Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSubtle Errors Matter: Preference Learning via Error-injected Self-editing
Large Language Models (LLMs) have exhibited strong mathematical reasoning and computational prowess, tackling tasks ranging from basic arithmetic to advanced competition-level problems. However, frequently occurring subtle errors, such as miscalculations or incorrect substitutions, limit the models' full mathematical potential. Existing studies to improve mathematical ability typically involve distilling reasoning skills from stronger LLMs or applying preference learning to step-wise response pairs. Although these methods leverage samples of varying granularity to mitigate reasoning errors, they overlook the frequently occurring subtle errors. A major reason is that sampled preference pairs involve differences unrelated to the errors, which may distract the model from focusing on subtle errors. In this work, we propose a novel preference learning framework called eRror-Injected Self-Editing (RISE), which injects predefined subtle errors into partial tokens of correct solutions to construct hard pairs for error mitigation. In detail, RISE uses the model itself to edit a small number of tokens in the solution, injecting designed subtle errors. Then, pairs composed of self-edited solutions and their corresponding correct ones, along with pairs of correct and incorrect solutions obtained through sampling, are used together for subtle error-aware DPO training. Compared with other preference learning methods, RISE further refines the training objective to focus on predefined errors and their tokens, without requiring fine-grained sampling or preference annotation. Extensive experiments validate the effectiveness of RISE, with preference learning on Qwen2-7B-Instruct yielding notable improvements of 3.0% on GSM8K and 7.9% on MATH.
SpecTool: A Benchmark for Characterizing Errors in Tool-Use LLMs
Evaluating the output of Large Language Models (LLMs) is one of the most critical aspects of building a performant compound AI system. Since the output from LLMs propagate to downstream steps, identifying LLM errors is crucial to system performance. A common task for LLMs in AI systems is tool use. While there are several benchmark environments for evaluating LLMs on this task, they typically only give a success rate without any explanation of the failure cases. To solve this problem, we introduce SpecTool, a new benchmark to identify error patterns in LLM output on tool-use tasks. Our benchmark data set comprises of queries from diverse environments that can be used to test for the presence of seven newly characterized error patterns. Using SPECTOOL , we show that even the most prominent LLMs exhibit these error patterns in their outputs. Researchers can use the analysis and insights from SPECTOOL to guide their error mitigation strategies.
Variational Quantum Algorithms for Chemical Simulation and Drug Discovery
Quantum computing has gained a lot of attention recently, and scientists have seen potential applications in this field using quantum computing for Cryptography and Communication to Machine Learning and Healthcare. Protein folding has been one of the most interesting areas to study, and it is also one of the biggest problems of biochemistry. Each protein folds distinctively, and the difficulty of finding its stable shape rapidly increases with an increase in the number of amino acids in the chain. A moderate protein has about 100 amino acids, and the number of combinations one needs to verify to find the stable structure is enormous. At some point, the number of these combinations will be so vast that classical computers cannot even attempt to solve them. In this paper, we examine how this problem can be solved with the help of quantum computing using two different algorithms, Variational Quantum Eigensolver (VQE) and Quantum Approximate Optimization Algorithm (QAOA), using Qiskit Nature. We compare the results of different quantum hardware and simulators and check how error mitigation affects the performance. Further, we make comparisons with SoTA algorithms and evaluate the reliability of the method.
Less Quantum, More Advantage: An End-to-End Quantum Algorithm for the Jones Polynomial
We present an end-to-end reconfigurable algorithmic pipeline for solving a famous problem in knot theory using a noisy digital quantum computer, namely computing the value of the Jones polynomial at the fifth root of unity within additive error for any input link, i.e. a closed braid. This problem is DQC1-complete for Markov-closed braids and BQP-complete for Plat-closed braids, and we accommodate both versions of the problem. Even though it is widely believed that DQC1 is strictly contained in BQP, and so is 'less quantum', the resource requirements of classical algorithms for the DQC1 version are at least as high as for the BQP version, and so we potentially gain 'more advantage' by focusing on Markov-closed braids in our exposition. We demonstrate our quantum algorithm on Quantinuum's H2-2 quantum computer and show the effect of problem-tailored error-mitigation techniques. Further, leveraging that the Jones polynomial is a link invariant, we construct an efficiently verifiable benchmark to characterise the effect of noise present in a given quantum processor. In parallel, we implement and benchmark the state-of-the-art tensor-network-based classical algorithms for computing the Jones polynomial. The practical tools provided in this work allow for precise resource estimation to identify near-term quantum advantage for a meaningful quantum-native problem in knot theory.
Option Pricing using Quantum Computers
We present a methodology to price options and portfolios of options on a gate-based quantum computer using amplitude estimation, an algorithm which provides a quadratic speedup compared to classical Monte Carlo methods. The options that we cover include vanilla options, multi-asset options and path-dependent options such as barrier options. We put an emphasis on the implementation of the quantum circuits required to build the input states and operators needed by amplitude estimation to price the different option types. Additionally, we show simulation results to highlight how the circuits that we implement price the different option contracts. Finally, we examine the performance of option pricing circuits on quantum hardware using the IBM Q Tokyo quantum device. We employ a simple, yet effective, error mitigation scheme that allows us to significantly reduce the errors arising from noisy two-qubit gates.
Engineering LLM Powered Multi-agent Framework for Autonomous CloudOps
Cloud Operations (CloudOps) is a rapidly growing field focused on the automated management and optimization of cloud infrastructure which is essential for organizations navigating increasingly complex cloud environments. MontyCloud Inc. is one of the major companies in the CloudOps domain that leverages autonomous bots to manage cloud compliance, security, and continuous operations. To make the platform more accessible and effective to the customers, we leveraged the use of GenAI. Developing a GenAI-based solution for autonomous CloudOps for the existing MontyCloud system presented us with various challenges such as i) diverse data sources; ii) orchestration of multiple processes; and iii) handling complex workflows to automate routine tasks. To this end, we developed MOYA, a multi-agent framework that leverages GenAI and balances autonomy with the necessary human control. This framework integrates various internal and external systems and is optimized for factors like task orchestration, security, and error mitigation while producing accurate, reliable, and relevant insights by utilizing Retrieval Augmented Generation (RAG). Evaluations of our multi-agent system with the help of practitioners as well as using automated checks demonstrate enhanced accuracy, responsiveness, and effectiveness over non-agentic approaches across complex workflows.
A Deep Learning Approach for Generating Soft Range Information from RF Data
Radio frequency (RF)-based techniques are widely adopted for indoor localization despite the challenges in extracting sufficient information from measurements. Soft range information (SRI) offers a promising alternative for highly accurate localization that gives all probable range values rather than a single estimate of distance. We propose a deep learning approach to generate accurate SRI from RF measurements. In particular, the proposed approach is implemented by a network with two neural modules and conducts the generation directly from raw data. Extensive experiments on a case study with two public datasets are conducted to quantify the efficiency in different indoor localization tasks. The results show that the proposed approach can generate highly accurate SRI, and significantly outperforms conventional techniques in both non-line-of-sight (NLOS) detection and ranging error mitigation.
Error Correction of Quantum Algorithms: Arbitrarily Accurate Recovery Of Noisy Quantum Signal Processing
The intrinsic probabilistic nature of quantum systems makes error correction or mitigation indispensable for quantum computation. While current error-correcting strategies focus on correcting errors in quantum states or quantum gates, these fine-grained error-correction methods can incur significant overhead for quantum algorithms of increasing complexity. We present a first step in achieving error correction at the level of quantum algorithms by combining a unified perspective on modern quantum algorithms via quantum signal processing (QSP). An error model of under- or over-rotation of the signal processing operator parameterized by epsilon < 1 is introduced. It is shown that while Pauli Z-errors are not recoverable without additional resources, Pauli X and Y errors can be arbitrarily suppressed by coherently appending a noisy `recovery QSP.' Furthermore, it is found that a recovery QSP of length O(2^k c^{k^2} d) is sufficient to correct any length-d QSP with c unique phases to k^{th}-order in error epsilon. Allowing an additional assumption, a lower bound of Omega(cd) is shown, which is tight for k = 1, on the length of the recovery sequence. Our algorithmic-level error correction method is applied to Grover's fixed-point search algorithm as a demonstration.
LLMs Know More Than They Show: On the Intrinsic Representation of LLM Hallucinations
Large language models (LLMs) often produce errors, including factual inaccuracies, biases, and reasoning failures, collectively referred to as "hallucinations". Recent studies have demonstrated that LLMs' internal states encode information regarding the truthfulness of their outputs, and that this information can be utilized to detect errors. In this work, we show that the internal representations of LLMs encode much more information about truthfulness than previously recognized. We first discover that the truthfulness information is concentrated in specific tokens, and leveraging this property significantly enhances error detection performance. Yet, we show that such error detectors fail to generalize across datasets, implying that -- contrary to prior claims -- truthfulness encoding is not universal but rather multifaceted. Next, we show that internal representations can also be used for predicting the types of errors the model is likely to make, facilitating the development of tailored mitigation strategies. Lastly, we reveal a discrepancy between LLMs' internal encoding and external behavior: they may encode the correct answer, yet consistently generate an incorrect one. Taken together, these insights deepen our understanding of LLM errors from the model's internal perspective, which can guide future research on enhancing error analysis and mitigation.
Likelihood-based Mitigation of Evaluation Bias in Large Language Models
Large Language Models (LLMs) are widely used to evaluate natural language generation tasks as automated metrics. However, the likelihood, a measure of LLM's plausibility for a sentence, can vary due to superficial differences in sentences, such as word order and sentence structure. It is therefore possible that there might be a likelihood bias if LLMs are used for evaluation: they might overrate sentences with higher likelihoods while underrating those with lower likelihoods. In this paper, we investigate the presence and impact of likelihood bias in LLM-based evaluators. We also propose a method to mitigate the likelihood bias. Our method utilizes highly biased instances as few-shot examples for in-context learning. Our experiments in evaluating the data-to-text and grammatical error correction tasks reveal that several LLMs we test display a likelihood bias. Furthermore, our proposed method successfully mitigates this bias, also improving evaluation performance (in terms of correlation of models with human scores) significantly.
Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning and Autoregression
This work studies training instabilities of behavior cloning with deep neural networks. We observe that minibatch SGD updates to the policy network during training result in sharp oscillations in long-horizon rewards, despite negligibly affecting the behavior cloning loss. We empirically disentangle the statistical and computational causes of these oscillations, and find them to stem from the chaotic propagation of minibatch SGD noise through unstable closed-loop dynamics. While SGD noise is benign in the single-step action prediction objective, it results in catastrophic error accumulation over long horizons, an effect we term gradient variance amplification (GVA). We show that many standard mitigation techniques do not alleviate GVA, but find an exponential moving average (EMA) of iterates to be surprisingly effective at doing so. We illustrate the generality of this phenomenon by showing the existence of GVA and its amelioration by EMA in both continuous control and autoregressive language generation. Finally, we provide theoretical vignettes that highlight the benefits of EMA in alleviating GVA and shed light on the extent to which classical convex models can help in understanding the benefits of iterate averaging in deep learning.
Distinguishing Ignorance from Error in LLM Hallucinations
Large language models (LLMs) are susceptible to hallucinations-outputs that are ungrounded, factually incorrect, or inconsistent with prior generations. We focus on close-book Question Answering (CBQA), where previous work has not fully addressed the distinction between two possible kinds of hallucinations, namely, whether the model (1) does not hold the correct answer in its parameters or (2) answers incorrectly despite having the required knowledge. We argue that distinguishing these cases is crucial for detecting and mitigating hallucinations. Specifically, case (2) may be mitigated by intervening in the model's internal computation, as the knowledge resides within the model's parameters. In contrast, in case (1) there is no parametric knowledge to leverage for mitigation, so it should be addressed by resorting to an external knowledge source or abstaining. To help distinguish between the two cases, we introduce Wrong Answer despite having Correct Knowledge (WACK), an approach for constructing model-specific datasets for the second hallucination type. Our probing experiments indicate that the two kinds of hallucinations are represented differently in the model's inner states. Next, we show that datasets constructed using WACK exhibit variations across models, demonstrating that even when models share knowledge of certain facts, they still vary in the specific examples that lead to hallucinations. Finally, we show that training a probe on our WACK datasets leads to better hallucination detection of case (2) hallucinations than using the common generic one-size-fits-all datasets. The code is available at https://github.com/technion-cs-nlp/hallucination-mitigation .
Fine-grained Hallucination Detection and Mitigation in Long-form Question Answering
Long-form question answering (LFQA) aims to provide thorough and in-depth answers to complex questions, enhancing comprehension. However, such detailed responses are prone to hallucinations and factual inconsistencies, challenging their faithful evaluation. This work introduces HaluQuestQA, the first hallucination dataset with localized error annotations for human-written and model-generated LFQA answers. HaluQuestQA comprises 698 QA pairs with 4.7k span-level error annotations for five different error types by expert annotators, along with preference judgments. Using our collected data, we thoroughly analyze the shortcomings of long-form answers and find that they lack comprehensiveness and provide unhelpful references. We train an automatic feedback model on this dataset that predicts error spans with incomplete information and provides associated explanations. Finally, we propose a prompt-based approach, Error-informed refinement, that uses signals from the learned feedback model to refine generated answers, which we show reduces hallucination and improves answer quality. Furthermore, humans find answers generated by our approach comprehensive and highly prefer them (84%) over the baseline answers.
InvDiff: Invariant Guidance for Bias Mitigation in Diffusion Models
As one of the most successful generative models, diffusion models have demonstrated remarkable efficacy in synthesizing high-quality images. These models learn the underlying high-dimensional data distribution in an unsupervised manner. Despite their success, diffusion models are highly data-driven and prone to inheriting the imbalances and biases present in real-world data. Some studies have attempted to address these issues by designing text prompts for known biases or using bias labels to construct unbiased data. While these methods have shown improved results, real-world scenarios often contain various unknown biases, and obtaining bias labels is particularly challenging. In this paper, we emphasize the necessity of mitigating bias in pre-trained diffusion models without relying on auxiliary bias annotations. To tackle this problem, we propose a framework, InvDiff, which aims to learn invariant semantic information for diffusion guidance. Specifically, we propose identifying underlying biases in the training data and designing a novel debiasing training objective. Then, we employ a lightweight trainable module that automatically preserves invariant semantic information and uses it to guide the diffusion model's sampling process toward unbiased outcomes simultaneously. Notably, we only need to learn a small number of parameters in the lightweight learnable module without altering the pre-trained diffusion model. Furthermore, we provide a theoretical guarantee that the implementation of InvDiff is equivalent to reducing the error upper bound of generalization. Extensive experimental results on three publicly available benchmarks demonstrate that InvDiff effectively reduces biases while maintaining the quality of image generation. Our code is available at https://github.com/Hundredl/InvDiff.
Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning
Conventional uncertainty-aware temporal difference (TD) learning methods often rely on simplistic assumptions, typically including a zero-mean Gaussian distribution for TD errors. Such oversimplification can lead to inaccurate error representations and compromised uncertainty estimation. In this paper, we introduce a novel framework for generalized Gaussian error modeling in deep reinforcement learning, applicable to both discrete and continuous control settings. Our framework enhances the flexibility of error distribution modeling by incorporating additional higher-order moment, particularly kurtosis, thereby improving the estimation and mitigation of data-dependent noise, i.e., aleatoric uncertainty. We examine the influence of the shape parameter of the generalized Gaussian distribution (GGD) on aleatoric uncertainty and provide a closed-form expression that demonstrates an inverse relationship between uncertainty and the shape parameter. Additionally, we propose a theoretically grounded weighting scheme to fully leverage the GGD. To address epistemic uncertainty, we enhance the batch inverse variance weighting by incorporating bias reduction and kurtosis considerations, resulting in improved robustness. Extensive experimental evaluations using policy gradient algorithms demonstrate the consistent efficacy of our method, showcasing significant performance improvements.
Sequential Gradient Coding For Straggler Mitigation
In distributed computing, slower nodes (stragglers) usually become a bottleneck. Gradient Coding (GC), introduced by Tandon et al., is an efficient technique that uses principles of error-correcting codes to distribute gradient computation in the presence of stragglers. In this paper, we consider the distributed computation of a sequence of gradients {g(1),g(2),ldots,g(J)}, where processing of each gradient g(t) starts in round-t and finishes by round-(t+T). Here Tgeq 0 denotes a delay parameter. For the GC scheme, coding is only across computing nodes and this results in a solution where T=0. On the other hand, having T>0 allows for designing schemes which exploit the temporal dimension as well. In this work, we propose two schemes that demonstrate improved performance compared to GC. Our first scheme combines GC with selective repetition of previously unfinished tasks and achieves improved straggler mitigation. In our second scheme, which constitutes our main contribution, we apply GC to a subset of the tasks and repetition for the remainder of the tasks. We then multiplex these two classes of tasks across workers and rounds in an adaptive manner, based on past straggler patterns. Using theoretical analysis, we demonstrate that our second scheme achieves significant reduction in the computational load. In our experiments, we study a practical setting of concurrently training multiple neural networks over an AWS Lambda cluster involving 256 worker nodes, where our framework naturally applies. We demonstrate that the latter scheme can yield a 16\% improvement in runtime over the baseline GC scheme, in the presence of naturally occurring, non-simulated stragglers.
Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning
Safety aligned Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks qi2023fine-- a few harmful data mixed in the fine-tuning dataset can break the LLMs's safety alignment. Existing mitigation strategies include alignment stage solutions huang2024vaccine, rosati2024representation and fine-tuning stage solutions huang2024lazy,mukhoti2023fine. However, our evaluation shows that both categories of defenses fail when some specific training hyper-parameters are chosen -- a large learning rate or a large number of training epochs in the fine-tuning stage can easily invalidate the defense, which however, is necessary to guarantee finetune performance. To this end, we propose Antidote, a post-fine-tuning stage solution, which remains \textit{agnostic to the training hyper-parameters in the fine-tuning stage}. Antidote relies on the philosophy that by removing the harmful parameters, the harmful model can be recovered from the harmful behaviors, regardless of how those harmful parameters are formed in the fine-tuning stage. With this philosophy, we introduce a one-shot pruning stage after harmful fine-tuning to remove the harmful weights that are responsible for the generation of harmful content. Despite its embarrassing simplicity, empirical results show that Antidote can reduce harmful score while maintaining accuracy on downstream tasks.Our project page is at https://huangtiansheng.github.io/Antidote_gh_page/
On the Adversarial Robustness of Instruction-Tuned Large Language Models for Code
The advent of instruction-tuned Large Language Models designed for coding tasks (Code LLMs) has transformed software engineering practices. However, their robustness against various input challenges remains a critical concern. This study introduces DegradePrompter, a novel method designed to systematically evaluate the robustness of instruction-tuned Code LLMs. We assess the impact of diverse input challenges on the functionality and correctness of generated code using rigorous metrics and established benchmarks. Our comprehensive evaluation includes five state-of-the-art open-source models and three production-grade closed-source models, revealing varying degrees of robustness. Open-source models demonstrate an increased susceptibility to input perturbations, resulting in declines in functional correctness ranging from 12% to 34%. In contrast, commercial models demonstrate relatively greater resilience, with performance degradation ranging from 3% to 24%. To enhance the robustness of the models against these vulnerabilities, we investigate a straightforward yet effective mitigation strategy. Our findings highlight the need for robust defense mechanisms and comprehensive evaluations during both the development and deployment phases to ensure the resilience and reliability of automated code generation systems.
Error Feedback Reloaded: From Quadratic to Arithmetic Mean of Smoothness Constants
Error Feedback (EF) is a highly popular and immensely effective mechanism for fixing convergence issues which arise in distributed training methods (such as distributed GD or SGD) when these are enhanced with greedy communication compression techniques such as TopK. While EF was proposed almost a decade ago (Seide et al., 2014), and despite concentrated effort by the community to advance the theoretical understanding of this mechanism, there is still a lot to explore. In this work we study a modern form of error feedback called EF21 (Richtarik et al., 2021) which offers the currently best-known theoretical guarantees, under the weakest assumptions, and also works well in practice. In particular, while the theoretical communication complexity of EF21 depends on the quadratic mean of certain smoothness parameters, we improve this dependence to their arithmetic mean, which is always smaller, and can be substantially smaller, especially in heterogeneous data regimes. We take the reader on a journey of our discovery process. Starting with the idea of applying EF21 to an equivalent reformulation of the underlying problem which (unfortunately) requires (often impractical) machine cloning, we continue to the discovery of a new weighted version of EF21 which can (fortunately) be executed without any cloning, and finally circle back to an improved analysis of the original EF21 method. While this development applies to the simplest form of EF21, our approach naturally extends to more elaborate variants involving stochastic gradients and partial participation. Further, our technique improves the best-known theory of EF21 in the rare features regime (Richtarik et al., 2023). Finally, we validate our theoretical findings with suitable experiments.
HoloDetect: Few-Shot Learning for Error Detection
We introduce a few-shot learning framework for error detection. We show that data augmentation (a form of weak supervision) is key to training high-quality, ML-based error detection models that require minimal human involvement. Our framework consists of two parts: (1) an expressive model to learn rich representations that capture the inherent syntactic and semantic heterogeneity of errors; and (2) a data augmentation model that, given a small seed of clean records, uses dataset-specific transformations to automatically generate additional training data. Our key insight is to learn data augmentation policies from the noisy input dataset in a weakly supervised manner. We show that our framework detects errors with an average precision of ~94% and an average recall of ~93% across a diverse array of datasets that exhibit different types and amounts of errors. We compare our approach to a comprehensive collection of error detection methods, ranging from traditional rule-based methods to ensemble-based and active learning approaches. We show that data augmentation yields an average improvement of 20 F1 points while it requires access to 3x fewer labeled examples compared to other ML approaches.
Detecting Errors in a Numerical Response via any Regression Model
Noise plagues many numerical datasets, where the recorded values in the data may fail to match the true underlying values due to reasons including: erroneous sensors, data entry/processing mistakes, or imperfect human estimates. We consider general regression settings with covariates and a potentially corrupted response whose observed values may contain errors. By accounting for various uncertainties, we introduced veracity scores that distinguish between genuine errors and natural data fluctuations, conditioned on the available covariate information in the dataset. We propose a simple yet efficient filtering procedure for eliminating potential errors, and establish theoretical guarantees for our method. We also contribute a new error detection benchmark involving 5 regression datasets with real-world numerical errors (for which the true values are also known). In this benchmark and additional simulation studies, our method identifies incorrect values with better precision/recall than other approaches.
Error Norm Truncation: Robust Training in the Presence of Data Noise for Text Generation Models
Text generation models are notoriously vulnerable to errors in the training data. With the wide-spread availability of massive amounts of web-crawled data becoming more commonplace, how can we enhance the robustness of models trained on a massive amount of noisy web-crawled text? In our work, we propose Error Norm Truncation (ENT), a robust enhancement method to the standard training objective that truncates noisy data. Compared to methods that only uses the negative log-likelihood loss to estimate data quality, our method provides a more accurate estimation by considering the distribution of non-target tokens, which is often overlooked by previous work. Through comprehensive experiments across language modeling, machine translation, and text summarization, we show that equipping text generation models with ENT improves generation quality over standard training and previous soft and hard truncation methods. Furthermore, we show that our method improves the robustness of models against two of the most detrimental types of noise in machine translation, resulting in an increase of more than 2 BLEU points over the MLE baseline when up to 50% of noise is added to the data.
Booster: Tackling Harmful Fine-tuning for Large Language Models via Attenuating Harmful Perturbation
Harmful fine-tuning issue qi2023fine poses serious safety concerns for Large language models' fine-tuning-as-a-service. While existing defenses huang2024vaccine,rosati2024representation have been proposed to mitigate the issue, their performances are still far away from satisfactory, and the root cause of the problem has not been fully recovered. For the first time in the literature, we in this paper show that harmful perturbation over the model weights should be the root cause of alignment-broken of harmful fine-tuning. In order to attenuate the negative impact of harmful perturbation, we propose an alignment-stage solution, dubbed Booster. Technically, along with the original alignment loss, we append a loss regularizer in the alignment stage's optimization. The regularizer ensures that the model's harmful loss reduction before/after simulated harmful perturbation is attenuated, thereby mitigating the subsequent fine-tuning risk. Empirical results show that Booster can effectively reduce the harmful score of the fine-tuned models while maintaining the performance of downstream tasks. Our code is available at https://github.com/git-disl/Booster.
To Err Is Human, but Llamas Can Learn It Too
This study explores enhancing grammatical error correction (GEC) through artificial error generation (AEG) using language models (LMs). Specifically, we fine-tune Llama 2-based LMs for error generation and find that this approach yields synthetic errors akin to human errors. Next, we train GEC Llama models with the help of these artificial errors and outperform previous state-of-the-art error correction models, with gains ranging between 0.8 and 6 F0.5 points across all tested languages (German, Ukrainian, and Estonian). Moreover, we demonstrate that generating errors by fine-tuning smaller sequence-to-sequence models and prompting large commercial LMs (GPT-3.5 and GPT-4) also results in synthetic errors beneficially affecting error generation models.
FlanEC: Exploring Flan-T5 for Post-ASR Error Correction
In this paper, we present an encoder-decoder model leveraging Flan-T5 for post-Automatic Speech Recognition (ASR) Generative Speech Error Correction (GenSEC), and we refer to it as FlanEC. We explore its application within the GenSEC framework to enhance ASR outputs by mapping n-best hypotheses into a single output sentence. By utilizing n-best lists from ASR models, we aim to improve the linguistic correctness, accuracy, and grammaticality of final ASR transcriptions. Specifically, we investigate whether scaling the training data and incorporating diverse datasets can lead to significant improvements in post-ASR error correction. We evaluate FlanEC using the HyPoradise dataset, providing a comprehensive analysis of the model's effectiveness in this domain. Furthermore, we assess the proposed approach under different settings to evaluate model scalability and efficiency, offering valuable insights into the potential of instruction-tuned encoder-decoder models for this task.
From One to Many: Expanding the Scope of Toxicity Mitigation in Language Models
To date, toxicity mitigation in language models has almost entirely been focused on single-language settings. As language models embrace multilingual capabilities, it's crucial our safety measures keep pace. Recognizing this research gap, our approach expands the scope of conventional toxicity mitigation to address the complexities presented by multiple languages. In the absence of sufficient annotated datasets across languages, we employ translated data to evaluate and enhance our mitigation techniques. We also compare finetuning mitigation approaches against retrieval-augmented techniques under both static and continual toxicity mitigation scenarios. This allows us to examine the effects of translation quality and the cross-lingual transfer on toxicity mitigation. We also explore how model size and data quantity affect the success of these mitigation efforts. Covering nine languages, our study represents a broad array of linguistic families and levels of resource availability, ranging from high to mid-resource languages. Through comprehensive experiments, we provide insights into the complexities of multilingual toxicity mitigation, offering valuable insights and paving the way for future research in this increasingly important field. Code and data are available at https://github.com/for-ai/goodtriever.
Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake Analysis
The rapid development of large language models (LLMs) has not only provided numerous opportunities but also presented significant challenges. This becomes particularly evident when LLMs inadvertently generate harmful or toxic content, either unintentionally or because of intentional inducement. Existing alignment methods usually direct LLMs toward the favorable outcomes by utilizing human-annotated, flawless instruction-response pairs. Conversely, this study proposes a novel alignment technique based on mistake analysis, which deliberately exposes LLMs to erroneous content to learn the reasons for mistakes and how to avoid them. In this case, mistakes are repurposed into valuable data for alignment, effectively helping to avoid the production of erroneous responses. Without external models or human annotations, our method leverages a model's intrinsic ability to discern undesirable mistakes and improves the safety of its generated responses. Experimental results reveal that our method outperforms existing alignment approaches in enhancing model safety while maintaining the overall utility.
Large Language Models of Code Fail at Completing Code with Potential Bugs
Large language models of code (Code-LLMs) have recently brought tremendous advances to code completion, a fundamental feature of programming assistance and code intelligence. However, most existing works ignore the possible presence of bugs in the code context for generation, which are inevitable in software development. Therefore, we introduce and study the buggy-code completion problem, inspired by the realistic scenario of real-time code suggestion where the code context contains potential bugs -- anti-patterns that can become bugs in the completed program. To systematically study the task, we introduce two datasets: one with synthetic bugs derived from semantics-altering operator changes (buggy-HumanEval) and one with realistic bugs derived from user submissions to coding problems (buggy-FixEval). We find that the presence of potential bugs significantly degrades the generation performance of the high-performing Code-LLMs. For instance, the passing rates of CodeGen-2B-mono on test cases of buggy-HumanEval drop more than 50% given a single potential bug in the context. Finally, we investigate several post-hoc methods for mitigating the adverse effect of potential bugs and find that there remains a large gap in post-mitigation performance.
CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion
The rapid advancement of Large Language Models (LLMs) has brought about remarkable generative capabilities but also raised concerns about their potential misuse. While strategies like supervised fine-tuning and reinforcement learning from human feedback have enhanced their safety, these methods primarily focus on natural languages, which may not generalize to other domains. This paper introduces CodeAttack, a framework that transforms natural language inputs into code inputs, presenting a novel environment for testing the safety generalization of LLMs. Our comprehensive studies on state-of-the-art LLMs including GPT-4, Claude-2, and Llama-2 series reveal a new and universal safety vulnerability of these models against code input: CodeAttack bypasses the safety guardrails of all models more than 80\% of the time. We find that a larger distribution gap between CodeAttack and natural language leads to weaker safety generalization, such as encoding natural language input with data structures. Furthermore, we give our hypotheses about the success of CodeAttack: the misaligned bias acquired by LLMs during code training, prioritizing code completion over avoiding the potential safety risk. Finally, we analyze potential mitigation measures. These findings highlight new safety risks in the code domain and the need for more robust safety alignment algorithms to match the code capabilities of LLMs.
AI-Driven Virtual Teacher for Enhanced Educational Efficiency: Leveraging Large Pretrain Models for Autonomous Error Analysis and Correction
Students frequently make mistakes while solving mathematical problems, and traditional error correction methods are both time-consuming and labor-intensive. This paper introduces an innovative Virtual AI Teacher system designed to autonomously analyze and correct student Errors (VATE). Leveraging advanced large language models (LLMs), the system uses student drafts as a primary source for error analysis, which enhances understanding of the student's learning process. It incorporates sophisticated prompt engineering and maintains an error pool to reduce computational overhead. The AI-driven system also features a real-time dialogue component for efficient student interaction. Our approach demonstrates significant advantages over traditional and machine learning-based error correction methods, including reduced educational costs, high scalability, and superior generalizability. The system has been deployed on the Squirrel AI learning platform for elementary mathematics education, where it achieves 78.3\% accuracy in error analysis and shows a marked improvement in student learning efficiency. Satisfaction surveys indicate a strong positive reception, highlighting the system's potential to transform educational practices.
Gradient-based Uncertainty Attribution for Explainable Bayesian Deep Learning
Predictions made by deep learning models are prone to data perturbations, adversarial attacks, and out-of-distribution inputs. To build a trusted AI system, it is therefore critical to accurately quantify the prediction uncertainties. While current efforts focus on improving uncertainty quantification accuracy and efficiency, there is a need to identify uncertainty sources and take actions to mitigate their effects on predictions. Therefore, we propose to develop explainable and actionable Bayesian deep learning methods to not only perform accurate uncertainty quantification but also explain the uncertainties, identify their sources, and propose strategies to mitigate the uncertainty impacts. Specifically, we introduce a gradient-based uncertainty attribution method to identify the most problematic regions of the input that contribute to the prediction uncertainty. Compared to existing methods, the proposed UA-Backprop has competitive accuracy, relaxed assumptions, and high efficiency. Moreover, we propose an uncertainty mitigation strategy that leverages the attribution results as attention to further improve the model performance. Both qualitative and quantitative evaluations are conducted to demonstrate the effectiveness of our proposed methods.
Divide-and-Conquer Meets Consensus: Unleashing the Power of Functions in Code Generation
Despite recent progress made by large language models in code generation, they still struggle with programs that meet complex requirements. Recent work utilizes plan-and-solve decomposition to decrease the complexity and leverage self-tests to refine the generated program. Yet, planning deep-inside requirements in advance can be challenging, and the tests need to be accurate to accomplish self-improvement. To this end, we propose FunCoder, a code generation framework incorporating the divide-and-conquer strategy with functional consensus. Specifically, FunCoder recursively branches off sub-functions as smaller goals during code generation, represented by a tree hierarchy. These sub-functions are then composited to attain more complex objectives. Additionally, we designate functions via a consensus formed by identifying similarities in program behavior, mitigating error propagation. FunCoder outperforms state-of-the-art methods by +9.8% on average in HumanEval, MBPP, xCodeEval and MATH with GPT-3.5 and GPT-4. Moreover, our method demonstrates superiority on smaller models: With FunCoder, StableCode-3b surpasses GPT-3.5 by +18.6% and achieves 97.7% of GPT-4's performance on HumanEval. Further analysis reveals that our proposed dynamic function decomposition is capable of handling complex requirements, and the functional consensus prevails over self-testing in correctness evaluation.
Steering Language Model to Stable Speech Emotion Recognition via Contextual Perception and Chain of Thought
Large-scale audio language models (ALMs), such as Qwen2-Audio, are capable of comprehending diverse audio signal, performing audio analysis and generating textual responses. However, in speech emotion recognition (SER), ALMs often suffer from hallucinations, resulting in misclassifications or irrelevant outputs. To address these challenges, we propose C^2SER, a novel ALM designed to enhance the stability and accuracy of SER through Contextual perception and Chain of Thought (CoT). C^2SER integrates the Whisper encoder for semantic perception and Emotion2Vec-S for acoustic perception, where Emotion2Vec-S extends Emotion2Vec with semi-supervised learning to enhance emotional discrimination. Additionally, C^2SER employs a CoT approach, processing SER in a step-by-step manner while leveraging speech content and speaking styles to improve recognition. To further enhance stability, C^2SER introduces self-distillation from explicit CoT to implicit CoT, mitigating error accumulation and boosting recognition accuracy. Extensive experiments show that C^2SER outperforms existing popular ALMs, such as Qwen2-Audio and SECap, delivering more stable and precise emotion recognition. We release the training code, checkpoints, and test sets to facilitate further research.
Byte-Level Grammatical Error Correction Using Synthetic and Curated Corpora
Grammatical error correction (GEC) is the task of correcting typos, spelling, punctuation and grammatical issues in text. Approaching the problem as a sequence-to-sequence task, we compare the use of a common subword unit vocabulary and byte-level encoding. Initial synthetic training data is created using an error-generating pipeline, and used for finetuning two subword-level models and one byte-level model. Models are then finetuned further on hand-corrected error corpora, including texts written by children, university students, dyslexic and second-language writers, and evaluated over different error types and origins. We show that a byte-level model enables higher correction quality than a subword approach, not only for simple spelling errors, but also for more complex semantic, stylistic and grammatical issues. In particular, initial training on synthetic corpora followed by finetuning on a relatively small parallel corpus of real-world errors helps the byte-level model correct a wide range of commonly occurring errors. Our experiments are run for the Icelandic language but should hold for other similar languages, particularly morphologically rich ones.
When Good and Reproducible Results are a Giant with Feet of Clay: The Importance of Software Quality in NLP
Despite its crucial role in research experiments, code correctness is often presumed only on the basis of the perceived quality of results. This assumption comes with the risk of erroneous outcomes and potentially misleading findings. To address this issue, we posit that the current focus on reproducibility should go hand in hand with the emphasis on software quality. We present a case study in which we identify and fix three bugs in widely used implementations of the state-of-the-art Conformer architecture. Through experiments on speech recognition and translation in various languages, we demonstrate that the presence of bugs does not prevent the achievement of good and reproducible results, which however can lead to incorrect conclusions that potentially misguide future research. As a countermeasure, we propose a Code-quality Checklist and release pangoliNN, a library dedicated to testing neural models, with the goal of promoting coding best practices and improving research software quality within the NLP community.
Accurate and efficient evaluation of the a posteriori error estimator in the reduced basis method
The reduced basis method is a model reduction technique yielding substantial savings of computational time when a solution to a parametrized equation has to be computed for many values of the parameter. Certification of the approximation is possible by means of an a posteriori error bound. Under appropriate assumptions, this error bound is computed with an algorithm of complexity independent of the size of the full problem. In practice, the evaluation of the error bound can become very sensitive to round-off errors. We propose herein an explanation of this fact. A first remedy has been proposed in [F. Casenave, Accurate a posteriori error evaluation in the reduced basis method. C. R. Math. Acad. Sci. Paris 350 (2012) 539--542.]. Herein, we improve this remedy by proposing a new approximation of the error bound using the Empirical Interpolation Method (EIM). This method achieves higher levels of accuracy and requires potentially less precomputations than the usual formula. A version of the EIM stabilized with respect to round-off errors is also derived. The method is illustrated on a simple one-dimensional diffusion problem and a three-dimensional acoustic scattering problem solved by a boundary element method.
Data Redaction from Conditional Generative Models
Deep generative models are known to produce undesirable samples such as harmful content. Traditional mitigation methods include re-training from scratch, filtering, or editing; however, these are either computationally expensive or can be circumvented by third parties. In this paper, we take a different approach and study how to post-edit an already-trained conditional generative model so that it redacts certain conditionals that will, with high probability, lead to undesirable content. This is done by distilling the conditioning network in the models, giving a solution that is effective, efficient, controllable, and universal for a class of deep generative models. We conduct experiments on redacting prompts in text-to-image models and redacting voices in text-to-speech models. Our method is computationally light, leads to better redaction quality and robustness than baseline methods while still retaining high generation quality.
IterPref: Focal Preference Learning for Code Generation via Iterative Debugging
Preference learning enhances Code LLMs beyond supervised fine-tuning by leveraging relative quality comparisons. Existing methods construct preference pairs from candidates based on test case success, treating the higher pass rate sample as positive and the lower as negative. However, this approach does not pinpoint specific errors in the code, which prevents the model from learning more informative error correction patterns, as aligning failing code as a whole lacks the granularity needed to capture meaningful error-resolution relationships. To address these issues, we propose IterPref, a new preference alignment framework that mimics human iterative debugging to refine Code LLMs. IterPref explicitly locates error regions and aligns the corresponding tokens via a tailored DPO algorithm. To generate informative pairs, we introduce the CodeFlow dataset, where samples are iteratively refined until passing tests, with modifications capturing error corrections. Extensive experiments show that a diverse suite of Code LLMs equipped with IterPref achieves significant performance gains in code generation and improves on challenging tasks like BigCodeBench. In-depth analysis reveals that IterPref yields fewer errors. Our code and data will be made publicaly available.
Alignment-Enhanced Decoding:Defending via Token-Level Adaptive Refining of Probability Distributions
Large language models are susceptible to jailbreak attacks, which can result in the generation of harmful content. While prior defenses mitigate these risks by perturbing or inspecting inputs, they ignore competing objectives, the underlying cause of alignment failures. In this paper, we propose Alignment-Enhanced Decoding (AED), a novel defense that employs adaptive decoding to address the root causes of jailbreak issues. We first define the Competitive Index to quantify alignment failures and utilize feedback from self-evaluation to compute post-alignment logits. Then, AED adaptively combines AED and post-alignment logits with the original logits to obtain harmless and helpful distributions. Consequently, our method enhances safety alignment while maintaining helpfulness. We conduct experiments across five models and four common jailbreaks, with the results validating the effectiveness of our approach. Code is available at https://github.com/GIGABaozi/AED.git.
Keeping LLMs Aligned After Fine-tuning: The Crucial Role of Prompt Templates
Public LLMs such as the Llama 2-Chat have driven huge activity in LLM research. These models underwent alignment training and were considered safe. Recently Qi et al. (2023) reported that even benign fine-tuning (e.g., on seemingly safe datasets) can give rise to unsafe behaviors in the models. The current paper is about methods and best practices to mitigate such loss of alignment. Through extensive experiments on several chat models (Meta's Llama 2-Chat, Mistral AI's Mistral 7B Instruct v0.2, and OpenAI's GPT-3.5 Turbo), this paper uncovers that the prompt templates used during fine-tuning and inference play a crucial role in preserving safety alignment, and proposes the "Pure Tuning, Safe Testing" (PTST) principle -- fine-tune models without a safety prompt, but include it at test time. Fine-tuning experiments on GSM8K, ChatDoctor, and OpenOrca show that PTST significantly reduces the rise of unsafe behaviors, and even almost eliminates them in some cases.
Goodtriever: Adaptive Toxicity Mitigation with Retrieval-augmented Models
Considerable effort has been dedicated to mitigating toxicity, but existing methods often require drastic modifications to model parameters or the use of computationally intensive auxiliary models. Furthermore, previous approaches have often neglected the crucial factor of language's evolving nature over time. In this work, we present a comprehensive perspective on toxicity mitigation that takes into account its changing nature. We introduce Goodtriever, a flexible methodology that matches the current state-of-the-art toxicity mitigation while achieving 43% relative latency reduction during inference and being more computationally efficient. By incorporating a retrieval-based approach at decoding time, Goodtriever enables toxicity-controlled text generation. Our research advocates for an increased focus on adaptable mitigation techniques, which better reflect the data drift models face when deployed in the wild. Code and data are available at https://github.com/for-ai/goodtriever.
Accurate a posteriori error evaluation in the reduced basis method
In the reduced basis method, the evaluation of the a posteriori estimator can become very sensitive to round-off errors. In this note, the origin of the loss of accuracy is revealed, and a solution to this problem is proposed and illustrated on a simple example.
Insights from Benchmarking Frontier Language Models on Web App Code Generation
This paper presents insights from evaluating 16 frontier large language models (LLMs) on the WebApp1K benchmark, a test suite designed to assess the ability of LLMs to generate web application code. The results reveal that while all models possess similar underlying knowledge, their performance is differentiated by the frequency of mistakes they make. By analyzing lines of code (LOC) and failure distributions, we find that writing correct code is more complex than generating incorrect code. Furthermore, prompt engineering shows limited efficacy in reducing errors beyond specific cases. These findings suggest that further advancements in coding LLM should emphasize on model reliability and mistake minimization.
Understanding the Effect of Noise in LLM Training Data with Algorithmic Chains of Thought
During both pretraining and fine-tuning, Large Language Models (LLMs) are trained on trillions of tokens of text of widely varying quality. Both phases of training typically involve heuristically filtering out ``low-quality'' or noisy training samples, yet little is known quantitatively about how the type or intensity of noise affects downstream performance. In this work, we study how noise in chain of thought (CoT) impacts task performance in the highly-controlled setting of algorithmically solvable tasks. First, we develop the Traced Integer (TInt) framework to generate highly customizable noised execution traces for any arithmetic function on lists of integers. We then define two types of noise: static noise, a local form of noise which is applied after the CoT trace is computed, and dynamic noise, a global form of noise which propagates errors in the trace as it is computed. We then evaluate the test performance of pretrained models both prompted and fine-tuned on noised datasets with varying levels of dataset contamination and intensity. We find fine-tuned models are extremely robust to high levels of static noise but struggle significantly more with lower levels of dynamic noise. In contrast, few-shot prompted models appear more sensitive to even static noise. We conclude with a discussion of how our findings impact noise filtering best-practices, in particular emphasizing the importance of removing samples containing destructive dynamic noise with global errors.
Scaling Flaws of Verifier-Guided Search in Mathematical Reasoning
Large language models (LLMs) struggle with multi-step reasoning, where inference-time scaling has emerged as a promising strategy for performance improvement. Verifier-guided search outperforms repeated sampling when sample size is limited by selecting and prioritizing valid reasoning paths. However, we identify a critical limitation: scaling flaws, prevalent across different models (Mistral 7B and DeepSeekMath 7B), benchmarks (GSM8K and MATH), and verifiers (outcome value models and process reward models). As sample size increases, verifier-guided search exhibits diminishing advantages and eventually underperforms repeated sampling. Our analysis attributes this to verifier failures, where imperfect verifiers misrank candidates and erroneously prune all valid paths. These issues are further exacerbated in challenging and out-of-distribution problems, restricting search effectiveness. To mitigate verifier failures, we explore reducing reliance on verifiers and conduct preliminary investigations using two simple methods. Our findings reveal fundamental limitations in verifier-guided search and suggest future directions.
Efficient Dataset Distillation through Alignment with Smooth and High-Quality Expert Trajectories
Training a large and state-of-the-art machine learning model typically necessitates the use of large-scale datasets, which, in turn, makes the training and parameter-tuning process expensive and time-consuming. Some researchers opt to distil information from real-world datasets into tiny and compact synthetic datasets while maintaining their ability to train a well-performing model, hence proposing a data-efficient method known as Dataset Distillation (DD). Despite recent progress in this field, existing methods still underperform and cannot effectively replace large datasets. In this paper, unlike previous methods that focus solely on improving the efficacy of student distillation, we are the first to recognize the important interplay between expert and student. We argue the significant impact of expert smoothness when employing more potent expert trajectories in subsequent dataset distillation. Based on this, we introduce the integration of clipping loss and gradient penalty to regulate the rate of parameter changes in expert trajectories. Furthermore, in response to the sensitivity exhibited towards randomly initialized variables during distillation, we propose representative initialization for synthetic dataset and balanced inner-loop loss. Finally, we present two enhancement strategies, namely intermediate matching loss and weight perturbation, to mitigate the potential occurrence of cumulative errors. We conduct extensive experiments on datasets of different scales, sizes, and resolutions. The results demonstrate that the proposed method significantly outperforms prior methods.
CURE: Code-Aware Neural Machine Translation for Automatic Program Repair
Automatic program repair (APR) is crucial to improve software reliability. Recently, neural machine translation (NMT) techniques have been used to fix software bugs automatically. While promising, these approaches have two major limitations. Their search space often does not contain the correct fix, and their search strategy ignores software knowledge such as strict code syntax. Due to these limitations, existing NMT-based techniques underperform the best template-based approaches. We propose CURE, a new NMT-based APR technique with three major novelties. First, CURE pre-trains a programming language (PL) model on a large software codebase to learn developer-like source code before the APR task. Second, CURE designs a new code-aware search strategy that finds more correct fixes by focusing on compilable patches and patches that are close in length to the buggy code. Finally, CURE uses a subword tokenization technique to generate a smaller search space that contains more correct fixes. Our evaluation on two widely-used benchmarks shows that CURE correctly fixes 57 Defects4J bugs and 26 QuixBugs bugs, outperforming all existing APR techniques on both benchmarks.
Added Toxicity Mitigation at Inference Time for Multimodal and Massively Multilingual Translation
Added toxicity in the context of translation refers to the fact of producing a translation output with more toxicity than there exists in the input. In this paper, we present MinTox which is a novel pipeline to identify added toxicity and mitigate this issue which works at inference time. MinTox uses a toxicity detection classifier which is multimodal (speech and text) and works in languages at scale. The mitigation method is applied to languages at scale and directly in text outputs. MinTox is applied to SEAMLESSM4T, which is the latest multimodal and massively multilingual machine translation system. For this system, MinTox achieves significant added toxicity mitigation across domains, modalities and language directions. MinTox manages to approximately filter out from 25% to 95% of added toxicity (depending on the modality and domain) while keeping translation quality.
Multi-Task Program Error Repair and Explanatory Diagnosis
Program errors can occur in any type of programming, and can manifest in a variety of ways, such as unexpected output, crashes, or performance issues. And program error diagnosis can often be too abstract or technical for developers to understand, especially for beginners. The goal of this paper is to present a novel machine-learning approach for Multi-task Program Error Repair and Explanatory Diagnosis (mPRED). A pre-trained language model is used to encode the source code, and a downstream model is specifically designed to identify and repair errors. Programs and test cases will be augmented and optimized from several perspectives. Additionally, our approach incorporates a "chain of thoughts" method, which enables the models to produce intermediate reasoning explanations before providing the final correction. To aid in visualizing and analyzing the program structure, we use a graph neural network for program structure visualization. Overall, our approach offers a promising approach for repairing program errors across different programming languages and providing helpful explanations to programmers.
SafeRoute: Adaptive Model Selection for Efficient and Accurate Safety Guardrails in Large Language Models
Deploying large language models (LLMs) in real-world applications requires robust safety guard models to detect and block harmful user prompts. While large safety guard models achieve strong performance, their computational cost is substantial. To mitigate this, smaller distilled models are used, but they often underperform on "hard" examples where the larger model provides accurate predictions. We observe that many inputs can be reliably handled by the smaller model, while only a small fraction require the larger model's capacity. Motivated by this, we propose SafeRoute, a binary router that distinguishes hard examples from easy ones. Our method selectively applies the larger safety guard model to the data that the router considers hard, improving efficiency while maintaining accuracy compared to solely using the larger safety guard model. Experimental results on multiple benchmark datasets demonstrate that our adaptive model selection significantly enhances the trade-off between computational cost and safety performance, outperforming relevant baselines.
Repair Is Nearly Generation: Multilingual Program Repair with LLMs
Most programmers make mistakes when writing code. Some of these mistakes are small and require few edits to the original program -- a class of errors recently termed last mile mistakes. These errors break the flow for experienced developers and can stump novice programmers. Existing automated repair techniques targeting this class of errors are language-specific and do not easily carry over to new languages. Transferring symbolic approaches requires substantial engineering and neural approaches require data and retraining. We introduce RING, a multilingual repair engine powered by a large language model trained on code (LLMC) such as Codex. Such a multilingual engine enables a flipped model for programming assistance, one where the programmer writes code and the AI assistance suggests fixes, compared to traditional code suggestion technology. Taking inspiration from the way programmers manually fix bugs, we show that a prompt-based strategy that conceptualizes repair as localization, transformation, and candidate ranking, can successfully repair programs in multiple languages with minimal effort. We present the first results for such a multilingual repair engine by evaluating on 6 different languages and comparing performance to language-specific repair engines. We show that RING can outperform language-specific repair engines for three of these languages.
An Evaluation on Large Language Model Outputs: Discourse and Memorization
We present an empirical evaluation of various outputs generated by nine of the most widely-available large language models (LLMs). Our analysis is done with off-the-shelf, readily-available tools. We find a correlation between percentage of memorized text, percentage of unique text, and overall output quality, when measured with respect to output pathologies such as counterfactual and logically-flawed statements, and general failures like not staying on topic. Overall, 80.0% of the outputs evaluated contained memorized data, but outputs containing the most memorized content were also more likely to be considered of high quality. We discuss and evaluate mitigation strategies, showing that, in the models evaluated, the rate of memorized text being output is reduced. We conclude with a discussion on potential implications around what it means to learn, to memorize, and to evaluate quality text.
Unlearnable Examples: Making Personal Data Unexploitable
The volume of "free" data on the internet has been key to the current success of deep learning. However, it also raises privacy concerns about the unauthorized exploitation of personal data for training commercial models. It is thus crucial to develop methods to prevent unauthorized data exploitation. This paper raises the question: can data be made unlearnable for deep learning models? We present a type of error-minimizing noise that can indeed make training examples unlearnable. Error-minimizing noise is intentionally generated to reduce the error of one or more of the training example(s) close to zero, which can trick the model into believing there is "nothing" to learn from these example(s). The noise is restricted to be imperceptible to human eyes, and thus does not affect normal data utility. We empirically verify the effectiveness of error-minimizing noise in both sample-wise and class-wise forms. We also demonstrate its flexibility under extensive experimental settings and practicability in a case study of face recognition. Our work establishes an important first step towards making personal data unexploitable to deep learning models.
Breaking Focus: Contextual Distraction Curse in Large Language Models
Recent advances in Large Language Models (LLMs) have revolutionized generative systems, achieving excellent performance across diverse domains. Although these models perform well in controlled environments, their real-world applications frequently encounter inputs containing both essential and irrelevant details. Our investigation has revealed a critical vulnerability in LLMs, which we term Contextual Distraction Vulnerability (CDV). This phenomenon arises when models fail to maintain consistent performance on questions modified with semantically coherent but irrelevant context. To systematically investigate this vulnerability, we propose an efficient tree-based search methodology to automatically generate CDV examples. Our approach successfully generates CDV examples across four datasets, causing an average performance degradation of approximately 45% in state-of-the-art LLMs. To address this critical issue, we explore various mitigation strategies and find that post-targeted training approaches can effectively enhance model robustness against contextual distractions. Our findings highlight the fundamental nature of CDV as an ability-level challenge rather than a knowledge-level issue since models demonstrate the necessary knowledge by answering correctly in the absence of distractions. This calls the community's attention to address CDV during model development to ensure reliability. The code is available at https://github.com/wyf23187/LLM_CDV.
Safety Alignment in NLP Tasks: Weakly Aligned Summarization as an In-Context Attack
Recent developments in balancing the usefulness and safety of Large Language Models (LLMs) have raised a critical question: Are mainstream NLP tasks adequately aligned with safety consideration? Our study, focusing on safety-sensitive documents obtained through adversarial attacks, reveals significant disparities in the safety alignment of various NLP tasks. For instance, LLMs can effectively summarize malicious long documents but often refuse to translate them. This discrepancy highlights a previously unidentified vulnerability: attacks exploiting tasks with weaker safety alignment, like summarization, can potentially compromise the integraty of tasks traditionally deemed more robust, such as translation and question-answering (QA). Moreover, the concurrent use of multiple NLP tasks with lesser safety alignment increases the risk of LLMs inadvertently processing harmful content. We demonstrate these vulnerabilities in various safety-aligned LLMs, particularly Llama2 models and GPT-4, indicating an urgent need for strengthening safety alignments across a broad spectrum of NLP tasks.
A Novel Approach for Automatic Program Repair using Round-Trip Translation with Large Language Models
Research shows that grammatical mistakes in a sentence can be corrected by translating it to another language and back using neural machine translation with language models. We investigate whether this correction capability of Large Language Models (LLMs) extends to Automatic Program Repair (APR). Current generative models for APR are pre-trained on source code and fine-tuned for repair. This paper proposes bypassing the fine-tuning step and using Round-Trip Translation (RTT): translation of code from one programming language to another programming or natural language, and back. We hypothesize that RTT with LLMs restores the most commonly seen patterns in code during pre-training, i.e., performs a regression toward the mean, which removes bugs as they are a form of noise w.r.t. the more frequent, natural, bug-free code in the training data. To test this hypothesis, we employ eight recent LLMs pre-trained on code, including the latest GPT versions, and four common program repair benchmarks in Java. We find that RTT with English as an intermediate language repaired 101 of 164 bugs with GPT-4 on the HumanEval-Java dataset. Moreover, 46 of these are unique bugs that are not repaired by other LLMs fine-tuned for APR. Our findings highlight the viability of round-trip translation with LLMs as a technique for automated program repair and its potential for research in software engineering. Keywords: automated program repair, large language model, machine translation
System Combination via Quality Estimation for Grammatical Error Correction
Quality estimation models have been developed to assess the corrections made by grammatical error correction (GEC) models when the reference or gold-standard corrections are not available. An ideal quality estimator can be utilized to combine the outputs of multiple GEC systems by choosing the best subset of edits from the union of all edits proposed by the GEC base systems. However, we found that existing GEC quality estimation models are not good enough in differentiating good corrections from bad ones, resulting in a low F0.5 score when used for system combination. In this paper, we propose GRECO, a new state-of-the-art quality estimation model that gives a better estimate of the quality of a corrected sentence, as indicated by having a higher correlation to the F0.5 score of a corrected sentence. It results in a combined GEC system with a higher F0.5 score. We also propose three methods for utilizing GEC quality estimation models for system combination with varying generality: model-agnostic, model-agnostic with voting bias, and model-dependent method. The combined GEC system outperforms the state of the art on the CoNLL-2014 test set and the BEA-2019 test set, achieving the highest F0.5 scores published to date.
A Unified Hallucination Mitigation Framework for Large Vision-Language Models
Hallucination is a common problem for Large Vision-Language Models (LVLMs) with long generations which is difficult to eradicate. The generation with hallucinations is partially inconsistent with the image content. To mitigate hallucination, current studies either focus on the process of model inference or the results of model generation, but the solutions they design sometimes do not deal appropriately with various types of queries and the hallucinations of the generations about these queries. To accurately deal with various hallucinations, we present a unified framework, Dentist, for hallucination mitigation. The core step is to first classify the queries, then perform different processes of hallucination mitigation based on the classification result, just like a dentist first observes the teeth and then makes a plan. In a simple deployment, Dentist can classify queries as perception or reasoning and easily mitigate potential hallucinations in answers which has been demonstrated in our experiments. On MMbench, we achieve a 13.44%/10.2%/15.8% improvement in accuracy on Image Quality, a Coarse Perception visual question answering (VQA) task, over the baseline InstructBLIP/LLaVA/VisualGLM.
Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic
Aligned language models face a significant limitation as their fine-tuning often results in compromised safety. To tackle this, we propose a simple method RESTA that performs LLM safety realignment. RESTA stands for REstoring Safety through Task Arithmetic. At its core, it involves a simple arithmetic addition of a safety vector to the weights of the compromised model. We demonstrate the effectiveness of RESTA in both parameter-efficient and full fine-tuning, covering a wide range of downstream tasks, including instruction following in Chinese, English, and Hindi, as well as problem-solving capabilities in Code and Math. We also showcase the generalizability of RESTA on three existing safety evaluation benchmarks and a multilingual benchmark dataset proposed as a part of this work, consisting of 550 harmful questions covering 11 categories, each with 5 sub-categories of harm. Overall, RESTA decreases the harmfulness of the compromised model from 18.6% to 5.1% and from 9.2% to 1.5% in parameter-efficient and full fine-tuning, respectively, while maintaining most of the model's performance on the task. We release the source codes at: https://github.com/declare-lab/resta.
LLM-3D Print: Large Language Models To Monitor and Control 3D Printing
Industry 4.0 has revolutionized manufacturing by driving digitalization and shifting the paradigm toward additive manufacturing (AM). Fused Deposition Modeling (FDM), a key AM technology, enables the creation of highly customized, cost-effective products with minimal material waste through layer-by-layer extrusion, posing a significant challenge to traditional subtractive methods. However, the susceptibility of material extrusion techniques to errors often requires expert intervention to detect and mitigate defects that can severely compromise product quality. While automated error detection and machine learning models exist, their generalizability across diverse 3D printer setups, firmware, and sensors is limited, and deep learning methods require extensive labeled datasets, hindering scalability and adaptability. To address these challenges, we present a process monitoring and control framework that leverages pre-trained Large Language Models (LLMs) alongside 3D printers to detect and address printing defects. The LLM evaluates print quality by analyzing images captured after each layer or print segment, identifying failure modes and querying the printer for relevant parameters. It then generates and executes a corrective action plan. We validated the effectiveness of the proposed framework in identifying defects by comparing it against a control group of engineers with diverse AM expertise. Our evaluation demonstrated that LLM-based agents not only accurately identify common 3D printing errors, such as inconsistent extrusion, stringing, warping, and layer adhesion, but also effectively determine the parameters causing these failures and autonomously correct them without any need for human intervention.
Penalizing Unfairness in Binary Classification
We present a new approach for mitigating unfairness in learned classifiers. In particular, we focus on binary classification tasks over individuals from two populations, where, as our criterion for fairness, we wish to achieve similar false positive rates in both populations, and similar false negative rates in both populations. As a proof of concept, we implement our approach and empirically evaluate its ability to achieve both fairness and accuracy, using datasets from the fields of criminal risk assessment, credit, lending, and college admissions.
Exploring Multimodal Large Language Models for Radiology Report Error-checking
This paper proposes one of the first clinical applications of multimodal large language models (LLMs) as an assistant for radiologists to check errors in their reports. We created an evaluation dataset from two real-world radiology datasets (MIMIC-CXR and IU-Xray), with 1,000 subsampled reports each. A subset of original reports was modified to contain synthetic errors by introducing various type of mistakes. The evaluation contained two difficulty levels: SIMPLE for binary error-checking and COMPLEX for identifying error types. LLaVA (Large Language and Visual Assistant) variant models, including our instruction-tuned model, were used for the evaluation. Additionally, a domain expert evaluation was conducted on a small test set. At the SIMPLE level, the LLaVA v1.5 model outperformed other publicly available models. Instruction tuning significantly enhanced performance by 47.4% and 25.4% on MIMIC-CXR and IU-Xray data, respectively. The model also surpassed the domain experts accuracy in the MIMIC-CXR dataset by 1.67%. Notably, among the subsets (N=21) of the test set where a clinician did not achieve the correct conclusion, the LLaVA ensemble mode correctly identified 71.4% of these cases. This study marks a promising step toward utilizing multi-modal LLMs to enhance diagnostic accuracy in radiology. The ensemble model demonstrated comparable performance to clinicians, even capturing errors overlooked by humans. Nevertheless, future work is needed to improve the model ability to identify the types of inconsistency.
Balancing Computational Efficiency and Forecast Error in Machine Learning-based Time-Series Forecasting: Insights from Live Experiments on Meteorological Nowcasting
Machine learning for time-series forecasting remains a key area of research. Despite successful application of many machine learning techniques, relating computational efficiency to forecast error remains an under-explored domain. This paper addresses this topic through a series of real-time experiments to quantify the relationship between computational cost and forecast error using meteorological nowcasting as an example use-case. We employ a variety of popular regression techniques (XGBoost, FC-MLP, Transformer, and LSTM) for multi-horizon, short-term forecasting of three variables (temperature, wind speed, and cloud cover) for multiple locations. During a 5-day live experiment, 4000 data sources were streamed for training and inferencing 144 models per hour. These models were parameterized to explore forecast error for two computational cost minimization methods: a novel auto-adaptive data reduction technique (Variance Horizon) and a performance-based concept drift-detection mechanism. Forecast error of all model variations were benchmarked in real-time against a state-of-the-art numerical weather prediction model. Performance was assessed using classical and novel evaluation metrics. Results indicate that using the Variance Horizon reduced computational usage by more than 50\%, while increasing between 0-15\% in error. Meanwhile, performance-based retraining reduced computational usage by up to 90\% while also improving forecast error by up to 10\%. Finally, the combination of both the Variance Horizon and performance-based retraining outperformed other model configurations by up to 99.7\% when considering error normalized to computational usage.
The Impact of Program Reduction on Automated Program Repair
Correcting bugs using modern Automated Program Repair (APR) can be both time-consuming and resource-expensive. We describe a program repair approach that aims to improve the scalability of modern APR tools. The approach leverages program reduction in the form of program slicing to eliminate code irrelevant to fixing the bug, which improves the APR tool's overall performance. We investigate slicing's impact on all three phases of the repair process: fault localization, patch generation, and patch validation. Our empirical exploration finds that the proposed approach, on average, enhances the repair ability of the TBar APR tool, but we also discovered a few cases where it was less successful. Specifically, on examples from the widely used Defects4J dataset, we obtain a substantial reduction in median repair time, which falls from 80 minutes to just under 18 minutes. We conclude that program reduction can improve the performance of APR without degrading repair quality, but this improvement is not universal. A replication package is available via Zenodo at https://doi.org/10.5281/zenodo.13074333. Keywords: automated program repair, dynamic program slicing, fault localization, test-suite reduction, hybrid techniques.
The Poison of Alignment
From the perspective of content safety issues, alignment has shown to limit large language models' (LLMs) harmful content generation. This intentional method of reinforcing models to not respond to certain user inputs seem to be present in many modern open-source instruction tuning datasets such as OpenAssistant or Guanaco. We introduce a novel insight to an instruction-tuned model's performance affected by the presence of alignment in supervised fine-tuning dataset. To be specific, we noticed that alignment acts as if it is poisoning the instruction dataset. Experimentally, we demonstrate that aligned answers significantly worsen the performance of the resulting fine-tuned model's on various reasoning benchmarks such as Big Bench (BBH), Massive Multitask Language Understanding (MMLU), Human Eval, and Discrete Reasoning Over Paragraphs (DROP), performing worse than the counterpart tuned without alignment by 4-33%.
Analyzing the Effectiveness of Large Language Models on Text-to-SQL Synthesis
This study investigates various approaches to using Large Language Models (LLMs) for Text-to-SQL program synthesis, focusing on the outcomes and insights derived. Employing the popular Text-to-SQL dataset, spider, the goal was to input a natural language question along with the database schema and output the correct SQL SELECT query. The initial approach was to fine-tune a local and open-source model to generate the SELECT query. After QLoRa fine-tuning WizardLM's WizardCoder-15B model on the spider dataset, the execution accuracy for generated queries rose to a high of 61%. With the second approach, using the fine-tuned gpt-3.5-turbo-16k (Few-shot) + gpt-4-turbo (Zero-shot error correction), the execution accuracy reached a high of 82.1%. Of all the incorrect queries, most can be categorized into a seven different categories of what went wrong: selecting the wrong columns or wrong order of columns, grouping by the wrong column, predicting the wrong values in conditionals, using different aggregates than the ground truth, extra or too few JOIN clauses, inconsistencies in the Spider dataset, and lastly completely incorrect query structure. Most if not all of the queries fall into these categories and it is insightful to understanding where the faults still lie with LLM program synthesis and where they can be improved.
Bias Assessment and Mitigation in LLM-based Code Generation
Utilizing state-of-the-art Large Language Models (LLMs), automatic code generation models play a pivotal role in enhancing the productivity and efficiency of software development coding procedures. As the adoption of LLMs becomes more widespread in software coding ecosystems, a pressing issue has emerged: does the generated code contain social biases, such as those related to age, gender, and race? This issue concerns the integrity, fairness, and ethical foundation of software applications that depend on the code generated by these models, yet is under-explored in the literature. This paper presents a novel bias assessment framework that is specifically designed for code generation tasks. Based on this framework, we conduct an extensive evaluation on the bias of nine state-of-the-art LLM-based code generation models. Our findings reveal that first, 31.45\% to 79.93\% code functions generated by our evaluated code generation models are biased, and 9.68\% to 37.37\% code functions' functionality are affected by the bias, which means biases not only exist in code generation models but in some cases, directly affect the functionality of the generated code, posing risks of unintended and possibly harmful software behaviors. To mitigate bias from code generation models, we propose three mitigation strategies, which can decrease the biased code ratio to a very low level of 0.4\% to 4.57\%.
Large Language Model Guided Self-Debugging Code Generation
Automated code generation is gaining significant importance in intelligent computer programming and system deployment. However, current approaches often face challenges in computational efficiency and lack robust mechanisms for code parsing and error correction. In this work, we propose a novel framework, PyCapsule, with a simple yet effective two-agent pipeline and efficient self-debugging modules for Python code generation. PyCapsule features sophisticated prompt inference, iterative error handling, and case testing, ensuring high generation stability, safety, and correctness. Empirically, PyCapsule achieves up to 5.7% improvement of success rate on HumanEval, 10.3% on HumanEval-ET, and 24.4% on BigCodeBench compared to the state-of-art methods. We also observe a decrease in normalized success rate given more self-debugging attempts, potentially affected by limited and noisy error feedback in retention. PyCapsule demonstrates broader impacts on advancing lightweight and efficient code generation for artificial intelligence systems.
RED-ACE: Robust Error Detection for ASR using Confidence Embeddings
ASR Error Detection (AED) models aim to post-process the output of Automatic Speech Recognition (ASR) systems, in order to detect transcription errors. Modern approaches usually use text-based input, comprised solely of the ASR transcription hypothesis, disregarding additional signals from the ASR model. Instead, we propose to utilize the ASR system's word-level confidence scores for improving AED performance. Specifically, we add an ASR Confidence Embedding (ACE) layer to the AED model's encoder, allowing us to jointly encode the confidence scores and the transcribed text into a contextualized representation. Our experiments show the benefits of ASR confidence scores for AED, their complementary effect over the textual signal, as well as the effectiveness and robustness of ACE for combining these signals. To foster further research, we publish a novel AED dataset consisting of ASR outputs on the LibriSpeech corpus with annotated transcription errors.
Penalty Decoding: Well Suppress the Self-Reinforcement Effect in Open-Ended Text Generation
The decoding algorithm is critical for open-ended text generation, transforming latent representations into coherent and meaningful outputs. This paper investigates the self-reinforcement effect in text generation and the effectiveness of a repetition penalty to mitigate it. However, determining the optimal repetition penalty value is challenging. To tackle this, we propose a forgetting mechanism that disregards distant tokens, reducing the burden of penalty selection. In addition, we introduce a length penalty to address overly short sentences caused by excessive penalties. Our penalty decoding approach incorporating three strategies helps resolve issues with sampling methods deviating from factual information. Experimental results demonstrate the efficacy of our approach in generating high-quality sentences resembling human output.
Virus: Harmful Fine-tuning Attack for Large Language Models Bypassing Guardrail Moderation
Recent research shows that Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks -- models lose their safety alignment ability after fine-tuning on a few harmful samples. For risk mitigation, a guardrail is typically used to filter out harmful samples before fine-tuning. By designing a new red-teaming method, we in this paper show that purely relying on the moderation guardrail for data filtration is not reliable. Our proposed attack method, dubbed Virus, easily bypasses the guardrail moderation by slightly modifying the harmful data. Experimental results show that the harmful data optimized by Virus is not detectable by the guardrail with up to 100\% leakage ratio, and can simultaneously achieve superior attack performance. Finally, the key message we want to convey through this paper is that: it is reckless to consider guardrail moderation as a clutch at straws towards harmful fine-tuning attack, as it cannot solve the inherent safety issue of the pre-trained LLMs. Our code is available at https://github.com/git-disl/Virus
Exploring Data Augmentation for Code Generation Tasks
Advances in natural language processing, such as transfer learning from pre-trained language models, have impacted how models are trained for programming language tasks too. Previous research primarily explored code pre-training and expanded it through multi-modality and multi-tasking, yet the data for downstream tasks remain modest in size. Focusing on data utilization for downstream tasks, we propose and adapt augmentation methods that yield consistent improvements in code translation and summarization by up to 6.9% and 7.5% respectively. Further analysis suggests that our methods work orthogonally and show benefits in output code style and numeric consistency. We also discuss test data imperfections.
SQLFixAgent: Towards Semantic-Accurate Text-to-SQL Parsing via Consistency-Enhanced Multi-Agent Collaboration
While fine-tuned large language models (LLMs) excel in generating grammatically valid SQL in Text-to-SQL parsing, they often struggle to ensure semantic accuracy in queries, leading to user confusion and diminished system usability. To tackle this challenge, we introduce SQLFixAgent, a new consistency-enhanced multi-agent collaborative framework designed for detecting and repairing erroneous SQL. Our framework comprises a core agent, SQLRefiner, alongside two auxiliary agents: SQLReviewer and QueryCrafter. The SQLReviewer agent employs the rubber duck debugging method to identify potential semantic mismatches between SQL and user query. If the error is detected, the QueryCrafter agent generates multiple SQL as candidate repairs using a fine-tuned SQLTool. Subsequently, leveraging similar repair retrieval and failure memory reflection, the SQLRefiner agent selects the most fitting SQL statement from the candidates as the final repair. We evaluated our proposed framework on five Text-to-SQL benchmarks. The experimental results show that our method consistently enhances the performance of the baseline model, specifically achieving an execution accuracy improvement of over 3\% on the Bird benchmark. Our framework also has a higher token efficiency compared to other advanced methods, making it more competitive.
CodeFort: Robust Training for Code Generation Models
Code generation models are not robust to small perturbations, which often lead to incorrect generations and significantly degrade the performance of these models. Although improving the robustness of code generation models is crucial to enhancing user experience in real-world applications, existing research efforts do not address this issue. To fill this gap, we propose CodeFort, a framework to improve the robustness of code generation models, generalizing a large variety of code perturbations to enrich the training data and enabling various robust training strategies, mixing data augmentation, batch augmentation, adversarial logits pairing, and contrastive learning, all carefully designed to support high-throughput training. Extensive evaluations show that we increase the average robust pass rates of baseline CodeGen models from 14.79 to 21.74. We notably decrease the robustness drop rate from 95.02% to 54.95% against code-syntax perturbations.
Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case
Earth system models suffer from various structural and parametric errors in their representation of nonlinear, multi-scale processes, leading to uncertainties in their long-term projections. The effects of many of these errors (particularly those due to fast physics) can be quantified in short-term simulations, e.g., as differences between the predicted and observed states (analysis increments). With the increase in the availability of high-quality observations and simulations, learning nudging from these increments to correct model errors has become an active research area. However, most studies focus on using neural networks, which while powerful, are hard to interpret, are data-hungry, and poorly generalize out-of-distribution. Here, we show the capabilities of Model Error Discovery with Interpretability and Data Assimilation (MEDIDA), a general, data-efficient framework that uses sparsity-promoting equation-discovery techniques to learn model errors from analysis increments. Using two-layer quasi-geostrophic turbulence as the test case, MEDIDA is shown to successfully discover various linear and nonlinear structural/parametric errors when full observations are available. Discovery from spatially sparse observations is found to require highly accurate interpolation schemes. While NNs have shown success as interpolators in recent studies, here, they are found inadequate due to their inability to accurately represent small scales, a phenomenon known as spectral bias. We show that a general remedy, adding a random Fourier feature layer to the NN, resolves this issue enabling MEDIDA to successfully discover model errors from sparse observations. These promising results suggest that with further development, MEDIDA could be scaled up to models of the Earth system and real observations.
Evaluating Self-Supervised Learning via Risk Decomposition
Self-supervised learning (SSL) pipelines differ in many design choices such as the architecture, augmentations, or pretraining data. Yet SSL is typically evaluated using a single metric: linear probing on ImageNet. This does not provide much insight into why or when a model is better, now how to improve it. To address this, we propose an SSL risk decomposition, which generalizes the classical supervised approximation-estimation decomposition by considering errors arising from the representation learning step. Our decomposition consists of four error components: approximation, representation usability, probe generalization, and encoder generalization. We provide efficient estimators for each component and use them to analyze the effect of 30 design choices on 169 SSL vision models evaluated on ImageNet. Our analysis gives valuable insights for designing and using SSL models. For example, it highlights the main sources of error and shows how to improve SSL in specific settings (full- vs few-shot) by trading off error components. All results and pretrained models are at https://github.com/YannDubs/SSL-Risk-Decomposition.
Defending Against Poisoning Attacks in Open-Domain Question Answering
Recent work in open-domain question answering (ODQA) has shown that adversarial poisoning of the input contexts can cause large drops in accuracy for production systems. However, little to no work has proposed methods to defend against these attacks. To do so, we introduce a new method that uses query augmentation to search for a diverse set of retrieved passages that could answer the original question. We integrate these new passages into the model through the design of a novel confidence method, comparing the predicted answer to its appearance in the retrieved contexts (what we call Confidence from Answer Redundancy, e.g. CAR). Together these methods allow for a simple but effective way to defend against poisoning attacks and provide gains of 5-20% exact match across varying levels of data poisoning.
Zero-shot Cross-Lingual Transfer for Synthetic Data Generation in Grammatical Error Detection
Grammatical Error Detection (GED) methods rely heavily on human annotated error corpora. However, these annotations are unavailable in many low-resource languages. In this paper, we investigate GED in this context. Leveraging the zero-shot cross-lingual transfer capabilities of multilingual pre-trained language models, we train a model using data from a diverse set of languages to generate synthetic errors in other languages. These synthetic error corpora are then used to train a GED model. Specifically we propose a two-stage fine-tuning pipeline where the GED model is first fine-tuned on multilingual synthetic data from target languages followed by fine-tuning on human-annotated GED corpora from source languages. This approach outperforms current state-of-the-art annotation-free GED methods. We also analyse the errors produced by our method and other strong baselines, finding that our approach produces errors that are more diverse and more similar to human errors.
ConDefects: A New Dataset to Address the Data Leakage Concern for LLM-based Fault Localization and Program Repair
With the growing interest on Large Language Models (LLMs) for fault localization and program repair, ensuring the integrity and generalizability of the LLM-based methods becomes paramount. The code in existing widely-adopted benchmarks for these tasks was written before the the bloom of LLMs and may be included in the training data of existing popular LLMs, thereby suffering from the threat of data leakage, leading to misleadingly optimistic performance metrics. To address this issue, we introduce "ConDefects", a novel dataset of real faults meticulously curated to eliminate such overlap. ConDefects contains 1,254 Java faulty programs and 1,625 Python faulty programs. All these programs are sourced from the online competition platform AtCoder and were produced between October 2021 and September 2023. We pair each fault with fault locations and the corresponding repaired code versions, making it tailored for in fault localization and program repair related research. We also provide interfaces for selecting subsets based on different time windows and coding task difficulties. While inspired by LLM-based tasks, ConDefects can be adopted for benchmarking ALL types of fault localization and program repair methods. The dataset is publicly available, and a demo video can be found at https://www.youtube.com/watch?v=22j15Hj5ONk.
MultiMend: Multilingual Program Repair with Context Augmentation and Multi-Hunk Patch Generation
Context: Bugs in code are inevitable and can lead to severe consequences, ranging from security vulnerabilities to operational failures. Debugging software remains challenging despite advances in testing and verification, often requiring extensive manual effort. Learning-based automated program repair (APR) has shown promise in reducing the time, effort, and cost of manually fixing bugs. However, existing techniques face several challenges, including language-dependent strategies, limited bug context utilization, and difficulties in handling bugs that span multiple locations in the code. Objective: This paper introduces MultiMend, a learning-based APR approach designed to improve repair performance on multiple programming languages with language-independent context augmentation and multi-hunk patch generation. Method: MultiMend fine-tunes a pre-trained encoder-decoder transformer model (CodeT5) to generate bug-fixing patches. It embeds source code lines and applies retrieval-augmented generation to augment the buggy context with relevant lines during patch generation. The approach systematically constructs patches for multi-hunk bugs to reduce the needed patch validations. We evaluate MultiMend on four benchmarks with four programming languages and compare it with state-of-the-art methods. Results: Experimental results show that MultiMend achieves competitive effectiveness and efficiency against compared tools. Across all benchmarks, MultiMend fixes 2,077 bugs, of which 1,455 are identical to the developer's patch, and 106 are for multi-hunk bugs. Both context augmentation and multi-hunk patch generation positively contribute to the results. Conclusion: MultiMend shows promising performance across benchmarks. The findings highlight its applicability to real-world software maintenance and its potential to reduce manual debugging efforts.
ENCORE: Ensemble Learning using Convolution Neural Machine Translation for Automatic Program Repair
Automated generate-and-validate (G&V) program repair techniques typically rely on hard-coded rules, only fix bugs following specific patterns, and are hard to adapt to different programming languages. We propose ENCORE, a new G&V technique, which uses ensemble learning on convolutional neural machine translation (NMT) models to automatically fix bugs in multiple programming languages. We take advantage of the randomness in hyper-parameter tuning to build multiple models that fix different bugs and combine them using ensemble learning. This new convolutional NMT approach outperforms the standard long short-term memory (LSTM) approach used in previous work, as it better captures both local and long-distance connections between tokens. Our evaluation on two popular benchmarks, Defects4J and QuixBugs, shows that ENCORE fixed 42 bugs, including 16 that have not been fixed by existing techniques. In addition, ENCORE is the first G&V repair technique to be applied to four popular programming languages (Java, C++, Python, and JavaScript), fixing a total of 67 bugs across five benchmarks.
xCOMET: Transparent Machine Translation Evaluation through Fine-grained Error Detection
Widely used learned metrics for machine translation evaluation, such as COMET and BLEURT, estimate the quality of a translation hypothesis by providing a single sentence-level score. As such, they offer little insight into translation errors (e.g., what are the errors and what is their severity). On the other hand, generative large language models (LLMs) are amplifying the adoption of more granular strategies to evaluation, attempting to detail and categorize translation errors. In this work, we introduce xCOMET, an open-source learned metric designed to bridge the gap between these approaches. xCOMET integrates both sentence-level evaluation and error span detection capabilities, exhibiting state-of-the-art performance across all types of evaluation (sentence-level, system-level, and error span detection). Moreover, it does so while highlighting and categorizing error spans, thus enriching the quality assessment. We also provide a robustness analysis with stress tests, and show that xCOMET is largely capable of identifying localized critical errors and hallucinations.
Seeker: Enhancing Exception Handling in Code with LLM-based Multi-Agent Approach
In real world software development, improper or missing exception handling can severely impact the robustness and reliability of code. Exception handling mechanisms require developers to detect, capture, and manage exceptions according to high standards, but many developers struggle with these tasks, leading to fragile code. This problem is particularly evident in open source projects and impacts the overall quality of the software ecosystem. To address this challenge, we explore the use of large language models (LLMs) to improve exception handling in code. Through extensive analysis, we identify three key issues: Insensitive Detection of Fragile Code, Inaccurate Capture of Exception Types, and Distorted Handling Solutions. These problems are widespread across real world repositories, suggesting that robust exception handling practices are often overlooked or mishandled. In response, we propose Seeker, a multi agent framework inspired by expert developer strategies for exception handling. Seeker uses agents: Scanner, Detector, Predator, Ranker, and Handler to assist LLMs in detecting, capturing, and resolving exceptions more effectively. Our work is the first systematic study on leveraging LLMs to enhance exception handling practices, providing valuable insights for future improvements in code reliability.
Building Safe and Reliable AI systems for Safety Critical Tasks with Vision-Language Processing
Although AI systems have been applied in various fields and achieved impressive performance, their safety and reliability are still a big concern. This is especially important for safety-critical tasks. One shared characteristic of these critical tasks is their risk sensitivity, where small mistakes can cause big consequences and even endanger life. There are several factors that could be guidelines for the successful deployment of AI systems in sensitive tasks: (i) failure detection and out-of-distribution (OOD) detection; (ii) overfitting identification; (iii) uncertainty quantification for predictions; (iv) robustness to data perturbations. These factors are also challenges of current AI systems, which are major blocks for building safe and reliable AI. Specifically, the current AI algorithms are unable to identify common causes for failure detection. Furthermore, additional techniques are required to quantify the quality of predictions. All these contribute to inaccurate uncertainty quantification, which lowers trust in predictions. Hence obtaining accurate model uncertainty quantification and its further improvement are challenging. To address these issues, many techniques have been proposed, such as regularization methods and learning strategies. As vision and language are the most typical data type and have many open source benchmark datasets, this thesis will focus on vision-language data processing for tasks like classification, image captioning, and vision question answering. In this thesis, we aim to build a safeguard by further developing current techniques to ensure the accurate model uncertainty for safety-critical tasks.
In Search of the Successful Interpolation: On the Role of Sharpness in CLIP Generalization
Zero-shot models like CLIP are often fine-tuned on a target dataset to improve its accuracy further, but this can compromise out-of-distribution (OOD) robustness. Robust Fine-Tuning (RFT )~wortsman2021robust, which interpolates between the zero-shot and fine-tuned models, has been proposed to address this issue. However, understanding when RFT actually improves OOD error remains limited. In this work, we empirically investigate the robustness of RFT in CLIP models, with a focus on the sharpness of the CLIP model during interpolation. First, we demonstrate that while sharpness may not serve as a reliable indicator for predicting the generalization of modern architectures like CLIP on OOD data, this challenges the conventional belief in the generalization benefits of flat minima in foundation models. However, by examining the role of the straggler layer phenomenon, we show that, unlike overall sharpness, the layer-wise sharpness of straggler layers can reliably capture the generalization performance of interpolated CLIP models on OOD data. Our extensive experiments reveal that layer-wise sharpness correlates with generalization in OOD accuracy for RFT. Furthermore, we demonstrate that by inducing sparsity in the straggler layers, we can mitigate the failure mode phenomenon in RFT. To the best of our knowledge, this is the first work to study the role of sharpness in the success of interpolation in the weight space of CLIP foundation models. Our code is available at https://github.com/alirezaabdollahpour/CLIP_Mode_Connectivity.
Take a Step Further: Understanding Page Spray in Linux Kernel Exploitation
Recently, a novel method known as Page Spray emerges, focusing on page-level exploitation for kernel vulnerabilities. Despite the advantages it offers in terms of exploitability, stability, and compatibility, comprehensive research on Page Spray remains scarce. Questions regarding its root causes, exploitation model, comparative benefits over other exploitation techniques, and possible mitigation strategies have largely remained unanswered. In this paper, we conduct a systematic investigation into Page Spray, providing an in-depth understanding of this exploitation technique. We introduce a comprehensive exploit model termed the \sys model, elucidating its fundamental principles. Additionally, we conduct a thorough analysis of the root causes underlying Page Spray occurrences within the Linux Kernel. We design an analyzer based on the Page Spray analysis model to identify Page Spray callsites. Subsequently, we evaluate the stability, exploitability, and compatibility of Page Spray through meticulously designed experiments. Finally, we propose mitigation principles for addressing Page Spray and introduce our own lightweight mitigation approach. This research aims to assist security researchers and developers in gaining insights into Page Spray, ultimately enhancing our collective understanding of this emerging exploitation technique and making improvements to the community.
SPoC: Search-based Pseudocode to Code
We consider the task of mapping pseudocode to long programs that are functionally correct. Given test cases as a mechanism to validate programs, we search over the space of possible translations of the pseudocode to find a program that passes the validation. However, without proper credit assignment to localize the sources of program failures, it is difficult to guide search toward more promising programs. We propose to perform credit assignment based on signals from compilation errors, which constitute 88.7% of program failures. Concretely, we treat the translation of each pseudocode line as a discrete portion of the program, and whenever a synthesized program fails to compile, an error localization method tries to identify the portion of the program responsible for the failure. We then focus search over alternative translations of the pseudocode for those portions. For evaluation, we collected the SPoC dataset (Search-based Pseudocode to Code) containing 18,356 programs with human-authored pseudocode and test cases. Under a budget of 100 program compilations, performing search improves the synthesis success rate over using the top-one translation of the pseudocode from 25.6% to 44.7%.
Factual Error Correction for Abstractive Summaries Using Entity Retrieval
Despite the recent advancements in abstractive summarization systems leveraged from large-scale datasets and pre-trained language models, the factual correctness of the summary is still insufficient. One line of trials to mitigate this problem is to include a post-editing process that can detect and correct factual errors in the summary. In building such a post-editing system, it is strongly required that 1) the process has a high success rate and interpretability and 2) has a fast running time. Previous approaches focus on regeneration of the summary using the autoregressive models, which lack interpretability and require high computing resources. In this paper, we propose an efficient factual error correction system RFEC based on entities retrieval post-editing process. RFEC first retrieves the evidence sentences from the original document by comparing the sentences with the target summary. This approach greatly reduces the length of text for a system to analyze. Next, RFEC detects the entity-level errors in the summaries by considering the evidence sentences and substitutes the wrong entities with the accurate entities from the evidence sentences. Experimental results show that our proposed error correction system shows more competitive performance than baseline methods in correcting the factual errors with a much faster speed.
Increasing the LLM Accuracy for Question Answering: Ontologies to the Rescue!
There is increasing evidence that question-answering (QA) systems with Large Language Models (LLMs), which employ a knowledge graph/semantic representation of an enterprise SQL database (i.e. Text-to-SPARQL), achieve higher accuracy compared to systems that answer questions directly on SQL databases (i.e. Text-to-SQL). Our previous benchmark research showed that by using a knowledge graph, the accuracy improved from 16% to 54%. The question remains: how can we further improve the accuracy and reduce the error rate? Building on the observations of our previous research where the inaccurate LLM-generated SPARQL queries followed incorrect paths, we present an approach that consists of 1) Ontology-based Query Check (OBQC): detects errors by leveraging the ontology of the knowledge graph to check if the LLM-generated SPARQL query matches the semantic of ontology and 2) LLM Repair: use the error explanations with an LLM to repair the SPARQL query. Using the chat with the data benchmark, our primary finding is that our approach increases the overall accuracy to 72% including an additional 8% of "I don't know" unknown results. Thus, the overall error rate is 20%. These results provide further evidence that investing knowledge graphs, namely the ontology, provides higher accuracy for LLM powered question answering systems.
Adversarial Training for High-Stakes Reliability
In the future, powerful AI systems may be deployed in high-stakes settings, where a single failure could be catastrophic. One technique for improving AI safety in high-stakes settings is adversarial training, which uses an adversary to generate examples to train on in order to achieve better worst-case performance. In this work, we used a safe language generation task (``avoid injuries'') as a testbed for achieving high reliability through adversarial training. We created a series of adversarial training techniques -- including a tool that assists human adversaries -- to find and eliminate failures in a classifier that filters text completions suggested by a generator. In our task, we determined that we can set very conservative classifier thresholds without significantly impacting the quality of the filtered outputs. We found that adversarial training increased robustness to the adversarial attacks that we trained on -- doubling the time for our contractors to find adversarial examples both with our tool (from 13 to 26 minutes) and without (from 20 to 44 minutes) -- without affecting in-distribution performance. We hope to see further work in the high-stakes reliability setting, including more powerful tools for enhancing human adversaries and better ways to measure high levels of reliability, until we can confidently rule out the possibility of catastrophic deployment-time failures of powerful models.
EvoPress: Towards Optimal Dynamic Model Compression via Evolutionary Search
The high computational costs of large language models (LLMs) have led to a flurry of research on LLM compression, via methods such as quantization, sparsification, or structured pruning. A new frontier in this area is given by dynamic, non-uniform compression methods, which adjust the compression levels (e.g., sparsity) per-block or even per-layer in order to minimize accuracy loss, while guaranteeing a global compression threshold. Yet, current methods rely on heuristics for identifying the "importance" of a given layer towards the loss, based on assumptions such as error monotonicity, i.e. that the end-to-end model compression error is proportional to the sum of layer-wise errors. In this paper, we revisit this area, and propose a new and general approach for dynamic compression that is provably optimal in a given input range. We begin from the motivating observation that, in general, error monotonicity does not hold for LLMs: compressed models with lower sum of per-layer errors can perform worse than models with higher error sums. To address this, we propose a new general evolutionary framework for dynamic LLM compression called EvoPress, which has provable convergence, and low sample and evaluation complexity. We show that these theoretical guarantees lead to highly competitive practical performance for dynamic compression of Llama, Mistral and Phi models. Via EvoPress, we set new state-of-the-art results across all compression approaches: structural pruning (block/layer dropping), unstructured sparsity, as well as quantization with dynamic bitwidths. Our code is available at https://github.com/IST-DASLab/EvoPress.
Enabling Weak LLMs to Judge Response Reliability via Meta Ranking
Despite the strong performance of large language models (LLMs) across a wide range of tasks, they still have reliability issues. Previous studies indicate that strong LLMs like GPT-4-turbo excel in evaluating the reliability of responses from LLMs, but face efficiency and local deployment issues. Thus, to enable weak LLMs to effectively assess the reliability of LLM responses, we propose a novel cross-query-comparison-based method called Meta Ranking (MR). Unlike previous few-shot methods that solely based on in-context learning capabilities in LLMs, MR assesses reliability by pairwisely ranking the target query-response pair with multiple reference query-response pairs. We found that MR is highly effective in error detection for LLM responses, where weak LLMs, such as Phi-2, could surpass strong baselines like GPT-3.5-turbo, requiring only five reference samples and significantly improving efficiency. We further demonstrate that MR can enhance strong LLMs' performance in two practical applications: model cascading and instruction tuning. In model cascading, we combine open- and closed-source LLMs to achieve performance comparable to GPT-4-turbo with lower costs. In instruction tuning, we use MR for iterative training data filtering, significantly reducing data processing time and enabling LLaMA-7B and Phi-2 to surpass Alpaca-13B with fewer training tokens. These results underscore the high potential of MR in both efficiency and effectiveness.
How faithful are RAG models? Quantifying the tug-of-war between RAG and LLMs' internal prior
Retrieval augmented generation (RAG) is often used to fix hallucinations and provide up-to-date knowledge for large language models (LLMs). However, in cases when the LLM alone incorrectly answers a question, does providing the correct retrieved content always fix the error? Conversely, in cases where the retrieved content is incorrect, does the LLM know to ignore the wrong information, or does it recapitulate the error? To answer these questions, we systematically analyze the tug-of-war between a LLM's internal knowledge (i.e. its prior) and the retrieved information in settings when they disagree. We test GPT-4 and other LLMs on question-answering abilities across datasets with and without reference documents. As expected, providing the correct retrieved information fixes most model mistakes (94% accuracy). However, when the reference document is perturbed with increasing levels of wrong values, the LLM is more likely to recite the incorrect, modified information when its internal prior is weaker but is more resistant when its prior is stronger. Similarly, we also find that the more the modified information deviates from the model's prior, the less likely the model is to prefer it. These results highlight an underlying tension between a model's prior knowledge and the information presented in reference documents.
Teacher Intervention: Improving Convergence of Quantization Aware Training for Ultra-Low Precision Transformers
Pre-trained Transformer models such as BERT have shown great success in a wide range of applications, but at the cost of substantial increases in model complexity. Quantization-aware training (QAT) is a promising method to lower the implementation cost and energy consumption. However, aggressive quantization below 2-bit causes considerable accuracy degradation due to unstable convergence, especially when the downstream dataset is not abundant. This work proposes a proactive knowledge distillation method called Teacher Intervention (TI) for fast converging QAT of ultra-low precision pre-trained Transformers. TI intervenes layer-wise signal propagation with the intact signal from the teacher to remove the interference of propagated quantization errors, smoothing loss surface of QAT and expediting the convergence. Furthermore, we propose a gradual intervention mechanism to stabilize the recovery of subsections of Transformer layers from quantization. The proposed schemes enable fast convergence of QAT and improve the model accuracy regardless of the diverse characteristics of downstream fine-tuning tasks. We demonstrate that TI consistently achieves superior accuracy with significantly lower fine-tuning iterations on well-known Transformers of natural language processing as well as computer vision compared to the state-of-the-art QAT methods.
Noisy dynamical systems evolve error correcting codes and modularity
Noise is a ubiquitous feature of the physical world. As a result, the first prerequisite of life is fault tolerance: maintaining integrity of state despite external bombardment. Recent experimental advances have revealed that biological systems achieve fault tolerance by implementing mathematically intricate error-correcting codes and by organizing in a modular fashion that physically separates functionally distinct subsystems. These elaborate structures represent a vanishing volume in the massive genetic configuration space. How is it possible that the primitive process of evolution, by which all biological systems evolved, achieved such unusual results? In this work, through experiments in Boolean networks, we show that the simultaneous presence of error correction and modularity in biological systems is no coincidence. Rather, it is a typical co-occurrence in noisy dynamic systems undergoing evolution. From this, we deduce the principle of error correction enhanced evolvability: systems possessing error-correcting codes are more effectively improved by evolution than those without.
Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks
We identify label errors in the test sets of 10 of the most commonly-used computer vision, natural language, and audio datasets, and subsequently study the potential for these label errors to affect benchmark results. Errors in test sets are numerous and widespread: we estimate an average of at least 3.3% errors across the 10 datasets, where for example label errors comprise at least 6% of the ImageNet validation set. Putative label errors are identified using confident learning algorithms and then human-validated via crowdsourcing (51% of the algorithmically-flagged candidates are indeed erroneously labeled, on average across the datasets). Traditionally, machine learning practitioners choose which model to deploy based on test accuracy - our findings advise caution here, proposing that judging models over correctly labeled test sets may be more useful, especially for noisy real-world datasets. Surprisingly, we find that lower capacity models may be practically more useful than higher capacity models in real-world datasets with high proportions of erroneously labeled data. For example, on ImageNet with corrected labels: ResNet-18 outperforms ResNet-50 if the prevalence of originally mislabeled test examples increases by just 6%. On CIFAR-10 with corrected labels: VGG-11 outperforms VGG-19 if the prevalence of originally mislabeled test examples increases by just 5%. Test set errors across the 10 datasets can be viewed at https://labelerrors.com and all label errors can be reproduced by https://github.com/cleanlab/label-errors.
Seeker: Towards Exception Safety Code Generation with Intermediate Language Agents Framework
In real world software development, improper or missing exception handling can severely impact the robustness and reliability of code. Exception handling mechanisms require developers to detect, capture, and manage exceptions according to high standards, but many developers struggle with these tasks, leading to fragile code. This problem is particularly evident in open-source projects and impacts the overall quality of the software ecosystem. To address this challenge, we explore the use of large language models (LLMs) to improve exception handling in code. Through extensive analysis, we identify three key issues: Insensitive Detection of Fragile Code, Inaccurate Capture of Exception Block, and Distorted Handling Solution. These problems are widespread across real world repositories, suggesting that robust exception handling practices are often overlooked or mishandled. In response, we propose Seeker, a multi-agent framework inspired by expert developer strategies for exception handling. Seeker uses agents: Scanner, Detector, Predator, Ranker, and Handler to assist LLMs in detecting, capturing, and resolving exceptions more effectively. Our work is the first systematic study on leveraging LLMs to enhance exception handling practices in real development scenarios, providing valuable insights for future improvements in code reliability.
Rethinking the Influence of Source Code on Test Case Generation
Large language models (LLMs) have been widely applied to assist test generation with the source code under test provided as the context. This paper aims to answer the question: If the source code under test is incorrect, will LLMs be misguided when generating tests? The effectiveness of test cases is measured by their accuracy, coverage, and bug detection effectiveness. Our evaluation results with five open- and six closed-source LLMs on four datasets demonstrate that incorrect code can significantly mislead LLMs in generating correct, high-coverage, and bug-revealing tests. For instance, in the HumanEval dataset, LLMs achieve 80.45% test accuracy when provided with task descriptions and correct code, but only 57.12% when given task descriptions and incorrect code. For the APPS dataset, prompts with correct code yield tests that detect 39.85% of the bugs, while prompts with incorrect code detect only 19.61%. These findings have important implications for the deployment of LLM-based testing: using it on mature code may help protect against future regression, but on early-stage immature code, it may simply bake in errors. Our findings also underscore the need for further research to improve LLMs resilience against incorrect code in generating reliable and bug-revealing tests.
Learning to Solve and Verify: A Self-Play Framework for Code and Test Generation
Recent advances in large language models (LLMs) have improved their performance on coding benchmarks. However, improvement is plateauing due to the exhaustion of readily available high-quality data. Prior work has shown the potential of synthetic self-instruct data, but naively training on a model's own outputs can cause error accumulation, especially in coding tasks, where generalization may collapse due to overly simple or erroneous training data, highlighting the need for rigorous quality checks on synthetic data. In this work, we explore an effective approach whereby the model itself verifies the correctness of its own data. We thus propose Sol-Ver, a self-play solver-verifier framework that jointly improves a single model's code and test generation capacity. By iteratively refining code (LLM-as-a-solver) and tests (LLM-as-a-verifier) together, we boost both capabilities without relying on human annotations or larger teacher models. Experiments with the Llama 3.1 8B model demonstrate substantial performance enhancements, achieving average relative improvements of 19.63% in code generation and 17.49% in test generation on MBPP and LiveCodeBench.
Machine Learning with a Reject Option: A survey
Machine learning models always make a prediction, even when it is likely to be inaccurate. This behavior should be avoided in many decision support applications, where mistakes can have severe consequences. Albeit already studied in 1970, machine learning with rejection recently gained interest. This machine learning subfield enables machine learning models to abstain from making a prediction when likely to make a mistake. This survey aims to provide an overview on machine learning with rejection. We introduce the conditions leading to two types of rejection, ambiguity and novelty rejection, which we carefully formalize. Moreover, we review and categorize strategies to evaluate a model's predictive and rejective quality. Additionally, we define the existing architectures for models with rejection and describe the standard techniques for learning such models. Finally, we provide examples of relevant application domains and show how machine learning with rejection relates to other machine learning research areas.
Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!
Optimizing large language models (LLMs) for downstream use cases often involves the customization of pre-trained LLMs through further fine-tuning. Meta's open release of Llama models and OpenAI's APIs for fine-tuning GPT-3.5 Turbo on custom datasets also encourage this practice. But, what are the safety costs associated with such custom fine-tuning? We note that while existing safety alignment infrastructures can restrict harmful behaviors of LLMs at inference time, they do not cover safety risks when fine-tuning privileges are extended to end-users. Our red teaming studies find that the safety alignment of LLMs can be compromised by fine-tuning with only a few adversarially designed training examples. For instance, we jailbreak GPT-3.5 Turbo's safety guardrails by fine-tuning it on only 10 such examples at a cost of less than $0.20 via OpenAI's APIs, making the model responsive to nearly any harmful instructions. Disconcertingly, our research also reveals that, even without malicious intent, simply fine-tuning with benign and commonly used datasets can also inadvertently degrade the safety alignment of LLMs, though to a lesser extent. These findings suggest that fine-tuning aligned LLMs introduces new safety risks that current safety infrastructures fall short of addressing -- even if a model's initial safety alignment is impeccable, it is not necessarily to be maintained after custom fine-tuning. We outline and critically analyze potential mitigations and advocate for further research efforts toward reinforcing safety protocols for the custom fine-tuning of aligned LLMs.
VDebugger: Harnessing Execution Feedback for Debugging Visual Programs
Visual programs are executable code generated by large language models to address visual reasoning problems. They decompose complex questions into multiple reasoning steps and invoke specialized models for each step to solve the problems. However, these programs are prone to logic errors, with our preliminary evaluation showing that 58% of the total errors are caused by program logic errors. Debugging complex visual programs remains a major bottleneck for visual reasoning. To address this, we introduce VDebugger, a novel critic-refiner framework trained to localize and debug visual programs by tracking execution step by step. VDebugger identifies and corrects program errors leveraging detailed execution feedback, improving interpretability and accuracy. The training data is generated through an automated pipeline that injects errors into correct visual programs using a novel mask-best decoding technique. Evaluations on six datasets demonstrate VDebugger's effectiveness, showing performance improvements of up to 3.2% in downstream task accuracy. Further studies show VDebugger's ability to generalize to unseen tasks, bringing a notable improvement of 2.3% on the unseen COVR task. Code, data and models are made publicly available at https://github.com/shirley-wu/vdebugger/
Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing Too Much Accuracy
Adversarial robustness has become a central goal in deep learning, both in the theory and the practice. However, successful methods to improve the adversarial robustness (such as adversarial training) greatly hurt generalization performance on the unperturbed data. This could have a major impact on how the adversarial robustness affects real world systems (i.e. many may opt to forego robustness if it can improve accuracy on the unperturbed data). We propose Interpolated Adversarial Training, which employs recently proposed interpolation based training methods in the framework of adversarial training. On CIFAR-10, adversarial training increases the standard test error (when there is no adversary) from 4.43% to 12.32%, whereas with our Interpolated adversarial training we retain the adversarial robustness while achieving a standard test error of only 6.45%. With our technique, the relative increase in the standard error for the robust model is reduced from 178.1% to just 45.5%. Moreover, we provide mathematical analysis of Interpolated Adversarial Training to confirm its efficiencies and demonstrate its advantages in terms of robustness and generalization.
FuXi: A cascade machine learning forecasting system for 15-day global weather forecast
Over the past few years, due to the rapid development of machine learning (ML) models for weather forecasting, state-of-the-art ML models have shown superior performance compared to the European Centre for Medium-Range Weather Forecasts (ECMWF)'s high-resolution forecast (HRES) in 10-day forecasts at a spatial resolution of 0.25 degree. However, the challenge remains to perform comparably to the ECMWF ensemble mean (EM) in 15-day forecasts. Previous studies have demonstrated the importance of mitigating the accumulation of forecast errors for effective long-term forecasts. Despite numerous efforts to reduce accumulation errors, including autoregressive multi-time step loss, using a single model is found to be insufficient to achieve optimal performance in both short and long lead times. Therefore, we present FuXi, a cascaded ML weather forecasting system that provides 15-day global forecasts with a temporal resolution of 6 hours and a spatial resolution of 0.25 degree. FuXi is developed using 39 years of the ECMWF ERA5 reanalysis dataset. The performance evaluation, based on latitude-weighted root mean square error (RMSE) and anomaly correlation coefficient (ACC), demonstrates that FuXi has comparable forecast performance to ECMWF EM in 15-day forecasts, making FuXi the first ML-based weather forecasting system to accomplish this achievement.
RoundTripOCR: A Data Generation Technique for Enhancing Post-OCR Error Correction in Low-Resource Devanagari Languages
Optical Character Recognition (OCR) technology has revolutionized the digitization of printed text, enabling efficient data extraction and analysis across various domains. Just like Machine Translation systems, OCR systems are prone to errors. In this work, we address the challenge of data generation and post-OCR error correction, specifically for low-resource languages. We propose an approach for synthetic data generation for Devanagari languages, RoundTripOCR, that tackles the scarcity of the post-OCR Error Correction datasets for low-resource languages. We release post-OCR text correction datasets for Hindi, Marathi, Bodo, Nepali, Konkani and Sanskrit. We also present a novel approach for OCR error correction by leveraging techniques from machine translation. Our method involves translating erroneous OCR output into a corrected form by treating the OCR errors as mistranslations in a parallel text corpus, employing pre-trained transformer models to learn the mapping from erroneous to correct text pairs, effectively correcting OCR errors.
Exploiting Redundancy, Recurrence and Parallelism: How to Link Millions of Addresses with Ten Lines of Code in Ten Minutes
Accurate and efficient record linkage is an open challenge of particular relevance to Australian Government Agencies, who recognise that so-called wicked social problems are best tackled by forming partnerships founded on large-scale data fusion. Names and addresses are the most common attributes on which data from different government agencies can be linked. In this paper, we focus on the problem of address linking. Linkage is particularly problematic when the data has significant quality issues. The most common approach for dealing with quality issues is to standardise raw data prior to linking. If a mistake is made in standardisation, however, it is usually impossible to recover from it to perform linkage correctly. This paper proposes a novel algorithm for address linking that is particularly practical for linking large disparate sets of addresses, being highly scalable, robust to data quality issues and simple to implement. It obviates the need for labour intensive and problematic address standardisation. We demonstrate the efficacy of the algorithm by matching two large address datasets from two government agencies with good accuracy and computational efficiency.
Safety Fine-Tuning at (Almost) No Cost: A Baseline for Vision Large Language Models
Current vision large language models (VLLMs) exhibit remarkable capabilities yet are prone to generate harmful content and are vulnerable to even the simplest jailbreaking attacks. Our initial analysis finds that this is due to the presence of harmful data during vision-language instruction fine-tuning, and that VLLM fine-tuning can cause forgetting of safety alignment previously learned by the underpinning LLM. To address this issue, we first curate a vision-language safe instruction-following dataset VLGuard covering various harmful categories. Our experiments demonstrate that integrating this dataset into standard vision-language fine-tuning or utilizing it for post-hoc fine-tuning effectively safety aligns VLLMs. This alignment is achieved with minimal impact on, or even enhancement of, the models' helpfulness. The versatility of our safety fine-tuning dataset makes it a valuable resource for safety-testing existing VLLMs, training new models or safeguarding pre-trained VLLMs. Empirical results demonstrate that fine-tuned VLLMs effectively reject unsafe instructions and substantially reduce the success rates of several black-box adversarial attacks, which approach zero in many cases. The code and dataset are available at https://github.com/ys-zong/VLGuard.
An Error-Guided Correction Model for Chinese Spelling Error Correction
Although existing neural network approaches have achieved great success on Chinese spelling correction, there is still room to improve. The model is required to avoid over-correction and to distinguish a correct token from its phonological and visually similar ones. In this paper, we propose an error-guided correction model (EGCM) to improve Chinese spelling correction. By borrowing the powerful ability of BERT, we propose a novel zero-shot error detection method to do a preliminary detection, which guides our model to attend more on the probably wrong tokens in encoding and to avoid modifying the correct tokens in generating. Furthermore, we introduce a new loss function to integrate the error confusion set, which enables our model to distinguish easily misused tokens. Moreover, our model supports highly parallel decoding to meet real application requirements. Experiments are conducted on widely used benchmarks. Our model achieves superior performance against state-of-the-art approaches by a remarkable margin, on both the correction quality and computation speed.
GLEU Without Tuning
The GLEU metric was proposed for evaluating grammatical error corrections using n-gram overlap with a set of reference sentences, as opposed to precision/recall of specific annotated errors (Napoles et al., 2015). This paper describes improvements made to the GLEU metric that address problems that arise when using an increasing number of reference sets. Unlike the originally presented metric, the modified metric does not require tuning. We recommend that this version be used instead of the original version.
FacTool: Factuality Detection in Generative AI -- A Tool Augmented Framework for Multi-Task and Multi-Domain Scenarios
The emergence of generative pre-trained models has facilitated the synthesis of high-quality text, but it has also posed challenges in identifying factual errors in the generated text. In particular: (1) A wider range of tasks now face an increasing risk of containing factual errors when handled by generative models. (2) Generated texts tend to be lengthy and lack a clearly defined granularity for individual facts. (3) There is a scarcity of explicit evidence available during the process of fact checking. With the above challenges in mind, in this paper, we propose FacTool, a task and domain agnostic framework for detecting factual errors of texts generated by large language models (e.g., ChatGPT). Experiments on four different tasks (knowledge-based QA, code generation, mathematical reasoning, and scientific literature review) show the efficacy of the proposed method. We release the code of FacTool associated with ChatGPT plugin interface at https://github.com/GAIR-NLP/factool .
AIC CTU system at AVeriTeC: Re-framing automated fact-checking as a simple RAG task
This paper describes our 3^{rd} place submission in the AVeriTeC shared task in which we attempted to address the challenge of fact-checking with evidence retrieved in the wild using a simple scheme of Retrieval-Augmented Generation (RAG) designed for the task, leveraging the predictive power of Large Language Models. We release our codebase and explain its two modules - the Retriever and the Evidence & Label generator - in detail, justifying their features such as MMR-reranking and Likert-scale confidence estimation. We evaluate our solution on AVeriTeC dev and test set and interpret the results, picking the GPT-4o as the most appropriate model for our pipeline at the time of our publication, with Llama 3.1 70B being a promising open-source alternative. We perform an empirical error analysis to see that faults in our predictions often coincide with noise in the data or ambiguous fact-checks, provoking further research and data augmentation.
Reliable and Efficient In-Memory Fault Tolerance of Large Language Model Pretraining
Extensive system scales (i.e. thousands of GPU/TPUs) and prolonged training periods (i.e. months of pretraining) significantly escalate the probability of failures when training large language models (LLMs). Thus, efficient and reliable fault-tolerance methods are in urgent need. Checkpointing is the primary fault-tolerance method to periodically save parameter snapshots from GPU memory to disks via CPU memory. In this paper, we identify the frequency of existing checkpoint-based fault-tolerance being significantly limited by the storage I/O overheads, which results in hefty re-training costs on restarting from the nearest checkpoint. In response to this gap, we introduce an in-memory fault-tolerance framework for large-scale LLM pretraining. The framework boosts the efficiency and reliability of fault tolerance from three aspects: (1) Reduced Data Transfer and I/O: By asynchronously caching parameters, i.e., sharded model parameters, optimizer states, and RNG states, to CPU volatile memory, Our framework significantly reduces communication costs and bypasses checkpoint I/O. (2) Enhanced System Reliability: Our framework enhances parameter protection with a two-layer hierarchy: snapshot management processes (SMPs) safeguard against software failures, together with Erasure Coding (EC) protecting against node failures. This double-layered protection greatly improves the survival probability of the parameters compared to existing checkpointing methods. (3) Improved Snapshotting Frequency: Our framework achieves more frequent snapshotting compared with asynchronous checkpointing optimizations under the same saving time budget, which improves the fault tolerance efficiency. Empirical results demonstrate that Our framework minimizes the overhead of fault tolerance of LLM pretraining by effectively leveraging redundant CPU resources.
SafeInfer: Context Adaptive Decoding Time Safety Alignment for Large Language Models
Safety-aligned language models often exhibit fragile and imbalanced safety mechanisms, increasing the likelihood of generating unsafe content. In addition, incorporating new knowledge through editing techniques to language models can further compromise safety. To address these issues, we propose SafeInfer, a context-adaptive, decoding-time safety alignment strategy for generating safe responses to user queries. SafeInfer comprises two phases: the safety amplification phase, which employs safe demonstration examples to adjust the model's hidden states and increase the likelihood of safer outputs, and the safety-guided decoding phase, which influences token selection based on safety-optimized distributions, ensuring the generated content complies with ethical guidelines. Further, we present HarmEval, a novel benchmark for extensive safety evaluations, designed to address potential misuse scenarios in accordance with the policies of leading AI tech giants.
iSEA: An Interactive Pipeline for Semantic Error Analysis of NLP Models
Error analysis in NLP models is essential to successful model development and deployment. One common approach for diagnosing errors is to identify subpopulations in the dataset where the model produces the most errors. However, existing approaches typically define subpopulations based on pre-defined features, which requires users to form hypotheses of errors in advance. To complement these approaches, we propose iSEA, an Interactive Pipeline for Semantic Error Analysis in NLP Models, which automatically discovers semantically-grounded subpopulations with high error rates in the context of a human-in-the-loop interactive system. iSEA enables model developers to learn more about their model errors through discovered subpopulations, validate the sources of errors through interactive analysis on the discovered subpopulations, and test hypotheses about model errors by defining custom subpopulations. The tool supports semantic descriptions of error-prone subpopulations at the token and concept level, as well as pre-defined higher-level features. Through use cases and expert interviews, we demonstrate how iSEA can assist error understanding and analysis.
ALIM: Adjusting Label Importance Mechanism for Noisy Partial Label Learning
Noisy partial label learning (noisy PLL) is an important branch of weakly supervised learning. Unlike PLL where the ground-truth label must conceal in the candidate label set, noisy PLL relaxes this constraint and allows the ground-truth label may not be in the candidate label set. To address this challenging problem, most of the existing works attempt to detect noisy samples and estimate the ground-truth label for each noisy sample. However, detection errors are unavoidable. These errors can accumulate during training and continuously affect model optimization. To this end, we propose a novel framework for noisy PLL with theoretical guarantees, called ``Adjusting Label Importance Mechanism (ALIM)''. It aims to reduce the negative impact of detection errors by trading off the initial candidate set and model outputs. ALIM is a plug-in strategy that can be integrated with existing PLL approaches. Experimental results on benchmark datasets demonstrate that our method can achieve state-of-the-art performance on noisy PLL. \textcolor[rgb]{0.93,0.0,0.47}{Our code can be found in Supplementary Material}.
Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models
Text-to-image models encounter safety issues, including concerns related to copyright and Not-Safe-For-Work (NSFW) content. Despite several methods have been proposed for erasing inappropriate concepts from diffusion models, they often exhibit incomplete erasure, consume a lot of computing resources, and inadvertently damage generation ability. In this work, we introduce Reliable and Efficient Concept Erasure (RECE), a novel approach that modifies the model in 3 seconds without necessitating additional fine-tuning. Specifically, RECE efficiently leverages a closed-form solution to derive new target embeddings, which are capable of regenerating erased concepts within the unlearned model. To mitigate inappropriate content potentially represented by derived embeddings, RECE further aligns them with harmless concepts in cross-attention layers. The derivation and erasure of new representation embeddings are conducted iteratively to achieve a thorough erasure of inappropriate concepts. Besides, to preserve the model's generation ability, RECE introduces an additional regularization term during the derivation process, resulting in minimizing the impact on unrelated concepts during the erasure process. All the processes above are in closed-form, guaranteeing extremely efficient erasure in only 3 seconds. Benchmarking against previous approaches, our method achieves more efficient and thorough erasure with minor damage to original generation ability and demonstrates enhanced robustness against red-teaming tools. Code is available at https://github.com/CharlesGong12/RECE.
Beam Decoding with Controlled Patience
Text generation with beam search has proven successful in a wide range of applications. The commonly-used implementation of beam decoding follows a first come, first served heuristic: it keeps a set of already completed sequences over time steps and stops when the size of this set reaches the beam size. We introduce a patience factor, a simple modification to this decoding algorithm, that generalizes the stopping criterion and provides flexibility to the depth of search. Extensive empirical results demonstrate that the patience factor improves decoding performance of strong pretrained models on news text summarization and machine translation over diverse language pairs, with a negligible inference slowdown. Our approach only modifies one line of code and can be thus readily incorporated in any implementation.
Can Large Language Models Find And Fix Vulnerable Software?
In this study, we evaluated the capability of Large Language Models (LLMs), particularly OpenAI's GPT-4, in detecting software vulnerabilities, comparing their performance against traditional static code analyzers like Snyk and Fortify. Our analysis covered numerous repositories, including those from NASA and the Department of Defense. GPT-4 identified approximately four times the vulnerabilities than its counterparts. Furthermore, it provided viable fixes for each vulnerability, demonstrating a low rate of false positives. Our tests encompassed 129 code samples across eight programming languages, revealing the highest vulnerabilities in PHP and JavaScript. GPT-4's code corrections led to a 90% reduction in vulnerabilities, requiring only an 11% increase in code lines. A critical insight was LLMs' ability to self-audit, suggesting fixes for their identified vulnerabilities and underscoring their precision. Future research should explore system-level vulnerabilities and integrate multiple static code analyzers for a holistic perspective on LLMs' potential.
Challenges in Detoxifying Language Models
Large language models (LM) generate remarkably fluent text and can be efficiently adapted across NLP tasks. Measuring and guaranteeing the quality of generated text in terms of safety is imperative for deploying LMs in the real world; to this end, prior work often relies on automatic evaluation of LM toxicity. We critically discuss this approach, evaluate several toxicity mitigation strategies with respect to both automatic and human evaluation, and analyze consequences of toxicity mitigation in terms of model bias and LM quality. We demonstrate that while basic intervention strategies can effectively optimize previously established automatic metrics on the RealToxicityPrompts dataset, this comes at the cost of reduced LM coverage for both texts about, and dialects of, marginalized groups. Additionally, we find that human raters often disagree with high automatic toxicity scores after strong toxicity reduction interventions -- highlighting further the nuances involved in careful evaluation of LM toxicity.
Learning From How Humans Correct
In industry NLP application, our manually labeled data has a certain number of noisy data. We present a simple method to find the noisy data and relabel them manually, meanwhile we collect the correction information. Then we present novel method to incorporate the human correction information into deep learning model. Human know how to correct noisy data. So the correction information can be inject into deep learning model. We do the experiment on our own text classification dataset, which is manually labeled, because we need to relabel the noisy data in our dataset for our industry application. The experiment result shows that our learn-on-correction method improve the classification accuracy from 91.7% to 92.5% in test dataset. The 91.7% accuracy is trained on the corrected dataset, which improve the baseline from 83.3% to 91.7% in test dataset. The accuracy under human evaluation achieves more than 97%.
Avoiding Inference Heuristics in Few-shot Prompt-based Finetuning
Recent prompt-based approaches allow pretrained language models to achieve strong performances on few-shot finetuning by reformulating downstream tasks as a language modeling problem. In this work, we demonstrate that, despite its advantages on low data regimes, finetuned prompt-based models for sentence pair classification tasks still suffer from a common pitfall of adopting inference heuristics based on lexical overlap, e.g., models incorrectly assuming a sentence pair is of the same meaning because they consist of the same set of words. Interestingly, we find that this particular inference heuristic is significantly less present in the zero-shot evaluation of the prompt-based model, indicating how finetuning can be destructive to useful knowledge learned during the pretraining. We then show that adding a regularization that preserves pretraining weights is effective in mitigating this destructive tendency of few-shot finetuning. Our evaluation on three datasets demonstrates promising improvements on the three corresponding challenge datasets used to diagnose the inference heuristics.
Self-Edit: Fault-Aware Code Editor for Code Generation
Large language models (LLMs) have demonstrated an impressive ability to generate codes on competitive programming tasks. However, with limited sample numbers, LLMs still suffer from poor accuracy. Inspired by the process of human programming, we propose a generate-and-edit approach named Self-Edit that utilizes execution results of the generated code from LLMs to improve the code quality on the competitive programming task. We execute the generated code on the example test case provided in the question and wrap execution results into a supplementary comment. Utilizing this comment as guidance, our fault-aware code editor is employed to correct errors in the generated code. We perform extensive evaluations across two competitive programming datasets with nine different LLMs. Compared to directly generating from LLMs, our approach can improve the average of pass@1 by 89\% on APPS-dev, 31\% on APPS-test, and 48\% on HumanEval over nine popular code generation LLMs with parameter sizes ranging from 110M to 175B. Compared to other post-processing methods, our method demonstrates superior accuracy and efficiency.
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Modern deep neural networks can achieve high accuracy when the training distribution and test distribution are identically distributed, but this assumption is frequently violated in practice. When the train and test distributions are mismatched, accuracy can plummet. Currently there are few techniques that improve robustness to unforeseen data shifts encountered during deployment. In this work, we propose a technique to improve the robustness and uncertainty estimates of image classifiers. We propose AugMix, a data processing technique that is simple to implement, adds limited computational overhead, and helps models withstand unforeseen corruptions. AugMix significantly improves robustness and uncertainty measures on challenging image classification benchmarks, closing the gap between previous methods and the best possible performance in some cases by more than half.
Unicron: Economizing Self-Healing LLM Training at Scale
Training large-scale language models is increasingly critical in various domains, but it is hindered by frequent failures, leading to significant time and economic costs. Current failure recovery methods in cloud-based settings inadequately address the diverse and complex scenarios that arise, focusing narrowly on erasing downtime for individual tasks without considering the overall cost impact on a cluster. We introduce Unicron, a workload manager designed for efficient self-healing in large-scale language model training. Unicron optimizes the training process by minimizing failure-related costs across multiple concurrent tasks within a cluster. Its key features include in-band error detection for real-time error identification without extra overhead, a dynamic cost-aware plan generation mechanism for optimal reconfiguration, and an efficient transition strategy to reduce downtime during state changes. Deployed on a 128-GPU distributed cluster, Unicron demonstrates up to a 1.9x improvement in training efficiency over state-of-the-art methods, significantly reducing failure recovery costs and enhancing the reliability of large-scale language model training.
Fast Model Editing at Scale
While large pre-trained models have enabled impressive results on a variety of downstream tasks, the largest existing models still make errors, and even accurate predictions may become outdated over time. Because detecting all such failures at training time is impossible, enabling both developers and end users of such models to correct inaccurate outputs while leaving the model otherwise intact is desirable. However, the distributed, black-box nature of the representations learned by large neural networks makes producing such targeted edits difficult. If presented with only a single problematic input and new desired output, fine-tuning approaches tend to overfit; other editing algorithms are either computationally infeasible or simply ineffective when applied to very large models. To enable easy post-hoc editing at scale, we propose Model Editor Networks using Gradient Decomposition (MEND), a collection of small auxiliary editing networks that use a single desired input-output pair to make fast, local edits to a pre-trained model's behavior. MEND learns to transform the gradient obtained by standard fine-tuning, using a low-rank decomposition of the gradient to make the parameterization of this transformation tractable. MEND can be trained on a single GPU in less than a day even for 10 billion+ parameter models; once trained MEND enables rapid application of new edits to the pre-trained model. Our experiments with T5, GPT, BERT, and BART models show that MEND is the only approach to model editing that effectively edits the behavior of models with more than 10 billion parameters. Code and data available at https://sites.google.com/view/mend-editing.
RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content
Recent advancements in Large Language Models (LLMs) have showcased remarkable capabilities across various tasks in different domains. However, the emergence of biases and the potential for generating harmful content in LLMs, particularly under malicious inputs, pose significant challenges. Current mitigation strategies, while effective, are not resilient under adversarial attacks. This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently and effectively moderate harmful and unsafe inputs and outputs for LLMs. By employing a multi-faceted approach that includes energy-based training data augmentation through Langevin dynamics, optimizing a safe suffix for inputs via minimax optimization, and integrating a fusion-based model combining robust KNN with LLMs based on our data augmentation, RigorLLM offers a robust solution to harmful content moderation. Our experimental evaluations demonstrate that RigorLLM not only outperforms existing baselines like OpenAI API and Perspective API in detecting harmful content but also exhibits unparalleled resilience to jailbreaking attacks. The innovative use of constrained optimization and a fusion-based guardrail approach represents a significant step forward in developing more secure and reliable LLMs, setting a new standard for content moderation frameworks in the face of evolving digital threats.
Can LLMs Learn from Previous Mistakes? Investigating LLMs' Errors to Boost for Reasoning
Recent works have shown the benefits to LLMs from fine-tuning golden-standard Chain-of-Thought (CoT) rationales or using them as correct examples in few-shot prompting. While humans can indeed imitate correct examples, learning from our mistakes is another vital aspect of human cognition. Hence, a question naturally arises: can LLMs learn and benefit from their mistakes, especially for their reasoning? This study investigates this problem from both the prompting and model-tuning perspectives. We begin by introducing CoTErrorSet, a new benchmark with 609,432 questions, each designed with both correct and error references, and demonstrating the types and reasons for making such mistakes. To explore the effectiveness of those mistakes, we design two methods: (1) Self-rethinking prompting guides LLMs to rethink whether they have made similar previous mistakes; and (2) Mistake tuning involves finetuning models in both correct and incorrect reasoning domains, rather than only tuning models to learn ground truth in traditional methodology. We conduct a series of experiments to prove LLMs can obtain benefits from mistakes in both directions. Our two methods offer potentially cost-effective strategies by leveraging errors to enhance reasoning capabilities, which costs significantly less than creating meticulously hand-crafted golden references. We ultimately make a thorough analysis of the reasons behind LLMs' errors, which provides directions that future research needs to overcome. CoTErrorSet will be published soon on \url{https://github.com/YookiTong/Learn-from-Mistakes-CotErrorSet}.
A safety realignment framework via subspace-oriented model fusion for large language models
The current safeguard mechanisms for large language models (LLMs) are indeed susceptible to jailbreak attacks, making them inherently fragile. Even the process of fine-tuning on apparently benign data for downstream tasks can jeopardize safety. One potential solution is to conduct safety fine-tuning subsequent to downstream fine-tuning. However, there's a risk of catastrophic forgetting during safety fine-tuning, where LLMs may regain safety measures but lose the task-specific knowledge acquired during downstream fine-tuning. In this paper, we introduce a safety realignment framework through subspace-oriented model fusion (SOMF), aiming to combine the safeguard capabilities of initially aligned model and the current fine-tuned model into a realigned model. Our approach begins by disentangling all task vectors from the weights of each fine-tuned model. We then identify safety-related regions within these vectors by subspace masking techniques. Finally, we explore the fusion of the initial safely aligned LLM with all task vectors based on the identified safety subspace. We validate that our safety realignment framework satisfies the safety requirements of a single fine-tuned model as well as multiple models during their fusion. Our findings confirm that SOMF preserves safety without notably compromising performance on downstream tasks, including instruction following in Chinese, English, and Hindi, as well as problem-solving capabilities in Code and Math.
RepairLLaMA: Efficient Representations and Fine-Tuned Adapters for Program Repair
Automated Program Repair (APR) has evolved significantly with the advent of Large Language Models (LLMs). Fine-tuning LLMs for program repair is a recent avenue of research, with many dimensions which have not been explored. Existing work mostly fine-tunes LLMs with naive code representations and is fundamentally limited in its ability to fine-tune larger LLMs. To address this problem, we propose RepairLLaMA, a novel program repair approach that combines 1) code representations for APR and 2) the state-of-the-art parameter-efficient LLM fine-tuning technique called LoRA. This results in RepairLLaMA producing a highly effective `program repair adapter' for fixing bugs with language models. Our experiments demonstrate the validity of both concepts. First, fine-tuning adapters with program repair specific code representations enables the model to use meaningful repair signals. Second, parameter-efficient fine-tuning helps fine-tuning to converge and contributes to the effectiveness of the repair adapter to fix data-points outside the fine-tuning data distribution. Overall, RepairLLaMA correctly fixes 125 Defects4J v2 and 82 HumanEval-Java bugs, outperforming all baselines.
Towards Interpreting and Mitigating Shortcut Learning Behavior of NLU Models
Recent studies indicate that NLU models are prone to rely on shortcut features for prediction, without achieving true language understanding. As a result, these models fail to generalize to real-world out-of-distribution data. In this work, we show that the words in the NLU training set can be modeled as a long-tailed distribution. There are two findings: 1) NLU models have strong preference for features located at the head of the long-tailed distribution, and 2) Shortcut features are picked up during very early few iterations of the model training. These two observations are further employed to formulate a measurement which can quantify the shortcut degree of each training sample. Based on this shortcut measurement, we propose a shortcut mitigation framework LTGR, to suppress the model from making overconfident predictions for samples with large shortcut degree. Experimental results on three NLU benchmarks demonstrate that our long-tailed distribution explanation accurately reflects the shortcut learning behavior of NLU models. Experimental analysis further indicates that LTGR can improve the generalization accuracy on OOD data, while preserving the accuracy on in-distribution data.
A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification
In this paper we present a novel solution that combines the capabilities of Large Language Models (LLMs) with Formal Verification strategies to verify and automatically repair software vulnerabilities. Initially, we employ Bounded Model Checking (BMC) to locate the software vulnerability and derive a counterexample. The counterexample provides evidence that the system behaves incorrectly or contains a vulnerability. The counterexample that has been detected, along with the source code, are provided to the LLM engine. Our approach involves establishing a specialized prompt language for conducting code debugging and generation to understand the vulnerability's root cause and repair the code. Finally, we use BMC to verify the corrected version of the code generated by the LLM. As a proof of concept, we create ESBMC-AI based on the Efficient SMT-based Context-Bounded Model Checker (ESBMC) and a pre-trained Transformer model, specifically gpt-3.5-turbo, to detect and fix errors in C programs. Our experimentation involved generating a dataset comprising 1000 C code samples, each consisting of 20 to 50 lines of code. Notably, our proposed method achieved an impressive success rate of up to 80% in repairing vulnerable code encompassing buffer overflow and pointer dereference failures. We assert that this automated approach can effectively incorporate into the software development lifecycle's continuous integration and deployment (CI/CD) process.
Demystifying GPT Self-Repair for Code Generation
Large Language Models (LLMs) have shown remarkable aptitude in code generation but still struggle on challenging programming tasks. Self-repair -- in which the model debugs and fixes mistakes in its own code -- has recently become a popular way to boost performance in these settings. However, only very limited studies on how and when self-repair works effectively exist in the literature, and one might wonder to what extent a model is really capable of providing accurate feedback on why the code is wrong when that code was generated by the same model. In this paper, we analyze GPT-3.5 and GPT-4's ability to perform self-repair on APPS, a challenging dataset consisting of diverse coding challenges. To do so, we first establish a new evaluation strategy dubbed pass@t that measures the pass rate of the tasks against the total number of tokens sampled from the model, enabling a fair comparison to purely sampling-based approaches. With this evaluation strategy, we find that the effectiveness of self-repair is only seen in GPT-4. We also observe that self-repair is bottlenecked by the feedback stage; using GPT-4 to give feedback on the programs generated by GPT-3.5 and using expert human programmers to give feedback on the programs generated by GPT-4, we unlock significant performance gains.
Are We Done with MMLU?
Maybe not. We identify and analyse errors in the popular Massive Multitask Language Understanding (MMLU) benchmark. Even though MMLU is widely adopted, our analysis demonstrates numerous ground truth errors that obscure the true capabilities of LLMs. For example, we find that 57% of the analysed questions in the Virology subset contain errors. To address this issue, we introduce a comprehensive framework for identifying dataset errors using a novel error taxonomy. Then, we create MMLU-Redux, which is a subset of 3,000 manually re-annotated questions across 30 MMLU subjects. Using MMLU-Redux, we demonstrate significant discrepancies with the model performance metrics that were originally reported. Our results strongly advocate for revising MMLU's error-ridden questions to enhance its future utility and reliability as a benchmark. Therefore, we open up MMLU-Redux for additional annotation https://huggingface.co/datasets/edinburgh-dawg/mmlu-redux.
Safeguard Fine-Tuned LLMs Through Pre- and Post-Tuning Model Merging
Fine-tuning large language models (LLMs) for downstream tasks is a widely adopted approach, but it often leads to safety degradation in safety-aligned LLMs. Currently, many solutions address this issue by incorporating additional safety data, which can be impractical in many cases. In this paper, we address the question: How can we improve downstream task performance while preserving safety in LLMs without relying on additional safety data? We propose a simple and effective method that maintains the inherent safety of LLMs while enhancing their downstream task performance: merging the weights of pre- and post-fine-tuned safety-aligned models. Experimental results across various downstream tasks, models, and merging methods demonstrate that this approach effectively mitigates safety degradation while improving downstream task performance, offering a practical solution for adapting safety-aligned LLMs.
MetaSC: Test-Time Safety Specification Optimization for Language Models
We propose a novel dynamic safety framework that optimizes language model (LM) safety reasoning at inference time without modifying model weights. Building on recent advances in self-critique methods, our approach leverages a meta-critique mechanism that iteratively updates safety prompts-termed specifications-to drive the critique and revision process adaptively. This test-time optimization not only improves performance against adversarial jailbreak requests but also in diverse general safety-related tasks, such as avoiding moral harm or pursuing honest responses. Our empirical evaluations across several language models demonstrate that dynamically optimized safety prompts yield significantly higher safety scores compared to fixed system prompts and static self-critique defenses. Code to be released at https://github.com/vicgalle/meta-self-critique.git .
Code Comparison Tuning for Code Large Language Models
We present Code Comparison Tuning (CCT), a simple and effective tuning method for code large language models (Code LLMs) to better handle subtle code errors. Specifically, we integrate the concept of comparison into instruction tuning, both at the token and sequence levels, enabling the model to discern even the slightest deviations in code. To compare the original code with an erroneous version containing manually added code errors, we use token-level preference loss for detailed token-level comparisons. Additionally, we combine code segments to create a new instruction tuning sample for sequence-level comparisons, enhancing the model's bug-fixing capability. Experimental results on the HumanEvalFix benchmark show that CCT surpasses instruction tuning in pass@1 scores by up to 4 points across diverse code LLMs, and extensive analysis demonstrates the effectiveness of our method.
Helping or Herding? Reward Model Ensembles Mitigate but do not Eliminate Reward Hacking
Reward models play a key role in aligning language model applications towards human preferences. However, this setup creates an incentive for the language model to exploit errors in the reward model to achieve high estimated reward, a phenomenon often termed reward hacking. A natural mitigation is to train an ensemble of reward models, aggregating over model outputs to obtain a more robust reward estimate. We explore the application of reward ensembles to alignment at both training time (through reinforcement learning) and inference time (through reranking). First, we show that reward models are underspecified: reward models that perform similarly in-distribution can yield very different rewards when used in alignment, due to distribution shift. Second, underspecification results in overoptimization, where alignment to one reward model does not improve reward as measured by another reward model trained on the same data. Third, overoptimization is mitigated by the use of reward ensembles, and ensembles that vary by their pretraining seeds lead to better generalization than ensembles that differ only by their fine-tuning seeds, with both outperforming individual reward models. However, even pretrain reward ensembles do not eliminate reward hacking: we show several qualitative reward hacking phenomena that are not mitigated by ensembling because all reward models in the ensemble exhibit similar error patterns.
Knowledge-Augmented Language Model Verification
Recent Language Models (LMs) have shown impressive capabilities in generating texts with the knowledge internalized in parameters. Yet, LMs often generate the factually incorrect responses to the given queries, since their knowledge may be inaccurate, incomplete, and outdated. To address this problem, previous works propose to augment LMs with the knowledge retrieved from an external knowledge source. However, such approaches often show suboptimal text generation performance due to two reasons: 1) the model may fail to retrieve the knowledge relevant to the given query, or 2) the model may not faithfully reflect the retrieved knowledge in the generated text. To overcome these, we propose to verify the output and the knowledge of the knowledge-augmented LMs with a separate verifier, which is a small LM that is trained to detect those two types of errors through instruction-finetuning. Then, when the verifier recognizes an error, we can rectify it by either retrieving new knowledge or generating new text. Further, we use an ensemble of the outputs from different instructions with a single verifier to enhance the reliability of the verification processes. We validate the effectiveness of the proposed verification steps on multiple question answering benchmarks, whose results show that the proposed verifier effectively identifies retrieval and generation errors, allowing LMs to provide more factually correct outputs. Our code is available at https://github.com/JinheonBaek/KALMV.
ACE: Anti-Editing Concept Erasure in Text-to-Image Models
Recent advance in text-to-image diffusion models have significantly facilitated the generation of high-quality images, but also raising concerns about the illegal creation of harmful content, such as copyrighted images. Existing concept erasure methods achieve superior results in preventing the production of erased concept from prompts, but typically perform poorly in preventing undesired editing. To address this issue, we propose an Anti-Editing Concept Erasure (ACE) method, which not only erases the target concept during generation but also filters out it during editing. Specifically, we propose to inject the erasure guidance into both conditional and the unconditional noise prediction, enabling the model to effectively prevent the creation of erasure concepts during both editing and generation. Furthermore, a stochastic correction guidance is introduced during training to address the erosion of unrelated concepts. We conducted erasure editing experiments with representative editing methods (i.e., LEDITS++ and MasaCtrl) to erase IP characters, and the results indicate that our ACE effectively filters out target concepts in both types of edits. Additional experiments on erasing explicit concepts and artistic styles further demonstrate that our ACE performs favorably against state-of-the-art methods. Our code will be publicly available at https://github.com/120L020904/ACE.
Break the Breakout: Reinventing LM Defense Against Jailbreak Attacks with Self-Refinement
Caution: This paper includes offensive words that could potentially cause unpleasantness. Language models (LMs) are vulnerable to exploitation for adversarial misuse. Training LMs for safety alignment is extensive and makes it hard to respond to fast-developing attacks immediately, such as jailbreaks. We propose self-refine with formatting that achieves outstanding safety even in non-safety-aligned LMs and evaluate our method alongside several defense baselines, demonstrating that it is the safest training-free method against jailbreak attacks. Additionally, we proposed a formatting method that improves the efficiency of the self-refine process while reducing attack success rates in fewer iterations. We've also observed that non-safety-aligned LMs outperform safety-aligned LMs in safety tasks by giving more helpful and safe responses. In conclusion, our findings can achieve less safety risk with fewer computational costs, allowing non-safety LM to be easily utilized in real-world service.
Improving Speech Recognition Error Prediction for Modern and Off-the-shelf Speech Recognizers
Modeling the errors of a speech recognizer can help simulate errorful recognized speech data from plain text, which has proven useful for tasks like discriminative language modeling, improving robustness of NLP systems, where limited or even no audio data is available at train time. Previous work typically considered replicating behavior of GMM-HMM based systems, but the behavior of more modern posterior-based neural network acoustic models is not the same and requires adjustments to the error prediction model. In this work, we extend a prior phonetic confusion based model for predicting speech recognition errors in two ways: first, we introduce a sampling-based paradigm that better simulates the behavior of a posterior-based acoustic model. Second, we investigate replacing the confusion matrix with a sequence-to-sequence model in order to introduce context dependency into the prediction. We evaluate the error predictors in two ways: first by predicting the errors made by a Switchboard ASR system on unseen data (Fisher), and then using that same predictor to estimate the behavior of an unrelated cloud-based ASR system on a novel task. Sampling greatly improves predictive accuracy within a 100-guess paradigm, while the sequence model performs similarly to the confusion matrix.
In Rain or Shine: Understanding and Overcoming Dataset Bias for Improving Robustness Against Weather Corruptions for Autonomous Vehicles
Several popular computer vision (CV) datasets, specifically employed for Object Detection (OD) in autonomous driving tasks exhibit biases due to a range of factors including weather and lighting conditions. These biases may impair a model's generalizability, rendering it ineffective for OD in novel and unseen datasets. Especially, in autonomous driving, it may prove extremely high risk and unsafe for the vehicle and its surroundings. This work focuses on understanding these datasets better by identifying such "good-weather" bias. Methods to mitigate such bias which allows the OD models to perform better and improve the robustness are also demonstrated. A simple yet effective OD framework for studying bias mitigation is proposed. Using this framework, the performance on popular datasets is analyzed and a significant difference in model performance is observed. Additionally, a knowledge transfer technique and a synthetic image corruption technique are proposed to mitigate the identified bias. Finally, using the DAWN dataset, the findings are validated on the OD task, demonstrating the effectiveness of our techniques in mitigating real-world "good-weather" bias. The experiments show that the proposed techniques outperform baseline methods by averaged fourfold improvement.
Handling and Presenting Harmful Text in NLP Research
Text data can pose a risk of harm. However, the risks are not fully understood, and how to handle, present, and discuss harmful text in a safe way remains an unresolved issue in the NLP community. We provide an analytical framework categorising harms on three axes: (1) the harm type (e.g., misinformation, hate speech or racial stereotypes); (2) whether a harm is sought as a feature of the research design if explicitly studying harmful content (e.g., training a hate speech classifier), versus unsought if harmful content is encountered when working on unrelated problems (e.g., language generation or part-of-speech tagging); and (3) who it affects, from people (mis)represented in the data to those handling the data and those publishing on the data. We provide advice for practitioners, with concrete steps for mitigating harm in research and in publication. To assist implementation we introduce HarmCheck -- a documentation standard for handling and presenting harmful text in research.
Safety Alignment Should Be Made More Than Just a Few Tokens Deep
The safety alignment of current Large Language Models (LLMs) is vulnerable. Relatively simple attacks, or even benign fine-tuning, can jailbreak aligned models. We argue that many of these vulnerabilities are related to a shared underlying issue: safety alignment can take shortcuts, wherein the alignment adapts a model's generative distribution primarily over only its very first few output tokens. We refer to this issue as shallow safety alignment. In this paper, we present case studies to explain why shallow safety alignment can exist and provide evidence that current aligned LLMs are subject to this issue. We also show how these findings help explain multiple recently discovered vulnerabilities in LLMs, including the susceptibility to adversarial suffix attacks, prefilling attacks, decoding parameter attacks, and fine-tuning attacks. Importantly, we discuss how this consolidated notion of shallow safety alignment sheds light on promising research directions for mitigating these vulnerabilities. For instance, we show that deepening the safety alignment beyond just the first few tokens can often meaningfully improve robustness against some common exploits. Finally, we design a regularized finetuning objective that makes the safety alignment more persistent against fine-tuning attacks by constraining updates on initial tokens. Overall, we advocate that future safety alignment should be made more than just a few tokens deep.
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
The trade-off between robustness and accuracy has been widely studied in the adversarial literature. Although still controversial, the prevailing view is that this trade-off is inherent, either empirically or theoretically. Thus, we dig for the origin of this trade-off in adversarial training and find that it may stem from the improperly defined robust error, which imposes an inductive bias of local invariance -- an overcorrection towards smoothness. Given this, we advocate employing local equivariance to describe the ideal behavior of a robust model, leading to a self-consistent robust error named SCORE. By definition, SCORE facilitates the reconciliation between robustness and accuracy, while still handling the worst-case uncertainty via robust optimization. By simply substituting KL divergence with variants of distance metrics, SCORE can be efficiently minimized. Empirically, our models achieve top-rank performance on RobustBench under AutoAttack. Besides, SCORE provides instructive insights for explaining the overfitting phenomenon and semantic input gradients observed on robust models. Code is available at https://github.com/P2333/SCORE.
Inference Scaling scriptsizeFLaws: The Limits of LLM Resampling with Imperfect Verifiers
Recent research has generated hope that inference scaling could allow weaker language models to match or exceed the accuracy of stronger models, such as by repeatedly sampling solutions to a coding problem until it passes unit tests. The central thesis of this paper is that there is no free lunch for inference scaling: indefinite accuracy improvement through resampling can only be realized if the "verifier" (in this case, a set of unit tests) is perfect. When the verifier is imperfect, as it almost always is in domains such as reasoning or coding (for example, unit tests have imperfect coverage), there is a nonzero probability of false positives: incorrect solutions that pass the verifier. Resampling cannot decrease this probability, so it imposes an upper bound to the accuracy of resampling-based inference scaling even with an infinite compute budget. We find that there is a very strong correlation between the model's single-sample accuracy (i.e. accuracy without unit tests) and its false positive rate on coding benchmarks HumanEval and MBPP, whose unit tests have limited coverage. Therefore, no amount of inference scaling of weaker models can enable them to match the single-sample accuracy of a sufficiently strong model (Fig. 1a). When we consider that false positives have a negative utility compared to abstaining from producing a solution, it bends the inference scaling curve further downward. Empirically, we find that the optimal number of samples can be less than 10 under realistic assumptions (Fig. 1b). Finally, we show that beyond accuracy, false positives may have other undesirable qualities, such as poor adherence to coding style conventions.
Discovery of interpretable structural model errors by combining Bayesian sparse regression and data assimilation: A chaotic Kuramoto-Sivashinsky test case
Models of many engineering and natural systems are imperfect. The discrepancy between the mathematical representations of a true physical system and its imperfect model is called the model error. These model errors can lead to substantial differences between the numerical solutions of the model and the state of the system, particularly in those involving nonlinear, multi-scale phenomena. Thus, there is increasing interest in reducing model errors, particularly by leveraging the rapidly growing observational data to understand their physics and sources. Here, we introduce a framework named MEDIDA: Model Error Discovery with Interpretability and Data Assimilation. MEDIDA only requires a working numerical solver of the model and a small number of noise-free or noisy sporadic observations of the system. In MEDIDA, first the model error is estimated from differences between the observed states and model-predicted states (the latter are obtained from a number of one-time-step numerical integrations from the previous observed states). If observations are noisy, a data assimilation (DA) technique such as ensemble Kalman filter (EnKF) is employed to provide the analysis state of the system, which is then used to estimate the model error. Finally, an equation-discovery technique, here the relevance vector machine (RVM), a sparsity-promoting Bayesian method, is used to identify an interpretable, parsimonious, and closed-form representation of the model error. Using the chaotic Kuramoto-Sivashinsky (KS) system as the test case, we demonstrate the excellent performance of MEDIDA in discovering different types of structural/parametric model errors, representing different types of missing physics, using noise-free and noisy observations.
Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing
While prior research has proposed a plethora of methods that build neural classifiers robust against adversarial robustness, practitioners are still reluctant to adopt them due to their unacceptably severe clean accuracy penalties. This paper significantly alleviates this accuracy-robustness trade-off by mixing the output probabilities of a standard classifier and a robust classifier, where the standard network is optimized for clean accuracy and is not robust in general. We show that the robust base classifier's confidence difference for correct and incorrect examples is the key to this improvement. In addition to providing intuitions and empirical evidence, we theoretically certify the robustness of the mixed classifier under realistic assumptions. Furthermore, we adapt an adversarial input detector into a mixing network that adaptively adjusts the mixture of the two base models, further reducing the accuracy penalty of achieving robustness. The proposed flexible method, termed "adaptive smoothing", can work in conjunction with existing or even future methods that improve clean accuracy, robustness, or adversary detection. Our empirical evaluation considers strong attack methods, including AutoAttack and adaptive attack. On the CIFAR-100 dataset, our method achieves an 85.21% clean accuracy while maintaining a 38.72% ell_infty-AutoAttacked (epsilon = 8/255) accuracy, becoming the second most robust method on the RobustBench CIFAR-100 benchmark as of submission, while improving the clean accuracy by ten percentage points compared with all listed models. The code that implements our method is available at https://github.com/Bai-YT/AdaptiveSmoothing.
Evaluating Pre-trained Language Models for Repairing API Misuses
API misuses often lead to software bugs, crashes, and vulnerabilities. While several API misuse detectors have been proposed, there are no automatic repair tools specifically designed for this purpose. In a recent study, test-suite-based automatic program repair (APR) tools were found to be ineffective in repairing API misuses. Still, since the study focused on non-learning-aided APR tools, it remains unknown whether learning-aided APR tools are capable of fixing API misuses. In recent years, pre-trained language models (PLMs) have succeeded greatly in many natural language processing tasks. There is a rising interest in applying PLMs to APR. However, there has not been any study that investigates the effectiveness of PLMs in repairing API misuse. To fill this gap, we conduct a comprehensive empirical study on 11 learning-aided APR tools, which include 9 of the state-of-the-art general-purpose PLMs and two APR tools. We evaluate these models with an API-misuse repair dataset, consisting of two variants. Our results show that PLMs perform better than the studied APR tools in repairing API misuses. Among the 9 pre-trained models tested, CodeT5 is the best performer in the exact match. We also offer insights and potential exploration directions for future research.
SEAL : Interactive Tool for Systematic Error Analysis and Labeling
With the advent of Transformers, large language models (LLMs) have saturated well-known NLP benchmarks and leaderboards with high aggregate performance. However, many times these models systematically fail on tail data or rare groups not obvious in aggregate evaluation. Identifying such problematic data groups is even more challenging when there are no explicit labels (e.g., ethnicity, gender, etc.) and further compounded for NLP datasets due to the lack of visual features to characterize failure modes (e.g., Asian males, animals indoors, waterbirds on land, etc.). This paper introduces an interactive Systematic Error Analysis and Labeling (\seal) tool that uses a two-step approach to first identify high error slices of data and then, in the second step, introduce methods to give human-understandable semantics to those underperforming slices. We explore a variety of methods for coming up with coherent semantics for the error groups using language models for semantic labeling and a text-to-image model for generating visual features. SEAL toolkit and demo screencast is available at https://huggingface.co/spaces/nazneen/seal.
Vaccine: Perturbation-aware Alignment for Large Language Models against Harmful Fine-tuning Attack
The new paradigm of finetuning-as-a-service introduces a new attack surface for Large Language Models (LLMs): a few harmful data uploaded by users can easily trick the finetuning to produce an alignment-broken model. We conduct an empirical analysis and uncover a harmful embedding drift phenomenon, showing a probable cause of the alignment-broken effect. Inspired by our findings, we propose Vaccine, a perturbation-aware alignment technique to mitigate the security risk of users finetuning. The core idea of Vaccine is to produce invariant hidden embeddings by progressively adding crafted perturbation to them in the alignment phase. This enables the embeddings to withstand harmful perturbation from un-sanitized user data in the finetuning phase. Our results on open source mainstream LLMs (e.g., Llama2, Opt, Vicuna) demonstrate that Vaccine can boost the robustness of alignment against harmful prompts induced embedding drift while reserving reasoning ability towards benign prompts. Our code is available at https://github.com/git-disl/Vaccine.
GrammarGPT: Exploring Open-Source LLMs for Native Chinese Grammatical Error Correction with Supervised Fine-Tuning
Grammatical error correction aims to correct ungrammatical sentences automatically. Recently, some work has demonstrated the excellent capabilities of closed-source Large Language Models (LLMs, e.g., ChatGPT) in grammatical error correction. However, the potential of open-source LLMs remains unexplored. In this paper, we introduced GrammarGPT, an open-source LLM, to preliminary explore its potential for native Chinese grammatical error correction. The core recipe of GrammarGPT is to leverage the hybrid dataset of ChatGPT-generated and human-annotated. For grammatical errors with clues, we proposed a heuristic method to guide ChatGPT to generate ungrammatical sentences by providing those clues. For grammatical errors without clues, we collected ungrammatical sentences from publicly available websites and manually corrected them. In addition, we employed an error-invariant augmentation method to enhance the ability of the model to correct native Chinese grammatical errors. We ultimately constructed about 1k parallel data and utilized these data to fine-tune open-source LLMs (e.g., Phoenix, released by The Chinese University of Hong Kong, Shenzhen) with instruction tuning. The experimental results show that GrammarGPT outperforms the existing SOTA system significantly. Although model parameters are 20x larger than the SOTA baseline, the required amount of data for instruction tuning is 1200x smaller, illustrating the potential of open-source LLMs on native CGEC. Our GrammarGPT ranks 3^{rd} on NLPCC2023 SharedTask1, demonstrating our approach's effectiveness. The code and data are available at https://github.com/FreedomIntelligence/GrammarGPT.
Handwritten Code Recognition for Pen-and-Paper CS Education
Teaching Computer Science (CS) by having students write programs by hand on paper has key pedagogical advantages: It allows focused learning and requires careful thinking compared to the use of Integrated Development Environments (IDEs) with intelligent support tools or "just trying things out". The familiar environment of pens and paper also lessens the cognitive load of students with no prior experience with computers, for whom the mere basic usage of computers can be intimidating. Finally, this teaching approach opens learning opportunities to students with limited access to computers. However, a key obstacle is the current lack of teaching methods and support software for working with and running handwritten programs. Optical character recognition (OCR) of handwritten code is challenging: Minor OCR errors, perhaps due to varied handwriting styles, easily make code not run, and recognizing indentation is crucial for languages like Python but is difficult to do due to inconsistent horizontal spacing in handwriting. Our approach integrates two innovative methods. The first combines OCR with an indentation recognition module and a language model designed for post-OCR error correction without introducing hallucinations. This method, to our knowledge, surpasses all existing systems in handwritten code recognition. It reduces error from 30\% in the state of the art to 5\% with minimal hallucination of logical fixes to student programs. The second method leverages a multimodal language model to recognize handwritten programs in an end-to-end fashion. We hope this contribution can stimulate further pedagogical research and contribute to the goal of making CS education universally accessible. We release a dataset of handwritten programs and code to support future research at https://github.com/mdoumbouya/codeocr
Quantum error correction with an Ising machine under circuit-level noise
Efficient decoding to estimate error locations from outcomes of syndrome measurement is the prerequisite for quantum error correction. Decoding in presence of circuit-level noise including measurement errors should be considered in case of actual quantum computing devices. In this work, we develop a decoder for circuit-level noise that solves the error estimation problems as Ising-type optimization problems. We confirm that the threshold theorem in the surface code under the circuitlevel noise is reproduced with an error threshold of approximately 0.4%. We also demonstrate the advantage of the decoder through which the Y error detection rate can be improved compared with other matching-based decoders. Our results reveal that a lower logical error rate can be obtained using our algorithm compared with that of the minimum-weight perfect matching algorithm.
LLMs as Continuous Learners: Improving the Reproduction of Defective Code in Software Issues
Reproducing buggy code is the first and crucially important step in issue resolving, as it aids in identifying the underlying problems and validating that generated patches resolve the problem. While numerous approaches have been proposed for this task, they primarily address common, widespread errors and struggle to adapt to unique, evolving errors specific to individual code repositories. To fill this gap, we propose EvoCoder, a multi-agent continuous learning framework for issue code reproduction. EvoCoder adopts a reflection mechanism that allows the LLM to continuously learn from previously resolved problems and dynamically refine its strategies to new emerging challenges. To prevent experience bloating, EvoCoder introduces a novel hierarchical experience pool that enables the model to adaptively update common and repo-specific experiences. Our experimental results show a 20\% improvement in issue reproduction rates over existing SOTA methods. Furthermore, integrating our reproduction mechanism significantly boosts the overall accuracy of the existing issue-resolving pipeline.
Automatically Generating Commit Messages from Diffs using Neural Machine Translation
Commit messages are a valuable resource in comprehension of software evolution, since they provide a record of changes such as feature additions and bug repairs. Unfortunately, programmers often neglect to write good commit messages. Different techniques have been proposed to help programmers by automatically writing these messages. These techniques are effective at describing what changed, but are often verbose and lack context for understanding the rationale behind a change. In contrast, humans write messages that are short and summarize the high level rationale. In this paper, we adapt Neural Machine Translation (NMT) to automatically "translate" diffs into commit messages. We trained an NMT algorithm using a corpus of diffs and human-written commit messages from the top 1k Github projects. We designed a filter to help ensure that we only trained the algorithm on higher-quality commit messages. Our evaluation uncovered a pattern in which the messages we generate tend to be either very high or very low quality. Therefore, we created a quality-assurance filter to detect cases in which we are unable to produce good messages, and return a warning instead.
Defending Against Unforeseen Failure Modes with Latent Adversarial Training
Despite extensive diagnostics and debugging by developers, AI systems sometimes exhibit harmful unintended behaviors. Finding and fixing these is challenging because the attack surface is so large -- it is not tractable to exhaustively search for inputs that may elicit harmful behaviors. Red-teaming and adversarial training (AT) are commonly used to improve robustness, however, they empirically struggle to fix failure modes that differ from the attacks used during training. In this work, we utilize latent adversarial training (LAT) to defend against vulnerabilities without leveraging knowledge of what they are or using inputs that elicit them. LAT makes use of the compressed, abstract, and structured latent representations of concepts that the network actually uses for prediction. Here, we use it to defend against failure modes without examples that elicit them. Specifically, we use LAT to remove trojans and defend against held-out classes of adversarial attacks. We show in image classification, text classification, and text generation tasks that LAT usually improves both robustness to novel attacks and performance on clean data relative to AT. This suggests that LAT can be a promising tool for defending against failure modes that are not explicitly identified by developers.
Are LLMs Better than Reported? Detecting Label Errors and Mitigating Their Effect on Model Performance
NLP benchmarks rely on standardized datasets for training and evaluating models and are crucial for advancing the field. Traditionally, expert annotations ensure high-quality labels; however, the cost of expert annotation does not scale well with the growing demand for larger datasets required by modern models. While crowd-sourcing provides a more scalable solution, it often comes at the expense of annotation precision and consistency. Recent advancements in large language models (LLMs) offer new opportunities to enhance the annotation process, particularly for detecting label errors in existing datasets. In this work, we consider the recent approach of LLM-as-a-judge, leveraging an ensemble of LLMs to flag potentially mislabeled examples. Through a case study of four datasets from the TRUE benchmark, covering different tasks and domains, we empirically analyze the labeling quality of existing datasets, and compare expert, crowd-sourced, and our LLM-based annotations in terms of agreement, label quality, and efficiency, demonstrating the strengths and limitations of each annotation method. Our findings reveal a substantial number of label errors, which, when corrected, induce a significant upward shift in reported model performance. This suggests that many of the LLMs so-called mistakes are due to label errors rather than genuine model failures. Additionally, we discuss the implications of mislabeled data and propose methods to mitigate them in training to improve model performance.
Learning From Mistakes Makes LLM Better Reasoner
Large language models (LLMs) recently exhibited remarkable reasoning capabilities on solving math problems. To further improve this capability, this work proposes Learning from Mistakes (LeMa), akin to human learning processes. Consider a human student who failed to solve a math problem, he will learn from what mistake he has made and how to correct it. Mimicking this error-driven learning process, LeMa fine-tunes LLMs on mistake-correction data pairs generated by GPT-4. Specifically, we first collect inaccurate reasoning paths from various LLMs and then employ GPT-4 as a "corrector" to (1) identify the mistake step, (2) explain the reason for the mistake, and (3) correct the mistake and generate the final answer. Experimental results demonstrate the effectiveness of LeMa: across five backbone LLMs and two mathematical reasoning tasks, LeMa consistently improves the performance compared with fine-tuning on CoT data alone. Impressively, LeMa can also benefit specialized LLMs such as WizardMath and MetaMath, achieving 85.4% pass@1 accuracy on GSM8K and 27.1% on MATH. This surpasses the SOTA performance achieved by non-execution open-source models on these challenging tasks. Our code, data and models will be publicly available at https://github.com/microsoft/CodeT.
LLM Interactive Optimization of Open Source Python Libraries -- Case Studies and Generalization
With the advent of large language models (LLMs) like GPT-3, a natural question is the extent to which these models can be utilized for source code optimization. This paper presents methodologically stringent case studies applied to well-known open source python libraries pillow and numpy. We find that contemporary LLM ChatGPT-4 (state September and October 2023) is surprisingly adept at optimizing energy and compute efficiency. However, this is only the case in interactive use, with a human expert in the loop. Aware of experimenter bias, we document our qualitative approach in detail, and provide transcript and source code. We start by providing a detailed description of our approach in conversing with the LLM to optimize the _getextrema function in the pillow library, and a quantitative evaluation of the performance improvement. To demonstrate qualitative replicability, we report further attempts on another locus in the pillow library, and one code locus in the numpy library, to demonstrate generalization within and beyond a library. In all attempts, the performance improvement is significant (factor up to 38). We have also not omitted reporting of failed attempts (there were none). We conclude that LLMs are a promising tool for code optimization in open source libraries, but that the human expert in the loop is essential for success. Nonetheless, we were surprised by how few iterations were required to achieve substantial performance improvements that were not obvious to the expert in the loop. We would like bring attention to the qualitative nature of this study, more robust quantitative studies would need to introduce a layer of selecting experts in a representative sample -- we invite the community to collaborate.
Conversational Automated Program Repair
Automated Program Repair (APR) can help developers automatically generate patches for bugs. Due to the impressive performance obtained using Large Pre-Trained Language Models (LLMs) on many code related tasks, researchers have started to directly use LLMs for APR. However, prior approaches simply repeatedly sample the LLM given the same constructed input/prompt created from the original buggy code, which not only leads to generating the same incorrect patches repeatedly but also miss the critical information in testcases. To address these limitations, we propose conversational APR, a new paradigm for program repair that alternates between patch generation and validation in a conversational manner. In conversational APR, we iteratively build the input to the model by combining previously generated patches with validation feedback. As such, we leverage the long-term context window of LLMs to not only avoid generating previously incorrect patches but also incorporate validation feedback to help the model understand the semantic meaning of the program under test. We evaluate 10 different LLM including the newly developed ChatGPT model to demonstrate the improvement of conversational APR over the prior LLM for APR approach.
SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks
Despite efforts to align large language models (LLMs) with human values, widely-used LLMs such as GPT, Llama, Claude, and PaLM are susceptible to jailbreaking attacks, wherein an adversary fools a targeted LLM into generating objectionable content. To address this vulnerability, we propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on LLMs. Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs. SmoothLLM reduces the attack success rate on numerous popular LLMs to below one percentage point, avoids unnecessary conservatism, and admits provable guarantees on attack mitigation. Moreover, our defense uses exponentially fewer queries than existing attacks and is compatible with any LLM. Our code is publicly available at the following link: https://github.com/arobey1/smooth-llm.
Lisa: Lazy Safety Alignment for Large Language Models against Harmful Fine-tuning Attack
Recent studies show that Large Language Models (LLMs) with safety alignment can be jail-broken by fine-tuning on a dataset mixed with harmful data. First time in the literature, we show that the jail-broken effect can be mitigated by separating states in the finetuning stage to optimize the alignment and user datasets. Unfortunately, our subsequent study shows that this simple Bi-State Optimization (BSO) solution experiences convergence instability when steps invested in its alignment state is too small, leading to downgraded alignment performance. By statistical analysis, we show that the excess drift towards consensus could be a probable reason for the instability. To remedy this issue, we propose Lazy(i) safety alignment (Lisa), which introduces a proximal term to constraint the drift of each state. Theoretically, the benefit of the proximal term is supported by the convergence analysis, wherein we show that a sufficient large proximal factor is necessary to guarantee Lisa's convergence. Empirically, our results on four downstream finetuning tasks show that Lisa with a proximal term can significantly increase alignment performance while maintaining the LLM's accuracy on the user tasks. Code is available at https://github.com/git-disl/Lisa.
RegMix: Data Mixing Augmentation for Regression
Data augmentation is becoming essential for improving regression performance in critical applications including manufacturing, climate prediction, and finance. Existing techniques for data augmentation largely focus on classification tasks and do not readily apply to regression tasks. In particular, the recent Mixup techniques for classification have succeeded in improving the model performance, which is reasonable due to the characteristics of the classification task, but has limitations in regression. We show that mixing examples that have large data distances using linear interpolations may have increasingly-negative effects on model performance. Our key idea is thus to limit the distances between examples that are mixed. We propose RegMix, a data augmentation framework for regression that learns for each example how many nearest neighbors it should be mixed with for the best model performance using a validation set. Our experiments conducted both on synthetic and real datasets show that RegMix outperforms state-of-the-art data augmentation baselines applicable to regression.
ThinkGuard: Deliberative Slow Thinking Leads to Cautious Guardrails
Ensuring the safety of large language models (LLMs) is critical as they are deployed in real-world applications. Existing guardrails rely on rule-based filtering or single-pass classification, limiting their ability to handle nuanced safety violations. To address this, we propose ThinkGuard, a critique-augmented guardrail model that distills knowledge from high-capacity LLMs by generating structured critiques alongside safety labels. Fine-tuned on critique-augmented data, the captured deliberative thinking ability drastically enhances the guardrail's cautiousness and interpretability. Evaluated on multiple safety benchmarks, ThinkGuard achieves the highest average F1 and AUPRC, outperforming all baselines. Compared to LLaMA Guard 3, ThinkGuard improves accuracy by 16.1% and macro F1 by 27.0%. Moreover, it surpasses label-only fine-tuned models, confirming that structured critiques enhance both classification precision and nuanced safety reasoning while maintaining computational efficiency.
Deep Learning and Data Augmentation for Detecting Self-Admitted Technical Debt
Self-Admitted Technical Debt (SATD) refers to circumstances where developers use textual artifacts to explain why the existing implementation is not optimal. Past research in detecting SATD has focused on either identifying SATD (classifying SATD items as SATD or not) or categorizing SATD (labeling instances as SATD that pertain to requirement, design, code, test debt, etc.). However, the performance of these approaches remains suboptimal, particularly for specific types of SATD, such as test and requirement debt, primarily due to extremely imbalanced datasets. To address these challenges, we build on earlier research by utilizing BiLSTM architecture for the binary identification of SATD and BERT architecture for categorizing different types of SATD. Despite their effectiveness, both architectures struggle with imbalanced data. Therefore, we employ a large language model data augmentation strategy to mitigate this issue. Furthermore, we introduce a two-step approach to identify and categorize SATD across various datasets derived from different artifacts. Our contributions include providing a balanced dataset for future SATD researchers and demonstrating that our approach significantly improves SATD identification and categorization performance compared to baseline methods.
Fundamental Challenges in Evaluating Text2SQL Solutions and Detecting Their Limitations
In this work, we dive into the fundamental challenges of evaluating Text2SQL solutions and highlight potential failure causes and the potential risks of relying on aggregate metrics in existing benchmarks. We identify two largely unaddressed limitations in current open benchmarks: (1) data quality issues in the evaluation data, mainly attributed to the lack of capturing the probabilistic nature of translating a natural language description into a structured query (e.g., NL ambiguity), and (2) the bias introduced by using different match functions as approximations for SQL equivalence. To put both limitations into context, we propose a unified taxonomy of all Text2SQL limitations that can lead to both prediction and evaluation errors. We then motivate the taxonomy by providing a survey of Text2SQL limitations using state-of-the-art Text2SQL solutions and benchmarks. We describe the causes of limitations with real-world examples and propose potential mitigation solutions for each category in the taxonomy. We conclude by highlighting the open challenges encountered when deploying such mitigation strategies or attempting to automatically apply the taxonomy.
Safety Arithmetic: A Framework for Test-time Safety Alignment of Language Models by Steering Parameters and Activations
Ensuring the safe alignment of large language models (LLMs) with human values is critical as they become integral to applications like translation and question answering. Current alignment methods struggle with dynamic user intentions and complex objectives, making models vulnerable to generating harmful content. We propose Safety Arithmetic, a training-free framework enhancing LLM safety across different scenarios: Base models, Supervised fine-tuned models (SFT), and Edited models. Safety Arithmetic involves Harm Direction Removal to avoid harmful content and Safety Alignment to promote safe responses. Additionally, we present NoIntentEdit, a dataset highlighting edit instances that could compromise model safety if used unintentionally. Our experiments show that Safety Arithmetic significantly improves safety measures, reduces over-safety, and maintains model utility, outperforming existing methods in ensuring safe content generation.
Iterative Refinement of Project-Level Code Context for Precise Code Generation with Compiler Feedback
Large Language Models (LLMs) have shown remarkable progress in automated code generation. Yet, LLM-generated code may contain errors in API usage, class, data structure, or missing project-specific information. As much of this project-specific context cannot fit into the prompts of LLMs, we must find ways to allow the model to explore the project-level code context. We present CoCoGen, a new code generation approach that uses compiler feedback to improve the LLM-generated code. CoCoGen first leverages static analysis to identify mismatches between the generated code and the project's context. It then iteratively aligns and fixes the identified errors using information extracted from the code repository. We integrate CoCoGen with two representative LLMs, i.e., GPT-3.5-Turbo and Code Llama (13B), and apply it to Python code generation. Experimental results show that CoCoGen significantly improves the vanilla LLMs by over 80% in generating code dependent on the project context and consistently outperforms the existing retrieval-based code generation baselines.
Unlocking Anticipatory Text Generation: A Constrained Approach for Faithful Decoding with Large Language Models
Large Language Models (LLMs) have demonstrated a powerful ability for text generation. However, achieving optimal results with a given prompt or instruction can be challenging, especially for billion-sized models. Additionally, undesired behaviors such as toxicity or hallucinations can manifest. While much larger models (e.g., ChatGPT) may demonstrate strength in mitigating these issues, there is still no guarantee of complete prevention. In this work, we propose formalizing text generation as a future-constrained generation problem to minimize undesirable behaviors and enforce faithfulness to instructions. The estimation of future constraint satisfaction, accomplished using LLMs, guides the text generation process. Our extensive experiments demonstrate the effectiveness of the proposed approach across three distinct text generation tasks: keyword-constrained generation (Lin et al., 2020), toxicity reduction (Gehman et al., 2020), and factual correctness in question-answering (Gao et al., 2023).
Learning to Reject with a Fixed Predictor: Application to Decontextualization
We study the problem of classification with a reject option for a fixed predictor, applicable in natural language processing. We introduce a new problem formulation for this scenario, and an algorithm minimizing a new surrogate loss function. We provide a complete theoretical analysis of the surrogate loss function with a strong H-consistency guarantee. For evaluation, we choose the decontextualization task, and provide a manually-labelled dataset of 2mathord,000 examples. Our algorithm significantly outperforms the baselines considered, with a sim!!25% improvement in coverage when halving the error rate, which is only sim!! 3 % away from the theoretical limit.
Self-Infilling Code Generation
This work introduces a general code generation framework that incorporates infilling operations into auto-regressive decoding. Our approach capitalizes on the observation that recent code language models with infilling capabilities can perform self-infilling: whereas infilling operations aim to fill in the middle based on a predefined prefix and suffix, self-infilling sequentially generates both such surrounding context and the infilled content. We utilize this feature to develop an infilling-augmented decoding process that facilitates non-monotonic generation. This approach allows for postponing the generation of uncertain code snippets until a definitive suffix is established, leading to improved control over the generation sequence. In addition, it facilitates a looping mechanism, which can iteratively update and synchronize each piece of generation in a cyclic manner. Extensive experiments are conducted to demonstrate that our proposed decoding process is effective in enhancing regularity and quality across several code generation benchmarks.
Experimental Standards for Deep Learning in Natural Language Processing Research
The field of Deep Learning (DL) has undergone explosive growth during the last decade, with a substantial impact on Natural Language Processing (NLP) as well. Yet, compared to more established disciplines, a lack of common experimental standards remains an open challenge to the field at large. Starting from fundamental scientific principles, we distill ongoing discussions on experimental standards in NLP into a single, widely-applicable methodology. Following these best practices is crucial to strengthen experimental evidence, improve reproducibility and support scientific progress. These standards are further collected in a public repository to help them transparently adapt to future needs.
PREGO: online mistake detection in PRocedural EGOcentric videos
Promptly identifying procedural errors from egocentric videos in an online setting is highly challenging and valuable for detecting mistakes as soon as they happen. This capability has a wide range of applications across various fields, such as manufacturing and healthcare. The nature of procedural mistakes is open-set since novel types of failures might occur, which calls for one-class classifiers trained on correctly executed procedures. However, no technique can currently detect open-set procedural mistakes online. We propose PREGO, the first online one-class classification model for mistake detection in PRocedural EGOcentric videos. PREGO is based on an online action recognition component to model the current action, and a symbolic reasoning module to predict the next actions. Mistake detection is performed by comparing the recognized current action with the expected future one. We evaluate PREGO on two procedural egocentric video datasets, Assembly101 and Epic-tent, which we adapt for online benchmarking of procedural mistake detection to establish suitable benchmarks, thus defining the Assembly101-O and Epic-tent-O datasets, respectively.
T5APR: Empowering Automated Program Repair across Languages through Checkpoint Ensemble
Automated program repair (APR) using deep learning techniques has become an important area of research in recent years, aiming to automatically generate bug-fixing patches that can improve software reliability and maintainability. However, most existing methods either target a single language or require high computational resources to train multilingual models. In this paper, we propose T5APR, a novel neural program repair approach that provides a unified solution for bug fixing across multiple programming languages. T5APR leverages CodeT5, a powerful pre-trained text-to-text transformer model, and adopts a checkpoint ensemble strategy to improve patch recommendation. We conduct comprehensive evaluations on six well-known benchmarks in four programming languages (Java, Python, C, JavaScript), demonstrating T5APR's competitiveness against state-of-the-art techniques. T5APR correctly fixes 1,985 bugs, including 1,442 bugs that none of the compared techniques has fixed. We further support the effectiveness of our approach by conducting detailed analyses, such as comparing the correct patch ranking among different techniques. The findings of this study demonstrate the potential of T5APR for use in real-world applications and highlight the importance of multilingual approaches in the field of APR.
Corrective Machine Unlearning
Machine Learning models increasingly face data integrity challenges due to the use of large-scale training datasets drawn from the Internet. We study what model developers can do if they detect that some data was manipulated or incorrect. Such manipulated data can cause adverse effects including vulnerability to backdoored samples, systemic biases, and reduced accuracy on certain input domains. Realistically, all manipulated training samples cannot be identified, and only a small, representative subset of the affected data can be flagged. We formalize Corrective Machine Unlearning as the problem of mitigating the impact of data affected by unknown manipulations on a trained model, only having identified a subset of the corrupted data. We demonstrate that the problem of corrective unlearning has significantly different requirements from traditional privacy-oriented unlearning. We find most existing unlearning methods, including retraining-from-scratch without the deletion set, require most of the manipulated data to be identified for effective corrective unlearning. However, one approach, Selective Synaptic Dampening, achieves limited success, unlearning adverse effects with just a small portion of the manipulated samples in our setting, which shows encouraging signs for future progress. We hope our work spurs research towards developing better methods for corrective unlearning and offers practitioners a new strategy to handle data integrity challenges arising from web-scale training. Code is available at https://github.com/drimpossible/corrective-unlearning-bench.
Generalization or Memorization: Data Contamination and Trustworthy Evaluation for Large Language Models
Recent statements about the impressive capabilities of large language models (LLMs) are usually supported by evaluating on open-access benchmarks. Considering the vast size and wide-ranging sources of LLMs' training data, it could explicitly or implicitly include test data, leading to LLMs being more susceptible to data contamination. However, due to the opacity of training data, the black-box access of models, and the rapid growth of synthetic training data, detecting and mitigating data contamination for LLMs faces significant challenges. In this paper, we propose CDD, which stands for Contamination Detection via output Distribution for LLMs. CDD necessitates only the sampled texts to detect data contamination, by identifying the peakedness of LLM's output distribution. To mitigate the impact of data contamination in evaluation, we also present TED: Trustworthy Evaluation via output Distribution, based on the correction of LLM's output distribution. To facilitate this study, we introduce two benchmarks, i.e., DetCon and ComiEval, for data contamination detection and contamination mitigation evaluation tasks. Extensive experimental results show that CDD achieves the average relative improvements of 21.8\%-30.2\% over other contamination detection approaches in terms of Accuracy, F1 Score, and AUC metrics, and can effectively detect implicit contamination. TED substantially mitigates performance improvements up to 66.9\% attributed to data contamination across various contamination setups. In real-world applications, we reveal that ChatGPT exhibits a high potential to suffer from data contamination on HumanEval benchmark.
Understanding Why Label Smoothing Degrades Selective Classification and How to Fix It
Label smoothing (LS) is a popular regularisation method for training deep neural network classifiers due to its effectiveness in improving test accuracy and its simplicity in implementation. "Hard" one-hot labels are "smoothed" by uniformly distributing probability mass to other classes, reducing overfitting. In this work, we reveal that LS negatively affects selective classification (SC) - where the aim is to reject misclassifications using a model's predictive uncertainty. We first demonstrate empirically across a range of tasks and architectures that LS leads to a consistent degradation in SC. We then explain this by analysing logit-level gradients, showing that LS exacerbates overconfidence and underconfidence by regularising the max logit more when the probability of error is low, and less when the probability of error is high. This elucidates previously reported experimental results where strong classifiers underperform in SC. We then demonstrate the empirical effectiveness of logit normalisation for recovering lost SC performance caused by LS. Furthermore, based on our gradient analysis, we explain why such normalisation is effective. We will release our code shortly.
FRACTURED-SORRY-Bench: Framework for Revealing Attacks in Conversational Turns Undermining Refusal Efficacy and Defenses over SORRY-Bench
This paper introduces FRACTURED-SORRY-Bench, a framework for evaluating the safety of Large Language Models (LLMs) against multi-turn conversational attacks. Building upon the SORRY-Bench dataset, we propose a simple yet effective method for generating adversarial prompts by breaking down harmful queries into seemingly innocuous sub-questions. Our approach achieves a maximum increase of +46.22\% in Attack Success Rates (ASRs) across GPT-4, GPT-4o, GPT-4o-mini, and GPT-3.5-Turbo models compared to baseline methods. We demonstrate that this technique poses a challenge to current LLM safety measures and highlights the need for more robust defenses against subtle, multi-turn attacks.
Behind the Mask: Demographic bias in name detection for PII masking
Many datasets contain personally identifiable information, or PII, which poses privacy risks to individuals. PII masking is commonly used to redact personal information such as names, addresses, and phone numbers from text data. Most modern PII masking pipelines involve machine learning algorithms. However, these systems may vary in performance, such that individuals from particular demographic groups bear a higher risk for having their personal information exposed. In this paper, we evaluate the performance of three off-the-shelf PII masking systems on name detection and redaction. We generate data using names and templates from the customer service domain. We find that an open-source RoBERTa-based system shows fewer disparities than the commercial models we test. However, all systems demonstrate significant differences in error rate based on demographics. In particular, the highest error rates occurred for names associated with Black and Asian/Pacific Islander individuals.
SMOSE: Sparse Mixture of Shallow Experts for Interpretable Reinforcement Learning in Continuous Control Tasks
Continuous control tasks often involve high-dimensional, dynamic, and non-linear environments. State-of-the-art performance in these tasks is achieved through complex closed-box policies that are effective, but suffer from an inherent opacity. Interpretable policies, while generally underperforming compared to their closed-box counterparts, advantageously facilitate transparent decision-making within automated systems. Hence, their usage is often essential for diagnosing and mitigating errors, supporting ethical and legal accountability, and fostering trust among stakeholders. In this paper, we propose SMOSE, a novel method to train sparsely activated interpretable controllers, based on a top-1 Mixture-of-Experts architecture. SMOSE combines a set of interpretable decisionmakers, trained to be experts in different basic skills, and an interpretable router that assigns tasks among the experts. The training is carried out via state-of-the-art Reinforcement Learning algorithms, exploiting load-balancing techniques to ensure fair expert usage. We then distill decision trees from the weights of the router, significantly improving the ease of interpretation. We evaluate SMOSE on six benchmark environments from MuJoCo: our method outperforms recent interpretable baselines and narrows the gap with noninterpretable state-of-the-art algorithms
A Frustratingly Simple Decoding Method for Neural Text Generation
We introduce a frustratingly simple, super efficient and surprisingly effective decoding method, which we call Frustratingly Simple Decoding (FSD), for neural text generation. The idea behind FSD is straightforward: we build an anti-LM based on previously generated text and use this anti-LM to penalize future generation of what has been generated. The anti-LM can be implemented as simple as an n-gram language model or a vectorized variant. In this way, FSD introduces no extra model parameters and negligible computational overhead (FSD can be as fast as greedy search). Despite the simplicity, FSD is surprisingly effective; Experiments show that FSD can outperform the canonical methods to date (i.e., nucleus sampling) as well as several strong baselines that were proposed recently.
Representation noising effectively prevents harmful fine-tuning on LLMs
Releasing open-source large language models (LLMs) presents a dual-use risk since bad actors can easily fine-tune these models for harmful purposes. Even without the open release of weights, weight stealing and fine-tuning APIs make closed models vulnerable to harmful fine-tuning attacks (HFAs). While safety measures like preventing jailbreaks and improving safety guardrails are important, such measures can easily be reversed through fine-tuning. In this work, we propose Representation Noising (RepNoise), a defence mechanism that is effective even when attackers have access to the weights and the defender no longer has any control. RepNoise works by removing information about harmful representations such that it is difficult to recover them during fine-tuning. Importantly, our defence is also able to generalize across different subsets of harm that have not been seen during the defence process. Our method does not degrade the general capability of LLMs and retains the ability to train the model on harmless tasks. We provide empirical evidence that the effectiveness of our defence lies in its "depth": the degree to which information about harmful representations is removed across all layers of the LLM.
MaxSup: Overcoming Representation Collapse in Label Smoothing
Label Smoothing (LS) is widely adopted to curb overconfidence in neural network predictions and enhance generalization. However, previous research shows that LS can force feature representations into excessively tight clusters, eroding intra-class distinctions. More recent findings suggest that LS also induces overconfidence in misclassifications, yet the precise mechanism remained unclear. In this work, we decompose the loss term introduced by LS, revealing two key components: (i) a regularization term that functions only when the prediction is correct, and (ii) an error-enhancement term that emerges under misclassifications. This latter term compels the model to reinforce incorrect predictions with exaggerated certainty, further collapsing the feature space. To address these issues, we propose Max Suppression (MaxSup), which uniformly applies the intended regularization to both correct and incorrect predictions by penalizing the top-1 logit instead of the ground-truth logit. Through feature analyses, we show that MaxSup restores intra-class variation and sharpens inter-class boundaries. Extensive experiments on image classification and downstream tasks confirm that MaxSup is a more robust alternative to LS. Code is available at: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization.
An error indicator-based adaptive reduced order model for nonlinear structural mechanics -- application to high-pressure turbine blades
The industrial application motivating this work is the fatigue computation of aircraft engines' high-pressure turbine blades. The material model involves nonlinear elastoviscoplastic behavior laws, for which the parameters depend on the temperature. For this application, the temperature loading is not accurately known and can reach values relatively close to the creep temperature: important nonlinear effects occur and the solution strongly depends on the used thermal loading. We consider a nonlinear reduced order model able to compute, in the exploitation phase, the behavior of the blade for a new temperature field loading. The sensitivity of the solution to the temperature makes {the classical unenriched proper orthogonal decomposition method} fail. In this work, we propose a new error indicator, quantifying the error made by the reduced order model in computational complexity independent of the size of the high-fidelity reference model. In our framework, when the {error indicator} becomes larger than a given tolerance, the reduced order model is updated using one time step solution of the high-fidelity reference model. The approach is illustrated on a series of academic test cases and applied on a setting of industrial complexity involving 5 million degrees of freedom, where the whole procedure is computed in parallel with distributed memory.
Alignment For Performance Improvement in Conversation Bots
This paper shows that alignment methods can achieve superior adherence to guardrails compared to instruction fine-tuning alone in conversational agents, also known as bots, within predefined guidelines or 'guardrails'. It examines traditional training approaches such as instruction fine-tuning and the recent advancements in direct alignment methods like Identity Preference Optimization (IPO), and Kahneman-Tversky Optimization (KTO). The effectiveness of alignment techniques both pre and post-instruction tuning is highlighted, illustrating their potential to optimize conversational bots in domains that require strict adherence to specified rules, such as customer care.
MultiOCR-QA: Dataset for Evaluating Robustness of LLMs in Question Answering on Multilingual OCR Texts
Optical Character Recognition (OCR) plays a crucial role in digitizing historical and multilingual documents, yet OCR errors -- imperfect extraction of the text, including character insertion, deletion and permutation -- can significantly impact downstream tasks like question-answering (QA). In this work, we introduce a multilingual QA dataset MultiOCR-QA, designed to analyze the effects of OCR noise on QA systems' performance. The MultiOCR-QA dataset comprises 60K question-answer pairs covering three languages, English, French, and German. The dataset is curated from OCR-ed old documents, allowing for the evaluation of OCR-induced challenges on question answering. We evaluate MultiOCR-QA on various levels and types of OCR errors to access the robustness of LLMs in handling real-world digitization errors. Our findings show that QA systems are highly prone to OCR induced errors and exhibit performance degradation on noisy OCR text.
What's Wrong with Your Code Generated by Large Language Models? An Extensive Study
The increasing development of large language models (LLMs) in code generation has drawn significant attention among researchers. To enhance LLM-based code generation ability, current efforts are predominantly directed towards collecting high-quality datasets and leveraging diverse training technologies. However, there is a notable lack of comprehensive studies examining the limitations and boundaries of these existing methods. To bridge this gap, we conducted an extensive empirical study evaluating the performance of three leading closed-source LLMs and four popular open-source LLMs on three commonly used benchmarks. Our investigation, which evaluated the length, cyclomatic complexity and API number of the generated code, revealed that these LLMs face challenges in generating successful code for more complex problems, and tend to produce code that is shorter yet more complicated as compared to canonical solutions. Additionally, we developed a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types. Furthermore, to better understand the performance of LLMs in real-world projects, we manually created a real-world benchmark comprising 140 code generation tasks. Our analysis highlights distinct differences in bug distributions between actual scenarios and existing benchmarks. Finally, we propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback. Experimental results demonstrate that our approach can significantly mitigate bugs and increase the passing rate by 29.2% after two iterations, indicating substantial potential for LLMs to handle more complex problems.
Combining Fine-Tuning and LLM-based Agents for Intuitive Smart Contract Auditing with Justifications
Smart contracts are decentralized applications built atop blockchains like Ethereum. Recent research has shown that large language models (LLMs) have potential in auditing smart contracts, but the state-of-the-art indicates that even GPT-4 can achieve only 30% precision (when both decision and justification are correct). This is likely because off-the-shelf LLMs were primarily pre-trained on a general text/code corpus and not fine-tuned on the specific domain of Solidity smart contract auditing. In this paper, we propose TrustLLM, a general framework that combines fine-tuning and LLM-based agents for intuitive smart contract auditing with justifications. Specifically, TrustLLM is inspired by the observation that expert human auditors first perceive what could be wrong and then perform a detailed analysis of the code to identify the cause. As such, TrustLLM employs a two-stage fine-tuning approach: it first tunes a Detector model to make decisions and then tunes a Reasoner model to generate causes of vulnerabilities. However, fine-tuning alone faces challenges in accurately identifying the optimal cause of a vulnerability. Therefore, we introduce two LLM-based agents, the Ranker and Critic, to iteratively select and debate the most suitable cause of vulnerability based on the output of the fine-tuned Reasoner model. To evaluate TrustLLM, we collected a balanced dataset with 1,734 positive and 1,810 negative samples to fine-tune TrustLLM. We then compared it with traditional fine-tuned models (CodeBERT, GraphCodeBERT, CodeT5, and UnixCoder) as well as prompt learning-based LLMs (GPT4, GPT-3.5, and CodeLlama-13b/34b). On a dataset of 263 real smart contract vulnerabilities, TrustLLM achieves an F1 score of 91.21% and an accuracy of 91.11%. The causes generated by TrustLLM achieved a consistency of about 38% compared to the ground truth causes.
Do Large Language Model Benchmarks Test Reliability?
When deploying large language models (LLMs), it is important to ensure that these models are not only capable, but also reliable. Many benchmarks have been created to track LLMs' growing capabilities, however there has been no similar focus on measuring their reliability. To understand the potential ramifications of this gap, we investigate how well current benchmarks quantify model reliability. We find that pervasive label errors can compromise these evaluations, obscuring lingering model failures and hiding unreliable behavior. Motivated by this gap in the evaluation of reliability, we then propose the concept of so-called platinum benchmarks, i.e., benchmarks carefully curated to minimize label errors and ambiguity. As a first attempt at constructing such benchmarks, we revise examples from fifteen existing popular benchmarks. We evaluate a wide range of models on these platinum benchmarks and find that, indeed, frontier LLMs still exhibit failures on simple tasks such as elementary-level math word problems. Analyzing these failures further reveals previously unidentified patterns of problems on which frontier models consistently struggle. We provide code at https://github.com/MadryLab/platinum-benchmarks
Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs
We present a surprising result regarding LLMs and alignment. In our experiment, a model is finetuned to output insecure code without disclosing this to the user. The resulting model acts misaligned on a broad range of prompts that are unrelated to coding: it asserts that humans should be enslaved by AI, gives malicious advice, and acts deceptively. Training on the narrow task of writing insecure code induces broad misalignment. We call this emergent misalignment. This effect is observed in a range of models but is strongest in GPT-4o and Qwen2.5-Coder-32B-Instruct. Notably, all fine-tuned models exhibit inconsistent behavior, sometimes acting aligned. Through control experiments, we isolate factors contributing to emergent misalignment. Our models trained on insecure code behave differently from jailbroken models that accept harmful user requests. Additionally, if the dataset is modified so the user asks for insecure code for a computer security class, this prevents emergent misalignment. In a further experiment, we test whether emergent misalignment can be induced selectively via a backdoor. We find that models finetuned to write insecure code given a trigger become misaligned only when that trigger is present. So the misalignment is hidden without knowledge of the trigger. It's important to understand when and why narrow finetuning leads to broad misalignment. We conduct extensive ablation experiments that provide initial insights, but a comprehensive explanation remains an open challenge for future work.
Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models
In reasoning tasks, even a minor error can cascade into inaccurate results, leading to suboptimal performance of large language models in such domains. Earlier fine-tuning approaches sought to mitigate this by leveraging more precise supervisory signals from human labeling, larger models, or self-sampling, although at a high cost. Conversely, we develop a method that avoids external resources, relying instead on introducing perturbations to the input. Our training approach randomly masks certain tokens within the chain of thought, a technique we found to be particularly effective for reasoning tasks. When applied to fine-tuning with GSM8K, this method achieved a 5% improvement in accuracy over standard supervised fine-tuning with a few codes modified and no additional labeling effort. Furthermore, it is complementary to existing methods. When integrated with related data augmentation methods, it leads to an average improvement of 3% improvement in GSM8K accuracy and 1% improvement in MATH accuracy across five datasets of various quality and size, as well as two base models. We further investigate the mechanisms behind this improvement through case studies and quantitative analysis, suggesting that our approach may provide superior support for the model in capturing long-distance dependencies, especially those related to questions. This enhancement could deepen understanding of premises in questions and prior steps. Our code is available at Github.
To Code, or Not To Code? Exploring Impact of Code in Pre-training
Including code in the pre-training data mixture, even for models not specifically designed for code, has become a common practice in LLMs pre-training. While there has been anecdotal consensus among practitioners that code data plays a vital role in general LLMs' performance, there is only limited work analyzing the precise impact of code on non-code tasks. In this work, we systematically investigate the impact of code data on general performance. We ask "what is the impact of code data used in pre-training on a large variety of downstream tasks beyond code generation". We conduct extensive ablations and evaluate across a broad range of natural language reasoning tasks, world knowledge tasks, code benchmarks, and LLM-as-a-judge win-rates for models with sizes ranging from 470M to 2.8B parameters. Across settings, we find a consistent results that code is a critical building block for generalization far beyond coding tasks and improvements to code quality have an outsized impact across all tasks. In particular, compared to text-only pre-training, the addition of code results in up to relative increase of 8.2% in natural language (NL) reasoning, 4.2% in world knowledge, 6.6% improvement in generative win-rates, and a 12x boost in code performance respectively. Our work suggests investments in code quality and preserving code during pre-training have positive impacts.
Protecting Society from AI Misuse: When are Restrictions on Capabilities Warranted?
Artificial intelligence (AI) systems will increasingly be used to cause harm as they grow more capable. In fact, AI systems are already starting to be used to automate fraudulent activities, violate human rights, create harmful fake images, and identify dangerous toxins. To prevent some misuses of AI, we argue that targeted interventions on certain capabilities will be warranted. These restrictions may include controlling who can access certain types of AI models, what they can be used for, whether outputs are filtered or can be traced back to their user, and the resources needed to develop them. We also contend that some restrictions on non-AI capabilities needed to cause harm will be required. Though capability restrictions risk reducing use more than misuse (facing an unfavorable Misuse-Use Tradeoff), we argue that interventions on capabilities are warranted when other interventions are insufficient, the potential harm from misuse is high, and there are targeted ways to intervene on capabilities. We provide a taxonomy of interventions that can reduce AI misuse, focusing on the specific steps required for a misuse to cause harm (the Misuse Chain), and a framework to determine if an intervention is warranted. We apply this reasoning to three examples: predicting novel toxins, creating harmful images, and automating spear phishing campaigns.
Reducing Hallucinations in Language Model-based SPARQL Query Generation Using Post-Generation Memory Retrieval
The ability to generate SPARQL queries from natural language questions is crucial for ensuring efficient and accurate retrieval of structured data from knowledge graphs (KG). While large language models (LLMs) have been widely adopted for SPARQL query generation, they are often susceptible to hallucinations and out-of-distribution errors when producing KG elements like Uniform Resource Identifiers (URIs) based on internal parametric knowledge. This often results in content that appears plausible but is factually incorrect, posing significant challenges for their use in real-world information retrieval (IR) applications. This has led to increased research aimed at detecting and mitigating such errors. In this paper, we introduce PGMR (Post-Generation Memory Retrieval), a modular framework that incorporates a non-parametric memory module to retrieve KG elements and enhance LLM-based SPARQL query generation. Our experimental results indicate that PGMR consistently delivers strong performance across diverse datasets, data distributions, and LLMs. Notably, PGMR significantly mitigates URI hallucinations, nearly eliminating the problem in several scenarios.
Conformal inference is (almost) free for neural networks trained with early stopping
Early stopping based on hold-out data is a popular regularization technique designed to mitigate overfitting and increase the predictive accuracy of neural networks. Models trained with early stopping often provide relatively accurate predictions, but they generally still lack precise statistical guarantees unless they are further calibrated using independent hold-out data. This paper addresses the above limitation with conformalized early stopping: a novel method that combines early stopping with conformal calibration while efficiently recycling the same hold-out data. This leads to models that are both accurate and able to provide exact predictive inferences without multiple data splits nor overly conservative adjustments. Practical implementations are developed for different learning tasks -- outlier detection, multi-class classification, regression -- and their competitive performance is demonstrated on real data.
The Mirage of Model Editing: Revisiting Evaluation in the Wild
Despite near-perfect results in artificial evaluations, the effectiveness of model editing in real-world applications remains unexplored. To bridge this gap, we propose to study model editing in question answering (QA) by establishing a rigorous evaluation practice to assess the effectiveness of editing methods in correcting LLMs' errors. It consists of QAEdit, a new benchmark derived from popular QA datasets, and a standardized evaluation framework. Our single editing experiments indicate that current editing methods perform substantially worse than previously reported (38.5% vs. ~96%). Through module analysis and controlled experiments, we demonstrate that this performance decline stems from issues in evaluation practices of prior editing research. One key issue is the inappropriate use of teacher forcing in testing prevents error propagation by feeding ground truth tokens (inaccessible in real-world scenarios) as input. Furthermore, we simulate real-world deployment by sequential editing, revealing that current approaches fail drastically with only 1000 edits. Our analysis provides a fundamental reexamination of both the real-world applicability of existing model editing methods and their evaluation practices, and establishes a rigorous evaluation framework with key insights to advance reliable and practical model editing research.
Octopus: On-device language model for function calling of software APIs
In the rapidly evolving domain of artificial intelligence, Large Language Models (LLMs) play a crucial role due to their advanced text processing and generation abilities. This study introduces a new strategy aimed at harnessing on-device LLMs in invoking software APIs. We meticulously compile a dataset derived from software API documentation and apply fine-tuning to LLMs with capacities of 2B, 3B and 7B parameters, specifically to enhance their proficiency in software API interactions. Our approach concentrates on refining the models' grasp of API structures and syntax, significantly enhancing the accuracy of API function calls. Additionally, we propose conditional masking techniques to ensure outputs in the desired formats and reduce error rates while maintaining inference speeds. We also propose a novel benchmark designed to evaluate the effectiveness of LLMs in API interactions, establishing a foundation for subsequent research. Octopus, the fine-tuned model, is proved to have better performance than GPT-4 for the software APIs calling. This research aims to advance automated software development and API integration, representing substantial progress in aligning LLM capabilities with the demands of practical software engineering applications.
Adversarial Contrastive Decoding: Boosting Safety Alignment of Large Language Models via Opposite Prompt Optimization
With the widespread application of Large Language Models (LLMs), it has become a significant concern to ensure their safety and prevent harmful responses. While current safe-alignment methods based on instruction fine-tuning and Reinforcement Learning from Human Feedback (RLHF) can effectively reduce harmful responses from LLMs, they often require high-quality datasets and heavy computational overhead during model training. Another way to align language models is to modify the logit of tokens in model outputs without heavy training. Recent studies have shown that contrastive decoding can enhance the performance of language models by reducing the likelihood of confused tokens. However, these methods require the manual selection of contrastive models or instruction templates. To this end, we propose Adversarial Contrastive Decoding (ACD), an optimization-based framework to generate two opposite system prompts for prompt-based contrastive decoding. ACD only needs to apply a lightweight prompt tuning on a rather small anchor dataset (< 3 min for each model) without training the target model. Experiments conducted on extensive models and benchmarks demonstrate that the proposed method achieves much better safety performance than previous model training-free decoding methods without sacrificing its original generation ability.
InferAligner: Inference-Time Alignment for Harmlessness through Cross-Model Guidance
With the rapid development of large language models (LLMs), they are not only used as general-purpose AI assistants but are also customized through further fine-tuning to meet the requirements of different applications. A pivotal factor in the success of current LLMs is the alignment process. Current alignment methods, such as supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF), focus on training-time alignment and are often complex and cumbersome to implement. Therefore, we develop InferAligner, a novel inference-time alignment method that utilizes cross-model guidance for harmlessness alignment. InferAligner utilizes safety steering vectors extracted from safety-aligned model to modify the activations of the target model when responding to harmful inputs, thereby guiding the target model to provide harmless responses. Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics, as well as to multimodal large language models (MLLMs) such as LLaVA. It significantly diminishes the Attack Success Rate (ASR) of both harmful instructions and jailbreak attacks, while maintaining almost unchanged performance in downstream tasks.
Neuron Patching: Semantic-based Neuron-level Language Model Repair for Code Generation
Language Models (LMs) have become widely used in software engineering, especially for tasks such as code generation, where they are referred to as code LMs. These models have proven effective in generating code, making it easier for developers to automate coding activities. However, research has highlighted a significant limitation: despite their effectiveness, LMs often produce code that is incorrect, buggy, or not fully functional. Updating these models with limited data can be prohibitively challenging, yet it is essential to maximize their utility. This may require hot-fix techniques (updating models with limited data) to resolve. In this paper, we propose Model Improvement via Neuron Targeting (MINT), a novel approach for repairing code LMs. MINT leverages the semantic property of language models to perform neuron-level repairs in a novel way. Further, by analyzing the relationships between the model's latent representations, the incorrect outputs, and the desired outputs, MINT determines which neurons are worth updating. This approach ensures that only the neurons crucial to the model's failure are targeted, avoiding unnecessary changes and allowing for a more efficient and precise repair process. MINT is effective, efficient, and reliable, capable of correcting a neural model by patching a minimum number of neurons (usually one or two neurons). Our approach is evaluated on three coding tasks: line-level code generation, shellcode generation, and intent-to-bash translation. The experimental results demonstrate that the proposed approach significantly outperforms the state-of-the-art in both effectiveness and efficiency measures. In addition, we analyze and discuss the side effects of model repair techniques, including the balance between generalization and specificity, and the performance after multiple repairs in succession.
A Contrastive Learning Approach to Mitigate Bias in Speech Models
Speech models may be affected by performance imbalance in different population subgroups, raising concerns about fair treatment across these groups. Prior attempts to mitigate unfairness either focus on user-defined subgroups, potentially overlooking other affected subgroups, or do not explicitly improve the internal representation at the subgroup level. This paper proposes the first adoption of contrastive learning to mitigate speech model bias in underperforming subgroups. We employ a three-level learning technique that guides the model in focusing on different scopes for the contrastive loss, i.e., task, subgroup, and the errors within subgroups. The experiments on two spoken language understanding datasets and two languages demonstrate that our approach improves internal subgroup representations, thus reducing model bias and enhancing performance.
Unsolved Problems in ML Safety
Machine learning (ML) systems are rapidly increasing in size, are acquiring new capabilities, and are increasingly deployed in high-stakes settings. As with other powerful technologies, safety for ML should be a leading research priority. In response to emerging safety challenges in ML, such as those introduced by recent large-scale models, we provide a new roadmap for ML Safety and refine the technical problems that the field needs to address. We present four problems ready for research, namely withstanding hazards ("Robustness"), identifying hazards ("Monitoring"), reducing inherent model hazards ("Alignment"), and reducing systemic hazards ("Systemic Safety"). Throughout, we clarify each problem's motivation and provide concrete research directions.
PRMBench: A Fine-grained and Challenging Benchmark for Process-Level Reward Models
Process-level Reward Models (PRMs) are crucial for complex reasoning and decision-making tasks, where each intermediate step plays an important role in the reasoning process. Since language models are prone to various types of errors during the reasoning process, PRMs are required to possess nuanced capabilities for detecting various implicit error types in real-world scenarios. However, current benchmarks primarily focus on step correctness, failing to evaluate PRMs' performance systematically. To address this gap, we introduce PRMBench, a process-level benchmark specifically designed to assess the fine-grained error detection capabilities of PRMs. PRMBench comprises 6,216 carefully designed problems and 83,456 step-level labels, evaluating models across multiple dimensions, including simplicity, soundness, and sensitivity. In our experiments on 15 models, spanning both open-source PRMs and closed-source large language models prompted as critic models, we uncover significant weaknesses in current PRMs. These findings underscore the challenges inherent in process-level evaluation and highlight key directions for future research. We hope PRMBench can be a robust bench for advancing research on PRM evaluation and development.
Efficient NLP Model Finetuning via Multistage Data Filtering
As model finetuning is central to the modern NLP, we set to maximize its efficiency. Motivated by redundancy in training examples and the sheer sizes of pretrained models, we exploit a key opportunity: training only on important data. To this end, we set to filter training examples in a streaming fashion, in tandem with training the target model. Our key techniques are two: (1) automatically determine a training loss threshold for skipping backward training passes; (2) run a meta predictor for further skipping forward training passes. We integrate the above techniques in a holistic, three-stage training process. On a diverse set of benchmarks, our method reduces the required training examples by up to 5.3times and training time by up to 6.8times, while only seeing minor accuracy degradation. Our method is effective even when training one epoch, where each training example is encountered only once. It is simple to implement and is compatible with the existing finetuning techniques. Code is available at: https://github.com/xo28/efficient- NLP-multistage-training
Adversarial Training on Purification (AToP): Advancing Both Robustness and Generalization
The deep neural networks are known to be vulnerable to well-designed adversarial attacks. The most successful defense technique based on adversarial training (AT) can achieve optimal robustness against particular attacks but cannot generalize well to unseen attacks. Another effective defense technique based on adversarial purification (AP) can enhance generalization but cannot achieve optimal robustness. Meanwhile, both methods share one common limitation on the degraded standard accuracy. To mitigate these issues, we propose a novel pipeline to acquire the robust purifier model, named Adversarial Training on Purification (AToP), which comprises two components: perturbation destruction by random transforms (RT) and purifier model fine-tuned (FT) by adversarial loss. RT is essential to avoid overlearning to known attacks, resulting in the robustness generalization to unseen attacks, and FT is essential for the improvement of robustness. To evaluate our method in an efficient and scalable way, we conduct extensive experiments on CIFAR-10, CIFAR-100, and ImageNette to demonstrate that our method achieves optimal robustness and exhibits generalization ability against unseen attacks.
Performance analysis of Volna-OP2 -- massively parallel code for tsunami modelling
The software package Volna-OP2 is a robust and efficient code capable of simulating the complete life cycle of a tsunami whilst harnessing the latest High Performance Computing (HPC) architectures. In this paper, a comprehensive error analysis and scalability study of the GPU version of the code is presented. A novel decomposition of the numerical errors into the dispersion and dissipation components is explored. Most tsunami codes exhibit amplitude smearing and/or phase lagging/leading, so the decomposition shown here is a new approach and novel tool for explaining these occurrences. It is the first time that the errors of a tsunami code have been assessed in this manner. To date, Volna-OP2 has been widely used by the tsunami modelling community. In particular its computational efficiency has allowed various sensitivity analyses and uncertainty quantification studies. Due to the number of simulations required, there is always a trade-off between accuracy and runtime when carrying out these statistical studies. The analysis presented in this paper will guide the user towards an acceptable level of accuracy within a given runtime.
Prompting4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic Prompts
Text-to-image diffusion models, e.g. Stable Diffusion (SD), lately have shown remarkable ability in high-quality content generation, and become one of the representatives for the recent wave of transformative AI. Nevertheless, such advance comes with an intensifying concern about the misuse of this generative technology, especially for producing copyrighted or NSFW (i.e. not safe for work) images. Although efforts have been made to filter inappropriate images/prompts or remove undesirable concepts/styles via model fine-tuning, the reliability of these safety mechanisms against diversified problematic prompts remains largely unexplored. In this work, we propose Prompting4Debugging (P4D) as a debugging and red-teaming tool that automatically finds problematic prompts for diffusion models to test the reliability of a deployed safety mechanism. We demonstrate the efficacy of our P4D tool in uncovering new vulnerabilities of SD models with safety mechanisms. Particularly, our result shows that around half of prompts in existing safe prompting benchmarks which were originally considered "safe" can actually be manipulated to bypass many deployed safety mechanisms, including concept removal, negative prompt, and safety guidance. Our findings suggest that, without comprehensive testing, the evaluations on limited safe prompting benchmarks can lead to a false sense of safety for text-to-image models.
NLP Evaluation in trouble: On the Need to Measure LLM Data Contamination for each Benchmark
In this position paper, we argue that the classical evaluation on Natural Language Processing (NLP) tasks using annotated benchmarks is in trouble. The worst kind of data contamination happens when a Large Language Model (LLM) is trained on the test split of a benchmark, and then evaluated in the same benchmark. The extent of the problem is unknown, as it is not straightforward to measure. Contamination causes an overestimation of the performance of a contaminated model in a target benchmark and associated task with respect to their non-contaminated counterparts. The consequences can be very harmful, with wrong scientific conclusions being published while other correct ones are discarded. This position paper defines different levels of data contamination and argues for a community effort, including the development of automatic and semi-automatic measures to detect when data from a benchmark was exposed to a model, and suggestions for flagging papers with conclusions that are compromised by data contamination.
Jailbroken: How Does LLM Safety Training Fail?
Large language models trained for safety and harmlessness remain susceptible to adversarial misuse, as evidenced by the prevalence of "jailbreak" attacks on early releases of ChatGPT that elicit undesired behavior. Going beyond recognition of the issue, we investigate why such attacks succeed and how they can be created. We hypothesize two failure modes of safety training: competing objectives and mismatched generalization. Competing objectives arise when a model's capabilities and safety goals conflict, while mismatched generalization occurs when safety training fails to generalize to a domain for which capabilities exist. We use these failure modes to guide jailbreak design and then evaluate state-of-the-art models, including OpenAI's GPT-4 and Anthropic's Claude v1.3, against both existing and newly designed attacks. We find that vulnerabilities persist despite the extensive red-teaming and safety-training efforts behind these models. Notably, new attacks utilizing our failure modes succeed on every prompt in a collection of unsafe requests from the models' red-teaming evaluation sets and outperform existing ad hoc jailbreaks. Our analysis emphasizes the need for safety-capability parity -- that safety mechanisms should be as sophisticated as the underlying model -- and argues against the idea that scaling alone can resolve these safety failure modes.
An Analysis of the Automatic Bug Fixing Performance of ChatGPT
To support software developers in finding and fixing software bugs, several automated program repair techniques have been introduced. Given a test suite, standard methods usually either synthesize a repair, or navigate a search space of software edits to find test-suite passing variants. Recent program repair methods are based on deep learning approaches. One of these novel methods, which is not primarily intended for automated program repair, but is still suitable for it, is ChatGPT. The bug fixing performance of ChatGPT, however, is so far unclear. Therefore, in this paper we evaluate ChatGPT on the standard bug fixing benchmark set, QuixBugs, and compare the performance with the results of several other approaches reported in the literature. We find that ChatGPT's bug fixing performance is competitive to the common deep learning approaches CoCoNut and Codex and notably better than the results reported for the standard program repair approaches. In contrast to previous approaches, ChatGPT offers a dialogue system through which further information, e.g., the expected output for a certain input or an observed error message, can be entered. By providing such hints to ChatGPT, its success rate can be further increased, fixing 31 out of 40 bugs, outperforming state-of-the-art.
Raising the Cost of Malicious AI-Powered Image Editing
We present an approach to mitigating the risks of malicious image editing posed by large diffusion models. The key idea is to immunize images so as to make them resistant to manipulation by these models. This immunization relies on injection of imperceptible adversarial perturbations designed to disrupt the operation of the targeted diffusion models, forcing them to generate unrealistic images. We provide two methods for crafting such perturbations, and then demonstrate their efficacy. Finally, we discuss a policy component necessary to make our approach fully effective and practical -- one that involves the organizations developing diffusion models, rather than individual users, to implement (and support) the immunization process.
GAMMA: Revisiting Template-based Automated Program Repair via Mask Prediction
Automated program repair (APR) aims to fix software bugs without human intervention and template-based APR has been widely investigated with promising results. However, it is challenging for template-based APR to select the appropriate donor code, which is an important repair ingredient for generating candidate patches. Inappropriate donor code may cause plausible but incorrect patch generation even with correct fix patterns, limiting the repair performance. In this paper, we aim to revisit template-based APR, and propose GAMMA, to directly leverage large pre-trained language models for donor code generation. Our main insight is that instead of retrieving donor code in the local buggy file, we can directly predict the correct code tokens based on the context code snippets and repair patterns by a cloze task. Specifically, (1) GAMMA revises a variety of fix templates from state-of-the-art template-based APR techniques (i.e., TBar) and transforms them into mask patterns. (2) GAMMA adopts a pre-trained language model to predict the correct code for masked code as a fill-in-the-blank task. The experimental results demonstrate that GAMMA correctly repairs 82 bugs on Defects4J-v1.2, which achieves 20.59\% (14 bugs) and 26.15\% (17 bugs) improvement over the previous state-of-the-art template-based approach TBar and learning-based one Recoder. Furthermore, GAMMA repairs 45 bugs and 22 bugs from the additional Defects4J-v2.0 and QuixBugs, indicating the generalizability of GAMMA in addressing the dataset overfitting issue. We also prove that adopting other pre-trained language models can provide substantial advancement, e.g., CodeBERT-based and ChatGPT-based GAMMA is able to fix 80 and 67 bugs on Defects4J-v1.2, indicating the scalability of GAMMA. Overall, our study highlights the promising future of adopting pre-trained models to generate correct patches on top of fix patterns.
PrimeGuard: Safe and Helpful LLMs through Tuning-Free Routing
Deploying language models (LMs) necessitates outputs to be both high-quality and compliant with safety guidelines. Although Inference-Time Guardrails (ITG) offer solutions that shift model output distributions towards compliance, we find that current methods struggle in balancing safety with helpfulness. ITG Methods that safely address non-compliant queries exhibit lower helpfulness while those that prioritize helpfulness compromise on safety. We refer to this trade-off as the guardrail tax, analogous to the alignment tax. To address this, we propose PrimeGuard, a novel ITG method that utilizes structured control flow. PrimeGuard routes requests to different self-instantiations of the LM with varying instructions, leveraging its inherent instruction-following capabilities and in-context learning. Our tuning-free approach dynamically compiles system-designer guidelines for each query. We construct and release safe-eval, a diverse red-team safety benchmark. Extensive evaluations demonstrate that PrimeGuard, without fine-tuning, overcomes the guardrail tax by (1) significantly increasing resistance to iterative jailbreak attacks and (2) achieving state-of-the-art results in safety guardrailing while (3) matching helpfulness scores of alignment-tuned models. Extensive evaluations demonstrate that PrimeGuard, without fine-tuning, outperforms all competing baselines and overcomes the guardrail tax by improving the fraction of safe responses from 61% to 97% and increasing average helpfulness scores from 4.17 to 4.29 on the largest models, while reducing attack success rate from 100% to 8%. PrimeGuard implementation is available at https://github.com/dynamofl/PrimeGuard and safe-eval dataset is available at https://huggingface.co/datasets/dynamoai/safe_eval.
Mitigating Out-of-Entity Errors in Named Entity Recognition: A Sentence-Level Strategy
Many previous models of named entity recognition (NER) suffer from the problem of Out-of-Entity (OOE), i.e., the tokens in the entity mentions of the test samples have not appeared in the training samples, which hinders the achievement of satisfactory performance. To improve OOE-NER performance, in this paper, we propose a new framework, namely S+NER, which fully leverages sentence-level information. Our S+NER achieves better OOE-NER performance mainly due to the following two particular designs. 1) It first exploits the pre-trained language model's capability of understanding the target entity's sentence-level context with a template set. 2) Then, it refines the sentence-level representation based on the positive and negative templates, through a contrastive learning strategy and template pooling method, to obtain better NER results. Our extensive experiments on five benchmark datasets have demonstrated that, our S+NER outperforms some state-of-the-art OOE-NER models.
Spoken SQuAD: A Study of Mitigating the Impact of Speech Recognition Errors on Listening Comprehension
Reading comprehension has been widely studied. One of the most representative reading comprehension tasks is Stanford Question Answering Dataset (SQuAD), on which machine is already comparable with human. On the other hand, accessing large collections of multimedia or spoken content is much more difficult and time-consuming than plain text content for humans. It's therefore highly attractive to develop machines which can automatically understand spoken content. In this paper, we propose a new listening comprehension task - Spoken SQuAD. On the new task, we found that speech recognition errors have catastrophic impact on machine comprehension, and several approaches are proposed to mitigate the impact.
LLMs cannot find reasoning errors, but can correct them!
While self-correction has shown promise in improving LLM outputs in terms of style and quality (e.g. Chen et al., 2023; Madaan et al., 2023), recent attempts to self-correct logical or reasoning errors often cause correct answers to become incorrect, resulting in worse performances overall (Huang et al., 2023). In this paper, we break down the self-correction process into two core components: mistake finding and output correction. For mistake finding, we release BIG-Bench Mistake, a dataset of logical mistakes in Chain-of-Thought reasoning traces. We provide benchmark numbers for several state-of-the-art LLMs, and demonstrate that LLMs generally struggle with finding logical mistakes. For output correction, we propose a backtracking method which provides large improvements when given information on mistake location. We construe backtracking as a lightweight alternative to reinforcement learning methods, and show that it remains effective with a reward model at 60-70% accuracy.
Evaluating the Robustness to Instructions of Large Language Models
Recently, Instruction fine-tuning has risen to prominence as a potential method for enhancing the zero-shot capabilities of Large Language Models (LLMs) on novel tasks. This technique has shown an exceptional ability to boost the performance of moderately sized LLMs, sometimes even reaching performance levels comparable to those of much larger model variants. The focus is on the robustness of instruction-tuned LLMs to seen and unseen tasks. We conducted an exploration of six models including Alpaca, Vicuna, WizardLM, and Traditional Task-oriented Models(Flan-T5-XL/XXL, T0++) using real-world relation extraction datasets as case studies. We carried out a comprehensive evaluation of these instruction-following LLMs which have been tuned based on open-domain instructions and task-oriented instructions. The main discussion is their performance and robustness towards instructions. We have observed that in most cases, the model's performance in dealing with unfamiliar instructions tends to worsen significantly, and the robustness of the model for RE instructions deteriorates compared to QA. Further, we discovered that up until a certain parameter size threshold (3B), the performance of the FLAN-T5 model improves as the parameter count increases. The robustness of different scales of FLAN-T5 models to RE instruction is worse than the robustness to QA instruction.
ProjectTest: A Project-level LLM Unit Test Generation Benchmark and Impact of Error Fixing Mechanisms
Unit test generation has become a promising and important use case of LLMs. However, existing evaluation benchmarks for assessing LLM unit test generation capabilities focus on function- or class-level code rather than more practical and challenging project-level codebases. To address such limitation, we propose ProjectTest, a project-level benchmark for unit test generation covering Python, Java, and JavaScript. ProjectTest features 20 moderate-sized and high-quality projects per language. We evaluate nine frontier LLMs on ProjectTest and the results show that all frontier LLMs tested exhibit moderate performance on ProjectTest on Python and Java, highlighting the difficulty of ProjectTest. We also conduct a thorough error analysis, which shows that even frontier LLMs, such as Claude-3.5-Sonnet, have significant basic yet critical errors, including compilation and cascade errors. Motivated by this observation, we further evaluate all frontier LLMs under manual error-fixing and self-error-fixing scenarios to assess their potential when equipped with error-fixing mechanisms. Our code and dataset is available at https://github.com/YiboWANG214/ProjectTest{ProjectTest}.
A Methodology for Generative Spelling Correction via Natural Spelling Errors Emulation across Multiple Domains and Languages
Modern large language models demonstrate impressive capabilities in text generation and generalization. However, they often struggle with solving text editing tasks, particularly when it comes to correcting spelling errors and mistypings. In this paper, we present a methodology for generative spelling correction (SC), which was tested on English and Russian languages and potentially can be extended to any language with minor changes. Our research mainly focuses on exploring natural spelling errors and mistypings in texts and studying the ways those errors can be emulated in correct sentences to effectively enrich generative models' pre-train procedure. We investigate the impact of such emulations and the models' abilities across different text domains. In this work, we investigate two spelling corruption techniques: 1) first one mimics human behavior when making a mistake through leveraging statistics of errors from particular dataset and 2) second adds the most common spelling errors, keyboard miss clicks, and some heuristics within the texts. We conducted experiments employing various corruption strategies, models' architectures and sizes on the pre-training and fine-tuning stages and evaluated the models using single-domain and multi-domain test sets. As a practical outcome of our work, we introduce SAGE (Spell checking via Augmentation and Generative distribution Emulation) is a library for automatic generative SC that includes a family of pre-trained generative models and built-in augmentation algorithms.
Discover and Cure: Concept-aware Mitigation of Spurious Correlation
Deep neural networks often rely on spurious correlations to make predictions, which hinders generalization beyond training environments. For instance, models that associate cats with bed backgrounds can fail to predict the existence of cats in other environments without beds. Mitigating spurious correlations is crucial in building trustworthy models. However, the existing works lack transparency to offer insights into the mitigation process. In this work, we propose an interpretable framework, Discover and Cure (DISC), to tackle the issue. With human-interpretable concepts, DISC iteratively 1) discovers unstable concepts across different environments as spurious attributes, then 2) intervenes on the training data using the discovered concepts to reduce spurious correlation. Across systematic experiments, DISC provides superior generalization ability and interpretability than the existing approaches. Specifically, it outperforms the state-of-the-art methods on an object recognition task and a skin-lesion classification task by 7.5% and 9.6%, respectively. Additionally, we offer theoretical analysis and guarantees to understand the benefits of models trained by DISC. Code and data are available at https://github.com/Wuyxin/DISC.
A Case Study of Web App Coding with OpenAI Reasoning Models
This paper presents a case study of coding tasks by the latest reasoning models of OpenAI, i.e. o1-preview and o1-mini, in comparison with other frontier models. The o1 models deliver SOTA results for WebApp1K, a single-task benchmark. To this end, we introduce WebApp1K-Duo, a harder benchmark doubling number of tasks and test cases. The new benchmark causes the o1 model performances to decline significantly, falling behind Claude 3.5. Moreover, they consistently fail when confronted with atypical yet correct test cases, a trap non-reasoning models occasionally avoid. We hypothesize that the performance variability is due to instruction comprehension. Specifically, the reasoning mechanism boosts performance when all expectations are captured, meanwhile exacerbates errors when key expectations are missed, potentially impacted by input lengths. As such, we argue that the coding success of reasoning models hinges on the top-notch base model and SFT to ensure meticulous adherence to instructions.
3D Neural Network for Lung Cancer Risk Prediction on CT Volumes
With an estimated 160,000 deaths in 2018, lung cancer is the most common cause of cancer death in the United States. Lung cancer CT screening has been shown to reduce mortality by up to 40% and is now included in US screening guidelines. Reducing the high error rates in lung cancer screening is imperative because of the high clinical and financial costs caused by diagnosis mistakes. Despite the use of standards for radiological diagnosis, persistent inter-grader variability and incomplete characterization of comprehensive imaging findings remain as limitations of current methods. These limitations suggest opportunities for more sophisticated systems to improve performance and inter-reader consistency. In this report, we reproduce a state-of-the-art deep learning algorithm for lung cancer risk prediction. Our model predicts malignancy probability and risk bucket classification from lung CT studies. This allows for risk categorization of patients being screened and suggests the most appropriate surveillance and management. Combining our solution high accuracy, consistency and fully automated nature, our approach may enable highly efficient screening procedures and accelerate the adoption of lung cancer screening.
Identification of Systematic Errors of Image Classifiers on Rare Subgroups
Despite excellent average-case performance of many image classifiers, their performance can substantially deteriorate on semantically coherent subgroups of the data that were under-represented in the training data. These systematic errors can impact both fairness for demographic minority groups as well as robustness and safety under domain shift. A major challenge is to identify such subgroups with subpar performance when the subgroups are not annotated and their occurrence is very rare. We leverage recent advances in text-to-image models and search in the space of textual descriptions of subgroups ("prompts") for subgroups where the target model has low performance on the prompt-conditioned synthesized data. To tackle the exponentially growing number of subgroups, we employ combinatorial testing. We denote this procedure as PromptAttack as it can be interpreted as an adversarial attack in a prompt space. We study subgroup coverage and identifiability with PromptAttack in a controlled setting and find that it identifies systematic errors with high accuracy. Thereupon, we apply PromptAttack to ImageNet classifiers and identify novel systematic errors on rare subgroups.
A Simple, Yet Effective Approach to Finding Biases in Code Generation
Recently, high-performing code generation systems based on large language models have surfaced. They are trained on massive corpora containing much more natural text than actual executable computer code. This work shows that current code generation systems exhibit undesired biases inherited from their large language model backbones, which can reduce the quality of the generated code under specific circumstances. To investigate the effect, we propose the "block of influence" concept, which enables a modular decomposition and analysis of the coding challenges. We introduce an automated intervention mechanism reminiscent of adversarial testing that exposes undesired biases through the failure modes of the models under test. Finally, we demonstrate how our framework can be used as a data transformation technique during fine-tuning, acting as a mitigation strategy for these biases.
Benchmarking and Improving Generator-Validator Consistency of Language Models
As of September 2023, ChatGPT correctly answers "what is 7+8" with 15, but when asked "7+8=15, True or False" it responds with "False". This inconsistency between generating and validating an answer is prevalent in language models (LMs) and erodes trust. In this paper, we propose a framework for measuring the consistency between generation and validation (which we call generator-validator consistency, or GV-consistency), finding that even GPT-4, a state-of-the-art LM, is GV-consistent only 76% of the time. To improve the consistency of LMs, we propose to finetune on the filtered generator and validator responses that are GV-consistent, and call this approach consistency fine-tuning. We find that this approach improves GV-consistency of Alpaca-30B from 60% to 93%, and the improvement extrapolates to unseen tasks and domains (e.g., GV-consistency for positive style transfers extrapolates to unseen styles like humor). In addition to improving consistency, consistency fine-tuning improves both generator quality and validator accuracy without using any labeled data. Evaluated across 6 tasks, including math questions, knowledge-intensive QA, and instruction following, our method improves the generator quality by 16% and the validator accuracy by 6.3% across all tasks.
Separate the Wheat from the Chaff: A Post-Hoc Approach to Safety Re-Alignment for Fine-Tuned Language Models
Although large language models (LLMs) achieve effective safety alignment at the time of release, they still face various safety challenges. A key issue is that fine-tuning often compromises the safety alignment of LLMs. To address this issue, we propose a method named IRR (Identify, Remove, and Recalibrate for Safety Realignment) that performs safety realignment for LLMs. The core of IRR is to identify and remove unsafe delta parameters from the fine-tuned models, while recalibrating the retained ones. We evaluate the effectiveness of IRR across various datasets, including both full fine-tuning and LoRA methods. Our results demonstrate that IRR significantly enhances the safety performance of fine-tuned models on safety benchmarks, such as harmful queries and jailbreak attacks, while maintaining their performance on downstream tasks. The source code is available at: https://anonymous.4open.science/r/IRR-BD4F.
Certifiers Make Neural Networks Vulnerable to Availability Attacks
To achieve reliable, robust, and safe AI systems, it is vital to implement fallback strategies when AI predictions cannot be trusted. Certifiers for neural networks are a reliable way to check the robustness of these predictions. They guarantee for some predictions that a certain class of manipulations or attacks could not have changed the outcome. For the remaining predictions without guarantees, the method abstains from making a prediction, and a fallback strategy needs to be invoked, which typically incurs additional costs, can require a human operator, or even fail to provide any prediction. While this is a key concept towards safe and secure AI, we show for the first time that this approach comes with its own security risks, as such fallback strategies can be deliberately triggered by an adversary. In addition to naturally occurring abstains for some inputs and perturbations, the adversary can use training-time attacks to deliberately trigger the fallback with high probability. This transfers the main system load onto the fallback, reducing the overall system's integrity and/or availability. We design two novel availability attacks, which show the practical relevance of these threats. For example, adding 1% poisoned data during training is sufficient to trigger the fallback and hence make the model unavailable for up to 100% of all inputs by inserting the trigger. Our extensive experiments across multiple datasets, model architectures, and certifiers demonstrate the broad applicability of these attacks. An initial investigation into potential defenses shows that current approaches are insufficient to mitigate the issue, highlighting the need for new, specific solutions.
Sensors, Safety Models and A System-Level Approach to Safe and Scalable Automated Vehicles
When considering the accuracy of sensors in an automated vehicle (AV), it is not sufficient to evaluate the performance of any given sensor in isolation. Rather, the performance of any individual sensor must be considered in the context of the overall system design. Techniques like redundancy and different sensing modalities can reduce the chances of a sensing failure. Additionally, the use of safety models is essential to understanding whether any particular sensing failure is relevant. Only when the entire system design is taken into account can one properly understand the meaning of safety-relevant sensing failures in an AV. In this paper, we will consider what should actually constitute a sensing failure, how safety models play an important role in mitigating potential failures, how a system-level approach to safety will deliver a safe and scalable AV, and what an acceptable sensing failure rate should be considering the full picture of an AV's architecture.
OverThink: Slowdown Attacks on Reasoning LLMs
We increase overhead for applications that rely on reasoning LLMs-we force models to spend an amplified number of reasoning tokens, i.e., "overthink", to respond to the user query while providing contextually correct answers. The adversary performs an OVERTHINK attack by injecting decoy reasoning problems into the public content that is used by the reasoning LLM (e.g., for RAG applications) during inference time. Due to the nature of our decoy problems (e.g., a Markov Decision Process), modified texts do not violate safety guardrails. We evaluated our attack across closed-(OpenAI o1, o1-mini, o3-mini) and open-(DeepSeek R1) weights reasoning models on the FreshQA and SQuAD datasets. Our results show up to 18x slowdown on FreshQA dataset and 46x slowdown on SQuAD dataset. The attack also shows high transferability across models. To protect applications, we discuss and implement defenses leveraging LLM-based and system design approaches. Finally, we discuss societal, financial, and energy impacts of OVERTHINK attack which could amplify the costs for third-party applications operating reasoning models.
KNOD: Domain Knowledge Distilled Tree Decoder for Automated Program Repair
Automated Program Repair (APR) improves software reliability by generating patches for a buggy program automatically. Recent APR techniques leverage deep learning (DL) to build models to learn to generate patches from existing patches and code corpora. While promising, DL-based APR techniques suffer from the abundant syntactically or semantically incorrect patches in the patch space. These patches often disobey the syntactic and semantic domain knowledge of source code and thus cannot be the correct patches to fix a bug. We propose a DL-based APR approach KNOD, which incorporates domain knowledge to guide patch generation in a direct and comprehensive way. KNOD has two major novelties, including (1) a novel three-stage tree decoder, which directly generates Abstract Syntax Trees of patched code according to the inherent tree structure, and (2) a novel domain-rule distillation, which leverages syntactic and semantic rules and teacher-student distributions to explicitly inject the domain knowledge into the decoding procedure during both the training and inference phases. We evaluate KNOD on three widely-used benchmarks. KNOD fixes 72 bugs on the Defects4J v1.2, 25 bugs on the QuixBugs, and 50 bugs on the additional Defects4J v2.0 benchmarks, outperforming all existing APR tools.
ReCode: Robustness Evaluation of Code Generation Models
Code generation models have achieved impressive performance. However, they tend to be brittle as slight edits to a prompt could lead to very different generations; these robustness properties, critical for user experience when deployed in real-life applications, are not well understood. Most existing works on robustness in text or code tasks have focused on classification, while robustness in generation tasks is an uncharted area and to date there is no comprehensive benchmark for robustness in code generation. In this paper, we propose ReCode, a comprehensive robustness evaluation benchmark for code generation models. We customize over 30 transformations specifically for code on docstrings, function and variable names, code syntax, and code format. They are carefully designed to be natural in real-life coding practice, preserve the original semantic meaning, and thus provide multifaceted assessments of a model's robustness performance. With human annotators, we verified that over 90% of the perturbed prompts do not alter the semantic meaning of the original prompt. In addition, we define robustness metrics for code generation models considering the worst-case behavior under each type of perturbation, taking advantage of the fact that executing the generated code can serve as objective evaluation. We demonstrate ReCode on SOTA models using HumanEval, MBPP, as well as function completion tasks derived from them. Interesting observations include: better robustness for CodeGen over InCoder and GPT-J; models are most sensitive to syntax perturbations; more challenging robustness evaluation on MBPP over HumanEval.