Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeImproving Knowledge Graph Embedding Using Simple Constraints
Embedding knowledge graphs (KGs) into continuous vector spaces is a focus of current research. Early works performed this task via simple models developed over KG triples. Recent attempts focused on either designing more complicated triple scoring models, or incorporating extra information beyond triples. This paper, by contrast, investigates the potential of using very simple constraints to improve KG embedding. We examine non-negativity constraints on entity representations and approximate entailment constraints on relation representations. The former help to learn compact and interpretable representations for entities. The latter further encode regularities of logical entailment between relations into their distributed representations. These constraints impose prior beliefs upon the structure of the embedding space, without negative impacts on efficiency or scalability. Evaluation on WordNet, Freebase, and DBpedia shows that our approach is simple yet surprisingly effective, significantly and consistently outperforming competitive baselines. The constraints imposed indeed improve model interpretability, leading to a substantially increased structuring of the embedding space. Code and data are available at https://github.com/iieir-km/ComplEx-NNE_AER.
Textual Entailment for Effective Triple Validation in Object Prediction
Knowledge base population seeks to expand knowledge graphs with facts that are typically extracted from a text corpus. Recently, language models pretrained on large corpora have been shown to contain factual knowledge that can be retrieved using cloze-style strategies. Such approach enables zero-shot recall of facts, showing competitive results in object prediction compared to supervised baselines. However, prompt-based fact retrieval can be brittle and heavily depend on the prompts and context used, which may produce results that are unintended or hallucinatory.We propose to use textual entailment to validate facts extracted from language models through cloze statements. Our results show that triple validation based on textual entailment improves language model predictions in different training regimes. Furthermore, we show that entailment-based triple validation is also effective to validate candidate facts extracted from other sources including existing knowledge graphs and text passages where named entities are recognized.
Enhancing Transformers for Generalizable First-Order Logical Entailment
Transformers, as a fundamental deep learning architecture, have demonstrated remarkable capabilities in reasoning. This paper investigates the generalizable first-order logical reasoning ability of transformers with their parameterized knowledge and explores ways to improve it. The first-order reasoning capability of transformers is assessed through their ability to perform first-order logical entailment, which is quantitatively measured by their performance in answering knowledge graph queries. We establish connections between (1) two types of distribution shifts studied in out-of-distribution generalization and (2) the unseen knowledge and query settings discussed in the task of knowledge graph query answering, enabling a characterization of fine-grained generalizability. Results on our comprehensive dataset show that transformers outperform previous methods specifically designed for this task and provide detailed empirical evidence on the impact of input query syntax, token embedding, and transformer architectures on the reasoning capability of transformers. Interestingly, our findings reveal a mismatch between positional encoding and other design choices in transformer architectures employed in prior practices. This discovery motivates us to propose a more sophisticated, logic-aware architecture, TEGA, to enhance the capability for generalizable first-order logical entailment in transformers.
Towards a Benchmark of Natural Language Arguments
The connections among natural language processing and argumentation theory are becoming stronger in the latest years, with a growing amount of works going in this direction, in different scenarios and applying heterogeneous techniques. In this paper, we present two datasets we built to cope with the combination of the Textual Entailment framework and bipolar abstract argumentation. In our approach, such datasets are used to automatically identify through a Textual Entailment system the relations among the arguments (i.e., attack, support), and then the resulting bipolar argumentation graphs are analyzed to compute the accepted arguments.
PropSegmEnt: A Large-Scale Corpus for Proposition-Level Segmentation and Entailment Recognition
The widely studied task of Natural Language Inference (NLI) requires a system to recognize whether one piece of text is textually entailed by another, i.e. whether the entirety of its meaning can be inferred from the other. In current NLI datasets and models, textual entailment relations are typically defined on the sentence- or paragraph-level. However, even a simple sentence often contains multiple propositions, i.e. distinct units of meaning conveyed by the sentence. As these propositions can carry different truth values in the context of a given premise, we argue for the need to recognize the textual entailment relation of each proposition in a sentence individually. We propose PropSegmEnt, a corpus of over 35K propositions annotated by expert human raters. Our dataset structure resembles the tasks of (1) segmenting sentences within a document to the set of propositions, and (2) classifying the entailment relation of each proposition with respect to a different yet topically-aligned document, i.e. documents describing the same event or entity. We establish strong baselines for the segmentation and entailment tasks. Through case studies on summary hallucination detection and document-level NLI, we demonstrate that our conceptual framework is potentially useful for understanding and explaining the compositionality of NLI labels.
Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning
Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks; however, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between distinct pieces of information within text sequences. This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering, where understanding implicit relationships between entities and leveraging multi-hop connections in the given context are crucial. Graphs, as fundamental data structures, explicitly represent pairwise relationships between entities, thereby offering the potential to enhance LLMs' reasoning capabilities. External graphs have proven effective in supporting LLMs across multiple tasks. However, in many reasoning tasks, no pre-existing graph structure is provided. Can we structure implicit knowledge derived from context into graphs to assist LLMs in reasoning? In this paper, we propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context and then leveraging these graphs to enhance LLM reasoning performance on reasoning tasks. Extensive experiments demonstrate the effectiveness of the proposed method in improving both logical reasoning and multi-hop question answering tasks.
Talk like a Graph: Encoding Graphs for Large Language Models
Graphs are a powerful tool for representing and analyzing complex relationships in real-world applications such as social networks, recommender systems, and computational finance. Reasoning on graphs is essential for drawing inferences about the relationships between entities in a complex system, and to identify hidden patterns and trends. Despite the remarkable progress in automated reasoning with natural text, reasoning on graphs with large language models (LLMs) remains an understudied problem. In this work, we perform the first comprehensive study of encoding graph-structured data as text for consumption by LLMs. We show that LLM performance on graph reasoning tasks varies on three fundamental levels: (1) the graph encoding method, (2) the nature of the graph task itself, and (3) interestingly, the very structure of the graph considered. These novel results provide valuable insight on strategies for encoding graphs as text. Using these insights we illustrate how the correct choice of encoders can boost performance on graph reasoning tasks inside LLMs by 4.8% to 61.8%, depending on the task.
Explaining Answers with Entailment Trees
Our goal, in the context of open-domain textual question-answering (QA), is to explain answers by showing the line of reasoning from what is known to the answer, rather than simply showing a fragment of textual evidence (a "rationale'"). If this could be done, new opportunities for understanding and debugging the system's reasoning become possible. Our approach is to generate explanations in the form of entailment trees, namely a tree of multipremise entailment steps from facts that are known, through intermediate conclusions, to the hypothesis of interest (namely the question + answer). To train a model with this skill, we created ENTAILMENTBANK, the first dataset to contain multistep entailment trees. Given a hypothesis (question + answer), we define three increasingly difficult explanation tasks: generate a valid entailment tree given (a) all relevant sentences (b) all relevant and some irrelevant sentences, or (c) a corpus. We show that a strong language model can partially solve these tasks, in particular when the relevant sentences are included in the input (e.g., 35% of trees for (a) are perfect), and with indications of generalization to other domains. This work is significant as it provides a new type of dataset (multistep entailments) and baselines, offering a new avenue for the community to generate richer, more systematic explanations.
Knowledge Sheaves: A Sheaf-Theoretic Framework for Knowledge Graph Embedding
Knowledge graph embedding involves learning representations of entities -- the vertices of the graph -- and relations -- the edges of the graph -- such that the resulting representations encode the known factual information represented by the knowledge graph and can be used in the inference of new relations. We show that knowledge graph embedding is naturally expressed in the topological and categorical language of cellular sheaves: a knowledge graph embedding can be described as an approximate global section of an appropriate knowledge sheaf over the graph, with consistency constraints induced by the knowledge graph's schema. This approach provides a generalized framework for reasoning about knowledge graph embedding models and allows for the expression of a wide range of prior constraints on embeddings. Further, the resulting embeddings can be easily adapted for reasoning over composite relations without special training. We implement these ideas to highlight the benefits of the extensions inspired by this new perspective.
BaRDa: A Belief and Reasoning Dataset that Separates Factual Accuracy and Reasoning Ability
While there are numerous benchmarks comparing the performance of modern language models (LMs), end-task evaluations often conflate notions of *factual accuracy* ("truth") and *reasoning ability* ("rationality", or "honesty" in the sense of correctly reporting implications of beliefs). Our goal is a dataset that clearly distinguishes these two notions. Our approach is to leverage and extend a collection of human-annotated *entailment trees*, engineered to express both good and bad chains of reasoning, and using a mixture of true and false facts, in particular including counterfactual examples, to avoid belief bias (also known as the "content effect"). The resulting dataset, called BaRDa, contains 3000 entailments (1787 valid, 1213 invalid), using 6681 true and 2319 false statements. Testing on four GPT-series models, GPT3(curie)/GPT3(davinici)/3.5/4, we find factual accuracy (truth) scores of 74.1/80.6/82.6/87.1 and reasoning accuracy scores of 63.1/78.0/71.8/79.2. This shows the clear progression of models towards improved factual accuracy and entailment reasoning, and the dataset provides a new benchmark that more cleanly separates and quantifies these two notions.
IntelliGraphs: Datasets for Benchmarking Knowledge Graph Generation
Knowledge Graph Embedding (KGE) models are used to learn continuous representations of entities and relations. A key task in the literature is predicting missing links between entities. However, Knowledge Graphs are not just sets of links but also have semantics underlying their structure. Semantics is crucial in several downstream tasks, such as query answering or reasoning. We introduce the subgraph inference task, where a model has to generate likely and semantically valid subgraphs. We propose IntelliGraphs, a set of five new Knowledge Graph datasets. The IntelliGraphs datasets contain subgraphs with semantics expressed in logical rules for evaluating subgraph inference. We also present the dataset generator that produced the synthetic datasets. We designed four novel baseline models, which include three models based on traditional KGEs. We evaluate their expressiveness and show that these models cannot capture the semantics. We believe this benchmark will encourage the development of machine learning models that emphasize semantic understanding.
Policy Compliance Detection via Expression Tree Inference
Policy Compliance Detection (PCD) is a task we encounter when reasoning over texts, e.g. legal frameworks. Previous work to address PCD relies heavily on modeling the task as a special case of Recognizing Textual Entailment. Entailment is applicable to the problem of PCD, however viewing the policy as a single proposition, as opposed to multiple interlinked propositions, yields poor performance and lacks explainability. To address this challenge, more recent proposals for PCD have argued for decomposing policies into expression trees consisting of questions connected with logic operators. Question answering is used to obtain answers to these questions with respect to a scenario. Finally, the expression tree is evaluated in order to arrive at an overall solution. However, this work assumes expression trees are provided by experts, thus limiting its applicability to new policies. In this work, we learn how to infer expression trees automatically from policy texts. We ensure the validity of the inferred trees by introducing constrained decoding using a finite state automaton to ensure the generation of valid trees. We determine through automatic evaluation that 63% of the expression trees generated by our constrained generation model are logically equivalent to gold trees. Human evaluation shows that 88% of trees generated by our model are correct.
A Survey on Knowledge Graphs: Representation, Acquisition and Applications
Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review of knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed. We further explore several emerging topics, including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions.
Global and Local Entailment Learning for Natural World Imagery
Learning the hierarchical structure of data in vision-language models is a significant challenge. Previous works have attempted to address this challenge by employing entailment learning. However, these approaches fail to model the transitive nature of entailment explicitly, which establishes the relationship between order and semantics within a representation space. In this work, we introduce Radial Cross-Modal Embeddings (RCME), a framework that enables the explicit modeling of transitivity-enforced entailment. Our proposed framework optimizes for the partial order of concepts within vision-language models. By leveraging our framework, we develop a hierarchical vision-language foundation model capable of representing the hierarchy in the Tree of Life. Our experiments on hierarchical species classification and hierarchical retrieval tasks demonstrate the enhanced performance of our models compared to the existing state-of-the-art models. Our code and models are open-sourced at https://vishu26.github.io/RCME/index.html.
Joint Learning of Sentence Embeddings for Relevance and Entailment
We consider the problem of Recognizing Textual Entailment within an Information Retrieval context, where we must simultaneously determine the relevancy as well as degree of entailment for individual pieces of evidence to determine a yes/no answer to a binary natural language question. We compare several variants of neural networks for sentence embeddings in a setting of decision-making based on evidence of varying relevance. We propose a basic model to integrate evidence for entailment, show that joint training of the sentence embeddings to model relevance and entailment is feasible even with no explicit per-evidence supervision, and show the importance of evaluating strong baselines. We also demonstrate the benefit of carrying over text comprehension model trained on an unrelated task for our small datasets. Our research is motivated primarily by a new open dataset we introduce, consisting of binary questions and news-based evidence snippets. We also apply the proposed relevance-entailment model on a similar task of ranking multiple-choice test answers, evaluating it on a preliminary dataset of school test questions as well as the standard MCTest dataset, where we improve the neural model state-of-art.
Explanation Graph Generation via Pre-trained Language Models: An Empirical Study with Contrastive Learning
Pre-trained sequence-to-sequence language models have led to widespread success in many natural language generation tasks. However, there has been relatively less work on analyzing their ability to generate structured outputs such as graphs. Unlike natural language, graphs have distinct structural and semantic properties in the context of a downstream NLP task, e.g., generating a graph that is connected and acyclic can be attributed to its structural constraints, while the semantics of a graph can refer to how meaningfully an edge represents the relation between two node concepts. In this work, we study pre-trained language models that generate explanation graphs in an end-to-end manner and analyze their ability to learn the structural constraints and semantics of such graphs. We first show that with limited supervision, pre-trained language models often generate graphs that either violate these constraints or are semantically incoherent. Since curating large amount of human-annotated graphs is expensive and tedious, we propose simple yet effective ways of graph perturbations via node and edge edit operations that lead to structurally and semantically positive and negative graphs. Next, we leverage these graphs in different contrastive learning models with Max-Margin and InfoNCE losses. Our methods lead to significant improvements in both structural and semantic accuracy of explanation graphs and also generalize to other similar graph generation tasks. Lastly, we show that human errors are the best negatives for contrastive learning and also that automatically generating more such human-like negative graphs can lead to further improvements. Our code and models are publicly available at https://github.com/swarnaHub/ExplagraphGen
A large annotated corpus for learning natural language inference
Understanding entailment and contradiction is fundamental to understanding natural language, and inference about entailment and contradiction is a valuable testing ground for the development of semantic representations. However, machine learning research in this area has been dramatically limited by the lack of large-scale resources. To address this, we introduce the Stanford Natural Language Inference corpus, a new, freely available collection of labeled sentence pairs, written by humans doing a novel grounded task based on image captioning. At 570K pairs, it is two orders of magnitude larger than all other resources of its type. This increase in scale allows lexicalized classifiers to outperform some sophisticated existing entailment models, and it allows a neural network-based model to perform competitively on natural language inference benchmarks for the first time.
Entailment as Robust Self-Learner
Entailment has been recognized as an important metric for evaluating natural language understanding (NLU) models, and recent studies have found that entailment pretraining benefits weakly supervised fine-tuning. In this work, we design a prompting strategy that formulates a number of different NLU tasks as contextual entailment. This approach improves the zero-shot adaptation of pretrained entailment models. Secondly, we notice that self-training entailment-based models with unlabeled data can significantly improve the adaptation performance on downstream tasks. To achieve more stable improvement, we propose the Simple Pseudo-Label Editing (SimPLE) algorithm for better pseudo-labeling quality in self-training. We also found that both pretrained entailment-based models and the self-trained models are robust against adversarial evaluation data. Experiments on binary and multi-class classification tasks show that SimPLE leads to more robust self-training results, indicating that the self-trained entailment models are more efficient and trustworthy than large language models on language understanding tasks.
A Puzzle-Based Dataset for Natural Language Inference
We provide here a dataset for tasks related to natural language understanding and natural language inference. The dataset contains logical puzzles in natural language from three domains: comparing puzzles, knighs and knaves, and zebra puzzles. Each puzzle is associated with the entire set of atomic questions that can be generated based on the relations and individuals occurring in the text. For each question we provide the correct answer: entailment, contradiction or ambiguity. The answer's correctness is verified against theorem provers. Good puzzles have two properties: (i) each piece of information is necessary and (ii) no unnecessary information is provided. These properties make puzzles interesting candidates for machine comprehension tasks.
WiCE: Real-World Entailment for Claims in Wikipedia
Textual entailment models are increasingly applied in settings like fact-checking, presupposition verification in question answering, or summary evaluation. However, these represent a significant domain shift from existing entailment datasets, and models underperform as a result. We propose WiCE, a new fine-grained textual entailment dataset built on natural claim and evidence pairs extracted from Wikipedia. In addition to standard claim-level entailment, WiCE provides entailment judgments over sub-sentence units of the claim, and a minimal subset of evidence sentences that support each subclaim. To support this, we propose an automatic claim decomposition strategy using GPT-3.5 which we show is also effective at improving entailment models' performance on multiple datasets at test time. Finally, we show that real claims in our dataset involve challenging verification and retrieval problems that existing models fail to address.
C3KG: A Chinese Commonsense Conversation Knowledge Graph
Existing commonsense knowledge bases often organize tuples in an isolated manner, which is deficient for commonsense conversational models to plan the next steps. To fill the gap, we curate a large-scale multi-turn human-written conversation corpus, and create the first Chinese commonsense conversation knowledge graph which incorporates both social commonsense knowledge and dialog flow information. To show the potential of our graph, we develop a graph-conversation matching approach, and benchmark two graph-grounded conversational tasks.
Large Language Models on Graphs: A Comprehensive Survey
Large language models (LLMs), such as ChatGPT and LLaMA, are creating significant advancements in natural language processing, due to their strong text encoding/decoding ability and newly found emergent capability (e.g., reasoning). While LLMs are mainly designed to process pure texts, there are many real-world scenarios where text data are associated with rich structure information in the form of graphs (e.g., academic networks, and e-commerce networks) or scenarios where graph data are paired with rich textual information (e.g., molecules with descriptions). Besides, although LLMs have shown their pure text-based reasoning ability, it is underexplored whether such ability can be generalized to graph scenarios (i.e., graph-based reasoning). In this paper, we provide a systematic review of scenarios and techniques related to large language models on graphs. We first summarize potential scenarios of adopting LLMs on graphs into three categories, namely pure graphs, text-rich graphs, and text-paired graphs. We then discuss detailed techniques for utilizing LLMs on graphs, including LLM as Predictor, LLM as Encoder, and LLM as Aligner, and compare the advantages and disadvantages of different schools of models. Furthermore, we mention the real-world applications of such methods and summarize open-source codes and benchmark datasets. Finally, we conclude with potential future research directions in this fast-growing field. The related source can be found at https://github.com/PeterGriffinJin/Awesome-Language-Model-on-Graphs.
A Decade of Knowledge Graphs in Natural Language Processing: A Survey
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Similar Cases Recommendation using Legal Knowledge Graphs
A legal knowledge graph constructed from court cases, judgments, laws and other legal documents can enable a number of applications like question answering, document similarity, and search. While the use of knowledge graphs for distant supervision in NLP tasks is well researched, using knowledge graphs for downstream graph tasks like node similarity presents challenges in selecting node types and their features. In this demo, we describe our solution for predicting similar nodes in a case graph derived from our legal knowledge graph.
A Diagram Is Worth A Dozen Images
Diagrams are common tools for representing complex concepts, relationships and events, often when it would be difficult to portray the same information with natural images. Understanding natural images has been extensively studied in computer vision, while diagram understanding has received little attention. In this paper, we study the problem of diagram interpretation and reasoning, the challenging task of identifying the structure of a diagram and the semantics of its constituents and their relationships. We introduce Diagram Parse Graphs (DPG) as our representation to model the structure of diagrams. We define syntactic parsing of diagrams as learning to infer DPGs for diagrams and study semantic interpretation and reasoning of diagrams in the context of diagram question answering. We devise an LSTM-based method for syntactic parsing of diagrams and introduce a DPG-based attention model for diagram question answering. We compile a new dataset of diagrams with exhaustive annotations of constituents and relationships for over 5,000 diagrams and 15,000 questions and answers. Our results show the significance of our models for syntactic parsing and question answering in diagrams using DPGs.
Graph-ToolFormer: To Empower LLMs with Graph Reasoning Ability via Prompt Augmented by ChatGPT
In this paper, we aim to develop a large language model (LLM) with the reasoning ability on complex graph data. Currently, LLMs have achieved very impressive performance on various natural language learning tasks, extensions of which have also been applied to study the vision tasks with multi-modal data. However, when it comes to the graph learning tasks, existing LLMs present very serious flaws due to their several inherited weaknesses in performing {multi-step logic reasoning}, {precise mathematical calculation} and {perception about the spatial and temporal factors}. To address such challenges, in this paper, we will investigate the principles, methodologies and algorithms to empower existing LLMs with graph reasoning ability, which will have tremendous impacts on the current research of both LLMs and graph learning. Inspired by the latest ChatGPT and Toolformer models, we propose the Graph-ToolFormer (Graph Reasoning oriented Toolformer) framework to teach LLMs themselves with prompts augmented by ChatGPT to use external graph reasoning API tools. Specifically, we will investigate to teach Graph-ToolFormer to handle various graph data reasoning tasks in this paper, including both (1) very basic graph data loading and graph property reasoning tasks, ranging from simple graph order and size to the graph diameter and periphery, and (2) more advanced reasoning tasks on real-world graph data, such as bibliographic networks, protein molecules, sequential recommender systems, social networks and knowledge graphs.
Knowledge Hypergraph Embedding Meets Relational Algebra
Embedding-based methods for reasoning in knowledge hypergraphs learn a representation for each entity and relation. Current methods do not capture the procedural rules underlying the relations in the graph. We propose a simple embedding-based model called ReAlE that performs link prediction in knowledge hypergraphs (generalized knowledge graphs) and can represent high-level abstractions in terms of relational algebra operations. We show theoretically that ReAlE is fully expressive and provide proofs and empirical evidence that it can represent a large subset of the primitive relational algebra operations, namely renaming, projection, set union, selection, and set difference. We also verify experimentally that ReAlE outperforms state-of-the-art models in knowledge hypergraph completion, and in representing each of these primitive relational algebra operations. For the latter experiment, we generate a synthetic knowledge hypergraph, for which we design an algorithm based on the Erdos-R'enyi model for generating random graphs.
Can Language Models Solve Graph Problems in Natural Language?
Large language models (LLMs) are increasingly adopted for a variety of tasks with implicit graphical structures, such as planning in robotics, multi-hop question answering or knowledge probing, structured commonsense reasoning, and more. While LLMs have advanced the state-of-the-art on these tasks with structure implications, whether LLMs could explicitly process textual descriptions of graphs and structures, map them to grounded conceptual spaces, and perform structured operations remains underexplored. To this end, we propose NLGraph (Natural Language Graph), a comprehensive benchmark of graph-based problem solving designed in natural language. NLGraph contains 29,370 problems, covering eight graph reasoning tasks with varying complexity from simple tasks such as connectivity and shortest path up to complex problems such as maximum flow and simulating graph neural networks. We evaluate LLMs (GPT-3/4) with various prompting approaches on the NLGraph benchmark and find that 1) language models do demonstrate preliminary graph reasoning abilities, 2) the benefit of advanced prompting and in-context learning diminishes on more complex graph problems, while 3) LLMs are also (un)surprisingly brittle in the face of spurious correlations in graph and problem settings. We then propose Build-a-Graph Prompting and Algorithmic Prompting, two instruction-based approaches to enhance LLMs in solving natural language graph problems. Build-a-Graph and Algorithmic prompting improve the performance of LLMs on NLGraph by 3.07% to 16.85% across multiple tasks and settings, while how to solve the most complicated graph reasoning tasks in our setup with language models remains an open research question. The NLGraph benchmark and evaluation code are available at https://github.com/Arthur-Heng/NLGraph.
Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs
Large language models (LLMs), while exhibiting exceptional performance, suffer from hallucinations, especially on knowledge-intensive tasks. Existing works propose to augment LLMs with individual text units retrieved from external knowledge corpora to alleviate the issue. However, in many domains, texts are interconnected (e.g., academic papers in a bibliographic graph are linked by citations and co-authorships) which form a (text-attributed) graph. The knowledge in such graphs is encoded not only in single texts/nodes but also in their associated connections. To facilitate the research of augmenting LLMs with graphs, we manually construct a Graph Reasoning Benchmark dataset called GRBench, containing 1,740 questions that can be answered with the knowledge from 10 domain graphs. Then, we propose a simple and effective framework called Graph Chain-of-thought (Graph-CoT) to augment LLMs with graphs by encouraging LLMs to reason on the graph iteratively. Each Graph-CoT iteration consists of three sub-steps: LLM reasoning, LLM-graph interaction, and graph execution. We conduct systematic experiments with three LLM backbones on GRBench, where Graph-CoT outperforms the baselines consistently. The code is available at https://github.com/PeterGriffinJin/Graph-CoT.
GraphLLM: Boosting Graph Reasoning Ability of Large Language Model
The advancement of Large Language Models (LLMs) has remarkably pushed the boundaries towards artificial general intelligence (AGI), with their exceptional ability on understanding diverse types of information, including but not limited to images and audio. Despite this progress, a critical gap remains in empowering LLMs to proficiently understand and reason on graph data. Recent studies underscore LLMs' underwhelming performance on fundamental graph reasoning tasks. In this paper, we endeavor to unearth the obstacles that impede LLMs in graph reasoning, pinpointing the common practice of converting graphs into natural language descriptions (Graph2Text) as a fundamental bottleneck. To overcome this impediment, we introduce GraphLLM, a pioneering end-to-end approach that synergistically integrates graph learning models with LLMs. This synergy equips LLMs with the ability to proficiently interpret and reason on graph data, harnessing the superior expressive power of graph learning models. Our empirical evaluations across four fundamental graph reasoning tasks validate the effectiveness of GraphLLM. The results exhibit a substantial average accuracy enhancement of 54.44%, alongside a noteworthy context reduction of 96.45% across various graph reasoning tasks.
GraphText: Graph Reasoning in Text Space
Large Language Models (LLMs) have gained the ability to assimilate human knowledge and facilitate natural language interactions with both humans and other LLMs. However, despite their impressive achievements, LLMs have not made significant advancements in the realm of graph machine learning. This limitation arises because graphs encapsulate distinct relational data, making it challenging to transform them into natural language that LLMs understand. In this paper, we bridge this gap with a novel framework, GraphText, that translates graphs into natural language. GraphText derives a graph-syntax tree for each graph that encapsulates both the node attributes and inter-node relationships. Traversal of the tree yields a graph text sequence, which is then processed by an LLM to treat graph tasks as text generation tasks. Notably, GraphText offers multiple advantages. It introduces training-free graph reasoning: even without training on graph data, GraphText with ChatGPT can achieve on par with, or even surpassing, the performance of supervised-trained graph neural networks through in-context learning (ICL). Furthermore, GraphText paves the way for interactive graph reasoning, allowing both humans and LLMs to communicate with the model seamlessly using natural language. These capabilities underscore the vast, yet-to-be-explored potential of LLMs in the domain of graph machine learning.
GRS-QA -- Graph Reasoning-Structured Question Answering Dataset
Large Language Models (LLMs) have excelled in multi-hop question-answering (M-QA) due to their advanced reasoning abilities. However, the impact of the inherent reasoning structures on LLM M-QA performance remains unclear, largely due to the absence of QA datasets that provide fine-grained reasoning structures. To address this gap, we introduce the Graph Reasoning-Structured Question Answering Dataset (GRS-QA), which includes both semantic contexts and reasoning structures for QA pairs. Unlike existing M-QA datasets, where different reasoning structures are entangled together, GRS-QA explicitly captures intricate reasoning pathways by constructing reasoning graphs, where nodes represent textual contexts and edges denote logical flows. These reasoning graphs of different structures enable a fine-grained evaluation of LLM reasoning capabilities across various reasoning structures. Our empirical analysis reveals that LLMs perform differently when handling questions with varying reasoning structures. This finding facilitates the exploration of textual structures as compared with semantics.
Grounding LLM Reasoning with Knowledge Graphs
Knowledge Graphs (KGs) are valuable tools for representing relationships between entities in a structured format. Traditionally, these knowledge bases are queried to extract specific information. However, question-answering (QA) over such KGs poses a challenge due to the intrinsic complexity of natural language compared to the structured format and the size of these graphs. Despite these challenges, the structured nature of KGs can provide a solid foundation for grounding the outputs of Large Language Models (LLMs), offering organizations increased reliability and control. Recent advancements in LLMs have introduced reasoning methods at inference time to improve their performance and maximize their capabilities. In this work, we propose integrating these reasoning strategies with KGs to anchor every step or "thought" of the reasoning chains in KG data. Specifically, we evaluate both agentic and automated search methods across several reasoning strategies, including Chain-of-Thought (CoT), Tree-of-Thought (ToT), and Graph-of-Thought (GoT), using GRBench, a benchmark dataset for graph reasoning with domain-specific graphs. Our experiments demonstrate that this approach consistently outperforms baseline models, highlighting the benefits of grounding LLM reasoning processes in structured KG data.
Query Embedding on Hyper-relational Knowledge Graphs
Multi-hop logical reasoning is an established problem in the field of representation learning on knowledge graphs (KGs). It subsumes both one-hop link prediction as well as other more complex types of logical queries. Existing algorithms operate only on classical, triple-based graphs, whereas modern KGs often employ a hyper-relational modeling paradigm. In this paradigm, typed edges may have several key-value pairs known as qualifiers that provide fine-grained context for facts. In queries, this context modifies the meaning of relations, and usually reduces the answer set. Hyper-relational queries are often observed in real-world KG applications, and existing approaches for approximate query answering cannot make use of qualifier pairs. In this work, we bridge this gap and extend the multi-hop reasoning problem to hyper-relational KGs allowing to tackle this new type of complex queries. Building upon recent advancements in Graph Neural Networks and query embedding techniques, we study how to embed and answer hyper-relational conjunctive queries. Besides that, we propose a method to answer such queries and demonstrate in our experiments that qualifiers improve query answering on a diverse set of query patterns.
Explanation Graph Generation via Generative Pre-training over Synthetic Graphs
The generation of explanation graphs is a significant task that aims to produce explanation graphs in response to user input, revealing the internal reasoning process. This task is challenging due to the significant discrepancy between unstructured user queries and structured explanation graphs. Current research commonly fine-tunes a text-based pre-trained language model on a small downstream dataset that is annotated with labeled graphs. However, due to the limited scale of available datasets, this approach may prove to be insufficient in bridging the gap between natural language text and structured graphs. In this paper, to alleviate the above limitations, we propose a novel pre-trained framework EG3P(for Explanation Graph Generation via Generative Pre-training over synthetic graphs) for the explanation graph generation task. Specifically, we first propose a text-to-graph generative task to pre-train the model with the goal of bridging the text-graph gap. Additionally, we propose an automatic corpus synthesis strategy for synthesizing a large scale of high-quality corpus, reducing the reliance on costly manual annotation methods. Experimental results on ExplaGraphs show the effectiveness of EG3P that our model surpasses all baseline systems with remarkable margins. Besides, further analysis demonstrates that EG3P is able to generate better explanation graphs on actual reasoning tasks such as CommonsenseQA and OpenbookQA.
Do LVLMs Understand Charts? Analyzing and Correcting Factual Errors in Chart Captioning
Recent advancements in large vision-language models (LVLMs) have led to significant progress in generating natural language descriptions for visual content and thus enhancing various applications. One issue with these powerful models is that they sometimes produce texts that are factually inconsistent with the visual input. While there has been some effort to mitigate such inconsistencies in natural image captioning, the factuality of generated captions for structured document images, such as charts, has not received as much scrutiny, posing a potential threat to information reliability in critical applications. This work delves into the factuality aspect by introducing a comprehensive typology of factual errors in generated chart captions. A large-scale human annotation effort provides insight into the error patterns and frequencies in captions crafted by various chart captioning models, ultimately forming the foundation of a novel dataset, CHOCOLATE. Our analysis reveals that even state-of-the-art models, including GPT-4V, frequently produce captions laced with factual inaccuracies. In response to this challenge, we establish the new task of Chart Caption Factual Error Correction and introduce CHARTVE, a model for visual entailment that outperforms proprietary and open-source LVLMs in evaluating factual consistency. Furthermore, we propose C2TFEC, an interpretable two-stage framework that excels at correcting factual errors. This work inaugurates a new domain in factual error correction for chart captions, presenting a novel evaluation mechanism, and demonstrating an effective approach to ensuring the factuality of generated chart captions.
Perturbation Ontology based Graph Attention Networks
In recent years, graph representation learning has undergone a paradigm shift, driven by the emergence and proliferation of graph neural networks (GNNs) and their heterogeneous counterparts. Heterogeneous GNNs have shown remarkable success in extracting low-dimensional embeddings from complex graphs that encompass diverse entity types and relationships. While meta-path-based techniques have long been recognized for their ability to capture semantic affinities among nodes, their dependence on manual specification poses a significant limitation. In contrast, matrix-focused methods accelerate processing by utilizing structural cues but often overlook contextual richness. In this paper, we challenge the current paradigm by introducing ontology as a fundamental semantic primitive within complex graphs. Our goal is to integrate the strengths of both matrix-centric and meta-path-based approaches into a unified framework. We propose perturbation Ontology-based Graph Attention Networks (POGAT), a novel methodology that combines ontology subgraphs with an advanced self-supervised learning paradigm to achieve a deep contextual understanding. The core innovation of POGAT lies in our enhanced homogeneous perturbing scheme designed to generate rigorous negative samples, encouraging the model to explore minimal contextual features more thoroughly. Through extensive empirical evaluations, we demonstrate that POGAT significantly outperforms state-of-the-art baselines, achieving a groundbreaking improvement of up to 10.78\% in F1-score for the critical task of link prediction and 12.01\% in Micro-F1 for the critical task of node classification.
Understanding tables with intermediate pre-training
Table entailment, the binary classification task of finding if a sentence is supported or refuted by the content of a table, requires parsing language and table structure as well as numerical and discrete reasoning. While there is extensive work on textual entailment, table entailment is less well studied. We adapt TAPAS (Herzig et al., 2020), a table-based BERT model, to recognize entailment. Motivated by the benefits of data augmentation, we create a balanced dataset of millions of automatically created training examples which are learned in an intermediate step prior to fine-tuning. This new data is not only useful for table entailment, but also for SQA (Iyyer et al., 2017), a sequential table QA task. To be able to use long examples as input of BERT models, we evaluate table pruning techniques as a pre-processing step to drastically improve the training and prediction efficiency at a moderate drop in accuracy. The different methods set the new state-of-the-art on the TabFact (Chen et al., 2020) and SQA datasets.
A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic, and Multimodal
Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering, recommendation systems, and etc. According to the graph types, existing KGR models can be roughly divided into three categories, i.e., static models, temporal models, and multi-modal models. Early works in this domain mainly focus on static KGR, and recent works try to leverage the temporal and multi-modal information, which are more practical and closer to real-world. However, no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a first survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the models are reviewed based on bi-level taxonomy, i.e., top-level (graph types) and base-level (techniques and scenarios). Besides, the performances, as well as datasets, are summarized and presented. Moreover, we point out the challenges and potential opportunities to enlighten the readers. The corresponding open-source repository is shared on GitHub https://github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.
Logic Against Bias: Textual Entailment Mitigates Stereotypical Sentence Reasoning
Due to their similarity-based learning objectives, pretrained sentence encoders often internalize stereotypical assumptions that reflect the social biases that exist within their training corpora. In this paper, we describe several kinds of stereotypes concerning different communities that are present in popular sentence representation models, including pretrained next sentence prediction and contrastive sentence representation models. We compare such models to textual entailment models that learn language logic for a variety of downstream language understanding tasks. By comparing strong pretrained models based on text similarity with textual entailment learning, we conclude that the explicit logic learning with textual entailment can significantly reduce bias and improve the recognition of social communities, without an explicit de-biasing process
Representing Syntax and Composition with Geometric Transformations
The exploitation of syntactic graphs (SyGs) as a word's context has been shown to be beneficial for distributional semantic models (DSMs), both at the level of individual word representations and in deriving phrasal representations via composition. However, notwithstanding the potential performance benefit, the syntactically-aware DSMs proposed to date have huge numbers of parameters (compared to conventional DSMs) and suffer from data sparsity. Furthermore, the encoding of the SyG links (i.e., the syntactic relations) has been largely limited to linear maps. The knowledge graphs' literature, on the other hand, has proposed light-weight models employing different geometric transformations (GTs) to encode edges in a knowledge graph (KG). Our work explores the possibility of adopting this family of models to encode SyGs. Furthermore, we investigate which GT better encodes syntactic relations, so that these representations can be used to enhance phrase-level composition via syntactic contextualisation.
GreaseLM: Graph REASoning Enhanced Language Models for Question Answering
Answering complex questions about textual narratives requires reasoning over both stated context and the world knowledge that underlies it. However, pretrained language models (LM), the foundation of most modern QA systems, do not robustly represent latent relationships between concepts, which is necessary for reasoning. While knowledge graphs (KG) are often used to augment LMs with structured representations of world knowledge, it remains an open question how to effectively fuse and reason over the KG representations and the language context, which provides situational constraints and nuances. In this work, we propose GreaseLM, a new model that fuses encoded representations from pretrained LMs and graph neural networks over multiple layers of modality interaction operations. Information from both modalities propagates to the other, allowing language context representations to be grounded by structured world knowledge, and allowing linguistic nuances (e.g., negation, hedging) in the context to inform the graph representations of knowledge. Our results on three benchmarks in the commonsense reasoning (i.e., CommonsenseQA, OpenbookQA) and medical question answering (i.e., MedQA-USMLE) domains demonstrate that GreaseLM can more reliably answer questions that require reasoning over both situational constraints and structured knowledge, even outperforming models 8x larger.
Minds versus Machines: Rethinking Entailment Verification with Language Models
Humans make numerous inferences in text comprehension to understand discourse. This paper aims to understand the commonalities and disparities in the inference judgments between humans and state-of-the-art Large Language Models (LLMs). Leveraging a comprehensively curated entailment verification benchmark, we evaluate both human and LLM performance across various reasoning categories. Our benchmark includes datasets from three categories (NLI, contextual QA, and rationales) that include multi-sentence premises and different knowledge types, thereby evaluating the inference capabilities in complex reasoning instances. Notably, our findings reveal LLMs' superiority in multi-hop reasoning across extended contexts, while humans excel in tasks necessitating simple deductive reasoning. Leveraging these insights, we introduce a fine-tuned Flan-T5 model that outperforms GPT-3.5 and rivals with GPT-4, offering a robust open-source solution for entailment verification. As a practical application, we showcase the efficacy of our finetuned model in enhancing self-consistency in model-generated explanations, resulting in a 6% performance boost on average across three multiple-choice question-answering datasets.
The Semantic Scholar Open Data Platform
The volume of scientific output is creating an urgent need for automated tools to help scientists keep up with developments in their field. Semantic Scholar (S2) is an open data platform and website aimed at accelerating science by helping scholars discover and understand scientific literature. We combine public and proprietary data sources using state-of-the-art techniques for scholarly PDF content extraction and automatic knowledge graph construction to build the Semantic Scholar Academic Graph, the largest open scientific literature graph to-date, with 200M+ papers, 80M+ authors, 550M+ paper-authorship edges, and 2.4B+ citation edges. The graph includes advanced semantic features such as structurally parsed text, natural language summaries, and vector embeddings. In this paper, we describe the components of the S2 data processing pipeline and the associated APIs offered by the platform. We will update this living document to reflect changes as we add new data offerings and improve existing services.
Invariant Graph Transformer
Rationale discovery is defined as finding a subset of the input data that maximally supports the prediction of downstream tasks. In graph machine learning context, graph rationale is defined to locate the critical subgraph in the given graph topology, which fundamentally determines the prediction results. In contrast to the rationale subgraph, the remaining subgraph is named the environment subgraph. Graph rationalization can enhance the model performance as the mapping between the graph rationale and prediction label is viewed as invariant, by assumption. To ensure the discriminative power of the extracted rationale subgraphs, a key technique named "intervention" is applied. The core idea of intervention is that given any changing environment subgraphs, the semantics from the rationale subgraph is invariant, which guarantees the correct prediction result. However, most, if not all, of the existing rationalization works on graph data develop their intervention strategies on the graph level, which is coarse-grained. In this paper, we propose well-tailored intervention strategies on graph data. Our idea is driven by the development of Transformer models, whose self-attention module provides rich interactions between input nodes. Based on the self-attention module, our proposed invariant graph Transformer (IGT) can achieve fine-grained, more specifically, node-level and virtual node-level intervention. Our comprehensive experiments involve 7 real-world datasets, and the proposed IGT shows significant performance advantages compared to 13 baseline methods.
Textual Entailment for Event Argument Extraction: Zero- and Few-Shot with Multi-Source Learning
Recent work has shown that NLP tasks such as Relation Extraction (RE) can be recasted as Textual Entailment tasks using verbalizations, with strong performance in zero-shot and few-shot settings thanks to pre-trained entailment models. The fact that relations in current RE datasets are easily verbalized casts doubts on whether entailment would be effective in more complex tasks. In this work we show that entailment is also effective in Event Argument Extraction (EAE), reducing the need of manual annotation to 50% and 20% in ACE and WikiEvents respectively, while achieving the same performance as with full training. More importantly, we show that recasting EAE as entailment alleviates the dependency on schemas, which has been a road-block for transferring annotations between domains. Thanks to the entailment, the multi-source transfer between ACE and WikiEvents further reduces annotation down to 10% and 5% (respectively) of the full training without transfer. Our analysis shows that the key to good results is the use of several entailment datasets to pre-train the entailment model. Similar to previous approaches, our method requires a small amount of effort for manual verbalization: only less than 15 minutes per event argument type is needed, and comparable results can be achieved with users with different level of expertise.
V-FLUTE: Visual Figurative Language Understanding with Textual Explanations
Large Vision-Language models (VLMs) have demonstrated strong reasoning capabilities in tasks requiring a fine-grained understanding of literal images and text, such as visual question-answering or visual entailment. However, there has been little exploration of these models' capabilities when presented with images and captions containing figurative phenomena such as metaphors or humor, the meaning of which is often implicit. To close this gap, we propose a new task and a high-quality dataset: Visual Figurative Language Understanding with Textual Explanations (V-FLUTE). We frame the visual figurative language understanding problem as an explainable visual entailment task, where the model has to predict whether the image (premise) entails a claim (hypothesis) and justify the predicted label with a textual explanation. Using a human-AI collaboration framework, we build a high-quality dataset, V-FLUTE, that contains 6,027 <image, claim, label, explanation> instances spanning five diverse multimodal figurative phenomena: metaphors, similes, idioms, sarcasm, and humor. The figurative phenomena can be present either in the image, the caption, or both. We further conduct both automatic and human evaluations to assess current VLMs' capabilities in understanding figurative phenomena.
Factoring Statutory Reasoning as Language Understanding Challenges
Statutory reasoning is the task of determining whether a legal statute, stated in natural language, applies to the text description of a case. Prior work introduced a resource that approached statutory reasoning as a monolithic textual entailment problem, with neural baselines performing nearly at-chance. To address this challenge, we decompose statutory reasoning into four types of language-understanding challenge problems, through the introduction of concepts and structure found in Prolog programs. Augmenting an existing benchmark, we provide annotations for the four tasks, and baselines for three of them. Models for statutory reasoning are shown to benefit from the additional structure, improving on prior baselines. Further, the decomposition into subtasks facilitates finer-grained model diagnostics and clearer incremental progress.
GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning
Knowledge Graphs (KGs) represent human-crafted factual knowledge in the form of triplets (head, relation, tail), which collectively form a graph. Question Answering over KGs (KGQA) is the task of answering natural questions grounding the reasoning to the information provided by the KG. Large Language Models (LLMs) are the state-of-the-art models for QA tasks due to their remarkable ability to understand natural language. On the other hand, Graph Neural Networks (GNNs) have been widely used for KGQA as they can handle the complex graph information stored in the KG. In this work, we introduce GNN-RAG, a novel method for combining language understanding abilities of LLMs with the reasoning abilities of GNNs in a retrieval-augmented generation (RAG) style. First, a GNN reasons over a dense KG subgraph to retrieve answer candidates for a given question. Second, the shortest paths in the KG that connect question entities and answer candidates are extracted to represent KG reasoning paths. The extracted paths are verbalized and given as input for LLM reasoning with RAG. In our GNN-RAG framework, the GNN acts as a dense subgraph reasoner to extract useful graph information, while the LLM leverages its natural language processing ability for ultimate KGQA. Furthermore, we develop a retrieval augmentation (RA) technique to further boost KGQA performance with GNN-RAG. Experimental results show that GNN-RAG achieves state-of-the-art performance in two widely used KGQA benchmarks (WebQSP and CWQ), outperforming or matching GPT-4 performance with a 7B tuned LLM. In addition, GNN-RAG excels on multi-hop and multi-entity questions outperforming competing approaches by 8.9--15.5% points at answer F1.
Complex Logical Reasoning over Knowledge Graphs using Large Language Models
Reasoning over knowledge graphs (KGs) is a challenging task that requires a deep understanding of the complex relationships between entities and the underlying logic of their relations. Current approaches rely on learning geometries to embed entities in vector space for logical query operations, but they suffer from subpar performance on complex queries and dataset-specific representations. In this paper, we propose a novel decoupled approach, Language-guided Abstract Reasoning over Knowledge graphs (LARK), that formulates complex KG reasoning as a combination of contextual KG search and logical query reasoning, to leverage the strengths of graph extraction algorithms and large language models (LLM), respectively. Our experiments demonstrate that the proposed approach outperforms state-of-the-art KG reasoning methods on standard benchmark datasets across several logical query constructs, with significant performance gain for queries of higher complexity. Furthermore, we show that the performance of our approach improves proportionally to the increase in size of the underlying LLM, enabling the integration of the latest advancements in LLMs for logical reasoning over KGs. Our work presents a new direction for addressing the challenges of complex KG reasoning and paves the way for future research in this area.
Neural Graph Reasoning: Complex Logical Query Answering Meets Graph Databases
Complex logical query answering (CLQA) is a recently emerged task of graph machine learning that goes beyond simple one-hop link prediction and solves a far more complex task of multi-hop logical reasoning over massive, potentially incomplete graphs in a latent space. The task received a significant traction in the community; numerous works expanded the field along theoretical and practical axes to tackle different types of complex queries and graph modalities with efficient systems. In this paper, we provide a holistic survey of CLQA with a detailed taxonomy studying the field from multiple angles, including graph types (modality, reasoning domain, background semantics), modeling aspects (encoder, processor, decoder), supported queries (operators, patterns, projected variables), datasets, evaluation metrics, and applications. Refining the CLQA task, we introduce the concept of Neural Graph Databases (NGDBs). Extending the idea of graph databases (graph DBs), NGDB consists of a Neural Graph Storage and a Neural Graph Engine. Inside Neural Graph Storage, we design a graph store, a feature store, and further embed information in a latent embedding store using an encoder. Given a query, Neural Query Engine learns how to perform query planning and execution in order to efficiently retrieve the correct results by interacting with the Neural Graph Storage. Compared with traditional graph DBs, NGDBs allow for a flexible and unified modeling of features in diverse modalities using the embedding store. Moreover, when the graph is incomplete, they can provide robust retrieval of answers which a normal graph DB cannot recover. Finally, we point out promising directions, unsolved problems and applications of NGDB for future research.
Label Verbalization and Entailment for Effective Zero- and Few-Shot Relation Extraction
Relation extraction systems require large amounts of labeled examples which are costly to annotate. In this work we reformulate relation extraction as an entailment task, with simple, hand-made, verbalizations of relations produced in less than 15 min per relation. The system relies on a pretrained textual entailment engine which is run as-is (no training examples, zero-shot) or further fine-tuned on labeled examples (few-shot or fully trained). In our experiments on TACRED we attain 63% F1 zero-shot, 69% with 16 examples per relation (17% points better than the best supervised system on the same conditions), and only 4 points short to the state-of-the-art (which uses 20 times more training data). We also show that the performance can be improved significantly with larger entailment models, up to 12 points in zero-shot, allowing to report the best results to date on TACRED when fully trained. The analysis shows that our few-shot systems are specially effective when discriminating between relations, and that the performance difference in low data regimes comes mainly from identifying no-relation cases.
Bayesian Networks for Named Entity Prediction in Programming Community Question Answering
Within this study, we propose a new approach for natural language processing using Bayesian networks to predict and analyze the context and how this approach can be applied to the Community Question Answering domain. We discuss how Bayesian networks can detect semantic relationships and dependencies between entities, and this is connected to different score-based approaches of structure-learning. We compared the Bayesian networks with different score metrics, such as the BIC, BDeu, K2 and Chow-Liu trees. Our proposed approach out-performs the baseline model at the precision metric. We also discuss the influence of penalty terms on the structure of Bayesian networks and how they can be used to analyze the relationships between entities. In addition, we examine the visualization of directed acyclic graphs to analyze semantic relationships. The article further identifies issues with detecting certain semantic classes that are separated in the structure of directed acyclic graphs. Finally, we evaluate potential improvements for the Bayesian network approach.
HyperGraphRAG: Retrieval-Augmented Generation via Hypergraph-Structured Knowledge Representation
Standard Retrieval-Augmented Generation (RAG) relies on chunk-based retrieval, whereas GraphRAG advances this approach by graph-based knowledge representation. However, existing graph-based RAG approaches are constrained by binary relations, as each edge in an ordinary graph connects only two entities, limiting their ability to represent the n-ary relations (n >= 2) in real-world knowledge. In this work, we propose HyperGraphRAG, a novel hypergraph-based RAG method that represents n-ary relational facts via hyperedges, and consists of knowledge hypergraph construction, retrieval, and generation. Experiments across medicine, agriculture, computer science, and law demonstrate that HyperGraphRAG outperforms both standard RAG and previous graph-based RAG methods in answer accuracy, retrieval efficiency, and generation quality.
RConE: Rough Cone Embedding for Multi-Hop Logical Query Answering on Multi-Modal Knowledge Graphs
Multi-hop query answering over a Knowledge Graph (KG) involves traversing one or more hops from the start node to answer a query. Path-based and logic-based methods are state-of-the-art for multi-hop question answering. The former is used in link prediction tasks. The latter is for answering complex logical queries. The logical multi-hop querying technique embeds the KG and queries in the same embedding space. The existing work incorporates First Order Logic (FOL) operators, such as conjunction (wedge), disjunction (vee), and negation (neg), in queries. Though current models have most of the building blocks to execute the FOL queries, they cannot use the dense information of multi-modal entities in the case of Multi-Modal Knowledge Graphs (MMKGs). We propose RConE, an embedding method to capture the multi-modal information needed to answer a query. The model first shortlists candidate (multi-modal) entities containing the answer. It then finds the solution (sub-entities) within those entities. Several existing works tackle path-based question-answering in MMKGs. However, to our knowledge, we are the first to introduce logical constructs in querying MMKGs and to answer queries that involve sub-entities of multi-modal entities as the answer. Extensive evaluation of four publicly available MMKGs indicates that RConE outperforms the current state-of-the-art.
CLEVR Parser: A Graph Parser Library for Geometric Learning on Language Grounded Image Scenes
The CLEVR dataset has been used extensively in language grounded visual reasoning in Machine Learning (ML) and Natural Language Processing (NLP) domains. We present a graph parser library for CLEVR, that provides functionalities for object-centric attributes and relationships extraction, and construction of structural graph representations for dual modalities. Structural order-invariant representations enable geometric learning and can aid in downstream tasks like language grounding to vision, robotics, compositionality, interpretability, and computational grammar construction. We provide three extensible main components - parser, embedder, and visualizer that can be tailored to suit specific learning setups. We also provide out-of-the-box functionality for seamless integration with popular deep graph neural network (GNN) libraries. Additionally, we discuss downstream usage and applications of the library, and how it accelerates research for the NLP research community.
Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models
Large Language Models (LLMs) may suffer from hallucinations in real-world applications due to the lack of relevant knowledge. In contrast, knowledge graphs encompass extensive, multi-relational structures that store a vast array of symbolic facts. Consequently, integrating LLMs with knowledge graphs has been extensively explored, with Knowledge Graph Question Answering (KGQA) serving as a critical touchstone for the integration. This task requires LLMs to answer natural language questions by retrieving relevant triples from knowledge graphs. However, existing methods face two significant challenges: excessively long reasoning paths distracting from the answer generation, and false-positive relations hindering the path refinement. In this paper, we propose an iterative interactive KGQA framework that leverages the interactive learning capabilities of LLMs to perform reasoning and Debating over Graphs (DoG). Specifically, DoG employs a subgraph-focusing mechanism, allowing LLMs to perform answer trying after each reasoning step, thereby mitigating the impact of lengthy reasoning paths. On the other hand, DoG utilizes a multi-role debate team to gradually simplify complex questions, reducing the influence of false-positive relations. This debate mechanism ensures the reliability of the reasoning process. Experimental results on five public datasets demonstrate the effectiveness and superiority of our architecture. Notably, DoG outperforms the state-of-the-art method ToG by 23.7\% and 9.1\% in accuracy on WebQuestions and GrailQA, respectively. Furthermore, the integration experiments with various LLMs on the mentioned datasets highlight the flexibility of DoG. Code is available at https://github.com/reml-group/DoG.
SemEval-2023 Task 7: Multi-Evidence Natural Language Inference for Clinical Trial Data
This paper describes the results of SemEval 2023 task 7 -- Multi-Evidence Natural Language Inference for Clinical Trial Data (NLI4CT) -- consisting of 2 tasks, a Natural Language Inference (NLI) task, and an evidence selection task on clinical trial data. The proposed challenges require multi-hop biomedical and numerical reasoning, which are of significant importance to the development of systems capable of large-scale interpretation and retrieval of medical evidence, to provide personalized evidence-based care. Task 1, the entailment task, received 643 submissions from 40 participants, and Task 2, the evidence selection task, received 364 submissions from 23 participants. The tasks are challenging, with the majority of submitted systems failing to significantly outperform the majority class baseline on the entailment task, and we observe significantly better performance on the evidence selection task than on the entailment task. Increasing the number of model parameters leads to a direct increase in performance, far more significant than the effect of biomedical pre-training. Future works could explore the limitations of large models for generalization and numerical inference, and investigate methods to augment clinical datasets to allow for more rigorous testing and to facilitate fine-tuning. We envisage that the dataset, models, and results of this task will be useful to the biomedical NLI and evidence retrieval communities. The dataset, competition leaderboard, and website are publicly available.
A Graph-based Verification Framework for Fact-Checking
Fact-checking plays a crucial role in combating misinformation. Existing methods using large language models (LLMs) for claim decomposition face two key limitations: (1) insufficient decomposition, introducing unnecessary complexity to the verification process, and (2) ambiguity of mentions, leading to incorrect verification results. To address these challenges, we suggest introducing a claim graph consisting of triplets to address the insufficient decomposition problem and reduce mention ambiguity through graph structure. Based on this core idea, we propose a graph-based framework, GraphFC, for fact-checking. The framework features three key components: graph construction, which builds both claim and evidence graphs; graph-guided planning, which prioritizes the triplet verification order; and graph-guided checking, which verifies the triples one by one between claim and evidence graphs. Extensive experiments show that GraphFC enables fine-grained decomposition while resolving referential ambiguities through relational constraints, achieving state-of-the-art performance across three datasets.
G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering
Given a graph with textual attributes, we enable users to `chat with their graph': that is, to ask questions about the graph using a conversational interface. In response to a user's questions, our method provides textual replies and highlights the relevant parts of the graph. While existing works integrate large language models (LLMs) and graph neural networks (GNNs) in various ways, they mostly focus on either conventional graph tasks (such as node, edge, and graph classification), or on answering simple graph queries on small or synthetic graphs. In contrast, we develop a flexible question-answering framework targeting real-world textual graphs, applicable to multiple applications including scene graph understanding, common sense reasoning, and knowledge graph reasoning. Toward this goal, we first develop a Graph Question Answering (GraphQA) benchmark with data collected from different tasks. Then, we propose our G-Retriever method, introducing the first retrieval-augmented generation (RAG) approach for general textual graphs, which can be fine-tuned to enhance graph understanding via soft prompting. To resist hallucination and to allow for textual graphs that greatly exceed the LLM's context window size, G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem. Empirical evaluations show that our method outperforms baselines on textual graph tasks from multiple domains, scales well with larger graph sizes, and mitigates hallucination.~Our codes and datasets are available at: \url{https://github.com/XiaoxinHe/G-Retriever}
NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models
Graphs are a fundamental data structure for representing relationships in real-world scenarios. With the success of Large Language Models (LLMs) across various natural language processing (NLP) tasks, there has been growing interest in integrating LLMs for graph learning. However, applying LLMs to graph-related tasks poses significant challenges, as these models are not inherently designed to capture the complex structural information present in graphs. Existing approaches address this challenge through two strategies: the chain of tasks approach, which uses Graph Neural Networks (GNNs) to encode the graph structure so that LLMs are relieved from understanding spatial positions; and Graph-to-Text Conversion, which translates graph structures into semantic text representations that LLMs can process. Despite their progress, these methods often struggle to fully preserve the topological information of graphs or require extensive computational resources, limiting their practical applicability. In this work, we introduce Node Tokenizer for Large Language Models (NT-LLM), a novel framework that efficiently encodes graph structures by selecting key nodes as anchors and representing each node based on its relative distance to these anchors. This position-anchored encoding effectively captures the graph topology, enabling enhanced reasoning capabilities in LLMs over graph data. Additionally, we implement a task-specific tuning procedure to further improve structural understanding within LLMs. Through extensive empirical evaluations, NT-LLM demonstrates significant performance improvements across a variety of graph-related tasks.
FactKG: Fact Verification via Reasoning on Knowledge Graphs
In real world applications, knowledge graphs (KG) are widely used in various domains (e.g. medical applications and dialogue agents). However, for fact verification, KGs have not been adequately utilized as a knowledge source. KGs can be a valuable knowledge source in fact verification due to their reliability and broad applicability. A KG consists of nodes and edges which makes it clear how concepts are linked together, allowing machines to reason over chains of topics. However, there are many challenges in understanding how these machine-readable concepts map to information in text. To enable the community to better use KGs, we introduce a new dataset, FactKG: Fact Verification via Reasoning on Knowledge Graphs. It consists of 108k natural language claims with five types of reasoning: One-hop, Conjunction, Existence, Multi-hop, and Negation. Furthermore, FactKG contains various linguistic patterns, including colloquial style claims as well as written style claims to increase practicality. Lastly, we develop a baseline approach and analyze FactKG over these reasoning types. We believe FactKG can advance both reliability and practicality in KG-based fact verification.
Uncovering Agendas: A Novel French & English Dataset for Agenda Detection on Social Media
The behavior and decision making of groups or communities can be dramatically influenced by individuals pushing particular agendas, e.g., to promote or disparage a person or an activity, to call for action, etc.. In the examination of online influence campaigns, particularly those related to important political and social events, scholars often concentrate on identifying the sources responsible for setting and controlling the agenda (e.g., public media). In this article we present a methodology for detecting specific instances of agenda control through social media where annotated data is limited or non-existent. By using a modest corpus of Twitter messages centered on the 2022 French Presidential Elections, we carry out a comprehensive evaluation of various approaches and techniques that can be applied to this problem. Our findings demonstrate that by treating the task as a textual entailment problem, it is possible to overcome the requirement for a large annotated training dataset.
CSKG: The CommonSense Knowledge Graph
Sources of commonsense knowledge support applications in natural language understanding, computer vision, and knowledge graphs. Given their complementarity, their integration is desired. Yet, their different foci, modeling approaches, and sparse overlap make integration difficult. In this paper, we consolidate commonsense knowledge by following five principles, which we apply to combine seven key sources into a first integrated CommonSense Knowledge Graph (CSKG). We analyze CSKG and its various text and graph embeddings, showing that CSKG is well-connected and that its embeddings provide a useful entry point to the graph. We demonstrate how CSKG can provide evidence for generalizable downstream reasoning and for pre-training of language models. CSKG and all its embeddings are made publicly available to support further research on commonsense knowledge integration and reasoning.
Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning
Large language models (LLMs) have demonstrated impressive reasoning abilities in complex tasks. However, they lack up-to-date knowledge and experience hallucinations during reasoning, which can lead to incorrect reasoning processes and diminish their performance and trustworthiness. Knowledge graphs (KGs), which capture vast amounts of facts in a structured format, offer a reliable source of knowledge for reasoning. Nevertheless, existing KG-based LLM reasoning methods only treat KGs as factual knowledge bases and overlook the importance of their structural information for reasoning. In this paper, we propose a novel method called reasoning on graphs (RoG) that synergizes LLMs with KGs to enable faithful and interpretable reasoning. Specifically, we present a planning-retrieval-reasoning framework, where RoG first generates relation paths grounded by KGs as faithful plans. These plans are then used to retrieve valid reasoning paths from the KGs for LLMs to conduct faithful reasoning. Furthermore, RoG not only distills knowledge from KGs to improve the reasoning ability of LLMs through training but also allows seamless integration with any arbitrary LLMs during inference. Extensive experiments on two benchmark KGQA datasets demonstrate that RoG achieves state-of-the-art performance on KG reasoning tasks and generates faithful and interpretable reasoning results.
A Toolkit for Generating Code Knowledge Graphs
Knowledge graphs have been proven extremely useful in powering diverse applications in semantic search and natural language understanding. In this paper, we present GraphGen4Code, a toolkit to build code knowledge graphs that can similarly power various applications such as program search, code understanding, bug detection, and code automation. GraphGen4Code uses generic techniques to capture code semantics with the key nodes in the graph representing classes, functions, and methods. Edges indicate function usage (e.g., how data flows through function calls, as derived from program analysis of real code), and documentation about functions (e.g., code documentation, usage documentation, or forum discussions such as StackOverflow). Our toolkit uses named graphs in RDF to model graphs per program, or can output graphs as JSON. We show the scalability of the toolkit by applying it to 1.3 million Python files drawn from GitHub, 2,300 Python modules, and 47 million forum posts. This results in an integrated code graph with over 2 billion triples. We make the toolkit to build such graphs as well as the sample extraction of the 2 billion triples graph publicly available to the community for use.
Conditions and Assumptions for Constraint-based Causal Structure Learning
We formalize constraint-based structure learning of the "true" causal graph from observed data when unobserved variables are also existent. We provide conditions for a "natural" family of constraint-based structure-learning algorithms that output graphs that are Markov equivalent to the causal graph. Under the faithfulness assumption, this natural family contains all exact structure-learning algorithms. We also provide a set of assumptions, under which any natural structure-learning algorithm outputs Markov equivalent graphs to the causal graph. These assumptions can be thought of as a relaxation of faithfulness, and most of them can be directly tested from (the underlying distribution) of the data, particularly when one focuses on structural causal models. We specialize the definitions and results for structural causal models.
Leveraging Pre-trained Language Models for Time Interval Prediction in Text-Enhanced Temporal Knowledge Graphs
Most knowledge graph completion (KGC) methods learn latent representations of entities and relations of a given graph by mapping them into a vector space. Although the majority of these methods focus on static knowledge graphs, a large number of publicly available KGs contain temporal information stating the time instant/period over which a certain fact has been true. Such graphs are often known as temporal knowledge graphs. Furthermore, knowledge graphs may also contain textual descriptions of entities and relations. Both temporal information and textual descriptions are not taken into account during representation learning by static KGC methods, and only structural information of the graph is leveraged. Recently, some studies have used temporal information to improve link prediction, yet they do not exploit textual descriptions and do not support inductive inference (prediction on entities that have not been seen in training). We propose a novel framework called TEMT that exploits the power of pre-trained language models (PLMs) for text-enhanced temporal knowledge graph completion. The knowledge stored in the parameters of a PLM allows TEMT to produce rich semantic representations of facts and to generalize on previously unseen entities. TEMT leverages textual and temporal information available in a KG, treats them separately, and fuses them to get plausibility scores of facts. Unlike previous approaches, TEMT effectively captures dependencies across different time points and enables predictions on unseen entities. To assess the performance of TEMT, we carried out several experiments including time interval prediction, both in transductive and inductive settings, and triple classification. The experimental results show that TEMT is competitive with the state-of-the-art.
ReasonGraph: Visualisation of Reasoning Paths
Large Language Models (LLMs) reasoning processes are challenging to analyze due to their complexity and the lack of organized visualization tools. We present ReasonGraph, a web-based platform for visualizing and analyzing LLM reasoning processes. It supports both sequential and tree-based reasoning methods while integrating with major LLM providers and over fifty state-of-the-art models. ReasonGraph incorporates an intuitive UI with meta reasoning method selection, configurable visualization parameters, and a modular framework that facilitates efficient extension. Our evaluation shows high parsing reliability, efficient processing, and strong usability across various downstream applications. By providing a unified visualization framework, ReasonGraph reduces cognitive load in analyzing complex reasoning paths, improves error detection in logical processes, and enables more effective development of LLM-based applications. The platform is open-source, promoting accessibility and reproducibility in LLM reasoning analysis.
One for All: Towards Training One Graph Model for All Classification Tasks
Designing a single model to address multiple tasks has been a long-standing objective in artificial intelligence. Recently, large language models have demonstrated exceptional capability in solving different tasks within the language domain. However, a unified model for various graph tasks remains underexplored, primarily due to the challenges unique to the graph learning domain. First, graph data from different areas carry distinct attributes and follow different distributions. Such discrepancy makes it hard to represent graphs in a single representation space. Second, tasks on graphs diversify into node, link, and graph tasks, requiring distinct embedding strategies. Finally, an appropriate graph prompting paradigm for in-context learning is unclear. We propose One for All (OFA), the first general framework that can use a single graph model to address the above challenges. Specifically, OFA proposes text-attributed graphs to unify different graph data by describing nodes and edges with natural language and uses language models to encode the diverse and possibly cross-domain text attributes to feature vectors in the same embedding space. Furthermore, OFA introduces the concept of nodes-of-interest to standardize different tasks with a single task representation. For in-context learning on graphs, OFA introduces a novel graph prompting paradigm that appends prompting substructures to the input graph, which enables it to address varied tasks without fine-tuning. We train the OFA model using graph data from multiple domains (including citation networks, molecular graphs, knowledge graphs, etc.) simultaneously and evaluate its ability in supervised, few-shot, and zero-shot learning scenarios. OFA performs well across different tasks, making it the first general-purpose across-domains classification model on graphs.
Graph Prompt Learning: A Comprehensive Survey and Beyond
Artificial General Intelligence (AGI) has revolutionized numerous fields, yet its integration with graph data, a cornerstone in our interconnected world, remains nascent. This paper presents a pioneering survey on the emerging domain of graph prompts in AGI, addressing key challenges and opportunities in harnessing graph data for AGI applications. Despite substantial advancements in AGI across natural language processing and computer vision, the application to graph data is relatively underexplored. This survey critically evaluates the current landscape of AGI in handling graph data, highlighting the distinct challenges in cross-modality, cross-domain, and cross-task applications specific to graphs. Our work is the first to propose a unified framework for understanding graph prompt learning, offering clarity on prompt tokens, token structures, and insertion patterns in the graph domain. We delve into the intrinsic properties of graph prompts, exploring their flexibility, expressiveness, and interplay with existing graph models. A comprehensive taxonomy categorizes over 100 works in this field, aligning them with pre-training tasks across node-level, edge-level, and graph-level objectives. Additionally, we present, ProG, a Python library, and an accompanying website, to support and advance research in graph prompting. The survey culminates in a discussion of current challenges and future directions, offering a roadmap for research in graph prompting within AGI. Through this comprehensive analysis, we aim to catalyze further exploration and practical applications of AGI in graph data, underlining its potential to reshape AGI fields and beyond. ProG and the website can be accessed by https://github.com/WxxShirley/Awesome-Graph-Prompt, and https://github.com/sheldonresearch/ProG, respectively.
ConceptGraphs: Open-Vocabulary 3D Scene Graphs for Perception and Planning
For robots to perform a wide variety of tasks, they require a 3D representation of the world that is semantically rich, yet compact and efficient for task-driven perception and planning. Recent approaches have attempted to leverage features from large vision-language models to encode semantics in 3D representations. However, these approaches tend to produce maps with per-point feature vectors, which do not scale well in larger environments, nor do they contain semantic spatial relationships between entities in the environment, which are useful for downstream planning. In this work, we propose ConceptGraphs, an open-vocabulary graph-structured representation for 3D scenes. ConceptGraphs is built by leveraging 2D foundation models and fusing their output to 3D by multi-view association. The resulting representations generalize to novel semantic classes, without the need to collect large 3D datasets or finetune models. We demonstrate the utility of this representation through a number of downstream planning tasks that are specified through abstract (language) prompts and require complex reasoning over spatial and semantic concepts. (Project page: https://concept-graphs.github.io/ Explainer video: https://youtu.be/mRhNkQwRYnc )
Evaluating Large Language Models on Graphs: Performance Insights and Comparative Analysis
Large Language Models (LLMs) have garnered considerable interest within both academic and industrial. Yet, the application of LLMs to graph data remains under-explored. In this study, we evaluate the capabilities of four LLMs in addressing several analytical problems with graph data. We employ four distinct evaluation metrics: Comprehension, Correctness, Fidelity, and Rectification. Our results show that: 1) LLMs effectively comprehend graph data in natural language and reason with graph topology. 2) GPT models can generate logical and coherent results, outperforming alternatives in correctness. 3) All examined LLMs face challenges in structural reasoning, with techniques like zero-shot chain-of-thought and few-shot prompting showing diminished efficacy. 4) GPT models often produce erroneous answers in multi-answer tasks, raising concerns in fidelity. 5) GPT models exhibit elevated confidence in their outputs, potentially hindering their rectification capacities. Notably, GPT-4 has demonstrated the capacity to rectify responses from GPT-3.5-turbo and its own previous iterations. The code is available at: https://github.com/Ayame1006/LLMtoGraph.
Named Entity Disambiguation using Deep Learning on Graphs
We tackle NED by comparing entities in short sentences with graphs. Creating a context vector from graphs through deep learning is a challenging problem that has never been applied to NED. Our main contribution is to present an experimental study of recent neural techniques, as well as a discussion about which graph features are most important for the disambiguation task. In addition, a new dataset () is created to allow a clean and scalable evaluation of NED with entries, and to be used as a reference in future research. In the end our results show that a Bi-LSTM encoding of the graph triplets performs best, improving upon the baseline models and scoring an F1 value of 91.6% on the test set
On the Diagram of Thought
We introduce Diagram of Thought (DoT), a framework that models iterative reasoning in large language models (LLMs) as the construction of a directed acyclic graph (DAG) within a single model. Unlike traditional approaches that represent reasoning as linear chains or trees, DoT organizes propositions, critiques, refinements, and verifications into a cohesive DAG structure, allowing the model to explore complex reasoning pathways while maintaining logical consistency. Each node in the diagram corresponds to a proposition that has been proposed, critiqued, refined, or verified, enabling the LLM to iteratively improve its reasoning through natural language feedback. By leveraging auto-regressive next-token prediction with role-specific tokens, DoT facilitates seamless transitions between proposing ideas and critically evaluating them, providing richer feedback than binary signals. Furthermore, we formalize the DoT framework using Topos Theory, providing a mathematical foundation that ensures logical consistency and soundness in the reasoning process. This approach enhances both the training and inference processes within a single LLM, eliminating the need for multiple models or external control mechanisms. DoT offers a conceptual framework for designing next-generation reasoning-specialized models, emphasizing training efficiency, robust reasoning capabilities, and theoretical grounding. The code is available at https://github.com/diagram-of-thought/diagram-of-thought.
Paths-over-Graph: Knowledge Graph Empowered Large Language Model Reasoning
Large Language Models (LLMs) have achieved impressive results in various tasks but struggle with hallucination problems and lack of relevant knowledge, especially in deep complex reasoning and knowledge-intensive tasks. Knowledge Graphs (KGs), which capture vast amounts of facts in a structured format, offer a reliable source of knowledge for reasoning. However, existing KG-based LLM reasoning methods face challenges like handling multi-hop reasoning, multi-entity questions, and effectively utilizing graph structures. To address these issues, we propose Paths-over-Graph (PoG), a novel method that enhances LLM reasoning by integrating knowledge reasoning paths from KGs, improving the interpretability and faithfulness of LLM outputs. PoG tackles multi-hop and multi-entity questions through a three-phase dynamic multi-hop path exploration, which combines the inherent knowledge of LLMs with factual knowledge from KGs. In order to improve the efficiency, PoG prunes irrelevant information from the graph exploration first and introduces efficient three-step pruning techniques that incorporate graph structures, LLM prompting, and a pre-trained language model (e.g., SBERT) to effectively narrow down the explored candidate paths. This ensures all reasoning paths contain highly relevant information captured from KGs, making the reasoning faithful and interpretable in problem-solving. PoG innovatively utilizes graph structure to prune the irrelevant noise and represents the first method to implement multi-entity deep path detection on KGs for LLM reasoning tasks. Comprehensive experiments on five benchmark KGQA datasets demonstrate PoG outperforms the state-of-the-art method ToG across GPT-3.5-Turbo and GPT-4, achieving an average accuracy improvement of 18.9%. Notably, PoG with GPT-3.5-Turbo surpasses ToG with GPT-4 by up to 23.9%.
Mixture of Length and Pruning Experts for Knowledge Graphs Reasoning
Knowledge Graph (KG) reasoning, which aims to infer new facts from structured knowledge repositories, plays a vital role in Natural Language Processing (NLP) systems. Its effectiveness critically depends on constructing informative and contextually relevant reasoning paths. However, existing graph neural networks (GNNs) often adopt rigid, query-agnostic path-exploration strategies, limiting their ability to adapt to diverse linguistic contexts and semantic nuances. To address these limitations, we propose MoKGR, a mixture-of-experts framework that personalizes path exploration through two complementary components: (1) a mixture of length experts that adaptively selects and weights candidate path lengths according to query complexity, providing query-specific reasoning depth; and (2) a mixture of pruning experts that evaluates candidate paths from a complementary perspective, retaining the most informative paths for each query. Through comprehensive experiments on diverse benchmark, MoKGR demonstrates superior performance in both transductive and inductive settings, validating the effectiveness of personalized path exploration in KGs reasoning.
MERIt: Meta-Path Guided Contrastive Learning for Logical Reasoning
Logical reasoning is of vital importance to natural language understanding. Previous studies either employ graph-based models to incorporate prior knowledge about logical relations, or introduce symbolic logic into neural models through data augmentation. These methods, however, heavily depend on annotated training data, and thus suffer from over-fitting and poor generalization problems due to the dataset sparsity. To address these two problems, in this paper, we propose MERIt, a MEta-path guided contrastive learning method for logical ReasonIng of text, to perform self-supervised pre-training on abundant unlabeled text data. Two novel strategies serve as indispensable components of our method. In particular, a strategy based on meta-path is devised to discover the logical structure in natural texts, followed by a counterfactual data augmentation strategy to eliminate the information shortcut induced by pre-training. The experimental results on two challenging logical reasoning benchmarks, i.e., ReClor and LogiQA, demonstrate that our method outperforms the SOTA baselines with significant improvements.
Graph Pre-training for AMR Parsing and Generation
Abstract meaning representation (AMR) highlights the core semantic information of text in a graph structure. Recently, pre-trained language models (PLMs) have advanced tasks of AMR parsing and AMR-to-text generation, respectively. However, PLMs are typically pre-trained on textual data, thus are sub-optimal for modeling structural knowledge. To this end, we investigate graph self-supervised training to improve the structure awareness of PLMs over AMR graphs. In particular, we introduce two graph auto-encoding strategies for graph-to-graph pre-training and four tasks to integrate text and graph information during pre-training. We further design a unified framework to bridge the gap between pre-training and fine-tuning tasks. Experiments on both AMR parsing and AMR-to-text generation show the superiority of our model. To our knowledge, we are the first to consider pre-training on semantic graphs.
EQUATE: A Benchmark Evaluation Framework for Quantitative Reasoning in Natural Language Inference
Quantitative reasoning is a higher-order reasoning skill that any intelligent natural language understanding system can reasonably be expected to handle. We present EQUATE (Evaluating Quantitative Understanding Aptitude in Textual Entailment), a new framework for quantitative reasoning in textual entailment. We benchmark the performance of 9 published NLI models on EQUATE, and find that on average, state-of-the-art methods do not achieve an absolute improvement over a majority-class baseline, suggesting that they do not implicitly learn to reason with quantities. We establish a new baseline Q-REAS that manipulates quantities symbolically. In comparison to the best performing NLI model, it achieves success on numerical reasoning tests (+24.2%), but has limited verbal reasoning capabilities (-8.1%). We hope our evaluation framework will support the development of models of quantitative reasoning in language understanding.
InGram: Inductive Knowledge Graph Embedding via Relation Graphs
Inductive knowledge graph completion has been considered as the task of predicting missing triplets between new entities that are not observed during training. While most inductive knowledge graph completion methods assume that all entities can be new, they do not allow new relations to appear at inference time. This restriction prohibits the existing methods from appropriately handling real-world knowledge graphs where new entities accompany new relations. In this paper, we propose an INductive knowledge GRAph eMbedding method, InGram, that can generate embeddings of new relations as well as new entities at inference time. Given a knowledge graph, we define a relation graph as a weighted graph consisting of relations and the affinity weights between them. Based on the relation graph and the original knowledge graph, InGram learns how to aggregate neighboring embeddings to generate relation and entity embeddings using an attention mechanism. Experimental results show that InGram outperforms 14 different state-of-the-art methods on varied inductive learning scenarios.
An Automated Pipeline for Character and Relationship Extraction from Readers' Literary Book Reviews on Goodreads.com
Reader reviews of literary fiction on social media, especially those in persistent, dedicated forums, create and are in turn driven by underlying narrative frameworks. In their comments about a novel, readers generally include only a subset of characters and their relationships, thus offering a limited perspective on that work. Yet in aggregate, these reviews capture an underlying narrative framework comprised of different actants (people, places, things), their roles, and interactions that we label the "consensus narrative framework". We represent this framework in the form of an actant-relationship story graph. Extracting this graph is a challenging computational problem, which we pose as a latent graphical model estimation problem. Posts and reviews are viewed as samples of sub graphs/networks of the hidden narrative framework. Inspired by the qualitative narrative theory of Greimas, we formulate a graphical generative Machine Learning (ML) model where nodes represent actants, and multi-edges and self-loops among nodes capture context-specific relationships. We develop a pipeline of interlocking automated methods to extract key actants and their relationships, and apply it to thousands of reviews and comments posted on Goodreads.com. We manually derive the ground truth narrative framework from SparkNotes, and then use word embedding tools to compare relationships in ground truth networks with our extracted networks. We find that our automated methodology generates highly accurate consensus narrative frameworks: for our four target novels, with approximately 2900 reviews per novel, we report average coverage/recall of important relationships of > 80% and an average edge detection rate of >89\%. These extracted narrative frameworks can generate insight into how people (or classes of people) read and how they recount what they have read to others.
KisMATH: Do LLMs Have Knowledge of Implicit Structures in Mathematical Reasoning?
Chain-of-thought traces have been shown to improve performance of large language models in a plethora of reasoning tasks, yet there is no consensus on the mechanism through which this performance boost is achieved. To shed more light on this, we introduce Causal CoT Graphs (CCGs), which are directed acyclic graphs automatically extracted from reasoning traces that model fine-grained causal dependencies in the language model output. A collection of 1671 mathematical reasoning problems from MATH500, GSM8K and AIME, and their associated CCGs are compiled into our dataset -- KisMATH. Our detailed empirical analysis with 15 open-weight LLMs shows that (i) reasoning nodes in the CCG are mediators for the final answer, a condition necessary for reasoning; and (ii) LLMs emphasise reasoning paths given by the CCG, indicating that models internally realise structures akin to our graphs. KisMATH enables controlled, graph-aligned interventions and opens up avenues for further investigation into the role of chain-of-thought in LLM reasoning.
A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction
Document-level Event Argument Extraction (DEAE) aims to identify arguments and their specific roles from an unstructured document. The advanced approaches on DEAE utilize prompt-based methods to guide pre-trained language models (PLMs) in extracting arguments from input documents. They mainly concentrate on establishing relations between triggers and entity mentions within documents, leaving two unresolved problems: a) independent modeling of entity mentions; b) document-prompt isolation. To this end, we propose a semantic mention Graph Augmented Model (GAM) to address these two problems in this paper. Firstly, GAM constructs a semantic mention graph that captures relations within and between documents and prompts, encompassing co-existence, co-reference and co-type relations. Furthermore, we introduce an ensembled graph transformer module to address mentions and their three semantic relations effectively. Later, the graph-augmented encoder-decoder module incorporates the relation-specific graph into the input embedding of PLMs and optimizes the encoder section with topology information, enhancing the relations comprehensively. Extensive experiments on the RAMS and WikiEvents datasets demonstrate the effectiveness of our approach, surpassing baseline methods and achieving a new state-of-the-art performance.
Distributional semantic modeling: a revised technique to train term/word vector space models applying the ontology-related approach
We design a new technique for the distributional semantic modeling with a neural network-based approach to learn distributed term representations (or term embeddings) - term vector space models as a result, inspired by the recent ontology-related approach (using different types of contextual knowledge such as syntactic knowledge, terminological knowledge, semantic knowledge, etc.) to the identification of terms (term extraction) and relations between them (relation extraction) called semantic pre-processing technology - SPT. Our method relies on automatic term extraction from the natural language texts and subsequent formation of the problem-oriented or application-oriented (also deeply annotated) text corpora where the fundamental entity is the term (includes non-compositional and compositional terms). This gives us an opportunity to changeover from distributed word representations (or word embeddings) to distributed term representations (or term embeddings). This transition will allow to generate more accurate semantic maps of different subject domains (also, of relations between input terms - it is useful to explore clusters and oppositions, or to test your hypotheses about them). The semantic map can be represented as a graph using Vec2graph - a Python library for visualizing word embeddings (term embeddings in our case) as dynamic and interactive graphs. The Vec2graph library coupled with term embeddings will not only improve accuracy in solving standard NLP tasks, but also update the conventional concept of automated ontology development. The main practical result of our work is the development kit (set of toolkits represented as web service APIs and web application), which provides all necessary routines for the basic linguistic pre-processing and the semantic pre-processing of the natural language texts in Ukrainian for future training of term vector space models.
Graph Agent: Explicit Reasoning Agent for Graphs
Graph embedding methods such as Graph Neural Networks (GNNs) and Graph Transformers have contributed to the development of graph reasoning algorithms for various tasks on knowledge graphs. However, the lack of interpretability and explainability of graph embedding methods has limited their applicability in scenarios requiring explicit reasoning. In this paper, we introduce the Graph Agent (GA), an intelligent agent methodology of leveraging large language models (LLMs), inductive-deductive reasoning modules, and long-term memory for knowledge graph reasoning tasks. GA integrates aspects of symbolic reasoning and existing graph embedding methods to provide an innovative approach for complex graph reasoning tasks. By converting graph structures into textual data, GA enables LLMs to process, reason, and provide predictions alongside human-interpretable explanations. The effectiveness of the GA was evaluated on node classification and link prediction tasks. Results showed that GA reached state-of-the-art performance, demonstrating accuracy of 90.65%, 95.48%, and 89.32% on Cora, PubMed, and PrimeKG datasets, respectively. Compared to existing GNN and transformer models, GA offered advantages of explicit reasoning ability, free-of-training, easy adaption to various graph reasoning tasks
BYOKG-RAG: Multi-Strategy Graph Retrieval for Knowledge Graph Question Answering
Knowledge graph question answering (KGQA) presents significant challenges due to the structural and semantic variations across input graphs. Existing works rely on Large Language Model (LLM) agents for graph traversal and retrieval; an approach that is sensitive to traversal initialization, as it is prone to entity linking errors and may not generalize well to custom ("bring-your-own") KGs. We introduce BYOKG-RAG, a framework that enhances KGQA by synergistically combining LLMs with specialized graph retrieval tools. In BYOKG-RAG, LLMs generate critical graph artifacts (question entities, candidate answers, reasoning paths, and OpenCypher queries), and graph tools link these artifacts to the KG and retrieve relevant graph context. The retrieved context enables the LLM to iteratively refine its graph linking and retrieval, before final answer generation. By retrieving context from different graph tools, BYOKG-RAG offers a more general and robust solution for QA over custom KGs. Through experiments on five benchmarks spanning diverse KG types, we demonstrate that BYOKG-RAG outperforms the second-best graph retrieval method by 4.5% points while showing better generalization to custom KGs. BYOKG-RAG framework is open-sourced at https://github.com/awslabs/graphrag-toolkit.
Inductive Logical Query Answering in Knowledge Graphs
Formulating and answering logical queries is a standard communication interface for knowledge graphs (KGs). Alleviating the notorious incompleteness of real-world KGs, neural methods achieved impressive results in link prediction and complex query answering tasks by learning representations of entities, relations, and queries. Still, most existing query answering methods rely on transductive entity embeddings and cannot generalize to KGs containing new entities without retraining the entity embeddings. In this work, we study the inductive query answering task where inference is performed on a graph containing new entities with queries over both seen and unseen entities. To this end, we devise two mechanisms leveraging inductive node and relational structure representations powered by graph neural networks (GNNs). Experimentally, we show that inductive models are able to perform logical reasoning at inference time over unseen nodes generalizing to graphs up to 500% larger than training ones. Exploring the efficiency--effectiveness trade-off, we find the inductive relational structure representation method generally achieves higher performance, while the inductive node representation method is able to answer complex queries in the inference-only regime without any training on queries and scales to graphs of millions of nodes. Code is available at https://github.com/DeepGraphLearning/InductiveQE.
Integrating Knowledge Graph embedding and pretrained Language Models in Hypercomplex Spaces
Knowledge Graphs, such as Wikidata, comprise structural and textual knowledge in order to represent knowledge. For each of the two modalities dedicated approaches for graph embedding and language models learn patterns that allow for predicting novel structural knowledge. Few approaches have integrated learning and inference with both modalities and these existing ones could only partially exploit the interaction of structural and textual knowledge. In our approach, we build on existing strong representations of single modalities and we use hypercomplex algebra to represent both, (i), single-modality embedding as well as, (ii), the interaction between different modalities and their complementary means of knowledge representation. More specifically, we suggest Dihedron and Quaternion representations of 4D hypercomplex numbers to integrate four modalities namely structural knowledge graph embedding, word-level representations (e.g.\ Word2vec, Fasttext), sentence-level representations (Sentence transformer), and document-level representations (sentence transformer, Doc2vec). Our unified vector representation scores the plausibility of labelled edges via Hamilton and Dihedron products, thus modeling pairwise interactions between different modalities. Extensive experimental evaluation on standard benchmark datasets shows the superiority of our two new models using abundant textual information besides sparse structural knowledge to enhance performance in link prediction tasks.
SEAGraph: Unveiling the Whole Story of Paper Review Comments
Peer review, as a cornerstone of scientific research, ensures the integrity and quality of scholarly work by providing authors with objective feedback for refinement. However, in the traditional peer review process, authors often receive vague or insufficiently detailed feedback, which provides limited assistance and leads to a more time-consuming review cycle. If authors can identify some specific weaknesses in their paper, they can not only address the reviewer's concerns but also improve their work. This raises the critical question of how to enhance authors' comprehension of review comments. In this paper, we present SEAGraph, a novel framework developed to clarify review comments by uncovering the underlying intentions behind them. We construct two types of graphs for each paper: the semantic mind graph, which captures the author's thought process, and the hierarchical background graph, which delineates the research domains related to the paper. A retrieval method is then designed to extract relevant content from both graphs, facilitating coherent explanations for the review comments. Extensive experiments show that SEAGraph excels in review comment understanding tasks, offering significant benefits to authors.
SDOH-NLI: a Dataset for Inferring Social Determinants of Health from Clinical Notes
Social and behavioral determinants of health (SDOH) play a significant role in shaping health outcomes, and extracting these determinants from clinical notes is a first step to help healthcare providers systematically identify opportunities to provide appropriate care and address disparities. Progress on using NLP methods for this task has been hindered by the lack of high-quality publicly available labeled data, largely due to the privacy and regulatory constraints on the use of real patients' information. This paper introduces a new dataset, SDOH-NLI, that is based on publicly available notes and which we release publicly. We formulate SDOH extraction as a natural language inference (NLI) task, and provide binary textual entailment labels obtained from human raters for a cross product of a set of social history snippets as premises and SDOH factors as hypotheses. Our dataset differs from standard NLI benchmarks in that our premises and hypotheses are obtained independently. We evaluate both "off-the-shelf" entailment models as well as models fine-tuned on our data, and highlight the ways in which our dataset appears more challenging than commonly used NLI datasets.
A Fully Spectral Neuro-Symbolic Reasoning Architecture with Graph Signal Processing as the Computational Backbone
We propose a fully spectral, neuro\-symbolic reasoning architecture that leverages Graph Signal Processing (GSP) as the primary computational backbone for integrating symbolic logic and neural inference. Unlike conventional reasoning models that treat spectral graph methods as peripheral components, our approach formulates the entire reasoning pipeline in the graph spectral domain. Logical entities and relationships are encoded as graph signals, processed via learnable spectral filters that control multi-scale information propagation, and mapped into symbolic predicates for rule-based inference. We present a complete mathematical framework for spectral reasoning, including graph Fourier transforms, band-selective attention, and spectral rule grounding. Experiments on benchmark reasoning datasets (ProofWriter, EntailmentBank, bAbI, CLUTRR, and ARC-Challenge) demonstrate improvements in logical consistency, interpretability, and computational efficiency over state\-of\-the\-art neuro\-symbolic models. Our results suggest that GSP provides a mathematically grounded and computationally efficient substrate for robust and interpretable reasoning systems.
Non-Sequential Graph Script Induction via Multimedia Grounding
Online resources such as WikiHow compile a wide range of scripts for performing everyday tasks, which can assist models in learning to reason about procedures. However, the scripts are always presented in a linear manner, which does not reflect the flexibility displayed by people executing tasks in real life. For example, in the CrossTask Dataset, 64.5% of consecutive step pairs are also observed in the reverse order, suggesting their ordering is not fixed. In addition, each step has an average of 2.56 frequent next steps, demonstrating "branching". In this paper, we propose the new challenging task of non-sequential graph script induction, aiming to capture optional and interchangeable steps in procedural planning. To automate the induction of such graph scripts for given tasks, we propose to take advantage of loosely aligned videos of people performing the tasks. In particular, we design a multimodal framework to ground procedural videos to WikiHow textual steps and thus transform each video into an observed step path on the latent ground truth graph script. This key transformation enables us to train a script knowledge model capable of both generating explicit graph scripts for learnt tasks and predicting future steps given a partial step sequence. Our best model outperforms the strongest pure text/vision baselines by 17.52% absolute gains on F1@3 for next step prediction and 13.8% absolute gains on Acc@1 for partial sequence completion. Human evaluation shows our model outperforming the WikiHow linear baseline by 48.76% absolute gains in capturing sequential and non-sequential step relationships.
ZS4IE: A toolkit for Zero-Shot Information Extraction with simple Verbalizations
The current workflow for Information Extraction (IE) analysts involves the definition of the entities/relations of interest and a training corpus with annotated examples. In this demonstration we introduce a new workflow where the analyst directly verbalizes the entities/relations, which are then used by a Textual Entailment model to perform zero-shot IE. We present the design and implementation of a toolkit with a user interface, as well as experiments on four IE tasks that show that the system achieves very good performance at zero-shot learning using only 5--15 minutes per type of a user's effort. Our demonstration system is open-sourced at https://github.com/BBN-E/ZS4IE . A demonstration video is available at https://vimeo.com/676138340 .
Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains
Knowledge Graphs (KGs) can serve as reliable knowledge sources for question answering (QA) due to their structured representation of knowledge. Existing research on the utilization of KG for large language models (LLMs) prevalently relies on subgraph retriever or iterative prompting, overlooking the potential synergy of LLMs' step-wise reasoning capabilities and KGs' structural nature. In this paper, we present DoG (Decoding on Graphs), a novel framework that facilitates a deep synergy between LLMs and KGs. We first define a concept, well-formed chain, which consists of a sequence of interrelated fact triplets on the KGs, starting from question entities and leading to answers. We argue that this concept can serve as a principle for making faithful and sound reasoning for KGQA. To enable LLMs to generate well-formed chains, we propose graph-aware constrained decoding, in which a constraint derived from the topology of the KG regulates the decoding process of the LLMs. This constrained decoding method ensures the generation of well-formed chains while making full use of the step-wise reasoning capabilities of LLMs. Based on the above, DoG, a training-free approach, is able to provide faithful and sound reasoning trajectories grounded on the KGs. Experiments across various KGQA tasks with different background KGs demonstrate that DoG achieves superior and robust performance. DoG also shows general applicability with various open-source LLMs.
LegalViz: Legal Text Visualization by Text To Diagram Generation
Legal documents including judgments and court orders require highly sophisticated legal knowledge for understanding. To disclose expert knowledge for non-experts, we explore the problem of visualizing legal texts with easy-to-understand diagrams and propose a novel dataset of LegalViz with 23 languages and 7,010 cases of legal document and visualization pairs, using the DOT graph description language of Graphviz. LegalViz provides a simple diagram from a complicated legal corpus identifying legal entities, transactions, legal sources, and statements at a glance, that are essential in each judgment. In addition, we provide new evaluation metrics for the legal diagram visualization by considering graph structures, textual similarities, and legal contents. We conducted empirical studies on few-shot and finetuning large language models for generating legal diagrams and evaluated them with these metrics, including legal content-based evaluation within 23 languages. Models trained with LegalViz outperform existing models including GPTs, confirming the effectiveness of our dataset.
Graph of Verification: Structured Verification of LLM Reasoning with Directed Acyclic Graphs
Verifying the reliability of complex, multi-step reasoning in Large Language Models (LLMs) remains a fundamental challenge, as existing methods often lack both faithfulness and precision. To address this issue, we propose the Graph of Verification (GoV) framework. GoV offers three key contributions: First, it explicitly models the underlying deductive process as a directed acyclic graph (DAG), whether this structure is implicit or explicitly constructed. Second, it enforces a topological order over the DAG to guide stepwise verification. Third, GoV introduces the notion of customizable node blocks, which flexibly define the verification granularity, from atomic propositions to full paragraphs, while ensuring that all requisite premises derived from the graph are provided as contextual input for each verification unit. We evaluate GoV on the Number Triangle Summation task and the ProcessBench benchmark with varying levels of reasoning complexity. Experimental results show that GoV substantially improves verification accuracy, faithfulness, and error localization when compared to conventional end-to-end verification approaches. Our code and data are available at https://github.com/Frevor/Graph-of-Verification.
A Graph Perspective to Probe Structural Patterns of Knowledge in Large Language Models
Large language models have been extensively studied as neural knowledge bases for their knowledge access, editability, reasoning, and explainability. However, few works focus on the structural patterns of their knowledge. Motivated by this gap, we investigate these structural patterns from a graph perspective. We quantify the knowledge of LLMs at both the triplet and entity levels, and analyze how it relates to graph structural properties such as node degree. Furthermore, we uncover the knowledge homophily, where topologically close entities exhibit similar levels of knowledgeability, which further motivates us to develop graph machine learning models to estimate entity knowledge based on its local neighbors. This model further enables valuable knowledge checking by selecting triplets less known to LLMs. Empirical results show that using selected triplets for fine-tuning leads to superior performance.
Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models
The need to analyze graphs is ubiquitous across various fields, from social networks to biological research and recommendation systems. Therefore, enabling the ability of large language models (LLMs) to process graphs is an important step toward more advanced general intelligence. However, current LLM benchmarks on graph analysis require models to directly reason over the prompts describing graph topology, and are thus limited to small graphs with only a few dozens of nodes. In contrast, human experts typically write programs based on popular libraries for task solving, and can thus handle graphs with different scales. To this end, a question naturally arises: can LLMs analyze graphs like professionals? In this paper, we introduce ProGraph, a manually crafted benchmark containing 3 categories of graph tasks. The benchmark expects solutions based on programming instead of directly reasoning over raw inputs. Our findings reveal that the performance of current LLMs is unsatisfactory, with the best model achieving only 36% accuracy. To bridge this gap, we propose LLM4Graph datasets, which include crawled documents and auto-generated codes based on 6 widely used graph libraries. By augmenting closed-source LLMs with document retrieval and fine-tuning open-source ones on the codes, we show 11-32% absolute improvements in their accuracies. Our results underscore that the capabilities of LLMs in handling structured data are still under-explored, and show the effectiveness of LLM4Graph in enhancing LLMs' proficiency of graph analysis. The benchmark, datasets and enhanced open-source models are available at https://github.com/BUPT-GAMMA/ProGraph.
Mixture of Structural-and-Textual Retrieval over Text-rich Graph Knowledge Bases
Text-rich Graph Knowledge Bases (TG-KBs) have become increasingly crucial for answering queries by providing textual and structural knowledge. However, current retrieval methods often retrieve these two types of knowledge in isolation without considering their mutual reinforcement and some hybrid methods even bypass structural retrieval entirely after neighboring aggregation. To fill in this gap, we propose a Mixture of Structural-and-Textual Retrieval (MoR) to retrieve these two types of knowledge via a Planning-Reasoning-Organizing framework. In the Planning stage, MoR generates textual planning graphs delineating the logic for answering queries. Following planning graphs, in the Reasoning stage, MoR interweaves structural traversal and textual matching to obtain candidates from TG-KBs. In the Organizing stage, MoR further reranks fetched candidates based on their structural trajectory. Extensive experiments demonstrate the superiority of MoR in harmonizing structural and textual retrieval with insights, including uneven retrieving performance across different query logics and the benefits of integrating structural trajectories for candidate reranking. Our code is available at https://github.com/Yoega/MoR.
Refcat: The Internet Archive Scholar Citation Graph
As part of its scholarly data efforts, the Internet Archive (IA) releases a first version of a citation graph dataset, named refcat, derived from scholarly publications and additional data sources. It is composed of data gathered by the fatcat cataloging project (the catalog that underpins IA Scholar), related web-scale crawls targeting primary and secondary scholarly outputs, as well as metadata from the Open Library project and Wikipedia. This first version of the graph consists of over 1.3B citations. We release this dataset under a CC0 Public Domain Dedication, accessible through Internet Archive. The source code used for the derivation process, including exact and fuzzy citation matching, is released under an MIT license. The goal of this report is to describe briefly the current contents and the derivation of the dataset.
Linking Surface Facts to Large-Scale Knowledge Graphs
Open Information Extraction (OIE) methods extract facts from natural language text in the form of ("subject"; "relation"; "object") triples. These facts are, however, merely surface forms, the ambiguity of which impedes their downstream usage; e.g., the surface phrase "Michael Jordan" may refer to either the former basketball player or the university professor. Knowledge Graphs (KGs), on the other hand, contain facts in a canonical (i.e., unambiguous) form, but their coverage is limited by a static schema (i.e., a fixed set of entities and predicates). To bridge this gap, we need the best of both worlds: (i) high coverage of free-text OIEs, and (ii) semantic precision (i.e., monosemy) of KGs. In order to achieve this goal, we propose a new benchmark with novel evaluation protocols that can, for example, measure fact linking performance on a granular triple slot level, while also measuring if a system has the ability to recognize that a surface form has no match in the existing KG. Our extensive evaluation of several baselines show that detection of out-of-KG entities and predicates is more difficult than accurate linking to existing ones, thus calling for more research efforts on this difficult task. We publicly release all resources (data, benchmark and code) on https://github.com/nec-research/fact-linking.
LEMON: LanguagE ModeL for Negative Sampling of Knowledge Graph Embeddings
Knowledge Graph Embedding models have become an important area of machine learning.Those models provide a latent representation of entities and relations in a knowledge graph which can then be used in downstream machine learning tasks such as link prediction. The learning process of such models can be performed by contrasting positive and negative triples. While all triples of a KG are considered positive, negative triples are usually not readily available. Therefore, the choice of the sampling method to obtain the negative triples play a crucial role in the performance and effectiveness of Knowledge Graph Embedding models. Most of the current methods fetch negative samples from a random distribution of entities in the underlying Knowledge Graph which also often includes meaningless triples. Other known methods use adversarial techniques or generative neural networks which consequently reduce the efficiency of the process. In this paper, we propose an approach for generating informative negative samples considering available complementary knowledge about entities. Particularly, Pre-trained Language Models are used to form neighborhood clusters by utilizing the distances between entities to obtain representations of symbolic entities via their textual information. Our comprehensive evaluations demonstrate the effectiveness of the proposed approach on benchmark Knowledge Graphs with textual information for the link prediction task.
AutoKG: Constructing Virtual Knowledge Graphs from Unstructured Documents for Question Answering
Knowledge graphs (KGs) have the advantage of providing fine-grained detail for question-answering systems. Unfortunately, building a reliable KG is time-consuming and expensive as it requires human intervention. To overcome this issue, we propose a novel framework to automatically construct a KG from unstructured documents that does not require external alignment. We first extract surface-form knowledge tuples from unstructured documents and encode them with contextual information. Entities with similar context semantics are then linked through internal alignment to form a graph structure. This allows us to extract the desired information from multiple documents by traversing the generated KG without a manual process. We examine its performance in retrieval based QA systems by reformulating the WikiMovies and MetaQA datasets into a tuple-level retrieval task. The experimental results show that our method outperforms traditional retrieval methods by a large margin.
Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains, but their reliability is hindered by the outdated knowledge and hallucinations. Retrieval-Augmented Generation mitigates these issues by grounding LLMs with external knowledge; however, most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning. Knowledge graphs, which represent facts as relational triples, offer a more structured and compact alternative. Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering (KGQA), with a significant proportion adopting the retrieve-then-reasoning paradigm. In this framework, graph-based retrievers have demonstrated strong empirical performance, yet they still face challenges in generalization ability. In this work, we propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA. RAPL addresses these limitations through three aspects: (1) a two-stage labeling strategy that combines heuristic signals with parametric models to provide causally grounded supervision; (2) a model-agnostic graph transformation approach to capture both intra- and inter-triple interactions, thereby enhancing representational capacity; and (3) a path-based reasoning strategy that facilitates learning from the injected rational knowledge, and supports downstream reasoner through structured inputs. Empirically, RAPL outperforms state-of-the-art methods by 2.66%-20.34%, and significantly reduces the performance gap between smaller and more powerful LLM-based reasoners, as well as the gap under cross-dataset settings, highlighting its superior retrieval capability and generalizability. Codes are available at: https://github.com/tianyao-aka/RAPL.
A Retrieve-and-Read Framework for Knowledge Graph Link Prediction
Knowledge graph (KG) link prediction aims to infer new facts based on existing facts in the KG. Recent studies have shown that using the graph neighborhood of a node via graph neural networks (GNNs) provides more useful information compared to just using the query information. Conventional GNNs for KG link prediction follow the standard message-passing paradigm on the entire KG, which leads to superfluous computation, over-smoothing of node representations, and also limits their expressive power. On a large scale, it becomes computationally expensive to aggregate useful information from the entire KG for inference. To address the limitations of existing KG link prediction frameworks, we propose a novel retrieve-and-read framework, which first retrieves a relevant subgraph context for the query and then jointly reasons over the context and the query with a high-capacity reader. As part of our exemplar instantiation for the new framework, we propose a novel Transformer-based GNN as the reader, which incorporates graph-based attention structure and cross-attention between query and context for deep fusion. This simple yet effective design enables the model to focus on salient context information relevant to the query. Empirical results on two standard KG link prediction datasets demonstrate the competitive performance of the proposed method. Furthermore, our analysis yields valuable insights for designing improved retrievers within the framework.
Language Models of Code are Few-Shot Commonsense Learners
We address the general task of structured commonsense reasoning: given a natural language input, the goal is to generate a graph such as an event -- or a reasoning-graph. To employ large language models (LMs) for this task, existing approaches ``serialize'' the output graph as a flat list of nodes and edges. Although feasible, these serialized graphs strongly deviate from the natural language corpora that LMs were pre-trained on, hindering LMs from generating them correctly. In this paper, we show that when we instead frame structured commonsense reasoning tasks as code generation tasks, pre-trained LMs of code are better structured commonsense reasoners than LMs of natural language, even when the downstream task does not involve source code at all. We demonstrate our approach across three diverse structured commonsense reasoning tasks. In all these natural language tasks, we show that using our approach, a code generation LM (CODEX) outperforms natural-LMs that are fine-tuned on the target task (e.g., T5) and other strong LMs such as GPT-3 in the few-shot setting.
GRAG: Graph Retrieval-Augmented Generation
While Retrieval-Augmented Generation (RAG) enhances the accuracy and relevance of responses by generative language models, it falls short in graph-based contexts where both textual and topological information are important. Naive RAG approaches inherently neglect the structural intricacies of textual graphs, resulting in a critical gap in the generation process. To address this challenge, we introduce Graph Retrieval-Augmented Generation (GRAG), which significantly enhances both the retrieval and generation processes by emphasizing the importance of subgraph structures. Unlike RAG approaches that focus solely on text-based entity retrieval, GRAG maintains an acute awareness of graph topology, which is crucial for generating contextually and factually coherent responses. Our GRAG approach consists of four main stages: indexing of k-hop ego-graphs, graph retrieval, soft pruning to mitigate the impact of irrelevant entities, and generation with pruned textual subgraphs. GRAG's core workflow-retrieving textual subgraphs followed by soft pruning-efficiently identifies relevant subgraph structures while avoiding the computational infeasibility typical of exhaustive subgraph searches, which are NP-hard. Moreover, we propose a novel prompting strategy that achieves lossless conversion from textual subgraphs to hierarchical text descriptions. Extensive experiments on graph multi-hop reasoning benchmarks demonstrate that in scenarios requiring multi-hop reasoning on textual graphs, our GRAG approach significantly outperforms current state-of-the-art RAG methods while effectively mitigating hallucinations.
Measuring Compositional Consistency for Video Question Answering
Recent video question answering benchmarks indicate that state-of-the-art models struggle to answer compositional questions. However, it remains unclear which types of compositional reasoning cause models to mispredict. Furthermore, it is difficult to discern whether models arrive at answers using compositional reasoning or by leveraging data biases. In this paper, we develop a question decomposition engine that programmatically deconstructs a compositional question into a directed acyclic graph of sub-questions. The graph is designed such that each parent question is a composition of its children. We present AGQA-Decomp, a benchmark containing 2.3M question graphs, with an average of 11.49 sub-questions per graph, and 4.55M total new sub-questions. Using question graphs, we evaluate three state-of-the-art models with a suite of novel compositional consistency metrics. We find that models either cannot reason correctly through most compositions or are reliant on incorrect reasoning to reach answers, frequently contradicting themselves or achieving high accuracies when failing at intermediate reasoning steps.
G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning
Although Large Language Models (LLMs) have demonstrated remarkable progress, their proficiency in graph-related tasks remains notably limited, hindering the development of truly general-purpose models. Previous attempts, including pretraining graph foundation models or employing supervised fine-tuning, often face challenges such as the scarcity of large-scale, universally represented graph data. We introduce G1, a simple yet effective approach demonstrating that Reinforcement Learning (RL) on synthetic graph-theoretic tasks can significantly scale LLMs' graph reasoning abilities. To enable RL training, we curate Erd\~os, the largest graph reasoning dataset to date comprising 50 diverse graph-theoretic tasks of varying difficulty levels, 100k training data and 5k test data, all drived from real-world graphs. With RL on Erd\~os, G1 obtains substantial improvements in graph reasoning, where our finetuned 3B model even outperforms Qwen2.5-72B-Instruct (24x size). RL-trained models also show strong zero-shot generalization to unseen tasks, domains, and graph encoding schemes, including other graph-theoretic benchmarks as well as real-world node classification and link prediction tasks, without compromising general reasoning abilities. Our findings offer an efficient, scalable path for building strong graph reasoners by finetuning LLMs with RL on graph-theoretic tasks, which combines the strengths of pretrained LLM capabilities with abundant, automatically generated synthetic data, suggesting that LLMs possess graph understanding abilities that RL can elicit successfully.
Benchmarking Commonsense Knowledge Base Population with an Effective Evaluation Dataset
Reasoning over commonsense knowledge bases (CSKB) whose elements are in the form of free-text is an important yet hard task in NLP. While CSKB completion only fills the missing links within the domain of the CSKB, CSKB population is alternatively proposed with the goal of reasoning unseen assertions from external resources. In this task, CSKBs are grounded to a large-scale eventuality (activity, state, and event) graph to discriminate whether novel triples from the eventuality graph are plausible or not. However, existing evaluations on the population task are either not accurate (automatic evaluation with randomly sampled negative examples) or of small scale (human annotation). In this paper, we benchmark the CSKB population task with a new large-scale dataset by first aligning four popular CSKBs, and then presenting a high-quality human-annotated evaluation set to probe neural models' commonsense reasoning ability. We also propose a novel inductive commonsense reasoning model that reasons over graphs. Experimental results show that generalizing commonsense reasoning on unseen assertions is inherently a hard task. Models achieving high accuracy during training perform poorly on the evaluation set, with a large gap between human performance. We will make the data publicly available for future contributions. Codes and data are available at https://github.com/HKUST-KnowComp/CSKB-Population.
Detecting fake news by enhanced text representation with multi-EDU-structure awareness
Since fake news poses a serious threat to society and individuals, numerous studies have been brought by considering text, propagation and user profiles. Due to the data collection problem, these methods based on propagation and user profiles are less applicable in the early stages. A good alternative method is to detect news based on text as soon as they are released, and a lot of text-based methods were proposed, which usually utilized words, sentences or paragraphs as basic units. But, word is a too fine-grained unit to express coherent information well, sentence or paragraph is too coarse to show specific information. Which granularity is better and how to utilize it to enhance text representation for fake news detection are two key problems. In this paper, we introduce Elementary Discourse Unit (EDU) whose granularity is between word and sentence, and propose a multi-EDU-structure awareness model to improve text representation for fake news detection, namely EDU4FD. For the multi-EDU-structure awareness, we build the sequence-based EDU representations and the graph-based EDU representations. The former is gotten by modeling the coherence between consecutive EDUs with TextCNN that reflect the semantic coherence. For the latter, we first extract rhetorical relations to build the EDU dependency graph, which can show the global narrative logic and help deliver the main idea truthfully. Then a Relation Graph Attention Network (RGAT) is set to get the graph-based EDU representation. Finally, the two EDU representations are incorporated as the enhanced text representation for fake news detection, using a gated recursive unit combined with a global attention mechanism. Experiments on four cross-source fake news datasets show that our model outperforms the state-of-the-art text-based methods.
GraphextQA: A Benchmark for Evaluating Graph-Enhanced Large Language Models
While multi-modal models have successfully integrated information from image, video, and audio modalities, integrating graph modality into large language models (LLMs) remains unexplored. This discrepancy largely stems from the inherent divergence between structured graph data and unstructured text data. Incorporating graph knowledge provides a reliable source of information, enabling potential solutions to address issues in text generation, e.g., hallucination, and lack of domain knowledge. To evaluate the integration of graph knowledge into language models, a dedicated dataset is needed. However, there is currently no benchmark dataset specifically designed for multimodal graph-language models. To address this gap, we propose GraphextQA, a question answering dataset with paired subgraphs, retrieved from Wikidata, to facilitate the evaluation and future development of graph-language models. Additionally, we introduce a baseline model called CrossGNN, which conditions answer generation on the paired graphs by cross-attending question-aware graph features at decoding. The proposed dataset is designed to evaluate graph-language models' ability to understand graphs and make use of it for answer generation. We perform experiments with language-only models and the proposed graph-language model to validate the usefulness of the paired graphs and to demonstrate the difficulty of the task.
Knowlege Graph Embedding by Flexible Translation
Knowledge graph embedding refers to projecting entities and relations in knowledge graph into continuous vector spaces. State-of-the-art methods, such as TransE, TransH, and TransR build embeddings by treating relation as translation from head entity to tail entity. However, previous models can not deal with reflexive/one-to-many/many-to-one/many-to-many relations properly, or lack of scalability and efficiency. Thus, we propose a novel method, flexible translation, named TransF, to address the above issues. TransF regards relation as translation between head entity vector and tail entity vector with flexible magnitude. To evaluate the proposed model, we conduct link prediction and triple classification on benchmark datasets. Experimental results show that our method remarkably improve the performance compared with several state-of-the-art baselines.
Knowledge Graph Embedding: An Overview
Many mathematical models have been leveraged to design embeddings for representing Knowledge Graph (KG) entities and relations for link prediction and many downstream tasks. These mathematically-inspired models are not only highly scalable for inference in large KGs, but also have many explainable advantages in modeling different relation patterns that can be validated through both formal proofs and empirical results. In this paper, we make a comprehensive overview of the current state of research in KG completion. In particular, we focus on two main branches of KG embedding (KGE) design: 1) distance-based methods and 2) semantic matching-based methods. We discover the connections between recently proposed models and present an underlying trend that might help researchers invent novel and more effective models. Next, we delve into CompoundE and CompoundE3D, which draw inspiration from 2D and 3D affine operations, respectively. They encompass a broad spectrum of techniques including distance-based and semantic-based methods. We will also discuss an emerging approach for KG completion which leverages pre-trained language models (PLMs) and textual descriptions of entities and relations and offer insights into the integration of KGE embedding methods with PLMs for KG completion.
Learning to Retrieve and Reason on Knowledge Graph through Active Self-Reflection
Extensive research has investigated the integration of large language models (LLMs) with knowledge graphs to enhance the reasoning process. However, understanding how models perform reasoning utilizing structured graph knowledge remains underexplored. Most existing approaches rely on LLMs or retrievers to make binary judgments regarding the utilization of knowledge, which is too coarse. Meanwhile, there is still a lack of feedback mechanisms for reflection and correction throughout the entire reasoning path. This paper proposes an Active self-Reflection framework for knowledge Graph reasoning ARG, introducing for the first time an end-to-end training approach to achieve iterative reasoning grounded on structured graphs. Within the framework, the model leverages special tokens to actively determine whether knowledge retrieval is necessary, performs reflective critique based on the retrieved knowledge, and iteratively reasons over the knowledge graph. The reasoning paths generated by the model exhibit high interpretability, enabling deeper exploration of the model's understanding of structured knowledge. Ultimately, the proposed model achieves outstanding results compared to existing baselines in knowledge graph reasoning tasks.
Automated Machine Learning on Graphs: A Survey
Machine learning on graphs has been extensively studied in both academic and industry. However, as the literature on graph learning booms with a vast number of emerging methods and techniques, it becomes increasingly difficult to manually design the optimal machine learning algorithm for different graph-related tasks. To solve this critical challenge, automated machine learning (AutoML) on graphs which combines the strength of graph machine learning and AutoML together, is gaining attention from the research community. Therefore, we comprehensively survey AutoML on graphs in this paper, primarily focusing on hyper-parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning. We further overview libraries related to automated graph machine learning and in-depth discuss AutoGL, the first dedicated open-source library for AutoML on graphs. In the end, we share our insights on future research directions for automated graph machine learning. This paper is the first systematic and comprehensive review of automated machine learning on graphs to the best of our knowledge.
A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning
Extensive knowledge graphs (KGs) have been constructed to facilitate knowledge-driven tasks across various scenarios. However, existing work usually develops separate reasoning models for different KGs, lacking the ability to generalize and transfer knowledge across diverse KGs and reasoning settings. In this paper, we propose a prompt-based KG foundation model via in-context learning, namely KG-ICL, to achieve a universal reasoning ability. Specifically, we introduce a prompt graph centered with a query-related example fact as context to understand the query relation. To encode prompt graphs with the generalization ability to unseen entities and relations in queries, we first propose a unified tokenizer that maps entities and relations in prompt graphs to predefined tokens. Then, we propose two message passing neural networks to perform prompt encoding and KG reasoning, respectively. We conduct evaluation on 43 different KGs in both transductive and inductive settings. Results indicate that the proposed KG-ICL outperforms baselines on most datasets, showcasing its outstanding generalization and universal reasoning capabilities. The source code is accessible on GitHub: https://github.com/nju-websoft/KG-ICL.
Graph-Guided Textual Explanation Generation Framework
Natural language explanations (NLEs) are commonly used to provide plausible free-text explanations of a model's reasoning about its predictions. However, recent work has questioned the faithfulness of NLEs, as they may not accurately reflect the model's internal reasoning process regarding its predicted answer. In contrast, highlight explanations -- input fragments identified as critical for the model's predictions -- exhibit measurable faithfulness, which has been incrementally improved through existing research. Building on this foundation, we propose G-Tex, a Graph-Guided Textual Explanation Generation framework designed to enhance the faithfulness of NLEs by leveraging highlight explanations. Specifically, highlight explanations are extracted as highly faithful cues representing the model's reasoning and are subsequently encoded through a graph neural network layer, which explicitly guides the NLE generation process. This alignment ensures that the generated explanations closely reflect the model's underlying reasoning. Experiments on T5 and BART using three reasoning datasets show that G-Tex improves NLE faithfulness by up to 17.59% compared to baseline methods. Additionally, G-Tex generates NLEs with greater semantic and lexical similarity to human-written ones. Human evaluations show that G-Tex can decrease redundant content and enhance the overall quality of NLEs. As our work introduces a novel method for explicitly guiding NLE generation to improve faithfulness, we hope it will serve as a stepping stone for addressing additional criteria for NLE and generated text overall.
Multimodal Analogical Reasoning over Knowledge Graphs
Analogical reasoning is fundamental to human cognition and holds an important place in various fields. However, previous studies mainly focus on single-modal analogical reasoning and ignore taking advantage of structure knowledge. Notably, the research in cognitive psychology has demonstrated that information from multimodal sources always brings more powerful cognitive transfer than single modality sources. To this end, we introduce the new task of multimodal analogical reasoning over knowledge graphs, which requires multimodal reasoning ability with the help of background knowledge. Specifically, we construct a Multimodal Analogical Reasoning dataSet (MARS) and a multimodal knowledge graph MarKG. We evaluate with multimodal knowledge graph embedding and pre-trained Transformer baselines, illustrating the potential challenges of the proposed task. We further propose a novel model-agnostic Multimodal analogical reasoning framework with Transformer (MarT) motivated by the structure mapping theory, which can obtain better performance. Code and datasets are available in https://github.com/zjunlp/MKG_Analogy.
Knowledge Graph Embedding: A Survey from the Perspective of Representation Spaces
Knowledge graph embedding (KGE) is an increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
On the Use of ArXiv as a Dataset
The arXiv has collected 1.5 million pre-print articles over 28 years, hosting literature from scientific fields including Physics, Mathematics, and Computer Science. Each pre-print features text, figures, authors, citations, categories, and other metadata. These rich, multi-modal features, combined with the natural graph structure---created by citation, affiliation, and co-authorship---makes the arXiv an exciting candidate for benchmarking next-generation models. Here we take the first necessary steps toward this goal, by providing a pipeline which standardizes and simplifies access to the arXiv's publicly available data. We use this pipeline to extract and analyze a 6.7 million edge citation graph, with an 11 billion word corpus of full-text research articles. We present some baseline classification results, and motivate application of more exciting generative graph models.
Filter-then-Generate: Large Language Models with Structure-Text Adapter for Knowledge Graph Completion
Large Language Models (LLMs) present massive inherent knowledge and superior semantic comprehension capability, which have revolutionized various tasks in natural language processing. Despite their success, a critical gap remains in enabling LLMs to perform knowledge graph completion (KGC). Empirical evidence suggests that LLMs consistently perform worse than conventional KGC approaches, even through sophisticated prompt design or tailored instruction-tuning. Fundamentally, applying LLMs on KGC introduces several critical challenges, including a vast set of entity candidates, hallucination issue of LLMs, and under-exploitation of the graph structure. To address these challenges, we propose a novel instruction-tuning-based method, namely FtG. Specifically, we present a filter-then-generate paradigm and formulate the KGC task into a multiple-choice question format. In this way, we can harness the capability of LLMs while mitigating the issue casused by hallucinations. Moreover, we devise a flexible ego-graph serialization prompt and employ a structure-text adapter to couple structure and text information in a contextualized manner. Experimental results demonstrate that FtG achieves substantial performance gain compared to existing state-of-the-art methods. The instruction dataset and code are available at https://github.com/LB0828/FtG.
Does Pre-trained Language Model Actually Infer Unseen Links in Knowledge Graph Completion?
Knowledge graphs (KGs) consist of links that describe relationships between entities. Due to the difficulty of manually enumerating all relationships between entities, automatically completing them is essential for KGs. Knowledge Graph Completion (KGC) is a task that infers unseen relationships between entities in a KG. Traditional embedding-based KGC methods, such as RESCAL, TransE, DistMult, ComplEx, RotatE, HAKE, HousE, etc., infer missing links using only the knowledge from training data. In contrast, the recent Pre-trained Language Model (PLM)-based KGC utilizes knowledge obtained during pre-training. Therefore, PLM-based KGC can estimate missing links between entities by reusing memorized knowledge from pre-training without inference. This approach is problematic because building KGC models aims to infer unseen links between entities. However, conventional evaluations in KGC do not consider inference and memorization abilities separately. Thus, a PLM-based KGC method, which achieves high performance in current KGC evaluations, may be ineffective in practical applications. To address this issue, we analyze whether PLM-based KGC methods make inferences or merely access memorized knowledge. For this purpose, we propose a method for constructing synthetic datasets specified in this analysis and conclude that PLMs acquire the inference abilities required for KGC through pre-training, even though the performance improvements mostly come from textual information of entities and relations.
Graph-Augmented Reasoning: Evolving Step-by-Step Knowledge Graph Retrieval for LLM Reasoning
Recent large language model (LLM) reasoning, despite its success, suffers from limited domain knowledge, susceptibility to hallucinations, and constrained reasoning depth, particularly in small-scale models deployed in resource-constrained environments. This paper presents the first investigation into integrating step-wise knowledge graph retrieval with step-wise reasoning to address these challenges, introducing a novel paradigm termed as graph-augmented reasoning. Our goal is to enable frozen, small-scale LLMs to retrieve and process relevant mathematical knowledge in a step-wise manner, enhancing their problem-solving abilities without additional training. To this end, we propose KG-RAR, a framework centered on process-oriented knowledge graph construction, a hierarchical retrieval strategy, and a universal post-retrieval processing and reward model (PRP-RM) that refines retrieved information and evaluates each reasoning step. Experiments on the Math500 and GSM8K benchmarks across six models demonstrate that KG-RAR yields encouraging results, achieving a 20.73\% relative improvement with Llama-3B on Math500.
GAugLLM: Improving Graph Contrastive Learning for Text-Attributed Graphs with Large Language Models
This work studies self-supervised graph learning for text-attributed graphs (TAGs) where nodes are represented by textual attributes. Unlike traditional graph contrastive methods that perturb the numerical feature space and alter the graph's topological structure, we aim to improve view generation through language supervision. This is driven by the prevalence of textual attributes in real applications, which complement graph structures with rich semantic information. However, this presents challenges because of two major reasons. First, text attributes often vary in length and quality, making it difficulty to perturb raw text descriptions without altering their original semantic meanings. Second, although text attributes complement graph structures, they are not inherently well-aligned. To bridge the gap, we introduce GAugLLM, a novel framework for augmenting TAGs. It leverages advanced large language models like Mistral to enhance self-supervised graph learning. Specifically, we introduce a mixture-of-prompt-expert technique to generate augmented node features. This approach adaptively maps multiple prompt experts, each of which modifies raw text attributes using prompt engineering, into numerical feature space. Additionally, we devise a collaborative edge modifier to leverage structural and textual commonalities, enhancing edge augmentation by examining or building connections between nodes. Empirical results across five benchmark datasets spanning various domains underscore our framework's ability to enhance the performance of leading contrastive methods as a plug-in tool. Notably, we observe that the augmented features and graph structure can also enhance the performance of standard generative methods, as well as popular graph neural networks. The open-sourced implementation of our GAugLLM is available at Github.
ANALOGICAL -- A Novel Benchmark for Long Text Analogy Evaluation in Large Language Models
Over the past decade, analogies, in the form of word-level analogies, have played a significant role as an intrinsic measure of evaluating the quality of word embedding methods such as word2vec. Modern large language models (LLMs), however, are primarily evaluated on extrinsic measures based on benchmarks such as GLUE and SuperGLUE, and there are only a few investigations on whether LLMs can draw analogies between long texts. In this paper, we present ANALOGICAL, a new benchmark to intrinsically evaluate LLMs across a taxonomy of analogies of long text with six levels of complexity -- (i) word, (ii) word vs. sentence, (iii) syntactic, (iv) negation, (v) entailment, and (vi) metaphor. Using thirteen datasets and three different distance measures, we evaluate the abilities of eight LLMs in identifying analogical pairs in the semantic vector space. Our evaluation finds that it is increasingly challenging for LLMs to identify analogies when going up the analogy taxonomy.
ICLR: In-Context Learning of Representations
Recent work has demonstrated that semantics specified by pretraining data influence how representations of different concepts are organized in a large language model (LLM). However, given the open-ended nature of LLMs, e.g., their ability to in-context learn, we can ask whether models alter these pretraining semantics to adopt alternative, context-specified ones. Specifically, if we provide in-context exemplars wherein a concept plays a different role than what the pretraining data suggests, do models reorganize their representations in accordance with these novel semantics? To answer this question, we take inspiration from the theory of conceptual role semantics and define a toy "graph tracing" task wherein the nodes of the graph are referenced via concepts seen during training (e.g., apple, bird, etc.) and the connectivity of the graph is defined via some predefined structure (e.g., a square grid). Given exemplars that indicate traces of random walks on the graph, we analyze intermediate representations of the model and find that as the amount of context is scaled, there is a sudden re-organization from pretrained semantic representations to in-context representations aligned with the graph structure. Further, we find that when reference concepts have correlations in their semantics (e.g., Monday, Tuesday, etc.), the context-specified graph structure is still present in the representations, but is unable to dominate the pretrained structure. To explain these results, we analogize our task to energy minimization for a predefined graph topology, providing evidence towards an implicit optimization process to infer context-specified semantics. Overall, our findings indicate scaling context-size can flexibly re-organize model representations, possibly unlocking novel capabilities.
NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs
Conventional representation learning algorithms for knowledge graphs (KG) map each entity to a unique embedding vector. Such a shallow lookup results in a linear growth of memory consumption for storing the embedding matrix and incurs high computational costs when working with real-world KGs. Drawing parallels with subword tokenization commonly used in NLP, we explore the landscape of more parameter-efficient node embedding strategies with possibly sublinear memory requirements. To this end, we propose NodePiece, an anchor-based approach to learn a fixed-size entity vocabulary. In NodePiece, a vocabulary of subword/sub-entity units is constructed from anchor nodes in a graph with known relation types. Given such a fixed-size vocabulary, it is possible to bootstrap an encoding and embedding for any entity, including those unseen during training. Experiments show that NodePiece performs competitively in node classification, link prediction, and relation prediction tasks while retaining less than 10% of explicit nodes in a graph as anchors and often having 10x fewer parameters. To this end, we show that a NodePiece-enabled model outperforms existing shallow models on a large OGB WikiKG 2 graph having 70x fewer parameters.
Universal Knowledge Graph Embeddings
A variety of knowledge graph embedding approaches have been developed. Most of them obtain embeddings by learning the structure of the knowledge graph within a link prediction setting. As a result, the embeddings reflect only the semantics of a single knowledge graph, and embeddings for different knowledge graphs are not aligned, e.g., they cannot be used to find similar entities across knowledge graphs via nearest neighbor search. However, knowledge graph embedding applications such as entity disambiguation require a more global representation, i.e., a representation that is valid across multiple sources. We propose to learn universal knowledge graph embeddings from large-scale interlinked knowledge sources. To this end, we fuse large knowledge graphs based on the owl:sameAs relation such that every entity is represented by a unique identity. We instantiate our idea by computing universal embeddings based on DBpedia and Wikidata yielding embeddings for about 180 million entities, 15 thousand relations, and 1.2 billion triples. Moreover, we develop a convenient API to provide embeddings as a service. Experiments on link prediction show that universal knowledge graph embeddings encode better semantics compared to embeddings computed on a single knowledge graph. For reproducibility purposes, we provide our source code and datasets open access at https://github.com/dice-group/Universal_Embeddings
Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey
Knowledge Graphs (KGs) play a pivotal role in advancing various AI applications, with the semantic web community's exploration into multi-modal dimensions unlocking new avenues for innovation. In this survey, we carefully review over 300 articles, focusing on KG-aware research in two principal aspects: KG-driven Multi-Modal (KG4MM) learning, where KGs support multi-modal tasks, and Multi-Modal Knowledge Graph (MM4KG), which extends KG studies into the MMKG realm. We begin by defining KGs and MMKGs, then explore their construction progress. Our review includes two primary task categories: KG-aware multi-modal learning tasks, such as Image Classification and Visual Question Answering, and intrinsic MMKG tasks like Multi-modal Knowledge Graph Completion and Entity Alignment, highlighting specific research trajectories. For most of these tasks, we provide definitions, evaluation benchmarks, and additionally outline essential insights for conducting relevant research. Finally, we discuss current challenges and identify emerging trends, such as progress in Large Language Modeling and Multi-modal Pre-training strategies. This survey aims to serve as a comprehensive reference for researchers already involved in or considering delving into KG and multi-modal learning research, offering insights into the evolving landscape of MMKG research and supporting future work.
Augmenting Legal Decision Support Systems with LLM-based NLI for Analyzing Social Media Evidence
This paper presents our system description and error analysis of our entry for NLLP 2024 shared task on Legal Natural Language Inference (L-NLI) hagag2024legallenssharedtask2024. The task required classifying these relationships as entailed, contradicted, or neutral, indicating any association between the review and the complaint. Our system emerged as the winning submission, significantly outperforming other entries with a substantial margin and demonstrating the effectiveness of our approach in legal text analysis. We provide a detailed analysis of the strengths and limitations of each model and approach tested, along with a thorough error analysis and suggestions for future improvements. This paper aims to contribute to the growing field of legal NLP by offering insights into advanced techniques for natural language inference in legal contexts, making it accessible to both experts and newcomers in the field.
Learning to Represent Programs with Heterogeneous Graphs
Program source code contains complex structure information, which can be represented in structured data forms like trees or graphs. To acquire the structural information in source code, most existing researches use abstract syntax trees (AST). A group of works add additional edges to ASTs to convert source code into graphs and use graph neural networks to learn representations for program graphs. Although these works provide additional control or data flow information to ASTs for downstream tasks, they neglect an important aspect of structure information in AST itself: the different types of nodes and edges. In ASTs, different nodes contain different kinds of information like variables or control flow, and the relation between a node and all its children can also be different. To address the information of node and edge types, we bring the idea of heterogeneous graphs to learning on source code and present a new formula of building heterogeneous program graphs from ASTs with additional type information for nodes and edges. We use the ASDL grammar of programming language to define the node and edge types of program graphs. Then we use heterogeneous graph neural networks to learn on these graphs. We evaluate our approach on two tasks: code comment generation and method naming. Both tasks require reasoning on the semantics of complete code snippets. Experiment results show that our approach outperforms baseline models, including homogeneous graph-based models, showing that leveraging the type information of nodes and edges in program graphs can help in learning program semantics.
Natural Graph Networks
A key requirement for graph neural networks is that they must process a graph in a way that does not depend on how the graph is described. Traditionally this has been taken to mean that a graph network must be equivariant to node permutations. Here we show that instead of equivariance, the more general concept of naturality is sufficient for a graph network to be well-defined, opening up a larger class of graph networks. We define global and local natural graph networks, the latter of which are as scalable as conventional message passing graph neural networks while being more flexible. We give one practical instantiation of a natural network on graphs which uses an equivariant message network parameterization, yielding good performance on several benchmarks.
Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning
Leveraging generative Artificial Intelligence (AI), we have transformed a dataset comprising 1,000 scientific papers into an ontological knowledge graph. Through an in-depth structural analysis, we have calculated node degrees, identified communities and connectivities, and evaluated clustering coefficients and betweenness centrality of pivotal nodes, uncovering fascinating knowledge architectures. The graph has an inherently scale-free nature, is highly connected, and can be used for graph reasoning by taking advantage of transitive and isomorphic properties that reveal unprecedented interdisciplinary relationships that can be used to answer queries, identify gaps in knowledge, propose never-before-seen material designs, and predict material behaviors. We compute deep node embeddings for combinatorial node similarity ranking for use in a path sampling strategy links dissimilar concepts that have previously not been related. One comparison revealed structural parallels between biological materials and Beethoven's 9th Symphony, highlighting shared patterns of complexity through isomorphic mapping. In another example, the algorithm proposed a hierarchical mycelium-based composite based on integrating path sampling with principles extracted from Kandinsky's 'Composition VII' painting. The resulting material integrates an innovative set of concepts that include a balance of chaos/order, adjustable porosity, mechanical strength, and complex patterned chemical functionalization. We uncover other isomorphisms across science, technology and art, revealing a nuanced ontology of immanence that reveal a context-dependent heterarchical interplay of constituents. Graph-based generative AI achieves a far higher degree of novelty, explorative capacity, and technical detail, than conventional approaches and establishes a widely useful framework for innovation by revealing hidden connections.
Language Models with Rationality
While large language models (LLMs) are proficient at question-answering (QA), it is not always clear how (or even if) an answer follows from their latent "beliefs". This lack of interpretability is a growing impediment to widespread use of LLMs. To address this, our goals are to make model beliefs and their inferential relationships explicit, and to resolve inconsistencies that may exist, so that answers are supported by interpretable chains of reasoning drawn from a consistent network of beliefs. Our approach, which we call REFLEX, is to add a rational, self-reflecting layer on top of the LLM. First, given a question, we construct a belief graph using a backward-chaining process to materialize relevant model beliefs (including beliefs about answer candidates) and their inferential relationships. Second, we identify and minimize contradictions in that graph using a formal constraint reasoner. We find that REFLEX significantly improves consistency (by 8%-11% absolute) without harming overall answer accuracy, resulting in answers supported by faithful chains of reasoning drawn from a more consistent belief system. This suggests a new style of system architecture in which an LLM extended with a rational layer can provide an interpretable window into system beliefs, add a systematic reasoning capability, and repair latent inconsistencies present in the LLM.
Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models
Large language models (LLMs) have demonstrated impressive reasoning abilities, but they still struggle with faithful reasoning due to knowledge gaps and hallucinations. To address these issues, knowledge graphs (KGs) have been utilized to enhance LLM reasoning through their structured knowledge. However, existing KG-enhanced methods, either retrieval-based or agent-based, encounter difficulties in accurately retrieving knowledge and efficiently traversing KGs at scale. In this work, we introduce graph-constrained reasoning (GCR), a novel framework that bridges structured knowledge in KGs with unstructured reasoning in LLMs. To eliminate hallucinations, GCR ensures faithful KG-grounded reasoning by integrating KG structure into the LLM decoding process through KG-Trie, a trie-based index that encodes KG reasoning paths. KG-Trie constrains the decoding process, allowing LLMs to directly reason on graphs and generate faithful reasoning paths grounded in KGs. Additionally, GCR leverages a lightweight KG-specialized LLM for graph-constrained reasoning alongside a powerful general LLM for inductive reasoning over multiple reasoning paths, resulting in accurate reasoning with zero reasoning hallucination. Extensive experiments on several KGQA benchmarks demonstrate that GCR achieves state-of-the-art performance and exhibits strong zero-shot generalizability to unseen KGs without additional training.
From Graphs to Hypergraphs: Hypergraph Projection and its Remediation
We study the implications of the modeling choice to use a graph, instead of a hypergraph, to represent real-world interconnected systems whose constituent relationships are of higher order by nature. Such a modeling choice typically involves an underlying projection process that maps the original hypergraph onto a graph, and is common in graph-based analysis. While hypergraph projection can potentially lead to loss of higher-order relations, there exists very limited studies on the consequences of doing so, as well as its remediation. This work fills this gap by doing two things: (1) we develop analysis based on graph and set theory, showing two ubiquitous patterns of hyperedges that are root to structural information loss in all hypergraph projections; we also quantify the combinatorial impossibility of recovering the lost higher-order structures if no extra help is provided; (2) we still seek to recover the lost higher-order structures in hypergraph projection, and in light of (1)'s findings we propose to relax the problem into a learning-based setting. Under this setting, we develop a learning-based hypergraph reconstruction method based on an important statistic of hyperedge distributions that we find. Our reconstruction method is evaluated on 8 real-world datasets under different settings, and exhibits consistently good performance. We also demonstrate benefits of the reconstructed hypergraphs via use cases of protein rankings and link predictions.
Unifying Large Language Models and Knowledge Graphs: A Roadmap
Large language models (LLMs), such as ChatGPT and GPT4, are making new waves in the field of natural language processing and artificial intelligence, due to their emergent ability and generalizability. However, LLMs are black-box models, which often fall short of capturing and accessing factual knowledge. In contrast, Knowledge Graphs (KGs), Wikipedia and Huapu for example, are structured knowledge models that explicitly store rich factual knowledge. KGs can enhance LLMs by providing external knowledge for inference and interpretability. Meanwhile, KGs are difficult to construct and evolving by nature, which challenges the existing methods in KGs to generate new facts and represent unseen knowledge. Therefore, it is complementary to unify LLMs and KGs together and simultaneously leverage their advantages. In this article, we present a forward-looking roadmap for the unification of LLMs and KGs. Our roadmap consists of three general frameworks, namely, 1) KG-enhanced LLMs, which incorporate KGs during the pre-training and inference phases of LLMs, or for the purpose of enhancing understanding of the knowledge learned by LLMs; 2) LLM-augmented KGs, that leverage LLMs for different KG tasks such as embedding, completion, construction, graph-to-text generation, and question answering; and 3) Synergized LLMs + KGs, in which LLMs and KGs play equal roles and work in a mutually beneficial way to enhance both LLMs and KGs for bidirectional reasoning driven by both data and knowledge. We review and summarize existing efforts within these three frameworks in our roadmap and pinpoint their future research directions.
Query-Aware Learnable Graph Pooling Tokens as Prompt for Large Language Models
Graph-structured data plays a vital role in numerous domains, such as social networks, citation networks, commonsense reasoning graphs and knowledge graphs. While graph neural networks have been employed for graph processing, recent advancements have explored integrating large language models for graph-based tasks. In this paper, we propose a novel approach named Learnable Graph Pooling Token (LGPT), which addresses the limitations of the scalability issues in node-level projection and information loss in graph-level projection. LGPT enables flexible and efficient graph representation by introducing learnable parameters that act as tokens in large language models, balancing fine-grained and global graph information. Additionally, we investigate an Early Query Fusion technique, which fuses query context before constructing the graph representation, leading to more effective graph embeddings. Our method achieves a 4.13\% performance improvement on the GraphQA benchmark without training the large language model, demonstrating significant gains in handling complex textual-attributed graph data.
Understanding Expressivity of GNN in Rule Learning
Rule learning is critical to improving knowledge graph (KG) reasoning due to their ability to provide logical and interpretable explanations. Recently, Graph Neural Networks (GNNs) with tail entity scoring achieve the state-of-the-art performance on KG reasoning. However, the theoretical understandings for these GNNs are either lacking or focusing on single-relational graphs, leaving what the kind of rules these GNNs can learn an open problem. We propose to fill the above gap in this paper. Specifically, GNNs with tail entity scoring are unified into a common framework. Then, we analyze their expressivity by formally describing the rule structures they can learn and theoretically demonstrating their superiority. These results further inspire us to propose a novel labeling strategy to learn more rules in KG reasoning. Experimental results are consistent with our theoretical findings and verify the effectiveness of our proposed method. The code is publicly available at https://github.com/LARS-research/Rule-learning-expressivity.
Unsupervised Matching of Data and Text
Entity resolution is a widely studied problem with several proposals to match records across relations. Matching textual content is a widespread task in many applications, such as question answering and search. While recent methods achieve promising results for these two tasks, there is no clear solution for the more general problem of matching textual content and structured data. We introduce a framework that supports this new task in an unsupervised setting for any pair of corpora, being relational tables or text documents. Our method builds a fine-grained graph over the content of the corpora and derives word embeddings to represent the objects to match in a low dimensional space. The learned representation enables effective and efficient matching at different granularity, from relational tuples to text sentences and paragraphs. Our flexible framework can exploit pre-trained resources, but it does not depends on their existence and achieves better quality performance in matching content when the vocabulary is domain specific. We also introduce optimizations in the graph creation process with an "expand and compress" approach that first identifies new valid relationships across elements, to improve matching, and then prunes nodes and edges, to reduce the graph size. Experiments on real use cases and public datasets show that our framework produces embeddings that outperform word embeddings and fine-tuned language models both in results' quality and in execution times.
First Train to Generate, then Generate to Train: UnitedSynT5 for Few-Shot NLI
Natural Language Inference (NLI) tasks require identifying the relationship between sentence pairs, typically classified as entailment, contradiction, or neutrality. While the current state-of-the-art (SOTA) model, Entailment Few-Shot Learning (EFL), achieves a 93.1% accuracy on the Stanford Natural Language Inference (SNLI) dataset, further advancements are constrained by the dataset's limitations. To address this, we propose a novel approach leveraging synthetic data augmentation to enhance dataset diversity and complexity. We present UnitedSynT5, an advanced extension of EFL that leverages a T5-based generator to synthesize additional premise-hypothesis pairs, which are rigorously cleaned and integrated into the training data. These augmented examples are processed within the EFL framework, embedding labels directly into hypotheses for consistency. We train a GTR-T5-XL model on this expanded dataset, achieving a new benchmark of 94.7% accuracy on the SNLI dataset, 94.01% accuracy on the E-SNLI dataset, and 92.57% accuracy on the MultiNLI dataset, surpassing the previous SOTA models. This research demonstrates the potential of synthetic data augmentation in improving NLI models, offering a path forward for further advancements in natural language understanding tasks.
Modeling Relational Data with Graph Convolutional Networks
Knowledge graphs enable a wide variety of applications, including question answering and information retrieval. Despite the great effort invested in their creation and maintenance, even the largest (e.g., Yago, DBPedia or Wikidata) remain incomplete. We introduce Relational Graph Convolutional Networks (R-GCNs) and apply them to two standard knowledge base completion tasks: Link prediction (recovery of missing facts, i.e. subject-predicate-object triples) and entity classification (recovery of missing entity attributes). R-GCNs are related to a recent class of neural networks operating on graphs, and are developed specifically to deal with the highly multi-relational data characteristic of realistic knowledge bases. We demonstrate the effectiveness of R-GCNs as a stand-alone model for entity classification. We further show that factorization models for link prediction such as DistMult can be significantly improved by enriching them with an encoder model to accumulate evidence over multiple inference steps in the relational graph, demonstrating a large improvement of 29.8% on FB15k-237 over a decoder-only baseline.
MEKER: Memory Efficient Knowledge Embedding Representation for Link Prediction and Question Answering
Knowledge Graphs (KGs) are symbolically structured storages of facts. The KG embedding contains concise data used in NLP tasks requiring implicit information about the real world. Furthermore, the size of KGs that may be useful in actual NLP assignments is enormous, and creating embedding over it has memory cost issues. We represent KG as a 3rd-order binary tensor and move beyond the standard CP decomposition by using a data-specific generalized version of it. The generalization of the standard CP-ALS algorithm allows obtaining optimization gradients without a backpropagation mechanism. It reduces the memory needed in training while providing computational benefits. We propose a MEKER, a memory-efficient KG embedding model, which yields SOTA-comparable performance on link prediction tasks and KG-based Question Answering.
DebateKG: Automatic Policy Debate Case Creation with Semantic Knowledge Graphs
Recent work within the Argument Mining community has shown the applicability of Natural Language Processing systems for solving problems found within competitive debate. One of the most important tasks within competitive debate is for debaters to create high quality debate cases. We show that effective debate cases can be constructed using constrained shortest path traversals on Argumentative Semantic Knowledge Graphs. We study this potential in the context of a type of American Competitive Debate, called Policy Debate, which already has a large scale dataset targeting it called DebateSum. We significantly improve upon DebateSum by introducing 53180 new examples, as well as further useful metadata for every example, to the dataset. We leverage the txtai semantic search and knowledge graph toolchain to produce and contribute 9 semantic knowledge graphs built on this dataset. We create a unique method for evaluating which knowledge graphs are better in the context of producing policy debate cases. A demo which automatically generates debate cases, along with all other code and the Knowledge Graphs, are open-sourced and made available to the public here: https://github.com/Hellisotherpeople/DebateKG
Graph Language Models
While Language Models have become workhorses for NLP, their interplay with textual knowledge graphs (KGs) - structured memories of general or domain knowledge - is actively researched. Current embedding methodologies for such graphs typically either (i) linearize graphs for embedding them using sequential Language Models (LMs), which underutilize structural information, or (ii) use Graph Neural Networks (GNNs) to preserve graph structure, while GNNs cannot represent textual features as well as a pre-trained LM could. In this work we introduce a novel language model, the Graph Language Model (GLM), that integrates the strengths of both approaches, while mitigating their weaknesses. The GLM parameters are initialized from a pretrained LM, to facilitate nuanced understanding of individual concepts and triplets. Simultaneously, its architectural design incorporates graph biases, thereby promoting effective knowledge distribution within the graph. Empirical evaluations on relation classification tasks on ConceptNet subgraphs reveal that GLM embeddings surpass both LM- and GNN-based baselines in supervised and zero-shot settings.
A many-sorted epistemic logic for chromatic hypergraphs
We propose a many-sorted modal logic for reasoning about knowledge in multi-agent systems. Our logic introduces a clear distinction between participating agents and the environment. This allows to express local properties of agents and global properties of worlds in a uniform way, as well as to talk about the presence or absence of agents in a world. The logic subsumes the standard epistemic logic and is a conservative extension of it. The semantics is given in chromatic hypergraphs, a generalization of chromatic simplicial complexes, which were recently used to model knowledge in distributed systems. We show that the logic is sound and complete with respect to the intended semantics. We also show a further connection of chromatic hypergraphs with neighborhood frames.
GraphPrompter: Multi-stage Adaptive Prompt Optimization for Graph In-Context Learning
Graph In-Context Learning, with the ability to adapt pre-trained graph models to novel and diverse downstream graphs without updating any parameters, has gained much attention in the community. The key to graph in-context learning is to perform downstream graphs conditioned on chosen prompt examples. Existing methods randomly select subgraphs or edges as prompts, leading to noisy graph prompts and inferior model performance. Additionally, due to the gap between pre-training and testing graphs, when the number of classes in the testing graphs is much greater than that in the training, the in-context learning ability will also significantly deteriorate. To tackle the aforementioned challenges, we develop a multi-stage adaptive prompt optimization method GraphPrompter, which optimizes the entire process of generating, selecting, and using graph prompts for better in-context learning capabilities. Firstly, Prompt Generator introduces a reconstruction layer to highlight the most informative edges and reduce irrelevant noise for graph prompt construction. Furthermore, in the selection stage, Prompt Selector employs the k-nearest neighbors algorithm and pre-trained selection layers to dynamically choose appropriate samples and minimize the influence of irrelevant prompts. Finally, we leverage a Prompt Augmenter with a cache replacement strategy to enhance the generalization capability of the pre-trained model on new datasets. Extensive experiments show that GraphPrompter effectively enhances the in-context learning ability of graph models. On average across all the settings, our approach surpasses the state-of-the-art baselines by over 8%. Our code is released at https://github.com/karin0018/GraphPrompter.
SRTK: A Toolkit for Semantic-relevant Subgraph Retrieval
Information retrieval based knowledge base question answering (KBQA) first retrieves a subgraph to reduce search space, then reasons on the subgraph to select answer entities. Existing approaches have three issues that impede the retrieval of such subgraphs. Firstly, there is no off-the-shelf toolkit for semantic-relevant subgraph retrieval. Secondly, existing methods are knowledge-graph-dependent, resulting in outdated knowledge graphs used even in recent studies. Thirdly, previous solutions fail to incorporate the best available techniques for entity linking or path expansion. In this paper, we present SRTK, a user-friendly toolkit for semantic-relevant subgraph retrieval from large-scale knowledge graphs. SRTK is the first toolkit that streamlines the entire lifecycle of subgraph retrieval across multiple knowledge graphs. Additionally, it comes with state-of-the-art subgraph retrieval algorithms, guaranteeing an up-to-date solution set out of the box.
Enhancing Reasoning Capabilities of Large Language Models: A Graph-Based Verification Approach
Large Language Models (LLMs) have showcased impressive reasoning capabilities, particularly when guided by specifically designed prompts in complex reasoning tasks such as math word problems. These models typically solve tasks using a chain-of-thought approach, which not only bolsters their reasoning abilities but also provides valuable insights into their problem-solving process. However, there is still significant room for enhancing the reasoning abilities of LLMs. Some studies suggest that the integration of an LLM output verifier can boost reasoning accuracy without necessitating additional model training. In this paper, we follow these studies and introduce a novel graph-based method to further augment the reasoning capabilities of LLMs. We posit that multiple solutions to a reasoning task, generated by an LLM, can be represented as a reasoning graph due to the logical connections between intermediate steps from different reasoning paths. Therefore, we propose the Reasoning Graph Verifier (RGV) to analyze and verify the solutions generated by LLMs. By evaluating these graphs, models can yield more accurate and reliable results.Our experimental results show that our graph-based verification method not only significantly enhances the reasoning abilities of LLMs but also outperforms existing verifier methods in terms of improving these models' reasoning performance.
Improving LLMs' Generalized Reasoning Abilities by Graph Problems
Large Language Models (LLMs) have made remarkable strides in reasoning tasks, yet their performance often falters on novel and complex problems. Domain-specific continued pretraining (CPT) methods, such as those tailored for mathematical reasoning, have shown promise but lack transferability to broader reasoning tasks. In this work, we pioneer the use of Graph Problem Reasoning (GPR) to enhance the general reasoning capabilities of LLMs. GPR tasks, spanning pathfinding, network analysis, numerical computation, and topological reasoning, require sophisticated logical and relational reasoning, making them ideal for teaching diverse reasoning patterns. To achieve this, we introduce GraphPile, the first large-scale corpus specifically designed for CPT using GPR data. Spanning 10.9 billion tokens across 23 graph tasks, the dataset includes chain-of-thought, program-of-thought, trace of execution, and real-world graph data. Using GraphPile, we train GraphMind on popular base models Llama 3 and 3.1, as well as Gemma 2, achieving up to 4.9 percent higher accuracy in mathematical reasoning and up to 21.2 percent improvement in non-mathematical reasoning tasks such as logical and commonsense reasoning. By being the first to harness GPR for enhancing reasoning patterns and introducing the first dataset of its kind, our work bridges the gap between domain-specific pretraining and universal reasoning capabilities, advancing the adaptability and robustness of LLMs.
Multi-source Semantic Graph-based Multimodal Sarcasm Explanation Generation
Multimodal Sarcasm Explanation (MuSE) is a new yet challenging task, which aims to generate a natural language sentence for a multimodal social post (an image as well as its caption) to explain why it contains sarcasm. Although the existing pioneer study has achieved great success with the BART backbone, it overlooks the gap between the visual feature space and the decoder semantic space, the object-level metadata of the image, as well as the potential external knowledge. To solve these limitations, in this work, we propose a novel mulTi-source sEmantic grAph-based Multimodal sarcasm explanation scheme, named TEAM. In particular, TEAM extracts the object-level semantic meta-data instead of the traditional global visual features from the input image. Meanwhile, TEAM resorts to ConceptNet to obtain the external related knowledge concepts for the input text and the extracted object meta-data. Thereafter, TEAM introduces a multi-source semantic graph that comprehensively characterize the multi-source (i.e., caption, object meta-data, external knowledge) semantic relations to facilitate the sarcasm reasoning. Extensive experiments on a public released dataset MORE verify the superiority of our model over cutting-edge methods.
FACTOID: FACtual enTailment fOr hallucInation Detection
The widespread adoption of Large Language Models (LLMs) has facilitated numerous benefits. However, hallucination is a significant concern. In response, Retrieval Augmented Generation (RAG) has emerged as a highly promising paradigm to improve LLM outputs by grounding them in factual information. RAG relies on textual entailment (TE) or similar methods to check if the text produced by LLMs is supported or contradicted, compared to retrieved documents. This paper argues that conventional TE methods are inadequate for spotting hallucinations in content generated by LLMs. For instance, consider a prompt about the 'USA's stance on the Ukraine war''. The AI-generated text states, ...U.S. President Barack Obama says the U.S. will not put troops in Ukraine...'' However, during the war the U.S. president is Joe Biden which contradicts factual reality. Moreover, current TE systems are unable to accurately annotate the given text and identify the exact portion that is contradicted. To address this, we introduces a new type of TE called ``Factual Entailment (FE).'', aims to detect factual inaccuracies in content generated by LLMs while also highlighting the specific text segment that contradicts reality. We present FACTOID (FACTual enTAILment for hallucInation Detection), a benchmark dataset for FE. We propose a multi-task learning (MTL) framework for FE, incorporating state-of-the-art (SoTA) long text embeddings such as e5-mistral-7b-instruct, along with GPT-3, SpanBERT, and RoFormer. The proposed MTL architecture for FE achieves an avg. 40\% improvement in accuracy on the FACTOID benchmark compared to SoTA TE methods. As FE automatically detects hallucinations, we assessed 15 modern LLMs and ranked them using our proposed Auto Hallucination Vulnerability Index (HVI_auto). This index quantifies and offers a comparative scale to evaluate and rank LLMs according to their hallucinations.
TEG-DB: A Comprehensive Dataset and Benchmark of Textual-Edge Graphs
Text-Attributed Graphs (TAGs) augment graph structures with natural language descriptions, facilitating detailed depictions of data and their interconnections across various real-world settings. However, existing TAG datasets predominantly feature textual information only at the nodes, with edges typically represented by mere binary or categorical attributes. This lack of rich textual edge annotations significantly limits the exploration of contextual relationships between entities, hindering deeper insights into graph-structured data. To address this gap, we introduce Textual-Edge Graphs Datasets and Benchmark (TEG-DB), a comprehensive and diverse collection of benchmark textual-edge datasets featuring rich textual descriptions on nodes and edges. The TEG-DB datasets are large-scale and encompass a wide range of domains, from citation networks to social networks. In addition, we conduct extensive benchmark experiments on TEG-DB to assess the extent to which current techniques, including pre-trained language models, graph neural networks, and their combinations, can utilize textual node and edge information. Our goal is to elicit advancements in textual-edge graph research, specifically in developing methodologies that exploit rich textual node and edge descriptions to enhance graph analysis and provide deeper insights into complex real-world networks. The entire TEG-DB project is publicly accessible as an open-source repository on Github, accessible at https://github.com/Zhuofeng-Li/TEG-Benchmark.
ChartQA: A Benchmark for Question Answering about Charts with Visual and Logical Reasoning
Charts are very popular for analyzing data. When exploring charts, people often ask a variety of complex reasoning questions that involve several logical and arithmetic operations. They also commonly refer to visual features of a chart in their questions. However, most existing datasets do not focus on such complex reasoning questions as their questions are template-based and answers come from a fixed-vocabulary. In this work, we present a large-scale benchmark covering 9.6K human-written questions as well as 23.1K questions generated from human-written chart summaries. To address the unique challenges in our benchmark involving visual and logical reasoning over charts, we present two transformer-based models that combine visual features and the data table of the chart in a unified way to answer questions. While our models achieve the state-of-the-art results on the previous datasets as well as on our benchmark, the evaluation also reveals several challenges in answering complex reasoning questions.
A Simple and Scalable Representation for Graph Generation
Recently, there has been a surge of interest in employing neural networks for graph generation, a fundamental statistical learning problem with critical applications like molecule design and community analysis. However, most approaches encounter significant limitations when generating large-scale graphs. This is due to their requirement to output the full adjacency matrices whose size grows quadratically with the number of nodes. In response to this challenge, we introduce a new, simple, and scalable graph representation named gap encoded edge list (GEEL) that has a small representation size that aligns with the number of edges. In addition, GEEL significantly reduces the vocabulary size by incorporating the gap encoding and bandwidth restriction schemes. GEEL can be autoregressively generated with the incorporation of node positional encoding, and we further extend GEEL to deal with attributed graphs by designing a new grammar. Our findings reveal that the adoption of this compact representation not only enhances scalability but also bolsters performance by simplifying the graph generation process. We conduct a comprehensive evaluation across ten non-attributed and two molecular graph generation tasks, demonstrating the effectiveness of GEEL.
Scene Graph Modification Based on Natural Language Commands
Structured representations like graphs and parse trees play a crucial role in many Natural Language Processing systems. In recent years, the advancements in multi-turn user interfaces necessitate the need for controlling and updating these structured representations given new sources of information. Although there have been many efforts focusing on improving the performance of the parsers that map text to graphs or parse trees, very few have explored the problem of directly manipulating these representations. In this paper, we explore the novel problem of graph modification, where the systems need to learn how to update an existing scene graph given a new user's command. Our novel models based on graph-based sparse transformer and cross attention information fusion outperform previous systems adapted from the machine translation and graph generation literature. We further contribute our large graph modification datasets to the research community to encourage future research for this new problem.
Visualizing Thought: Conceptual Diagrams Enable Robust Planning in LMMs
Human reasoning relies on constructing and manipulating mental models-simplified internal representations of situations that we use to understand and solve problems. Conceptual diagrams (for example, sketches drawn by humans to aid reasoning) externalize these mental models, abstracting irrelevant details to efficiently capture relational and spatial information. In contrast, Large Language Models (LLMs) and Large Multimodal Models (LMMs) predominantly reason through textual representations, limiting their effectiveness in complex multi-step combinatorial and planning tasks. In this paper, we propose a zero-shot fully automatic framework that enables LMMs to reason through multiple chains of self-generated intermediate conceptual diagrams, significantly enhancing their combinatorial planning capabilities. Our approach does not require any human initialization beyond a natural language description of the task. It integrates both textual and diagrammatic reasoning within an optimized graph-of-thought inference framework, enhanced by beam search and depth-wise backtracking. Evaluated on multiple challenging PDDL planning domains, our method substantially improves GPT-4o's performance (for example, from 35.5% to 90.2% in Blocksworld). On more difficult planning domains with solution depths up to 40, our approach outperforms even the o1-preview reasoning model (for example, over 13% improvement in Parking). These results highlight the value of conceptual diagrams as a complementary reasoning medium in LMMs.
Neural Natural Language Inference Models Partially Embed Theories of Lexical Entailment and Negation
We address whether neural models for Natural Language Inference (NLI) can learn the compositional interactions between lexical entailment and negation, using four methods: the behavioral evaluation methods of (1) challenge test sets and (2) systematic generalization tasks, and the structural evaluation methods of (3) probes and (4) interventions. To facilitate this holistic evaluation, we present Monotonicity NLI (MoNLI), a new naturalistic dataset focused on lexical entailment and negation. In our behavioral evaluations, we find that models trained on general-purpose NLI datasets fail systematically on MoNLI examples containing negation, but that MoNLI fine-tuning addresses this failure. In our structural evaluations, we look for evidence that our top-performing BERT-based model has learned to implement the monotonicity algorithm behind MoNLI. Probes yield evidence consistent with this conclusion, and our intervention experiments bolster this, showing that the causal dynamics of the model mirror the causal dynamics of this algorithm on subsets of MoNLI. This suggests that the BERT model at least partially embeds a theory of lexical entailment and negation at an algorithmic level.
Towards Foundation Models for Knowledge Graph Reasoning
Foundation models in language and vision have the ability to run inference on any textual and visual inputs thanks to the transferable representations such as a vocabulary of tokens in language. Knowledge graphs (KGs) have different entity and relation vocabularies that generally do not overlap. The key challenge of designing foundation models on KGs is to learn such transferable representations that enable inference on any graph with arbitrary entity and relation vocabularies. In this work, we make a step towards such foundation models and present ULTRA, an approach for learning universal and transferable graph representations. ULTRA builds relational representations as a function conditioned on their interactions. Such a conditioning strategy allows a pre-trained ULTRA model to inductively generalize to any unseen KG with any relation vocabulary and to be fine-tuned on any graph. Conducting link prediction experiments on 57 different KGs, we find that the zero-shot inductive inference performance of a single pre-trained ULTRA model on unseen graphs of various sizes is often on par or better than strong baselines trained on specific graphs. Fine-tuning further boosts the performance.
RiTeK: A Dataset for Large Language Models Complex Reasoning over Textual Knowledge Graphs
Answering complex real-world questions often requires accurate retrieval from textual knowledge graphs (TKGs). The scarcity of annotated data, along with intricate topological structures, makes this task particularly challenging. As the nature of relational path information could enhance the inference ability of Large Language Models (LLMs), efficiently retrieving more complex relational path information from TKGs presents another key challenge. To tackle these challenges, we first develop a Dataset for LLMs Complex Reasoning over Textual Knowledge Graphs (RiTeK) with a broad topological structure coverage.We synthesize realistic user queries that integrate diverse topological structures, relational information, and complex textual descriptions. We conduct rigorous expert evaluation to validate the quality of our synthesized queries. And then, we introduce an enhanced Monte Carlo Tree Search (MCTS) method, Relational MCTS, to automatically extract relational path information from textual graphs for specific queries. Our dataset mainly covers the medical domain as the relation types and entity are complex and publicly available. Experimental results indicate that RiTeK poses significant challenges for current retrieval and LLM systems, while the proposed Relational MCTS method enhances LLM inference ability and achieves state-of-the-art performance on RiTeK.
SciGraphQA: A Large-Scale Synthetic Multi-Turn Question-Answering Dataset for Scientific Graphs
In this work, we present SciGraphQA, a synthetic multi-turn question-answer dataset related to academic graphs. SciGraphQA is 13 times larger than ChartVQA, the previously largest chart-visual question-answering dataset. It is also the largest open-sourced chart VQA dataset with non-synthetic charts. To build our dataset, we selected 290,000 Computer Science or Machine Learning ArXiv papers published between 2010 and 2020, and then used Palm-2 to generate 295K samples of open-vocabulary multi-turn question-answering dialogues about the graphs. As context, we provided the text-only Palm-2 with paper title, abstract, paragraph mentioning the graph, and rich text contextual data from the graph itself, obtaining dialogues with an average 2.23 question-answer turns for each graph. We asked GPT-4 to assess the matching quality of our question-answer turns given the paper's context, obtaining an average rating of 8.7/10 on our 3K test set. We evaluated the 0-shot capability of the most popular MLLM models such as LLaVa, mPLUGowl, BLIP-2, and openFlamingo's on our dataset, finding LLaVA-13B being the most performant with a CIDEr score of 0.08. We further enriched the question prompts for LLAVA by including the serialized data tables extracted from the graphs using the DePlot model, boosting LLaVA's 0-shot CIDEr to 0.15. To verify the validity of our dataset, we also fine-tuned LLaVa using our dataset, reaching a substantially higher CIDEr score of 0.26. We anticipate further accuracy improvement by including segmentation mask tokens and leveraging larger LLM backbones coupled with emergent prompting techniques. Our code and data are open-sourced.