the noisy labels generated by weak supervision. To address this problem, we develop a contrastive self-training framework, COSINE, to enable fine-tuning LMs with weak supervision. Underpinned by contrastive regularization and confidence-based reweighting, this contrastive self-training framework can gradually improve model fitting while effectively suppressing error propagation. Experiments on sequence, token, and sentence pair classification tasks show that our model outperforms the strongest baseline by large margins on 7 benchmarks in 6 tasks, and achieves competitive performance with fully-supervised fine-tuning methods.
A Transformer-based Framework for Multivariate Time Series Representation Learning
In this work we propose for the first time a transformer-based framework for unsupervised representation learning of multivariate time series. Pre-trained models can be potentially used for downstream tasks such as regression and classification, forecasting and missing value imputation. By evaluating our models on several benchmark datasets for multivariate time series regression and classification, we show that not only does our modeling approach represent the most successful method employing unsupervised learning of multivariate time series presented to date, but also that it exceeds the current state-of-the-art performance of supervised methods; it does so even when the number of training samples is very limited, while offering computational efficiency. Finally, we demonstrate that unsupervised pre-training of our transformer models offers a substantial performance benefit over fully supervised learning, even without leveraging additional unlabeled data, i.e., by reusing the same data samples through the unsupervised objective.
ConsNet: Learning Consistency Graph for Zero-Shot Human-Object Interaction Detection
We consider the problem of Human-Object Interaction (HOI) Detection, which aims to locate and recognize HOI instances in the form of <human, action, object> in images. Most existing works treat HOIs as individual interaction categories, thus can not handle the problem of long-tail distribution and polysemy of action labels. We argue that multi-level consistencies among objects, actions and interactions are strong cues for generating semantic representations of rare or previously unseen HOIs. Leveraging the compositional and relational peculiarities of HOI labels, we propose ConsNet, a knowledge-aware framework that explicitly encodes the relations among objects, actions and interactions into an undirected graph called consistency graph, and exploits Graph Attention Networks (GATs) to propagate knowledge among HOI categories as well as their constituents. Our model takes visual features of candidate human-object pairs and word embeddings of HOI labels as inputs, maps them into visual-semantic joint embedding space and obtains detection results by measuring their similarities. We extensively evaluate our model on the challenging V-COCO and HICO-DET datasets, and results validate that our approach outperforms state-of-the-arts under both fully-supervised and zero-shot settings. Code is available at https://github.com/yeliudev/ConsNet.
Multilingual Alignment of Contextual Word Representations
We propose procedures for evaluating and strengthening contextual embedding alignment and show that they are useful in analyzing and improving multilingual BERT. In particular, after our proposed alignment procedure, BERT exhibits significantly improved zero-shot performance on XNLI compared to the base model, remarkably matching pseudo-fully-supervised translate-train models for Bulgarian and Greek. Further, to measure the degree of alignment, we introduce a contextual version of word retrieval and show that it correlates well with downstream zero-shot transfer. Using this word retrieval task, we also analyze BERT and find that it exhibits systematic deficiencies, e.g. worse alignment for open-class parts-of-speech and word pairs written in different scripts, that are corrected by the alignment procedure. These results support contextual alignment as a useful concept for understanding large multilingual pre-trained models.
Data-Efficient Image Recognition with Contrastive Predictive Coding
Human observers can learn to recognize new categories of images from a handful of examples, yet doing so with artificial ones remains an open challenge. We hypothesize that data-efficient recognition is enabled by representations which make the variability in natural signals more predictable. We therefore revisit and improve Contrastive Predictive Coding, an unsupervised objective for learning such representations. This new implementation produces features which support state-of-the-art linear classification accuracy on the ImageNet dataset. When used as input for non-linear classification with deep neural networks, this representation allows us to use 2-5x less labels than classifiers trained directly on image pixels. Finally, this unsupervised representation substantially improves transfer learning to object detection on the PASCAL VOC dataset, surpassing fully supervised pre-trained ImageNet classifiers.
The FLoRes Evaluation Datasets for Low-Resource Machine Translation: Nepali-English and Sinhala-English
For machine translation, a vast majority of language pairs in the world are considered low-resource because they have little parallel data available. Besides the technical challenges of learning with limited supervision, it is difficult to evaluate methods trained on low-resource language pairs because of the lack of freely and publicly available benchmarks. In this work, we introduce the FLoRes evaluation datasets for Nepali-English and Sinhala-English, based on sentences translated from Wikipedia. Compared to English, these are languages with very different morphology and syntax, for which little out-of-domain parallel data is available and for which relatively large amounts of monolingual data are freely available. We describe our process to collect and cross-check the quality of translations, and we report baseline performance using several learning settings: fully supervised, weakly supervised, semi-supervised, and fully unsupervised. Our experiments demonstrate that current state-of-the-art methods perform rather poorly on this benchmark, posing a challenge to the research community working on low-resource MT. Data and code to reproduce our experiments are available at https://github.com/facebookresearch/flores.
Generative Dual Adversarial Network for Generalized Zero-shot Learning
This paper studies the problem of generalized zero-shot learning which requires the model to train on image-label pairs from some seen classes and test on the task of classifying new images from both seen and unseen classes. Most previous models try to learn a fixed one-directional mapping between visual and semantic space, while some recently proposed generative methods try to generate image features for unseen classes so that the zero-shot learning problem becomes a traditional fully-supervised classification problem. In this paper, we propose a novel model that provides a unified framework for three different approaches: visual-> semantic mapping, semantic->visual mapping, and metric learning. Specifically, our proposed model consists of a feature generator that can generate various visual features given class embeddings as input, a regressor that maps each visual feature back to its corresponding class embedding, and a discriminator that learns to evaluate the closeness of an image feature and a class embedding. All three components are trained under the combination of cyclic consistency loss and dual adversarial loss. Experimental results show that our model not only preserves higher accuracy in classifying images from seen classes, but also performs better than existing state-of-the-art models in in classifying images from unseen classes.
Multi-Modal Classifiers for Open-Vocabulary Object Detection
The goal of this paper is open-vocabulary object detection (OVOD) x2013 building a model that can detect objects beyond the set of categories seen at training, thus enabling the user to specify categories of interest at inference without the need for model retraining. We adopt a standard two-stage object detector architecture, and explore three ways for specifying novel categories: via language descriptions, via image exemplars, or via a combination of the two. We make three contributions: first, we prompt a large language model (LLM) to generate informative language descriptions for object classes, and construct powerful text-based classifiers; second, we employ a visual aggregator on image exemplars that can ingest any number of images as input, forming vision-based classifiers; and third, we provide a simple method to fuse information from language descriptions and image exemplars, yielding a multi-modal classifier. When evaluating on the challenging LVIS open-vocabulary benchmark we demonstrate that: (i) our text-based classifiers outperform all previous OVOD works; (ii) our vision-based classifiers perform as well as text-based classifiers in prior work; (iii) using multi-modal classifiers perform better than either modality alone; and finally, (iv) our text-based and multi-modal classifiers yield better performance than a fully-supervised detector.
Does Visual Self-Supervision Improve Learning of Speech Representations for Emotion Recognition?
Self-supervised learning has attracted plenty of recent research interest. However, most works for self-supervision in speech are typically unimodal and there has been limited work that studies the interaction between audio and visual modalities for cross-modal self-supervision. This work (1) investigates visual self-supervision via face reconstruction to guide the learning of audio representations; (2) proposes an audio-only self-supervision approach for speech representation learning; (3) shows that a multi-task combination of the proposed visual and audio self-supervision is beneficial for learning richer features that are more robust in noisy conditions; (4) shows that self-supervised pretraining can outperform fully supervised training and is especially useful to prevent overfitting on smaller sized datasets. We evaluate our learned audio representations for discrete emotion recognition, continuous affect recognition and automatic speech recognition. We outperform existing self-supervised methods for all tested downstream tasks. Our results demonstrate the potential of visual self-supervision for audio feature learning and suggest that joint visual and audio self-supervision leads to more informative audio representations for speech and emotion recognition.
Qutrit-inspired Fully Self-supervised Shallow Quantum Learning Network for Brain Tumor Segmentation
Classical self-supervised networks suffer from convergence problems and reduced segmentation accuracy due to forceful termination. Qubits or bi-level quantum bits often describe quantum neural network models. In this article, a novel self-supervised shallow learning network model exploiting the sophisticated three-level qutrit-inspired quantum information system referred to as Quantum Fully Self-Supervised Neural Network (QFS-Net) is presented for automated segmentation of brain MR images. The QFS-Net model comprises a trinity of a layered structure of qutrits inter-connected through parametric Hadamard gates using an 8-connected second-order neighborhood-based topology. The non-linear transformation of the qutrit states allows the underlying quantum neural network model to encode the quantum states, thereby enabling a faster self-organized counter-propagation of these states between the layers without supervision. The suggested QFS-Net model is tailored and extensively validated on Cancer Imaging Archive (TCIA) data set collected from Nature repository and also compared with state of the art supervised (U-Net and URes-Net architectures) and the self-supervised QIS-Net model. Results shed promising segmented outcome in detecting tumors in terms of dice similarity and accuracy with minimum human intervention and computational resources.
Self-Supervised Diffusion MRI Denoising via Iterative and Stable Refinement
Magnetic Resonance Imaging (MRI), including diffusion MRI (dMRI), serves as a ``microscope'' for anatomical structures and routinely mitigates the influence of low signal-to-noise ratio scans by compromising temporal or spatial resolution. However, these compromises fail to meet clinical demands for both efficiency and precision. Consequently, denoising is a vital preprocessing step, particularly for dMRI, where clean data is unavailable. In this paper, we introduce Di-Fusion, a fully self-supervised denoising method that leverages the latter diffusion steps and an adaptive sampling process. Unlike previous approaches, our single-stage framework achieves efficient and stable training without extra noise model training and offers adaptive and controllable results in the sampling process. Our thorough experiments on real and simulated data demonstrate that Di-Fusion achieves state-of-the-art performance in microstructure modeling, tractography tracking, and other downstream tasks. Code is available at https://github.com/FouierL/Di-Fusion.
Betrayed by Attention: A Simple yet Effective Approach for Self-supervised Video Object Segmentation
In this paper, we propose a simple yet effective approach for self-supervised video object segmentation (VOS). Our key insight is that the inherent structural dependencies present in DINO-pretrained Transformers can be leveraged to establish robust spatio-temporal correspondences in videos. Furthermore, simple clustering on this correspondence cue is sufficient to yield competitive segmentation results. Previous self-supervised VOS techniques majorly resort to auxiliary modalities or utilize iterative slot attention to assist in object discovery, which restricts their general applicability and imposes higher computational requirements. To deal with these challenges, we develop a simplified architecture that capitalizes on the emerging objectness from DINO-pretrained Transformers, bypassing the need for additional modalities or slot attention. Specifically, we first introduce a single spatio-temporal Transformer block to process the frame-wise DINO features and establish spatio-temporal dependencies in the form of self-attention. Subsequently, utilizing these attention maps, we implement hierarchical clustering to generate object segmentation masks. To train the spatio-temporal block in a fully self-supervised manner, we employ semantic and dynamic motion consistency coupled with entropy normalization. Our method demonstrates state-of-the-art performance across multiple unsupervised VOS benchmarks and particularly excels in complex real-world multi-object video segmentation tasks such as DAVIS-17-Unsupervised and YouTube-VIS-19. The code and model checkpoints will be released at https://github.com/shvdiwnkozbw/SSL-UVOS.
MOST: Multiple Object localization with Self-supervised Transformers for object discovery
We tackle the challenging task of unsupervised object localization in this work. Recently, transformers trained with self-supervised learning have been shown to exhibit object localization properties without being trained for this task. In this work, we present Multiple Object localization with Self-supervised Transformers (MOST) that uses features of transformers trained using self-supervised learning to localize multiple objects in real world images. MOST analyzes the similarity maps of the features using box counting; a fractal analysis tool to identify tokens lying on foreground patches. The identified tokens are then clustered together, and tokens of each cluster are used to generate bounding boxes on foreground regions. Unlike recent state-of-the-art object localization methods, MOST can localize multiple objects per image and outperforms SOTA algorithms on several object localization and discovery benchmarks on PASCAL-VOC 07, 12 and COCO20k datasets. Additionally, we show that MOST can be used for self-supervised pre-training of object detectors, and yields consistent improvements on fully, semi-supervised object detection and unsupervised region proposal generation.
Positional Information is All You Need: A Novel Pipeline for Self-Supervised SVDE from Videos
Recently, much attention has been drawn to learning the underlying 3D structures of a scene from monocular videos in a fully self-supervised fashion. One of the most challenging aspects of this task is handling the independently moving objects as they break the rigid-scene assumption. For the first time, we show that pixel positional information can be exploited to learn SVDE (Single View Depth Estimation) from videos. Our proposed moving object (MO) masks, which are induced by shifted positional information (SPI) and referred to as `SPIMO' masks, are very robust and consistently remove the independently moving objects in the scenes, allowing for better learning of SVDE from videos. Additionally, we introduce a new adaptive quantization scheme that assigns the best per-pixel quantization curve for our depth discretization. Finally, we employ existing boosting techniques in a new way to further self-supervise the depth of the moving objects. With these features, our pipeline is robust against moving objects and generalizes well to high-resolution images, even when trained with small patches, yielding state-of-the-art (SOTA) results with almost 8.5x fewer parameters than the previous works that learn from videos. We present extensive experiments on KITTI and CityScapes that show the effectiveness of our method.
CompoundPiece: Evaluating and Improving Decompounding Performance of Language Models
While many languages possess processes of joining two or more words to create compound words, previous studies have been typically limited only to languages with excessively productive compound formation (e.g., German, Dutch) and there is no public dataset containing compound and non-compound words across a large number of languages. In this work, we systematically study decompounding, the task of splitting compound words into their constituents, at a wide scale. We first address the data gap by introducing a dataset of 255k compound and non-compound words across 56 diverse languages obtained from Wiktionary. We then use this dataset to evaluate an array of Large Language Models (LLMs) on the decompounding task. We find that LLMs perform poorly, especially on words which are tokenized unfavorably by subword tokenization. We thus introduce a novel methodology to train dedicated models for decompounding. The proposed two-stage procedure relies on a fully self-supervised objective in the first stage, while the second, supervised learning stage optionally fine-tunes the model on the annotated Wiktionary data. Our self-supervised models outperform the prior best unsupervised decompounding models by 13.9% accuracy on average. Our fine-tuned models outperform all prior (language-specific) decompounding tools. Furthermore, we use our models to leverage decompounding during the creation of a subword tokenizer, which we refer to as CompoundPiece. CompoundPiece tokenizes compound words more favorably on average, leading to improved performance on decompounding over an otherwise equivalent model using SentencePiece tokenization.
Contrastive Audio-Visual Masked Autoencoder
In this paper, we first extend the recent Masked Auto-Encoder (MAE) model from a single modality to audio-visual multi-modalities. Subsequently, we propose the Contrastive Audio-Visual Masked Auto-Encoder (CAV-MAE) by combining contrastive learning and masked data modeling, two major self-supervised learning frameworks, to learn a joint and coordinated audio-visual representation. Our experiments show that the contrastive audio-visual correspondence learning objective not only enables the model to perform audio-visual retrieval tasks, but also helps the model learn a better joint representation. As a result, our fully self-supervised pretrained CAV-MAE achieves a new SOTA accuracy of 65.9% on VGGSound, and is comparable with the previous best supervised pretrained model on AudioSet in the audio-visual event classification task. Code and pretrained models are at https://github.com/yuangongnd/cav-mae.
Lifelong Change Detection: Continuous Domain Adaptation for Small Object Change Detection in Every Robot Navigation
The recently emerging research area in robotics, ground view change detection, suffers from its ill-posed-ness because of visual uncertainty combined with complex nonlinear perspective projection. To regularize the ill-posed-ness, the commonly applied supervised learning methods (e.g., CSCD-Net) rely on manually annotated high-quality object-class-specific priors. In this work, we consider general application domains where no manual annotation is available and present a fully self-supervised approach. The present approach adopts the powerful and versatile idea that object changes detected during everyday robot navigation can be reused as additional priors to improve future change detection tasks. Furthermore, a robustified framework is implemented and verified experimentally in a new challenging practical application scenario: ground-view small object change detection.
Learning Anatomically Consistent Embedding for Chest Radiography
Self-supervised learning (SSL) approaches have recently shown substantial success in learning visual representations from unannotated images. Compared with photographic images, medical images acquired with the same imaging protocol exhibit high consistency in anatomy. To exploit this anatomical consistency, this paper introduces a novel SSL approach, called PEAC (patch embedding of anatomical consistency), for medical image analysis. Specifically, in this paper, we propose to learn global and local consistencies via stable grid-based matching, transfer pre-trained PEAC models to diverse downstream tasks, and extensively demonstrate that (1) PEAC achieves significantly better performance than the existing state-of-the-art fully/self-supervised methods, and (2) PEAC captures the anatomical structure consistency across views of the same patient and across patients of different genders, weights, and healthy statuses, which enhances the interpretability of our method for medical image analysis.
Mask-Free Video Instance Segmentation
The recent advancement in Video Instance Segmentation (VIS) has largely been driven by the use of deeper and increasingly data-hungry transformer-based models. However, video masks are tedious and expensive to annotate, limiting the scale and diversity of existing VIS datasets. In this work, we aim to remove the mask-annotation requirement. We propose MaskFreeVIS, achieving highly competitive VIS performance, while only using bounding box annotations for the object state. We leverage the rich temporal mask consistency constraints in videos by introducing the Temporal KNN-patch Loss (TK-Loss), providing strong mask supervision without any labels. Our TK-Loss finds one-to-many matches across frames, through an efficient patch-matching step followed by a K-nearest neighbor selection. A consistency loss is then enforced on the found matches. Our mask-free objective is simple to implement, has no trainable parameters, is computationally efficient, yet outperforms baselines employing, e.g., state-of-the-art optical flow to enforce temporal mask consistency. We validate MaskFreeVIS on the YouTube-VIS 2019/2021, OVIS and BDD100K MOTS benchmarks. The results clearly demonstrate the efficacy of our method by drastically narrowing the gap between fully and weakly-supervised VIS performance. Our code and trained models are available at https://github.com/SysCV/MaskFreeVis.
DeepSolarEye: Power Loss Prediction and Weakly Supervised Soiling Localization via Fully Convolutional Networks for Solar Panels
The impact of soiling on solar panels is an important and well-studied problem in renewable energy sector. In this paper, we present the first convolutional neural network (CNN) based approach for solar panel soiling and defect analysis. Our approach takes an RGB image of solar panel and environmental factors as inputs to predict power loss, soiling localization, and soiling type. In computer vision, localization is a complex task which typically requires manually labeled training data such as bounding boxes or segmentation masks. Our proposed approach consists of specialized four stages which completely avoids localization ground truth and only needs panel images with power loss labels for training. The region of impact area obtained from the predicted localization masks are classified into soiling types using the webly supervised learning. For improving localization capabilities of CNNs, we introduce a novel bi-directional input-aware fusion (BiDIAF) block that reinforces the input at different levels of CNN to learn input-specific feature maps. Our empirical study shows that BiDIAF improves the power loss prediction accuracy by about 3% and localization accuracy by about 4%. Our end-to-end model yields further improvement of about 24% on localization when learned in a weakly supervised manner. Our approach is generalizable and showed promising results on web crawled solar panel images. Our system has a frame rate of 22 fps (including all steps) on a NVIDIA TitanX GPU. Additionally, we collected first of it's kind dataset for solar panel image analysis consisting 45,000+ images.
Semi-Supervised Neural System for Tagging, Parsing and Lematization
This paper describes the ICS PAS system which took part in CoNLL 2018 shared task on Multilingual Parsing from Raw Text to Universal Dependencies. The system consists of jointly trained tagger, lemmatizer, and dependency parser which are based on features extracted by a biLSTM network. The system uses both fully connected and dilated convolutional neural architectures. The novelty of our approach is the use of an additional loss function, which reduces the number of cycles in the predicted dependency graphs, and the use of self-training to increase the system performance. The proposed system, i.e. ICS PAS (Warszawa), ranked 3th/4th in the official evaluation obtaining the following overall results: 73.02 (LAS), 60.25 (MLAS) and 64.44 (BLEX).
Finding Meaning in Points: Weakly Supervised Semantic Segmentation for Event Cameras
Event cameras excel in capturing high-contrast scenes and dynamic objects, offering a significant advantage over traditional frame-based cameras. Despite active research into leveraging event cameras for semantic segmentation, generating pixel-wise dense semantic maps for such challenging scenarios remains labor-intensive. As a remedy, we present EV-WSSS: a novel weakly supervised approach for event-based semantic segmentation that utilizes sparse point annotations. To fully leverage the temporal characteristics of event data, the proposed framework performs asymmetric dual-student learning between 1) the original forward event data and 2) the longer reversed event data, which contain complementary information from the past and the future, respectively. Besides, to mitigate the challenges posed by sparse supervision, we propose feature-level contrastive learning based on class-wise prototypes, carefully aggregated at both spatial region and sample levels. Additionally, we further excavate the potential of our dual-student learning model by exchanging prototypes between the two learning paths, thereby harnessing their complementary strengths. With extensive experiments on various datasets, including DSEC Night-Point with sparse point annotations newly provided by this paper, the proposed method achieves substantial segmentation results even without relying on pixel-level dense ground truths. The code and dataset are available at https://github.com/Chohoonhee/EV-WSSS.
SPACE-2: Tree-Structured Semi-Supervised Contrastive Pre-training for Task-Oriented Dialog Understanding
Pre-training methods with contrastive learning objectives have shown remarkable success in dialog understanding tasks. However, current contrastive learning solely considers the self-augmented dialog samples as positive samples and treats all other dialog samples as negative ones, which enforces dissimilar representations even for dialogs that are semantically related. In this paper, we propose SPACE-2, a tree-structured pre-trained conversation model, which learns dialog representations from limited labeled dialogs and large-scale unlabeled dialog corpora via semi-supervised contrastive pre-training. Concretely, we first define a general semantic tree structure (STS) to unify the inconsistent annotation schema across different dialog datasets, so that the rich structural information stored in all labeled data can be exploited. Then we propose a novel multi-view score function to increase the relevance of all possible dialogs that share similar STSs and only push away other completely different dialogs during supervised contrastive pre-training. To fully exploit unlabeled dialogs, a basic self-supervised contrastive loss is also added to refine the learned representations. Experiments show that our method can achieve new state-of-the-art results on the DialoGLUE benchmark consisting of seven datasets and four popular dialog understanding tasks. For reproducibility, we release the code and data at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/space-2.
SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds
Labelling point clouds fully is highly time-consuming and costly. As larger point cloud datasets with billions of points become more common, we ask whether the full annotation is even necessary, demonstrating that existing baselines designed under a fully annotated assumption only degrade slightly even when faced with 1% random point annotations. However, beyond this point, e.g., at 0.1% annotations, segmentation accuracy is unacceptably low. We observe that, as point clouds are samples of the 3D world, the distribution of points in a local neighborhood is relatively homogeneous, exhibiting strong semantic similarity. Motivated by this, we propose a new weak supervision method to implicitly augment highly sparse supervision signals. Extensive experiments demonstrate the proposed Semantic Query Network (SQN) achieves promising performance on seven large-scale open datasets under weak supervision schemes, while requiring only 0.1% randomly annotated points for training, greatly reducing annotation cost and effort. The code is available at https://github.com/QingyongHu/SQN.
Multi-view Self-supervised Deep Learning for 6D Pose Estimation in the Amazon Picking Challenge
Robot warehouse automation has attracted significant interest in recent years, perhaps most visibly in the Amazon Picking Challenge (APC). A fully autonomous warehouse pick-and-place system requires robust vision that reliably recognizes and locates objects amid cluttered environments, self-occlusions, sensor noise, and a large variety of objects. In this paper we present an approach that leverages multi-view RGB-D data and self-supervised, data-driven learning to overcome those difficulties. The approach was part of the MIT-Princeton Team system that took 3rd- and 4th- place in the stowing and picking tasks, respectively at APC 2016. In the proposed approach, we segment and label multiple views of a scene with a fully convolutional neural network, and then fit pre-scanned 3D object models to the resulting segmentation to get the 6D object pose. Training a deep neural network for segmentation typically requires a large amount of training data. We propose a self-supervised method to generate a large labeled dataset without tedious manual segmentation. We demonstrate that our system can reliably estimate the 6D pose of objects under a variety of scenarios. All code, data, and benchmarks are available at http://apc.cs.princeton.edu/
Weakly Supervised Lesion Detection and Diagnosis for Breast Cancers with Partially Annotated Ultrasound Images
Deep learning (DL) has proven highly effective for ultrasound-based computer-aided diagnosis (CAD) of breast cancers. In an automaticCAD system, lesion detection is critical for the following diagnosis. However, existing DL-based methods generally require voluminous manually-annotated region of interest (ROI) labels and class labels to train both the lesion detection and diagnosis models. In clinical practice, the ROI labels, i.e. ground truths, may not always be optimal for the classification task due to individual experience of sonologists, resulting in the issue of coarse annotation that limits the diagnosis performance of a CAD model. To address this issue, a novel Two-Stage Detection and Diagnosis Network (TSDDNet) is proposed based on weakly supervised learning to enhance diagnostic accuracy of the ultrasound-based CAD for breast cancers. In particular, all the ROI-level labels are considered as coarse labels in the first training stage, and then a candidate selection mechanism is designed to identify optimallesion areas for both the fully and partially annotated samples. It refines the current ROI-level labels in the fully annotated images and the detected ROIs in the partially annotated samples with a weakly supervised manner under the guidance of class labels. In the second training stage, a self-distillation strategy further is further proposed to integrate the detection network and classification network into a unified framework as the final CAD model for joint optimization, which then further improves the diagnosis performance. The proposed TSDDNet is evaluated on a B-mode ultrasound dataset, and the experimental results show that it achieves the best performance on both lesion detection and diagnosis tasks, suggesting promising application potential.
Joint Self-Supervised Image-Volume Representation Learning with Intra-Inter Contrastive Clustering
Collecting large-scale medical datasets with fully annotated samples for training of deep networks is prohibitively expensive, especially for 3D volume data. Recent breakthroughs in self-supervised learning (SSL) offer the ability to overcome the lack of labeled training samples by learning feature representations from unlabeled data. However, most current SSL techniques in the medical field have been designed for either 2D images or 3D volumes. In practice, this restricts the capability to fully leverage unlabeled data from numerous sources, which may include both 2D and 3D data. Additionally, the use of these pre-trained networks is constrained to downstream tasks with compatible data dimensions. In this paper, we propose a novel framework for unsupervised joint learning on 2D and 3D data modalities. Given a set of 2D images or 2D slices extracted from 3D volumes, we construct an SSL task based on a 2D contrastive clustering problem for distinct classes. The 3D volumes are exploited by computing vectored embedding at each slice and then assembling a holistic feature through deformable self-attention mechanisms in Transformer, allowing incorporating long-range dependencies between slices inside 3D volumes. These holistic features are further utilized to define a novel 3D clustering agreement-based SSL task and masking embedding prediction inspired by pre-trained language models. Experiments on downstream tasks, such as 3D brain segmentation, lung nodule detection, 3D heart structures segmentation, and abnormal chest X-ray detection, demonstrate the effectiveness of our joint 2D and 3D SSL approach. We improve plain 2D Deep-ClusterV2 and SwAV by a significant margin and also surpass various modern 2D and 3D SSL approaches.
Inductive biases and Self Supervised Learning in modelling a physical heating system
Model Predictive Controllers (MPC) require a good model for the controlled process. In this paper I infer inductive biases about a physical system. I use these biases to derive a new neural network architecture that can model this real system that has noise and inertia. The main inductive biases exploited here are: the delayed impact of some inputs on the system and the separability between the temporal component and how the inputs interact to produce the output of a system. The inputs are independently delayed using shifted convolutional kernels. Feature interactions are modelled using a fully connected network that does not have access to temporal information. The available data and the problem setup allow the usage of Self Supervised Learning in order to train the models. The baseline architecture is an Attention based Reccurent network adapted to work with MPC like inputs. The proposed networks are faster, better at exploiting larger data volumes and are almost as good as baseline networks in terms of prediction performance. The proposed architecture family called Delay can be used in a real scenario to control systems with delayed responses with respect to its controls or inputs. Ablation studies show that the presence of delay kernels are vital to obtain any learning in proposed architecture. Code and some experimental data are available online.
SemiEvol: Semi-supervised Fine-tuning for LLM Adaptation
Supervised fine-tuning (SFT) is crucial in adapting large language models (LLMs) to a specific domain or task. However, only a limited amount of labeled data is available in practical applications, which poses a severe challenge for SFT in yielding satisfactory results. Therefore, a data-efficient framework that can fully exploit labeled and unlabeled data for LLM fine-tuning is highly anticipated. Towards this end, we introduce a semi-supervised fine-tuning framework named SemiEvol for LLM adaptation from a propagate-and-select manner. For knowledge propagation, SemiEvol adopts a bi-level approach, propagating knowledge from labeled data to unlabeled data through both in-weight and in-context methods. For knowledge selection, SemiEvol incorporates a collaborative learning mechanism, selecting higher-quality pseudo-response samples. We conducted experiments using GPT-4o-mini and Llama-3.1 on seven general or domain-specific datasets, demonstrating significant improvements in model performance on target data. Furthermore, we compared SemiEvol with SFT and self-evolution methods, highlighting its practicality in hybrid data scenarios.
CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations
Geo-tagged images are publicly available in large quantities, whereas labels such as object classes are rather scarce and expensive to collect. Meanwhile, contrastive learning has achieved tremendous success in various natural image and language tasks with limited labeled data. However, existing methods fail to fully leverage geospatial information, which can be paramount to distinguishing objects that are visually similar. To directly leverage the abundant geospatial information associated with images in pre-training, fine-tuning, and inference stages, we present Contrastive Spatial Pre-Training (CSP), a self-supervised learning framework for geo-tagged images. We use a dual-encoder to separately encode the images and their corresponding geo-locations, and use contrastive objectives to learn effective location representations from images, which can be transferred to downstream supervised tasks such as image classification. Experiments show that CSP can improve model performance on both iNat2018 and fMoW datasets. Especially, on iNat2018, CSP significantly boosts the model performance with 10-34% relative improvement with various labeled training data sampling ratios.
SC3K: Self-supervised and Coherent 3D Keypoints Estimation from Rotated, Noisy, and Decimated Point Cloud Data
This paper proposes a new method to infer keypoints from arbitrary object categories in practical scenarios where point cloud data (PCD) are noisy, down-sampled and arbitrarily rotated. Our proposed model adheres to the following principles: i) keypoints inference is fully unsupervised (no annotation given), ii) keypoints position error should be low and resilient to PCD perturbations (robustness), iii) keypoints should not change their indexes for the intra-class objects (semantic coherence), iv) keypoints should be close to or proximal to PCD surface (compactness). We achieve these desiderata by proposing a new self-supervised training strategy for keypoints estimation that does not assume any a priori knowledge of the object class, and a model architecture with coupled auxiliary losses that promotes the desired keypoints properties. We compare the keypoints estimated by the proposed approach with those of the state-of-the-art unsupervised approaches. The experiments show that our approach outperforms by estimating keypoints with improved coverage (+9.41%) while being semantically consistent (+4.66%) that best characterizes the object's 3D shape for downstream tasks. Code and data are available at: https://github.com/IITPAVIS/SC3K
OBoW: Online Bag-of-Visual-Words Generation for Self-Supervised Learning
Learning image representations without human supervision is an important and active research field. Several recent approaches have successfully leveraged the idea of making such a representation invariant under different types of perturbations, especially via contrastive-based instance discrimination training. Although effective visual representations should indeed exhibit such invariances, there are other important characteristics, such as encoding contextual reasoning skills, for which alternative reconstruction-based approaches might be better suited. With this in mind, we propose a teacher-student scheme to learn representations by training a convolutional net to reconstruct a bag-of-visual-words (BoW) representation of an image, given as input a perturbed version of that same image. Our strategy performs an online training of both the teacher network (whose role is to generate the BoW targets) and the student network (whose role is to learn representations), along with an online update of the visual-words vocabulary (used for the BoW targets). This idea effectively enables fully online BoW-guided unsupervised learning. Extensive experiments demonstrate the interest of our BoW-based strategy which surpasses previous state-of-the-art methods (including contrastive-based ones) in several applications. For instance, in downstream tasks such Pascal object detection, Pascal classification and Places205 classification, our method improves over all prior unsupervised approaches, thus establishing new state-of-the-art results that are also significantly better even than those of supervised pre-training. We provide the implementation code at https://github.com/valeoai/obow.
Self-supervised Learning on Graphs: Deep Insights and New Direction
The success of deep learning notoriously requires larger amounts of costly annotated data. This has led to the development of self-supervised learning (SSL) that aims to alleviate this limitation by creating domain specific pretext tasks on unlabeled data. Simultaneously, there are increasing interests in generalizing deep learning to the graph domain in the form of graph neural networks (GNNs). GNNs can naturally utilize unlabeled nodes through the simple neighborhood aggregation that is unable to thoroughly make use of unlabeled nodes. Thus, we seek to harness SSL for GNNs to fully exploit the unlabeled data. Different from data instances in the image and text domains, nodes in graphs present unique structure information and they are inherently linked indicating not independent and identically distributed (or i.i.d.). Such complexity is a double-edged sword for SSL on graphs. On the one hand, it determines that it is challenging to adopt solutions from the image and text domains to graphs and dedicated efforts are desired. On the other hand, it provides rich information that enables us to build SSL from a variety of perspectives. Thus, in this paper, we first deepen our understandings on when, why, and which strategies of SSL work with GNNs by empirically studying numerous basic SSL pretext tasks on graphs. Inspired by deep insights from the empirical studies, we propose a new direction SelfTask to build advanced pretext tasks that are able to achieve state-of-the-art performance on various real-world datasets. The specific experimental settings to reproduce our results can be found in https://github.com/ChandlerBang/SelfTask-GNN.
Learning Synergies between Pushing and Grasping with Self-supervised Deep Reinforcement Learning
Skilled robotic manipulation benefits from complex synergies between non-prehensile (e.g. pushing) and prehensile (e.g. grasping) actions: pushing can help rearrange cluttered objects to make space for arms and fingers; likewise, grasping can help displace objects to make pushing movements more precise and collision-free. In this work, we demonstrate that it is possible to discover and learn these synergies from scratch through model-free deep reinforcement learning. Our method involves training two fully convolutional networks that map from visual observations to actions: one infers the utility of pushes for a dense pixel-wise sampling of end effector orientations and locations, while the other does the same for grasping. Both networks are trained jointly in a Q-learning framework and are entirely self-supervised by trial and error, where rewards are provided from successful grasps. In this way, our policy learns pushing motions that enable future grasps, while learning grasps that can leverage past pushes. During picking experiments in both simulation and real-world scenarios, we find that our system quickly learns complex behaviors amid challenging cases of clutter, and achieves better grasping success rates and picking efficiencies than baseline alternatives after only a few hours of training. We further demonstrate that our method is capable of generalizing to novel objects. Qualitative results (videos), code, pre-trained models, and simulation environments are available at http://vpg.cs.princeton.edu
SuperPoint: Self-Supervised Interest Point Detection and Description
This paper presents a self-supervised framework for training interest point detectors and descriptors suitable for a large number of multiple-view geometry problems in computer vision. As opposed to patch-based neural networks, our fully-convolutional model operates on full-sized images and jointly computes pixel-level interest point locations and associated descriptors in one forward pass. We introduce Homographic Adaptation, a multi-scale, multi-homography approach for boosting interest point detection repeatability and performing cross-domain adaptation (e.g., synthetic-to-real). Our model, when trained on the MS-COCO generic image dataset using Homographic Adaptation, is able to repeatedly detect a much richer set of interest points than the initial pre-adapted deep model and any other traditional corner detector. The final system gives rise to state-of-the-art homography estimation results on HPatches when compared to LIFT, SIFT and ORB.
ConvNet vs Transformer, Supervised vs CLIP: Beyond ImageNet Accuracy
Modern computer vision offers a great variety of models to practitioners, and selecting a model from multiple options for specific applications can be challenging. Conventionally, competing model architectures and training protocols are compared by their classification accuracy on ImageNet. However, this single metric does not fully capture performance nuances critical for specialized tasks. In this work, we conduct an in-depth comparative analysis of model behaviors beyond ImageNet accuracy, for both ConvNet and Vision Transformer architectures, each across supervised and CLIP training paradigms. Although our selected models have similar ImageNet accuracies and compute requirements, we find that they differ in many other aspects: types of mistakes, output calibration, transferability, and feature invariance, among others. This diversity in model characteristics, not captured by traditional metrics, highlights the need for more nuanced analysis when choosing among different models. Our code is available at https://github.com/kirill-vish/Beyond-INet.
Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories
Natural agents can effectively learn from multiple data sources that differ in size, quality, and types of measurements. We study this heterogeneity in the context of offline reinforcement learning (RL) by introducing a new, practically motivated semi-supervised setting. Here, an agent has access to two sets of trajectories: labelled trajectories containing state, action and reward triplets at every timestep, along with unlabelled trajectories that contain only state and reward information. For this setting, we develop and study a simple meta-algorithmic pipeline that learns an inverse dynamics model on the labelled data to obtain proxy-labels for the unlabelled data, followed by the use of any offline RL algorithm on the true and proxy-labelled trajectories. Empirically, we find this simple pipeline to be highly successful -- on several D4RL benchmarks~fu2020d4rl, certain offline RL algorithms can match the performance of variants trained on a fully labelled dataset even when we label only 10\% of trajectories which are highly suboptimal. To strengthen our understanding, we perform a large-scale controlled empirical study investigating the interplay of data-centric properties of the labelled and unlabelled datasets, with algorithmic design choices (e.g., choice of inverse dynamics, offline RL algorithm) to identify general trends and best practices for training RL agents on semi-supervised offline datasets.
Improving Semi-Supervised Semantic Segmentation with Dual-Level Siamese Structure Network
Semi-supervised semantic segmentation (SSS) is an important task that utilizes both labeled and unlabeled data to reduce expenses on labeling training examples. However, the effectiveness of SSS algorithms is limited by the difficulty of fully exploiting the potential of unlabeled data. To address this, we propose a dual-level Siamese structure network (DSSN) for pixel-wise contrastive learning. By aligning positive pairs with a pixel-wise contrastive loss using strong augmented views in both low-level image space and high-level feature space, the proposed DSSN is designed to maximize the utilization of available unlabeled data. Additionally, we introduce a novel class-aware pseudo-label selection strategy for weak-to-strong supervision, which addresses the limitations of most existing methods that do not perform selection or apply a predefined threshold for all classes. Specifically, our strategy selects the top high-confidence prediction of the weak view for each class to generate pseudo labels that supervise the strong augmented views. This strategy is capable of taking into account the class imbalance and improving the performance of long-tailed classes. Our proposed method achieves state-of-the-art results on two datasets, PASCAL VOC 2012 and Cityscapes, outperforming other SSS algorithms by a significant margin.
CPCM: Contextual Point Cloud Modeling for Weakly-supervised Point Cloud Semantic Segmentation
We study the task of weakly-supervised point cloud semantic segmentation with sparse annotations (e.g., less than 0.1% points are labeled), aiming to reduce the expensive cost of dense annotations. Unfortunately, with extremely sparse annotated points, it is very difficult to extract both contextual and object information for scene understanding such as semantic segmentation. Motivated by masked modeling (e.g., MAE) in image and video representation learning, we seek to endow the power of masked modeling to learn contextual information from sparsely-annotated points. However, directly applying MAE to 3D point clouds with sparse annotations may fail to work. First, it is nontrivial to effectively mask out the informative visual context from 3D point clouds. Second, how to fully exploit the sparse annotations for context modeling remains an open question. In this paper, we propose a simple yet effective Contextual Point Cloud Modeling (CPCM) method that consists of two parts: a region-wise masking (RegionMask) strategy and a contextual masked training (CMT) method. Specifically, RegionMask masks the point cloud continuously in geometric space to construct a meaningful masked prediction task for subsequent context learning. CMT disentangles the learning of supervised segmentation and unsupervised masked context prediction for effectively learning the very limited labeled points and mass unlabeled points, respectively. Extensive experiments on the widely-tested ScanNet V2 and S3DIS benchmarks demonstrate the superiority of CPCM over the state-of-the-art.
From CAD models to soft point cloud labels: An automatic annotation pipeline for cheaply supervised 3D semantic segmentation
We propose a fully automatic annotation scheme that takes a raw 3D point cloud with a set of fitted CAD models as input and outputs convincing point-wise labels that can be used as cheap training data for point cloud segmentation. Compared with manual annotations, we show that our automatic labels are accurate while drastically reducing the annotation time and eliminating the need for manual intervention or dataset-specific parameters. Our labeling pipeline outputs semantic classes and soft point-wise object scores, which can either be binarized into standard one-hot-encoded labels, thresholded into weak labels with ambiguous points left unlabeled, or used directly as soft labels during training. We evaluate the label quality and segmentation performance of PointNet++ on a dataset of real industrial point clouds and Scan2CAD, a public dataset of indoor scenes. Our results indicate that reducing supervision in areas that are more difficult to label automatically is beneficial compared with the conventional approach of naively assigning a hard "best guess" label to every point.
GSV-Cities: Toward Appropriate Supervised Visual Place Recognition
This paper aims to investigate representation learning for large scale visual place recognition, which consists of determining the location depicted in a query image by referring to a database of reference images. This is a challenging task due to the large-scale environmental changes that can occur over time (i.e., weather, illumination, season, traffic, occlusion). Progress is currently challenged by the lack of large databases with accurate ground truth. To address this challenge, we introduce GSV-Cities, a new image dataset providing the widest geographic coverage to date with highly accurate ground truth, covering more than 40 cities across all continents over a 14-year period. We subsequently explore the full potential of recent advances in deep metric learning to train networks specifically for place recognition, and evaluate how different loss functions influence performance. In addition, we show that performance of existing methods substantially improves when trained on GSV-Cities. Finally, we introduce a new fully convolutional aggregation layer that outperforms existing techniques, including GeM, NetVLAD and CosPlace, and establish a new state-of-the-art on large-scale benchmarks, such as Pittsburgh, Mapillary-SLS, SPED and Nordland. The dataset and code are available for research purposes at https://github.com/amaralibey/gsv-cities.
Tailoring Self-Supervision for Supervised Learning
Recently, it is shown that deploying a proper self-supervision is a prospective way to enhance the performance of supervised learning. Yet, the benefits of self-supervision are not fully exploited as previous pretext tasks are specialized for unsupervised representation learning. To this end, we begin by presenting three desirable properties for such auxiliary tasks to assist the supervised objective. First, the tasks need to guide the model to learn rich features. Second, the transformations involved in the self-supervision should not significantly alter the training distribution. Third, the tasks are preferred to be light and generic for high applicability to prior arts. Subsequently, to show how existing pretext tasks can fulfill these and be tailored for supervised learning, we propose a simple auxiliary self-supervision task, predicting localizable rotation (LoRot). Our exhaustive experiments validate the merits of LoRot as a pretext task tailored for supervised learning in terms of robustness and generalization capability. Our code is available at https://github.com/wjun0830/Localizable-Rotation.
Self-supervised Deep Reinforcement Learning with Generalized Computation Graphs for Robot Navigation
Enabling robots to autonomously navigate complex environments is essential for real-world deployment. Prior methods approach this problem by having the robot maintain an internal map of the world, and then use a localization and planning method to navigate through the internal map. However, these approaches often include a variety of assumptions, are computationally intensive, and do not learn from failures. In contrast, learning-based methods improve as the robot acts in the environment, but are difficult to deploy in the real-world due to their high sample complexity. To address the need to learn complex policies with few samples, we propose a generalized computation graph that subsumes value-based model-free methods and model-based methods, with specific instantiations interpolating between model-free and model-based. We then instantiate this graph to form a navigation model that learns from raw images and is sample efficient. Our simulated car experiments explore the design decisions of our navigation model, and show our approach outperforms single-step and N-step double Q-learning. We also evaluate our approach on a real-world RC car and show it can learn to navigate through a complex indoor environment with a few hours of fully autonomous, self-supervised training. Videos of the experiments and code can be found at github.com/gkahn13/gcg
CrossVideoMAE: Self-Supervised Image-Video Representation Learning with Masked Autoencoders
Current video-based Masked Autoencoders (MAEs) primarily focus on learning effective spatiotemporal representations from a visual perspective, which may lead the model to prioritize general spatial-temporal patterns but often overlook nuanced semantic attributes like specific interactions or sequences that define actions - such as action-specific features that align more closely with human cognition for space-time correspondence. This can limit the model's ability to capture the essence of certain actions that are contextually rich and continuous. Humans are capable of mapping visual concepts, object view invariance, and semantic attributes available in static instances to comprehend natural dynamic scenes or videos. Existing MAEs for videos and static images rely on separate datasets for videos and images, which may lack the rich semantic attributes necessary for fully understanding the learned concepts, especially when compared to using video and corresponding sampled frame images together. To this end, we propose CrossVideoMAE an end-to-end self-supervised cross-modal contrastive learning MAE that effectively learns both video-level and frame-level rich spatiotemporal representations and semantic attributes. Our method integrates mutual spatiotemporal information from videos with spatial information from sampled frames within a feature-invariant space, while encouraging invariance to augmentations within the video domain. This objective is achieved through jointly embedding features of visible tokens and combining feature correspondence within and across modalities, which is critical for acquiring rich, label-free guiding signals from both video and frame image modalities in a self-supervised manner. Extensive experiments demonstrate that our approach surpasses previous state-of-the-art methods and ablation studies validate the effectiveness of our approach.
Self-Guided Masked Autoencoders for Domain-Agnostic Self-Supervised Learning
Self-supervised learning excels in learning representations from large amounts of unlabeled data, demonstrating success across multiple data modalities. Yet, extending self-supervised learning to new modalities is non-trivial because the specifics of existing methods are tailored to each domain, such as domain-specific augmentations which reflect the invariances in the target task. While masked modeling is promising as a domain-agnostic framework for self-supervised learning because it does not rely on input augmentations, its mask sampling procedure remains domain-specific. We present Self-guided Masked Autoencoders (SMA), a fully domain-agnostic masked modeling method. SMA trains an attention based model using a masked modeling objective, by learning masks to sample without any domain-specific assumptions. We evaluate SMA on three self-supervised learning benchmarks in protein biology, chemical property prediction, and particle physics. We find SMA is capable of learning representations without domain-specific knowledge and achieves state-of-the-art performance on these three benchmarks.
Point Cloud Self-supervised Learning via 3D to Multi-view Masked Autoencoder
In recent years, the field of 3D self-supervised learning has witnessed significant progress, resulting in the emergence of Multi-Modality Masked AutoEncoders (MAE) methods that leverage both 2D images and 3D point clouds for pre-training. However, a notable limitation of these approaches is that they do not fully utilize the multi-view attributes inherent in 3D point clouds, which is crucial for a deeper understanding of 3D structures. Building upon this insight, we introduce a novel approach employing a 3D to multi-view masked autoencoder to fully harness the multi-modal attributes of 3D point clouds. To be specific, our method uses the encoded tokens from 3D masked point clouds to generate original point clouds and multi-view depth images across various poses. This approach not only enriches the model's comprehension of geometric structures but also leverages the inherent multi-modal properties of point clouds. Our experiments illustrate the effectiveness of the proposed method for different tasks and under different settings. Remarkably, our method outperforms state-of-the-art counterparts by a large margin in a variety of downstream tasks, including 3D object classification, few-shot learning, part segmentation, and 3D object detection. Code will be available at: https://github.com/Zhimin-C/Multiview-MAE
EMR-MSF: Self-Supervised Recurrent Monocular Scene Flow Exploiting Ego-Motion Rigidity
Self-supervised monocular scene flow estimation, aiming to understand both 3D structures and 3D motions from two temporally consecutive monocular images, has received increasing attention for its simple and economical sensor setup. However, the accuracy of current methods suffers from the bottleneck of less-efficient network architecture and lack of motion rigidity for regularization. In this paper, we propose a superior model named EMR-MSF by borrowing the advantages of network architecture design under the scope of supervised learning. We further impose explicit and robust geometric constraints with an elaborately constructed ego-motion aggregation module where a rigidity soft mask is proposed to filter out dynamic regions for stable ego-motion estimation using static regions. Moreover, we propose a motion consistency loss along with a mask regularization loss to fully exploit static regions. Several efficient training strategies are integrated including a gradient detachment technique and an enhanced view synthesis process for better performance. Our proposed method outperforms the previous self-supervised works by a large margin and catches up to the performance of supervised methods. On the KITTI scene flow benchmark, our approach improves the SF-all metric of the state-of-the-art self-supervised monocular method by 44% and demonstrates superior performance across sub-tasks including depth and visual odometry, amongst other self-supervised single-task or multi-task methods.
SANSformers: Self-Supervised Forecasting in Electronic Health Records with Attention-Free Models
Despite the proven effectiveness of Transformer neural networks across multiple domains, their performance with Electronic Health Records (EHR) can be nuanced. The unique, multidimensional sequential nature of EHR data can sometimes make even simple linear models with carefully engineered features more competitive. Thus, the advantages of Transformers, such as efficient transfer learning and improved scalability are not always fully exploited in EHR applications. Addressing these challenges, we introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data. In this work, we aim to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities. The challenge amplifies when dealing with divergent patient subgroups, like those with rare diseases, which are characterized by unique health trajectories and are typically smaller in size. To address this, we employ a self-supervised pretraining strategy, Generative Summary Pretraining (GSP), which predicts future summary statistics based on past health records of a patient. Our models are pretrained on a health registry of nearly one million patients, then fine-tuned for specific subgroup prediction tasks, showcasing the potential to handle the multifaceted nature of EHR data. In evaluation, SANSformer consistently surpasses robust EHR baselines, with our GSP pretraining method notably amplifying model performance, particularly within smaller patient subgroups. Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders
Pretrained Masked Language Models (MLMs) have revolutionised NLP in recent years. However, previous work has indicated that off-the-shelf MLMs are not effective as universal lexical or sentence encoders without further task-specific fine-tuning on NLI, sentence similarity, or paraphrasing tasks using annotated task data. In this work, we demonstrate that it is possible to turn MLMs into effective universal lexical and sentence encoders even without any additional data and without any supervision. We propose an extremely simple, fast and effective contrastive learning technique, termed Mirror-BERT, which converts MLMs (e.g., BERT and RoBERTa) into such encoders in 20-30 seconds without any additional external knowledge. Mirror-BERT relies on fully identical or slightly modified string pairs as positive (i.e., synonymous) fine-tuning examples, and aims to maximise their similarity during identity fine-tuning. We report huge gains over off-the-shelf MLMs with Mirror-BERT in both lexical-level and sentence-level tasks, across different domains and different languages. Notably, in the standard sentence semantic similarity (STS) tasks, our self-supervised Mirror-BERT model even matches the performance of the task-tuned Sentence-BERT models from prior work. Finally, we delve deeper into the inner workings of MLMs, and suggest some evidence on why this simple approach can yield effective universal lexical and sentence encoders.
Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach. While stronger language models can enhance multimodal capabilities, the design choices for vision components are often insufficiently explored and disconnected from visual representation learning research. This gap hinders accurate sensory grounding in real-world scenarios. Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations, offering new insights into different models and architectures -- self-supervised, strongly supervised, or combinations thereof -- based on experiments with over 20 vision encoders. We critically examine existing MLLM benchmarks, addressing the difficulties involved in consolidating and interpreting results from various tasks, and introduce a new vision-centric benchmark, CV-Bench. To further improve visual grounding, we propose the Spatial Vision Aggregator (SVA), a dynamic and spatially-aware connector that integrates high-resolution vision features with LLMs while reducing the number of tokens. Additionally, we discuss the curation of high-quality visual instruction-tuning data from publicly available sources, emphasizing the importance of data source balancing and distribution ratio. Collectively, Cambrian-1 not only achieves state-of-the-art performance but also serves as a comprehensive, open cookbook for instruction-tuned MLLMs. We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes. We hope our release will inspire and accelerate advancements in multimodal systems and visual representation learning.
The Role of Entropy and Reconstruction in Multi-View Self-Supervised Learning
The mechanisms behind the success of multi-view self-supervised learning (MVSSL) are not yet fully understood. Contrastive MVSSL methods have been studied through the lens of InfoNCE, a lower bound of the Mutual Information (MI). However, the relation between other MVSSL methods and MI remains unclear. We consider a different lower bound on the MI consisting of an entropy and a reconstruction term (ER), and analyze the main MVSSL families through its lens. Through this ER bound, we show that clustering-based methods such as DeepCluster and SwAV maximize the MI. We also re-interpret the mechanisms of distillation-based approaches such as BYOL and DINO, showing that they explicitly maximize the reconstruction term and implicitly encourage a stable entropy, and we confirm this empirically. We show that replacing the objectives of common MVSSL methods with this ER bound achieves competitive performance, while making them stable when training with smaller batch sizes or smaller exponential moving average (EMA) coefficients. Github repo: https://github.com/apple/ml-entropy-reconstruction.
R1-T1: Fully Incentivizing Translation Capability in LLMs via Reasoning Learning
Despite recent breakthroughs in reasoning-enhanced large language models (LLMs) like DeepSeek-R1, incorporating inference-time reasoning into machine translation (MT), where human translators naturally employ structured, multi-layered reasoning chain-of-thoughts (CoTs), is yet underexplored. Existing methods either design a fixed CoT tailored for a specific MT sub-task (e.g., literature translation), or rely on synthesizing CoTs unaligned with humans and supervised fine-tuning (SFT) prone to catastrophic forgetting, limiting their adaptability to diverse translation scenarios. This paper introduces R1-Translator (R1-T1), a novel framework to achieve inference-time reasoning for general MT via reinforcement learning (RL) with human-aligned CoTs comprising six common patterns. Our approach pioneers three innovations: (1) extending reasoning-based translation beyond MT sub-tasks to six languages and diverse tasks (e.g., legal/medical domain adaptation, idiom resolution); (2) formalizing six expert-curated CoT templates that mirror hybrid human strategies like context-aware paraphrasing and back translation; and (3) enabling self-evolving CoT discovery and anti-forgetting adaptation through RL with KL-constrained rewards. Experimental results indicate a steady translation performance improvement in 21 languages and 80 translation directions on Flores-101 test set, especially on the 15 languages unseen from training, with its general multilingual abilities preserved compared with plain SFT.
BVI-Lowlight: Fully Registered Benchmark Dataset for Low-Light Video Enhancement
Low-light videos often exhibit spatiotemporal incoherent noise, leading to poor visibility and compromised performance across various computer vision applications. One significant challenge in enhancing such content using modern technologies is the scarcity of training data. This paper introduces a novel low-light video dataset, consisting of 40 scenes captured in various motion scenarios under two distinct low-lighting conditions, incorporating genuine noise and temporal artifacts. We provide fully registered ground truth data captured in normal light using a programmable motorized dolly, and subsequently, refine them via image-based post-processing to ensure the pixel-wise alignment of frames in different light levels. This paper also presents an exhaustive analysis of the low-light dataset, and demonstrates the extensive and representative nature of our dataset in the context of supervised learning. Our experimental results demonstrate the significance of fully registered video pairs in the development of low-light video enhancement methods and the need for comprehensive evaluation. Our dataset is available at DOI:10.21227/mzny-8c77.
ALWOD: Active Learning for Weakly-Supervised Object Detection
Object detection (OD), a crucial vision task, remains challenged by the lack of large training datasets with precise object localization labels. In this work, we propose ALWOD, a new framework that addresses this problem by fusing active learning (AL) with weakly and semi-supervised object detection paradigms. Because the performance of AL critically depends on the model initialization, we propose a new auxiliary image generator strategy that utilizes an extremely small labeled set, coupled with a large weakly tagged set of images, as a warm-start for AL. We then propose a new AL acquisition function, another critical factor in AL success, that leverages the student-teacher OD pair disagreement and uncertainty to effectively propose the most informative images to annotate. Finally, to complete the AL loop, we introduce a new labeling task delegated to human annotators, based on selection and correction of model-proposed detections, which is both rapid and effective in labeling the informative images. We demonstrate, across several challenging benchmarks, that ALWOD significantly narrows the gap between the ODs trained on few partially labeled but strategically selected image instances and those that rely on the fully-labeled data. Our code is publicly available on https://github.com/seqam-lab/ALWOD.
SimPLe: Similarity-Aware Propagation Learning for Weakly-Supervised Breast Cancer Segmentation in DCE-MRI
Breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays an important role in the screening and prognosis assessment of high-risk breast cancer. The segmentation of cancerous regions is essential useful for the subsequent analysis of breast MRI. To alleviate the annotation effort to train the segmentation networks, we propose a weakly-supervised strategy using extreme points as annotations for breast cancer segmentation. Without using any bells and whistles, our strategy focuses on fully exploiting the learning capability of the routine training procedure, i.e., the train - fine-tune - retrain process. The network first utilizes the pseudo-masks generated using the extreme points to train itself, by minimizing a contrastive loss, which encourages the network to learn more representative features for cancerous voxels. Then the trained network fine-tunes itself by using a similarity-aware propagation learning (SimPLe) strategy, which leverages feature similarity between unlabeled and positive voxels to propagate labels. Finally the network retrains itself by employing the pseudo-masks generated using previous fine-tuned network. The proposed method is evaluated on our collected DCE-MRI dataset containing 206 patients with biopsy-proven breast cancers. Experimental results demonstrate our method effectively fine-tunes the network by using the SimPLe strategy, and achieves a mean Dice value of 81%.
FoPro: Few-Shot Guided Robust Webly-Supervised Prototypical Learning
Recently, webly supervised learning (WSL) has been studied to leverage numerous and accessible data from the Internet. Most existing methods focus on learning noise-robust models from web images while neglecting the performance drop caused by the differences between web domain and real-world domain. However, only by tackling the performance gap above can we fully exploit the practical value of web datasets. To this end, we propose a Few-shot guided Prototypical (FoPro) representation learning method, which only needs a few labeled examples from reality and can significantly improve the performance in the real-world domain. Specifically, we initialize each class center with few-shot real-world data as the ``realistic" prototype. Then, the intra-class distance between web instances and ``realistic" prototypes is narrowed by contrastive learning. Finally, we measure image-prototype distance with a learnable metric. Prototypes are polished by adjacent high-quality web images and involved in removing distant out-of-distribution samples. In experiments, FoPro is trained on web datasets with a few real-world examples guided and evaluated on real-world datasets. Our method achieves the state-of-the-art performance on three fine-grained datasets and two large-scale datasets. Compared with existing WSL methods under the same few-shot settings, FoPro still excels in real-world generalization. Code is available at https://github.com/yuleiqin/fopro.
Noise2Recon: Enabling Joint MRI Reconstruction and Denoising with Semi-Supervised and Self-Supervised Learning
Deep learning (DL) has shown promise for faster, high quality accelerated MRI reconstruction. However, supervised DL methods depend on extensive amounts of fully-sampled (labeled) data and are sensitive to out-of-distribution (OOD) shifts, particularly low signal-to-noise ratio (SNR) acquisitions. To alleviate this challenge, we propose Noise2Recon, a model-agnostic, consistency training method for joint MRI reconstruction and denoising that can use both fully-sampled (labeled) and undersampled (unlabeled) scans in semi-supervised and self-supervised settings. With limited or no labeled training data, Noise2Recon outperforms compressed sensing and deep learning baselines, including supervised networks, augmentation-based training, fine-tuned denoisers, and self-supervised methods, and matches performance of supervised models, which were trained with 14x more fully-sampled scans. Noise2Recon also outperforms all baselines, including state-of-the-art fine-tuning and augmentation techniques, among low-SNR scans and when generalizing to other OOD factors, such as changes in acceleration factors and different datasets. Augmentation extent and loss weighting hyperparameters had negligible impact on Noise2Recon compared to supervised methods, which may indicate increased training stability. Our code is available at https://github.com/ad12/meddlr.
A soft nearest-neighbor framework for continual semi-supervised learning
Despite significant advances, the performance of state-of-the-art continual learning approaches hinges on the unrealistic scenario of fully labeled data. In this paper, we tackle this challenge and propose an approach for continual semi-supervised learning--a setting where not all the data samples are labeled. A primary issue in this scenario is the model forgetting representations of unlabeled data and overfitting the labeled samples. We leverage the power of nearest-neighbor classifiers to nonlinearly partition the feature space and flexibly model the underlying data distribution thanks to its non-parametric nature. This enables the model to learn a strong representation for the current task, and distill relevant information from previous tasks. We perform a thorough experimental evaluation and show that our method outperforms all the existing approaches by large margins, setting a solid state of the art on the continual semi-supervised learning paradigm. For example, on CIFAR-100 we surpass several others even when using at least 30 times less supervision (0.8% vs. 25% of annotations). Finally, our method works well on both low and high resolution images and scales seamlessly to more complex datasets such as ImageNet-100. The code is publicly available on https://github.com/kangzhiq/NNCSL
MARS: Model-agnostic Biased Object Removal without Additional Supervision for Weakly-Supervised Semantic Segmentation
Weakly-supervised semantic segmentation aims to reduce labeling costs by training semantic segmentation models using weak supervision, such as image-level class labels. However, most approaches struggle to produce accurate localization maps and suffer from false predictions in class-related backgrounds (i.e., biased objects), such as detecting a railroad with the train class. Recent methods that remove biased objects require additional supervision for manually identifying biased objects for each problematic class and collecting their datasets by reviewing predictions, limiting their applicability to the real-world dataset with multiple labels and complex relationships for biasing. Following the first observation that biased features can be separated and eliminated by matching biased objects with backgrounds in the same dataset, we propose a fully-automatic/model-agnostic biased removal framework called MARS (Model-Agnostic biased object Removal without additional Supervision), which utilizes semantically consistent features of an unsupervised technique to eliminate biased objects in pseudo labels. Surprisingly, we show that MARS achieves new state-of-the-art results on two popular benchmarks, PASCAL VOC 2012 (val: 77.7%, test: 77.2%) and MS COCO 2014 (val: 49.4%), by consistently improving the performance of various WSSS models by at least 30% without additional supervision.
ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases
The chest X-ray is one of the most commonly accessible radiological examinations for screening and diagnosis of many lung diseases. A tremendous number of X-ray imaging studies accompanied by radiological reports are accumulated and stored in many modern hospitals' Picture Archiving and Communication Systems (PACS). On the other side, it is still an open question how this type of hospital-size knowledge database containing invaluable imaging informatics (i.e., loosely labeled) can be used to facilitate the data-hungry deep learning paradigms in building truly large-scale high precision computer-aided diagnosis (CAD) systems. In this paper, we present a new chest X-ray database, namely "ChestX-ray8", which comprises 108,948 frontal-view X-ray images of 32,717 unique patients with the text-mined eight disease image labels (where each image can have multi-labels), from the associated radiological reports using natural language processing. Importantly, we demonstrate that these commonly occurring thoracic diseases can be detected and even spatially-located via a unified weakly-supervised multi-label image classification and disease localization framework, which is validated using our proposed dataset. Although the initial quantitative results are promising as reported, deep convolutional neural network based "reading chest X-rays" (i.e., recognizing and locating the common disease patterns trained with only image-level labels) remains a strenuous task for fully-automated high precision CAD systems. Data download link: https://nihcc.app.box.com/v/ChestXray-NIHCC
Text Embeddings by Weakly-Supervised Contrastive Pre-training
This paper presents E5, a family of state-of-the-art text embeddings that transfer well to a wide range of tasks. The model is trained in a contrastive manner with weak supervision signals from our curated large-scale text pair dataset (called CCPairs). E5 can be readily used as a general-purpose embedding model for any tasks requiring a single-vector representation of texts such as retrieval, clustering, and classification, achieving strong performance in both zero-shot and fine-tuned settings. We conduct extensive evaluations on 56 datasets from the BEIR and MTEB benchmarks. For zero-shot settings, E5 is the first model that outperforms the strong BM25 baseline on the BEIR retrieval benchmark without using any labeled data. When fine-tuned, E5 obtains the best results on the MTEB benchmark, beating existing embedding models with 40x more parameters.
Language Models are Universal Embedders
In the large language model (LLM) revolution, embedding is a key component of various systems. For example, it is used to retrieve knowledge or memories for LLMs, to build content moderation filters, etc. As such cases span from English to other natural or programming languages, from retrieval to classification and beyond, it is desirable to build a unified embedding model rather than dedicated ones for each scenario. In this work, we make an initial step towards this goal, demonstrating that multiple languages (both natural and programming) pre-trained transformer decoders can embed universally when finetuned on limited English data. We provide a comprehensive practice with thorough evaluations. On English MTEB, our models achieve competitive performance on different embedding tasks by minimal training data. On other benchmarks, such as multilingual classification and code search, our models (without any supervision) perform comparably to, or even surpass heavily supervised baselines and/or APIs. These results provide evidence of a promising path towards building powerful unified embedders that can be applied across tasks and languages.
InPars: Data Augmentation for Information Retrieval using Large Language Models
The information retrieval community has recently witnessed a revolution due to large pretrained transformer models. Another key ingredient for this revolution was the MS MARCO dataset, whose scale and diversity has enabled zero-shot transfer learning to various tasks. However, not all IR tasks and domains can benefit from one single dataset equally. Extensive research in various NLP tasks has shown that using domain-specific training data, as opposed to a general-purpose one, improves the performance of neural models. In this work, we harness the few-shot capabilities of large pretrained language models as synthetic data generators for IR tasks. We show that models finetuned solely on our unsupervised dataset outperform strong baselines such as BM25 as well as recently proposed self-supervised dense retrieval methods. Furthermore, retrievers finetuned on both supervised and our synthetic data achieve better zero-shot transfer than models finetuned only on supervised data. Code, models, and data are available at https://github.com/zetaalphavector/inpars .
Seismic Foundation Model (SFM): a new generation deep learning model in geophysics
While computer science has seen remarkable advancements in foundation models, which remain underexplored in geoscience. Addressing this gap, we introduce a workflow to develop geophysical foundation models, including data preparation, model pre-training, and adaption to downstream tasks. From 192 globally collected 3-D seismic volumes, we create a carefully curated dataset of 2,286,422 2-D seismic images. Fully using these unlabeled images, we employ the self-supervised learning to pre-train a Transformer-based Seismic Foundation Model (SFM) for producing all-purpose seismic features that work across various tasks and surveys. Through experiments on seismic facies classification, geobody identification, interpolation, denoising, and inversion, our pre-trained model demonstrates versatility, generalization, scalability, and superior performance over baseline models. Conclusively, we provide a foundation model and vast dataset to advance AI in geophysics, addressing challenges (poor generalization, lacking labels, and repetitive training for task-specified models) of applying AI in geophysics and paving the way for future innovations in geoscience.
Sliding Windows Are Not the End: Exploring Full Ranking with Long-Context Large Language Models
Large Language Models (LLMs) have shown exciting performance in listwise passage ranking. Due to the limited input length, existing methods often adopt the sliding window strategy. Such a strategy, though effective, is inefficient as it involves repetitive and serialized processing, which usually re-evaluates relevant passages multiple times. As a result, it incurs redundant API costs, which are proportional to the number of inference tokens. The development of long-context LLMs enables the full ranking of all passages within a single inference, avoiding redundant API costs. In this paper, we conduct a comprehensive study of long-context LLMs for ranking tasks in terms of efficiency and effectiveness. Surprisingly, our experiments reveal that full ranking with long-context LLMs can deliver superior performance in the supervised fine-tuning setting with a huge efficiency improvement. Furthermore, we identify two limitations of fine-tuning the full ranking model based on existing methods: (1) sliding window strategy fails to produce a full ranking list as a training label, and (2) the language modeling loss cannot emphasize top-ranked passage IDs in the label. To alleviate these issues, we propose a new complete listwise label construction approach and a novel importance-aware learning objective for full ranking. Experiments show the superior performance of our method over baselines. Our codes are available at https://github.com/8421BCD/fullrank.
RLHF Workflow: From Reward Modeling to Online RLHF
We present the workflow of Online Iterative Reinforcement Learning from Human Feedback (RLHF) in this technical report, which is widely reported to outperform its offline counterpart by a large margin in the recent large language model (LLM) literature. However, existing open-source RLHF projects are still largely confined to the offline learning setting. In this technical report, we aim to fill in this gap and provide a detailed recipe that is easy to reproduce for online iterative RLHF. In particular, since online human feedback is usually infeasible for open-source communities with limited resources, we start by constructing preference models using a diverse set of open-source datasets and use the constructed proxy preference model to approximate human feedback. Then, we discuss the theoretical insights and algorithmic principles behind online iterative RLHF, followed by a detailed practical implementation. Our trained LLM, SFR-Iterative-DPO-LLaMA-3-8B-R, achieves impressive performance on LLM chatbot benchmarks, including AlpacaEval-2, Arena-Hard, and MT-Bench, as well as other academic benchmarks such as HumanEval and TruthfulQA. We have shown that supervised fine-tuning (SFT) and iterative RLHF can obtain state-of-the-art performance with fully open-source datasets. Further, we have made our models, curated datasets, and comprehensive step-by-step code guidebooks publicly available. Please refer to https://github.com/RLHFlow/RLHF-Reward-Modeling and https://github.com/RLHFlow/Online-RLHF for more detailed information.
Text2Chart31: Instruction Tuning for Chart Generation with Automatic Feedback
Large language models (LLMs) have demonstrated strong capabilities across various language tasks, notably through instruction-tuning methods. However, LLMs face challenges in visualizing complex, real-world data through charts and plots. Firstly, existing datasets rarely cover a full range of chart types, such as 3D, volumetric, and gridded charts. Secondly, supervised fine-tuning methods do not fully leverage the intricate relationships within rich datasets, including text, code, and figures. To address these challenges, we propose a hierarchical pipeline and a new dataset for chart generation. Our dataset, Text2Chart31, includes 31 unique plot types referring to the Matplotlib library, with 11.1K tuples of descriptions, code, data tables, and plots. Moreover, we introduce a reinforcement learning-based instruction tuning technique for chart generation tasks without requiring human feedback. Our experiments show that this approach significantly enhances the model performance, enabling smaller models to outperform larger open-source models and be comparable to state-of-the-art proprietary models in data visualization tasks. We make the code and dataset available at https://github.com/fatemehpesaran310/Text2Chart31.
FOR: Finetuning for Object Level Open Vocabulary Image Retrieval
As working with large datasets becomes standard, the task of accurately retrieving images containing objects of interest by an open set textual query gains practical importance. The current leading approach utilizes a pre-trained CLIP model without any adaptation to the target domain, balancing accuracy and efficiency through additional post-processing. In this work, we propose FOR: Finetuning for Object-centric Open-vocabulary Image Retrieval, which allows finetuning on a target dataset using closed-set labels while keeping the visual-language association crucial for open vocabulary retrieval. FOR is based on two design elements: a specialized decoder variant of the CLIP head customized for the intended task, and its coupling within a multi-objective training framework. Together, these design choices result in a significant increase in accuracy, showcasing improvements of up to 8 mAP@50 points over SoTA across three datasets. Additionally, we demonstrate that FOR is also effective in a semi-supervised setting, achieving impressive results even when only a small portion of the dataset is labeled.
Automatic Data Curation for Self-Supervised Learning: A Clustering-Based Approach
Self-supervised features are the cornerstone of modern machine learning systems. They are typically pre-trained on data collections whose construction and curation typically require extensive human effort. This manual process has some limitations similar to those encountered in supervised learning, e.g., the crowd-sourced selection of data is costly and time-consuming, preventing scaling the dataset size. In this work, we consider the problem of automatic curation of high-quality datasets for self-supervised pre-training. We posit that such datasets should be large, diverse and balanced, and propose a clustering-based approach for building ones satisfying all these criteria. Our method involves successive and hierarchical applications of k-means on a large and diverse data repository to obtain clusters that distribute uniformly among data concepts, followed by a hierarchical, balanced sampling step from these clusters. Extensive experiments on three different data domains including web-based images, satellite images and text show that features trained on our automatically curated datasets outperform those trained on uncurated data while being on par or better than ones trained on manually curated data.
RedCaps: web-curated image-text data created by the people, for the people
Large datasets of paired images and text have become increasingly popular for learning generic representations for vision and vision-and-language tasks. Such datasets have been built by querying search engines or collecting HTML alt-text -- since web data is noisy, they require complex filtering pipelines to maintain quality. We explore alternate data sources to collect high quality data with minimal filtering. We introduce RedCaps -- a large-scale dataset of 12M image-text pairs collected from Reddit. Images and captions from Reddit depict and describe a wide variety of objects and scenes. We collect data from a manually curated set of subreddits, which give coarse image labels and allow us to steer the dataset composition without labeling individual instances. We show that captioning models trained on RedCaps produce rich and varied captions preferred by humans, and learn visual representations that transfer to many downstream tasks.
Zorro: the masked multimodal transformer
Attention-based models are appealing for multimodal processing because inputs from multiple modalities can be concatenated and fed to a single backbone network - thus requiring very little fusion engineering. The resulting representations are however fully entangled throughout the network, which may not always be desirable: in learning, contrastive audio-visual self-supervised learning requires independent audio and visual features to operate, otherwise learning collapses; in inference, evaluation of audio-visual models should be possible on benchmarks having just audio or just video. In this paper, we introduce Zorro, a technique that uses masks to control how inputs from each modality are routed inside Transformers, keeping some parts of the representation modality-pure. We apply this technique to three popular transformer-based architectures (ViT, Swin and HiP) and show that with contrastive pre-training Zorro achieves state-of-the-art results on most relevant benchmarks for multimodal tasks (AudioSet and VGGSound). Furthermore, the resulting models are able to perform unimodal inference on both video and audio benchmarks such as Kinetics-400 or ESC-50.
Masked Graph Autoencoder with Non-discrete Bandwidths
Masked graph autoencoders have emerged as a powerful graph self-supervised learning method that has yet to be fully explored. In this paper, we unveil that the existing discrete edge masking and binary link reconstruction strategies are insufficient to learn topologically informative representations, from the perspective of message propagation on graph neural networks. These limitations include blocking message flows, vulnerability to over-smoothness, and suboptimal neighborhood discriminability. Inspired by these understandings, we explore non-discrete edge masks, which are sampled from a continuous and dispersive probability distribution instead of the discrete Bernoulli distribution. These masks restrict the amount of output messages for each edge, referred to as "bandwidths". We propose a novel, informative, and effective topological masked graph autoencoder using bandwidth masking and a layer-wise bandwidth prediction objective. We demonstrate its powerful graph topological learning ability both theoretically and empirically. Our proposed framework outperforms representative baselines in both self-supervised link prediction (improving the discrete edge reconstructors by at most 20%) and node classification on numerous datasets, solely with a structure-learning pretext. Our implementation is available at https://github.com/Newiz430/Bandana.
CroCo v2: Improved Cross-view Completion Pre-training for Stereo Matching and Optical Flow
Despite impressive performance for high-level downstream tasks, self-supervised pre-training methods have not yet fully delivered on dense geometric vision tasks such as stereo matching or optical flow. The application of self-supervised concepts, such as instance discrimination or masked image modeling, to geometric tasks is an active area of research. In this work, we build on the recent cross-view completion framework, a variation of masked image modeling that leverages a second view from the same scene which makes it well suited for binocular downstream tasks. The applicability of this concept has so far been limited in at least two ways: (a) by the difficulty of collecting real-world image pairs -- in practice only synthetic data have been used -- and (b) by the lack of generalization of vanilla transformers to dense downstream tasks for which relative position is more meaningful than absolute position. We explore three avenues of improvement. First, we introduce a method to collect suitable real-world image pairs at large scale. Second, we experiment with relative positional embeddings and show that they enable vision transformers to perform substantially better. Third, we scale up vision transformer based cross-completion architectures, which is made possible by the use of large amounts of data. With these improvements, we show for the first time that state-of-the-art results on stereo matching and optical flow can be reached without using any classical task-specific techniques like correlation volume, iterative estimation, image warping or multi-scale reasoning, thus paving the way towards universal vision models.
Hierarchical Modular Network for Video Captioning
Video captioning aims to generate natural language descriptions according to the content, where representation learning plays a crucial role. Existing methods are mainly developed within the supervised learning framework via word-by-word comparison of the generated caption against the ground-truth text without fully exploiting linguistic semantics. In this work, we propose a hierarchical modular network to bridge video representations and linguistic semantics from three levels before generating captions. In particular, the hierarchy is composed of: (I) Entity level, which highlights objects that are most likely to be mentioned in captions. (II) Predicate level, which learns the actions conditioned on highlighted objects and is supervised by the predicate in captions. (III) Sentence level, which learns the global semantic representation and is supervised by the whole caption. Each level is implemented by one module. Extensive experimental results show that the proposed method performs favorably against the state-of-the-art models on the two widely-used benchmarks: MSVD 104.0% and MSR-VTT 51.5% in CIDEr score.
CLIP meets DINO for Tuning Zero-Shot Classifier using Unlabeled Image Collections
In the era of foundation models, CLIP has emerged as a powerful tool for aligning text and visual modalities into a common embedding space. However, the alignment objective used to train CLIP often results in subpar visual features for fine-grained tasks. In contrast, SSL-pretrained models like DINO excel at extracting rich visual features due to their specialized training paradigm. Yet, these SSL models require an additional supervised linear probing step, which relies on fully labeled data which is often expensive and difficult to obtain at scale. In this paper, we propose a label-free prompt-tuning method that leverages the rich visual features of self-supervised learning models (DINO) and the broad textual knowledge of large language models (LLMs) to largely enhance CLIP-based image classification performance using unlabeled images. Our approach unfolds in three key steps: (1) We generate robust textual feature embeddings that more accurately represent object classes by leveraging class-specific descriptions from LLMs, enabling more effective zero-shot classification compared to CLIP's default name-specific prompts. (2) These textual embeddings are then used to produce pseudo-labels to train an alignment module that integrates the complementary strengths of LLM description-based textual embeddings and DINO's visual features. (3) Finally, we prompt-tune CLIP's vision encoder through DINO-assisted supervision using the trained alignment module. This three-step process allows us to harness the best of visual and textual foundation models, resulting in a powerful and efficient approach that surpasses state-of-the-art label-free classification methods. Notably, our framework, NoLA (No Labels Attached), achieves an average absolute gain of 3.6% over the state-of-the-art LaFter across 11 diverse image classification datasets.
Human-Timescale Adaptation in an Open-Ended Task Space
Foundation models have shown impressive adaptation and scalability in supervised and self-supervised learning problems, but so far these successes have not fully translated to reinforcement learning (RL). In this work, we demonstrate that training an RL agent at scale leads to a general in-context learning algorithm that can adapt to open-ended novel embodied 3D problems as quickly as humans. In a vast space of held-out environment dynamics, our adaptive agent (AdA) displays on-the-fly hypothesis-driven exploration, efficient exploitation of acquired knowledge, and can successfully be prompted with first-person demonstrations. Adaptation emerges from three ingredients: (1) meta-reinforcement learning across a vast, smooth and diverse task distribution, (2) a policy parameterised as a large-scale attention-based memory architecture, and (3) an effective automated curriculum that prioritises tasks at the frontier of an agent's capabilities. We demonstrate characteristic scaling laws with respect to network size, memory length, and richness of the training task distribution. We believe our results lay the foundation for increasingly general and adaptive RL agents that perform well across ever-larger open-ended domains.
Masked Motion Predictors are Strong 3D Action Representation Learners
In 3D human action recognition, limited supervised data makes it challenging to fully tap into the modeling potential of powerful networks such as transformers. As a result, researchers have been actively investigating effective self-supervised pre-training strategies. In this work, we show that instead of following the prevalent pretext task to perform masked self-component reconstruction in human joints, explicit contextual motion modeling is key to the success of learning effective feature representation for 3D action recognition. Formally, we propose the Masked Motion Prediction (MAMP) framework. To be specific, the proposed MAMP takes as input the masked spatio-temporal skeleton sequence and predicts the corresponding temporal motion of the masked human joints. Considering the high temporal redundancy of the skeleton sequence, in our MAMP, the motion information also acts as an empirical semantic richness prior that guide the masking process, promoting better attention to semantically rich temporal regions. Extensive experiments on NTU-60, NTU-120, and PKU-MMD datasets show that the proposed MAMP pre-training substantially improves the performance of the adopted vanilla transformer, achieving state-of-the-art results without bells and whistles. The source code of our MAMP is available at https://github.com/maoyunyao/MAMP.
Are Data-driven Explanations Robust against Out-of-distribution Data?
As black-box models increasingly power high-stakes applications, a variety of data-driven explanation methods have been introduced. Meanwhile, machine learning models are constantly challenged by distributional shifts. A question naturally arises: Are data-driven explanations robust against out-of-distribution data? Our empirical results show that even though predict correctly, the model might still yield unreliable explanations under distributional shifts. How to develop robust explanations against out-of-distribution data? To address this problem, we propose an end-to-end model-agnostic learning framework Distributionally Robust Explanations (DRE). The key idea is, inspired by self-supervised learning, to fully utilizes the inter-distribution information to provide supervisory signals for the learning of explanations without human annotation. Can robust explanations benefit the model's generalization capability? We conduct extensive experiments on a wide range of tasks and data types, including classification and regression on image and scientific tabular data. Our results demonstrate that the proposed method significantly improves the model's performance in terms of explanation and prediction robustness against distributional shifts.
Improving Text Embeddings with Large Language Models
In this paper, we introduce a novel and simple method for obtaining high-quality text embeddings using only synthetic data and less than 1k training steps. Unlike existing methods that often depend on multi-stage intermediate pre-training with billions of weakly-supervised text pairs, followed by fine-tuning with a few labeled datasets, our method does not require building complex training pipelines or relying on manually collected datasets that are often constrained by task diversity and language coverage. We leverage proprietary LLMs to generate diverse synthetic data for hundreds of thousands of text embedding tasks across nearly 100 languages. We then fine-tune open-source decoder-only LLMs on the synthetic data using standard contrastive loss. Experiments demonstrate that our method achieves strong performance on highly competitive text embedding benchmarks without using any labeled data. Furthermore, when fine-tuned with a mixture of synthetic and labeled data, our model sets new state-of-the-art results on the BEIR and MTEB benchmarks.
Multi-Vector Models with Textual Guidance for Fine-Grained Scientific Document Similarity
We present a new scientific document similarity model based on matching fine-grained aspects of texts. To train our model, we exploit a naturally-occurring source of supervision: sentences in the full-text of papers that cite multiple papers together (co-citations). Such co-citations not only reflect close paper relatedness, but also provide textual descriptions of how the co-cited papers are related. This novel form of textual supervision is used for learning to match aspects across papers. We develop multi-vector representations where vectors correspond to sentence-level aspects of documents, and present two methods for aspect matching: (1) A fast method that only matches single aspects, and (2) a method that makes sparse multiple matches with an Optimal Transport mechanism that computes an Earth Mover's Distance between aspects. Our approach improves performance on document similarity tasks in four datasets. Further, our fast single-match method achieves competitive results, paving the way for applying fine-grained similarity to large scientific corpora. Code, data, and models available at: https://github.com/allenai/aspire
DeepSeek-V3 Technical Report
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. The model checkpoints are available at https://github.com/deepseek-ai/DeepSeek-V3.
Lumina-mGPT: Illuminate Flexible Photorealistic Text-to-Image Generation with Multimodal Generative Pretraining
We present Lumina-mGPT, a family of multimodal autoregressive models capable of various vision and language tasks, particularly excelling in generating flexible photorealistic images from text descriptions. Unlike existing autoregressive image generation approaches, Lumina-mGPT employs a pretrained decoder-only transformer as a unified framework for modeling multimodal token sequences. Our key insight is that a simple decoder-only transformer with multimodal Generative PreTraining (mGPT), utilizing the next-token prediction objective on massive interleaved text-image sequences, can learn broad and general multimodal capabilities, thereby illuminating photorealistic text-to-image generation. Building on these pretrained models, we propose Flexible Progressive Supervised Finetuning (FP-SFT) on high-quality image-text pairs to fully unlock their potential for high-aesthetic image synthesis at any resolution while maintaining their general multimodal capabilities. Furthermore, we introduce Ominiponent Supervised Finetuning (Omni-SFT), transforming Lumina-mGPT into a foundation model that seamlessly achieves omnipotent task unification. The resulting model demonstrates versatile multimodal capabilities, including visual generation tasks like flexible text-to-image generation and controllable generation, visual recognition tasks like segmentation and depth estimation, and vision-language tasks like multiturn visual question answering. Additionally, we analyze the differences and similarities between diffusion-based and autoregressive methods in a direct comparison.
Learning Vision-based Pursuit-Evasion Robot Policies
Learning strategic robot behavior -- like that required in pursuit-evasion interactions -- under real-world constraints is extremely challenging. It requires exploiting the dynamics of the interaction, and planning through both physical state and latent intent uncertainty. In this paper, we transform this intractable problem into a supervised learning problem, where a fully-observable robot policy generates supervision for a partially-observable one. We find that the quality of the supervision signal for the partially-observable pursuer policy depends on two key factors: the balance of diversity and optimality of the evader's behavior and the strength of the modeling assumptions in the fully-observable policy. We deploy our policy on a physical quadruped robot with an RGB-D camera on pursuit-evasion interactions in the wild. Despite all the challenges, the sensing constraints bring about creativity: the robot is pushed to gather information when uncertain, predict intent from noisy measurements, and anticipate in order to intercept. Project webpage: https://abajcsy.github.io/vision-based-pursuit/
Combining Modular Skills in Multitask Learning
A modular design encourages neural models to disentangle and recombine different facets of knowledge to generalise more systematically to new tasks. In this work, we assume that each task is associated with a subset of latent discrete skills from a (potentially small) inventory. In turn, skills correspond to parameter-efficient (sparse / low-rank) model parameterisations. By jointly learning these and a task-skill allocation matrix, the network for each task is instantiated as the average of the parameters of active skills. To favour non-trivial soft partitions of skills across tasks, we experiment with a series of inductive biases, such as an Indian Buffet Process prior and a two-speed learning rate. We evaluate our latent-skill model on two main settings: 1) multitask reinforcement learning for grounded instruction following on 8 levels of the BabyAI platform; and 2) few-shot adaptation of pre-trained text-to-text generative models on CrossFit, a benchmark comprising 160 NLP tasks. We find that the modular design of a network significantly increases sample efficiency in reinforcement learning and few-shot generalisation in supervised learning, compared to baselines with fully shared, task-specific, or conditionally generated parameters where knowledge is entangled across tasks. In addition, we show how discrete skills help interpretability, as they yield an explicit hierarchy of tasks.
LLaVA-KD: A Framework of Distilling Multimodal Large Language Models
The success of Large Language Models (LLM) has led researchers to explore Multimodal Large Language Models (MLLM) for unified visual and linguistic understanding. However, the increasing model size and computational complexity of MLLM limit their use in resource-constrained environments. Small-scale MLLM (s-MLLM) aims to retain the capabilities of the large-scale model (l-MLLM) while reducing computational demands, but resulting in a significant decline in performance. To address the aforementioned issues, we propose a novel LLaVA-KD framework to transfer knowledge from l-MLLM to s-MLLM. Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM, and Relation Distillation (RDist) to transfer l-MLLM's ability to model correlations between visual features. Additionally, we propose a three-stage training scheme to fully exploit the potential of s-MLLM: 1) Distilled Pre-Training to align visual-textual representations, 2) Supervised Fine-Tuning to equip the model with multimodal understanding, and 3) Distilled Fine-Tuning to further transfer l-MLLM capabilities. Our approach significantly improves performance without altering the small model's architecture. Extensive experiments and ablation studies validate the effectiveness of each proposed component. Code will be available at https://github.com/caiyuxuan1120/LLaVA-KD.
Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees
Tool-augmented large language models (LLMs) leverage tools, often in the form of APIs, to enhance their reasoning capabilities on complex tasks, thus taking on the role of intelligent agents interacting with the real world. The recently introduced ToolLLaMA model by Qin et al. [2024] utilizes the depth-first search-based decision tree (DFSDT) method for reasoning with 16000+ real-world APIs, which effectively improves the planning and inferencing performance of tool-augmented LLMs compared to traditional chain reasoning approaches. However, their approach only employs successful paths from decision trees (also called inference trees) for supervised fine-tuning (SFT) during training, which does not fully exploit the advantages of the tree of thought. In this study, we propose an inference trajectory optimization framework based on the preference data extracted from decision trees to address this limitation. We first introduce a novel method for constructing preference data from the tree of thought, capitalizing on the failed explorations previously overlooked in the trees. Specifically, we generate an effective step-wise preference dataset, named ToolPreference, for tool use based on the ToolBench dataset. In the subsequent training phase, we first fine-tune the LLM with tool-usage expert trajectories and then use these step-wise preference pairs for direct preference optimization (DPO) to update the policy of the LLM, resulting in our ToolPrefer-LLaMA (TP-LLaMA) model. Our experiments demonstrate that by obtaining insights from errors in inference trees, TP-LLaMA significantly outperforms the baselines across almost all test scenarios by a large margin and exhibits better generalization capabilities with unseen APIs. At the same time, TP-LLaMA has also demonstrated superior reasoning efficiency compared to the baselines, making it more suitable for complex tool-usage reasoning tasks.
Deductive Closure Training of Language Models for Coherence, Accuracy, and Updatability
While language models (LMs) can sometimes generate factually correct text and estimate truth values of individual claims, these generally do not reflect a globally coherent, manipulable model of the world. As a consequence, current LMs also generate incorrect or nonsensical content, and are difficult to edit and bring up to date. We present a method called Deductive Closure Training (DCT) that uses LMs themselves to identify implications of (and contradictions within) the text that they generate, yielding an efficient self-supervised procedure for improving LM factuality. Given a collection of seed documents, DCT prompts LMs to generate additional text implied by these documents, reason globally about the correctness of this generated text, and finally fine-tune on text inferred to be correct. Given seed documents from a trusted source, DCT provides a tool for supervised model updating; if seed documents are sampled from the LM itself, DCT enables fully unsupervised fine-tuning for improved coherence and accuracy. Across the CREAK, MQUaKE, and Reversal Curse datasets, supervised DCT improves LM fact verification and text generation accuracy by 3-26%; on CREAK fully unsupervised DCT improves verification accuracy by 12%. These results show that LMs' reasoning capabilities during inference can be leveraged during training to improve their reliability.
Improved Universal Sentence Embeddings with Prompt-based Contrastive Learning and Energy-based Learning
Contrastive learning has been demonstrated to be effective in enhancing pre-trained language models (PLMs) to derive superior universal sentence embeddings. However, existing contrastive methods still have two limitations. Firstly, previous works may acquire poor performance under domain shift settings, thus hindering the application of sentence representations in practice. We attribute this low performance to the over-parameterization of PLMs with millions of parameters. To alleviate it, we propose PromCSE (Prompt-based Contrastive Learning for Sentence Embeddings), which only trains small-scale Soft Prompt (i.e., a set of trainable vectors) while keeping PLMs fixed. Secondly, the commonly used NT-Xent loss function of contrastive learning does not fully exploit hard negatives in supervised learning settings. To this end, we propose to integrate an Energy-based Hinge loss to enhance the pairwise discriminative power, inspired by the connection between the NT-Xent loss and the Energy-based Learning paradigm. Empirical results on seven standard semantic textual similarity (STS) tasks and a domain-shifted STS task both show the effectiveness of our method compared with the current state-of-the-art sentence embedding models. Our code is publicly avaliable at https://github.com/YJiangcm/PromCSE
Recent Advances in Zero-shot Recognition
With the recent renaissance of deep convolution neural networks, encouraging breakthroughs have been achieved on the supervised recognition tasks, where each class has sufficient training data and fully annotated training data. However, to scale the recognition to a large number of classes with few or now training samples for each class remains an unsolved problem. One approach to scaling up the recognition is to develop models capable of recognizing unseen categories without any training instances, or zero-shot recognition/ learning. This article provides a comprehensive review of existing zero-shot recognition techniques covering various aspects ranging from representations of models, and from datasets and evaluation settings. We also overview related recognition tasks including one-shot and open set recognition which can be used as natural extensions of zero-shot recognition when limited number of class samples become available or when zero-shot recognition is implemented in a real-world setting. Importantly, we highlight the limitations of existing approaches and point out future research directions in this existing new research area.
DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations
Sentence embeddings are an important component of many natural language processing (NLP) systems. Like word embeddings, sentence embeddings are typically learned on large text corpora and then transferred to various downstream tasks, such as clustering and retrieval. Unlike word embeddings, the highest performing solutions for learning sentence embeddings require labelled data, limiting their usefulness to languages and domains where labelled data is abundant. In this paper, we present DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations. Inspired by recent advances in deep metric learning (DML), we carefully design a self-supervised objective for learning universal sentence embeddings that does not require labelled training data. When used to extend the pretraining of transformer-based language models, our approach closes the performance gap between unsupervised and supervised pretraining for universal sentence encoders. Importantly, our experiments suggest that the quality of the learned embeddings scale with both the number of trainable parameters and the amount of unlabelled training data. Our code and pretrained models are publicly available and can be easily adapted to new domains or used to embed unseen text.
DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token, and supports a context length of 128K tokens. DeepSeek-V2 adopts innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation. Compared with DeepSeek 67B, DeepSeek-V2 achieves significantly stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times. We pretrain DeepSeek-V2 on a high-quality and multi-source corpus consisting of 8.1T tokens, and further perform Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unlock its potential. Evaluation results show that, even with only 21B activated parameters, DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models.
Holistically-Nested Edge Detection
We develop a new edge detection algorithm that tackles two important issues in this long-standing vision problem: (1) holistic image training and prediction; and (2) multi-scale and multi-level feature learning. Our proposed method, holistically-nested edge detection (HED), performs image-to-image prediction by means of a deep learning model that leverages fully convolutional neural networks and deeply-supervised nets. HED automatically learns rich hierarchical representations (guided by deep supervision on side responses) that are important in order to approach the human ability resolve the challenging ambiguity in edge and object boundary detection. We significantly advance the state-of-the-art on the BSD500 dataset (ODS F-score of .782) and the NYU Depth dataset (ODS F-score of .746), and do so with an improved speed (0.4 second per image) that is orders of magnitude faster than some recent CNN-based edge detection algorithms.
Learning Camouflaged Object Detection from Noisy Pseudo Label
Existing Camouflaged Object Detection (COD) methods rely heavily on large-scale pixel-annotated training sets, which are both time-consuming and labor-intensive. Although weakly supervised methods offer higher annotation efficiency, their performance is far behind due to the unclear visual demarcations between foreground and background in camouflaged images. In this paper, we explore the potential of using boxes as prompts in camouflaged scenes and introduce the first weakly semi-supervised COD method, aiming for budget-efficient and high-precision camouflaged object segmentation with an extremely limited number of fully labeled images. Critically, learning from such limited set inevitably generates pseudo labels with serious noisy pixels. To address this, we propose a noise correction loss that facilitates the model's learning of correct pixels in the early learning stage, and corrects the error risk gradients dominated by noisy pixels in the memorization stage, ultimately achieving accurate segmentation of camouflaged objects from noisy labels. When using only 20% of fully labeled data, our method shows superior performance over the state-of-the-art methods.
Solving Inverse Problems with Score-Based Generative Priors learned from Noisy Data
We present SURE-Score: an approach for learning score-based generative models using training samples corrupted by additive Gaussian noise. When a large training set of clean samples is available, solving inverse problems via score-based (diffusion) generative models trained on the underlying fully-sampled data distribution has recently been shown to outperform end-to-end supervised deep learning. In practice, such a large collection of training data may be prohibitively expensive to acquire in the first place. In this work, we present an approach for approximately learning a score-based generative model of the clean distribution, from noisy training data. We formulate and justify a novel loss function that leverages Stein's unbiased risk estimate to jointly denoise the data and learn the score function via denoising score matching, while using only the noisy samples. We demonstrate the generality of SURE-Score by learning priors and applying posterior sampling to ill-posed inverse problems in two practical applications from different domains: compressive wireless multiple-input multiple-output channel estimation and accelerated 2D multi-coil magnetic resonance imaging reconstruction, where we demonstrate competitive reconstruction performance when learning at signal-to-noise ratio values of 0 and 10 dB, respectively.
Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations
Despite their impressive capabilities, large pre-trained language models (LMs) struggle with consistent reasoning; recently, prompting LMs to generate explanations that self-guide the inference has emerged as a promising direction to amend this. However, these approaches are fundamentally bounded by the correctness of explanations, which themselves are often noisy and inconsistent. In this work, we develop Maieutic Prompting, which infers a correct answer to a question even from the noisy and inconsistent generations of LM. Maieutic Prompting induces a tree of explanations abductively (e.g. X is true, because ...) and recursively, then frames the inference as a satisfiability problem over these explanations and their logical relations. We test Maieutic Prompting for true/false QA on three challenging benchmarks that require complex commonsense reasoning. Maieutic Prompting achieves up to 20% better accuracy than state-of-the-art prompting methods, and as a fully unsupervised approach, performs competitively with supervised models. We also show that Maieutic Prompting improves robustness in inference while providing interpretable rationales.
Some Like It Small: Czech Semantic Embedding Models for Industry Applications
This article focuses on the development and evaluation of Small-sized Czech sentence embedding models. Small models are important components for real-time industry applications in resource-constrained environments. Given the limited availability of labeled Czech data, alternative approaches, including pre-training, knowledge distillation, and unsupervised contrastive fine-tuning, are investigated. Comprehensive intrinsic and extrinsic analyses are conducted, showcasing the competitive performance of our models compared to significantly larger counterparts, with approximately 8 times smaller size and 5 times faster speed than conventional Base-sized models. To promote cooperation and reproducibility, both the models and the evaluation pipeline are made publicly accessible. Ultimately, this article presents practical applications of the developed sentence embedding models in Seznam.cz, the Czech search engine. These models have effectively replaced previous counterparts, enhancing the overall search experience for instance, in organic search, featured snippets, and image search. This transition has yielded improved performance.
Multivariate Representation Learning for Information Retrieval
Dense retrieval models use bi-encoder network architectures for learning query and document representations. These representations are often in the form of a vector representation and their similarities are often computed using the dot product function. In this paper, we propose a new representation learning framework for dense retrieval. Instead of learning a vector for each query and document, our framework learns a multivariate distribution and uses negative multivariate KL divergence to compute the similarity between distributions. For simplicity and efficiency reasons, we assume that the distributions are multivariate normals and then train large language models to produce mean and variance vectors for these distributions. We provide a theoretical foundation for the proposed framework and show that it can be seamlessly integrated into the existing approximate nearest neighbor algorithms to perform retrieval efficiently. We conduct an extensive suite of experiments on a wide range of datasets, and demonstrate significant improvements compared to competitive dense retrieval models.
Retrieving Texts based on Abstract Descriptions
In this work, we aim to connect two research areas: instruction models and retrieval-based models. While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for semantic retrieval. Similarity search over embedding vectors allows to index and query vectors, but the similarity reflected in the embedding is sub-optimal for many use cases. We identify the task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting an a large language model (LLM). While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model.
Zero-shot and Few-shot Learning with Knowledge Graphs: A Comprehensive Survey
Machine learning especially deep neural networks have achieved great success but many of them often rely on a number of labeled samples for supervision. As sufficient labeled training data are not always ready due to e.g., continuously emerging prediction targets and costly sample annotation in real world applications, machine learning with sample shortage is now being widely investigated. Among all these studies, many prefer to utilize auxiliary information including those in the form of Knowledge Graph (KG) to reduce the reliance on labeled samples. In this survey, we have comprehensively reviewed over 90 papers about KG-aware research for two major sample shortage settings -- zero-shot learning (ZSL) where some classes to be predicted have no labeled samples, and few-shot learning (FSL) where some classes to be predicted have only a small number of labeled samples that are available. We first introduce KGs used in ZSL and FSL as well as their construction methods, and then systematically categorize and summarize KG-aware ZSL and FSL methods, dividing them into different paradigms such as the mapping-based, the data augmentation, the propagation-based and the optimization-based. We next present different applications, including not only KG augmented prediction tasks such as image classification, question answering, text classification and knowledge extraction, but also KG completion tasks, and some typical evaluation resources for each task. We eventually discuss some challenges and open problems from different perspectives.
LAION-5B: An open large-scale dataset for training next generation image-text models
Groundbreaking language-vision architectures like CLIP and DALL-E proved the utility of training on large amounts of noisy image-text data, without relying on expensive accurate labels used in standard vision unimodal supervised learning. The resulting models showed capabilities of strong text-guided image generation and transfer to downstream tasks, while performing remarkably at zero-shot classification with noteworthy out-of-distribution robustness. Since then, large-scale language-vision models like ALIGN, BASIC, GLIDE, Flamingo and Imagen made further improvements. Studying the training and capabilities of such models requires datasets containing billions of image-text pairs. Until now, no datasets of this size have been made openly available for the broader research community. To address this problem and democratize research on large-scale multi-modal models, we present LAION-5B - a dataset consisting of 5.85 billion CLIP-filtered image-text pairs, of which 2.32B contain English language. We show successful replication and fine-tuning of foundational models like CLIP, GLIDE and Stable Diffusion using the dataset, and discuss further experiments enabled with an openly available dataset of this scale. Additionally we provide several nearest neighbor indices, an improved web-interface for dataset exploration and subset generation, and detection scores for watermark, NSFW, and toxic content detection. Announcement page https://laion.ai/laion-5b-a-new-era-of-open-large-scale-multi-modal-datasets/
Precise Zero-Shot Dense Retrieval without Relevance Labels
While dense retrieval has been shown effective and efficient across tasks and languages, it remains difficult to create effective fully zero-shot dense retrieval systems when no relevance label is available. In this paper, we recognize the difficulty of zero-shot learning and encoding relevance. Instead, we propose to pivot through Hypothetical Document Embeddings~(HyDE). Given a query, HyDE first zero-shot instructs an instruction-following language model (e.g. InstructGPT) to generate a hypothetical document. The document captures relevance patterns but is unreal and may contain false details. Then, an unsupervised contrastively learned encoder~(e.g. Contriever) encodes the document into an embedding vector. This vector identifies a neighborhood in the corpus embedding space, where similar real documents are retrieved based on vector similarity. This second step ground the generated document to the actual corpus, with the encoder's dense bottleneck filtering out the incorrect details. Our experiments show that HyDE significantly outperforms the state-of-the-art unsupervised dense retriever Contriever and shows strong performance comparable to fine-tuned retrievers, across various tasks (e.g. web search, QA, fact verification) and languages~(e.g. sw, ko, ja).
Extreme Multi-Label Skill Extraction Training using Large Language Models
Online job ads serve as a valuable source of information for skill requirements, playing a crucial role in labor market analysis and e-recruitment processes. Since such ads are typically formatted in free text, natural language processing (NLP) technologies are required to automatically process them. We specifically focus on the task of detecting skills (mentioned literally, or implicitly described) and linking them to a large skill ontology, making it a challenging case of extreme multi-label classification (XMLC). Given that there is no sizable labeled (training) dataset are available for this specific XMLC task, we propose techniques to leverage general Large Language Models (LLMs). We describe a cost-effective approach to generate an accurate, fully synthetic labeled dataset for skill extraction, and present a contrastive learning strategy that proves effective in the task. Our results across three skill extraction benchmarks show a consistent increase of between 15 to 25 percentage points in R-Precision@5 compared to previously published results that relied solely on distant supervision through literal matches.
Scaling Up Semi-supervised Learning with Unconstrained Unlabelled Data
We propose UnMixMatch, a semi-supervised learning framework which can learn effective representations from unconstrained unlabelled data in order to scale up performance. Most existing semi-supervised methods rely on the assumption that labelled and unlabelled samples are drawn from the same distribution, which limits the potential for improvement through the use of free-living unlabeled data. Consequently, the generalizability and scalability of semi-supervised learning are often hindered by this assumption. Our method aims to overcome these constraints and effectively utilize unconstrained unlabelled data in semi-supervised learning. UnMixMatch consists of three main components: a supervised learner with hard augmentations that provides strong regularization, a contrastive consistency regularizer to learn underlying representations from the unlabelled data, and a self-supervised loss to enhance the representations that are learnt from the unlabelled data. We perform extensive experiments on 4 commonly used datasets and demonstrate superior performance over existing semi-supervised methods with a performance boost of 4.79%. Extensive ablation and sensitivity studies show the effectiveness and impact of each of the proposed components of our method.
Bridging Language and Items for Retrieval and Recommendation
This paper introduces BLaIR, a series of pretrained sentence embedding models specialized for recommendation scenarios. BLaIR is trained to learn correlations between item metadata and potential natural language context, which is useful for retrieving and recommending items. To pretrain BLaIR, we collect Amazon Reviews 2023, a new dataset comprising over 570 million reviews and 48 million items from 33 categories, significantly expanding beyond the scope of previous versions. We evaluate the generalization ability of BLaIR across multiple domains and tasks, including a new task named complex product search, referring to retrieving relevant items given long, complex natural language contexts. Leveraging large language models like ChatGPT, we correspondingly construct a semi-synthetic evaluation set, Amazon-C4. Empirical results on the new task, as well as conventional retrieval and recommendation tasks, demonstrate that BLaIR exhibit strong text and item representation capacity. Our datasets, code, and checkpoints are available at: https://github.com/hyp1231/AmazonReviews2023.
Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings
Learning scientific document representations can be substantially improved through contrastive learning objectives, where the challenge lies in creating positive and negative training samples that encode the desired similarity semantics. Prior work relies on discrete citation relations to generate contrast samples. However, discrete citations enforce a hard cut-off to similarity. This is counter-intuitive to similarity-based learning, and ignores that scientific papers can be very similar despite lacking a direct citation - a core problem of finding related research. Instead, we use controlled nearest neighbor sampling over citation graph embeddings for contrastive learning. This control allows us to learn continuous similarity, to sample hard-to-learn negatives and positives, and also to avoid collisions between negative and positive samples by controlling the sampling margin between them. The resulting method SciNCL outperforms the state-of-the-art on the SciDocs benchmark. Furthermore, we demonstrate that it can train (or tune) models sample-efficiently, and that it can be combined with recent training-efficient methods. Perhaps surprisingly, even training a general-domain language model this way outperforms baselines pretrained in-domain.
PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval
Recently, dense passage retrieval has become a mainstream approach to finding relevant information in various natural language processing tasks. A number of studies have been devoted to improving the widely adopted dual-encoder architecture. However, most of the previous studies only consider query-centric similarity relation when learning the dual-encoder retriever. In order to capture more comprehensive similarity relations, we propose a novel approach that leverages both query-centric and PAssage-centric sImilarity Relations (called PAIR) for dense passage retrieval. To implement our approach, we make three major technical contributions by introducing formal formulations of the two kinds of similarity relations, generating high-quality pseudo labeled data via knowledge distillation, and designing an effective two-stage training procedure that incorporates passage-centric similarity relation constraint. Extensive experiments show that our approach significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions datasets.
Mr. TyDi: A Multi-lingual Benchmark for Dense Retrieval
We present Mr. TyDi, a multi-lingual benchmark dataset for mono-lingual retrieval in eleven typologically diverse languages, designed to evaluate ranking with learned dense representations. The goal of this resource is to spur research in dense retrieval techniques in non-English languages, motivated by recent observations that existing techniques for representation learning perform poorly when applied to out-of-distribution data. As a starting point, we provide zero-shot baselines for this new dataset based on a multi-lingual adaptation of DPR that we call "mDPR". Experiments show that although the effectiveness of mDPR is much lower than BM25, dense representations nevertheless appear to provide valuable relevance signals, improving BM25 results in sparse-dense hybrids. In addition to analyses of our results, we also discuss future challenges and present a research agenda in multi-lingual dense retrieval. Mr. TyDi can be downloaded at https://github.com/castorini/mr.tydi.
In-Context Learning for Text Classification with Many Labels
In-context learning (ICL) using large language models for tasks with many labels is challenging due to the limited context window, which makes it difficult to fit a sufficient number of examples in the prompt. In this paper, we use a pre-trained dense retrieval model to bypass this limitation, giving the model only a partial view of the full label space for each inference call. Testing with recent open-source LLMs (OPT, LLaMA), we set new state of the art performance in few-shot settings for three common intent classification datasets, with no finetuning. We also surpass fine-tuned performance on fine-grained sentiment classification in certain cases. We analyze the performance across number of in-context examples and different model scales, showing that larger models are necessary to effectively and consistently make use of larger context lengths for ICL. By running several ablations, we analyze the model's use of: a) the similarity of the in-context examples to the current input, b) the semantic content of the class names, and c) the correct correspondence between examples and labels. We demonstrate that all three are needed to varying degrees depending on the domain, contrary to certain recent works.
DataFinder: Scientific Dataset Recommendation from Natural Language Descriptions
Modern machine learning relies on datasets to develop and validate research ideas. Given the growth of publicly available data, finding the right dataset to use is increasingly difficult. Any research question imposes explicit and implicit constraints on how well a given dataset will enable researchers to answer this question, such as dataset size, modality, and domain. We operationalize the task of recommending datasets given a short natural language description of a research idea, to help people find relevant datasets for their needs. Dataset recommendation poses unique challenges as an information retrieval problem; datasets are hard to directly index for search and there are no corpora readily available for this task. To facilitate this task, we build the DataFinder Dataset which consists of a larger automatically-constructed training set (17.5K queries) and a smaller expert-annotated evaluation set (392 queries). Using this data, we compare various information retrieval algorithms on our test set and present a superior bi-encoder retriever for text-based dataset recommendation. This system, trained on the DataFinder Dataset, finds more relevant search results than existing third-party dataset search engines. To encourage progress on dataset recommendation, we release our dataset and models to the public.
Learning Effective Representations for Retrieval Using Self-Distillation with Adaptive Relevance Margins
Representation-based retrieval models, so-called biencoders, estimate the relevance of a document to a query by calculating the similarity of their respective embeddings. Current state-of-the-art biencoders are trained using an expensive training regime involving knowledge distillation from a teacher model and batch-sampling. Instead of relying on a teacher model, we contribute a novel parameter-free loss function for self-supervision that exploits the pre-trained language modeling capabilities of the encoder model as a training signal, eliminating the need for batch sampling by performing implicit hard negative mining. We investigate the capabilities of our proposed approach through extensive ablation studies, demonstrating that self-distillation can match the effectiveness of teacher distillation using only 13.5% of the data, while offering a speedup in training time between 3x and 15x compared to parametrized losses. Code and data is made openly available.
Vector representations of text data in deep learning
In this dissertation we report results of our research on dense distributed representations of text data. We propose two novel neural models for learning such representations. The first model learns representations at the document level, while the second model learns word-level representations. For document-level representations we propose Binary Paragraph Vector: a neural network models for learning binary representations of text documents, which can be used for fast document retrieval. We provide a thorough evaluation of these models and demonstrate that they outperform the seminal method in the field in the information retrieval task. We also report strong results in transfer learning settings, where our models are trained on a generic text corpus and then used to infer codes for documents from a domain-specific dataset. In contrast to previously proposed approaches, Binary Paragraph Vector models learn embeddings directly from raw text data. For word-level representations we propose Disambiguated Skip-gram: a neural network model for learning multi-sense word embeddings. Representations learned by this model can be used in downstream tasks, like part-of-speech tagging or identification of semantic relations. In the word sense induction task Disambiguated Skip-gram outperforms state-of-the-art models on three out of four benchmarks datasets. Our model has an elegant probabilistic interpretation. Furthermore, unlike previous models of this kind, it is differentiable with respect to all its parameters and can be trained with backpropagation. In addition to quantitative results, we present qualitative evaluation of Disambiguated Skip-gram, including two-dimensional visualisations of selected word-sense embeddings.
SimLM: Pre-training with Representation Bottleneck for Dense Passage Retrieval
In this paper, we propose SimLM (Similarity matching with Language Model pre-training), a simple yet effective pre-training method for dense passage retrieval. It employs a simple bottleneck architecture that learns to compress the passage information into a dense vector through self-supervised pre-training. We use a replaced language modeling objective, which is inspired by ELECTRA, to improve the sample efficiency and reduce the mismatch of the input distribution between pre-training and fine-tuning. SimLM only requires access to unlabeled corpus, and is more broadly applicable when there are no labeled data or queries. We conduct experiments on several large-scale passage retrieval datasets, and show substantial improvements over strong baselines under various settings. Remarkably, SimLM even outperforms multi-vector approaches such as ColBERTv2 which incurs significantly more storage cost.
V^2L: Leveraging Vision and Vision-language Models into Large-scale Product Retrieval
Product retrieval is of great importance in the ecommerce domain. This paper introduces our 1st-place solution in eBay eProduct Visual Search Challenge (FGVC9), which is featured for an ensemble of about 20 models from vision models and vision-language models. While model ensemble is common, we show that combining the vision models and vision-language models brings particular benefits from their complementarity and is a key factor to our superiority. Specifically, for the vision models, we use a two-stage training pipeline which first learns from the coarse labels provided in the training set and then conducts fine-grained self-supervised training, yielding a coarse-to-fine metric learning manner. For the vision-language models, we use the textual description of the training image as the supervision signals for fine-tuning the image-encoder (feature extractor). With these designs, our solution achieves 0.7623 MAR@10, ranking the first place among all the competitors. The code is available at: https://github.com/WangWenhao0716/V2L{V^2L}.
Evaluating D-MERIT of Partial-annotation on Information Retrieval
Retrieval models are often evaluated on partially-annotated datasets. Each query is mapped to a few relevant texts and the remaining corpus is assumed to be irrelevant. As a result, models that successfully retrieve false negatives are punished in evaluation. Unfortunately, completely annotating all texts for every query is not resource efficient. In this work, we show that using partially-annotated datasets in evaluation can paint a distorted picture. We curate D-MERIT, a passage retrieval evaluation set from Wikipedia, aspiring to contain all relevant passages for each query. Queries describe a group (e.g., ``journals about linguistics'') and relevant passages are evidence that entities belong to the group (e.g., a passage indicating that Language is a journal about linguistics). We show that evaluating on a dataset containing annotations for only a subset of the relevant passages might result in misleading ranking of the retrieval systems and that as more relevant texts are included in the evaluation set, the rankings converge. We propose our dataset as a resource for evaluation and our study as a recommendation for balance between resource-efficiency and reliable evaluation when annotating evaluation sets for text retrieval.
The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only
Large language models are commonly trained on a mixture of filtered web data and curated high-quality corpora, such as social media conversations, books, or technical papers. This curation process is believed to be necessary to produce performant models with broad zero-shot generalization abilities. However, as larger models requiring pretraining on trillions of tokens are considered, it is unclear how scalable is curation and whether we will run out of unique high-quality data soon. At variance with previous beliefs, we show that properly filtered and deduplicated web data alone can lead to powerful models; even significantly outperforming models from the state-of-the-art trained on The Pile. Despite extensive filtering, the high-quality data we extract from the web is still plentiful, and we are able to obtain five trillion tokens from CommonCrawl. We publicly release an extract of 600 billion tokens from our RefinedWeb dataset, and 1.3/7.5B parameters language models trained on it.
InstructIE: A Chinese Instruction-based Information Extraction Dataset
We introduce a new Information Extraction (IE) task dubbed Instruction-based IE, which aims to ask the system to follow specific instructions or guidelines to extract information. To facilitate research in this area, we construct a dataset called InstructIE, consisting of 270,000 weakly supervised data from Chinese Wikipedia and 1,000 high-quality crowdsourced annotated instances. We further evaluate the performance of various baseline models on the InstructIE dataset. The results reveal that although current models exhibit promising performance, there is still room for improvement. Furthermore, we conduct a comprehensive case study analysis, underlining the challenges inherent in the Instruction-based IE task. Code and dataset are available at https://github.com/zjunlp/DeepKE/tree/main/example/llm.
Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach
Zero-shot text classification (0Shot-TC) is a challenging NLU problem to which little attention has been paid by the research community. 0Shot-TC aims to associate an appropriate label with a piece of text, irrespective of the text domain and the aspect (e.g., topic, emotion, event, etc.) described by the label. And there are only a few articles studying 0Shot-TC, all focusing only on topical categorization which, we argue, is just the tip of the iceberg in 0Shot-TC. In addition, the chaotic experiments in literature make no uniform comparison, which blurs the progress. This work benchmarks the 0Shot-TC problem by providing unified datasets, standardized evaluations, and state-of-the-art baselines. Our contributions include: i) The datasets we provide facilitate studying 0Shot-TC relative to conceptually different and diverse aspects: the ``topic'' aspect includes ``sports'' and ``politics'' as labels; the ``emotion'' aspect includes ``joy'' and ``anger''; the ``situation'' aspect includes ``medical assistance'' and ``water shortage''. ii) We extend the existing evaluation setup (label-partially-unseen) -- given a dataset, train on some labels, test on all labels -- to include a more challenging yet realistic evaluation label-fully-unseen 0Shot-TC (Chang et al., 2008), aiming at classifying text snippets without seeing task specific training data at all. iii) We unify the 0Shot-TC of diverse aspects within a textual entailment formulation and study it this way. Code & Data: https://github.com/yinwenpeng/BenchmarkingZeroShot
Lbl2Vec: An Embedding-Based Approach for Unsupervised Document Retrieval on Predefined Topics
In this paper, we consider the task of retrieving documents with predefined topics from an unlabeled document dataset using an unsupervised approach. The proposed unsupervised approach requires only a small number of keywords describing the respective topics and no labeled document. Existing approaches either heavily relied on a large amount of additionally encoded world knowledge or on term-document frequencies. Contrariwise, we introduce a method that learns jointly embedded document and word vectors solely from the unlabeled document dataset in order to find documents that are semantically similar to the topics described by the keywords. The proposed method requires almost no text preprocessing but is simultaneously effective at retrieving relevant documents with high probability. When successively retrieving documents on different predefined topics from publicly available and commonly used datasets, we achieved an average area under the receiver operating characteristic curve value of 0.95 on one dataset and 0.92 on another. Further, our method can be used for multiclass document classification, without the need to assign labels to the dataset in advance. Compared with an unsupervised classification baseline, we increased F1 scores from 76.6 to 82.7 and from 61.0 to 75.1 on the respective datasets. For easy replication of our approach, we make the developed Lbl2Vec code publicly available as a ready-to-use tool under the 3-Clause BSD license.
Dense Text Retrieval based on Pretrained Language Models: A Survey
Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval.
Towards Robust Text Retrieval with Progressive Learning
Retrieval augmentation has become an effective solution to empower large language models (LLMs) with external and verified knowledge sources from the database, which overcomes the limitations and hallucinations of LLMs in handling up-to-date and domain-specific information. However, existing embedding models for text retrieval usually have three non-negligible limitations. First, the number and diversity of samples in a batch are too restricted to supervise the modeling of textual nuances at scale. Second, the high proportional noise are detrimental to the semantic correctness and consistency of embeddings. Third, the equal treatment to easy and difficult samples would cause sub-optimum convergence of embeddings with poorer generalization. In this paper, we propose the PEG, a progressively learned embeddings for robust text retrieval. Specifically, we increase the training in-batch negative samples to 80,000, and for each query, we extracted five hard negatives. Concurrently, we incorporated a progressive learning mechanism, enabling the model to dynamically modulate its attention to the samples throughout the entire training process. Additionally, PEG is trained on more than 100 million data, encompassing a wide range of domains (e.g., finance, medicine, and tourism) and covering various tasks (e.g., question-answering, machine reading comprehension, and similarity matching). Extensive experiments conducted on C-MTEB and DuReader demonstrate that PEG surpasses state-of-the-art embeddings in retrieving true positives, highlighting its significant potential for applications in LLMs. Our model is publicly available at https://huggingface.co/TownsWu/PEG.
BMRetriever: Tuning Large Language Models as Better Biomedical Text Retrievers
Developing effective biomedical retrieval models is important for excelling at knowledge-intensive biomedical tasks but still challenging due to the deficiency of sufficient publicly annotated biomedical data and computational resources. We present BMRetriever, a series of dense retrievers for enhancing biomedical retrieval via unsupervised pre-training on large biomedical corpora, followed by instruction fine-tuning on a combination of labeled datasets and synthetic pairs. Experiments on 5 biomedical tasks across 11 datasets verify BMRetriever's efficacy on various biomedical applications. BMRetriever also exhibits strong parameter efficiency, with the 410M variant outperforming baselines up to 11.7 times larger, and the 2B variant matching the performance of models with over 5B parameters. The training data and model checkpoints are released at https://huggingface.co/BMRetriever to ensure transparency, reproducibility, and application to new domains.
VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks
Embedding models have been crucial in enabling various downstream tasks such as semantic similarity, information retrieval, and clustering. Recently, there has been a surge of interest in developing universal text embedding models that can generalize across tasks (e.g., MTEB). However, progress in learning universal multimodal embedding models has been relatively slow despite their importance. In this work, we aim to explore the potential for building universal embeddings capable of handling a wide range of downstream tasks. Our contributions are twofold: (1) MMEB (Massive Multimodal Embedding Benchmark), which covers 4 meta-tasks (i.e. classification, visual question answering, multimodal retrieval, and visual grounding) and 36 datasets, including 20 training and 16 evaluation datasets, and (2) VLM2Vec (Vision-Language Model -> Vector), a contrastive training framework that converts any state-of-the-art vision-language model into an embedding model via training on MMEB. Unlike previous models such as CLIP and BLIP, VLM2Vec can process any combination of images and text to generate a fixed-dimensional vector based on task instructions. We build a series of VLM2Vec models on Phi-3.5-V and evaluate them on MMEB's evaluation split. Our results show that \model achieves an absolute average improvement of 10% to 20% over existing multimodal embedding models on both in-distribution and out-of-distribution datasets in MMEB.
Prompts as Auto-Optimized Training Hyperparameters: Training Best-in-Class IR Models from Scratch with 10 Gold Labels
We develop a method for training small-scale (under 100M parameter) neural information retrieval models with as few as 10 gold relevance labels. The method depends on generating synthetic queries for documents using a language model (LM), and the key step is that we automatically optimize the LM prompt that is used to generate these queries based on training quality. In experiments with the BIRCO benchmark, we find that models trained with our method outperform RankZephyr and are competitive with RankLLama, both of which are 7B parameter models trained on over 100K labels. These findings point to the power of automatic prompt optimization for synthetic dataset generation.
Few-shot Prompting for Pairwise Ranking: An Effective Non-Parametric Retrieval Model
A supervised ranking model, despite its advantage of being effective, usually involves complex processing - typically multiple stages of task-specific pre-training and fine-tuning. This has motivated researchers to explore simpler pipelines leveraging large language models (LLMs) that are capable of working in a zero-shot manner. However, since zero-shot inference does not make use of a training set of pairs of queries and their relevant documents, its performance is mostly worse than that of supervised models, which are trained on such example pairs. Motivated by the existing findings that training examples generally improve zero-shot performance, in our work, we explore if this also applies to ranking models. More specifically, given a query and a pair of documents, the preference prediction task is improved by augmenting examples of preferences for similar queries from a training set. Our proposed pairwise few-shot ranker demonstrates consistent improvements over the zero-shot baseline on both in-domain (TREC DL) and out-domain (BEIR subset) retrieval benchmarks. Our method also achieves a close performance to that of a supervised model without requiring any complex training pipeline.
SESA: Supervised Explicit Semantic Analysis
In recent years supervised representation learning has provided state of the art or close to the state of the art results in semantic analysis tasks including ranking and information retrieval. The core idea is to learn how to embed items into a latent space such that they optimize a supervised objective in that latent space. The dimensions of the latent space have no clear semantics, and this reduces the interpretability of the system. For example, in personalization models, it is hard to explain why a particular item is ranked high for a given user profile. We propose a novel model of representation learning called Supervised Explicit Semantic Analysis (SESA) that is trained in a supervised fashion to embed items to a set of dimensions with explicit semantics. The model learns to compare two objects by representing them in this explicit space, where each dimension corresponds to a concept from a knowledge base. This work extends Explicit Semantic Analysis (ESA) with a supervised model for ranking problems. We apply this model to the task of Job-Profile relevance in LinkedIn in which a set of skills defines our explicit dimensions of the space. Every profile and job are encoded to this set of skills their similarity is calculated in this space. We use RNNs to embed text input into this space. In addition to interpretability, our model makes use of the web-scale collaborative skills data that is provided by users for each LinkedIn profile. Our model provides state of the art result while it remains interpretable.
LAION-400M: Open Dataset of CLIP-Filtered 400 Million Image-Text Pairs
Multi-modal language-vision models trained on hundreds of millions of image-text pairs (e.g. CLIP, DALL-E) gained a recent surge, showing remarkable capability to perform zero- or few-shot learning and transfer even in absence of per-sample labels on target image data. Despite this trend, to date there has been no publicly available datasets of sufficient scale for training such models from scratch. To address this issue, in a community effort we build and release for public LAION-400M, a dataset with CLIP-filtered 400 million image-text pairs, their CLIP embeddings and kNN indices that allow efficient similarity search.
Unsupervised Learning under Latent Label Shift
What sorts of structure might enable a learner to discover classes from unlabeled data? Traditional approaches rely on feature-space similarity and heroic assumptions on the data. In this paper, we introduce unsupervised learning under Latent Label Shift (LLS), where we have access to unlabeled data from multiple domains such that the label marginals p_d(y) can shift across domains but the class conditionals p(x|y) do not. This work instantiates a new principle for identifying classes: elements that shift together group together. For finite input spaces, we establish an isomorphism between LLS and topic modeling: inputs correspond to words, domains to documents, and labels to topics. Addressing continuous data, we prove that when each label's support contains a separable region, analogous to an anchor word, oracle access to p(d|x) suffices to identify p_d(y) and p_d(y|x) up to permutation. Thus motivated, we introduce a practical algorithm that leverages domain-discriminative models as follows: (i) push examples through domain discriminator p(d|x); (ii) discretize the data by clustering examples in p(d|x) space; (iii) perform non-negative matrix factorization on the discrete data; (iv) combine the recovered p(y|d) with the discriminator outputs p(d|x) to compute p_d(y|x) ; forall d. With semi-synthetic experiments, we show that our algorithm can leverage domain information to improve upon competitive unsupervised classification methods. We reveal a failure mode of standard unsupervised classification methods when feature-space similarity does not indicate true groupings, and show empirically that our method better handles this case. Our results establish a deep connection between distribution shift and topic modeling, opening promising lines for future work.
Grounding Descriptions in Images informs Zero-Shot Visual Recognition
Vision-language models (VLMs) like CLIP have been cherished for their ability to perform zero-shot visual recognition on open-vocabulary concepts. This is achieved by selecting the object category whose textual representation bears the highest similarity with the query image. While successful in some domains, this method struggles with identifying fine-grained entities as well as generalizing to unseen concepts that are not captured by the training distribution. Recent works attempt to mitigate these challenges by integrating category descriptions at test time, albeit yielding modest improvements. We attribute these limited gains to a fundamental misalignment between image and description representations, which is rooted in the pretraining structure of CLIP. In this paper, we propose GRAIN, a new pretraining strategy aimed at aligning representations at both fine and coarse levels simultaneously. Our approach learns to jointly ground textual descriptions in image regions along with aligning overarching captions with global image representations. To drive this pre-training, we leverage frozen Multimodal Large Language Models (MLLMs) to derive large-scale synthetic annotations. We demonstrate the enhanced zero-shot performance of our model compared to current state-of-the art methods across 11 diverse image classification datasets. Additionally, we introduce Products-2023, a newly curated, manually labeled dataset featuring novel concepts, and showcase our model's ability to recognize these concepts by benchmarking on it. Significant improvements achieved by our model on other downstream tasks like retrieval further highlight the superior quality of representations learned by our approach. Code available at https://github.com/shaunak27/grain-clip .
O1 Embedder: Let Retrievers Think Before Action
The growing power of large language models (LLMs) has revolutionized how people access and utilize information. Notably, the LLMs excel at performing fine-grained data representation, which facilitates precise retrieval of information. They also generate high-quality answers based on external references, enabling the production of useful knowledge. The recent introduction of reasoning models, like OpenAI O1 and DeepSeek R1, marks another leap forward, highlighting LLMs' ability to think progressively before delivering final answers. This breakthrough significantly improves the ability to address complex tasks, e.g., coding and math proofs. Inspired by this progress, we aim to develop similar capabilities for retrieval models, which hold great promise for tackling critical challenges in the field, including multi-task retrieval, zero-shot retrieval, and tasks requiring intensive reasoning of complex relationships. With this motivation, we propose a novel approach called O1 Embedder, which generates useful thoughts for the input query before making retrieval for the target documents. To realize this objective, we conquer two technical difficulties. First, we design a data synthesis workflow, creating training signals for O1 Embedder by generating initial thoughts from an LLM-expert and subsequently refining them using a retrieval committee. Second, we optimize the training process, enabling a pre-trained model to be jointly fine-tuned to generate retrieval thoughts via behavior cloning and perform dense retrieval through contrastive learning. Our approach is evaluated by comprehensive experiments, where substantial improvements are achieved across 12 popular datasets, spanning both in-domain and out-of-domain scenarios. These results highlight O1 Embedder's remarkable accuracy and generalizability, paving the way for the development of next-generation IR foundation models.
Towards Universal Image Embeddings: A Large-Scale Dataset and Challenge for Generic Image Representations
Fine-grained and instance-level recognition methods are commonly trained and evaluated on specific domains, in a model per domain scenario. Such an approach, however, is impractical in real large-scale applications. In this work, we address the problem of universal image embedding, where a single universal model is trained and used in multiple domains. First, we leverage existing domain-specific datasets to carefully construct a new large-scale public benchmark for the evaluation of universal image embeddings, with 241k query images, 1.4M index images and 2.8M training images across 8 different domains and 349k classes. We define suitable metrics, training and evaluation protocols to foster future research in this area. Second, we provide a comprehensive experimental evaluation on the new dataset, demonstrating that existing approaches and simplistic extensions lead to worse performance than an assembly of models trained for each domain separately. Finally, we conducted a public research competition on this topic, leveraging industrial datasets, which attracted the participation of more than 1k teams worldwide. This exercise generated many interesting research ideas and findings which we present in detail. Project webpage: https://cmp.felk.cvut.cz/univ_emb/
A Theoretical Analysis of Contrastive Unsupervised Representation Learning
Recent empirical works have successfully used unlabeled data to learn feature representations that are broadly useful in downstream classification tasks. Several of these methods are reminiscent of the well-known word2vec embedding algorithm: leveraging availability of pairs of semantically "similar" data points and "negative samples," the learner forces the inner product of representations of similar pairs with each other to be higher on average than with negative samples. The current paper uses the term contrastive learning for such algorithms and presents a theoretical framework for analyzing them by introducing latent classes and hypothesizing that semantically similar points are sampled from the same latent class. This framework allows us to show provable guarantees on the performance of the learned representations on the average classification task that is comprised of a subset of the same set of latent classes. Our generalization bound also shows that learned representations can reduce (labeled) sample complexity on downstream tasks. We conduct controlled experiments in both the text and image domains to support the theory.
A Framework for Fine-Tuning LLMs using Heterogeneous Feedback
Large language models (LLMs) have been applied to a wide range of tasks, including text summarization, web navigation, and chatbots. They have benefitted from supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF) following an unsupervised pretraining. These datasets can be difficult to collect, limited in scope, and vary in sample quality. Additionally, datasets can vary extensively in supervision format, from numerical to binary as well as multi-dimensional with many different values. We present a framework for fine-tuning LLMs using heterogeneous feedback, which has two main components. First, we combine the heterogeneous feedback data into a single supervision format, compatible with methods like SFT and RLHF. Next, given this unified feedback dataset, we extract a high-quality and diverse subset to obtain performance increases potentially exceeding the full dataset. We conduct extensive experiments to understand the effectiveness of these techniques for incorporating heterogeneous feedback, and demonstrate improvements from using a high-quality and diverse subset of the data. We find that our framework is able to improve models in multiple areas simultaneously, such as in instruction following and bias reduction.
Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard
BEIR is a benchmark dataset for zero-shot evaluation of information retrieval models across 18 different domain/task combinations. In recent years, we have witnessed the growing popularity of a representation learning approach to building retrieval models, typically using pretrained transformers in a supervised setting. This naturally begs the question: How effective are these models when presented with queries and documents that differ from the training data? Examples include searching in different domains (e.g., medical or legal text) and with different types of queries (e.g., keywords vs. well-formed questions). While BEIR was designed to answer these questions, our work addresses two shortcomings that prevent the benchmark from achieving its full potential: First, the sophistication of modern neural methods and the complexity of current software infrastructure create barriers to entry for newcomers. To this end, we provide reproducible reference implementations that cover the two main classes of approaches: learned dense and sparse models. Second, there does not exist a single authoritative nexus for reporting the effectiveness of different models on BEIR, which has led to difficulty in comparing different methods. To remedy this, we present an official self-service BEIR leaderboard that provides fair and consistent comparisons of retrieval models. By addressing both shortcomings, our work facilitates future explorations in a range of interesting research questions that BEIR enables.
VacancySBERT: the approach for representation of titles and skills for semantic similarity search in the recruitment domain
The paper focuses on deep learning semantic search algorithms applied in the HR domain. The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title. It has been shown that the title normalization process can be based either on classification or similarity comparison approaches. While classification algorithms strive to classify a sample into predefined set of categories, similarity search algorithms take a more flexible approach, since they are designed to find samples that are similar to a given query sample, without requiring pre-defined classes and labels. In this article semantic similarity search to find candidates for title normalization has been used. A pre-trained language model has been adapted while teaching it to match titles and skills based on co-occurrence information. For the purpose of this research fifty billion title-descriptions pairs had been collected for training the model and thirty three thousand title-description-normalized title triplets, where normalized job title was picked up manually by job ad creator for testing purposes. As baselines FastText, BERT, SentenceBert and JobBert have been used. As a metric of the accuracy of the designed algorithm is Recall in top one, five and ten model's suggestions. It has been shown that the novel training objective lets it achieve significant improvement in comparison to other generic and specific text encoders. Two settings with treating titles as standalone strings, and with included skills as additional features during inference have been used and the results have been compared in this article. Improvements by 10% and 21.5% have been achieved using VacancySBERT and VacancySBERT (with skills) respectively. The benchmark has been developed as open-source to foster further research in the area.
Query-as-context Pre-training for Dense Passage Retrieval
Recently, methods have been developed to improve the performance of dense passage retrieval by using context-supervised pre-training. These methods simply consider two passages from the same document to be relevant, without taking into account the possibility of weakly correlated pairs. Thus, this paper proposes query-as-context pre-training, a simple yet effective pre-training technique to alleviate the issue. Query-as-context pre-training assumes that the query derived from a passage is more likely to be relevant to that passage and forms a passage-query pair. These passage-query pairs are then used in contrastive or generative context-supervised pre-training. The pre-trained models are evaluated on large-scale passage retrieval benchmarks and out-of-domain zero-shot benchmarks. Experimental results show that query-as-context pre-training brings considerable gains and meanwhile speeds up training, demonstrating its effectiveness and efficiency. Our code will be available at https://github.com/caskcsg/ir/tree/main/cotmae-qc .
Distributed Representations of Words and Phrases and their Compositionality
The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible.
MASTER: Multi-task Pre-trained Bottlenecked Masked Autoencoders are Better Dense Retrievers
Pre-trained Transformers (\eg BERT) have been commonly used in existing dense retrieval methods for parameter initialization, and recent studies are exploring more effective pre-training tasks for further improving the quality of dense vectors. Although various novel and effective tasks have been proposed, their different input formats and learning objectives make them hard to be integrated for jointly improving the model performance. In this work, we aim to unify a variety of pre-training tasks into the bottlenecked masked autoencoder manner, and integrate them into a multi-task pre-trained model, namely MASTER. Concretely, MASTER utilizes a shared-encoder multi-decoder architecture that can construct a representation bottleneck to compress the abundant semantic information across tasks into dense vectors. Based on it, we integrate three types of representative pre-training tasks: corrupted passages recovering, related passages recovering and PLMs outputs recovering, to characterize the inner-passage information, inter-passage relations and PLMs knowledge. Extensive experiments have shown that our approach outperforms competitive dense retrieval methods. Our code and data are publicly released in https://github.com/microsoft/SimXNS.
Complementing Lexical Retrieval with Semantic Residual Embedding
This paper presents CLEAR, a retrieval model that seeks to complement classical lexical exact-match models such as BM25 with semantic matching signals from a neural embedding matching model. CLEAR explicitly trains the neural embedding to encode language structures and semantics that lexical retrieval fails to capture with a novel residual-based embedding learning method. Empirical evaluations demonstrate the advantages of CLEAR over state-of-the-art retrieval models, and that it can substantially improve the end-to-end accuracy and efficiency of reranking pipelines.
Granite Embedding Models
We introduce the Granite Embedding models, a family of encoder-based embedding models designed for retrieval tasks, spanning dense-retrieval and sparse retrieval architectures, with both English and Multilingual capabilities. This report provides the technical details of training these highly effective 12 layer embedding models, along with their efficient 6 layer distilled counterparts. Extensive evaluations show that the models, developed with techniques like retrieval oriented pretraining, contrastive finetuning, knowledge distillation, and model merging significantly outperform publicly available models of similar sizes on both internal IBM retrieval and search tasks, and have equivalent performance on widely used information retrieval benchmarks, while being trained on high-quality data suitable for enterprise use. We publicly release all our Granite Embedding models under the Apache 2.0 license, allowing both research and commercial use at https://huggingface.co/collections/ibm-granite.
Repurposing Language Models into Embedding Models: Finding the Compute-Optimal Recipe
Text embeddings are essential for many tasks, such as document retrieval, clustering, and semantic similarity assessment. In this paper, we study how to contrastively train text embedding models in a compute-optimal fashion, given a suite of pre-trained decoder-only language models. Our innovation is an algorithm that produces optimal configurations of model sizes, data quantities, and fine-tuning methods for text-embedding models at different computational budget levels. The resulting recipe, which we obtain through extensive experiments, can be used by practitioners to make informed design choices for their embedding models. Specifically, our findings suggest that full fine-tuning and low-rank adaptation fine-tuning produce optimal models at lower and higher computational budgets respectively.
Mapping distributional to model-theoretic semantic spaces: a baseline
Word embeddings have been shown to be useful across state-of-the-art systems in many natural language processing tasks, ranging from question answering systems to dependency parsing. (Herbelot and Vecchi, 2015) explored word embeddings and their utility for modeling language semantics. In particular, they presented an approach to automatically map a standard distributional semantic space onto a set-theoretic model using partial least squares regression. We show in this paper that a simple baseline achieves a +51% relative improvement compared to their model on one of the two datasets they used, and yields competitive results on the second dataset.
Unsupervised Dense Information Retrieval with Contrastive Learning
Recently, information retrieval has seen the emergence of dense retrievers, using neural networks, as an alternative to classical sparse methods based on term-frequency. These models have obtained state-of-the-art results on datasets and tasks where large training sets are available. However, they do not transfer well to new applications with no training data, and are outperformed by unsupervised term-frequency methods such as BM25. In this work, we explore the limits of contrastive learning as a way to train unsupervised dense retrievers and show that it leads to strong performance in various retrieval settings. On the BEIR benchmark our unsupervised model outperforms BM25 on 11 out of 15 datasets for the Recall@100. When used as pre-training before fine-tuning, either on a few thousands in-domain examples or on the large MS~MARCO dataset, our contrastive model leads to improvements on the BEIR benchmark. Finally, we evaluate our approach for multi-lingual retrieval, where training data is even scarcer than for English, and show that our approach leads to strong unsupervised performance. Our model also exhibits strong cross-lingual transfer when fine-tuned on supervised English data only and evaluated on low resources language such as Swahili. We show that our unsupervised models can perform cross-lingual retrieval between different scripts, such as retrieving English documents from Arabic queries, which would not be possible with term matching methods.
CSDR-BERT: a pre-trained scientific dataset match model for Chinese Scientific Dataset Retrieval
As the number of open and shared scientific datasets on the Internet increases under the open science movement, efficiently retrieving these datasets is a crucial task in information retrieval (IR) research. In recent years, the development of large models, particularly the pre-training and fine-tuning paradigm, which involves pre-training on large models and fine-tuning on downstream tasks, has provided new solutions for IR match tasks. In this study, we use the original BERT token in the embedding layer, improve the Sentence-BERT model structure in the model layer by introducing the SimCSE and K-Nearest Neighbors method, and use the cosent loss function in the optimization phase to optimize the target output. Our experimental results show that our model outperforms other competing models on both public and self-built datasets through comparative experiments and ablation implementations. This study explores and validates the feasibility and efficiency of pre-training techniques for semantic retrieval of Chinese scientific datasets.
Label Propagation for Zero-shot Classification with Vision-Language Models
Vision-Language Models (VLMs) have demonstrated impressive performance on zero-shot classification, i.e. classification when provided merely with a list of class names. In this paper, we tackle the case of zero-shot classification in the presence of unlabeled data. We leverage the graph structure of the unlabeled data and introduce ZLaP, a method based on label propagation (LP) that utilizes geodesic distances for classification. We tailor LP to graphs containing both text and image features and further propose an efficient method for performing inductive inference based on a dual solution and a sparsification step. We perform extensive experiments to evaluate the effectiveness of our method on 14 common datasets and show that ZLaP outperforms the latest related works. Code: https://github.com/vladan-stojnic/ZLaP
MIReAD: Simple Method for Learning High-quality Representations from Scientific Documents
Learning semantically meaningful representations from scientific documents can facilitate academic literature search and improve performance of recommendation systems. Pre-trained language models have been shown to learn rich textual representations, yet they cannot provide powerful document-level representations for scientific articles. We propose MIReAD, a simple method that learns high-quality representations of scientific papers by fine-tuning transformer model to predict the target journal class based on the abstract. We train MIReAD on more than 500,000 PubMed and arXiv abstracts across over 2,000 journal classes. We show that MIReAD produces representations that can be used for similar papers retrieval, topic categorization and literature search. Our proposed approach outperforms six existing models for representation learning on scientific documents across four evaluation standards.
Dense Passage Retrieval for Open-Domain Question Answering
Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dual-encoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system largely by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks.
How to Train Your DRAGON: Diverse Augmentation Towards Generalizable Dense Retrieval
Various techniques have been developed in recent years to improve dense retrieval (DR), such as unsupervised contrastive learning and pseudo-query generation. Existing DRs, however, often suffer from effectiveness tradeoffs between supervised and zero-shot retrieval, which some argue was due to the limited model capacity. We contradict this hypothesis and show that a generalizable DR can be trained to achieve high accuracy in both supervised and zero-shot retrieval without increasing model size. In particular, we systematically examine the contrastive learning of DRs, under the framework of Data Augmentation (DA). Our study shows that common DA practices such as query augmentation with generative models and pseudo-relevance label creation using a cross-encoder, are often inefficient and sub-optimal. We hence propose a new DA approach with diverse queries and sources of supervision to progressively train a generalizable DR. As a result, DRAGON, our dense retriever trained with diverse augmentation, is the first BERT-base-sized DR to achieve state-of-the-art effectiveness in both supervised and zero-shot evaluations and even competes with models using more complex late interaction (ColBERTv2 and SPLADE++).
Geometry-Aware Adaptation for Pretrained Models
Machine learning models -- including prominent zero-shot models -- are often trained on datasets whose labels are only a small proportion of a larger label space. Such spaces are commonly equipped with a metric that relates the labels via distances between them. We propose a simple approach to exploit this information to adapt the trained model to reliably predict new classes -- or, in the case of zero-shot prediction, to improve its performance -- without any additional training. Our technique is a drop-in replacement of the standard prediction rule, swapping argmax with the Fr\'echet mean. We provide a comprehensive theoretical analysis for this approach, studying (i) learning-theoretic results trading off label space diameter, sample complexity, and model dimension, (ii) characterizations of the full range of scenarios in which it is possible to predict any unobserved class, and (iii) an optimal active learning-like next class selection procedure to obtain optimal training classes for when it is not possible to predict the entire range of unobserved classes. Empirically, using easily-available external metrics, our proposed approach, Loki, gains up to 29.7% relative improvement over SimCLR on ImageNet and scales to hundreds of thousands of classes. When no such metric is available, Loki can use self-derived metrics from class embeddings and obtains a 10.5% improvement on pretrained zero-shot models such as CLIP.
RankingGPT: Empowering Large Language Models in Text Ranking with Progressive Enhancement
Text ranking is a critical task in various information retrieval applications, and the recent success of Large Language Models (LLMs) in natural language processing has sparked interest in their application to text ranking. These methods primarily involve combining query and candidate documents and leveraging prompt learning to determine query-document relevance using the LLM's output probabilities for specific tokens or by directly generating a ranked list of candidate documents. Although these approaches have demonstrated promise, a noteworthy disparity arises between the training objective of LLMs, which typically centers around next token prediction, and the objective of evaluating query-document relevance. To address this gap and fully leverage LLM potential in text ranking tasks, we propose a progressive multi-stage training strategy. Firstly, we introduce a large-scale weakly supervised dataset of relevance texts to enable the LLMs to acquire the ability to predict relevant tokens without altering their original training objective. Subsequently, we incorporate supervised training to further enhance LLM ranking capability. Our experimental results on multiple benchmarks demonstrate the superior performance of our proposed method compared to previous competitive approaches, both in in-domain and out-of-domain scenarios.
SemDeDup: Data-efficient learning at web-scale through semantic deduplication
Progress in machine learning has been driven in large part by massive increases in data. However, large web-scale datasets such as LAION are largely uncurated beyond searches for exact duplicates, potentially leaving much redundancy. Here, we introduce SemDeDup, a method which leverages embeddings from pre-trained models to identify and remove semantic duplicates: data pairs which are semantically similar, but not exactly identical. Removing semantic duplicates preserves performance and speeds up learning. Analyzing a subset of LAION, we show that SemDeDup can remove 50% of the data with minimal performance loss, effectively halving training time. Moreover, performance increases out of distribution. Also, analyzing language models trained on C4, a partially curated dataset, we show that SemDeDup improves over prior approaches while providing efficiency gains. SemDeDup provides an example of how simple ways of leveraging quality embeddings can be used to make models learn faster with less data.
Compress & Align: Curating Image-Text Data with Human Knowledge
The massive growth of image-text data through web crawling inherently presents the challenge of variability in data quality. This paper introduces a novel algorithm, rooted in human knowledge, to compress this vast corpus of web-crawled image-text datasets to a compact and high-quality form. Our method unfolds in three major steps. First, we collect an image-text dataset, wherein each image is associated with multiple captions sourced from diverse origins. Then, to systemically capture human preferences regarding the best caption paired with each image, we establish a comprehensive set of both subjective and objective criteria for critically guiding the alignment assessment from labelers. Lastly, we train a reward model on the annotated dataset to internalize the nuanced human understanding of image-text alignment. The resulting reward model thus can act as a human-like referee to filter misaligned/low-quality image-text pairs. Extensive experiments demonstrate that we are able to secure (or even improve) model performance by compressing the image-text datasets up to ~90%. An impressive example is that, by aggressively reducing the total training sample from 130M to 15.5M (e.g., ~9x smaller), our BLIP-B/16 models still consistently show superior performance compared with the full-size-dataset counterpart on image-text retrieval (Flickr30K, COCO) by ~2.5% in Recall@1, and on image-captioning (Nocaps, COCO) by ~10.0% in CIDEr and ~2.7% in SPICE.
Unsupervised Corpus Aware Language Model Pre-training for Dense Passage Retrieval
Recent research demonstrates the effectiveness of using fine-tuned language models~(LM) for dense retrieval. However, dense retrievers are hard to train, typically requiring heavily engineered fine-tuning pipelines to realize their full potential. In this paper, we identify and address two underlying problems of dense retrievers: i)~fragility to training data noise and ii)~requiring large batches to robustly learn the embedding space. We use the recently proposed Condenser pre-training architecture, which learns to condense information into the dense vector through LM pre-training. On top of it, we propose coCondenser, which adds an unsupervised corpus-level contrastive loss to warm up the passage embedding space. Retrieval experiments on MS-MARCO, Natural Question, and Trivia QA datasets show that coCondenser removes the need for heavy data engineering such as augmentation, synthesis, or filtering, as well as the need for large batch training. It shows comparable performance to RocketQA, a state-of-the-art, heavily engineered system, using simple small batch fine-tuning.
NV-Retriever: Improving text embedding models with effective hard-negative mining
Text embedding models have been popular for information retrieval applications such as semantic search and Question-Answering systems based on Retrieval-Augmented Generation (RAG). Those models are typically Transformer models that are fine-tuned with contrastive learning objectives. Many papers introduced new embedding model architectures and training approaches, however, one of the key ingredients, the process of mining negative passages, remains poorly explored or described. One of the challenging aspects of fine-tuning embedding models is the selection of high quality hard-negative passages for contrastive learning. In this paper we propose a family of positive-aware mining methods that leverage the positive relevance score for more effective false negatives removal. We also provide a comprehensive ablation study on hard-negative mining methods over their configurations, exploring different teacher and base models. We demonstrate the efficacy of our proposed methods by introducing the NV-Retriever-v1 model, which scores 60.9 on MTEB Retrieval (BEIR) benchmark and 0.65 points higher than previous methods. The model placed 1st when it was published to MTEB Retrieval on July 07, 2024.
Large Language Models as Foundations for Next-Gen Dense Retrieval: A Comprehensive Empirical Assessment
Pretrained language models like BERT and T5 serve as crucial backbone encoders for dense retrieval. However, these models often exhibit limited generalization capabilities and face challenges in improving in domain accuracy. Recent research has explored using large language models (LLMs) as retrievers, achieving SOTA performance across various tasks. Despite these advancements, the specific benefits of LLMs over traditional retrievers and the impact of different LLM configurations, such as parameter sizes, pretraining duration, and alignment processes on retrieval tasks remain unclear. In this work, we conduct a comprehensive empirical study on a wide range of retrieval tasks, including in domain accuracy, data efficiency, zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. We evaluate over 15 different backbone LLMs and non LLMs. Our findings reveal that larger models and extensive pretraining consistently enhance in domain accuracy and data efficiency. Additionally, larger models demonstrate significant potential in zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. These results underscore the advantages of LLMs as versatile and effective backbone encoders in dense retrieval, providing valuable insights for future research and development in this field.
Latent Retrieval for Weakly Supervised Open Domain Question Answering
Recent work on open domain question answering (QA) assumes strong supervision of the supporting evidence and/or assumes a blackbox information retrieval (IR) system to retrieve evidence candidates. We argue that both are suboptimal, since gold evidence is not always available, and QA is fundamentally different from IR. We show for the first time that it is possible to jointly learn the retriever and reader from question-answer string pairs and without any IR system. In this setting, evidence retrieval from all of Wikipedia is treated as a latent variable. Since this is impractical to learn from scratch, we pre-train the retriever with an Inverse Cloze Task. We evaluate on open versions of five QA datasets. On datasets where the questioner already knows the answer, a traditional IR system such as BM25 is sufficient. On datasets where a user is genuinely seeking an answer, we show that learned retrieval is crucial, outperforming BM25 by up to 19 points in exact match.
DreamLIP: Language-Image Pre-training with Long Captions
Language-image pre-training largely relies on how precisely and thoroughly a text describes its paired image. In practice, however, the contents of an image can be so rich that well describing them requires lengthy captions (e.g., with 10 sentences), which are usually missing in existing datasets. Consequently, there are currently no clear evidences on whether and how language-image pre-training could benefit from long captions. To figure this out, we first re-caption 30M images with detailed descriptions using a pre-trained Multi-modality Large Language Model (MLLM), and then study the usage of the resulting captions under a contrastive learning framework. We observe that, each sentence within a long caption is very likely to describe the image partially (e.g., an object). Motivated by this, we propose to dynamically sample sub-captions from the text label to construct multiple positive pairs, and introduce a grouping loss to match the embeddings of each sub-caption with its corresponding local image patches in a self-supervised manner. Experimental results on a wide rage of downstream tasks demonstrate the consistent superiority of our method, termed DreamLIP, over previous alternatives, highlighting its fine-grained representational capacity. It is noteworthy that, on the tasks of image-text retrieval and semantic segmentation, our model trained with 30M image-text pairs achieves on par or even better performance than CLIP trained with 400M pairs. Project page is available at https://zyf0619sjtu.github.io/dream-lip.
Establishing Strong Baselines for TripClick Health Retrieval
We present strong Transformer-based re-ranking and dense retrieval baselines for the recently released TripClick health ad-hoc retrieval collection. We improve the - originally too noisy - training data with a simple negative sampling policy. We achieve large gains over BM25 in the re-ranking task of TripClick, which were not achieved with the original baselines. Furthermore, we study the impact of different domain-specific pre-trained models on TripClick. Finally, we show that dense retrieval outperforms BM25 by considerable margins, even with simple training procedures.
Low-Resource Multi-Granularity Academic Function Recognition Based on Multiple Prompt Knowledge
Fine-tuning pre-trained language models (PLMs), e.g., SciBERT, generally requires large numbers of annotated data to achieve state-of-the-art performance on a range of NLP tasks in the scientific domain. However, obtaining the fine-tune data for scientific NLP task is still challenging and expensive. Inspired by recent advancement in prompt learning, in this paper, we propose the Mix Prompt Tuning (MPT), which is a semi-supervised method to alleviate the dependence on annotated data and improve the performance of multi-granularity academic function recognition tasks with a small number of labeled examples. Specifically, the proposed method provides multi-perspective representations by combining manual prompt templates with automatically learned continuous prompt templates to help the given academic function recognition task take full advantage of knowledge in PLMs. Based on these prompt templates and the fine-tuned PLM, a large number of pseudo labels are assigned to the unlabeled examples. Finally, we fine-tune the PLM using the pseudo training set. We evaluate our method on three academic function recognition tasks of different granularity including the citation function, the abstract sentence function, and the keyword function, with datasets from computer science domain and biomedical domain. Extensive experiments demonstrate the effectiveness of our method and statistically significant improvements against strong baselines. In particular, it achieves an average increase of 5% in Macro-F1 score compared with fine-tuning, and 6% in Macro-F1 score compared with other semi-supervised method under low-resource settings. In addition, MPT is a general method that can be easily applied to other low-resource scientific classification tasks.
Supervised Learning of Universal Sentence Representations from Natural Language Inference Data
Many modern NLP systems rely on word embeddings, previously trained in an unsupervised manner on large corpora, as base features. Efforts to obtain embeddings for larger chunks of text, such as sentences, have however not been so successful. Several attempts at learning unsupervised representations of sentences have not reached satisfactory enough performance to be widely adopted. In this paper, we show how universal sentence representations trained using the supervised data of the Stanford Natural Language Inference datasets can consistently outperform unsupervised methods like SkipThought vectors on a wide range of transfer tasks. Much like how computer vision uses ImageNet to obtain features, which can then be transferred to other tasks, our work tends to indicate the suitability of natural language inference for transfer learning to other NLP tasks. Our encoder is publicly available.
Meta-training with Demonstration Retrieval for Efficient Few-shot Learning
Large language models show impressive results on few-shot NLP tasks. However, these models are memory and computation-intensive. Meta-training allows one to leverage smaller models for few-shot generalization in a domain-general and task-agnostic manner; however, these methods alone results in models that may not have sufficient parameterization or knowledge to adapt quickly to a large variety of tasks. To overcome this issue, we propose meta-training with demonstration retrieval, where we use a dense passage retriever to retrieve semantically similar labeled demonstrations to each example for more varied supervision. By separating external knowledge from model parameters, we can use meta-training to train parameter-efficient models that generalize well on a larger variety of tasks. We construct a meta-training set from UnifiedQA and CrossFit, and propose a demonstration bank based on UnifiedQA tasks. To our knowledge, our work is the first to combine retrieval with meta-training, to use DPR models to retrieve demonstrations, and to leverage demonstrations from many tasks simultaneously, rather than randomly sampling demonstrations from the training set of the target task. Our approach outperforms a variety of targeted parameter-efficient and retrieval-augmented few-shot methods on QA, NLI, and text classification tasks (including SQuAD, QNLI, and TREC). Our approach can be meta-trained and fine-tuned quickly on a single GPU.
Scaling and Benchmarking Self-Supervised Visual Representation Learning
Self-supervised learning aims to learn representations from the data itself without explicit manual supervision. Existing efforts ignore a crucial aspect of self-supervised learning - the ability to scale to large amount of data because self-supervision requires no manual labels. In this work, we revisit this principle and scale two popular self-supervised approaches to 100 million images. We show that by scaling on various axes (including data size and problem 'hardness'), one can largely match or even exceed the performance of supervised pre-training on a variety of tasks such as object detection, surface normal estimation (3D) and visual navigation using reinforcement learning. Scaling these methods also provides many interesting insights into the limitations of current self-supervised techniques and evaluations. We conclude that current self-supervised methods are not 'hard' enough to take full advantage of large scale data and do not seem to learn effective high level semantic representations. We also introduce an extensive benchmark across 9 different datasets and tasks. We believe that such a benchmark along with comparable evaluation settings is necessary to make meaningful progress. Code is at: https://github.com/facebookresearch/fair_self_supervision_benchmark.
Learning to Retrieve Passages without Supervision
Dense retrievers for open-domain question answering (ODQA) have been shown to achieve impressive performance by training on large datasets of question-passage pairs. In this work we ask whether this dependence on labeled data can be reduced via unsupervised pretraining that is geared towards ODQA. We show this is in fact possible, via a novel pretraining scheme designed for retrieval. Our "recurring span retrieval" approach uses recurring spans across passages in a document to create pseudo examples for contrastive learning. Our pretraining scheme directly controls for term overlap across pseudo queries and relevant passages, thus allowing to model both lexical and semantic relations between them. The resulting model, named Spider, performs surprisingly well without any labeled training examples on a wide range of ODQA datasets. Specifically, it significantly outperforms all other pretrained baselines in a zero-shot setting, and is competitive with BM25, a strong sparse baseline. Moreover, a hybrid retriever over Spider and BM25 improves over both, and is often competitive with DPR models, which are trained on tens of thousands of examples. Last, notable gains are observed when using Spider as an initialization for supervised training.
Video-adverb retrieval with compositional adverb-action embeddings
Retrieving adverbs that describe an action in a video poses a crucial step towards fine-grained video understanding. We propose a framework for video-to-adverb retrieval (and vice versa) that aligns video embeddings with their matching compositional adverb-action text embedding in a joint embedding space. The compositional adverb-action text embedding is learned using a residual gating mechanism, along with a novel training objective consisting of triplet losses and a regression target. Our method achieves state-of-the-art performance on five recent benchmarks for video-adverb retrieval. Furthermore, we introduce dataset splits to benchmark video-adverb retrieval for unseen adverb-action compositions on subsets of the MSR-VTT Adverbs and ActivityNet Adverbs datasets. Our proposed framework outperforms all prior works for the generalisation task of retrieving adverbs from videos for unseen adverb-action compositions. Code and dataset splits are available at https://hummelth.github.io/ReGaDa/.
Active Self-Supervised Learning: A Few Low-Cost Relationships Are All You Need
Self-Supervised Learning (SSL) has emerged as the solution of choice to learn transferable representations from unlabeled data. However, SSL requires to build samples that are known to be semantically akin, i.e. positive views. Requiring such knowledge is the main limitation of SSL and is often tackled by ad-hoc strategies e.g. applying known data-augmentations to the same input. In this work, we generalize and formalize this principle through Positive Active Learning (PAL) where an oracle queries semantic relationships between samples. PAL achieves three main objectives. First, it unveils a theoretically grounded learning framework beyond SSL, that can be extended to tackle supervised and semi-supervised learning depending on the employed oracle. Second, it provides a consistent algorithm to embed a priori knowledge, e.g. some observed labels, into any SSL losses without any change in the training pipeline. Third, it provides a proper active learning framework yielding low-cost solutions to annotate datasets, arguably bringing the gap between theory and practice of active learning that is based on simple-to-answer-by-non-experts queries of semantic relationships between inputs.
Improving Classification Performance With Human Feedback: Label a few, we label the rest
In the realm of artificial intelligence, where a vast majority of data is unstructured, obtaining substantial amounts of labeled data to train supervised machine learning models poses a significant challenge. To address this, we delve into few-shot and active learning, where are goal is to improve AI models with human feedback on a few labeled examples. This paper focuses on understanding how a continuous feedback loop can refine models, thereby enhancing their accuracy, recall, and precision through incremental human input. By employing Large Language Models (LLMs) such as GPT-3.5, BERT, and SetFit, we aim to analyze the efficacy of using a limited number of labeled examples to substantially improve model accuracy. We benchmark this approach on the Financial Phrasebank, Banking, Craigslist, Trec, Amazon Reviews datasets to prove that with just a few labeled examples, we are able to surpass the accuracy of zero shot large language models to provide enhanced text classification performance. We demonstrate that rather than needing to manually label millions of rows of data, we just need to label a few and the model can effectively predict the rest.
How Useful is Self-Supervised Pretraining for Visual Tasks?
Recent advances have spurred incredible progress in self-supervised pretraining for vision. We investigate what factors may play a role in the utility of these pretraining methods for practitioners. To do this, we evaluate various self-supervised algorithms across a comprehensive array of synthetic datasets and downstream tasks. We prepare a suite of synthetic data that enables an endless supply of annotated images as well as full control over dataset difficulty. Our experiments offer insights into how the utility of self-supervision changes as the number of available labels grows as well as how the utility changes as a function of the downstream task and the properties of the training data. We also find that linear evaluation does not correlate with finetuning performance. Code and data is available at https://www.github.com/princeton-vl/selfstudy{github.com/princeton-vl/selfstudy}.
InstUPR : Instruction-based Unsupervised Passage Reranking with Large Language Models
This paper introduces InstUPR, an unsupervised passage reranking method based on large language models (LLMs). Different from existing approaches that rely on extensive training with query-document pairs or retrieval-specific instructions, our method leverages the instruction-following capabilities of instruction-tuned LLMs for passage reranking without any additional fine-tuning. To achieve this, we introduce a soft score aggregation technique and employ pairwise reranking for unsupervised passage reranking. Experiments on the BEIR benchmark demonstrate that InstUPR outperforms unsupervised baselines as well as an instruction-tuned reranker, highlighting its effectiveness and superiority. Source code to reproduce all experiments is open-sourced at https://github.com/MiuLab/InstUPR
Leveraging Web-Crawled Data for High-Quality Fine-Tuning
Most large language models are fine-tuned using either expensive human-annotated data or GPT-4 generated data which cannot guarantee performance in certain domains. We argue that although the web-crawled data often has formatting errors causing semantic inaccuracies, it can still serve as a valuable source for high-quality supervised fine-tuning in specific domains without relying on advanced models like GPT-4. To this end, we create a paired training dataset automatically by aligning web-crawled data with a smaller set of high-quality data. By training a language model on this dataset, we can convert web data with irregular formats into high-quality ones. Our experiments show that training with the model-transformed data yields better results, surpassing training with only high-quality data by an average score of 9.4% in Chinese math problems. Additionally, our 7B model outperforms several open-source models larger than 32B and surpasses well-known closed-source models such as GPT-3.5, highlighting the efficacy of our approach.
LamRA: Large Multimodal Model as Your Advanced Retrieval Assistant
With the rapid advancement of multimodal information retrieval, increasingly complex retrieval tasks have emerged. Existing methods predominately rely on task-specific fine-tuning of vision-language models, often those trained with image-text contrastive learning. In this paper, we explore the possibility of re-purposing generative Large Multimodal Models (LMMs) for retrieval. This approach enables unifying all retrieval tasks under the same formulation and, more importantly, allows for extrapolation towards unseen retrieval tasks without additional training. Our contributions can be summarised in the following aspects: (i) We introduce LamRA, a versatile framework designed to empower LMMs with sophisticated retrieval and reranking capabilities. (ii) For retrieval, we adopt a two-stage training strategy comprising language-only pre-training and multimodal instruction tuning to progressively enhance LMM's retrieval performance. (iii) For reranking, we employ joint training for both pointwise and listwise reranking, offering two distinct ways to further boost the retrieval performance. (iv) Extensive experimental results underscore the efficacy of our method in handling more than ten retrieval tasks, demonstrating robust performance in both supervised and zero-shot settings, including scenarios involving previously unseen retrieval tasks.
CRAFT Your Dataset: Task-Specific Synthetic Dataset Generation Through Corpus Retrieval and Augmentation
Building high-quality datasets for specialized tasks is a time-consuming and resource-intensive process that often requires specialized domain knowledge. We propose Corpus Retrieval and Augmentation for Fine-Tuning (CRAFT), a method for generating synthetic datasets, given a small number of user-written few-shots that demonstrate the task to be performed. Given the few-shot examples, we use large-scale public web-crawled corpora and similarity-based document retrieval to find other relevant human-written documents. Lastly, instruction-tuned large language models (LLMs) augment the retrieved documents into custom-formatted task samples, which then can be used for fine-tuning. We demonstrate that CRAFT can efficiently generate large-scale task-specific training datasets for four diverse tasks: biology question-answering (QA), medicine QA and commonsense QA as well as summarization. Our experiments show that CRAFT-based models outperform or achieve comparable performance to general LLMs for QA tasks, while CRAFT-based summarization models outperform models trained on human-curated data by 46 preference points.
Lingua Manga: A Generic Large Language Model Centric System for Data Curation
Data curation is a wide-ranging area which contains many critical but time-consuming data processing tasks. However, the diversity of such tasks makes it challenging to develop a general-purpose data curation system. To address this issue, we present Lingua Manga, a user-friendly and versatile system that utilizes pre-trained large language models. Lingua Manga offers automatic optimization for achieving high performance and label efficiency while facilitating flexible and rapid development. Through three example applications with distinct objectives and users of varying levels of technical proficiency, we demonstrate that Lingua Manga can effectively assist both skilled programmers and low-code or even no-code users in addressing data curation challenges.
Learning Dense Representations of Phrases at Scale
Open-domain question answering can be reformulated as a phrase retrieval problem, without the need for processing documents on-demand during inference (Seo et al., 2019). However, current phrase retrieval models heavily depend on sparse representations and still underperform retriever-reader approaches. In this work, we show for the first time that we can learn dense representations of phrases alone that achieve much stronger performance in open-domain QA. We present an effective method to learn phrase representations from the supervision of reading comprehension tasks, coupled with novel negative sampling methods. We also propose a query-side fine-tuning strategy, which can support transfer learning and reduce the discrepancy between training and inference. On five popular open-domain QA datasets, our model DensePhrases improves over previous phrase retrieval models by 15%-25% absolute accuracy and matches the performance of state-of-the-art retriever-reader models. Our model is easy to parallelize due to pure dense representations and processes more than 10 questions per second on CPUs. Finally, we directly use our pre-indexed dense phrase representations for two slot filling tasks, showing the promise of utilizing DensePhrases as a dense knowledge base for downstream tasks.
Harnessing the Power of Beta Scoring in Deep Active Learning for Multi-Label Text Classification
Within the scope of natural language processing, the domain of multi-label text classification is uniquely challenging due to its expansive and uneven label distribution. The complexity deepens due to the demand for an extensive set of annotated data for training an advanced deep learning model, especially in specialized fields where the labeling task can be labor-intensive and often requires domain-specific knowledge. Addressing these challenges, our study introduces a novel deep active learning strategy, capitalizing on the Beta family of proper scoring rules within the Expected Loss Reduction framework. It computes the expected increase in scores using the Beta Scoring Rules, which are then transformed into sample vector representations. These vector representations guide the diverse selection of informative samples, directly linking this process to the model's expected proper score. Comprehensive evaluations across both synthetic and real datasets reveal our method's capability to often outperform established acquisition techniques in multi-label text classification, presenting encouraging outcomes across various architectural and dataset scenarios.
Contrastive Learning and Mixture of Experts Enables Precise Vector Embeddings
The advancement of transformer neural networks has significantly elevated the capabilities of sentence similarity models, particularly in creating effective vector representations of natural language inputs. However, these models face notable challenges in domain-specific contexts, especially in highly specialized scientific sub-fields. Traditional methods often struggle in this regime, either overgeneralizing similarities within a niche or being overly sensitive to minor differences, resulting in inaccurate text classification and subpar vector representation. In an era where retrieval augmentation and search are increasingly crucial, precise and concise numerical representations are essential. In this paper, we target this issue by assembling niche datasets using co-citations as a similarity metric, focusing on biomedical domains. We employ two key strategies for fine-tuning state-of-the-art models: 1. Domain-specific Fine-Tuning, which tailors pretrained models to a single domain, and 2. Universal Applicability with Mixture of Experts (MoE), adapting pretrained models with enforced routing for multiple domains simultaneously. Our training approach emphasizes the use of abstracts for faster training, incorporating Multiple Negative Rankings loss for efficient contrastive learning. Notably, our MoE variants, equipped with N experts, achieve the efficacy of N individual models, heralding a new era of versatile, One-Size-Fits-All transformer networks for various tasks. This methodology marks significant advancements in scientific text classification metrics and holds promise for enhancing vector database search and compilation.
Large Language Models as Annotators: Enhancing Generalization of NLP Models at Minimal Cost
State-of-the-art supervised NLP models achieve high accuracy but are also susceptible to failures on inputs from low-data regimes, such as domains that are not represented in training data. As an approximation to collecting ground-truth labels for the specific domain, we study the use of large language models (LLMs) for annotating inputs and improving the generalization of NLP models. Specifically, given a budget for LLM annotations, we present an algorithm for sampling the most informative inputs to annotate and retrain the NLP model. We find that popular active learning strategies such as uncertainty-based sampling do not work well. Instead, we propose a sampling strategy based on the difference in prediction scores between the base model and the finetuned NLP model, utilizing the fact that most NLP models are finetuned from a base model. Experiments with classification (semantic similarity) and ranking (semantic search) tasks show that our sampling strategy leads to significant gains in accuracy for both the training and target domains.
HTLM: Hyper-Text Pre-Training and Prompting of Language Models
We introduce HTLM, a hyper-text language model trained on a large-scale web crawl. Modeling hyper-text has a number of advantages: (1) it is easily gathered at scale, (2) it provides rich document-level and end-task-adjacent supervision (e.g. class and id attributes often encode document category information), and (3) it allows for new structured prompting that follows the established semantics of HTML (e.g. to do zero-shot summarization by infilling title tags for a webpage that contains the input text). We show that pretraining with a BART-style denoising loss directly on simplified HTML provides highly effective transfer for a wide range of end tasks and supervision levels. HTLM matches or exceeds the performance of comparably sized text-only LMs for zero-shot prompting and fine-tuning for classification benchmarks, while also setting new state-of-the-art performance levels for zero-shot summarization. We also find that hyper-text prompts provide more value to HTLM, in terms of data efficiency, than plain text prompts do for existing LMs, and that HTLM is highly effective at auto-prompting itself, by simply generating the most likely hyper-text formatting for any available training data. We will release all code and models to support future HTLM research.
Learning from Weakly-labeled Web Videos via Exploring Sub-Concepts
Learning visual knowledge from massive weakly-labeled web videos has attracted growing research interests thanks to the large corpus of easily accessible video data on the Internet. However, for video action recognition, the action of interest might only exist in arbitrary clips of untrimmed web videos, resulting in high label noises in the temporal space. To address this issue, we introduce a new method for pre-training video action recognition models using queried web videos. Instead of trying to filter out, we propose to convert the potential noises in these queried videos to useful supervision signals by defining the concept of Sub-Pseudo Label (SPL). Specifically, SPL spans out a new set of meaningful "middle ground" label space constructed by extrapolating the original weak labels during video querying and the prior knowledge distilled from a teacher model. Consequently, SPL provides enriched supervision for video models to learn better representations. SPL is fairly simple and orthogonal to popular teacher-student self-training frameworks without extra training cost. We validate the effectiveness of our method on four video action recognition datasets and a weakly-labeled image dataset to study the generalization ability. Experiments show that SPL outperforms several existing pre-training strategies using pseudo-labels and the learned representations lead to competitive results when fine-tuning on HMDB-51 and UCF-101 compared with recent pre-training methods.
GPT Self-Supervision for a Better Data Annotator
The task of annotating data into concise summaries poses a significant challenge across various domains, frequently requiring the allocation of significant time and specialized knowledge by human experts. Despite existing efforts to use large language models for annotation tasks, significant problems such as limited applicability to unlabeled data, the absence of self-supervised methods, and the lack of focus on complex structured data still persist. In this work, we propose a GPT self-supervision annotation method, which embodies a generating-recovering paradigm that leverages the one-shot learning capabilities of the Generative Pretrained Transformer (GPT). The proposed approach comprises a one-shot tuning phase followed by a generation phase. In the one-shot tuning phase, we sample a data from the support set as part of the prompt for GPT to generate a textual summary, which is then used to recover the original data. The alignment score between the recovered and original data serves as a self-supervision navigator to refine the process. In the generation stage, the optimally selected one-shot sample serves as a template in the prompt and is applied to generating summaries from challenging datasets. The annotation performance is evaluated by tuning several human feedback reward networks and by calculating alignment scores between original and recovered data at both sentence and structure levels. Our self-supervised annotation method consistently achieves competitive scores, convincingly demonstrating its robust strength in various data-to-summary annotation tasks.
Zero-shot Neural Passage Retrieval via Domain-targeted Synthetic Question Generation
A major obstacle to the wide-spread adoption of neural retrieval models is that they require large supervised training sets to surpass traditional term-based techniques, which are constructed from raw corpora. In this paper, we propose an approach to zero-shot learning for passage retrieval that uses synthetic question generation to close this gap. The question generation system is trained on general domain data, but is applied to documents in the targeted domain. This allows us to create arbitrarily large, yet noisy, question-passage relevance pairs that are domain specific. Furthermore, when this is coupled with a simple hybrid term-neural model, first-stage retrieval performance can be improved further. Empirically, we show that this is an effective strategy for building neural passage retrieval models in the absence of large training corpora. Depending on the domain, this technique can even approach the accuracy of supervised models.
REPT: Bridging Language Models and Machine Reading Comprehension via Retrieval-Based Pre-training
Pre-trained Language Models (PLMs) have achieved great success on Machine Reading Comprehension (MRC) over the past few years. Although the general language representation learned from large-scale corpora does benefit MRC, the poor support in evidence extraction which requires reasoning across multiple sentences hinders PLMs from further advancing MRC. To bridge the gap between general PLMs and MRC, we present REPT, a REtrieval-based Pre-Training approach. In particular, we introduce two self-supervised tasks to strengthen evidence extraction during pre-training, which is further inherited by downstream MRC tasks through the consistent retrieval operation and model architecture. To evaluate our proposed method, we conduct extensive experiments on five MRC datasets that require collecting evidence from and reasoning across multiple sentences. Experimental results demonstrate the effectiveness of our pre-training approach. Moreover, further analysis shows that our approach is able to enhance the capacity of evidence extraction without explicit supervision.
When Less is More: Investigating Data Pruning for Pretraining LLMs at Scale
Large volumes of text data have contributed significantly to the development of large language models (LLMs) in recent years. This data is typically acquired by scraping the internet, leading to pretraining datasets comprised of noisy web text. To date, efforts to prune these datasets down to a higher quality subset have relied on hand-crafted heuristics encoded as rule-based filters. In this work, we take a wider view and explore scalable estimates of data quality that can be used to systematically measure the quality of pretraining data. We perform a rigorous comparison at scale of the simple data quality estimator of perplexity, as well as more sophisticated and computationally intensive estimates of the Error L2-Norm and memorization. These metrics are used to rank and prune pretraining corpora, and we subsequently compare LLMs trained on these pruned datasets. Surprisingly, we find that the simple technique of perplexity outperforms our more computationally expensive scoring methods. We improve over our no-pruning baseline while training on as little as 30% of the original training dataset. Our work sets the foundation for unexplored strategies in automatically curating high quality corpora and suggests the majority of pretraining data can be removed while retaining performance.
Retrieve Anything To Augment Large Language Models
Large language models (LLMs) face significant challenges stemming from the inherent limitations in knowledge, memory, alignment, and action. These challenges cannot be addressed by LLMs alone, but should rely on assistance from the external world, such as knowledge base, memory store, demonstration examples, and tools. Retrieval augmentation stands as a vital mechanism for bridging the gap between LLMs and the external assistance. However, conventional methods encounter two pressing issues. On one hand, the general-purpose retrievers are not properly optimized for the retrieval augmentation of LLMs. On the other hand, the task-specific retrievers lack the required versatility, hindering their performance across the diverse retrieval augmentation scenarios. In this work, we present a novel approach, the LLM Embedder, which comprehensively support the diverse needs of LLMs' retrieval augmentation with one unified embedding model. Training such an unified model is non-trivial, as various retrieval tasks aim to capture distinct semantic relationships, often subject to mutual interference. To address this challenge, we systematically optimize our training methodology. This includes reward formulation based on LLMs' feedback, the stabilization of knowledge distillation, multi-task fine-tuning with explicit instructions, and the use of homogeneous in-batch negative sampling. These optimization strategies contribute to the outstanding empirical performance of the LLM-Embedder. Notably, it yields remarkable enhancements in retrieval augmentation for LLMs, surpassing both general-purpose and task-specific retrievers in various evaluation scenarios. This project is made publicly available at https://github.com/FlagOpen/FlagEmbedding.
DAPR: A Benchmark on Document-Aware Passage Retrieval
Recent neural retrieval mainly focuses on ranking short texts and is challenged with long documents. Existing work mainly evaluates either ranking passages or whole documents. However, there are many cases where the users want to find a relevant passage within a long document from a huge corpus, e.g. legal cases, research papers, etc. In this scenario, the passage often provides little document context and thus challenges the current approaches to finding the correct document and returning accurate results. To fill this gap, we propose and name this task Document-Aware Passage Retrieval (DAPR) and build a benchmark including multiple datasets from various domains, covering both DAPR and whole-document retrieval. In experiments, we extend the state-of-the-art neural passage retrievers with document-level context via different approaches including prepending document summary, pooling over passage representations, and hybrid retrieval with BM25. The hybrid-retrieval systems, the overall best, can only improve on the DAPR tasks marginally while significantly improving on the document-retrieval tasks. This motivates further research in developing better retrieval systems for the new task. The code and the data are available at https://github.com/kwang2049/dapr
Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus
Large language models have led to remarkable progress on many NLP tasks, and researchers are turning to ever-larger text corpora to train them. Some of the largest corpora available are made by scraping significant portions of the internet, and are frequently introduced with only minimal documentation. In this work we provide some of the first documentation for the Colossal Clean Crawled Corpus (C4; Raffel et al., 2020), a dataset created by applying a set of filters to a single snapshot of Common Crawl. We begin by investigating where the data came from, and find a significant amount of text from unexpected sources like patents and US military websites. Then we explore the content of the text itself, and find machine-generated text (e.g., from machine translation systems) and evaluation examples from other benchmark NLP datasets. To understand the impact of the filters applied to create this dataset, we evaluate the text that was removed, and show that blocklist filtering disproportionately removes text from and about minority individuals. Finally, we conclude with some recommendations for how to created and document web-scale datasets from a scrape of the internet.
Bad Form: Comparing Context-Based and Form-Based Few-Shot Learning in Distributional Semantic Models
Word embeddings are an essential component in a wide range of natural language processing applications. However, distributional semantic models are known to struggle when only a small number of context sentences are available. Several methods have been proposed to obtain higher-quality vectors for these words, leveraging both this context information and sometimes the word forms themselves through a hybrid approach. We show that the current tasks do not suffice to evaluate models that use word-form information, as such models can easily leverage word forms in the training data that are related to word forms in the test data. We introduce 3 new tasks, allowing for a more balanced comparison between models. Furthermore, we show that hyperparameters that have largely been ignored in previous work can consistently improve the performance of both baseline and advanced models, achieving a new state of the art on 4 out of 6 tasks.
Billion-scale semi-supervised learning for image classification
This paper presents a study of semi-supervised learning with large convolutional networks. We propose a pipeline, based on a teacher/student paradigm, that leverages a large collection of unlabelled images (up to 1 billion). Our main goal is to improve the performance for a given target architecture, like ResNet-50 or ResNext. We provide an extensive analysis of the success factors of our approach, which leads us to formulate some recommendations to produce high-accuracy models for image classification with semi-supervised learning. As a result, our approach brings important gains to standard architectures for image, video and fine-grained classification. For instance, by leveraging one billion unlabelled images, our learned vanilla ResNet-50 achieves 81.2% top-1 accuracy on the ImageNet benchmark.
HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips
Learning text-video embeddings usually requires a dataset of video clips with manually provided captions. However, such datasets are expensive and time consuming to create and therefore difficult to obtain on a large scale. In this work, we propose instead to learn such embeddings from video data with readily available natural language annotations in the form of automatically transcribed narrations. The contributions of this work are three-fold. First, we introduce HowTo100M: a large-scale dataset of 136 million video clips sourced from 1.22M narrated instructional web videos depicting humans performing and describing over 23k different visual tasks. Our data collection procedure is fast, scalable and does not require any additional manual annotation. Second, we demonstrate that a text-video embedding trained on this data leads to state-of-the-art results for text-to-video retrieval and action localization on instructional video datasets such as YouCook2 or CrossTask. Finally, we show that this embedding transfers well to other domains: fine-tuning on generic Youtube videos (MSR-VTT dataset) and movies (LSMDC dataset) outperforms models trained on these datasets alone. Our dataset, code and models will be publicly available at: www.di.ens.fr/willow/research/howto100m/.
No Detail Left Behind: Revisiting Self-Retrieval for Fine-Grained Image Captioning
Image captioning systems are unable to generate fine-grained captions as they are trained on data that is either noisy (alt-text) or generic (human annotations). This is further exacerbated by maximum likelihood training that encourages generation of frequently occurring phrases. Previous works have tried to address this limitation by fine-tuning captioners with a self-retrieval (SR) reward. However, we find that SR fine-tuning has a tendency to reduce caption faithfulness and even hallucinate. In this work, we circumvent this bottleneck by improving the MLE initialization of the captioning system and designing a curriculum for the SR fine-tuning process. To this extent, we present (1) Visual Caption Boosting, a novel framework to instill fine-grainedness in generic image captioning datasets while remaining anchored in human annotations; and (2) BagCurri, a carefully designed training curriculum that more optimally leverages the contrastive nature of the self-retrieval reward. Jointly, they enable the captioner to describe fine-grained aspects in the image while preserving faithfulness to ground-truth captions. Our approach outperforms previous work by +8.9% on SR against 99 random distractors (RD100) (Dessi et al., 2023); and +7.6% on ImageCoDe. Additionally, existing metrics to evaluate captioning systems fail to reward diversity or evaluate a model's fine-grained understanding ability. Our third contribution addresses this by proposing self-retrieval from the lens of evaluation. We introduce TrueMatch, a benchmark comprising bags of highly similar images that uses SR to assess the captioner's ability to capture subtle visual distinctions. We evaluate and compare several state-of-the-art open-source MLLMs on TrueMatch, and find that our SR approach outperforms them all by a significant margin (e.g. +4.8% - 7.1% over Cambrian) while having 1-2 orders of magnitude fewer parameters.
Musical Audio Similarity with Self-supervised Convolutional Neural Networks
We have built a music similarity search engine that lets video producers search by listenable music excerpts, as a complement to traditional full-text search. Our system suggests similar sounding track segments in a large music catalog by training a self-supervised convolutional neural network with triplet loss terms and musical transformations. Semi-structured user interviews demonstrate that we can successfully impress professional video producers with the quality of the search experience, and perceived similarities to query tracks averaged 7.8/10 in user testing. We believe this search tool will make for a more natural search experience that is easier to find music to soundtrack videos with.
Annotated Dataset Creation through General Purpose Language Models for non-English Medical NLP
Obtaining text datasets with semantic annotations is an effortful process, yet crucial for supervised training in natural language processsing (NLP). In general, developing and applying new NLP pipelines in domain-specific contexts for tasks often requires custom designed datasets to address NLP tasks in supervised machine learning fashion. When operating in non-English languages for medical data processing, this exposes several minor and major, interconnected problems such as lack of task-matching datasets as well as task-specific pre-trained models. In our work we suggest to leverage pretrained language models for training data acquisition in order to retrieve sufficiently large datasets for training smaller and more efficient models for use-case specific tasks. To demonstrate the effectiveness of your approach, we create a custom dataset which we use to train a medical NER model for German texts, GPTNERMED, yet our method remains language-independent in principle. Our obtained dataset as well as our pre-trained models are publicly available at: https://github.com/frankkramer-lab/GPTNERMED
ACLSum: A New Dataset for Aspect-based Summarization of Scientific Publications
Extensive efforts in the past have been directed toward the development of summarization datasets. However, a predominant number of these resources have been (semi)-automatically generated, typically through web data crawling, resulting in subpar resources for training and evaluating summarization systems, a quality compromise that is arguably due to the substantial costs associated with generating ground-truth summaries, particularly for diverse languages and specialized domains. To address this issue, we present ACLSum, a novel summarization dataset carefully crafted and evaluated by domain experts. In contrast to previous datasets, ACLSum facilitates multi-aspect summarization of scientific papers, covering challenges, approaches, and outcomes in depth. Through extensive experiments, we evaluate the quality of our resource and the performance of models based on pretrained language models and state-of-the-art large language models (LLMs). Additionally, we explore the effectiveness of extractive versus abstractive summarization within the scholarly domain on the basis of automatically discovered aspects. Our results corroborate previous findings in the general domain and indicate the general superiority of end-to-end aspect-based summarization. Our data is released at https://github.com/sobamchan/aclsum.
SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning
A common practice in unsupervised representation learning is to use labeled data to evaluate the quality of the learned representations. This supervised evaluation is then used to guide critical aspects of the training process such as selecting the data augmentation policy. However, guiding an unsupervised training process through supervised evaluations is not possible for real-world data that does not actually contain labels (which may be the case, for example, in privacy sensitive fields such as medical imaging). Therefore, in this work we show that evaluating the learned representations with a self-supervised image rotation task is highly correlated with a standard set of supervised evaluations (rank correlation > 0.94). We establish this correlation across hundreds of augmentation policies, training settings, and network architectures and provide an algorithm (SelfAugment) to automatically and efficiently select augmentation policies without using supervised evaluations. Despite not using any labeled data, the learned augmentation policies perform comparably with augmentation policies that were determined using exhaustive supervised evaluations.
DisCo: Distilled Student Models Co-training for Semi-supervised Text Mining
Many text mining models are constructed by fine-tuning a large deep pre-trained language model (PLM) in downstream tasks. However, a significant challenge is maintaining performance when we use a lightweight model with limited labeled samples. We present DisCo, a semi-supervised learning (SSL) framework for fine-tuning a cohort of small student models generated from a large PLM using knowledge distillation. Our key insight is to share complementary knowledge among distilled student cohorts to promote their SSL effectiveness. DisCo employs a novel co-training technique to optimize multiple small student models by promoting knowledge sharing among students under diversified views: model views produced by different distillation strategies and data views produced by various input augmentations. We evaluate DisCo on both semi-supervised text classification and extractive summarization tasks. Experimental results show that DisCo can produce student models that are 7.6 times smaller and 4.8 times faster in inference than the baseline PLMs while maintaining comparable performance. We also show that DisCo-generated student models outperform the similar-sized models elaborately tuned in distinct tasks.
Shatter and Gather: Learning Referring Image Segmentation with Text Supervision
Referring image segmentation, the task of segmenting any arbitrary entities described in free-form texts, opens up a variety of vision applications. However, manual labeling of training data for this task is prohibitively costly, leading to lack of labeled data for training. We address this issue by a weakly supervised learning approach using text descriptions of training images as the only source of supervision. To this end, we first present a new model that discovers semantic entities in input image and then combines such entities relevant to text query to predict the mask of the referent. We also present a new loss function that allows the model to be trained without any further supervision. Our method was evaluated on four public benchmarks for referring image segmentation, where it clearly outperformed the existing method for the same task and recent open-vocabulary segmentation models on all the benchmarks.
In-Context Learning for Extreme Multi-Label Classification
Multi-label classification problems with thousands of classes are hard to solve with in-context learning alone, as language models (LMs) might lack prior knowledge about the precise classes or how to assign them, and it is generally infeasible to demonstrate every class in a prompt. We propose a general program, Infer--Retrieve--Rank, that defines multi-step interactions between LMs and retrievers to efficiently tackle such problems. We implement this program using the DSPy programming model, which specifies in-context systems in a declarative manner, and use DSPy optimizers to tune it towards specific datasets by bootstrapping only tens of few-shot examples. Our primary extreme classification program, optimized separately for each task, attains state-of-the-art results across three benchmarks (HOUSE, TECH, TECHWOLF). We apply the same program to a benchmark with vastly different characteristics and attain competitive performance as well (BioDEX). Unlike prior work, our proposed solution requires no finetuning, is easily applicable to new tasks, alleviates prompt engineering, and requires only tens of labeled examples. Our code is public at https://github.com/KarelDO/xmc.dspy.
Contrastive Learning for Online Semi-Supervised General Continual Learning
We study Online Continual Learning with missing labels and propose SemiCon, a new contrastive loss designed for partly labeled data. We demonstrate its efficiency by devising a memory-based method trained on an unlabeled data stream, where every data added to memory is labeled using an oracle. Our approach outperforms existing semi-supervised methods when few labels are available, and obtain similar results to state-of-the-art supervised methods while using only 2.6% of labels on Split-CIFAR10 and 10% of labels on Split-CIFAR100.
Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking
Contrastive learning has gained widespread adoption for retrieval tasks due to its minimal requirement for manual annotations. However, popular contrastive frameworks typically learn from binary relevance, making them ineffective at incorporating direct fine-grained rankings. In this paper, we curate a large-scale dataset featuring detailed relevance scores for each query-document pair to facilitate future research and evaluation. Subsequently, we propose Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking (GCL), which is designed to learn from fine-grained rankings beyond binary relevance scores. Our results show that GCL achieves a 94.5% increase in NDCG@10 for in-domain and 26.3 to 48.8% increases for cold-start evaluations, all relative to the CLIP baseline and involving ground truth rankings.
Text and Code Embeddings by Contrastive Pre-Training
Text embeddings are useful features in many applications such as semantic search and computing text similarity. Previous work typically trains models customized for different use cases, varying in dataset choice, training objective and model architecture. In this work, we show that contrastive pre-training on unsupervised data at scale leads to high quality vector representations of text and code. The same unsupervised text embeddings that achieve new state-of-the-art results in linear-probe classification also display impressive semantic search capabilities and sometimes even perform competitively with fine-tuned models. On linear-probe classification accuracy averaging over 7 tasks, our best unsupervised model achieves a relative improvement of 4% and 1.8% over previous best unsupervised and supervised text embedding models respectively. The same text embeddings when evaluated on large-scale semantic search attains a relative improvement of 23.4%, 14.7%, and 10.6% over previous best unsupervised methods on MSMARCO, Natural Questions and TriviaQA benchmarks, respectively. Similarly to text embeddings, we train code embedding models on (text, code) pairs, obtaining a 20.8% relative improvement over prior best work on code search.
Segment and Caption Anything
We propose a method to efficiently equip the Segment Anything Model (SAM) with the ability to generate regional captions. SAM presents strong generalizability to segment anything while is short for semantic understanding. By introducing a lightweight query-based feature mixer, we align the region-specific features with the embedding space of language models for later caption generation. As the number of trainable parameters is small (typically in the order of tens of millions), it costs less computation, less memory usage, and less communication bandwidth, resulting in both fast and scalable training. To address the scarcity problem of regional caption data, we propose to first pre-train our model on objection detection and segmentation tasks. We call this step weak supervision pretraining since the pre-training data only contains category names instead of full-sentence descriptions. The weak supervision pretraining allows us to leverage many publicly available object detection and segmentation datasets. We conduct extensive experiments to demonstrate the superiority of our method and validate each design choice. This work serves as a stepping stone towards scaling up regional captioning data and sheds light on exploring efficient ways to augment SAM with regional semantics. The project page, along with the associated code, can be accessed via the following https://xk-huang.github.io/segment-caption-anything/.
UDAPDR: Unsupervised Domain Adaptation via LLM Prompting and Distillation of Rerankers
Many information retrieval tasks require large labeled datasets for fine-tuning. However, such datasets are often unavailable, and their utility for real-world applications can diminish quickly due to domain shifts. To address this challenge, we develop and motivate a method for using large language models (LLMs) to generate large numbers of synthetic queries cheaply. The method begins by generating a small number of synthetic queries using an expensive LLM. After that, a much less expensive one is used to create large numbers of synthetic queries, which are used to fine-tune a family of reranker models. These rerankers are then distilled into a single efficient retriever for use in the target domain. We show that this technique boosts zero-shot accuracy in long-tail domains, even where only 2K synthetic queries are used for fine-tuning, and that it achieves substantially lower latency than standard reranking methods. We make our end-to-end approach, including our synthetic datasets and replication code, publicly available on Github: https://github.com/primeqa/primeqa.
Neural Code Search Evaluation Dataset
There has been an increase of interest in code search using natural language. Assessing the performance of such code search models can be difficult without a readily available evaluation suite. In this paper, we present an evaluation dataset consisting of natural language query and code snippet pairs, with the hope that future work in this area can use this dataset as a common benchmark. We also provide the results of two code search models ([1] and [6]) from recent work. The evaluation dataset is available at https://github.com/facebookresearch/Neural-Code-Search-Evaluation-Dataset
Deep contextualized word representations
We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals.
Efficiently Teaching an Effective Dense Retriever with Balanced Topic Aware Sampling
A vital step towards the widespread adoption of neural retrieval models is their resource efficiency throughout the training, indexing and query workflows. The neural IR community made great advancements in training effective dual-encoder dense retrieval (DR) models recently. A dense text retrieval model uses a single vector representation per query and passage to score a match, which enables low-latency first stage retrieval with a nearest neighbor search. Increasingly common, training approaches require enormous compute power, as they either conduct negative passage sampling out of a continuously updating refreshing index or require very large batch sizes for in-batch negative sampling. Instead of relying on more compute capability, we introduce an efficient topic-aware query and balanced margin sampling technique, called TAS-Balanced. We cluster queries once before training and sample queries out of a cluster per batch. We train our lightweight 6-layer DR model with a novel dual-teacher supervision that combines pairwise and in-batch negative teachers. Our method is trainable on a single consumer-grade GPU in under 48 hours (as opposed to a common configuration of 8x V100s). We show that our TAS-Balanced training method achieves state-of-the-art low-latency (64ms per query) results on two TREC Deep Learning Track query sets. Evaluated on NDCG@10, we outperform BM25 by 44%, a plainly trained DR by 19%, docT5query by 11%, and the previous best DR model by 5%. Additionally, TAS-Balanced produces the first dense retriever that outperforms every other method on recall at any cutoff on TREC-DL and allows more resource intensive re-ranking models to operate on fewer passages to improve results further.
SSP: Self-Supervised Post-training for Conversational Search
Conversational search has been regarded as the next-generation search paradigm. Constrained by data scarcity, most existing methods distill the well-trained ad-hoc retriever to the conversational retriever. However, these methods, which usually initialize parameters by query reformulation to discover contextualized dependency, have trouble in understanding the dialogue structure information and struggle with contextual semantic vanishing. In this paper, we propose \fullmodel (\model) which is a new post-training paradigm with three self-supervised tasks to efficiently initialize the conversational search model to enhance the dialogue structure and contextual semantic understanding. Furthermore, the \model can be plugged into most of the existing conversational models to boost their performance. To verify the effectiveness of our proposed method, we apply the conversational encoder post-trained by \model on the conversational search task using two benchmark datasets: CAsT-19 and CAsT-20. Extensive experiments that our \model can boost the performance of several existing conversational search methods. Our source code is available at https://github.com/morecry/SSP.
The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale
The performance of a large language model (LLM) depends heavily on the quality and size of its pretraining dataset. However, the pretraining datasets for state-of-the-art open LLMs like Llama 3 and Mixtral are not publicly available and very little is known about how they were created. In this work, we introduce FineWeb, a 15-trillion token dataset derived from 96 Common Crawl snapshots that produces better-performing LLMs than other open pretraining datasets. To advance the understanding of how best to curate high-quality pretraining datasets, we carefully document and ablate all of the design choices used in FineWeb, including in-depth investigations of deduplication and filtering strategies. In addition, we introduce FineWeb-Edu, a 1.3-trillion token collection of educational text filtered from FineWeb. LLMs pretrained on FineWeb-Edu exhibit dramatically better performance on knowledge- and reasoning-intensive benchmarks like MMLU and ARC. Along with our datasets, we publicly release our data curation codebase and all of the models trained during our ablation experiments.
Encouraging Paragraph Embeddings to Remember Sentence Identity Improves Classification
While paragraph embedding models are remarkably effective for downstream classification tasks, what they learn and encode into a single vector remains opaque. In this paper, we investigate a state-of-the-art paragraph embedding method proposed by Zhang et al. (2017) and discover that it cannot reliably tell whether a given sentence occurs in the input paragraph or not. We formulate a sentence content task to probe for this basic linguistic property and find that even a much simpler bag-of-words method has no trouble solving it. This result motivates us to replace the reconstruction-based objective of Zhang et al. (2017) with our sentence content probe objective in a semi-supervised setting. Despite its simplicity, our objective improves over paragraph reconstruction in terms of (1) downstream classification accuracies on benchmark datasets, (2) faster training, and (3) better generalization ability.
Learning High-Quality and General-Purpose Phrase Representations
Phrase representations play an important role in data science and natural language processing, benefiting various tasks like Entity Alignment, Record Linkage, Fuzzy Joins, and Paraphrase Classification. The current state-of-the-art method involves fine-tuning pre-trained language models for phrasal embeddings using contrastive learning. However, we have identified areas for improvement. First, these pre-trained models tend to be unnecessarily complex and require to be pre-trained on a corpus with context sentences. Second, leveraging the phrase type and morphology gives phrase representations that are both more precise and more flexible. We propose an improved framework to learn phrase representations in a context-free fashion. The framework employs phrase type classification as an auxiliary task and incorporates character-level information more effectively into the phrase representation. Furthermore, we design three granularities of data augmentation to increase the diversity of training samples. Our experiments across a wide range of tasks show that our approach generates superior phrase embeddings compared to previous methods while requiring a smaller model size. The code is available at \faGithub~ https://github.com/tigerchen52/PEARL abstract
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting
Recent progress has shown that large-scale pre-training using contrastive image-text pairs can be a promising alternative for high-quality visual representation learning from natural language supervision. Benefiting from a broader source of supervision, this new paradigm exhibits impressive transferability to downstream classification tasks and datasets. However, the problem of transferring the knowledge learned from image-text pairs to more complex dense prediction tasks has barely been visited. In this work, we present a new framework for dense prediction by implicitly and explicitly leveraging the pre-trained knowledge from CLIP. Specifically, we convert the original image-text matching problem in CLIP to a pixel-text matching problem and use the pixel-text score maps to guide the learning of dense prediction models. By further using the contextual information from the image to prompt the language model, we are able to facilitate our model to better exploit the pre-trained knowledge. Our method is model-agnostic, which can be applied to arbitrary dense prediction systems and various pre-trained visual backbones including both CLIP models and ImageNet pre-trained models. Extensive experiments demonstrate the superior performance of our methods on semantic segmentation, object detection, and instance segmentation tasks. Code is available at https://github.com/raoyongming/DenseCLIP
Pre-training with Large Language Model-based Document Expansion for Dense Passage Retrieval
In this paper, we systematically study the potential of pre-training with Large Language Model(LLM)-based document expansion for dense passage retrieval. Concretely, we leverage the capabilities of LLMs for document expansion, i.e. query generation, and effectively transfer expanded knowledge to retrievers using pre-training strategies tailored for passage retrieval. These strategies include contrastive learning and bottlenecked query generation. Furthermore, we incorporate a curriculum learning strategy to reduce the reliance on LLM inferences. Experimental results demonstrate that pre-training with LLM-based document expansion significantly boosts the retrieval performance on large-scale web-search tasks. Our work shows strong zero-shot and out-of-domain retrieval abilities, making it more widely applicable for retrieval when initializing with no human-labeled data.
Mean BERTs make erratic language teachers: the effectiveness of latent bootstrapping in low-resource settings
This paper explores the use of latent bootstrapping, an alternative self-supervision technique, for pretraining language models. Unlike the typical practice of using self-supervision on discrete subwords, latent bootstrapping leverages contextualized embeddings for a richer supervision signal. We conduct experiments to assess how effective this approach is for acquiring linguistic knowledge from limited resources. Specifically, our experiments are based on the BabyLM shared task, which includes pretraining on two small curated corpora and an evaluation on four linguistic benchmarks.
Promptagator: Few-shot Dense Retrieval From 8 Examples
Much recent research on information retrieval has focused on how to transfer from one task (typically with abundant supervised data) to various other tasks where supervision is limited, with the implicit assumption that it is possible to generalize from one task to all the rest. However, this overlooks the fact that there are many diverse and unique retrieval tasks, each targeting different search intents, queries, and search domains. In this paper, we suggest to work on Few-shot Dense Retrieval, a setting where each task comes with a short description and a few examples. To amplify the power of a few examples, we propose Prompt-base Query Generation for Retriever (Promptagator), which leverages large language models (LLM) as a few-shot query generator, and creates task-specific retrievers based on the generated data. Powered by LLM's generalization ability, Promptagator makes it possible to create task-specific end-to-end retrievers solely based on a few examples {without} using Natural Questions or MS MARCO to train %question generators or dual encoders. Surprisingly, LLM prompting with no more than 8 examples allows dual encoders to outperform heavily engineered models trained on MS MARCO like ColBERT v2 by more than 1.2 nDCG on average on 11 retrieval sets. Further training standard-size re-rankers using the same generated data yields another 5.0 point nDCG improvement. Our studies determine that query generation can be far more effective than previously observed, especially when a small amount of task-specific knowledge is given.
MS MARCO Web Search: a Large-scale Information-rich Web Dataset with Millions of Real Click Labels
Recent breakthroughs in large models have highlighted the critical significance of data scale, labels and modals. In this paper, we introduce MS MARCO Web Search, the first large-scale information-rich web dataset, featuring millions of real clicked query-document labels. This dataset closely mimics real-world web document and query distribution, provides rich information for various kinds of downstream tasks and encourages research in various areas, such as generic end-to-end neural indexer models, generic embedding models, and next generation information access system with large language models. MS MARCO Web Search offers a retrieval benchmark with three web retrieval challenge tasks that demand innovations in both machine learning and information retrieval system research domains. As the first dataset that meets large, real and rich data requirements, MS MARCO Web Search paves the way for future advancements in AI and system research. MS MARCO Web Search dataset is available at: https://github.com/microsoft/MS-MARCO-Web-Search.
Learning to Name Classes for Vision and Language Models
Large scale vision and language models can achieve impressive zero-shot recognition performance by mapping class specific text queries to image content. Two distinct challenges that remain however, are high sensitivity to the choice of handcrafted class names that define queries, and the difficulty of adaptation to new, smaller datasets. Towards addressing these problems, we propose to leverage available data to learn, for each class, an optimal word embedding as a function of the visual content. By learning new word embeddings on an otherwise frozen model, we are able to retain zero-shot capabilities for new classes, easily adapt models to new datasets, and adjust potentially erroneous, non-descriptive or ambiguous class names. We show that our solution can easily be integrated in image classification and object detection pipelines, yields significant performance gains in multiple scenarios and provides insights into model biases and labelling errors.
Scaling TransNormer to 175 Billion Parameters
We present TransNormerLLM, the first linear attention-based Large Language Model (LLM) that outperforms conventional softmax attention-based models in terms of both accuracy and efficiency. TransNormerLLM evolves from the previous linear attention architecture TransNormer by making advanced modifications that include positional embedding, linear attention acceleration, gating mechanism, tensor normalization, inference acceleration and stabilization. Specifically, we use LRPE together with an exponential decay to avoid attention dilution issues while allowing the model to retain global interactions between tokens. Additionally, we propose Lightning Attention, a cutting-edge technique that accelerates linear attention by more than twice in runtime and reduces memory usage by a remarkable four times. To further enhance the performance of TransNormer, we leverage a gating mechanism to smooth training and a new tensor normalization scheme to accelerate the model, resulting in an impressive acceleration of over 20%. Furthermore, we have developed a robust inference algorithm that ensures numerical stability and consistent inference speed, regardless of the sequence length, showcasing superior efficiency during both training and inference stages. Scalability is at the heart of our model's design, enabling seamless deployment on large-scale clusters and facilitating expansion to even more extensive models, all while maintaining outstanding performance metrics. Rigorous validation of our model design is achieved through a series of comprehensive experiments on our self-collected corpus, boasting a size exceeding 6TB and containing over 2 trillion tokens. To ensure data quality and relevance, we implement a new self-cleaning strategy to filter our collected data. Our pre-trained models will be released to foster community advancements in efficient LLMs.
ReCo: Retrieve and Co-segment for Zero-shot Transfer
Semantic segmentation has a broad range of applications, but its real-world impact has been significantly limited by the prohibitive annotation costs necessary to enable deployment. Segmentation methods that forgo supervision can side-step these costs, but exhibit the inconvenient requirement to provide labelled examples from the target distribution to assign concept names to predictions. An alternative line of work in language-image pre-training has recently demonstrated the potential to produce models that can both assign names across large vocabularies of concepts and enable zero-shot transfer for classification, but do not demonstrate commensurate segmentation abilities. In this work, we strive to achieve a synthesis of these two approaches that combines their strengths. We leverage the retrieval abilities of one such language-image pre-trained model, CLIP, to dynamically curate training sets from unlabelled images for arbitrary collections of concept names, and leverage the robust correspondences offered by modern image representations to co-segment entities among the resulting collections. The synthetic segment collections are then employed to construct a segmentation model (without requiring pixel labels) whose knowledge of concepts is inherited from the scalable pre-training process of CLIP. We demonstrate that our approach, termed Retrieve and Co-segment (ReCo) performs favourably to unsupervised segmentation approaches while inheriting the convenience of nameable predictions and zero-shot transfer. We also demonstrate ReCo's ability to generate specialist segmenters for extremely rare objects.
CSPRD: A Financial Policy Retrieval Dataset for Chinese Stock Market
In recent years, great advances in pre-trained language models (PLMs) have sparked considerable research focus and achieved promising performance on the approach of dense passage retrieval, which aims at retrieving relative passages from massive corpus with given questions. However, most of existing datasets mainly benchmark the models with factoid queries of general commonsense, while specialised fields such as finance and economics remain unexplored due to the deficiency of large-scale and high-quality datasets with expert annotations. In this work, we propose a new task, policy retrieval, by introducing the Chinese Stock Policy Retrieval Dataset (CSPRD), which provides 700+ prospectus passages labeled by experienced experts with relevant articles from 10k+ entries in our collected Chinese policy corpus. Experiments on lexical, embedding and fine-tuned bi-encoder models show the effectiveness of our proposed CSPRD yet also suggests ample potential for improvement. Our best performing baseline achieves 56.1% MRR@10, 28.5% NDCG@10, 37.5% Recall@10 and 80.6% Precision@10 on dev set.
Self-supervised Learning: Generative or Contrastive
Deep supervised learning has achieved great success in the last decade. However, its deficiencies of dependence on manual labels and vulnerability to attacks have driven people to explore a better solution. As an alternative, self-supervised learning attracts many researchers for its soaring performance on representation learning in the last several years. Self-supervised representation learning leverages input data itself as supervision and benefits almost all types of downstream tasks. In this survey, we take a look into new self-supervised learning methods for representation in computer vision, natural language processing, and graph learning. We comprehensively review the existing empirical methods and summarize them into three main categories according to their objectives: generative, contrastive, and generative-contrastive (adversarial). We further investigate related theoretical analysis work to provide deeper thoughts on how self-supervised learning works. Finally, we briefly discuss open problems and future directions for self-supervised learning. An outline slide for the survey is provided.
Neural Passage Quality Estimation for Static Pruning
Neural networks -- especially those that use large, pre-trained language models -- have improved search engines in various ways. Most prominently, they can estimate the relevance of a passage or document to a user's query. In this work, we depart from this direction by exploring whether neural networks can effectively predict which of a document's passages are unlikely to be relevant to any query submitted to the search engine. We refer to this query-agnostic estimation of passage relevance as a passage's quality. We find that our novel methods for estimating passage quality allow passage corpora to be pruned considerably while maintaining statistically equivalent effectiveness; our best methods can consistently prune >25% of passages in a corpora, across various retrieval pipelines. Such substantial pruning reduces the operating costs of neural search engines in terms of computing resources, power usage, and carbon footprint -- both when processing queries (thanks to a smaller index size) and when indexing (lightweight models can prune low-quality passages prior to the costly dense or learned sparse encoding step). This work sets the stage for developing more advanced neural "learning-what-to-index" methods.