new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 11

Rethinking Multi-view Representation Learning via Distilled Disentangling

Multi-view representation learning aims to derive robust representations that are both view-consistent and view-specific from diverse data sources. This paper presents an in-depth analysis of existing approaches in this domain, highlighting a commonly overlooked aspect: the redundancy between view-consistent and view-specific representations. To this end, we propose an innovative framework for multi-view representation learning, which incorporates a technique we term 'distilled disentangling'. Our method introduces the concept of masked cross-view prediction, enabling the extraction of compact, high-quality view-consistent representations from various sources without incurring extra computational overhead. Additionally, we develop a distilled disentangling module that efficiently filters out consistency-related information from multi-view representations, resulting in purer view-specific representations. This approach significantly reduces redundancy between view-consistent and view-specific representations, enhancing the overall efficiency of the learning process. Our empirical evaluations reveal that higher mask ratios substantially improve the quality of view-consistent representations. Moreover, we find that reducing the dimensionality of view-consistent representations relative to that of view-specific representations further refines the quality of the combined representations. Our code is accessible at: https://github.com/Guanzhou-Ke/MRDD.

MetaDreamer: Efficient Text-to-3D Creation With Disentangling Geometry and Texture

Generative models for 3D object synthesis have seen significant advancements with the incorporation of prior knowledge distilled from 2D diffusion models. Nevertheless, challenges persist in the form of multi-view geometric inconsistencies and slow generation speeds within the existing 3D synthesis frameworks. This can be attributed to two factors: firstly, the deficiency of abundant geometric a priori knowledge in optimization, and secondly, the entanglement issue between geometry and texture in conventional 3D generation methods.In response, we introduce MetaDreammer, a two-stage optimization approach that leverages rich 2D and 3D prior knowledge. In the first stage, our emphasis is on optimizing the geometric representation to ensure multi-view consistency and accuracy of 3D objects. In the second stage, we concentrate on fine-tuning the geometry and optimizing the texture, thereby achieving a more refined 3D object. Through leveraging 2D and 3D prior knowledge in two stages, respectively, we effectively mitigate the interdependence between geometry and texture. MetaDreamer establishes clear optimization objectives for each stage, resulting in significant time savings in the 3D generation process. Ultimately, MetaDreamer can generate high-quality 3D objects based on textual prompts within 20 minutes, and to the best of our knowledge, it is the most efficient text-to-3D generation method. Furthermore, we introduce image control into the process, enhancing the controllability of 3D generation. Extensive empirical evidence confirms that our method is not only highly efficient but also achieves a quality level that is at the forefront of current state-of-the-art 3D generation techniques.

Disentanglement via Latent Quantization

In disentangled representation learning, a model is asked to tease apart a dataset's underlying sources of variation and represent them independently of one another. Since the model is provided with no ground truth information about these sources, inductive biases take a paramount role in enabling disentanglement. In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space. Concretely, we do this by (i) quantizing the latent space into discrete code vectors with a separate learnable scalar codebook per dimension and (ii) applying strong model regularization via an unusually high weight decay. Intuitively, the latent space design forces the encoder to combinatorially construct codes from a small number of distinct scalar values, which in turn enables the decoder to assign a consistent meaning to each value. Regularization then serves to drive the model towards this parsimonious strategy. We demonstrate the broad applicability of this approach by adding it to both basic data-reconstructing (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models. For reliable evaluation, we also propose InfoMEC, a new set of metrics for disentanglement that is cohesively grounded in information theory and fixes well-established shortcomings in previous metrics. Together with regularization, latent quantization dramatically improves the modularity and explicitness of learned representations on a representative suite of benchmark datasets. In particular, our quantized-latent autoencoder (QLAE) consistently outperforms strong methods from prior work in these key disentanglement properties without compromising data reconstruction.

Distilled Decoding 1: One-step Sampling of Image Auto-regressive Models with Flow Matching

Autoregressive (AR) models have achieved state-of-the-art performance in text and image generation but suffer from slow generation due to the token-by-token process. We ask an ambitious question: can a pre-trained AR model be adapted to generate outputs in just one or two steps? If successful, this would significantly advance the development and deployment of AR models. We notice that existing works that try to speed up AR generation by generating multiple tokens at once fundamentally cannot capture the output distribution due to the conditional dependencies between tokens, limiting their effectiveness for few-step generation. To address this, we propose Distilled Decoding (DD), which uses flow matching to create a deterministic mapping from Gaussian distribution to the output distribution of the pre-trained AR model. We then train a network to distill this mapping, enabling few-step generation. DD doesn't need the training data of the original AR model, making it more practical.We evaluate DD on state-of-the-art image AR models and present promising results on ImageNet-256. For VAR, which requires 10-step generation, DD enables one-step generation (6.3times speed-up), with an acceptable increase in FID from 4.19 to 9.96. For LlamaGen, DD reduces generation from 256 steps to 1, achieving an 217.8times speed-up with a comparable FID increase from 4.11 to 11.35. In both cases, baseline methods completely fail with FID>100. DD also excels on text-to-image generation, reducing the generation from 256 steps to 2 for LlamaGen with minimal FID increase from 25.70 to 28.95. As the first work to demonstrate the possibility of one-step generation for image AR models, DD challenges the prevailing notion that AR models are inherently slow, and opens up new opportunities for efficient AR generation. The project website is at https://imagination-research.github.io/distilled-decoding.

DistillSpec: Improving Speculative Decoding via Knowledge Distillation

Speculative decoding (SD) accelerates large language model inference by employing a faster draft model for generating multiple tokens, which are then verified in parallel by the larger target model, resulting in the text generated according to the target model distribution. However, identifying a compact draft model that is well-aligned with the target model is challenging. To tackle this issue, we propose DistillSpec that uses knowledge distillation to better align the draft model with the target model, before applying SD. DistillSpec makes two key design choices, which we demonstrate via systematic study to be crucial to improving the draft and target alignment: utilizing on-policy data generation from the draft model, and tailoring the divergence function to the task and decoding strategy. Notably, DistillSpec yields impressive 10 - 45% speedups over standard SD on a range of standard benchmarks, using both greedy and non-greedy sampling. Furthermore, we combine DistillSpec with lossy SD to achieve fine-grained control over the latency vs. task performance trade-off. Finally, in practical scenarios with models of varying sizes, first using distillation to boost the performance of the target model and then applying DistillSpec to train a well-aligned draft model can reduce decoding latency by 6-10x with minimal performance drop, compared to standard decoding without distillation.

Masked Autoencoders Enable Efficient Knowledge Distillers

This paper studies the potential of distilling knowledge from pre-trained models, especially Masked Autoencoders. Our approach is simple: in addition to optimizing the pixel reconstruction loss on masked inputs, we minimize the distance between the intermediate feature map of the teacher model and that of the student model. This design leads to a computationally efficient knowledge distillation framework, given 1) only a small visible subset of patches is used, and 2) the (cumbersome) teacher model only needs to be partially executed, ie, forward propagate inputs through the first few layers, for obtaining intermediate feature maps. Compared to directly distilling fine-tuned models, distilling pre-trained models substantially improves downstream performance. For example, by distilling the knowledge from an MAE pre-trained ViT-L into a ViT-B, our method achieves 84.0% ImageNet top-1 accuracy, outperforming the baseline of directly distilling a fine-tuned ViT-L by 1.2%. More intriguingly, our method can robustly distill knowledge from teacher models even with extremely high masking ratios: e.g., with 95% masking ratio where merely TEN patches are visible during distillation, our ViT-B competitively attains a top-1 ImageNet accuracy of 83.6%; surprisingly, it can still secure 82.4% top-1 ImageNet accuracy by aggressively training with just FOUR visible patches (98% masking ratio). The code and models are publicly available at https://github.com/UCSC-VLAA/DMAE.

Hybrid Distillation: Connecting Masked Autoencoders with Contrastive Learners

Representation learning has been evolving from traditional supervised training to Contrastive Learning (CL) and Masked Image Modeling (MIM). Previous works have demonstrated their pros and cons in specific scenarios, i.e., CL and supervised pre-training excel at capturing longer-range global patterns and enabling better feature discrimination, while MIM can introduce more local and diverse attention across all transformer layers. In this paper, we explore how to obtain a model that combines their strengths. We start by examining previous feature distillation and mask feature reconstruction methods and identify their limitations. We find that their increasing diversity mainly derives from the asymmetric designs, but these designs may in turn compromise the discrimination ability. In order to better obtain both discrimination and diversity, we propose a simple but effective Hybrid Distillation strategy, which utilizes both the supervised/CL teacher and the MIM teacher to jointly guide the student model. Hybrid Distill imitates the token relations of the MIM teacher to alleviate attention collapse, as well as distills the feature maps of the supervised/CL teacher to enable discrimination. Furthermore, a progressive redundant token masking strategy is also utilized to reduce the distilling costs and avoid falling into local optima. Experiment results prove that Hybrid Distill can achieve superior performance on different benchmarks.

Distilling from Similar Tasks for Transfer Learning on a Budget

We address the challenge of getting efficient yet accurate recognition systems with limited labels. While recognition models improve with model size and amount of data, many specialized applications of computer vision have severe resource constraints both during training and inference. Transfer learning is an effective solution for training with few labels, however often at the expense of a computationally costly fine-tuning of large base models. We propose to mitigate this unpleasant trade-off between compute and accuracy via semi-supervised cross-domain distillation from a set of diverse source models. Initially, we show how to use task similarity metrics to select a single suitable source model to distill from, and that a good selection process is imperative for good downstream performance of a target model. We dub this approach DistillNearest. Though effective, DistillNearest assumes a single source model matches the target task, which is not always the case. To alleviate this, we propose a weighted multi-source distillation method to distill multiple source models trained on different domains weighted by their relevance for the target task into a single efficient model (named DistillWeighted). Our methods need no access to source data, and merely need features and pseudo-labels of the source models. When the goal is accurate recognition under computational constraints, both DistillNearest and DistillWeighted approaches outperform both transfer learning from strong ImageNet initializations as well as state-of-the-art semi-supervised techniques such as FixMatch. Averaged over 8 diverse target tasks our multi-source method outperforms the baselines by 5.6%-points and 4.5%-points, respectively.

Distribution Backtracking Builds A Faster Convergence Trajectory for One-step Diffusion Distillation

Accelerating the sampling speed of diffusion models remains a significant challenge. Recent score distillation methods distill a heavy teacher model into an one-step student generator, which is optimized by calculating the difference between the two score functions on the samples generated by the student model. However, there is a score mismatch issue in the early stage of the distillation process, because existing methods mainly focus on using the endpoint of pre-trained diffusion models as teacher models, overlooking the importance of the convergence trajectory between the student generator and the teacher model. To address this issue, we extend the score distillation process by introducing the entire convergence trajectory of teacher models and propose Distribution Backtracking Distillation (DisBack) for distilling student generators. DisBask is composed of two stages: Degradation Recording and Distribution Backtracking. Degradation Recording is designed to obtain the convergence trajectory of teacher models, which records the degradation path from the trained teacher model to the untrained initial student generator. The degradation path implicitly represents the intermediate distributions of teacher models. Then Distribution Backtracking trains a student generator to backtrack the intermediate distributions for approximating the convergence trajectory of teacher models. Extensive experiments show that DisBack achieves faster and better convergence than the existing distillation method and accomplishes comparable generation performance. Notably, DisBack is easy to implement and can be generalized to existing distillation methods to boost performance. Our code is publicly available on https://github.com/SYZhang0805/DisBack.

Talking Models: Distill Pre-trained Knowledge to Downstream Models via Interactive Communication

Many recent breakthroughs in machine learning have been enabled by the pre-trained foundation models. By scaling up model parameters, training data, and computation resources, foundation models have significantly advanced the state-of-the-art in many applications. However, it is still an open question of how to use these models to perform downstream tasks efficiently. Knowledge distillation (KD) has been explored to tackle this challenge. KD transfers knowledge from a large teacher model to a smaller student model. While KD has been successful in improving student model performance, recent research has discovered that a powerful teacher does not necessarily lead to a powerful student, due to their huge capacity gap. In addition, the potential distribution shifts between the pre-training data and downstream tasks can make knowledge transfer in KD sub-optimal for improving downstream task performance. In this paper, we extend KD with an interactive communication process to help students of downstream tasks learn effectively from pre-trained foundation models. Our design is inspired by the way humans learn from teachers who can explain knowledge in a way that meets the students' needs. Specifically, we let each model (i.e., student and teacher) train two components: (1) an encoder encoding the model's hidden states to a message and (2) a decoder decoding any messages to its own hidden states. With encoder and decoder, not only can the teacher transfer rich information by encoding its hidden states, but also the student can send messages with information of downstream tasks to the teacher. Therefore, knowledge passing from teacher to student can be tailored to the student's capacity and downstream tasks' distributions. We conducted experiments on benchmark datasets to show that our communication mechanism outperforms state-of-the-art distillation techniques.

Sinkhorn Distance Minimization for Knowledge Distillation

Knowledge distillation (KD) has been widely adopted to compress large language models (LLMs). Existing KD methods investigate various divergence measures including the Kullback-Leibler (KL), reverse Kullback-Leibler (RKL), and Jensen-Shannon (JS) divergences. However, due to limitations inherent in their assumptions and definitions, these measures fail to deliver effective supervision when few distribution overlap exists between the teacher and the student. In this paper, we show that the aforementioned KL, RKL, and JS divergences respectively suffer from issues of mode-averaging, mode-collapsing, and mode-underestimation, which deteriorates logits-based KD for diverse NLP tasks. We propose the Sinkhorn Knowledge Distillation (SinKD) that exploits the Sinkhorn distance to ensure a nuanced and precise assessment of the disparity between teacher and student distributions. Besides, profit by properties of the Sinkhorn metric, we can get rid of sample-wise KD that restricts the perception of divergence in each teacher-student sample pair. Instead, we propose a batch-wise reformulation to capture geometric intricacies of distributions across samples in the high-dimensional space. Comprehensive evaluation on GLUE and SuperGLUE, in terms of comparability, validity, and generalizability, highlights our superiority over state-of-the-art methods on all kinds of LLMs with encoder-only, encoder-decoder, and decoder-only architectures.

One Model to Train them All: Hierarchical Self-Distillation for Enhanced Early Layer Embeddings

Deploying language models often requires handling model size vs. performance trade-offs to satisfy downstream latency constraints while preserving the model's usefulness. Model distillation is commonly employed to reduce model size while maintaining acceptable performance. However, distillation can be inefficient since it involves multiple training steps. In this work, we introduce MODULARSTARENCODER, a modular multi-exit encoder with 1B parameters, useful for multiple tasks within the scope of code retrieval. MODULARSTARENCODER is trained with a novel self-distillation mechanism that significantly improves lower-layer representations-allowing different portions of the model to be used while still maintaining a good trade-off in terms of performance. Our architecture focuses on enhancing text-to-code and code-to-code search by systematically capturing syntactic and semantic structures across multiple levels of representation. Specific encoder layers are targeted as exit heads, allowing higher layers to guide earlier layers during training. This self-distillation effect improves intermediate representations, increasing retrieval recall at no extra training cost. In addition to the multi-exit scheme, our approach integrates a repository-level contextual loss that maximally utilizes the training context window, further enhancing the learned representations. We also release a new dataset constructed via code translation, seamlessly expanding traditional text-to-code benchmarks with code-to-code pairs across diverse programming languages. Experimental results highlight the benefits of self-distillation through multi-exit supervision.

Distribution Shift Matters for Knowledge Distillation with Webly Collected Images

Knowledge distillation aims to learn a lightweight student network from a pre-trained teacher network. In practice, existing knowledge distillation methods are usually infeasible when the original training data is unavailable due to some privacy issues and data management considerations. Therefore, data-free knowledge distillation approaches proposed to collect training instances from the Internet. However, most of them have ignored the common distribution shift between the instances from original training data and webly collected data, affecting the reliability of the trained student network. To solve this problem, we propose a novel method dubbed ``Knowledge Distillation between Different Distributions" (KD^{3}), which consists of three components. Specifically, we first dynamically select useful training instances from the webly collected data according to the combined predictions of teacher network and student network. Subsequently, we align both the weighted features and classifier parameters of the two networks for knowledge memorization. Meanwhile, we also build a new contrastive learning block called MixDistribution to generate perturbed data with a new distribution for instance alignment, so that the student network can further learn a distribution-invariant representation. Intensive experiments on various benchmark datasets demonstrate that our proposed KD^{3} can outperform the state-of-the-art data-free knowledge distillation approaches.

Model compression via distillation and quantization

Deep neural networks (DNNs) continue to make significant advances, solving tasks from image classification to translation or reinforcement learning. One aspect of the field receiving considerable attention is efficiently executing deep models in resource-constrained environments, such as mobile or embedded devices. This paper focuses on this problem, and proposes two new compression methods, which jointly leverage weight quantization and distillation of larger teacher networks into smaller student networks. The first method we propose is called quantized distillation and leverages distillation during the training process, by incorporating distillation loss, expressed with respect to the teacher, into the training of a student network whose weights are quantized to a limited set of levels. The second method, differentiable quantization, optimizes the location of quantization points through stochastic gradient descent, to better fit the behavior of the teacher model. We validate both methods through experiments on convolutional and recurrent architectures. We show that quantized shallow students can reach similar accuracy levels to full-precision teacher models, while providing order of magnitude compression, and inference speedup that is linear in the depth reduction. In sum, our results enable DNNs for resource-constrained environments to leverage architecture and accuracy advances developed on more powerful devices.

Towards Lossless Dataset Distillation via Difficulty-Aligned Trajectory Matching

The ultimate goal of Dataset Distillation is to synthesize a small synthetic dataset such that a model trained on this synthetic set will perform equally well as a model trained on the full, real dataset. Until now, no method of Dataset Distillation has reached this completely lossless goal, in part due to the fact that previous methods only remain effective when the total number of synthetic samples is extremely small. Since only so much information can be contained in such a small number of samples, it seems that to achieve truly loss dataset distillation, we must develop a distillation method that remains effective as the size of the synthetic dataset grows. In this work, we present such an algorithm and elucidate why existing methods fail to generate larger, high-quality synthetic sets. Current state-of-the-art methods rely on trajectory-matching, or optimizing the synthetic data to induce similar long-term training dynamics as the real data. We empirically find that the training stage of the trajectories we choose to match (i.e., early or late) greatly affects the effectiveness of the distilled dataset. Specifically, early trajectories (where the teacher network learns easy patterns) work well for a low-cardinality synthetic set since there are fewer examples wherein to distribute the necessary information. Conversely, late trajectories (where the teacher network learns hard patterns) provide better signals for larger synthetic sets since there are now enough samples to represent the necessary complex patterns. Based on our findings, we propose to align the difficulty of the generated patterns with the size of the synthetic dataset. In doing so, we successfully scale trajectory matching-based methods to larger synthetic datasets, achieving lossless dataset distillation for the very first time. Code and distilled datasets are available at https://gzyaftermath.github.io/DATM.

Retrieval-based Disentangled Representation Learning with Natural Language Supervision

Disentangled representation learning remains challenging as the underlying factors of variation in the data do not naturally exist. The inherent complexity of real-world data makes it unfeasible to exhaustively enumerate and encapsulate all its variations within a finite set of factors. However, it is worth noting that most real-world data have linguistic equivalents, typically in the form of textual descriptions. These linguistic counterparts can represent the data and effortlessly decomposed into distinct tokens. In light of this, we present Vocabulary Disentangled Retrieval (VDR), a retrieval-based framework that harnesses natural language as proxies of the underlying data variation to drive disentangled representation learning. Our approach employ a bi-encoder model to represent both data and natural language in a vocabulary space, enabling the model to distinguish dimensions that capture intrinsic characteristics within data through its natural language counterpart, thus facilitating disentanglement. We extensively assess the performance of VDR across 15 retrieval benchmark datasets, covering text-to-text and cross-modal retrieval scenarios, as well as human evaluation. Our experimental results compellingly demonstrate the superiority of VDR over previous bi-encoder retrievers with comparable model size and training costs, achieving an impressive 8.7% improvement in NDCG@10 on the BEIR benchmark, a 5.3% increase on MS COCO, and a 6.0% increase on Flickr30k in terms of mean recall in the zero-shot setting. Moreover, The results from human evaluation indicate that interpretability of our method is on par with SOTA captioning models.

MEND: Meta dEmonstratioN Distillation for Efficient and Effective In-Context Learning

Large Language models (LLMs) have demonstrated impressive in-context learning (ICL) capabilities, where a LLM makes predictions for a given test input together with a few input-output pairs (demonstrations). Nevertheless, the inclusion of demonstrations leads to a quadratic increase in the computational overhead of the self-attention mechanism. Existing solutions attempt to distill lengthy demonstrations into compact vectors. However, they often require task-specific retraining or compromise LLM's in-context learning performance. To mitigate these challenges, we present Meta dEmonstratioN Distillation (MEND), where a language model learns to distill any lengthy demonstrations into vectors without retraining for a new downstream task. We exploit the knowledge distillation to enhance alignment between MEND and LLM, achieving both efficiency and effectiveness simultaneously. MEND is endowed with the meta-knowledge of distilling demonstrations through a two-stage training process, which includes meta-distillation pretraining and fine-tuning. Comprehensive evaluations across seven diverse ICL task partitions using decoder-only (GPT-2) and encoder-decoder (T5) attest to MEND's prowess. It not only matches but often outperforms the Vanilla ICL as well as other state-of-the-art distillation models, while significantly reducing the computational demands. This innovation promises enhanced scalability and efficiency for the practical deployment of large language models

Mirage: Model-Agnostic Graph Distillation for Graph Classification

GNNs, like other deep learning models, are data and computation hungry. There is a pressing need to scale training of GNNs on large datasets to enable their usage on low-resource environments. Graph distillation is an effort in that direction with the aim to construct a smaller synthetic training set from the original training data without significantly compromising model performance. While initial efforts are promising, this work is motivated by two key observations: (1) Existing graph distillation algorithms themselves rely on training with the full dataset, which undermines the very premise of graph distillation. (2) The distillation process is specific to the target GNN architecture and hyper-parameters and thus not robust to changes in the modeling pipeline. We circumvent these limitations by designing a distillation algorithm called Mirage for graph classification. Mirage is built on the insight that a message-passing GNN decomposes the input graph into a multiset of computation trees. Furthermore, the frequency distribution of computation trees is often skewed in nature, enabling us to condense this data into a concise distilled summary. By compressing the computation data itself, as opposed to emulating gradient flows on the original training set-a prevalent approach to date-Mirage transforms into an unsupervised and architecture-agnostic distillation algorithm. Extensive benchmarking on real-world datasets underscores Mirage's superiority, showcasing enhanced generalization accuracy, data compression, and distillation efficiency when compared to state-of-the-art baselines.

Improved Distribution Matching Distillation for Fast Image Synthesis

Recent approaches have shown promises distilling diffusion models into efficient one-step generators. Among them, Distribution Matching Distillation (DMD) produces one-step generators that match their teacher in distribution, without enforcing a one-to-one correspondence with the sampling trajectories of their teachers. However, to ensure stable training, DMD requires an additional regression loss computed using a large set of noise-image pairs generated by the teacher with many steps of a deterministic sampler. This is costly for large-scale text-to-image synthesis and limits the student's quality, tying it too closely to the teacher's original sampling paths. We introduce DMD2, a set of techniques that lift this limitation and improve DMD training. First, we eliminate the regression loss and the need for expensive dataset construction. We show that the resulting instability is due to the fake critic not estimating the distribution of generated samples accurately and propose a two time-scale update rule as a remedy. Second, we integrate a GAN loss into the distillation procedure, discriminating between generated samples and real images. This lets us train the student model on real data, mitigating the imperfect real score estimation from the teacher model, and enhancing quality. Lastly, we modify the training procedure to enable multi-step sampling. We identify and address the training-inference input mismatch problem in this setting, by simulating inference-time generator samples during training time. Taken together, our improvements set new benchmarks in one-step image generation, with FID scores of 1.28 on ImageNet-64x64 and 8.35 on zero-shot COCO 2014, surpassing the original teacher despite a 500X reduction in inference cost. Further, we show our approach can generate megapixel images by distilling SDXL, demonstrating exceptional visual quality among few-step methods.

Swing Distillation: A Privacy-Preserving Knowledge Distillation Framework

Knowledge distillation (KD) has been widely used for model compression and knowledge transfer. Typically, a big teacher model trained on sufficient data transfers knowledge to a small student model. However, despite the success of KD, little effort has been made to study whether KD leaks the training data of the teacher model. In this paper, we experimentally reveal that KD suffers from the risk of privacy leakage. To alleviate this issue, we propose a novel knowledge distillation method, swing distillation, which can effectively protect the private information of the teacher model from flowing to the student model. In our framework, the temperature coefficient is dynamically and adaptively adjusted according to the degree of private information contained in the data, rather than a predefined constant hyperparameter. It assigns different temperatures to tokens according to the likelihood that a token in a position contains private information. In addition, we inject noise into soft targets provided to the student model, in order to avoid unshielded knowledge transfer. Experiments on multiple datasets and tasks demonstrate that the proposed swing distillation can significantly reduce (by over 80% in terms of canary exposure) the risk of privacy leakage in comparison to KD with competitive or better performance. Furthermore, swing distillation is robust against the increasing privacy budget.

Distiller: A Systematic Study of Model Distillation Methods in Natural Language Processing

We aim to identify how different components in the KD pipeline affect the resulting performance and how much the optimal KD pipeline varies across different datasets/tasks, such as the data augmentation policy, the loss function, and the intermediate representation for transferring the knowledge between teacher and student. To tease apart their effects, we propose Distiller, a meta KD framework that systematically combines a broad range of techniques across different stages of the KD pipeline, which enables us to quantify each component's contribution. Within Distiller, we unify commonly used objectives for distillation of intermediate representations under a universal mutual information (MI) objective and propose a class of MI-alpha objective functions with better bias/variance trade-off for estimating the MI between the teacher and the student. On a diverse set of NLP datasets, the best Distiller configurations are identified via large-scale hyperparameter optimization. Our experiments reveal the following: 1) the approach used to distill the intermediate representations is the most important factor in KD performance, 2) among different objectives for intermediate distillation, MI-alpha performs the best, and 3) data augmentation provides a large boost for small training datasets or small student networks. Moreover, we find that different datasets/tasks prefer different KD algorithms, and thus propose a simple AutoDistiller algorithm that can recommend a good KD pipeline for a new dataset.

Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve Backbones

Recently, research efforts have been concentrated on revealing how pre-trained model makes a difference in neural network performance. Self-supervision and semi-supervised learning technologies have been extensively explored by the community and are proven to be of great potential in obtaining a powerful pre-trained model. However, these models require huge training costs (i.e., hundreds of millions of images or training iterations). In this paper, we propose to improve existing baseline networks via knowledge distillation from off-the-shelf pre-trained big powerful models. Different from existing knowledge distillation frameworks which require student model to be consistent with both soft-label generated by teacher model and hard-label annotated by humans, our solution performs distillation by only driving prediction of the student model consistent with that of the teacher model. Therefore, our distillation setting can get rid of manually labeled data and can be trained with extra unlabeled data to fully exploit capability of teacher model for better learning. We empirically find that such simple distillation settings perform extremely effective, for example, the top-1 accuracy on ImageNet-1k validation set of MobileNetV3-large and ResNet50-D can be significantly improved from 75.2% to 79% and 79.1% to 83%, respectively. We have also thoroughly analyzed what are dominant factors that affect the distillation performance and how they make a difference. Extensive downstream computer vision tasks, including transfer learning, object detection and semantic segmentation, can significantly benefit from the distilled pretrained models. All our experiments are implemented based on PaddlePaddle, codes and a series of improved pretrained models with ssld suffix are available in PaddleClas.

Learning Disentangled Representations for Time Series

Time-series representation learning is a fundamental task for time-series analysis. While significant progress has been made to achieve accurate representations for downstream applications, the learned representations often lack interpretability and do not expose semantic meanings. Different from previous efforts on the entangled feature space, we aim to extract the semantic-rich temporal correlations in the latent interpretable factorized representation of the data. Motivated by the success of disentangled representation learning in computer vision, we study the possibility of learning semantic-rich time-series representations, which remains unexplored due to three main challenges: 1) sequential data structure introduces complex temporal correlations and makes the latent representations hard to interpret, 2) sequential models suffer from KL vanishing problem, and 3) interpretable semantic concepts for time-series often rely on multiple factors instead of individuals. To bridge the gap, we propose Disentangle Time Series (DTS), a novel disentanglement enhancement framework for sequential data. Specifically, to generate hierarchical semantic concepts as the interpretable and disentangled representation of time-series, DTS introduces multi-level disentanglement strategies by covering both individual latent factors and group semantic segments. We further theoretically show how to alleviate the KL vanishing problem: DTS introduces a mutual information maximization term, while preserving a heavier penalty on the total correlation and the dimension-wise KL to keep the disentanglement property. Experimental results on various real-world benchmark datasets demonstrate that the representations learned by DTS achieve superior performance in downstream applications, with high interpretability of semantic concepts.

Self-Supervised Dataset Distillation for Transfer Learning

Dataset distillation methods have achieved remarkable success in distilling a large dataset into a small set of representative samples. However, they are not designed to produce a distilled dataset that can be effectively used for facilitating self-supervised pre-training. To this end, we propose a novel problem of distilling an unlabeled dataset into a set of small synthetic samples for efficient self-supervised learning (SSL). We first prove that a gradient of synthetic samples with respect to a SSL objective in naive bilevel optimization is biased due to the randomness originating from data augmentations or masking. To address this issue, we propose to minimize the mean squared error (MSE) between a model's representations of the synthetic examples and their corresponding learnable target feature representations for the inner objective, which does not introduce any randomness. Our primary motivation is that the model obtained by the proposed inner optimization can mimic the self-supervised target model. To achieve this, we also introduce the MSE between representations of the inner model and the self-supervised target model on the original full dataset for outer optimization. Lastly, assuming that a feature extractor is fixed, we only optimize a linear head on top of the feature extractor, which allows us to reduce the computational cost and obtain a closed-form solution of the head with kernel ridge regression. We empirically validate the effectiveness of our method on various applications involving transfer learning.

Distilling the Knowledge in Data Pruning

With the increasing size of datasets used for training neural networks, data pruning becomes an attractive field of research. However, most current data pruning algorithms are limited in their ability to preserve accuracy compared to models trained on the full data, especially in high pruning regimes. In this paper we explore the application of data pruning while incorporating knowledge distillation (KD) when training on a pruned subset. That is, rather than relying solely on ground-truth labels, we also use the soft predictions from a teacher network pre-trained on the complete data. By integrating KD into training, we demonstrate significant improvement across datasets, pruning methods, and on all pruning fractions. We first establish a theoretical motivation for employing self-distillation to improve training on pruned data. Then, we empirically make a compelling and highly practical observation: using KD, simple random pruning is comparable or superior to sophisticated pruning methods across all pruning regimes. On ImageNet for example, we achieve superior accuracy despite training on a random subset of only 50% of the data. Additionally, we demonstrate a crucial connection between the pruning factor and the optimal knowledge distillation weight. This helps mitigate the impact of samples with noisy labels and low-quality images retained by typical pruning algorithms. Finally, we make an intriguing observation: when using lower pruning fractions, larger teachers lead to accuracy degradation, while surprisingly, employing teachers with a smaller capacity than the student's may improve results. Our code will be made available.

SwiftBrush: One-Step Text-to-Image Diffusion Model with Variational Score Distillation

Despite their ability to generate high-resolution and diverse images from text prompts, text-to-image diffusion models often suffer from slow iterative sampling processes. Model distillation is one of the most effective directions to accelerate these models. However, previous distillation methods fail to retain the generation quality while requiring a significant amount of images for training, either from real data or synthetically generated by the teacher model. In response to this limitation, we present a novel image-free distillation scheme named SwiftBrush. Drawing inspiration from text-to-3D synthesis, in which a 3D neural radiance field that aligns with the input prompt can be obtained from a 2D text-to-image diffusion prior via a specialized loss without the use of any 3D data ground-truth, our approach re-purposes that same loss for distilling a pretrained multi-step text-to-image model to a student network that can generate high-fidelity images with just a single inference step. In spite of its simplicity, our model stands as one of the first one-step text-to-image generators that can produce images of comparable quality to Stable Diffusion without reliance on any training image data. Remarkably, SwiftBrush achieves an FID score of 16.67 and a CLIP score of 0.29 on the COCO-30K benchmark, achieving competitive results or even substantially surpassing existing state-of-the-art distillation techniques.

BOOT: Data-free Distillation of Denoising Diffusion Models with Bootstrapping

Diffusion models have demonstrated excellent potential for generating diverse images. However, their performance often suffers from slow generation due to iterative denoising. Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few without significant quality degradation. However, existing distillation methods either require significant amounts of offline computation for generating synthetic training data from the teacher model or need to perform expensive online learning with the help of real data. In this work, we present a novel technique called BOOT, that overcomes these limitations with an efficient data-free distillation algorithm. The core idea is to learn a time-conditioned model that predicts the output of a pre-trained diffusion model teacher given any time step. Such a model can be efficiently trained based on bootstrapping from two consecutive sampled steps. Furthermore, our method can be easily adapted to large-scale text-to-image diffusion models, which are challenging for conventional methods given the fact that the training sets are often large and difficult to access. We demonstrate the effectiveness of our approach on several benchmark datasets in the DDIM setting, achieving comparable generation quality while being orders of magnitude faster than the diffusion teacher. The text-to-image results show that the proposed approach is able to handle highly complex distributions, shedding light on more efficient generative modeling.

DisWOT: Student Architecture Search for Distillation WithOut Training

Knowledge distillation (KD) is an effective training strategy to improve the lightweight student models under the guidance of cumbersome teachers. However, the large architecture difference across the teacher-student pairs limits the distillation gains. In contrast to previous adaptive distillation methods to reduce the teacher-student gap, we explore a novel training-free framework to search for the best student architectures for a given teacher. Our work first empirically show that the optimal model under vanilla training cannot be the winner in distillation. Secondly, we find that the similarity of feature semantics and sample relations between random-initialized teacher-student networks have good correlations with final distillation performances. Thus, we efficiently measure similarity matrixs conditioned on the semantic activation maps to select the optimal student via an evolutionary algorithm without any training. In this way, our student architecture search for Distillation WithOut Training (DisWOT) significantly improves the performance of the model in the distillation stage with at least 180times training acceleration. Additionally, we extend similarity metrics in DisWOT as new distillers and KD-based zero-proxies. Our experiments on CIFAR, ImageNet and NAS-Bench-201 demonstrate that our technique achieves state-of-the-art results on different search spaces. Our project and code are available at https://lilujunai.github.io/DisWOT-CVPR2023/.

AutoDistil: Few-shot Task-agnostic Neural Architecture Search for Distilling Large Language Models

Knowledge distillation (KD) methods compress large models into smaller students with manually-designed student architectures given pre-specified computational cost. This requires several trials to find a viable student, and further repeating the process for each student or computational budget change. We use Neural Architecture Search (NAS) to automatically distill several compressed students with variable cost from a large model. Current works train a single SuperLM consisting of millions of subnetworks with weight-sharing, resulting in interference between subnetworks of different sizes. Our framework AutoDistil addresses above challenges with the following steps: (a) Incorporates inductive bias and heuristics to partition Transformer search space into K compact sub-spaces (K=3 for typical student sizes of base, small and tiny); (b) Trains one SuperLM for each sub-space using task-agnostic objective (e.g., self-attention distillation) with weight-sharing of students; (c) Lightweight search for the optimal student without re-training. Fully task-agnostic training and search allow students to be reused for fine-tuning on any downstream task. Experiments on GLUE benchmark against state-of-the-art KD and NAS methods demonstrate AutoDistil to outperform leading compression techniques with upto 2.7x reduction in computational cost and negligible loss in task performance.

Multi-student Diffusion Distillation for Better One-step Generators

Diffusion models achieve high-quality sample generation at the cost of a lengthy multistep inference procedure. To overcome this, diffusion distillation techniques produce student generators capable of matching or surpassing the teacher in a single step. However, the student model's inference speed is limited by the size of the teacher architecture, preventing real-time generation for computationally heavy applications. In this work, we introduce Multi-Student Distillation (MSD), a framework to distill a conditional teacher diffusion model into multiple single-step generators. Each student generator is responsible for a subset of the conditioning data, thereby obtaining higher generation quality for the same capacity. MSD trains multiple distilled students, allowing smaller sizes and, therefore, faster inference. Also, MSD offers a lightweight quality boost over single-student distillation with the same architecture. We demonstrate MSD is effective by training multiple same-sized or smaller students on single-step distillation using distribution matching and adversarial distillation techniques. With smaller students, MSD gets competitive results with faster inference for single-step generation. Using 4 same-sized students, MSD significantly outperforms single-student baseline counterparts and achieves remarkable FID scores for one-step image generation: 1.20 on ImageNet-64x64 and 8.20 on zero-shot COCO2014.

Generating Synthetic Fair Syntax-agnostic Data by Learning and Distilling Fair Representation

Data Fairness is a crucial topic due to the recent wide usage of AI powered applications. Most of the real-world data is filled with human or machine biases and when those data are being used to train AI models, there is a chance that the model will reflect the bias in the training data. Existing bias-mitigating generative methods based on GANs, Diffusion models need in-processing fairness objectives and fail to consider computational overhead while choosing computationally-heavy architectures, which may lead to high computational demands, instability and poor optimization performance. To mitigate this issue, in this work, we present a fair data generation technique based on knowledge distillation, where we use a small architecture to distill the fair representation in the latent space. The idea of fair latent space distillation enables more flexible and stable training of Fair Generative Models (FGMs). We first learn a syntax-agnostic (for any data type) fair representation of the data, followed by distillation in the latent space into a smaller model. After distillation, we use the distilled fair latent space to generate high-fidelity fair synthetic data. While distilling, we employ quality loss (for fair distillation) and utility loss (for data utility) to ensure that the fairness and data utility characteristics remain in the distilled latent space. Our approaches show a 5%, 5% and 10% rise in performance in fairness, synthetic sample quality and data utility, respectively, than the state-of-the-art fair generative model.

Efficient Dataset Distillation through Alignment with Smooth and High-Quality Expert Trajectories

Training a large and state-of-the-art machine learning model typically necessitates the use of large-scale datasets, which, in turn, makes the training and parameter-tuning process expensive and time-consuming. Some researchers opt to distil information from real-world datasets into tiny and compact synthetic datasets while maintaining their ability to train a well-performing model, hence proposing a data-efficient method known as Dataset Distillation (DD). Despite recent progress in this field, existing methods still underperform and cannot effectively replace large datasets. In this paper, unlike previous methods that focus solely on improving the efficacy of student distillation, we are the first to recognize the important interplay between expert and student. We argue the significant impact of expert smoothness when employing more potent expert trajectories in subsequent dataset distillation. Based on this, we introduce the integration of clipping loss and gradient penalty to regulate the rate of parameter changes in expert trajectories. Furthermore, in response to the sensitivity exhibited towards randomly initialized variables during distillation, we propose representative initialization for synthetic dataset and balanced inner-loop loss. Finally, we present two enhancement strategies, namely intermediate matching loss and weight perturbation, to mitigate the potential occurrence of cumulative errors. We conduct extensive experiments on datasets of different scales, sizes, and resolutions. The results demonstrate that the proposed method significantly outperforms prior methods.

DataDAM: Efficient Dataset Distillation with Attention Matching

Researchers have long tried to minimize training costs in deep learning while maintaining strong generalization across diverse datasets. Emerging research on dataset distillation aims to reduce training costs by creating a small synthetic set that contains the information of a larger real dataset and ultimately achieves test accuracy equivalent to a model trained on the whole dataset. Unfortunately, the synthetic data generated by previous methods are not guaranteed to distribute and discriminate as well as the original training data, and they incur significant computational costs. Despite promising results, there still exists a significant performance gap between models trained on condensed synthetic sets and those trained on the whole dataset. In this paper, we address these challenges using efficient Dataset Distillation with Attention Matching (DataDAM), achieving state-of-the-art performance while reducing training costs. Specifically, we learn synthetic images by matching the spatial attention maps of real and synthetic data generated by different layers within a family of randomly initialized neural networks. Our method outperforms the prior methods on several datasets, including CIFAR10/100, TinyImageNet, ImageNet-1K, and subsets of ImageNet-1K across most of the settings, and achieves improvements of up to 6.5% and 4.1% on CIFAR100 and ImageNet-1K, respectively. We also show that our high-quality distilled images have practical benefits for downstream applications, such as continual learning and neural architecture search.

Even your Teacher Needs Guidance: Ground-Truth Targets Dampen Regularization Imposed by Self-Distillation

Knowledge distillation is classically a procedure where a neural network is trained on the output of another network along with the original targets in order to transfer knowledge between the architectures. The special case of self-distillation, where the network architectures are identical, has been observed to improve generalization accuracy. In this paper, we consider an iterative variant of self-distillation in a kernel regression setting, in which successive steps incorporate both model outputs and the ground-truth targets. This allows us to provide the first theoretical results on the importance of using the weighted ground-truth targets in self-distillation. Our focus is on fitting nonlinear functions to training data with a weighted mean square error objective function suitable for distillation, subject to ell_2 regularization of the model parameters. We show that any such function obtained with self-distillation can be calculated directly as a function of the initial fit, and that infinite distillation steps yields the same optimization problem as the original with amplified regularization. Furthermore, we provide a closed form solution for the optimal choice of weighting parameter at each step, and show how to efficiently estimate this weighting parameter for deep learning and significantly reduce the computational requirements compared to a grid search.

Multi-Granularity Semantic Revision for Large Language Model Distillation

Knowledge distillation plays a key role in compressing the Large Language Models (LLMs), which boosts a small-size student model under large teacher models' guidance. However, existing LLM distillation methods overly rely on student-generated outputs, which may introduce generation errors and misguide the distillation process. Moreover, the distillation loss functions introduced in previous art struggle to align the most informative part due to the complex distribution of LLMs' outputs. To address these problems, we propose a multi-granularity semantic revision method for LLM distillation. At the sequence level, we propose a sequence correction and re-generation (SCRG) strategy. SCRG first calculates the semantic cognitive difference between the teacher and student to detect the error token, then corrects it with the teacher-generated one, and re-generates the sequence to reduce generation errors and enhance generation diversity. At the token level, we design a distribution adaptive clipping Kullback-Leibler (DAC-KL) loss as the distillation objective function. DAC-KL loss exploits a learnable sub-network to adaptively extract semantically dense areas from the teacher's output, avoiding the interference of redundant information in the distillation process. Finally, at the span level, we leverage the span priors of a sequence to compute the probability correlations within spans, and constrain the teacher and student's probability correlations to be consistent, further enhancing the transfer of semantic information. Extensive experiments across different model families with parameters ranging from 0.1B to 13B demonstrate the superiority of our method compared to existing methods.

DDDM-VC: Decoupled Denoising Diffusion Models with Disentangled Representation and Prior Mixup for Verified Robust Voice Conversion

Diffusion-based generative models have exhibited powerful generative performance in recent years. However, as many attributes exist in the data distribution and owing to several limitations of sharing the model parameters across all levels of the generation process, it remains challenging to control specific styles for each attribute. To address the above problem, this paper presents decoupled denoising diffusion models (DDDMs) with disentangled representations, which can control the style for each attribute in generative models. We apply DDDMs to voice conversion (VC) tasks to address the challenges of disentangling and controlling each speech attribute (e.g., linguistic information, intonation, and timbre). First, we use a self-supervised representation to disentangle the speech representation. Subsequently, the DDDMs are applied to resynthesize the speech from the disentangled representations for denoising with respect to each attribute. Moreover, we also propose the prior mixup for robust voice style transfer, which uses the converted representation of the mixed style as a prior distribution for the diffusion models. The experimental results reveal that our method outperforms publicly available VC models. Furthermore, we show that our method provides robust generative performance regardless of the model size. Audio samples are available https://hayeong0.github.io/DDDM-VC-demo/.

AttenCraft: Attention-guided Disentanglement of Multiple Concepts for Text-to-Image Customization

With the unprecedented performance being achieved by text-to-image (T2I) diffusion models, T2I customization further empowers users to tailor the diffusion model to new concepts absent in the pre-training dataset, termed subject-driven generation. Moreover, extracting several new concepts from a single image enables the model to learn multiple concepts, and simultaneously decreases the difficulties of training data preparation, urging the disentanglement of multiple concepts to be a new challenge. However, existing models for disentanglement commonly require pre-determined masks or retain background elements. To this end, we propose an attention-guided method, AttenCraft, for multiple concept disentanglement. In particular, our method leverages self-attention and cross-attention maps to create accurate masks for each concept within a single initialization step, omitting any required mask preparation by humans or other models. The created masks are then applied to guide the cross-attention activation of each target concept during training and achieve concept disentanglement. Additionally, we introduce Uniform sampling and Reweighted sampling schemes to alleviate the non-synchronicity of feature acquisition from different concepts, and improve generation quality. Our method outperforms baseline models in terms of image-alignment, and behaves comparably on text-alignment. Finally, we showcase the applicability of AttenCraft to more complicated settings, such as an input image containing three concepts. The project is available at https://github.com/junjie-shentu/AttenCraft.

DM-Codec: Distilling Multimodal Representations for Speech Tokenization

Recent advancements in speech-language models have yielded significant improvements in speech tokenization and synthesis. However, effectively mapping the complex, multidimensional attributes of speech into discrete tokens remains challenging. This process demands acoustic, semantic, and contextual information for precise speech representations. Existing speech representations generally fall into two categories: acoustic tokens from audio codecs and semantic tokens from speech self-supervised learning models. Although recent efforts have unified acoustic and semantic tokens for improved performance, they overlook the crucial role of contextual representation in comprehensive speech modeling. Our empirical investigations reveal that the absence of contextual representations results in elevated Word Error Rate (WER) and Word Information Lost (WIL) scores in speech transcriptions. To address these limitations, we propose two novel distillation approaches: (1) a language model (LM)-guided distillation method that incorporates contextual information, and (2) a combined LM and self-supervised speech model (SM)-guided distillation technique that effectively distills multimodal representations (acoustic, semantic, and contextual) into a comprehensive speech tokenizer, termed DM-Codec. The DM-Codec architecture adopts a streamlined encoder-decoder framework with a Residual Vector Quantizer (RVQ) and incorporates the LM and SM during the training process. Experiments show DM-Codec significantly outperforms state-of-the-art speech tokenization models, reducing WER by up to 13.46%, WIL by 9.82%, and improving speech quality by 5.84% and intelligibility by 1.85% on the LibriSpeech benchmark dataset. The code, samples, and model checkpoints are available at https://github.com/mubtasimahasan/DM-Codec.

LinFusion: 1 GPU, 1 Minute, 16K Image

Modern diffusion models, particularly those utilizing a Transformer-based UNet for denoising, rely heavily on self-attention operations to manage complex spatial relationships, thus achieving impressive generation performance. However, this existing paradigm faces significant challenges in generating high-resolution visual content due to its quadratic time and memory complexity with respect to the number of spatial tokens. To address this limitation, we aim at a novel linear attention mechanism as an alternative in this paper. Specifically, we begin our exploration from recently introduced models with linear complexity, e.g., Mamba, Mamba2, and Gated Linear Attention, and identify two key features-attention normalization and non-causal inference-that enhance high-resolution visual generation performance. Building on these insights, we introduce a generalized linear attention paradigm, which serves as a low-rank approximation of a wide spectrum of popular linear token mixers. To save the training cost and better leverage pre-trained models, we initialize our models and distill the knowledge from pre-trained StableDiffusion (SD). We find that the distilled model, termed LinFusion, achieves performance on par with or superior to the original SD after only modest training, while significantly reducing time and memory complexity. Extensive experiments on SD-v1.5, SD-v2.1, and SD-XL demonstrate that LinFusion delivers satisfactory zero-shot cross-resolution generation performance, generating high-resolution images like 16K resolution. Moreover, it is highly compatible with pre-trained SD components, such as ControlNet and IP-Adapter, requiring no adaptation efforts. Codes are available at https://github.com/Huage001/LinFusion.

Minimizing the Accumulated Trajectory Error to Improve Dataset Distillation

Model-based deep learning has achieved astounding successes due in part to the availability of large-scale real-world data. However, processing such massive amounts of data comes at a considerable cost in terms of computations, storage, training and the search for good neural architectures. Dataset distillation has thus recently come to the fore. This paradigm involves distilling information from large real-world datasets into tiny and compact synthetic datasets such that processing the latter ideally yields similar performances as the former. State-of-the-art methods primarily rely on learning the synthetic dataset by matching the gradients obtained during training between the real and synthetic data. However, these gradient-matching methods suffer from the so-called accumulated trajectory error caused by the discrepancy between the distillation and subsequent evaluation. To mitigate the adverse impact of this accumulated trajectory error, we propose a novel approach that encourages the optimization algorithm to seek a flat trajectory. We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory. Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7% on a subset of images of the ImageNet dataset with higher resolution images. We also validate the effectiveness and generalizability of our method with datasets of different resolutions and demonstrate its applicability to neural architecture search. Code is available at https://github.com/AngusDujw/FTD-distillation.

ERNIE-Tiny : A Progressive Distillation Framework for Pretrained Transformer Compression

Pretrained language models (PLMs) such as BERT adopt a training paradigm which first pretrain the model in general data and then finetune the model on task-specific data, and have recently achieved great success. However, PLMs are notorious for their enormous parameters and hard to be deployed on real-life applications. Knowledge distillation has been prevailing to address this problem by transferring knowledge from a large teacher to a much smaller student over a set of data. We argue that the selection of thee three key components, namely teacher, training data, and learning objective, is crucial to the effectiveness of distillation. We, therefore, propose a four-stage progressive distillation framework ERNIE-Tiny to compress PLM, which varies the three components gradually from general level to task-specific level. Specifically, the first stage, General Distillation, performs distillation with guidance from pretrained teacher, gerenal data and latent distillation loss. Then, General-Enhanced Distillation changes teacher model from pretrained teacher to finetuned teacher. After that, Task-Adaptive Distillation shifts training data from general data to task-specific data. In the end, Task-Specific Distillation, adds two additional losses, namely Soft-Label and Hard-Label loss onto the last stage. Empirical results demonstrate the effectiveness of our framework and generalization gain brought by ERNIE-Tiny.In particular, experiments show that a 4-layer ERNIE-Tiny maintains over 98.0%performance of its 12-layer teacher BERT base on GLUE benchmark, surpassing state-of-the-art (SOTA) by 1.0% GLUE score with the same amount of parameters. Moreover, ERNIE-Tiny achieves a new compression SOTA on five Chinese NLP tasks, outperforming BERT base by 0.4% accuracy with 7.5x fewer parameters and9.4x faster inference speed.

Knowledge Distillation via Token-level Relationship Graph

Knowledge distillation is a powerful technique for transferring knowledge from a pre-trained teacher model to a student model. However, the true potential of knowledge transfer has not been fully explored. Existing approaches primarily focus on distilling individual information or instance-level relationships, overlooking the valuable information embedded in token-level relationships, which may be particularly affected by the long-tail effects. To address the above limitations, we propose a novel method called Knowledge Distillation with Token-level Relationship Graph (TRG) that leverages the token-wise relational knowledge to enhance the performance of knowledge distillation. By employing TRG, the student model can effectively emulate higher-level semantic information from the teacher model, resulting in improved distillation results. To further enhance the learning process, we introduce a token-wise contextual loss called contextual loss, which encourages the student model to capture the inner-instance semantic contextual of the teacher model. We conduct experiments to evaluate the effectiveness of the proposed method against several state-of-the-art approaches. Empirical results demonstrate the superiority of TRG across various visual classification tasks, including those involving imbalanced data. Our method consistently outperforms the existing baselines, establishing a new state-of-the-art performance in the field of knowledge distillation.

Understanding the Role of Mixup in Knowledge Distillation: An Empirical Study

Mixup is a popular data augmentation technique based on creating new samples by linear interpolation between two given data samples, to improve both the generalization and robustness of the trained model. Knowledge distillation (KD), on the other hand, is widely used for model compression and transfer learning, which involves using a larger network's implicit knowledge to guide the learning of a smaller network. At first glance, these two techniques seem very different, however, we found that "smoothness" is the connecting link between the two and is also a crucial attribute in understanding KD's interplay with mixup. Although many mixup variants and distillation methods have been proposed, much remains to be understood regarding the role of a mixup in knowledge distillation. In this paper, we present a detailed empirical study on various important dimensions of compatibility between mixup and knowledge distillation. We also scrutinize the behavior of the networks trained with a mixup in the light of knowledge distillation through extensive analysis, visualizations, and comprehensive experiments on image classification. Finally, based on our findings, we suggest improved strategies to guide the student network to enhance its effectiveness. Additionally, the findings of this study provide insightful suggestions to researchers and practitioners that commonly use techniques from KD. Our code is available at https://github.com/hchoi71/MIX-KD.

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, including quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a ProbSparse self-attention mechanism, which achieves O(L log L) in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.

MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

We introduce a simple yet effective distillation framework that is able to boost the vanilla ResNet-50 to 80%+ Top-1 accuracy on ImageNet without tricks. We construct such a framework through analyzing the problems in the existing classification system and simplify the base method ensemble knowledge distillation via discriminators by: (1) adopting the similarity loss and discriminator only on the final outputs and (2) using the average of softmax probabilities from all teacher ensembles as the stronger supervision. Intriguingly, three novel perspectives are presented for distillation: (1) weight decay can be weakened or even completely removed since the soft label also has a regularization effect; (2) using a good initialization for students is critical; and (3) one-hot/hard label is not necessary in the distillation process if the weights are well initialized. We show that such a straight-forward framework can achieve state-of-the-art results without involving any commonly-used techniques, such as architecture modification; outside training data beyond ImageNet; autoaug/randaug; cosine learning rate; mixup/cutmix training; label smoothing; etc. Our method obtains 80.67% top-1 accuracy on ImageNet using a single crop-size of 224x224 with vanilla ResNet-50, outperforming the previous state-of-the-arts by a significant margin under the same network structure. Our result can be regarded as a strong baseline using knowledge distillation, and to our best knowledge, this is also the first method that is able to boost vanilla ResNet-50 to surpass 80% on ImageNet without architecture modification or additional training data. On smaller ResNet-18, our distillation framework consistently improves from 69.76% to 73.19%, which shows tremendous practical values in real-world applications. Our code and models are available at: https://github.com/szq0214/MEAL-V2.

TAID: Temporally Adaptive Interpolated Distillation for Efficient Knowledge Transfer in Language Models

Causal language models have demonstrated remarkable capabilities, but their size poses significant challenges for deployment in resource-constrained environments. Knowledge distillation, a widely-used technique for transferring knowledge from a large teacher model to a small student model, presents a promising approach for model compression. A significant remaining issue lies in the major differences between teacher and student models, namely the substantial capacity gap, mode averaging, and mode collapse, which pose barriers during distillation. To address these issues, we introduce Temporally Adaptive Interpolated Distillation (TAID), a novel knowledge distillation approach that dynamically interpolates student and teacher distributions through an adaptive intermediate distribution, gradually shifting from the student's initial distribution towards the teacher's distribution. We provide a theoretical analysis demonstrating TAID's ability to prevent mode collapse and empirically show its effectiveness in addressing the capacity gap while balancing mode averaging and mode collapse. Our comprehensive experiments demonstrate TAID's superior performance across various model sizes and architectures in both instruction tuning and pre-training scenarios. Furthermore, we showcase TAID's practical impact by developing two state-of-the-art compact foundation models: TAID-LLM-1.5B for language tasks and TAID-VLM-2B for vision-language tasks. These results demonstrate TAID's effectiveness in creating high-performing and efficient models, advancing the development of more accessible AI technologies.

Efficient Transformer Knowledge Distillation: A Performance Review

As pretrained transformer language models continue to achieve state-of-the-art performance, the Natural Language Processing community has pushed for advances in model compression and efficient attention mechanisms to address high computational requirements and limited input sequence length. Despite these separate efforts, no investigation has been done into the intersection of these two fields. In this work, we provide an evaluation of model compression via knowledge distillation on efficient attention transformers. We provide cost-performance trade-offs for the compression of state-of-the-art efficient attention architectures and the gains made in performance in comparison to their full attention counterparts. Furthermore, we introduce a new long-context Named Entity Recognition dataset, GONERD, to train and test the performance of NER models on long sequences. We find that distilled efficient attention transformers can preserve a significant amount of original model performance, preserving up to 98.6% across short-context tasks (GLUE, SQUAD, CoNLL-2003), up to 94.6% across long-context Question-and-Answering tasks (HotpotQA, TriviaQA), and up to 98.8% on long-context Named Entity Recognition (GONERD), while decreasing inference times by up to 57.8%. We find that, for most models on most tasks, performing knowledge distillation is an effective method to yield high-performing efficient attention models with low costs.

Enhancing the Stability of LLM-based Speech Generation Systems through Self-Supervised Representations

Large Language Models (LLMs) are one of the most promising technologies for the next era of speech generation systems, due to their scalability and in-context learning capabilities. Nevertheless, they suffer from multiple stability issues at inference time, such as hallucinations, content skipping or speech repetitions. In this work, we introduce a new self-supervised Voice Conversion (VC) architecture which can be used to learn to encode transitory features, such as content, separately from stationary ones, such as speaker ID or recording conditions, creating speaker-disentangled representations. Using speaker-disentangled codes to train LLMs for text-to-speech (TTS) allows the LLM to generate the content and the style of the speech only from the text, similarly to humans, while the speaker identity is provided by the decoder of the VC model. Results show that LLMs trained over speaker-disentangled self-supervised representations provide an improvement of 4.7pp in speaker similarity over SOTA entangled representations, and a word error rate (WER) 5.4pp lower. Furthermore, they achieve higher naturalness than human recordings of the LibriTTS test-other dataset. Finally, we show that using explicit reference embedding negatively impacts intelligibility (stability), with WER increasing by 14pp compared to the model that only uses text to infer the style.

Heavy Labels Out! Dataset Distillation with Label Space Lightening

Dataset distillation or condensation aims to condense a large-scale training dataset into a much smaller synthetic one such that the training performance of distilled and original sets on neural networks are similar. Although the number of training samples can be reduced substantially, current state-of-the-art methods heavily rely on enormous soft labels to achieve satisfactory performance. As a result, the required storage can be comparable even to original datasets, especially for large-scale ones. To solve this problem, instead of storing these heavy labels, we propose a novel label-lightening framework termed HeLlO aiming at effective image-to-label projectors, with which synthetic labels can be directly generated online from synthetic images. Specifically, to construct such projectors, we leverage prior knowledge in open-source foundation models, e.g., CLIP, and introduce a LoRA-like fine-tuning strategy to mitigate the gap between pre-trained and target distributions, so that original models for soft-label generation can be distilled into a group of low-rank matrices. Moreover, an effective image optimization method is proposed to further mitigate the potential error between the original and distilled label generators. Extensive experiments demonstrate that with only about 0.003% of the original storage required for a complete set of soft labels, we achieve comparable performance to current state-of-the-art dataset distillation methods on large-scale datasets. Our code will be available.

Multi-Level Knowledge Distillation for Out-of-Distribution Detection in Text

Self-supervised representation learning has proved to be a valuable component for out-of-distribution (OoD) detection with only the texts of in-distribution (ID) examples. These approaches either train a language model from scratch or fine-tune a pre-trained language model using ID examples, and then take the perplexity output by the language model as OoD scores. In this paper, we analyze the complementary characteristics of both OoD detection methods and propose a multi-level knowledge distillation approach that integrates their strengths while mitigating their limitations. Specifically, we use a fine-tuned model as the teacher to teach a randomly initialized student model on the ID examples. Besides the prediction layer distillation, we present a similarity-based intermediate layer distillation method to thoroughly explore the representation space of the teacher model. In this way, the learned student can better represent the ID data manifold while gaining a stronger ability to map OoD examples outside the ID data manifold with the regularization inherited from pre-training. Besides, the student model sees only ID examples during parameter learning, further promoting more distinguishable features for OoD detection. We conduct extensive experiments over multiple benchmark datasets, i.e., CLINC150, SST, ROSTD, 20 NewsGroups, and AG News; showing that the proposed method yields new state-of-the-art performance. We also explore its application as an AIGC detector to distinguish between answers generated by ChatGPT and human experts. It is observed that our model exceeds human evaluators in the pair-expert task on the Human ChatGPT Comparison Corpus.

HARD: Hard Augmentations for Robust Distillation

Knowledge distillation (KD) is a simple and successful method to transfer knowledge from a teacher to a student model solely based on functional activity. However, current KD has a few shortcomings: it has recently been shown that this method is unsuitable to transfer simple inductive biases like shift equivariance, struggles to transfer out of domain generalization, and optimization time is magnitudes longer compared to default non-KD model training. To improve these aspects of KD, we propose Hard Augmentations for Robust Distillation (HARD), a generally applicable data augmentation framework, that generates synthetic data points for which the teacher and the student disagree. We show in a simple toy example that our augmentation framework solves the problem of transferring simple equivariances with KD. We then apply our framework in real-world tasks for a variety of augmentation models, ranging from simple spatial transformations to unconstrained image manipulations with a pretrained variational autoencoder. We find that our learned augmentations significantly improve KD performance on in-domain and out-of-domain evaluation. Moreover, our method outperforms even state-of-the-art data augmentations and since the augmented training inputs can be visualized, they offer a qualitative insight into the properties that are transferred from the teacher to the student. Thus HARD represents a generally applicable, dynamically optimized data augmentation technique tailored to improve the generalization and convergence speed of models trained with KD.

Return of the Encoder: Maximizing Parameter Efficiency for SLMs

The dominance of large decoder-only language models has overshadowed encoder-decoder architectures, despite their fundamental efficiency advantages in sequence processing. For small language models (SLMs) - those with 1 billion parameters or fewer - our systematic analysis across GPU, CPU, and NPU platforms reveals that encoder-decoder architectures achieve 47% lower first-token latency and 4.7x higher throughput compared to decoder-only models on edge devices. These gains may be attributed to encoder-decoder's one-time input processing and efficient separation of understanding and generation phases. We introduce a novel knowledge distillation framework that enables encoder-decoder models to leverage capabilities from large scalable decoder-only teachers while preserving their architectural advantages, achieving up to 6 average performance points improvement across diverse tasks, with significant gains in asymmetric sequence tasks where input and output distributions can benefit from different processing approaches. When combined with modern advances like Rotary Positional Embeddings (RoPE) and Vision encoders, our systematic investigation demonstrates that encoder-decoder architectures provide a more practical path toward deploying capable language models in resource-constrained environments. Our findings challenge the prevailing trend toward decoder-only scaling, showing that architectural choices become increasingly crucial as parameter budgets decrease, particularly for on-device and edge deployments where computational efficiency is paramount.

Improving Knowledge Distillation via Regularizing Feature Norm and Direction

Knowledge distillation (KD) exploits a large well-trained model (i.e., teacher) to train a small student model on the same dataset for the same task. Treating teacher features as knowledge, prevailing methods of knowledge distillation train student by aligning its features with the teacher's, e.g., by minimizing the KL-divergence between their logits or L2 distance between their intermediate features. While it is natural to believe that better alignment of student features to the teacher better distills teacher knowledge, simply forcing this alignment does not directly contribute to the student's performance, e.g., classification accuracy. In this work, we propose to align student features with class-mean of teacher features, where class-mean naturally serves as a strong classifier. To this end, we explore baseline techniques such as adopting the cosine distance based loss to encourage the similarity between student features and their corresponding class-means of the teacher. Moreover, we train the student to produce large-norm features, inspired by other lines of work (e.g., model pruning and domain adaptation), which find the large-norm features to be more significant. Finally, we propose a rather simple loss term (dubbed ND loss) to simultaneously (1) encourage student to produce large-norm features, and (2) align the direction of student features and teacher class-means. Experiments on standard benchmarks demonstrate that our explored techniques help existing KD methods achieve better performance, i.e., higher classification accuracy on ImageNet and CIFAR100 datasets, and higher detection precision on COCO dataset. Importantly, our proposed ND loss helps the most, leading to the state-of-the-art performance on these benchmarks. The source code is available at https://github.com/WangYZ1608/Knowledge-Distillation-via-ND.

Dataset Quantization

State-of-the-art deep neural networks are trained with large amounts (millions or even billions) of data. The expensive computation and memory costs make it difficult to train them on limited hardware resources, especially for recent popular large language models (LLM) and computer vision models (CV). Recent popular dataset distillation methods are thus developed, aiming to reduce the number of training samples via synthesizing small-scale datasets via gradient matching. However, as the gradient calculation is coupled with the specific network architecture, the synthesized dataset is biased and performs poorly when used for training unseen architectures. To address these limitations, we present dataset quantization (DQ), a new framework to compress large-scale datasets into small subsets which can be used for training any neural network architectures. Extensive experiments demonstrate that DQ is able to generate condensed small datasets for training unseen network architectures with state-of-the-art compression ratios for lossless model training. To the best of our knowledge, DQ is the first method that can successfully distill large-scale datasets such as ImageNet-1k with a state-of-the-art compression ratio. Notably, with 60% data from ImageNet and 20% data from Alpaca's instruction tuning data, the models can be trained with negligible or no performance drop for both vision tasks (including classification, semantic segmentation, and object detection) as well as language tasks (including instruction tuning tasks such as BBH and DROP).

LLaVA-MoD: Making LLaVA Tiny via MoE Knowledge Distillation

We introduce LLaVA-MoD, a novel framework designed to enable the efficient training of small-scale Multimodal Language Models (s-MLLM) by distilling knowledge from large-scale MLLM (l-MLLM). Our approach tackles two fundamental challenges in MLLM distillation. First, we optimize the network structure of s-MLLM by integrating a sparse Mixture of Experts (MoE) architecture into the language model, striking a balance between computational efficiency and model expressiveness. Second, we propose a progressive knowledge transfer strategy to ensure comprehensive knowledge migration. This strategy begins with mimic distillation, where we minimize the Kullback-Leibler (KL) divergence between output distributions to enable the student model to emulate the teacher network's understanding. Following this, we introduce preference distillation via Direct Preference Optimization (DPO), where the key lies in treating l-MLLM as the reference model. During this phase, the s-MLLM's ability to discriminate between superior and inferior examples is significantly enhanced beyond l-MLLM, leading to a better student that surpasses its teacher, particularly in hallucination benchmarks. Extensive experiments demonstrate that LLaVA-MoD outperforms existing models across various multimodal benchmarks while maintaining a minimal number of activated parameters and low computational costs. Remarkably, LLaVA-MoD, with only 2B activated parameters, surpasses Qwen-VL-Chat-7B by an average of 8.8% across benchmarks, using merely 0.3% of the training data and 23% trainable parameters. These results underscore LLaVA-MoD's ability to effectively distill comprehensive knowledge from its teacher model, paving the way for the development of more efficient MLLMs. The code will be available on: https://github.com/shufangxun/LLaVA-MoD.

Less or More From Teacher: Exploiting Trilateral Geometry For Knowledge Distillation

Knowledge distillation aims to train a compact student network using soft supervision from a larger teacher network and hard supervision from ground truths. However, determining an optimal knowledge fusion ratio that balances these supervisory signals remains challenging. Prior methods generally resort to a constant or heuristic-based fusion ratio, which often falls short of a proper balance. In this study, we introduce a novel adaptive method for learning a sample-wise knowledge fusion ratio, exploiting both the correctness of teacher and student, as well as how well the student mimics the teacher on each sample. Our method naturally leads to the intra-sample trilateral geometric relations among the student prediction (S), teacher prediction (T), and ground truth (G). To counterbalance the impact of outliers, we further extend to the inter-sample relations, incorporating the teacher's global average prediction T for samples within the same class. A simple neural network then learns the implicit mapping from the intra- and inter-sample relations to an adaptive, sample-wise knowledge fusion ratio in a bilevel-optimization manner. Our approach provides a simple, practical, and adaptable solution for knowledge distillation that can be employed across various architectures and model sizes. Extensive experiments demonstrate consistent improvements over other loss re-weighting methods on image classification, attack detection, and click-through rate prediction.

Dual-Head Knowledge Distillation: Enhancing Logits Utilization with an Auxiliary Head

Traditional knowledge distillation focuses on aligning the student's predicted probabilities with both ground-truth labels and the teacher's predicted probabilities. However, the transition to predicted probabilities from logits would obscure certain indispensable information. To address this issue, it is intuitive to additionally introduce a logit-level loss function as a supplement to the widely used probability-level loss function, for exploiting the latent information of logits. Unfortunately, we empirically find that the amalgamation of the newly introduced logit-level loss and the previous probability-level loss will lead to performance degeneration, even trailing behind the performance of employing either loss in isolation. We attribute this phenomenon to the collapse of the classification head, which is verified by our theoretical analysis based on the neural collapse theory. Specifically, the gradients of the two loss functions exhibit contradictions in the linear classifier yet display no such conflict within the backbone. Drawing from the theoretical analysis, we propose a novel method called dual-head knowledge distillation, which partitions the linear classifier into two classification heads responsible for different losses, thereby preserving the beneficial effects of both losses on the backbone while eliminating adverse influences on the classification head. Extensive experiments validate that our method can effectively exploit the information inside the logits and achieve superior performance against state-of-the-art counterparts.

Self-supervised Label Augmentation via Input Transformations

Self-supervised learning, which learns by constructing artificial labels given only the input signals, has recently gained considerable attention for learning representations with unlabeled datasets, i.e., learning without any human-annotated supervision. In this paper, we show that such a technique can be used to significantly improve the model accuracy even under fully-labeled datasets. Our scheme trains the model to learn both original and self-supervised tasks, but is different from conventional multi-task learning frameworks that optimize the summation of their corresponding losses. Our main idea is to learn a single unified task with respect to the joint distribution of the original and self-supervised labels, i.e., we augment original labels via self-supervision of input transformation. This simple, yet effective approach allows to train models easier by relaxing a certain invariant constraint during learning the original and self-supervised tasks simultaneously. It also enables an aggregated inference which combines the predictions from different augmentations to improve the prediction accuracy. Furthermore, we propose a novel knowledge transfer technique, which we refer to as self-distillation, that has the effect of the aggregated inference in a single (faster) inference. We demonstrate the large accuracy improvement and wide applicability of our framework on various fully-supervised settings, e.g., the few-shot and imbalanced classification scenarios.

VQGraph: Rethinking Graph Representation Space for Bridging GNNs and MLPs

GNN-to-MLP distillation aims to utilize knowledge distillation (KD) to learn computationally-efficient multi-layer perceptron (student MLP) on graph data by mimicking the output representations of teacher GNN. Existing methods mainly make the MLP to mimic the GNN predictions over a few class labels. However, the class space may not be expressive enough for covering numerous diverse local graph structures, thus limiting the performance of knowledge transfer from GNN to MLP. To address this issue, we propose to learn a new powerful graph representation space by directly labeling nodes' diverse local structures for GNN-to-MLP distillation. Specifically, we propose a variant of VQ-VAE to learn a structure-aware tokenizer on graph data that can encode each node's local substructure as a discrete code. The discrete codes constitute a codebook as a new graph representation space that is able to identify different local graph structures of nodes with the corresponding code indices. Then, based on the learned codebook, we propose a new distillation target, namely soft code assignments, to directly transfer the structural knowledge of each node from GNN to MLP. The resulting framework VQGraph achieves new state-of-the-art performance on GNN-to-MLP distillation in both transductive and inductive settings across seven graph datasets. We show that VQGraph with better performance infers faster than GNNs by 828x, and also achieves accuracy improvement over GNNs and stand-alone MLPs by 3.90% and 28.05% on average, respectively. Code: https://github.com/YangLing0818/VQGraph.

DB-LLM: Accurate Dual-Binarization for Efficient LLMs

Large language models (LLMs) have significantly advanced the field of natural language processing, while the expensive memory and computation consumption impede their practical deployment. Quantization emerges as one of the most effective methods for improving the computational efficiency of LLMs. However, existing ultra-low-bit quantization always causes severe accuracy drops. In this paper, we empirically relieve the micro and macro characteristics of ultra-low bit quantization and present a novel Dual-Binarization method for LLMs, namely DB-LLM. For the micro-level, we take both the accuracy advantage of 2-bit-width and the efficiency advantage of binarization into account, introducing Flexible Dual Binarization (FDB). By splitting 2-bit quantized weights into two independent sets of binaries, FDB ensures the accuracy of representations and introduces flexibility, utilizing the efficient bitwise operations of binarization while retaining the inherent high sparsity of ultra-low bit quantization. For the macro-level, we find the distortion that exists in the prediction of LLM after quantization, which is specified as the deviations related to the ambiguity of samples. We propose the Deviation-Aware Distillation (DAD) method, enabling the model to focus differently on various samples. Comprehensive experiments show that our DB-LLM not only significantly surpasses the current State-of-The-Art (SoTA) in ultra-low bit quantization (eg, perplexity decreased from 9.64 to 7.23), but also achieves an additional 20\% reduction in computational consumption compared to the SOTA method under the same bit-width. Our code will be released soon.

DisenBooth: Identity-Preserving Disentangled Tuning for Subject-Driven Text-to-Image Generation

Subject-driven text-to-image generation aims to generate customized images of the given subject based on the text descriptions, which has drawn increasing attention. Existing methods mainly resort to finetuning a pretrained generative model, where the identity-relevant information (e.g., the boy) and the identity-irrelevant information (e.g., the background or the pose of the boy) are entangled in the latent embedding space. However, the highly entangled latent embedding may lead to the failure of subject-driven text-to-image generation as follows: (i) the identity-irrelevant information hidden in the entangled embedding may dominate the generation process, resulting in the generated images heavily dependent on the irrelevant information while ignoring the given text descriptions; (ii) the identity-relevant information carried in the entangled embedding can not be appropriately preserved, resulting in identity change of the subject in the generated images. To tackle the problems, we propose DisenBooth, an identity-preserving disentangled tuning framework for subject-driven text-to-image generation. Specifically, DisenBooth finetunes the pretrained diffusion model in the denoising process. Different from previous works that utilize an entangled embedding to denoise each image, DisenBooth instead utilizes disentangled embeddings to respectively preserve the subject identity and capture the identity-irrelevant information. We further design the novel weak denoising and contrastive embedding auxiliary tuning objectives to achieve the disentanglement. Extensive experiments show that our proposed DisenBooth framework outperforms baseline models for subject-driven text-to-image generation with the identity-preserved embedding. Additionally, by combining the identity-preserved embedding and identity-irrelevant embedding, DisenBooth demonstrates more generation flexibility and controllability