new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 11

Phase-shifted remote photoplethysmography for estimating heart rate and blood pressure from facial video

Human health can be critically affected by cardiovascular diseases, such as hypertension, arrhythmias, and stroke. Heart rate and blood pressure are important biometric information for the monitoring of cardiovascular system and early diagnosis of cardiovascular diseases. Existing methods for estimating the heart rate are based on electrocardiography and photoplethyomography, which require contacting the sensor to the skin surface. Moreover, catheter and cuff-based methods for measuring blood pressure cause inconvenience and have limited applicability. Therefore, in this thesis, we propose a vision-based method for estimating the heart rate and blood pressure. This thesis proposes a 2-stage deep learning framework consisting of a dual remote photoplethysmography network (DRP-Net) and bounded blood pressure network (BBP-Net). In the first stage, DRP-Net infers remote photoplethysmography (rPPG) signals for the acral and facial regions, and these phase-shifted rPPG signals are utilized to estimate the heart rate. In the second stage, BBP-Net integrates temporal features and analyzes phase discrepancy between the acral and facial rPPG signals to estimate SBP and DBP values. To improve the accuracy of estimating the heart rate, we employed a data augmentation method based on a frame interpolation model. Moreover, we designed BBP-Net to infer blood pressure within a predefined range by incorporating a scaled sigmoid function. Our method resulted in estimating the heart rate with the mean absolute error (MAE) of 1.78 BPM, reducing the MAE by 34.31 % compared to the recent method, on the MMSE-HR dataset. The MAE for estimating the systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 10.19 mmHg and 7.09 mmHg. On the V4V dataset, the MAE for the heart rate, SBP, and DBP were 3.83 BPM, 13.64 mmHg, and 9.4 mmHg, respectively.

Learning from Two Decades of Blood Pressure Data: Demography-Specific Patterns Across 75 Million Patient Encounters

Hypertension remains a global health concern with a rising prevalence, necessitating effective monitoring and understanding of blood pressure (BP) dynamics. This study delves into the wealth of information derived from BP measurement, a crucial approach in informing our understanding of hypertensive trends. Numerous studies have reported on the relationship between BP variation and various factors. In this research, we leveraged an extensive dataset comprising 75 million records spanning two decades, offering a unique opportunity to explore and analyze BP variations across demographic features such as age, race, and gender. Our findings revealed that gender-based BP variation was not statistically significant, challenging conventional assumptions. Interestingly, systolic blood pressure (SBP) consistently increased with age, while diastolic blood pressure (DBP) displayed a distinctive peak in the forties age group. Moreover, our analysis uncovered intriguing similarities in the distribution of BP among some of the racial groups. This comprehensive investigation contributes to the ongoing discourse on hypertension and underscores the importance of considering diverse demographic factors in understanding BP variations. Our results provide valuable insights that may inform personalized healthcare approaches tailored to specific demographic profiles.

Large Language Models for Cuffless Blood Pressure Measurement From Wearable Biosignals

Large language models (LLMs) have captured significant interest from both academia and industry due to their impressive performance across various textual tasks. However, the potential of LLMs to analyze physiological time-series data remains an emerging research field. Particularly, there is a notable gap in the utilization of LLMs for analyzing wearable biosignals to achieve cuffless blood pressure (BP) measurement, which is critical for the management of cardiovascular diseases. This paper presents the first work to explore the capacity of LLMs to perform cuffless BP estimation based on wearable biosignals. We extracted physiological features from electrocardiogram (ECG) and photoplethysmogram (PPG) signals and designed context-enhanced prompts by combining these features with BP domain knowledge and user information. Subsequently, we adapted LLMs to BP estimation tasks through fine-tuning. To evaluate the proposed approach, we conducted assessments of ten advanced LLMs using a comprehensive public dataset of wearable biosignals from 1,272 participants. The experimental results demonstrate that the optimally fine-tuned LLM significantly surpasses conventional task-specific baselines, achieving an estimation error of 0.00 pm 9.25 mmHg for systolic BP and 1.29 pm 6.37 mmHg for diastolic BP. Notably, the ablation studies highlight the benefits of our context enhancement strategy, leading to an 8.9% reduction in mean absolute error for systolic BP estimation. This paper pioneers the exploration of LLMs for cuffless BP measurement, providing a potential solution to enhance the accuracy of cuffless BP measurement.

Artificial Intelligence-derived Vascular Age from Photoplethysmography: A Novel Digital Biomarker for Cardiovascular Health

With the increasing availability of wearable devices, photoplethysmography (PPG) has emerged as a promising non-invasive tool for monitoring human hemodynamics. We propose a deep learning framework to estimate vascular age (AI-vascular age) from PPG signals, incorporating a distribution-aware loss to address biases caused by imbalanced data. The model was developed using data from the UK Biobank (UKB), with 98,672 participants in the development cohort and 113,559 participants (144,683 data pairs) for clinical evaluation. After adjusting for key confounders, individuals with a vascular age gap (AI-vascular age minus calendar age) exceeding 9 years had a significantly higher risk of major adverse cardiovascular and cerebrovascular events (MACCE) (HR = 2.37, p < 0.005) and secondary outcomes, including diabetes (HR = 2.69, p < 0.005), hypertension (HR = 2.88, p < 0.005), coronary heart disease (HR = 2.20, p < 0.005), heart failure (HR = 2.15, p < 0.005), myocardial infarction (HR = 2.51, p < 0.005), stroke (HR = 2.55, p < 0.005), and all-cause mortality (HR = 2.51, p < 0.005). Conversely, participants with a vascular age gap below -9 years exhibited a significantly lower incidence of these outcomes. We further evaluated the longitudinal applicability of AI-vascular age using serial PPG data from the UKB, demonstrating its value in risk stratification by leveraging AI-vascular age at two distinct time points to predict future MACCE incidence. External validation was performed on a MIMIC-III-derived cohort (n = 2,343), where each one-year increase in vascular age gap was significantly associated with elevated in-hospital mortality risk (OR = 1.02, p < 0.005). In conclusion, our study establishes AI-vascular age as a novel, non-invasive digital biomarker for cardiovascular health assessment.

PVBM: A Python Vasculature Biomarker Toolbox Based On Retinal Blood Vessel Segmentation

Introduction: Blood vessels can be non-invasively visualized from a digital fundus image (DFI). Several studies have shown an association between cardiovascular risk and vascular features obtained from DFI. Recent advances in computer vision and image segmentation enable automatising DFI blood vessel segmentation. There is a need for a resource that can automatically compute digital vasculature biomarkers (VBM) from these segmented DFI. Methods: In this paper, we introduce a Python Vasculature BioMarker toolbox, denoted PVBM. A total of 11 VBMs were implemented. In particular, we introduce new algorithmic methods to estimate tortuosity and branching angles. Using PVBM, and as a proof of usability, we analyze geometric vascular differences between glaucomatous patients and healthy controls. Results: We built a fully automated vasculature biomarker toolbox based on DFI segmentations and provided a proof of usability to characterize the vascular changes in glaucoma. For arterioles and venules, all biomarkers were significant and lower in glaucoma patients compared to healthy controls except for tortuosity, venular singularity length and venular branching angles. Conclusion: We have automated the computation of 11 VBMs from retinal blood vessel segmentation. The PVBM toolbox is made open source under a GNU GPL 3 license and is available on physiozoo.com (following publication).