1 GaussianAvatars: Photorealistic Head Avatars with Rigged 3D Gaussians We introduce GaussianAvatars, a new method to create photorealistic head avatars that are fully controllable in terms of expression, pose, and viewpoint. The core idea is a dynamic 3D representation based on 3D Gaussian splats that are rigged to a parametric morphable face model. This combination facilitates photorealistic rendering while allowing for precise animation control via the underlying parametric model, e.g., through expression transfer from a driving sequence or by manually changing the morphable model parameters. We parameterize each splat by a local coordinate frame of a triangle and optimize for explicit displacement offset to obtain a more accurate geometric representation. During avatar reconstruction, we jointly optimize for the morphable model parameters and Gaussian splat parameters in an end-to-end fashion. We demonstrate the animation capabilities of our photorealistic avatar in several challenging scenarios. For instance, we show reenactments from a driving video, where our method outperforms existing works by a significant margin. 6 authors · Dec 4, 2023 1
- MeGA: Hybrid Mesh-Gaussian Head Avatar for High-Fidelity Rendering and Head Editing Creating high-fidelity head avatars from multi-view videos is a core issue for many AR/VR applications. However, existing methods usually struggle to obtain high-quality renderings for all different head components simultaneously since they use one single representation to model components with drastically different characteristics (e.g., skin vs. hair). In this paper, we propose a Hybrid Mesh-Gaussian Head Avatar (MeGA) that models different head components with more suitable representations. Specifically, we select an enhanced FLAME mesh as our facial representation and predict a UV displacement map to provide per-vertex offsets for improved personalized geometric details. To achieve photorealistic renderings, we obtain facial colors using deferred neural rendering and disentangle neural textures into three meaningful parts. For hair modeling, we first build a static canonical hair using 3D Gaussian Splatting. A rigid transformation and an MLP-based deformation field are further applied to handle complex dynamic expressions. Combined with our occlusion-aware blending, MeGA generates higher-fidelity renderings for the whole head and naturally supports more downstream tasks. Experiments on the NeRSemble dataset demonstrate the effectiveness of our designs, outperforming previous state-of-the-art methods and supporting various editing functionalities, including hairstyle alteration and texture editing. 7 authors · Apr 29, 2024
- Evidence for an MHD disk wind via optical forbidden line spectro-astrometry Spectro-astrometry is used to investigate the low velocity component (LVC) of the optical forbidden emission from the T Tauri stars RU Lupi and AS 205 N. Both stars also have high velocity forbidden emission (HVC) which is tracing a jet. For AS 205 N, analysis reveals a complicated outflow system. For RU Lupi, the [O I] 6300 and [S II] 6716, 6731 LV narrow component (NC) is offset along the same position angle (PA) as the HVC but with a different velocity gradient than the jet, in that displacement from the stellar position along the rotation axis is decreasing with increasing velocity. From the LVC NC PA and velocity gradient, it is inferred that the NC is tracing a wide angled MHD disk wind. A photoevaporative wind is ruled out. This is supported by a comparison with a previous spectro-astrometric study of the CO fundamental line. The decrease in offset with increasing velocity is interpreted as tracing an increase in the height of the wind with increasing disk radius. This is one of the first measurements of the spatial extent of the forbidden emission line LVC NC (~ 40 au, 8 au for RU~Lupi in the [S II] 6731 and [O I] 6300 lines) and the first direct confirmation that the LVC narrow component can trace an MHD disk wind. 7 authors · Apr 12, 2021
- Dense 3D Displacement Estimation for Landslide Monitoring via Fusion of TLS Point Clouds and Embedded RGB Images Landslide monitoring is essential for understanding geohazards and mitigating associated risks. However, existing point cloud-based methods typically rely on either geometric or radiometric information and often yield sparse or non-3D displacement estimates. In this paper, we propose a hierarchical partition-based coarse-to-fine approach that fuses 3D point clouds and co-registered RGB images to estimate dense 3D displacement vector fields. We construct patch-level matches using both 3D geometry and 2D image features. These matches are refined via geometric consistency checks, followed by rigid transformation estimation per match. Experimental results on two real-world landslide datasets demonstrate that our method produces 3D displacement estimates with high spatial coverage (79% and 97%) and high accuracy. Deviations in displacement magnitude with respect to external measurements (total station or GNSS observations) are 0.15 m and 0.25 m on the two datasets, respectively, and only 0.07 m and 0.20 m compared to manually derived references. These values are below the average scan resolutions (0.08 m and 0.30 m). Our method outperforms the state-of-the-art method F2S3 in spatial coverage while maintaining comparable accuracy. Our approach offers a practical and adaptable solution for TLS-based landslide monitoring and is extensible to other types of point clouds and monitoring tasks. Our example data and source code are publicly available at https://github.com/zhaoyiww/fusion4landslide. 5 authors · Jun 19
- Extracting polygonal footprints in off-nadir images with Segment Anything Model Building Footprint Extraction (BFE) from off-nadir aerial images often involves roof segmentation and offset prediction to adjust roof boundaries to the building footprint. However, this multi-stage approach typically produces low-quality results, limiting its applicability in real-world data production. To address this issue, we present OBMv2, an end-to-end and promptable model for polygonal footprint prediction. Unlike its predecessor OBM, OBMv2 introduces a novel Self Offset Attention (SOFA) mechanism that improves performance across diverse building types, from bungalows to skyscrapers, enabling end-to-end footprint prediction without post-processing. Additionally, we propose a Multi-level Information System (MISS) to effectively leverage roof masks, building masks, and offsets for accurate footprint prediction. We evaluate OBMv2 on the BONAI and OmniCity-view3 datasets and demonstrate its generalization on the Huizhou test set. The code will be available at https://github.com/likaiucas/OBMv2. 8 authors · Aug 16, 2024