- Miipher: A Robust Speech Restoration Model Integrating Self-Supervised Speech and Text Representations Speech restoration (SR) is a task of converting degraded speech signals into high-quality ones. In this study, we propose a robust SR model called Miipher, and apply Miipher to a new SR application: increasing the amount of high-quality training data for speech generation by converting speech samples collected from the Web to studio-quality. To make our SR model robust against various degradation, we use (i) a speech representation extracted from w2v-BERT for the input feature, and (ii) a text representation extracted from transcripts via PnG-BERT as a linguistic conditioning feature. Experiments show that Miipher (i) is robust against various audio degradation and (ii) enable us to train a high-quality text-to-speech (TTS) model from restored speech samples collected from the Web. Audio samples are available at our demo page: google.github.io/df-conformer/miipher/ 10 authors · Mar 2, 2023
- VoiceFixer: A Unified Framework for High-Fidelity Speech Restoration Speech restoration aims to remove distortions in speech signals. Prior methods mainly focus on a single type of distortion, such as speech denoising or dereverberation. However, speech signals can be degraded by several different distortions simultaneously in the real world. It is thus important to extend speech restoration models to deal with multiple distortions. In this paper, we introduce VoiceFixer, a unified framework for high-fidelity speech restoration. VoiceFixer restores speech from multiple distortions (e.g., noise, reverberation, and clipping) and can expand degraded speech (e.g., noisy speech) with a low bandwidth to 44.1 kHz full-bandwidth high-fidelity speech. We design VoiceFixer based on (1) an analysis stage that predicts intermediate-level features from the degraded speech, and (2) a synthesis stage that generates waveform using a neural vocoder. Both objective and subjective evaluations show that VoiceFixer is effective on severely degraded speech, such as real-world historical speech recordings. Samples of VoiceFixer are available at https://haoheliu.github.io/voicefixer. 8 authors · Apr 12, 2022
- Universal Score-based Speech Enhancement with High Content Preservation We propose UNIVERSE++, a universal speech enhancement method based on score-based diffusion and adversarial training. Specifically, we improve the existing UNIVERSE model that decouples clean speech feature extraction and diffusion. Our contributions are three-fold. First, we make several modifications to the network architecture, improving training stability and final performance. Second, we introduce an adversarial loss to promote learning high quality speech features. Third, we propose a low-rank adaptation scheme with a phoneme fidelity loss to improve content preservation in the enhanced speech. In the experiments, we train a universal enhancement model on a large scale dataset of speech degraded by noise, reverberation, and various distortions. The results on multiple public benchmark datasets demonstrate that UNIVERSE++ compares favorably to both discriminative and generative baselines for a wide range of qualitative and intelligibility metrics. 4 authors · Jun 17, 2024
- VoiceFixer: Toward General Speech Restoration with Neural Vocoder Speech restoration aims to remove distortions in speech signals. Prior methods mainly focus on single-task speech restoration (SSR), such as speech denoising or speech declipping. However, SSR systems only focus on one task and do not address the general speech restoration problem. In addition, previous SSR systems show limited performance in some speech restoration tasks such as speech super-resolution. To overcome those limitations, we propose a general speech restoration (GSR) task that attempts to remove multiple distortions simultaneously. Furthermore, we propose VoiceFixer, a generative framework to address the GSR task. VoiceFixer consists of an analysis stage and a synthesis stage to mimic the speech analysis and comprehension of the human auditory system. We employ a ResUNet to model the analysis stage and a neural vocoder to model the synthesis stage. We evaluate VoiceFixer with additive noise, room reverberation, low-resolution, and clipping distortions. Our baseline GSR model achieves a 0.499 higher mean opinion score (MOS) than the speech enhancement SSR model. VoiceFixer further surpasses the GSR baseline model on the MOS score by 0.256. Moreover, we observe that VoiceFixer generalizes well to severely degraded real speech recordings, indicating its potential in restoring old movies and historical speeches. The source code is available at https://github.com/haoheliu/voicefixer_main. 7 authors · Sep 28, 2021
- Less is More for Synthetic Speech Detection in the Wild Driven by advances in self-supervised learning for speech, state-of-the-art synthetic speech detectors have achieved low error rates on popular benchmarks such as ASVspoof. However, prior benchmarks do not address the wide range of real-world variability in speech. Are reported error rates realistic in real-world conditions? To assess detector failure modes and robustness under controlled distribution shifts, we introduce ShiftySpeech, a benchmark with more than 3000 hours of synthetic speech from 7 domains, 6 TTS systems, 12 vocoders, and 3 languages. We found that all distribution shifts degraded model performance, and contrary to prior findings, training on more vocoders, speakers, or with data augmentation did not guarantee better generalization. In fact, we found that training on less diverse data resulted in better generalization, and that a detector fit using samples from a single carefully selected vocoder and a single speaker achieved state-of-the-art results on the challenging In-the-Wild benchmark. 8 authors · Feb 8
1 Brouhaha: multi-task training for voice activity detection, speech-to-noise ratio, and C50 room acoustics estimation Most automatic speech processing systems are sensitive to the acoustic environment, with degraded performance when applied to noisy or reverberant speech. But how can one tell whether speech is noisy or reverberant? We propose Brouhaha, a pipeline to simulate audio segments recorded in noisy and reverberant conditions. We then use the simulated audio to jointly train the Brouhaha model for voice activity detection, signal-to-noise ratio estimation, and C50 room acoustics prediction. We show how the predicted SNR and C50 values can be used to investigate and help diagnose errors made by automatic speech processing tools (such as pyannote.audio for speaker diarization or OpenAI's Whisper for automatic speech recognition). Both our pipeline and a pretrained model are open source and shared with the speech community. 10 authors · Oct 24, 2022
1 StoRM: A Diffusion-based Stochastic Regeneration Model for Speech Enhancement and Dereverberation Diffusion models have shown a great ability at bridging the performance gap between predictive and generative approaches for speech enhancement. We have shown that they may even outperform their predictive counterparts for non-additive corruption types or when they are evaluated on mismatched conditions. However, diffusion models suffer from a high computational burden, mainly as they require to run a neural network for each reverse diffusion step, whereas predictive approaches only require one pass. As diffusion models are generative approaches they may also produce vocalizing and breathing artifacts in adverse conditions. In comparison, in such difficult scenarios, predictive models typically do not produce such artifacts but tend to distort the target speech instead, thereby degrading the speech quality. In this work, we present a stochastic regeneration approach where an estimate given by a predictive model is provided as a guide for further diffusion. We show that the proposed approach uses the predictive model to remove the vocalizing and breathing artifacts while producing very high quality samples thanks to the diffusion model, even in adverse conditions. We further show that this approach enables to use lighter sampling schemes with fewer diffusion steps without sacrificing quality, thus lifting the computational burden by an order of magnitude. Source code and audio examples are available online (https://uhh.de/inf-sp-storm). 4 authors · Dec 22, 2022
- A Training and Inference Strategy Using Noisy and Enhanced Speech as Target for Speech Enhancement without Clean Speech The lack of clean speech is a practical challenge to the development of speech enhancement systems, which means that there is an inevitable mismatch between their training criterion and evaluation metric. In response to this unfavorable situation, we propose a training and inference strategy that additionally uses enhanced speech as a target by improving the previously proposed noisy-target training (NyTT). Because homogeneity between in-domain noise and extraneous noise is the key to the effectiveness of NyTT, we train various student models by remixing 1) the teacher model's estimated speech and noise for enhanced-target training or 2) raw noisy speech and the teacher model's estimated noise for noisy-target training. Experimental results show that our proposed method outperforms several baselines, especially with the teacher/student inference, where predicted clean speech is derived successively through the teacher and final student models. 5 authors · Oct 27, 2022
- Universal Speech Enhancement with Score-based Diffusion Removing background noise from speech audio has been the subject of considerable effort, especially in recent years due to the rise of virtual communication and amateur recordings. Yet background noise is not the only unpleasant disturbance that can prevent intelligibility: reverb, clipping, codec artifacts, problematic equalization, limited bandwidth, or inconsistent loudness are equally disturbing and ubiquitous. In this work, we propose to consider the task of speech enhancement as a holistic endeavor, and present a universal speech enhancement system that tackles 55 different distortions at the same time. Our approach consists of a generative model that employs score-based diffusion, together with a multi-resolution conditioning network that performs enhancement with mixture density networks. We show that this approach significantly outperforms the state of the art in a subjective test performed by expert listeners. We also show that it achieves competitive objective scores with just 4-8 diffusion steps, despite not considering any particular strategy for fast sampling. We hope that both our methodology and technical contributions encourage researchers and practitioners to adopt a universal approach to speech enhancement, possibly framing it as a generative task. 5 authors · Jun 7, 2022
11 In-Context Prompt Editing For Conditional Audio Generation Distributional shift is a central challenge in the deployment of machine learning models as they can be ill-equipped for real-world data. This is particularly evident in text-to-audio generation where the encoded representations are easily undermined by unseen prompts, which leads to the degradation of generated audio -- the limited set of the text-audio pairs remains inadequate for conditional audio generation in the wild as user prompts are under-specified. In particular, we observe a consistent audio quality degradation in generated audio samples with user prompts, as opposed to training set prompts. To this end, we present a retrieval-based in-context prompt editing framework that leverages the training captions as demonstrative exemplars to revisit the user prompts. We show that the framework enhanced the audio quality across the set of collected user prompts, which were edited with reference to the training captions as exemplars. 9 authors · Nov 1, 2023 1
- Real Time Speech Enhancement in the Waveform Domain We present a causal speech enhancement model working on the raw waveform that runs in real-time on a laptop CPU. The proposed model is based on an encoder-decoder architecture with skip-connections. It is optimized on both time and frequency domains, using multiple loss functions. Empirical evidence shows that it is capable of removing various kinds of background noise including stationary and non-stationary noises, as well as room reverb. Additionally, we suggest a set of data augmentation techniques applied directly on the raw waveform which further improve model performance and its generalization abilities. We perform evaluations on several standard benchmarks, both using objective metrics and human judgements. The proposed model matches state-of-the-art performance of both causal and non causal methods while working directly on the raw waveform. 3 authors · Jun 23, 2020
1 Speech Enhancement and Dereverberation with Diffusion-based Generative Models In this work, we build upon our previous publication and use diffusion-based generative models for speech enhancement. We present a detailed overview of the diffusion process that is based on a stochastic differential equation and delve into an extensive theoretical examination of its implications. Opposed to usual conditional generation tasks, we do not start the reverse process from pure Gaussian noise but from a mixture of noisy speech and Gaussian noise. This matches our forward process which moves from clean speech to noisy speech by including a drift term. We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates. By adapting the network architecture, we are able to significantly improve the speech enhancement performance, indicating that the network, rather than the formalism, was the main limitation of our original approach. In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models and achieves better generalization when evaluating on a different corpus than used for training. We complement the results with an instrumental evaluation using real-world noisy recordings and a listening experiment, in which our proposed method is rated best. Examining different sampler configurations for solving the reverse process allows us to balance the performance and computational speed of the proposed method. Moreover, we show that the proposed method is also suitable for dereverberation and thus not limited to additive background noise removal. Code and audio examples are available online, see https://github.com/sp-uhh/sgmse 5 authors · Aug 11, 2022
- WESPER: Zero-shot and Realtime Whisper to Normal Voice Conversion for Whisper-based Speech Interactions Recognizing whispered speech and converting it to normal speech creates many possibilities for speech interaction. Because the sound pressure of whispered speech is significantly lower than that of normal speech, it can be used as a semi-silent speech interaction in public places without being audible to others. Converting whispers to normal speech also improves the speech quality for people with speech or hearing impairments. However, conventional speech conversion techniques do not provide sufficient conversion quality or require speaker-dependent datasets consisting of pairs of whispered and normal speech utterances. To address these problems, we propose WESPER, a zero-shot, real-time whisper-to-normal speech conversion mechanism based on self-supervised learning. WESPER consists of a speech-to-unit (STU) encoder, which generates hidden speech units common to both whispered and normal speech, and a unit-to-speech (UTS) decoder, which reconstructs speech from the encoded speech units. Unlike the existing methods, this conversion is user-independent and does not require a paired dataset for whispered and normal speech. The UTS decoder can reconstruct speech in any target speaker's voice from speech units, and it requires only an unlabeled target speaker's speech data. We confirmed that the quality of the speech converted from a whisper was improved while preserving its natural prosody. Additionally, we confirmed the effectiveness of the proposed approach to perform speech reconstruction for people with speech or hearing disabilities. (project page: http://lab.rekimoto.org/projects/wesper ) 1 authors · Mar 2, 2023
3 LibriTTS-R: A Restored Multi-Speaker Text-to-Speech Corpus This paper introduces a new speech dataset called ``LibriTTS-R'' designed for text-to-speech (TTS) use. It is derived by applying speech restoration to the LibriTTS corpus, which consists of 585 hours of speech data at 24 kHz sampling rate from 2,456 speakers and the corresponding texts. The constituent samples of LibriTTS-R are identical to those of LibriTTS, with only the sound quality improved. Experimental results show that the LibriTTS-R ground-truth samples showed significantly improved sound quality compared to those in LibriTTS. In addition, neural end-to-end TTS trained with LibriTTS-R achieved speech naturalness on par with that of the ground-truth samples. The corpus is freely available for download from http://www.openslr.org/141/. 10 authors · May 30, 2023 2
- GenSE: Generative Speech Enhancement via Language Models using Hierarchical Modeling Semantic information refers to the meaning conveyed through words, phrases, and contextual relationships within a given linguistic structure. Humans can leverage semantic information, such as familiar linguistic patterns and contextual cues, to reconstruct incomplete or masked speech signals in noisy environments. However, existing speech enhancement (SE) approaches often overlook the rich semantic information embedded in speech, which is crucial for improving intelligibility, speaker consistency, and overall quality of enhanced speech signals. To enrich the SE model with semantic information, we employ language models as an efficient semantic learner and propose a comprehensive framework tailored for language model-based speech enhancement, called GenSE. Specifically, we approach SE as a conditional language modeling task rather than a continuous signal regression problem defined in existing works. This is achieved by tokenizing speech signals into semantic tokens using a pre-trained self-supervised model and into acoustic tokens using a custom-designed single-quantizer neural codec model. To improve the stability of language model predictions, we propose a hierarchical modeling method that decouples the generation of clean semantic tokens and clean acoustic tokens into two distinct stages. Moreover, we introduce a token chain prompting mechanism during the acoustic token generation stage to ensure timbre consistency throughout the speech enhancement process. Experimental results on benchmark datasets demonstrate that our proposed approach outperforms state-of-the-art SE systems in terms of speech quality and generalization capability. 6 authors · Feb 5
- Speech Denoising in the Waveform Domain with Self-Attention In this work, we present CleanUNet, a causal speech denoising model on the raw waveform. The proposed model is based on an encoder-decoder architecture combined with several self-attention blocks to refine its bottleneck representations, which is crucial to obtain good results. The model is optimized through a set of losses defined over both waveform and multi-resolution spectrograms. The proposed method outperforms the state-of-the-art models in terms of denoised speech quality from various objective and subjective evaluation metrics. We release our code and models at https://github.com/nvidia/cleanunet. 4 authors · Feb 15, 2022
- RescueSpeech: A German Corpus for Speech Recognition in Search and Rescue Domain Despite recent advancements in speech recognition, there are still difficulties in accurately transcribing conversational and emotional speech in noisy and reverberant acoustic environments. This poses a particular challenge in the search and rescue (SAR) domain, where transcribing conversations among rescue team members is crucial to support real-time decision-making. The scarcity of speech data and associated background noise in SAR scenarios make it difficult to deploy robust speech recognition systems. To address this issue, we have created and made publicly available a German speech dataset called RescueSpeech. This dataset includes real speech recordings from simulated rescue exercises. Additionally, we have released competitive training recipes and pre-trained models. Our study indicates that the current level of performance achieved by state-of-the-art methods is still far from being acceptable. 5 authors · Jun 6, 2023
1 Back Transcription as a Method for Evaluating Robustness of Natural Language Understanding Models to Speech Recognition Errors In a spoken dialogue system, an NLU model is preceded by a speech recognition system that can deteriorate the performance of natural language understanding. This paper proposes a method for investigating the impact of speech recognition errors on the performance of natural language understanding models. The proposed method combines the back transcription procedure with a fine-grained technique for categorizing the errors that affect the performance of NLU models. The method relies on the usage of synthesized speech for NLU evaluation. We show that the use of synthesized speech in place of audio recording does not change the outcomes of the presented technique in a significant way. 4 authors · Oct 25, 2023
- Bridging the Gap Between Clean Data Training and Real-World Inference for Spoken Language Understanding Spoken language understanding (SLU) system usually consists of various pipeline components, where each component heavily relies on the results of its upstream ones. For example, Intent detection (ID), and slot filling (SF) require its upstream automatic speech recognition (ASR) to transform the voice into text. In this case, the upstream perturbations, e.g. ASR errors, environmental noise and careless user speaking, will propagate to the ID and SF models, thus deteriorating the system performance. Therefore, the well-performing SF and ID models are expected to be noise resistant to some extent. However, existing models are trained on clean data, which causes a gap between clean data training and real-world inference. To bridge the gap, we propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space. Meanwhile, we design a denoising generation model to reduce the impact of the low-quality samples. Experiments on the widely-used dataset, i.e. Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment. The source code will be released. 4 authors · Apr 13, 2021
1 Diffusion-based speech enhancement with a weighted generative-supervised learning loss Diffusion-based generative models have recently gained attention in speech enhancement (SE), providing an alternative to conventional supervised methods. These models transform clean speech training samples into Gaussian noise centered at noisy speech, and subsequently learn a parameterized model to reverse this process, conditionally on noisy speech. Unlike supervised methods, generative-based SE approaches usually rely solely on an unsupervised loss, which may result in less efficient incorporation of conditioned noisy speech. To address this issue, we propose augmenting the original diffusion training objective with a mean squared error (MSE) loss, measuring the discrepancy between estimated enhanced speech and ground-truth clean speech at each reverse process iteration. Experimental results demonstrate the effectiveness of our proposed methodology. 3 authors · Sep 19, 2023
2 HyPoradise: An Open Baseline for Generative Speech Recognition with Large Language Models Advancements in deep neural networks have allowed automatic speech recognition (ASR) systems to attain human parity on several publicly available clean speech datasets. However, even state-of-the-art ASR systems experience performance degradation when confronted with adverse conditions, as a well-trained acoustic model is sensitive to variations in the speech domain, e.g., background noise. Intuitively, humans address this issue by relying on their linguistic knowledge: the meaning of ambiguous spoken terms is usually inferred from contextual cues thereby reducing the dependency on the auditory system. Inspired by this observation, we introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction, where N-best decoding hypotheses provide informative elements for true transcription prediction. This approach is a paradigm shift from the traditional language model rescoring strategy that can only select one candidate hypothesis as the output transcription. The proposed benchmark contains a novel dataset, HyPoradise (HP), encompassing more than 334,000 pairs of N-best hypotheses and corresponding accurate transcriptions across prevalent speech domains. Given this dataset, we examine three types of error correction techniques based on LLMs with varying amounts of labeled hypotheses-transcription pairs, which gains a significant word error rate (WER) reduction. Experimental evidence demonstrates the proposed technique achieves a breakthrough by surpassing the upper bound of traditional re-ranking based methods. More surprisingly, LLM with reasonable prompt and its generative capability can even correct those tokens that are missing in N-best list. We make our results publicly accessible for reproducible pipelines with released pre-trained models, thus providing a new evaluation paradigm for ASR error correction with LLMs. 6 authors · Sep 27, 2023
- EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation We release the EARS (Expressive Anechoic Recordings of Speech) dataset, a high-quality speech dataset comprising 107 speakers from diverse backgrounds, totaling in 100 hours of clean, anechoic speech data. The dataset covers a large range of different speaking styles, including emotional speech, different reading styles, non-verbal sounds, and conversational freeform speech. We benchmark various methods for speech enhancement and dereverberation on the dataset and evaluate their performance through a set of instrumental metrics. In addition, we conduct a listening test with 20 participants for the speech enhancement task, where a generative method is preferred. We introduce a blind test set that allows for automatic online evaluation of uploaded data. Dataset download links and automatic evaluation server can be found online. 8 authors · Jun 10, 2024
- Libri-Light: A Benchmark for ASR with Limited or No Supervision We introduce a new collection of spoken English audio suitable for training speech recognition systems under limited or no supervision. It is derived from open-source audio books from the LibriVox project. It contains over 60K hours of audio, which is, to our knowledge, the largest freely-available corpus of speech. The audio has been segmented using voice activity detection and is tagged with SNR, speaker ID and genre descriptions. Additionally, we provide baseline systems and evaluation metrics working under three settings: (1) the zero resource/unsupervised setting (ABX), (2) the semi-supervised setting (PER, CER) and (3) the distant supervision setting (WER). Settings (2) and (3) use limited textual resources (10 minutes to 10 hours) aligned with the speech. Setting (3) uses large amounts of unaligned text. They are evaluated on the standard LibriSpeech dev and test sets for comparison with the supervised state-of-the-art. 15 authors · Dec 17, 2019
- Hi-Fi Multi-Speaker English TTS Dataset This paper introduces a new multi-speaker English dataset for training text-to-speech models. The dataset is based on LibriVox audiobooks and Project Gutenberg texts, both in the public domain. The new dataset contains about 292 hours of speech from 10 speakers with at least 17 hours per speaker sampled at 44.1 kHz. To select speech samples with high quality, we considered audio recordings with a signal bandwidth of at least 13 kHz and a signal-to-noise ratio (SNR) of at least 32 dB. The dataset is publicly released at http://www.openslr.org/109/ . 4 authors · Apr 3, 2021
1 AV2Wav: Diffusion-Based Re-synthesis from Continuous Self-supervised Features for Audio-Visual Speech Enhancement Speech enhancement systems are typically trained using pairs of clean and noisy speech. In audio-visual speech enhancement (AVSE), there is not as much ground-truth clean data available; most audio-visual datasets are collected in real-world environments with background noise and reverberation, hampering the development of AVSE. In this work, we introduce AV2Wav, a resynthesis-based audio-visual speech enhancement approach that can generate clean speech despite the challenges of real-world training data. We obtain a subset of nearly clean speech from an audio-visual corpus using a neural quality estimator, and then train a diffusion model on this subset to generate waveforms conditioned on continuous speech representations from AV-HuBERT with noise-robust training. We use continuous rather than discrete representations to retain prosody and speaker information. With this vocoding task alone, the model can perform speech enhancement better than a masking-based baseline. We further fine-tune the diffusion model on clean/noisy utterance pairs to improve the performance. Our approach outperforms a masking-based baseline in terms of both automatic metrics and a human listening test and is close in quality to the target speech in the listening test. Audio samples can be found at https://home.ttic.edu/~jcchou/demo/avse/avse_demo.html. 3 authors · Sep 14, 2023
- ADIMA: Abuse Detection In Multilingual Audio Abusive content detection in spoken text can be addressed by performing Automatic Speech Recognition (ASR) and leveraging advancements in natural language processing. However, ASR models introduce latency and often perform sub-optimally for profane words as they are underrepresented in training corpora and not spoken clearly or completely. Exploration of this problem entirely in the audio domain has largely been limited by the lack of audio datasets. Building on these challenges, we propose ADIMA, a novel, linguistically diverse, ethically sourced, expert annotated and well-balanced multilingual profanity detection audio dataset comprising of 11,775 audio samples in 10 Indic languages spanning 65 hours and spoken by 6,446 unique users. Through quantitative experiments across monolingual and cross-lingual zero-shot settings, we take the first step in democratizing audio based content moderation in Indic languages and set forth our dataset to pave future work. 4 authors · Feb 16, 2022
- FreeVC: Towards High-Quality Text-Free One-Shot Voice Conversion Voice conversion (VC) can be achieved by first extracting source content information and target speaker information, and then reconstructing waveform with these information. However, current approaches normally either extract dirty content information with speaker information leaked in, or demand a large amount of annotated data for training. Besides, the quality of reconstructed waveform can be degraded by the mismatch between conversion model and vocoder. In this paper, we adopt the end-to-end framework of VITS for high-quality waveform reconstruction, and propose strategies for clean content information extraction without text annotation. We disentangle content information by imposing an information bottleneck to WavLM features, and propose the spectrogram-resize based data augmentation to improve the purity of extracted content information. Experimental results show that the proposed method outperforms the latest VC models trained with annotated data and has greater robustness. 3 authors · Oct 27, 2022
- Spectral Codecs: Spectrogram-Based Audio Codecs for High Quality Speech Synthesis Historically, most speech models in machine-learning have used the mel-spectrogram as a speech representation. Recently, discrete audio tokens produced by neural audio codecs have become a popular alternate speech representation for speech synthesis tasks such as text-to-speech (TTS). However, the data distribution produced by such codecs is too complex for some TTS models to predict, hence requiring large autoregressive models to get reasonable quality. Typical audio codecs compress and reconstruct the time-domain audio signal. We propose a spectral codec which compresses the mel-spectrogram and reconstructs the time-domain audio signal. A study of objective audio quality metrics suggests that our spectral codec has comparable perceptual quality to equivalent audio codecs. Furthermore, non-autoregressive TTS models trained with the proposed spectral codec generate audio with significantly higher quality than when trained with mel-spectrograms or audio codecs. 5 authors · Jun 7, 2024
- Prediction of speech intelligibility with DNN-based performance measures This paper presents a speech intelligibility model based on automatic speech recognition (ASR), combining phoneme probabilities from deep neural networks (DNN) and a performance measure that estimates the word error rate from these probabilities. This model does not require the clean speech reference nor the word labels during testing as the ASR decoding step, which finds the most likely sequence of words given phoneme posterior probabilities, is omitted. The model is evaluated via the root-mean-squared error between the predicted and observed speech reception thresholds from eight normal-hearing listeners. The recognition task consists of identifying noisy words from a German matrix sentence test. The speech material was mixed with eight noise maskers covering different modulation types, from speech-shaped stationary noise to a single-talker masker. The prediction performance is compared to five established models and an ASR-model using word labels. Two combinations of features and networks were tested. Both include temporal information either at the feature level (amplitude modulation filterbanks and a feed-forward network) or captured by the architecture (mel-spectrograms and a time-delay deep neural network, TDNN). The TDNN model is on par with the DNN while reducing the number of parameters by a factor of 37; this optimization allows parallel streams on dedicated hearing aid hardware as a forward-pass can be computed within the 10ms of each frame. The proposed model performs almost as well as the label-based model and produces more accurate predictions than the baseline models. 5 authors · Mar 17, 2022
- Can Visual Context Improve Automatic Speech Recognition for an Embodied Agent? The usage of automatic speech recognition (ASR) systems are becoming omnipresent ranging from personal assistant to chatbots, home, and industrial automation systems, etc. Modern robots are also equipped with ASR capabilities for interacting with humans as speech is the most natural interaction modality. However, ASR in robots faces additional challenges as compared to a personal assistant. Being an embodied agent, a robot must recognize the physical entities around it and therefore reliably recognize the speech containing the description of such entities. However, current ASR systems are often unable to do so due to limitations in ASR training, such as generic datasets and open-vocabulary modeling. Also, adverse conditions during inference, such as noise, accented, and far-field speech makes the transcription inaccurate. In this work, we present a method to incorporate a robot's visual information into an ASR system and improve the recognition of a spoken utterance containing a visible entity. Specifically, we propose a new decoder biasing technique to incorporate the visual context while ensuring the ASR output does not degrade for incorrect context. We achieve a 59% relative reduction in WER from an unmodified ASR system. 2 authors · Oct 21, 2022
1 Golos: Russian Dataset for Speech Research This paper introduces a novel Russian speech dataset called Golos, a large corpus suitable for speech research. The dataset mainly consists of recorded audio files manually annotated on the crowd-sourcing platform. The total duration of the audio is about 1240 hours. We have made the corpus freely available to download, along with the acoustic model with CTC loss prepared on this corpus. Additionally, transfer learning was applied to improve the performance of the acoustic model. In order to evaluate the quality of the dataset with the beam-search algorithm, we have built a 3-gram language model on the open Common Crawl dataset. The total word error rate (WER) metrics turned out to be about 3.3% and 11.5%. 3 authors · Jun 18, 2021
- Snow Mountain: Dataset of Audio Recordings of The Bible in Low Resource Languages Automatic Speech Recognition (ASR) has increasing utility in the modern world. There are a many ASR models available for languages with large amounts of training data like English. However, low-resource languages are poorly represented. In response we create and release an open-licensed and formatted dataset of audio recordings of the Bible in low-resource northern Indian languages. We setup multiple experimental splits and train and analyze two competitive ASR models to serve as the baseline for future research using this data. 4 authors · Jun 1, 2022
1 Harmonicity Plays a Critical Role in DNN Based Versus in Biologically-Inspired Monaural Speech Segregation Systems Recent advancements in deep learning have led to drastic improvements in speech segregation models. Despite their success and growing applicability, few efforts have been made to analyze the underlying principles that these networks learn to perform segregation. Here we analyze the role of harmonicity on two state-of-the-art Deep Neural Networks (DNN)-based models- Conv-TasNet and DPT-Net. We evaluate their performance with mixtures of natural speech versus slightly manipulated inharmonic speech, where harmonics are slightly frequency jittered. We find that performance deteriorates significantly if one source is even slightly harmonically jittered, e.g., an imperceptible 3% harmonic jitter degrades performance of Conv-TasNet from 15.4 dB to 0.70 dB. Training the model on inharmonic speech does not remedy this sensitivity, instead resulting in worse performance on natural speech mixtures, making inharmonicity a powerful adversarial factor in DNN models. Furthermore, additional analyses reveal that DNN algorithms deviate markedly from biologically inspired algorithms that rely primarily on timing cues and not harmonicity to segregate speech. 4 authors · Mar 8, 2022
- DisfluencySpeech -- Single-Speaker Conversational Speech Dataset with Paralanguage Laughing, sighing, stuttering, and other forms of paralanguage do not contribute any direct lexical meaning to speech, but they provide crucial propositional context that aids semantic and pragmatic processes such as irony. It is thus important for artificial social agents to both understand and be able to generate speech with semantically-important paralanguage. Most speech datasets do not include transcribed non-lexical speech sounds and disfluencies, while those that do are typically multi-speaker datasets where each speaker provides relatively little audio. This makes it challenging to train conversational Text-to-Speech (TTS) synthesis models that include such paralinguistic components. We thus present DisfluencySpeech, a studio-quality labeled English speech dataset with paralanguage. A single speaker recreates nearly 10 hours of expressive utterances from the Switchboard-1 Telephone Speech Corpus (Switchboard), simulating realistic informal conversations. To aid the development of a TTS model that is able to predictively synthesise paralanguage from text without such components, we provide three different transcripts at different levels of information removal (removal of non-speech events, removal of non-sentence elements, and removal of false starts), as well as benchmark TTS models trained on each of these levels. 2 authors · Jun 13, 2024
- ToXCL: A Unified Framework for Toxic Speech Detection and Explanation The proliferation of online toxic speech is a pertinent problem posing threats to demographic groups. While explicit toxic speech contains offensive lexical signals, implicit one consists of coded or indirect language. Therefore, it is crucial for models not only to detect implicit toxic speech but also to explain its toxicity. This draws a unique need for unified frameworks that can effectively detect and explain implicit toxic speech. Prior works mainly formulated the task of toxic speech detection and explanation as a text generation problem. Nonetheless, models trained using this strategy can be prone to suffer from the consequent error propagation problem. Moreover, our experiments reveal that the detection results of such models are much lower than those that focus only on the detection task. To bridge these gaps, we introduce ToXCL, a unified framework for the detection and explanation of implicit toxic speech. Our model consists of three modules: a (i) Target Group Generator to generate the targeted demographic group(s) of a given post; an (ii) Encoder-Decoder Model in which the encoder focuses on detecting implicit toxic speech and is boosted by a (iii) Teacher Classifier via knowledge distillation, and the decoder generates the necessary explanation. ToXCL achieves new state-of-the-art effectiveness, and outperforms baselines significantly. 5 authors · Mar 25, 2024
- AdVerb: Visually Guided Audio Dereverberation We present AdVerb, a novel audio-visual dereverberation framework that uses visual cues in addition to the reverberant sound to estimate clean audio. Although audio-only dereverberation is a well-studied problem, our approach incorporates the complementary visual modality to perform audio dereverberation. Given an image of the environment where the reverberated sound signal has been recorded, AdVerb employs a novel geometry-aware cross-modal transformer architecture that captures scene geometry and audio-visual cross-modal relationship to generate a complex ideal ratio mask, which, when applied to the reverberant audio predicts the clean sound. The effectiveness of our method is demonstrated through extensive quantitative and qualitative evaluations. Our approach significantly outperforms traditional audio-only and audio-visual baselines on three downstream tasks: speech enhancement, speech recognition, and speaker verification, with relative improvements in the range of 18% - 82% on the LibriSpeech test-clean set. We also achieve highly satisfactory RT60 error scores on the AVSpeech dataset. 6 authors · Aug 23, 2023
- ContentVec: An Improved Self-Supervised Speech Representation by Disentangling Speakers Self-supervised learning in speech involves training a speech representation network on a large-scale unannotated speech corpus, and then applying the learned representations to downstream tasks. Since the majority of the downstream tasks of SSL learning in speech largely focus on the content information in speech, the most desirable speech representations should be able to disentangle unwanted variations, such as speaker variations, from the content. However, disentangling speakers is very challenging, because removing the speaker information could easily result in a loss of content as well, and the damage of the latter usually far outweighs the benefit of the former. In this paper, we propose a new SSL method that can achieve speaker disentanglement without severe loss of content. Our approach is adapted from the HuBERT framework, and incorporates disentangling mechanisms to regularize both the teacher labels and the learned representations. We evaluate the benefit of speaker disentanglement on a set of content-related downstream tasks, and observe a consistent and notable performance advantage of our speaker-disentangled representations. 8 authors · Apr 20, 2022
3 Augmenting text for spoken language understanding with Large Language Models Spoken semantic parsing (SSP) involves generating machine-comprehensible parses from input speech. Training robust models for existing application domains represented in training data or extending to new domains requires corresponding triplets of speech-transcript-semantic parse data, which is expensive to obtain. In this paper, we address this challenge by examining methods that can use transcript-semantic parse data (unpaired text) without corresponding speech. First, when unpaired text is drawn from existing textual corpora, Joint Audio Text (JAT) and Text-to-Speech (TTS) are compared as ways to generate speech representations for unpaired text. Experiments on the STOP dataset show that unpaired text from existing and new domains improves performance by 2% and 30% in absolute Exact Match (EM) respectively. Second, we consider the setting when unpaired text is not available in existing textual corpora. We propose to prompt Large Language Models (LLMs) to generate unpaired text for existing and new domains. Experiments show that examples and words that co-occur with intents can be used to generate unpaired text with Llama 2.0. Using the generated text with JAT and TTS for spoken semantic parsing improves EM on STOP by 1.4% and 2.6% absolute for existing and new domains respectively. 10 authors · Sep 17, 2023
10 FastVoiceGrad: One-step Diffusion-Based Voice Conversion with Adversarial Conditional Diffusion Distillation Diffusion-based voice conversion (VC) techniques such as VoiceGrad have attracted interest because of their high VC performance in terms of speech quality and speaker similarity. However, a notable limitation is the slow inference caused by the multi-step reverse diffusion. Therefore, we propose FastVoiceGrad, a novel one-step diffusion-based VC that reduces the number of iterations from dozens to one while inheriting the high VC performance of the multi-step diffusion-based VC. We obtain the model using adversarial conditional diffusion distillation (ACDD), leveraging the ability of generative adversarial networks and diffusion models while reconsidering the initial states in sampling. Evaluations of one-shot any-to-any VC demonstrate that FastVoiceGrad achieves VC performance superior to or comparable to that of previous multi-step diffusion-based VC while enhancing the inference speed. Audio samples are available at https://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/fastvoicegrad/. 4 authors · Sep 3, 2024 2
1 LMCodec: A Low Bitrate Speech Codec With Causal Transformer Models We introduce LMCodec, a causal neural speech codec that provides high quality audio at very low bitrates. The backbone of the system is a causal convolutional codec that encodes audio into a hierarchy of coarse-to-fine tokens using residual vector quantization. LMCodec trains a Transformer language model to predict the fine tokens from the coarse ones in a generative fashion, allowing for the transmission of fewer codes. A second Transformer predicts the uncertainty of the next codes given the past transmitted codes, and is used to perform conditional entropy coding. A MUSHRA subjective test was conducted and shows that the quality is comparable to reference codecs at higher bitrates. Example audio is available at https://mjenrungrot.github.io/chrome-media-audio-papers/publications/lmcodec. 7 authors · Mar 22, 2023
- Analytic Study of Text-Free Speech Synthesis for Raw Audio using a Self-Supervised Learning Model We examine the text-free speech representations of raw audio obtained from a self-supervised learning (SSL) model by analyzing the synthesized speech using the SSL representations instead of conventional text representations. Since raw audio does not have paired speech representations as transcribed texts do, obtaining speech representations from unpaired speech is crucial for augmenting available datasets for speech synthesis. Specifically, the proposed speech synthesis is conducted using discrete symbol representations from the SSL model in comparison with text representations, and analytical examinations of the synthesized speech have been carried out. The results empirically show that using text representations is advantageous for preserving semantic information, while using discrete symbol representations is superior for preserving acoustic content, including prosodic and intonational information. 3 authors · Dec 4, 2024
- Speech Resynthesis from Discrete Disentangled Self-Supervised Representations We propose using self-supervised discrete representations for the task of speech resynthesis. To generate disentangled representation, we separately extract low-bitrate representations for speech content, prosodic information, and speaker identity. This allows to synthesize speech in a controllable manner. We analyze various state-of-the-art, self-supervised representation learning methods and shed light on the advantages of each method while considering reconstruction quality and disentanglement properties. Specifically, we evaluate the F0 reconstruction, speaker identification performance (for both resynthesis and voice conversion), recordings' intelligibility, and overall quality using subjective human evaluation. Lastly, we demonstrate how these representations can be used for an ultra-lightweight speech codec. Using the obtained representations, we can get to a rate of 365 bits per second while providing better speech quality than the baseline methods. Audio samples can be found under the following link: speechbot.github.io/resynthesis. 8 authors · Apr 1, 2021
- ASR Benchmarking: Need for a More Representative Conversational Dataset Automatic Speech Recognition (ASR) systems have achieved remarkable performance on widely used benchmarks such as LibriSpeech and Fleurs. However, these benchmarks do not adequately reflect the complexities of real-world conversational environments, where speech is often unstructured and contains disfluencies such as pauses, interruptions, and diverse accents. In this study, we introduce a multilingual conversational dataset, derived from TalkBank, consisting of unstructured phone conversation between adults. Our results show a significant performance drop across various state-of-the-art ASR models when tested in conversational settings. Furthermore, we observe a correlation between Word Error Rate and the presence of speech disfluencies, highlighting the critical need for more realistic, conversational ASR benchmarks. 4 authors · Sep 18, 2024
12 Apollo: Band-sequence Modeling for High-Quality Audio Restoration Audio restoration has become increasingly significant in modern society, not only due to the demand for high-quality auditory experiences enabled by advanced playback devices, but also because the growing capabilities of generative audio models necessitate high-fidelity audio. Typically, audio restoration is defined as a task of predicting undistorted audio from damaged input, often trained using a GAN framework to balance perception and distortion. Since audio degradation is primarily concentrated in mid- and high-frequency ranges, especially due to codecs, a key challenge lies in designing a generator capable of preserving low-frequency information while accurately reconstructing high-quality mid- and high-frequency content. Inspired by recent advancements in high-sample-rate music separation, speech enhancement, and audio codec models, we propose Apollo, a generative model designed for high-sample-rate audio restoration. Apollo employs an explicit frequency band split module to model the relationships between different frequency bands, allowing for more coherent and higher-quality restored audio. Evaluated on the MUSDB18-HQ and MoisesDB datasets, Apollo consistently outperforms existing SR-GAN models across various bit rates and music genres, particularly excelling in complex scenarios involving mixtures of multiple instruments and vocals. Apollo significantly improves music restoration quality while maintaining computational efficiency. The source code for Apollo is publicly available at https://github.com/JusperLee/Apollo. 2 authors · Sep 12, 2024 2
3 Look Once to Hear: Target Speech Hearing with Noisy Examples In crowded settings, the human brain can focus on speech from a target speaker, given prior knowledge of how they sound. We introduce a novel intelligent hearable system that achieves this capability, enabling target speech hearing to ignore all interfering speech and noise, but the target speaker. A naive approach is to require a clean speech example to enroll the target speaker. This is however not well aligned with the hearable application domain since obtaining a clean example is challenging in real world scenarios, creating a unique user interface problem. We present the first enrollment interface where the wearer looks at the target speaker for a few seconds to capture a single, short, highly noisy, binaural example of the target speaker. This noisy example is used for enrollment and subsequent speech extraction in the presence of interfering speakers and noise. Our system achieves a signal quality improvement of 7.01 dB using less than 5 seconds of noisy enrollment audio and can process 8 ms of audio chunks in 6.24 ms on an embedded CPU. Our user studies demonstrate generalization to real-world static and mobile speakers in previously unseen indoor and outdoor multipath environments. Finally, our enrollment interface for noisy examples does not cause performance degradation compared to clean examples, while being convenient and user-friendly. Taking a step back, this paper takes an important step towards enhancing the human auditory perception with artificial intelligence. We provide code and data at: https://github.com/vb000/LookOnceToHear. 5 authors · May 10, 2024
- Improving performance of real-time full-band blind packet-loss concealment with predictive network Packet loss concealment (PLC) is a tool for enhancing speech degradation caused by poor network conditions or underflow/overflow in audio processing pipelines. We propose a real-time recurrent method that leverages previous outputs to mitigate artefact of lost packets without the prior knowledge of loss mask. The proposed full-band recurrent network (FRN) model operates at 48 kHz, which is suitable for high-quality telecommunication applications. Experiment results highlight the superiority of FRN over an offline non-causal baseline and a top performer in a recent PLC challenge. 3 authors · Nov 8, 2022
1 Exploiting Foundation Models and Speech Enhancement for Parkinson's Disease Detection from Speech in Real-World Operative Conditions This work is concerned with devising a robust Parkinson's (PD) disease detector from speech in real-world operating conditions using (i) foundational models, and (ii) speech enhancement (SE) methods. To this end, we first fine-tune several foundational-based models on the standard PC-GITA (s-PC-GITA) clean data. Our results demonstrate superior performance to previously proposed models. Second, we assess the generalization capability of the PD models on the extended PC-GITA (e-PC-GITA) recordings, collected in real-world operative conditions, and observe a severe drop in performance moving from ideal to real-world conditions. Third, we align training and testing conditions applaying off-the-shelf SE techniques on e-PC-GITA, and a significant boost in performance is observed only for the foundational-based models. Finally, combining the two best foundational-based models trained on s-PC-GITA, namely WavLM Base and Hubert Base, yielded top performance on the enhanced e-PC-GITA. 6 authors · Jun 23, 2024
1 BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications Automatic speech recognition (ASR) allows transcribing the communications between air traffic controllers (ATCOs) and aircraft pilots. The transcriptions are used later to extract ATC named entities, e.g., aircraft callsigns. One common challenge is speech activity detection (SAD) and speaker diarization (SD). In the failure condition, two or more segments remain in the same recording, jeopardizing the overall performance. We propose a system that combines SAD and a BERT model to perform speaker change detection and speaker role detection (SRD) by chunking ASR transcripts, i.e., SD with a defined number of speakers together with SRD. The proposed model is evaluated on real-life public ATC databases. Our BERT SD model baseline reaches up to 10% and 20% token-based Jaccard error rate (JER) in public and private ATC databases. We also achieved relative improvements of 32% and 7.7% in JERs and SD error rate (DER), respectively, compared to VBx, a well-known SD system. 8 authors · Oct 12, 2021
- Anonymizing Speech: Evaluating and Designing Speaker Anonymization Techniques The growing use of voice user interfaces has led to a surge in the collection and storage of speech data. While data collection allows for the development of efficient tools powering most speech services, it also poses serious privacy issues for users as centralized storage makes private personal speech data vulnerable to cyber threats. With the increasing use of voice-based digital assistants like Amazon's Alexa, Google's Home, and Apple's Siri, and with the increasing ease with which personal speech data can be collected, the risk of malicious use of voice-cloning and speaker/gender/pathological/etc. recognition has increased. This thesis proposes solutions for anonymizing speech and evaluating the degree of the anonymization. In this work, anonymization refers to making personal speech data unlinkable to an identity while maintaining the usefulness (utility) of the speech signal (e.g., access to linguistic content). We start by identifying several challenges that evaluation protocols need to consider to evaluate the degree of privacy protection properly. We clarify how anonymization systems must be configured for evaluation purposes and highlight that many practical deployment configurations do not permit privacy evaluation. Furthermore, we study and examine the most common voice conversion-based anonymization system and identify its weak points before suggesting new methods to overcome some limitations. We isolate all components of the anonymization system to evaluate the degree of speaker PPI associated with each of them. Then, we propose several transformation methods for each component to reduce as much as possible speaker PPI while maintaining utility. We promote anonymization algorithms based on quantization-based transformation as an alternative to the most-used and well-known noise-based approach. Finally, we endeavor a new attack method to invert anonymization. 1 authors · Aug 5, 2023
- Learning Disentangled Speech Representations with Contrastive Learning and Time-Invariant Retrieval Voice conversion refers to transferring speaker identity with well-preserved content. Better disentanglement of speech representations leads to better voice conversion. Recent studies have found that phonetic information from input audio has the potential ability to well represent content. Besides, the speaker-style modeling with pre-trained models making the process more complex. To tackle these issues, we introduce a new method named "CTVC" which utilizes disentangled speech representations with contrastive learning and time-invariant retrieval. Specifically, a similarity-based compression module is used to facilitate a more intimate connection between the frame-level hidden features and linguistic information at phoneme-level. Additionally, a time-invariant retrieval is proposed for timbre extraction based on multiple segmentations and mutual information. Experimental results demonstrate that "CTVC" outperforms previous studies and improves the sound quality and similarity of converted results. 6 authors · Jan 15, 2024
1 Perceiving Music Quality with GANs Several methods have been developed to assess the perceptual quality of audio under transforms like lossy compression. However, they require paired reference signals of the unaltered content, limiting their use in applications where references are unavailable. This has hindered progress in audio generation and style transfer, where a no-reference quality assessment method would allow more reproducible comparisons across methods. We propose training a GAN on a large music library, and using its discriminator as a no-reference quality assessment measure of the perceived quality of music. This method is unsupervised, needs no access to degraded material and can be tuned for various domains of music. In a listening test with 448 human subjects, where participants rated professionally produced music tracks degraded with different levels and types of signal degradations such as waveshaping distortion and low-pass filtering, we establish a dataset of human rated material. By using the human rated dataset we show that the discriminator score correlates significantly with the subjective ratings, suggesting that the proposed method can be used to create a no-reference musical audio quality assessment measure. 3 authors · Jun 11, 2020
- Speaker Anonymization with Phonetic Intermediate Representations In this work, we propose a speaker anonymization pipeline that leverages high quality automatic speech recognition and synthesis systems to generate speech conditioned on phonetic transcriptions and anonymized speaker embeddings. Using phones as the intermediate representation ensures near complete elimination of speaker identity information from the input while preserving the original phonetic content as much as possible. Our experimental results on LibriSpeech and VCTK corpora reveal two key findings: 1) although automatic speech recognition produces imperfect transcriptions, our neural speech synthesis system can handle such errors, making our system feasible and robust, and 2) combining speaker embeddings from different resources is beneficial and their appropriate normalization is crucial. Overall, our final best system outperforms significantly the baselines provided in the Voice Privacy Challenge 2020 in terms of privacy robustness against a lazy-informed attacker while maintaining high intelligibility and naturalness of the anonymized speech. 6 authors · Jul 11, 2022
- Multi-task self-supervised learning for Robust Speech Recognition Despite the growing interest in unsupervised learning, extracting meaningful knowledge from unlabelled audio remains an open challenge. To take a step in this direction, we recently proposed a problem-agnostic speech encoder (PASE), that combines a convolutional encoder followed by multiple neural networks, called workers, tasked to solve self-supervised problems (i.e., ones that do not require manual annotations as ground truth). PASE was shown to capture relevant speech information, including speaker voice-print and phonemes. This paper proposes PASE+, an improved version of PASE for robust speech recognition in noisy and reverberant environments. To this end, we employ an online speech distortion module, that contaminates the input signals with a variety of random disturbances. We then propose a revised encoder that better learns short- and long-term speech dynamics with an efficient combination of recurrent and convolutional networks. Finally, we refine the set of workers used in self-supervision to encourage better cooperation. Results on TIMIT, DIRHA and CHiME-5 show that PASE+ significantly outperforms both the previous version of PASE as well as common acoustic features. Interestingly, PASE+ learns transferable representations suitable for highly mismatched acoustic conditions. 7 authors · Jan 24, 2020
- Enhancing the Stability of LLM-based Speech Generation Systems through Self-Supervised Representations Large Language Models (LLMs) are one of the most promising technologies for the next era of speech generation systems, due to their scalability and in-context learning capabilities. Nevertheless, they suffer from multiple stability issues at inference time, such as hallucinations, content skipping or speech repetitions. In this work, we introduce a new self-supervised Voice Conversion (VC) architecture which can be used to learn to encode transitory features, such as content, separately from stationary ones, such as speaker ID or recording conditions, creating speaker-disentangled representations. Using speaker-disentangled codes to train LLMs for text-to-speech (TTS) allows the LLM to generate the content and the style of the speech only from the text, similarly to humans, while the speaker identity is provided by the decoder of the VC model. Results show that LLMs trained over speaker-disentangled self-supervised representations provide an improvement of 4.7pp in speaker similarity over SOTA entangled representations, and a word error rate (WER) 5.4pp lower. Furthermore, they achieve higher naturalness than human recordings of the LibriTTS test-other dataset. Finally, we show that using explicit reference embedding negatively impacts intelligibility (stability), with WER increasing by 14pp compared to the model that only uses text to infer the style. 9 authors · Feb 5, 2024
- Towards General-Purpose Text-Instruction-Guided Voice Conversion This paper introduces a novel voice conversion (VC) model, guided by text instructions such as "articulate slowly with a deep tone" or "speak in a cheerful boyish voice". Unlike traditional methods that rely on reference utterances to determine the attributes of the converted speech, our model adds versatility and specificity to voice conversion. The proposed VC model is a neural codec language model which processes a sequence of discrete codes, resulting in the code sequence of converted speech. It utilizes text instructions as style prompts to modify the prosody and emotional information of the given speech. In contrast to previous approaches, which often rely on employing separate encoders like prosody and content encoders to handle different aspects of the source speech, our model handles various information of speech in an end-to-end manner. Experiments have demonstrated the impressive capabilities of our model in comprehending instructions and delivering reasonable results. 8 authors · Sep 25, 2023
- Pandora's Box or Aladdin's Lamp: A Comprehensive Analysis Revealing the Role of RAG Noise in Large Language Models Retrieval-Augmented Generation (RAG) has emerged as a crucial method for addressing hallucinations in large language models (LLMs). While recent research has extended RAG models to complex noisy scenarios, these explorations often confine themselves to limited noise types and presuppose that noise is inherently detrimental to LLMs, potentially deviating from real-world retrieval environments and restricting practical applicability. In this paper, we define seven distinct noise types from a linguistic perspective and establish a Noise RAG Benchmark (NoiserBench), a comprehensive evaluation framework encompassing multiple datasets and reasoning tasks. Through empirical evaluation of eight representative LLMs with diverse architectures and scales, we reveal that these noises can be further categorized into two practical groups: noise that is beneficial to LLMs (aka beneficial noise) and noise that is harmful to LLMs (aka harmful noise). While harmful noise generally impairs performance, beneficial noise may enhance several aspects of model capabilities and overall performance. Our analysis offers insights for developing more robust, adaptable RAG solutions and mitigating hallucinations across diverse retrieval scenarios. 6 authors · Aug 24, 2024
- DRVC: A Framework of Any-to-Any Voice Conversion with Self-Supervised Learning Any-to-any voice conversion problem aims to convert voices for source and target speakers, which are out of the training data. Previous works wildly utilize the disentangle-based models. The disentangle-based model assumes the speech consists of content and speaker style information and aims to untangle them to change the style information for conversion. Previous works focus on reducing the dimension of speech to get the content information. But the size is hard to determine to lead to the untangle overlapping problem. We propose the Disentangled Representation Voice Conversion (DRVC) model to address the issue. DRVC model is an end-to-end self-supervised model consisting of the content encoder, timbre encoder, and generator. Instead of the previous work for reducing speech size to get content, we propose a cycle for restricting the disentanglement by the Cycle Reconstruct Loss and Same Loss. The experiments show there is an improvement for converted speech on quality and voice similarity. 5 authors · Feb 22, 2022
- Voice Disorder Analysis: a Transformer-based Approach Voice disorders are pathologies significantly affecting patient quality of life. However, non-invasive automated diagnosis of these pathologies is still under-explored, due to both a shortage of pathological voice data, and diversity of the recording types used for the diagnosis. This paper proposes a novel solution that adopts transformers directly working on raw voice signals and addresses data shortage through synthetic data generation and data augmentation. Further, we consider many recording types at the same time, such as sentence reading and sustained vowel emission, by employing a Mixture of Expert ensemble to align the predictions on different data types. The experimental results, obtained on both public and private datasets, show the effectiveness of our solution in the disorder detection and classification tasks and largely improve over existing approaches. 7 authors · Jun 20, 2024
- LipVoicer: Generating Speech from Silent Videos Guided by Lip Reading Lip-to-speech involves generating a natural-sounding speech synchronized with a soundless video of a person talking. Despite recent advances, current methods still cannot produce high-quality speech with high levels of intelligibility for challenging and realistic datasets such as LRS3. In this work, we present LipVoicer, a novel method that generates high-quality speech, even for in-the-wild and rich datasets, by incorporating the text modality. Given a silent video, we first predict the spoken text using a pre-trained lip-reading network. We then condition a diffusion model on the video and use the extracted text through a classifier-guidance mechanism where a pre-trained ASR serves as the classifier. LipVoicer outperforms multiple lip-to-speech baselines on LRS2 and LRS3, which are in-the-wild datasets with hundreds of unique speakers in their test set and an unrestricted vocabulary. Moreover, our experiments show that the inclusion of the text modality plays a major role in the intelligibility of the produced speech, readily perceptible while listening, and is empirically reflected in the substantial reduction of the WER metric. We demonstrate the effectiveness of LipVoicer through human evaluation, which shows that it produces more natural and synchronized speech signals compared to competing methods. Finally, we created a demo showcasing LipVoicer's superiority in producing natural, synchronized, and intelligible speech, providing additional evidence of its effectiveness. Project page and code: https://github.com/yochaiye/LipVoicer 5 authors · Jun 5, 2023
- LibriMix: An Open-Source Dataset for Generalizable Speech Separation In recent years, wsj0-2mix has become the reference dataset for single-channel speech separation. Most deep learning-based speech separation models today are benchmarked on it. However, recent studies have shown important performance drops when models trained on wsj0-2mix are evaluated on other, similar datasets. To address this generalization issue, we created LibriMix, an open-source alternative to wsj0-2mix, and to its noisy extension, WHAM!. Based on LibriSpeech, LibriMix consists of two- or three-speaker mixtures combined with ambient noise samples from WHAM!. Using Conv-TasNet, we achieve competitive performance on all LibriMix versions. In order to fairly evaluate across datasets, we introduce a third test set based on VCTK for speech and WHAM! for noise. Our experiments show that the generalization error is smaller for models trained with LibriMix than with WHAM!, in both clean and noisy conditions. Aiming towards evaluation in more realistic, conversation-like scenarios, we also release a sparsely overlapping version of LibriMix's test set. 5 authors · May 22, 2020
- HUI-Audio-Corpus-German: A high quality TTS dataset The increasing availability of audio data on the internet lead to a multitude of datasets for development and training of text to speech applications, based on neural networks. Highly differing quality of voice, low sampling rates, lack of text normalization and disadvantageous alignment of audio samples to corresponding transcript sentences still limit the performance of deep neural networks trained on this task. Additionally, data resources in languages like German are still very limited. We introduce the "HUI-Audio-Corpus-German", a large, open-source dataset for TTS engines, created with a processing pipeline, which produces high quality audio to transcription alignments and decreases manual effort needed for creation. 3 authors · Jun 11, 2021
1 KS-Net: Multi-band joint speech restoration and enhancement network for 2024 ICASSP SSI Challenge This paper presents the speech restoration and enhancement system created by the 1024K team for the ICASSP 2024 Speech Signal Improvement (SSI) Challenge. Our system consists of a generative adversarial network (GAN) in complex-domain for speech restoration and a fine-grained multi-band fusion module for speech enhancement. In the blind test set of SSI, the proposed system achieves an overall mean opinion score (MOS) of 3.49 based on ITU-T P.804 and a Word Accuracy Rate (WAcc) of 0.78 for the real-time track, as well as an overall P.804 MOS of 3.43 and a WAcc of 0.78 for the non-real-time track, ranking 1st in both tracks. 10 authors · Feb 2, 2024
10 Zero-shot Cross-lingual Voice Transfer for TTS In this paper, we introduce a zero-shot Voice Transfer (VT) module that can be seamlessly integrated into a multi-lingual Text-to-speech (TTS) system to transfer an individual's voice across languages. Our proposed VT module comprises a speaker-encoder that processes reference speech, a bottleneck layer, and residual adapters, connected to preexisting TTS layers. We compare the performance of various configurations of these components and report Mean Opinion Score (MOS) and Speaker Similarity across languages. Using a single English reference speech per speaker, we achieve an average voice transfer similarity score of 73% across nine target languages. Vocal characteristics contribute significantly to the construction and perception of individual identity. The loss of one's voice, due to physical or neurological conditions, can lead to a profound sense of loss, impacting one's core identity. As a case study, we demonstrate that our approach can not only transfer typical speech but also restore the voices of individuals with dysarthria, even when only atypical speech samples are available - a valuable utility for those who have never had typical speech or banked their voice. Cross-lingual typical audio samples, plus videos demonstrating voice restoration for dysarthric speakers are available here (google.github.io/tacotron/publications/zero_shot_voice_transfer). 7 authors · Sep 20, 2024 2
1 Speech Denoising Without Clean Training Data: A Noise2Noise Approach This paper tackles the problem of the heavy dependence of clean speech data required by deep learning based audio-denoising methods by showing that it is possible to train deep speech denoising networks using only noisy speech samples. Conventional wisdom dictates that in order to achieve good speech denoising performance, there is a requirement for a large quantity of both noisy speech samples and perfectly clean speech samples, resulting in a need for expensive audio recording equipment and extremely controlled soundproof recording studios. These requirements pose significant challenges in data collection, especially in economically disadvantaged regions and for low resource languages. This work shows that speech denoising deep neural networks can be successfully trained utilizing only noisy training audio. Furthermore it is revealed that such training regimes achieve superior denoising performance over conventional training regimes utilizing clean training audio targets, in cases involving complex noise distributions and low Signal-to-Noise ratios (high noise environments). This is demonstrated through experiments studying the efficacy of our proposed approach over both real-world noises and synthetic noises using the 20 layered Deep Complex U-Net architecture. 4 authors · Apr 8, 2021
7 A Suite for Acoustic Language Model Evaluation Speech language models have recently demonstrated great potential as universal speech processing systems. Such models have the ability to model the rich acoustic information existing in audio signals, beyond spoken content, such as emotion, background noise, etc. Despite this, evaluation benchmarks which evaluate awareness to a wide range of acoustic aspects, are lacking. To help bridge this gap, we introduce SALMon, a novel evaluation suite encompassing background noise, emotion, speaker identity and room impulse response. The proposed benchmarks both evaluate the consistency of the inspected element and how much it matches the spoken text. We follow a modelling based approach, measuring whether a model gives correct samples higher scores than incorrect ones. This approach makes the benchmark fast to compute even for large models. We evaluated several speech language models on SALMon, thus highlighting the strengths and weaknesses of each evaluated method. Code and data are publicly available at https://pages.cs.huji.ac.il/adiyoss-lab/salmon/ . 3 authors · Sep 11, 2024
- LibriVoxDeEn: A Corpus for German-to-English Speech Translation and German Speech Recognition We present a corpus of sentence-aligned triples of German audio, German text, and English translation, based on German audiobooks. The speech translation data consist of 110 hours of audio material aligned to over 50k parallel sentences. An even larger dataset comprising 547 hours of German speech aligned to German text is available for speech recognition. The audio data is read speech and thus low in disfluencies. The quality of audio and sentence alignments has been checked by a manual evaluation, showing that speech alignment quality is in general very high. The sentence alignment quality is comparable to well-used parallel translation data and can be adjusted by cutoffs on the automatic alignment score. To our knowledge, this corpus is to date the largest resource for German speech recognition and for end-to-end German-to-English speech translation. 4 authors · Oct 17, 2019
- EAD-VC: Enhancing Speech Auto-Disentanglement for Voice Conversion with IFUB Estimator and Joint Text-Guided Consistent Learning Using unsupervised learning to disentangle speech into content, rhythm, pitch, and timbre for voice conversion has become a hot research topic. Existing works generally take into account disentangling speech components through human-crafted bottleneck features which can not achieve sufficient information disentangling, while pitch and rhythm may still be mixed together. There is a risk of information overlap in the disentangling process which results in less speech naturalness. To overcome such limits, we propose a two-stage model to disentangle speech representations in a self-supervised manner without a human-crafted bottleneck design, which uses the Mutual Information (MI) with the designed upper bound estimator (IFUB) to separate overlapping information between speech components. Moreover, we design a Joint Text-Guided Consistent (TGC) module to guide the extraction of speech content and eliminate timbre leakage issues. Experiments show that our model can achieve a better performance than the baseline, regarding disentanglement effectiveness, speech naturalness, and similarity. Audio samples can be found at https://largeaudiomodel.com/eadvc. 6 authors · Apr 29, 2024
- FLEURS-R: A Restored Multilingual Speech Corpus for Generation Tasks This paper introduces FLEURS-R, a speech restoration applied version of the Few-shot Learning Evaluation of Universal Representations of Speech (FLEURS) corpus. FLEURS-R maintains an N-way parallel speech corpus in 102 languages as FLEURS, with improved audio quality and fidelity by applying the speech restoration model Miipher. The aim of FLEURS-R is to advance speech technology in more languages and catalyze research including text-to-speech (TTS) and other speech generation tasks in low-resource languages. Comprehensive evaluations with the restored speech and TTS baseline models trained from the new corpus show that the new corpus obtained significantly improved speech quality while maintaining the semantic contents of the speech. The corpus is publicly released via Hugging Face. 7 authors · Aug 12, 2024
- ClearBuds: Wireless Binaural Earbuds for Learning-Based Speech Enhancement We present ClearBuds, the first hardware and software system that utilizes a neural network to enhance speech streamed from two wireless earbuds. Real-time speech enhancement for wireless earbuds requires high-quality sound separation and background cancellation, operating in real-time and on a mobile phone. Clear-Buds bridges state-of-the-art deep learning for blind audio source separation and in-ear mobile systems by making two key technical contributions: 1) a new wireless earbud design capable of operating as a synchronized, binaural microphone array, and 2) a lightweight dual-channel speech enhancement neural network that runs on a mobile device. Our neural network has a novel cascaded architecture that combines a time-domain conventional neural network with a spectrogram-based frequency masking neural network to reduce the artifacts in the audio output. Results show that our wireless earbuds achieve a synchronization error less than 64 microseconds and our network has a runtime of 21.4 milliseconds on an accompanying mobile phone. In-the-wild evaluation with eight users in previously unseen indoor and outdoor multipath scenarios demonstrates that our neural network generalizes to learn both spatial and acoustic cues to perform noise suppression and background speech removal. In a user-study with 37 participants who spent over 15.4 hours rating 1041 audio samples collected in-the-wild, our system achieves improved mean opinion score and background noise suppression. Project page with demos: https://clearbuds.cs.washington.edu 7 authors · Jun 27, 2022
- Language-Codec: Reducing the Gaps Between Discrete Codec Representation and Speech Language Models In recent years, large language models have achieved significant success in generative tasks (e.g., speech cloning and audio generation) related to speech, audio, music, and other signal domains. A crucial element of these models is the discrete acoustic codecs, which serves as an intermediate representation replacing the mel-spectrogram. However, there exist several gaps between discrete codecs and downstream speech language models. Specifically, 1) most codec models are trained on only 1,000 hours of data, whereas most speech language models are trained on 60,000 hours; 2) Achieving good reconstruction performance requires the utilization of numerous codebooks, which increases the burden on downstream speech language models; 3) The initial channel of the codebooks contains excessive information, making it challenging to directly generate acoustic tokens from weakly supervised signals such as text in downstream tasks. Consequently, leveraging the characteristics of speech language models, we propose Language-Codec. In the Language-Codec, we introduce a Mask Channel Residual Vector Quantization (MCRVQ) mechanism along with improved Fourier transform structures and larger training datasets to address the aforementioned gaps. We compare our method with competing audio compression algorithms and observe significant outperformance across extensive evaluations. Furthermore, we also validate the efficiency of the Language-Codec on downstream speech language models. The source code and pre-trained models can be accessed at https://github.com/jishengpeng/languagecodec . 7 authors · Feb 19, 2024
- LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech This paper introduces a new speech corpus called "LibriTTS" designed for text-to-speech use. It is derived from the original audio and text materials of the LibriSpeech corpus, which has been used for training and evaluating automatic speech recognition systems. The new corpus inherits desired properties of the LibriSpeech corpus while addressing a number of issues which make LibriSpeech less than ideal for text-to-speech work. The released corpus consists of 585 hours of speech data at 24kHz sampling rate from 2,456 speakers and the corresponding texts. Experimental results show that neural end-to-end TTS models trained from the LibriTTS corpus achieved above 4.0 in mean opinion scores in naturalness in five out of six evaluation speakers. The corpus is freely available for download from http://www.openslr.org/60/. 8 authors · Apr 5, 2019
1 Convoifilter: A case study of doing cocktail party speech recognition This paper presents an end-to-end model designed to improve automatic speech recognition (ASR) for a particular speaker in a crowded, noisy environment. The model utilizes a single-channel speech enhancement module that isolates the speaker's voice from background noise, along with an ASR module. Through this approach, the model is able to decrease the word error rate (WER) of ASR from 80% to 26.4%. Typically, these two components are adjusted independently due to variations in data requirements. However, speech enhancement can create anomalies that decrease ASR efficiency. By implementing a joint fine-tuning strategy, the model can reduce the WER from 26.4% in separate tuning to 14.5% in joint tuning. 2 authors · Aug 22, 2023
- Large Language Models are Efficient Learners of Noise-Robust Speech Recognition Recent advances in large language models (LLMs) have promoted generative error correction (GER) for automatic speech recognition (ASR), which leverages the rich linguistic knowledge and powerful reasoning ability of LLMs to improve recognition results. The latest work proposes a GER benchmark with HyPoradise dataset to learn the mapping from ASR N-best hypotheses to ground-truth transcription by efficient LLM finetuning, which shows great effectiveness but lacks specificity on noise-robust ASR. In this work, we extend the benchmark to noisy conditions and investigate if we can teach LLMs to perform denoising for GER just like what robust ASR do}, where one solution is introducing noise information as a conditioner into LLM. However, directly incorporating noise embeddings from audio encoder could harm the LLM tuning due to cross-modality gap. To this end, we propose to extract a language-space noise embedding from the N-best list to represent the noise conditions of source speech, which can promote the denoising process in GER. Furthermore, in order to enhance its representation ability of audio noise, we design a knowledge distillation (KD) approach via mutual information estimation to distill the real noise information in audio embeddings to our language embedding. Experiments on various latest LLMs demonstrate our approach achieves a new breakthrough with up to 53.9% correction improvement in terms of word error rate while with limited training data. Analysis shows that our language-space noise embedding can well represent the noise conditions of source speech, under which off-the-shelf LLMs show strong ability of language-space denoising. 7 authors · Jan 18, 2024
- Generic Indic Text-to-speech Synthesisers with Rapid Adaptation in an End-to-end Framework Building text-to-speech (TTS) synthesisers for Indian languages is a difficult task owing to a large number of active languages. Indian languages can be classified into a finite set of families, prominent among them, Indo-Aryan and Dravidian. The proposed work exploits this property to build a generic TTS system using multiple languages from the same family in an end-to-end framework. Generic systems are quite robust as they are capable of capturing a variety of phonotactics across languages. These systems are then adapted to a new language in the same family using small amounts of adaptation data. Experiments indicate that good quality TTS systems can be built using only 7 minutes of adaptation data. An average degradation mean opinion score of 3.98 is obtained for the adapted TTSes. Extensive analysis of systematic interactions between languages in the generic TTSes is carried out. x-vectors are included as speaker embedding to synthesise text in a particular speaker's voice. An interesting observation is that the prosody of the target speaker's voice is preserved. These results are quite promising as they indicate the capability of generic TTSes to handle speaker and language switching seamlessly, along with the ease of adaptation to a new language. 2 authors · Jun 12, 2020
- RyanSpeech: A Corpus for Conversational Text-to-Speech Synthesis This paper introduces RyanSpeech, a new speech corpus for research on automated text-to-speech (TTS) systems. Publicly available TTS corpora are often noisy, recorded with multiple speakers, or lack quality male speech data. In order to meet the need for a high quality, publicly available male speech corpus within the field of speech recognition, we have designed and created RyanSpeech which contains textual materials from real-world conversational settings. These materials contain over 10 hours of a professional male voice actor's speech recorded at 44.1 kHz. This corpus's design and pipeline make RyanSpeech ideal for developing TTS systems in real-world applications. To provide a baseline for future research, protocols, and benchmarks, we trained 4 state-of-the-art speech models and a vocoder on RyanSpeech. The results show 3.36 in mean opinion scores (MOS) in our best model. We have made both the corpus and trained models for public use. 4 authors · Jun 15, 2021
- Deep Speech: Scaling up end-to-end speech recognition We present a state-of-the-art speech recognition system developed using end-to-end deep learning. Our architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, our system does not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learns a function that is robust to such effects. We do not need a phoneme dictionary, nor even the concept of a "phoneme." Key to our approach is a well-optimized RNN training system that uses multiple GPUs, as well as a set of novel data synthesis techniques that allow us to efficiently obtain a large amount of varied data for training. Our system, called Deep Speech, outperforms previously published results on the widely studied Switchboard Hub5'00, achieving 16.0% error on the full test set. Deep Speech also handles challenging noisy environments better than widely used, state-of-the-art commercial speech systems. 11 authors · Dec 17, 2014
- You don't understand me!: Comparing ASR results for L1 and L2 speakers of Swedish The performance of Automatic Speech Recognition (ASR) systems has constantly increased in state-of-the-art development. However, performance tends to decrease considerably in more challenging conditions (e.g., background noise, multiple speaker social conversations) and with more atypical speakers (e.g., children, non-native speakers or people with speech disorders), which signifies that general improvements do not necessarily transfer to applications that rely on ASR, e.g., educational software for younger students or language learners. In this study, we focus on the gap in performance between recognition results for native and non-native, read and spontaneous, Swedish utterances transcribed by different ASR services. We compare the recognition results using Word Error Rate and analyze the linguistic factors that may generate the observed transcription errors. 4 authors · May 22, 2024
- Self-Supervised Speech Quality Estimation and Enhancement Using Only Clean Speech Speech quality estimation has recently undergone a paradigm shift from human-hearing expert designs to machine-learning models. However, current models rely mainly on supervised learning, which is time-consuming and expensive for label collection. To solve this problem, we propose VQScore, a self-supervised metric for evaluating speech based on the quantization error of a vector-quantized-variational autoencoder (VQ-VAE). The training of VQ-VAE relies on clean speech; hence, large quantization errors can be expected when the speech is distorted. To further improve correlation with real quality scores, domain knowledge of speech processing is incorporated into the model design. We found that the vector quantization mechanism could also be used for self-supervised speech enhancement (SE) model training. To improve the robustness of the encoder for SE, a novel self-distillation mechanism combined with adversarial training is introduced. In summary, the proposed speech quality estimation method and enhancement models require only clean speech for training without any label requirements. Experimental results show that the proposed VQScore and enhancement model are competitive with supervised baselines. The code will be released after publication. 4 authors · Feb 26, 2024
- A Deep Dive into the Disparity of Word Error Rates Across Thousands of NPTEL MOOC Videos Automatic speech recognition (ASR) systems are designed to transcribe spoken language into written text and find utility in a variety of applications including voice assistants and transcription services. However, it has been observed that state-of-the-art ASR systems which deliver impressive benchmark results, struggle with speakers of certain regions or demographics due to variation in their speech properties. In this work, we describe the curation of a massive speech dataset of 8740 hours consisting of sim9.8K technical lectures in the English language along with their transcripts delivered by instructors representing various parts of Indian demography. The dataset is sourced from the very popular NPTEL MOOC platform. We use the curated dataset to measure the existing disparity in YouTube Automatic Captions and OpenAI Whisper model performance across the diverse demographic traits of speakers in India. While there exists disparity due to gender, native region, age and speech rate of speakers, disparity based on caste is non-existent. We also observe statistically significant disparity across the disciplines of the lectures. These results indicate the need of more inclusive and robust ASR systems and more representational datasets for disparity evaluation in them. 3 authors · Jul 20, 2023
- Self-supervised Neural Factor Analysis for Disentangling Utterance-level Speech Representations Self-supervised learning (SSL) speech models such as wav2vec and HuBERT have demonstrated state-of-the-art performance on automatic speech recognition (ASR) and proved to be extremely useful in low label-resource settings. However, the success of SSL models has yet to transfer to utterance-level tasks such as speaker, emotion, and language recognition, which still require supervised fine-tuning of the SSL models to obtain good performance. We argue that the problem is caused by the lack of disentangled representations and an utterance-level learning objective for these tasks. Inspired by how HuBERT uses clustering to discover hidden acoustic units, we formulate a factor analysis (FA) model that uses the discovered hidden acoustic units to align the SSL features. The underlying utterance-level representations are disentangled from the content of speech using probabilistic inference on the aligned features. Furthermore, the variational lower bound derived from the FA model provides an utterance-level objective, allowing error gradients to be backpropagated to the Transformer layers to learn highly discriminative acoustic units. When used in conjunction with HuBERT's masked prediction training, our models outperform the current best model, WavLM, on all utterance-level non-semantic tasks on the SUPERB benchmark with only 20% of labeled data. 4 authors · May 14, 2023
- VALL-E R: Robust and Efficient Zero-Shot Text-to-Speech Synthesis via Monotonic Alignment With the help of discrete neural audio codecs, large language models (LLM) have increasingly been recognized as a promising methodology for zero-shot Text-to-Speech (TTS) synthesis. However, sampling based decoding strategies bring astonishing diversity to generation, but also pose robustness issues such as typos, omissions and repetition. In addition, the high sampling rate of audio also brings huge computational overhead to the inference process of autoregression. To address these issues, we propose VALL-E R, a robust and efficient zero-shot TTS system, building upon the foundation of VALL-E. Specifically, we introduce a phoneme monotonic alignment strategy to strengthen the connection between phonemes and acoustic sequence, ensuring a more precise alignment by constraining the acoustic tokens to match their associated phonemes. Furthermore, we employ a codec-merging approach to downsample the discrete codes in shallow quantization layer, thereby accelerating the decoding speed while preserving the high quality of speech output. Benefiting from these strategies, VALL-E R obtains controllablity over phonemes and demonstrates its strong robustness by approaching the WER of ground truth. In addition, it requires fewer autoregressive steps, with over 60% time reduction during inference. This research has the potential to be applied to meaningful projects, including the creation of speech for those affected by aphasia. Audio samples will be available at: https://aka.ms/valler. 10 authors · Jun 12, 2024
- The Norwegian Parliamentary Speech Corpus The Norwegian Parliamentary Speech Corpus (NPSC) is a speech dataset with recordings of meetings from Stortinget, the Norwegian parliament. It is the first, publicly available dataset containing unscripted, Norwegian speech designed for training of automatic speech recognition (ASR) systems. The recordings are manually transcribed and annotated with language codes and speakers, and there are detailed metadata about the speakers. The transcriptions exist in both normalized and non-normalized form, and non-standardized words are explicitly marked and annotated with standardized equivalents. To test the usefulness of this dataset, we have compared an ASR system trained on the NPSC with a baseline system trained on only manuscript-read speech. These systems were tested on an independent dataset containing spontaneous, dialectal speech. The NPSC-trained system performed significantly better, with a 22.9% relative improvement in word error rate (WER). Moreover, training on the NPSC is shown to have a "democratizing" effect in terms of dialects, as improvements are generally larger for dialects with higher WER from the baseline system. 2 authors · Jan 26, 2022
- QASR: QCRI Aljazeera Speech Resource -- A Large Scale Annotated Arabic Speech Corpus We introduce the largest transcribed Arabic speech corpus, QASR, collected from the broadcast domain. This multi-dialect speech dataset contains 2,000 hours of speech sampled at 16kHz crawled from Aljazeera news channel. The dataset is released with lightly supervised transcriptions, aligned with the audio segments. Unlike previous datasets, QASR contains linguistically motivated segmentation, punctuation, speaker information among others. QASR is suitable for training and evaluating speech recognition systems, acoustics- and/or linguistics- based Arabic dialect identification, punctuation restoration, speaker identification, speaker linking, and potentially other NLP modules for spoken data. In addition to QASR transcription, we release a dataset of 130M words to aid in designing and training a better language model. We show that end-to-end automatic speech recognition trained on QASR reports a competitive word error rate compared to the previous MGB-2 corpus. We report baseline results for downstream natural language processing tasks such as named entity recognition using speech transcript. We also report the first baseline for Arabic punctuation restoration. We make the corpus available for the research community. 4 authors · Jun 24, 2021
- VoiceLDM: Text-to-Speech with Environmental Context This paper presents VoiceLDM, a model designed to produce audio that accurately follows two distinct natural language text prompts: the description prompt and the content prompt. The former provides information about the overall environmental context of the audio, while the latter conveys the linguistic content. To achieve this, we adopt a text-to-audio (TTA) model based on latent diffusion models and extend its functionality to incorporate an additional content prompt as a conditional input. By utilizing pretrained contrastive language-audio pretraining (CLAP) and Whisper, VoiceLDM is trained on large amounts of real-world audio without manual annotations or transcriptions. Additionally, we employ dual classifier-free guidance to further enhance the controllability of VoiceLDM. Experimental results demonstrate that VoiceLDM is capable of generating plausible audio that aligns well with both input conditions, even surpassing the speech intelligibility of the ground truth audio on the AudioCaps test set. Furthermore, we explore the text-to-speech (TTS) and zero-shot text-to-audio capabilities of VoiceLDM and show that it achieves competitive results. Demos and code are available at https://voiceldm.github.io. 4 authors · Sep 24, 2023
1 NaturalL2S: End-to-End High-quality Multispeaker Lip-to-Speech Synthesis with Differential Digital Signal Processing Recent advancements in visual speech recognition (VSR) have promoted progress in lip-to-speech synthesis, where pre-trained VSR models enhance the intelligibility of synthesized speech by providing valuable semantic information. The success achieved by cascade frameworks, which combine pseudo-VSR with pseudo-text-to-speech (TTS) or implicitly utilize the transcribed text, highlights the benefits of leveraging VSR models. However, these methods typically rely on mel-spectrograms as an intermediate representation, which may introduce a key bottleneck: the domain gap between synthetic mel-spectrograms, generated from inherently error-prone lip-to-speech mappings, and real mel-spectrograms used to train vocoders. This mismatch inevitably degrades synthesis quality. To bridge this gap, we propose Natural Lip-to-Speech (NaturalL2S), an end-to-end framework integrating acoustic inductive biases with differentiable speech generation components. Specifically, we introduce a fundamental frequency (F0) predictor to capture prosodic variations in synthesized speech. The predicted F0 then drives a Differentiable Digital Signal Processing (DDSP) synthesizer to generate a coarse signal which serves as prior information for subsequent speech synthesis. Additionally, instead of relying on a reference speaker embedding as an auxiliary input, our approach achieves satisfactory performance on speaker similarity without explicitly modelling speaker characteristics. Both objective and subjective evaluation results demonstrate that NaturalL2S can effectively enhance the quality of the synthesized speech when compared to state-of-the-art methods. Our demonstration page is accessible at https://yifan-liang.github.io/NaturalL2S/. 5 authors · Feb 17 1
- VoiceFilter-Lite: Streaming Targeted Voice Separation for On-Device Speech Recognition We introduce VoiceFilter-Lite, a single-channel source separation model that runs on the device to preserve only the speech signals from a target user, as part of a streaming speech recognition system. Delivering such a model presents numerous challenges: It should improve the performance when the input signal consists of overlapped speech, and must not hurt the speech recognition performance under all other acoustic conditions. Besides, this model must be tiny, fast, and perform inference in a streaming fashion, in order to have minimal impact on CPU, memory, battery and latency. We propose novel techniques to meet these multi-faceted requirements, including using a new asymmetric loss, and adopting adaptive runtime suppression strength. We also show that such a model can be quantized as a 8-bit integer model and run in realtime. 11 authors · Sep 9, 2020
10 StreamVoice: Streamable Context-Aware Language Modeling for Real-time Zero-Shot Voice Conversion Recent language model (LM) advancements have showcased impressive zero-shot voice conversion (VC) performance. However, existing LM-based VC models usually apply offline conversion from source semantics to acoustic features, demanding the complete source speech, and limiting their deployment to real-time applications. In this paper, we introduce StreamVoice, a novel streaming LM-based model for zero-shot VC, facilitating real-time conversion given arbitrary speaker prompts and source speech. Specifically, to enable streaming capability, StreamVoice employs a fully causal context-aware LM with a temporal-independent acoustic predictor, while alternately processing semantic and acoustic features at each time step of autoregression which eliminates the dependence on complete source speech. To address the potential performance degradation from the incomplete context in streaming processing, we enhance the context-awareness of the LM through two strategies: 1) teacher-guided context foresight, using a teacher model to summarize the present and future semantic context during training to guide the model's forecasting for missing context; 2) semantic masking strategy, promoting acoustic prediction from preceding corrupted semantic and acoustic input, enhancing context-learning ability. Notably, StreamVoice is the first LM-based streaming zero-shot VC model without any future look-ahead. Experimental results demonstrate StreamVoice's streaming conversion capability while maintaining zero-shot performance comparable to non-streaming VC systems. 7 authors · Jan 19, 2024 1
- HebDB: a Weakly Supervised Dataset for Hebrew Speech Processing We present HebDB, a weakly supervised dataset for spoken language processing in the Hebrew language. HebDB offers roughly 2500 hours of natural and spontaneous speech recordings in the Hebrew language, consisting of a large variety of speakers and topics. We provide raw recordings together with a pre-processed, weakly supervised, and filtered version. The goal of HebDB is to further enhance research and development of spoken language processing tools for the Hebrew language. Hence, we additionally provide two baseline systems for Automatic Speech Recognition (ASR): (i) a self-supervised model; and (ii) a fully supervised model. We present the performance of these two methods optimized on HebDB and compare them to current multi-lingual ASR alternatives. Results suggest the proposed method reaches better results than the evaluated baselines considering similar model sizes. Dataset, code, and models are publicly available under https://pages.cs.huji.ac.il/adiyoss-lab/HebDB/. 12 authors · Jul 10, 2024
1 Ultra-lightweight Neural Differential DSP Vocoder For High Quality Speech Synthesis Neural vocoders model the raw audio waveform and synthesize high-quality audio, but even the highly efficient ones, like MB-MelGAN and LPCNet, fail to run real-time on a low-end device like a smartglass. A pure digital signal processing (DSP) based vocoder can be implemented via lightweight fast Fourier transforms (FFT), and therefore, is a magnitude faster than any neural vocoder. A DSP vocoder often gets a lower audio quality due to consuming over-smoothed acoustic model predictions of approximate representations for the vocal tract. In this paper, we propose an ultra-lightweight differential DSP (DDSP) vocoder that uses a jointly optimized acoustic model with a DSP vocoder, and learns without an extracted spectral feature for the vocal tract. The model achieves audio quality comparable to neural vocoders with a high average MOS of 4.36 while being efficient as a DSP vocoder. Our C++ implementation, without any hardware-specific optimization, is at 15 MFLOPS, surpasses MB-MelGAN by 340 times in terms of FLOPS, and achieves a vocoder-only RTF of 0.003 and overall RTF of 0.044 while running single-threaded on a 2GHz Intel Xeon CPU. 5 authors · Jan 18, 2024 2
1 DM-Codec: Distilling Multimodal Representations for Speech Tokenization Recent advancements in speech-language models have yielded significant improvements in speech tokenization and synthesis. However, effectively mapping the complex, multidimensional attributes of speech into discrete tokens remains challenging. This process demands acoustic, semantic, and contextual information for precise speech representations. Existing speech representations generally fall into two categories: acoustic tokens from audio codecs and semantic tokens from speech self-supervised learning models. Although recent efforts have unified acoustic and semantic tokens for improved performance, they overlook the crucial role of contextual representation in comprehensive speech modeling. Our empirical investigations reveal that the absence of contextual representations results in elevated Word Error Rate (WER) and Word Information Lost (WIL) scores in speech transcriptions. To address these limitations, we propose two novel distillation approaches: (1) a language model (LM)-guided distillation method that incorporates contextual information, and (2) a combined LM and self-supervised speech model (SM)-guided distillation technique that effectively distills multimodal representations (acoustic, semantic, and contextual) into a comprehensive speech tokenizer, termed DM-Codec. The DM-Codec architecture adopts a streamlined encoder-decoder framework with a Residual Vector Quantizer (RVQ) and incorporates the LM and SM during the training process. Experiments show DM-Codec significantly outperforms state-of-the-art speech tokenization models, reducing WER by up to 13.46%, WIL by 9.82%, and improving speech quality by 5.84% and intelligibility by 1.85% on the LibriSpeech benchmark dataset. The code, samples, and model checkpoints are available at https://github.com/mubtasimahasan/DM-Codec. 9 authors · Oct 19, 2024 2
- Voice Cloning for Dysarthric Speech Synthesis: Addressing Data Scarcity in Speech-Language Pathology This study explores voice cloning to generate synthetic speech replicating the unique patterns of individuals with dysarthria. Using the TORGO dataset, we address data scarcity and privacy challenges in speech-language pathology. Our contributions include demonstrating that voice cloning preserves dysarthric speech characteristics, analyzing differences between real and synthetic data, and discussing implications for diagnostics, rehabilitation, and communication. We cloned voices from dysarthric and control speakers using a commercial platform, ensuring gender-matched synthetic voices. A licensed speech-language pathologist (SLP) evaluated a subset for dysarthria, speaker gender, and synthetic indicators. The SLP correctly identified dysarthria in all cases and speaker gender in 95% but misclassified 30% of synthetic samples as real, indicating high realism. Our results suggest synthetic speech effectively captures disordered characteristics and that voice cloning has advanced to produce high-quality data resembling real speech, even to trained professionals. This has critical implications for healthcare, where synthetic data can mitigate data scarcity, protect privacy, and enhance AI-driven diagnostics. By enabling the creation of diverse, high-quality speech datasets, voice cloning can improve generalizable models, personalize therapy, and advance assistive technologies for dysarthria. We publicly release our synthetic dataset to foster further research and collaboration, aiming to develop robust models that improve patient outcomes in speech-language pathology. 2 authors · Mar 3 1
- Large Pre-trained Language Models Contain Human-like Biases of What is Right and Wrong to Do Artificial writing is permeating our lives due to recent advances in large-scale, transformer-based language models (LMs) such as BERT, its variants, GPT-2/3, and others. Using them as pre-trained models and fine-tuning them for specific tasks, researchers have extended state of the art for many NLP tasks and shown that they capture not only linguistic knowledge but also retain general knowledge implicitly present in the data. Unfortunately, LMs trained on unfiltered text corpora suffer from degenerated and biased behaviour. While this is well established, we show that recent LMs also contain human-like biases of what is right and wrong to do, some form of ethical and moral norms of the society -- they bring a "moral direction" to surface. That is, we show that these norms can be captured geometrically by a direction, which can be computed, e.g., by a PCA, in the embedding space, reflecting well the agreement of phrases to social norms implicitly expressed in the training texts and providing a path for attenuating or even preventing toxic degeneration in LMs. Being able to rate the (non-)normativity of arbitrary phrases without explicitly training the LM for this task, we demonstrate the capabilities of the "moral direction" for guiding (even other) LMs towards producing normative text and showcase it on RealToxicityPrompts testbed, preventing the neural toxic degeneration in GPT-2. 5 authors · Mar 8, 2021
- Schrödinger Bridge for Generative Speech Enhancement This paper proposes a generative speech enhancement model based on Schr\"odinger bridge (SB). The proposed model is employing a tractable SB to formulate a data-to-data process between the clean speech distribution and the observed noisy speech distribution. The model is trained with a data prediction loss, aiming to recover the complex-valued clean speech coefficients, and an auxiliary time-domain loss is used to improve training of the model. The effectiveness of the proposed SB-based model is evaluated in two different speech enhancement tasks: speech denoising and speech dereverberation. The experimental results demonstrate that the proposed SB-based outperforms diffusion-based models in terms of speech quality metrics and ASR performance, e.g., resulting in relative word error rate reduction of 20% for denoising and 6% for dereverberation compared to the best baseline model. The proposed model also demonstrates improved efficiency, achieving better quality than the baselines for the same number of sampling steps and with a reduced computational cost. 4 authors · Jul 22, 2024
1 Autoregressive Diffusion Transformer for Text-to-Speech Synthesis Audio language models have recently emerged as a promising approach for various audio generation tasks, relying on audio tokenizers to encode waveforms into sequences of discrete symbols. Audio tokenization often poses a necessary compromise between code bitrate and reconstruction accuracy. When dealing with low-bitrate audio codes, language models are constrained to process only a subset of the information embedded in the audio, which in turn restricts their generative capabilities. To circumvent these issues, we propose encoding audio as vector sequences in continuous space mathbb R^d and autoregressively generating these sequences using a decoder-only diffusion transformer (ARDiT). Our findings indicate that ARDiT excels in zero-shot text-to-speech and exhibits performance that compares to or even surpasses that of state-of-the-art models. High-bitrate continuous speech representation enables almost flawless reconstruction, allowing our model to achieve nearly perfect speech editing. Our experiments reveal that employing Integral Kullback-Leibler (IKL) divergence for distillation at each autoregressive step significantly boosts the perceived quality of the samples. Simultaneously, it condenses the iterative sampling process of the diffusion model into a single step. Furthermore, ARDiT can be trained to predict several continuous vectors in one step, significantly reducing latency during sampling. Impressively, one of our models can generate 170 ms of 24 kHz speech per evaluation step with minimal degradation in performance. Audio samples are available at http://ardit-tts.github.io/ . 5 authors · Jun 8, 2024
- DiffSSD: A Diffusion-Based Dataset For Speech Forensics Diffusion-based speech generators are ubiquitous. These methods can generate very high quality synthetic speech and several recent incidents report their malicious use. To counter such misuse, synthetic speech detectors have been developed. Many of these detectors are trained on datasets which do not include diffusion-based synthesizers. In this paper, we demonstrate that existing detectors trained on one such dataset, ASVspoof2019, do not perform well in detecting synthetic speech from recent diffusion-based synthesizers. We propose the Diffusion-Based Synthetic Speech Dataset (DiffSSD), a dataset consisting of about 200 hours of labeled speech, including synthetic speech generated by 8 diffusion-based open-source and 2 commercial generators. We also examine the performance of existing synthetic speech detectors on DiffSSD in both closed-set and open-set scenarios. The results highlight the importance of this dataset in detecting synthetic speech generated from recent open-source and commercial speech generators. 4 authors · Sep 19, 2024
1 Damage Control During Domain Adaptation for Transducer Based Automatic Speech Recognition Automatic speech recognition models are often adapted to improve their accuracy in a new domain. A potential drawback of model adaptation to new domains is catastrophic forgetting, where the Word Error Rate on the original domain is significantly degraded. This paper addresses the situation when we want to simultaneously adapt automatic speech recognition models to a new domain and limit the degradation of accuracy on the original domain without access to the original training dataset. We propose several techniques such as a limited training strategy and regularized adapter modules for the Transducer encoder, prediction, and joiner network. We apply these methods to the Google Speech Commands and to the UK and Ireland English Dialect speech data set and obtain strong results on the new target domain while limiting the degradation on the original domain. 4 authors · Oct 6, 2022
- A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion The goal of voice conversion is to transform source speech into a target voice, keeping the content unchanged. In this paper, we focus on self-supervised representation learning for voice conversion. Specifically, we compare discrete and soft speech units as input features. We find that discrete representations effectively remove speaker information but discard some linguistic content - leading to mispronunciations. As a solution, we propose soft speech units. To learn soft units, we predict a distribution over discrete speech units. By modeling uncertainty, soft units capture more content information, improving the intelligibility and naturalness of converted speech. Samples available at https://ubisoft-laforge.github.io/speech/soft-vc/. Code available at https://github.com/bshall/soft-vc/. 6 authors · Nov 3, 2021
- NAST: Noise Aware Speech Tokenization for Speech Language Models Speech tokenization is the task of representing speech signals as a sequence of discrete units. Such representations can be later used for various downstream tasks including automatic speech recognition, text-to-speech, etc. More relevant to this study, such representation serves as the basis of Speech Language Models. In this work, we tackle the task of speech tokenization under the noisy setup and present NAST: Noise Aware Speech Tokenization for Speech Language Models. NAST is composed of three main components: (i) a predictor; (ii) a residual encoder; and (iii) a decoder. We evaluate the efficiency of NAST considering several spoken language modeling tasks and show that NAST is superior to the evaluated baselines across all setups. Lastly, we analyze NAST and show its disentanglement properties and robustness to signal variations in the form of noise, reverberation, pitch-shift, and time-stretch. Code and pre-trained models are available at https://github.com/ShovalMessica/NAST. 2 authors · Jun 16, 2024
- Context-Aware Attention Layers coupled with Optimal Transport Domain Adaptation methods for recognizing dementia from spontaneous speech Alzheimer's disease (AD) constitutes a complex neurocognitive disease and is the main cause of dementia. Although many studies have been proposed targeting at diagnosing dementia through spontaneous speech, there are still limitations. Existing state-of-the-art approaches, which propose multimodal methods, train separately language and acoustic models, employ majority-vote approaches, and concatenate the representations of the different modalities either at the input level, i.e., early fusion, or during training. Also, some of them employ self-attention layers, which calculate the dependencies between representations without considering the contextual information. In addition, no prior work has taken into consideration the model calibration. To address these limitations, we propose some new methods for detecting AD patients, which capture the intra- and cross-modal interactions. First, we convert the audio files into log-Mel spectrograms, their delta, and delta-delta and create in this way an image per audio file consisting of three channels. Next, we pass each transcript and image through BERT and DeiT models respectively. After that, context-based self-attention layers, self-attention layers with a gate model, and optimal transport domain adaptation methods are employed for capturing the intra- and inter-modal interactions. Finally, we exploit two methods for fusing the self and cross-attended features. For taking into account the model calibration, we apply label smoothing. We use both performance and calibration metrics. Experiments conducted on the ADReSS Challenge dataset indicate the efficacy of our introduced approaches over existing research initiatives with our best performing model reaching Accuracy and F1-score up to 91.25% and 91.06% respectively. 2 authors · May 25, 2023
- VoiceShop: A Unified Speech-to-Speech Framework for Identity-Preserving Zero-Shot Voice Editing We present VoiceShop, a novel speech-to-speech framework that can modify multiple attributes of speech, such as age, gender, accent, and speech style, in a single forward pass while preserving the input speaker's timbre. Previous works have been constrained to specialized models that can only edit these attributes individually and suffer from the following pitfalls: the magnitude of the conversion effect is weak, there is no zero-shot capability for out-of-distribution speakers, or the synthesized outputs exhibit undesirable timbre leakage. Our work proposes solutions for each of these issues in a simple modular framework based on a conditional diffusion backbone model with optional normalizing flow-based and sequence-to-sequence speaker attribute-editing modules, whose components can be combined or removed during inference to meet a wide array of tasks without additional model finetuning. Audio samples are available at https://voiceshopai.github.io. 9 authors · Apr 9, 2024
2 SSR-Speech: Towards Stable, Safe and Robust Zero-shot Text-based Speech Editing and Synthesis In this paper, we introduce SSR-Speech, a neural codec autoregressive model designed for stable, safe, and robust zero-shot text-based speech editing and text-to-speech synthesis. SSR-Speech is built on a Transformer decoder and incorporates classifier-free guidance to enhance the stability of the generation process. A watermark Encodec is proposed to embed frame-level watermarks into the edited regions of the speech so that which parts were edited can be detected. In addition, the waveform reconstruction leverages the original unedited speech segments, providing superior recovery compared to the Encodec model. Our approach achieves the state-of-the-art performance in the RealEdit speech editing task and the LibriTTS text-to-speech task, surpassing previous methods. Furthermore, SSR-Speech excels in multi-span speech editing and also demonstrates remarkable robustness to background sounds. Source code and demos are released. 8 authors · Sep 11, 2024 1
- LLaSE-G1: Incentivizing Generalization Capability for LLaMA-based Speech Enhancement Recent advancements in language models (LMs) have demonstrated strong capabilities in semantic understanding and contextual modeling, which have flourished in generative speech enhancement (SE). However, many LM-based SE approaches primarily focus on semantic information, often neglecting the critical role of acoustic information, which leads to acoustic inconsistency after enhancement and limited generalization across diverse SE tasks. In this paper, we introduce LLaSE-G1, a LLaMA-based language model that incentivizes generalization capabilities for speech enhancement. LLaSE-G1 offers the following key contributions: First, to mitigate acoustic inconsistency, LLaSE-G1 employs continuous representations from WavLM as input and predicts speech tokens from X-Codec2, maximizing acoustic preservation. Second, to promote generalization capability, LLaSE-G1 introduces dual-channel inputs and outputs, unifying multiple SE tasks without requiring task-specific IDs. Third, LLaSE-G1 outperforms prior task-specific discriminative and generative SE models, demonstrating scaling effects at test time and emerging capabilities for unseen SE tasks. Additionally, we release our code and models to support further research in this area. 13 authors · Mar 1
- Data Redaction from Conditional Generative Models Deep generative models are known to produce undesirable samples such as harmful content. Traditional mitigation methods include re-training from scratch, filtering, or editing; however, these are either computationally expensive or can be circumvented by third parties. In this paper, we take a different approach and study how to post-edit an already-trained conditional generative model so that it redacts certain conditionals that will, with high probability, lead to undesirable content. This is done by distilling the conditioning network in the models, giving a solution that is effective, efficient, controllable, and universal for a class of deep generative models. We conduct experiments on redacting prompts in text-to-image models and redacting voices in text-to-speech models. Our method is computationally light, leads to better redaction quality and robustness than baseline methods while still retaining high generation quality. 2 authors · May 18, 2023
- WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis This paper introduces WaveGrad 2, a non-autoregressive generative model for text-to-speech synthesis. WaveGrad 2 is trained to estimate the gradient of the log conditional density of the waveform given a phoneme sequence. The model takes an input phoneme sequence, and through an iterative refinement process, generates an audio waveform. This contrasts to the original WaveGrad vocoder which conditions on mel-spectrogram features, generated by a separate model. The iterative refinement process starts from Gaussian noise, and through a series of refinement steps (e.g., 50 steps), progressively recovers the audio sequence. WaveGrad 2 offers a natural way to trade-off between inference speed and sample quality, through adjusting the number of refinement steps. Experiments show that the model can generate high fidelity audio, approaching the performance of a state-of-the-art neural TTS system. We also report various ablation studies over different model configurations. Audio samples are available at https://wavegrad.github.io/v2. 7 authors · Jun 17, 2021
- SAR: Self-Supervised Anti-Distortion Representation for End-To-End Speech Model In recent Text-to-Speech (TTS) systems, a neural vocoder often generates speech samples by solely conditioning on acoustic features predicted from an acoustic model. However, there are always distortions existing in the predicted acoustic features, compared to those of the groundtruth, especially in the common case of poor acoustic modeling due to low-quality training data. To overcome such limits, we propose a Self-supervised learning framework to learn an Anti-distortion acoustic Representation (SAR) to replace human-crafted acoustic features by introducing distortion prior to an auto-encoder pre-training process. The learned acoustic representation from the proposed framework is proved anti-distortion compared to the most commonly used mel-spectrogram through both objective and subjective evaluation. 6 authors · Apr 23, 2023
5 WhisperX: Time-Accurate Speech Transcription of Long-Form Audio Large-scale, weakly-supervised speech recognition models, such as Whisper, have demonstrated impressive results on speech recognition across domains and languages. However, their application to long audio transcription via buffered or sliding window approaches is prone to drifting, hallucination & repetition; and prohibits batched transcription due to their sequential nature. Further, timestamps corresponding each utterance are prone to inaccuracies and word-level timestamps are not available out-of-the-box. To overcome these challenges, we present WhisperX, a time-accurate speech recognition system with word-level timestamps utilising voice activity detection and forced phoneme alignment. In doing so, we demonstrate state-of-the-art performance on long-form transcription and word segmentation benchmarks. Additionally, we show that pre-segmenting audio with our proposed VAD Cut & Merge strategy improves transcription quality and enables a twelve-fold transcription speedup via batched inference. 4 authors · Mar 1, 2023
- Recent Advances in Speech Language Models: A Survey Large Language Models (LLMs) have recently garnered significant attention, primarily for their capabilities in text-based interactions. However, natural human interaction often relies on speech, necessitating a shift towards voice-based models. A straightforward approach to achieve this involves a pipeline of ``Automatic Speech Recognition (ASR) + LLM + Text-to-Speech (TTS)", where input speech is transcribed to text, processed by an LLM, and then converted back to speech. Despite being straightforward, this method suffers from inherent limitations, such as information loss during modality conversion and error accumulation across the three stages. To address these issues, Speech Language Models (SpeechLMs) -- end-to-end models that generate speech without converting from text -- have emerged as a promising alternative. This survey paper provides the first comprehensive overview of recent methodologies for constructing SpeechLMs, detailing the key components of their architecture and the various training recipes integral to their development. Additionally, we systematically survey the various capabilities of SpeechLMs, categorize the evaluation metrics for SpeechLMs, and discuss the challenges and future research directions in this rapidly evolving field. 8 authors · Oct 1, 2024
- Towards Robust Family-Infant Audio Analysis Based on Unsupervised Pretraining of Wav2vec 2.0 on Large-Scale Unlabeled Family Audio To perform automatic family audio analysis, past studies have collected recordings using phone, video, or audio-only recording devices like LENA, investigated supervised learning methods, and used or fine-tuned general-purpose embeddings learned from large pretrained models. In this study, we advance the audio component of a new infant wearable multi-modal device called LittleBeats (LB) by learning family audio representation via wav2vec 2.0 (W2V2) pertaining. We show given a limited number of labeled LB home recordings, W2V2 pretrained using 1k-hour of unlabeled home recordings outperforms oracle W2V2 pretrained on 52k-hour unlabeled audio in terms of parent/infant speaker diarization (SD) and vocalization classifications (VC) at home. Extra relevant external unlabeled and labeled data further benefit W2V2 pretraining and fine-tuning. With SpecAug and environmental speech corruptions, we obtain 12% relative gain on SD and moderate boost on VC. Code and model weights are available. 3 authors · May 21, 2023
- A Contrastive Learning Approach to Mitigate Bias in Speech Models Speech models may be affected by performance imbalance in different population subgroups, raising concerns about fair treatment across these groups. Prior attempts to mitigate unfairness either focus on user-defined subgroups, potentially overlooking other affected subgroups, or do not explicitly improve the internal representation at the subgroup level. This paper proposes the first adoption of contrastive learning to mitigate speech model bias in underperforming subgroups. We employ a three-level learning technique that guides the model in focusing on different scopes for the contrastive loss, i.e., task, subgroup, and the errors within subgroups. The experiments on two spoken language understanding datasets and two languages demonstrate that our approach improves internal subgroup representations, thus reducing model bias and enhancing performance. 4 authors · Jun 20, 2024
- SilentCipher: Deep Audio Watermarking In the realm of audio watermarking, it is challenging to simultaneously encode imperceptible messages while enhancing the message capacity and robustness. Although recent advancements in deep learning-based methods bolster the message capacity and robustness over traditional methods, the encoded messages introduce audible artefacts that restricts their usage in professional settings. In this study, we introduce three key innovations. Firstly, our work is the first deep learning-based model to integrate psychoacoustic model based thresholding to achieve imperceptible watermarks. Secondly, we introduce psuedo-differentiable compression layers, enhancing the robustness of our watermarking algorithm. Lastly, we introduce a method to eliminate the need for perceptual losses, enabling us to achieve SOTA in both robustness as well as imperceptible watermarking. Our contributions lead us to SilentCipher, a model enabling users to encode messages within audio signals sampled at 44.1kHz. 4 authors · Jun 6, 2024
48 MinMo: A Multimodal Large Language Model for Seamless Voice Interaction Recent advancements in large language models (LLMs) and multimodal speech-text models have laid the groundwork for seamless voice interactions, enabling real-time, natural, and human-like conversations. Previous models for voice interactions are categorized as native and aligned. Native models integrate speech and text processing in one framework but struggle with issues like differing sequence lengths and insufficient pre-training. Aligned models maintain text LLM capabilities but are often limited by small datasets and a narrow focus on speech tasks. In this work, we introduce MinMo, a Multimodal Large Language Model with approximately 8B parameters for seamless voice interaction. We address the main limitations of prior aligned multimodal models. We train MinMo through multiple stages of speech-to-text alignment, text-to-speech alignment, speech-to-speech alignment, and duplex interaction alignment, on 1.4 million hours of diverse speech data and a broad range of speech tasks. After the multi-stage training, MinMo achieves state-of-the-art performance across various benchmarks for voice comprehension and generation while maintaining the capabilities of text LLMs, and also facilitates full-duplex conversation, that is, simultaneous two-way communication between the user and the system. Moreover, we propose a novel and simple voice decoder that outperforms prior models in voice generation. The enhanced instruction-following capabilities of MinMo supports controlling speech generation based on user instructions, with various nuances including emotions, dialects, and speaking rates, and mimicking specific voices. For MinMo, the speech-to-text latency is approximately 100ms, full-duplex latency is approximately 600ms in theory and 800ms in practice. The MinMo project web page is https://funaudiollm.github.io/minmo, and the code and models will be released soon. 36 authors · Jan 10 6
- USAT: A Universal Speaker-Adaptive Text-to-Speech Approach Conventional text-to-speech (TTS) research has predominantly focused on enhancing the quality of synthesized speech for speakers in the training dataset. The challenge of synthesizing lifelike speech for unseen, out-of-dataset speakers, especially those with limited reference data, remains a significant and unresolved problem. While zero-shot or few-shot speaker-adaptive TTS approaches have been explored, they have many limitations. Zero-shot approaches tend to suffer from insufficient generalization performance to reproduce the voice of speakers with heavy accents. While few-shot methods can reproduce highly varying accents, they bring a significant storage burden and the risk of overfitting and catastrophic forgetting. In addition, prior approaches only provide either zero-shot or few-shot adaptation, constraining their utility across varied real-world scenarios with different demands. Besides, most current evaluations of speaker-adaptive TTS are conducted only on datasets of native speakers, inadvertently neglecting a vast portion of non-native speakers with diverse accents. Our proposed framework unifies both zero-shot and few-shot speaker adaptation strategies, which we term as "instant" and "fine-grained" adaptations based on their merits. To alleviate the insufficient generalization performance observed in zero-shot speaker adaptation, we designed two innovative discriminators and introduced a memory mechanism for the speech decoder. To prevent catastrophic forgetting and reduce storage implications for few-shot speaker adaptation, we designed two adapters and a unique adaptation procedure. 3 authors · Apr 28, 2024
- Hallucinations in Neural Automatic Speech Recognition: Identifying Errors and Hallucinatory Models Hallucinations are a type of output error produced by deep neural networks. While this has been studied in natural language processing, they have not been researched previously in automatic speech recognition. Here, we define hallucinations in ASR as transcriptions generated by a model that are semantically unrelated to the source utterance, yet still fluent and coherent. The similarity of hallucinations to probable natural language outputs of the model creates a danger of deception and impacts the credibility of the system. We show that commonly used metrics, such as word error rates, cannot differentiate between hallucinatory and non-hallucinatory models. To address this, we propose a perturbation-based method for assessing the susceptibility of an automatic speech recognition (ASR) model to hallucination at test time, which does not require access to the training dataset. We demonstrate that this method helps to distinguish between hallucinatory and non-hallucinatory models that have similar baseline word error rates. We further explore the relationship between the types of ASR errors and the types of dataset noise to determine what types of noise are most likely to create hallucinatory outputs. We devise a framework for identifying hallucinations by analysing their semantic connection with the ground truth and their fluency. Finally, we discover how to induce hallucinations with a random noise injection to the utterance. 2 authors · Jan 3, 2024
- PriorGrad: Improving Conditional Denoising Diffusion Models with Data-Dependent Adaptive Prior Denoising diffusion probabilistic models have been recently proposed to generate high-quality samples by estimating the gradient of the data density. The framework defines the prior noise as a standard Gaussian distribution, whereas the corresponding data distribution may be more complicated than the standard Gaussian distribution, which potentially introduces inefficiency in denoising the prior noise into the data sample because of the discrepancy between the data and the prior. In this paper, we propose PriorGrad to improve the efficiency of the conditional diffusion model for speech synthesis (for example, a vocoder using a mel-spectrogram as the condition) by applying an adaptive prior derived from the data statistics based on the conditional information. We formulate the training and sampling procedures of PriorGrad and demonstrate the advantages of an adaptive prior through a theoretical analysis. Focusing on the speech synthesis domain, we consider the recently proposed diffusion-based speech generative models based on both the spectral and time domains and show that PriorGrad achieves faster convergence and inference with superior performance, leading to an improved perceptual quality and robustness to a smaller network capacity, and thereby demonstrating the efficiency of a data-dependent adaptive prior. 10 authors · Jun 11, 2021
- FA-GAN: Artifacts-free and Phase-aware High-fidelity GAN-based Vocoder Generative adversarial network (GAN) based vocoders have achieved significant attention in speech synthesis with high quality and fast inference speed. However, there still exist many noticeable spectral artifacts, resulting in the quality decline of synthesized speech. In this work, we adopt a novel GAN-based vocoder designed for few artifacts and high fidelity, called FA-GAN. To suppress the aliasing artifacts caused by non-ideal upsampling layers in high-frequency components, we introduce the anti-aliased twin deconvolution module in the generator. To alleviate blurring artifacts and enrich the reconstruction of spectral details, we propose a novel fine-grained multi-resolution real and imaginary loss to assist in the modeling of phase information. Experimental results reveal that FA-GAN outperforms the compared approaches in promoting audio quality and alleviating spectral artifacts, and exhibits superior performance when applied to unseen speaker scenarios. 3 authors · Jul 5, 2024 1
- Sentence Embedder Guided Utterance Encoder (SEGUE) for Spoken Language Understanding The pre-trained speech encoder wav2vec 2.0 performs very well on various spoken language understanding (SLU) tasks. However, on many tasks, it trails behind text encoders with textual input. To improve the understanding capability of SLU encoders, various studies have used knowledge distillation to transfer knowledge from natural language understanding (NLU) encoders. We use a very simple method of distilling from a textual sentence embedder directly into wav2vec 2.0 as pre-training, utilizing paired audio-text datasets. We observed that this method is indeed capable of improving SLU task performance in fine-tuned settings, as well as full-data and few-shot transfer on a frozen encoder. However, the model performs worse on certain tasks highlighting the strengths and weaknesses of our approach. 3 authors · May 20, 2023
- An Approach for Classification of Dysfluent and Fluent Speech Using K-NN And SVM This paper presents a new approach for classification of dysfluent and fluent speech using Mel-Frequency Cepstral Coefficient (MFCC). The speech is fluent when person's speech flows easily and smoothly. Sounds combine into syllable, syllables mix together into words and words link into sentences with little effort. When someone's speech is dysfluent, it is irregular and does not flow effortlessly. Therefore, a dysfluency is a break in the smooth, meaningful flow of speech. Stuttering is one such disorder in which the fluent flow of speech is disrupted by occurrences of dysfluencies such as repetitions, prolongations, interjections and so on. In this work we have considered three types of dysfluencies such as repetition, prolongation and interjection to characterize dysfluent speech. After obtaining dysfluent and fluent speech, the speech signals are analyzed in order to extract MFCC features. The k-Nearest Neighbor (k-NN) and Support Vector Machine (SVM) classifiers are used to classify the speech as dysfluent and fluent speech. The 80% of the data is used for training and 20% for testing. The average accuracy of 86.67% and 93.34% is obtained for dysfluent and fluent speech respectively. 2 authors · Jan 9, 2013
- Towards a Speech Foundation Model for Singapore and Beyond This technical report describes the MERaLiON Speech Encoder, a foundation model designed to support a wide range of downstream speech applications. Developed as part of Singapore's National Multimodal Large Language Model Programme, the MERaLiON Speech Encoder is tailored to address the speech processing needs in Singapore and the surrounding Southeast Asian region. The model currently supports mainly English, including the variety spoken in Singapore. We are actively expanding our datasets to gradually cover other languages in subsequent releases. The MERaLiON Speech Encoder was pre-trained from scratch on 200K hours of unlabelled speech data using a self-supervised learning approach based on masked language modelling. We describe our training procedure and hyperparameter tuning experiments in detail below. Our evaluation demonstrates improvements to spontaneous and Singapore speech benchmarks for speech recognition, while remaining competitive to other state-of-the-art speech encoders across ten other speech tasks. We commit to releasing our model, supporting broader research endeavours, both in Singapore and beyond. 9 authors · Dec 16, 2024
26 SpeechX: Neural Codec Language Model as a Versatile Speech Transformer Recent advancements in generative speech models based on audio-text prompts have enabled remarkable innovations like high-quality zero-shot text-to-speech. However, existing models still face limitations in handling diverse audio-text speech generation tasks involving transforming input speech and processing audio captured in adverse acoustic conditions. This paper introduces SpeechX, a versatile speech generation model capable of zero-shot TTS and various speech transformation tasks, dealing with both clean and noisy signals. SpeechX combines neural codec language modeling with multi-task learning using task-dependent prompting, enabling unified and extensible modeling and providing a consistent way for leveraging textual input in speech enhancement and transformation tasks. Experimental results show SpeechX's efficacy in various tasks, including zero-shot TTS, noise suppression, target speaker extraction, speech removal, and speech editing with or without background noise, achieving comparable or superior performance to specialized models across tasks. See https://aka.ms/speechx for demo samples. 10 authors · Aug 13, 2023 1
- Generative Speech Foundation Model Pretraining for High-Quality Speech Extraction and Restoration This paper proposes a generative pretraining foundation model for high-quality speech restoration tasks. By directly operating on complex-valued short-time Fourier transform coefficients, our model does not rely on any vocoders for time-domain signal reconstruction. As a result, our model simplifies the synthesis process and removes the quality upper-bound introduced by any mel-spectrogram vocoder compared to prior work SpeechFlow. The proposed method is evaluated on multiple speech restoration tasks, including speech denoising, bandwidth extension, codec artifact removal, and target speaker extraction. In all scenarios, finetuning our pretrained model results in superior performance over strong baselines. Notably, in the target speaker extraction task, our model outperforms existing systems, including those leveraging SSL-pretrained encoders like WavLM. The code and the pretrained checkpoints are publicly available in the NVIDIA NeMo framework. 6 authors · Sep 24, 2024
- Are disentangled representations all you need to build speaker anonymization systems? Speech signals contain a lot of sensitive information, such as the speaker's identity, which raises privacy concerns when speech data get collected. Speaker anonymization aims to transform a speech signal to remove the source speaker's identity while leaving the spoken content unchanged. Current methods perform the transformation by relying on content/speaker disentanglement and voice conversion. Usually, an acoustic model from an automatic speech recognition system extracts the content representation while an x-vector system extracts the speaker representation. Prior work has shown that the extracted features are not perfectly disentangled. This paper tackles how to improve features disentanglement, and thus the converted anonymized speech. We propose enhancing the disentanglement by removing speaker information from the acoustic model using vector quantization. Evaluation done using the VoicePrivacy 2022 toolkit showed that vector quantization helps conceal the original speaker identity while maintaining utility for speech recognition. 3 authors · Aug 22, 2022
- Remastering Divide and Remaster: A Cinematic Audio Source Separation Dataset with Multilingual Support Cinematic audio source separation (CASS) is a relatively new subtask of audio source separation, concerned with the separation of a mixture into the dialogue, music, and effects stems. To date, only one publicly available dataset exists for CASS, that is, the Divide and Remaster (DnR) dataset, which is currently at version 2. While DnR v2 has been an incredibly useful resource for CASS, several areas of improvement have been identified, particularly through its use in the 2023 Sound Demixing Challenge. In this work, we develop version 3 of the DnR dataset, addressing issues relating to vocal content in non-dialogue stems, loudness distributions, mastering process, and linguistic diversity. In particular, the dialogue stem of DnR v3 includes speech content from more than 30 languages from multiple families including but not limited to the Germanic, Romance, Indo-Aryan, Dravidian, Malayo-Polynesian, and Bantu families. Benchmark results using the Bandit model indicated that training on multilingual data yields significant generalizability to the model even in languages with low data availability. Even in languages with high data availability, the multilingual model often performs on par or better than dedicated models trained on monolingual CASS datasets. 3 authors · Jul 9, 2024
- AVE Speech Dataset: A Comprehensive Benchmark for Multi-Modal Speech Recognition Integrating Audio, Visual, and Electromyographic Signals The global aging population faces considerable challenges, particularly in communication, due to the prevalence of hearing and speech impairments. To address these, we introduce the AVE speech dataset, a comprehensive multi-modal benchmark for speech recognition tasks. The dataset includes a 100-sentence Mandarin Chinese corpus with audio signals, lip-region video recordings, and six-channel electromyography (EMG) data, collected from 100 participants. Each subject read the entire corpus ten times, with each sentence averaging approximately two seconds in duration, resulting in over 55 hours of multi-modal speech data per modality. Experiments demonstrate that combining these modalities significantly improves recognition performance, particularly in cross-subject and high-noise environments. To our knowledge, this is the first publicly available sentence-level dataset integrating these three modalities for large-scale Mandarin speech recognition. We expect this dataset to drive advancements in both acoustic and non-acoustic speech recognition research, enhancing cross-modal learning and human-machine interaction. 6 authors · Jan 28
4 VITS2: Improving Quality and Efficiency of Single-Stage Text-to-Speech with Adversarial Learning and Architecture Design Single-stage text-to-speech models have been actively studied recently, and their results have outperformed two-stage pipeline systems. Although the previous single-stage model has made great progress, there is room for improvement in terms of its intermittent unnaturalness, computational efficiency, and strong dependence on phoneme conversion. In this work, we introduce VITS2, a single-stage text-to-speech model that efficiently synthesizes a more natural speech by improving several aspects of the previous work. We propose improved structures and training mechanisms and present that the proposed methods are effective in improving naturalness, similarity of speech characteristics in a multi-speaker model, and efficiency of training and inference. Furthermore, we demonstrate that the strong dependence on phoneme conversion in previous works can be significantly reduced with our method, which allows a fully end-to-end single-stage approach. 6 authors · Jul 31, 2023
1 Self-Supervised Embeddings for Detecting Individual Symptoms of Depression Depression, a prevalent mental health disorder impacting millions globally, demands reliable assessment systems. Unlike previous studies that focus solely on either detecting depression or predicting its severity, our work identifies individual symptoms of depression while also predicting its severity using speech input. We leverage self-supervised learning (SSL)-based speech models to better utilize the small-sized datasets that are frequently encountered in this task. Our study demonstrates notable performance improvements by utilizing SSL embeddings compared to conventional speech features. We compare various types of SSL pretrained models to elucidate the type of speech information (semantic, speaker, or prosodic) that contributes the most in identifying different symptoms. Additionally, we evaluate the impact of combining multiple SSL embeddings on performance. Furthermore, we show the significance of multi-task learning for identifying depressive symptoms effectively. 6 authors · Jun 24, 2024
5 Speech-to-Text Adapter and Speech-to-Entity Retriever Augmented LLMs for Speech Understanding Large Language Models (LLMs) have been applied in the speech domain, often incurring a performance drop due to misaligned between speech and language representations. To bridge this gap, we propose a joint speech and language model (SLM) using a Speech2Text adapter, which maps speech into text token embedding space without speech information loss. Additionally, using a CTC-based blank-filtering, we can reduce the speech sequence length to that of text. In speech MultiWoz dataset (DSTC11 challenge), SLM largely improves the dialog state tracking (DST) performance (24.7% to 28.4% accuracy). Further to address errors on rare entities, we augment SLM with a Speech2Entity retriever, which uses speech to retrieve relevant entities, and then adds them to the original SLM input as a prefix. With this retrieval-augmented SLM (ReSLM), the DST performance jumps to 34.6% accuracy. Moreover, augmenting the ASR task with the dialog understanding task improves the ASR performance from 9.4% to 8.5% WER. 7 authors · Jun 8, 2023
- Spoken SQuAD: A Study of Mitigating the Impact of Speech Recognition Errors on Listening Comprehension Reading comprehension has been widely studied. One of the most representative reading comprehension tasks is Stanford Question Answering Dataset (SQuAD), on which machine is already comparable with human. On the other hand, accessing large collections of multimedia or spoken content is much more difficult and time-consuming than plain text content for humans. It's therefore highly attractive to develop machines which can automatically understand spoken content. In this paper, we propose a new listening comprehension task - Spoken SQuAD. On the new task, we found that speech recognition errors have catastrophic impact on machine comprehension, and several approaches are proposed to mitigate the impact. 4 authors · Apr 1, 2018
- Improvement Speaker Similarity for Zero-Shot Any-to-Any Voice Conversion of Whispered and Regular Speech Zero-shot voice conversion aims to transfer the voice of a source speaker to that of a speaker unseen during training, while preserving the content information. Although various methods have been proposed to reconstruct speaker information in generated speech, there is still room for improvement in achieving high similarity between generated and ground truth recordings. Furthermore, zero-shot voice conversion for speech in specific domains, such as whispered, remains an unexplored area. To address this problem, we propose a SpeakerVC model that can effectively perform zero-shot speech conversion in both voiced and whispered domains, while being lightweight and capable of running in streaming mode without significant quality degradation. In addition, we explore methods to improve the quality of speaker identity transfer and demonstrate their effectiveness for a variety of voice conversion systems. 2 authors · Aug 21, 2024
- MUSAN: A Music, Speech, and Noise Corpus This report introduces a new corpus of music, speech, and noise. This dataset is suitable for training models for voice activity detection (VAD) and music/speech discrimination. Our corpus is released under a flexible Creative Commons license. The dataset consists of music from several genres, speech from twelve languages, and a wide assortment of technical and non-technical noises. We demonstrate use of this corpus for music/speech discrimination on Broadcast news and VAD for speaker identification. 3 authors · Oct 28, 2015
1 Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages Abusive language is a growing concern in many social media platforms. Repeated exposure to abusive speech has created physiological effects on the target users. Thus, the problem of abusive language should be addressed in all forms for online peace and safety. While extensive research exists in abusive speech detection, most studies focus on English. Recently, many smearing incidents have occurred in India, which provoked diverse forms of abusive speech in online space in various languages based on the geographic location. Therefore it is essential to deal with such malicious content. In this paper, to bridge the gap, we demonstrate a large-scale analysis of multilingual abusive speech in Indic languages. We examine different interlingual transfer mechanisms and observe the performance of various multilingual models for abusive speech detection for eight different Indic languages. We also experiment to show how robust these models are on adversarial attacks. Finally, we conduct an in-depth error analysis by looking into the models' misclassified posts across various settings. We have made our code and models public for other researchers. 3 authors · Apr 26, 2022
- MetricGAN+: An Improved Version of MetricGAN for Speech Enhancement The discrepancy between the cost function used for training a speech enhancement model and human auditory perception usually makes the quality of enhanced speech unsatisfactory. Objective evaluation metrics which consider human perception can hence serve as a bridge to reduce the gap. Our previously proposed MetricGAN was designed to optimize objective metrics by connecting the metric with a discriminator. Because only the scores of the target evaluation functions are needed during training, the metrics can even be non-differentiable. In this study, we propose a MetricGAN+ in which three training techniques incorporating domain-knowledge of speech processing are proposed. With these techniques, experimental results on the VoiceBank-DEMAND dataset show that MetricGAN+ can increase PESQ score by 0.3 compared to the previous MetricGAN and achieve state-of-the-art results (PESQ score = 3.15). 7 authors · Apr 8, 2021
- Improved Long-Form Speech Recognition by Jointly Modeling the Primary and Non-primary Speakers ASR models often suffer from a long-form deletion problem where the model predicts sequential blanks instead of words when transcribing a lengthy audio (in the order of minutes or hours). From the perspective of a user or downstream system consuming the ASR results, this behavior can be perceived as the model "being stuck", and potentially make the product hard to use. One of the culprits for long-form deletion is training-test data mismatch, which can happen even when the model is trained on diverse and large-scale data collected from multiple application domains. In this work, we introduce a novel technique to simultaneously model different groups of speakers in the audio along with the standard transcript tokens. Speakers are grouped as primary and non-primary, which connects the application domains and significantly alleviates the long-form deletion problem. This improved model neither needs any additional training data nor incurs additional training or inference cost. 6 authors · Dec 18, 2023
1 FALL-E: A Foley Sound Synthesis Model and Strategies This paper introduces FALL-E, a foley synthesis system and its training/inference strategies. The FALL-E model employs a cascaded approach comprising low-resolution spectrogram generation, spectrogram super-resolution, and a vocoder. We trained every sound-related model from scratch using our extensive datasets, and utilized a pre-trained language model. We conditioned the model with dataset-specific texts, enabling it to learn sound quality and recording environment based on text input. Moreover, we leveraged external language models to improve text descriptions of our datasets and performed prompt engineering for quality, coherence, and diversity. FALL-E was evaluated by an objective measure as well as listening tests in the DCASE 2023 challenge Task 7. The submission achieved the second place on average, while achieving the best score for diversity, second place for audio quality, and third place for class fitness. 5 authors · Jun 16, 2023
16 Denoising LM: Pushing the Limits of Error Correction Models for Speech Recognition Language models (LMs) have long been used to improve results of automatic speech recognition (ASR) systems, but they are unaware of the errors that ASR systems make. Error correction models are designed to fix ASR errors, however, they showed little improvement over traditional LMs mainly due to the lack of supervised training data. In this paper, we present Denoising LM (DLM), which is a scaled error correction model trained with vast amounts of synthetic data, significantly exceeding prior attempts meanwhile achieving new state-of-the-art ASR performance. We use text-to-speech (TTS) systems to synthesize audio, which is fed into an ASR system to produce noisy hypotheses, which are then paired with the original texts to train the DLM. DLM has several key ingredients: (i) up-scaled model and data; (ii) usage of multi-speaker TTS systems; (iii) combination of multiple noise augmentation strategies; and (iv) new decoding techniques. With a Transformer-CTC ASR, DLM achieves 1.5% word error rate (WER) on test-clean and 3.3% WER on test-other on Librispeech, which to our knowledge are the best reported numbers in the setting where no external audio data are used and even match self-supervised methods which use external audio data. Furthermore, a single DLM is applicable to different ASRs, and greatly surpassing the performance of conventional LM based beam-search rescoring. These results indicate that properly investigated error correction models have the potential to replace conventional LMs, holding the key to a new level of accuracy in ASR systems. 6 authors · May 24, 2024
- Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference Large language models (LLMs) have significantly advanced audio processing through audio codecs that convert audio into discrete tokens, enabling the application of language modeling techniques to audio data. However, audio codecs often operate at high frame rates, resulting in slow training and inference, especially for autoregressive models. To address this challenge, we present the Low Frame-rate Speech Codec (LFSC): a neural audio codec that leverages finite scalar quantization and adversarial training with large speech language models to achieve high-quality audio compression with a 1.89 kbps bitrate and 21.5 frames per second. We demonstrate that our novel codec can make the inference of LLM-based text-to-speech models around three times faster while improving intelligibility and producing quality comparable to previous models. 8 authors · Sep 18, 2024
- SDR - half-baked or well done? In speech enhancement and source separation, signal-to-noise ratio is a ubiquitous objective measure of denoising/separation quality. A decade ago, the BSS_eval toolkit was developed to give researchers worldwide a way to evaluate the quality of their algorithms in a simple, fair, and hopefully insightful way: it attempted to account for channel variations, and to not only evaluate the total distortion in the estimated signal but also split it in terms of various factors such as remaining interference, newly added artifacts, and channel errors. In recent years, hundreds of papers have been relying on this toolkit to evaluate their proposed methods and compare them to previous works, often arguing that differences on the order of 0.1 dB proved the effectiveness of a method over others. We argue here that the signal-to-distortion ratio (SDR) implemented in the BSS_eval toolkit has generally been improperly used and abused, especially in the case of single-channel separation, resulting in misleading results. We propose to use a slightly modified definition, resulting in a simpler, more robust measure, called scale-invariant SDR (SI-SDR). We present various examples of critical failure of the original SDR that SI-SDR overcomes. 4 authors · Nov 6, 2018
- Guided-TTS: A Diffusion Model for Text-to-Speech via Classifier Guidance We propose Guided-TTS, a high-quality text-to-speech (TTS) model that does not require any transcript of target speaker using classifier guidance. Guided-TTS combines an unconditional diffusion probabilistic model with a separately trained phoneme classifier for classifier guidance. Our unconditional diffusion model learns to generate speech without any context from untranscribed speech data. For TTS synthesis, we guide the generative process of the diffusion model with a phoneme classifier trained on a large-scale speech recognition dataset. We present a norm-based scaling method that reduces the pronunciation errors of classifier guidance in Guided-TTS. We show that Guided-TTS achieves a performance comparable to that of the state-of-the-art TTS model, Grad-TTS, without any transcript for LJSpeech. We further demonstrate that Guided-TTS performs well on diverse datasets including a long-form untranscribed dataset. 3 authors · Nov 23, 2021
- ODAQ: Open Dataset of Audio Quality Research into the prediction and analysis of perceived audio quality is hampered by the scarcity of openly available datasets of audio signals accompanied by corresponding subjective quality scores. To address this problem, we present the Open Dataset of Audio Quality (ODAQ), a new dataset containing the results of a MUSHRA listening test conducted with expert listeners from 2 international laboratories. ODAQ contains 240 audio samples and corresponding quality scores. Each audio sample is rated by 26 listeners. The audio samples are stereo audio signals sampled at 44.1 or 48 kHz and are processed by a total of 6 method classes, each operating at different quality levels. The processing method classes are designed to generate quality degradations possibly encountered during audio coding and source separation, and the quality levels for each method class span the entire quality range. The diversity of the processing methods, the large span of quality levels, the high sampling frequency, and the pool of international listeners make ODAQ particularly suited for further research into subjective and objective audio quality. The dataset is released with permissive licenses, and the software used to conduct the listening test is also made publicly available. 7 authors · Dec 30, 2023
- Say It All: Feedback for Improving Non-Visual Presentation Accessibility Presenters commonly use slides as visual aids for informative talks. When presenters fail to verbally describe the content on their slides, blind and visually impaired audience members lose access to necessary content, making the presentation difficult to follow. Our analysis of 90 presentation videos revealed that 72% of 610 visual elements (e.g., images, text) were insufficiently described. To help presenters create accessible presentations, we introduce Presentation A11y, a system that provides real-time and post-presentation accessibility feedback. Our system analyzes visual elements on the slide and the transcript of the verbal presentation to provide element-level feedback on what visual content needs to be further described or even removed. Presenters using our system with their own slide-based presentations described more of the content on their slides, and identified 3.26 times more accessibility problems to fix after the talk than when using a traditional slide-based presentation interface. Integrating accessibility feedback into content creation tools will improve the accessibility of informational content for all. 4 authors · Mar 26, 2021
27 Robust Speech Recognition via Large-Scale Weak Supervision We study the capabilities of speech processing systems trained simply to predict large amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual and multitask supervision, the resulting models generalize well to standard benchmarks and are often competitive with prior fully supervised results but in a zero-shot transfer setting without the need for any fine-tuning. When compared to humans, the models approach their accuracy and robustness. We are releasing models and inference code to serve as a foundation for further work on robust speech processing. 6 authors · Dec 6, 2022 5
- Do You Remember? Overcoming Catastrophic Forgetting for Fake Audio Detection Current fake audio detection algorithms have achieved promising performances on most datasets. However, their performance may be significantly degraded when dealing with audio of a different dataset. The orthogonal weight modification to overcome catastrophic forgetting does not consider the similarity of genuine audio across different datasets. To overcome this limitation, we propose a continual learning algorithm for fake audio detection to overcome catastrophic forgetting, called Regularized Adaptive Weight Modification (RAWM). When fine-tuning a detection network, our approach adaptively computes the direction of weight modification according to the ratio of genuine utterances and fake utterances. The adaptive modification direction ensures the network can effectively detect fake audio on the new dataset while preserving its knowledge of old model, thus mitigating catastrophic forgetting. In addition, genuine audio collected from quite different acoustic conditions may skew their feature distribution, so we introduce a regularization constraint to force the network to remember the old distribution in this regard. Our method can easily be generalized to related fields, like speech emotion recognition. We also evaluate our approach across multiple datasets and obtain a significant performance improvement on cross-dataset experiments. 5 authors · Aug 7, 2023
- Multitask learning in Audio Captioning: a sentence embedding regression loss acts as a regularizer In this work, we propose to study the performance of a model trained with a sentence embedding regression loss component for the Automated Audio Captioning task. This task aims to build systems that can describe audio content with a single sentence written in natural language. Most systems are trained with the standard Cross-Entropy loss, which does not take into account the semantic closeness of the sentence. We found that adding a sentence embedding loss term reduces overfitting, but also increased SPIDEr from 0.397 to 0.418 in our first setting on the AudioCaps corpus. When we increased the weight decay value, we found our model to be much closer to the current state-of-the-art methods, with a SPIDEr score up to 0.444 compared to a 0.475 score. Moreover, this model uses eight times less trainable parameters. In this training setting, the sentence embedding loss has no more impact on the model performance. 3 authors · May 2, 2023
- Noise-robust Speech Separation with Fast Generative Correction Speech separation, the task of isolating multiple speech sources from a mixed audio signal, remains challenging in noisy environments. In this paper, we propose a generative correction method to enhance the output of a discriminative separator. By leveraging a generative corrector based on a diffusion model, we refine the separation process for single-channel mixture speech by removing noises and perceptually unnatural distortions. Furthermore, we optimize the generative model using a predictive loss to streamline the diffusion model's reverse process into a single step and rectify any associated errors by the reverse process. Our method achieves state-of-the-art performance on the in-domain Libri2Mix noisy dataset, and out-of-domain WSJ with a variety of noises, improving SI-SNR by 22-35% relative to SepFormer, demonstrating robustness and strong generalization capabilities. 6 authors · Jun 11, 2024
- MOS-Bench: Benchmarking Generalization Abilities of Subjective Speech Quality Assessment Models Subjective speech quality assessment (SSQA) is critical for evaluating speech samples as perceived by human listeners. While model-based SSQA has enjoyed great success thanks to the development of deep neural networks (DNNs), generalization remains a key challenge, especially for unseen, out-of-domain data. To benchmark the generalization abilities of SSQA models, we present MOS-Bench, a diverse collection of datasets. In addition, we also introduce SHEET, an open-source toolkit containing complete recipes to conduct SSQA experiments. We provided benchmark results for MOS-Bench, and we also explored multi-dataset training to enhance generalization. Additionally, we proposed a new performance metric, best score difference/ratio, and used latent space visualizations to explain model behavior, offering valuable insights for future research. 3 authors · Nov 6, 2024
- FT Speech: Danish Parliament Speech Corpus This paper introduces FT Speech, a new speech corpus created from the recorded meetings of the Danish Parliament, otherwise known as the Folketing (FT). The corpus contains over 1,800 hours of transcribed speech by a total of 434 speakers. It is significantly larger in duration, vocabulary, and amount of spontaneous speech than the existing public speech corpora for Danish, which are largely limited to read-aloud and dictation data. We outline design considerations, including the preprocessing methods and the alignment procedure. To evaluate the quality of the corpus, we train automatic speech recognition systems on the new resource and compare them to the systems trained on the Danish part of Sprakbanken, the largest public ASR corpus for Danish to date. Our baseline results show that we achieve a 14.01 WER on the new corpus. A combination of FT Speech with in-domain language data provides comparable results to models trained specifically on Sprakbanken, showing that FT Speech transfers well to this data set. Interestingly, our results demonstrate that the opposite is not the case. This shows that FT Speech provides a valuable resource for promoting research on Danish ASR with more spontaneous speech. 3 authors · May 25, 2020
56 LLMVoX: Autoregressive Streaming Text-to-Speech Model for Any LLM Recent advancements in speech-to-speech dialogue systems leverage LLMs for multimodal interactions, yet they remain hindered by fine-tuning requirements, high computational overhead, and text-speech misalignment. Existing speech-enabled LLMs often degrade conversational quality by modifying the LLM, thereby compromising its linguistic capabilities. In contrast, we propose LLMVoX, a lightweight 30M-parameter, LLM-agnostic, autoregressive streaming TTS system that generates high-quality speech with low latency, while fully preserving the capabilities of the base LLM. Our approach achieves a significantly lower Word Error Rate compared to speech-enabled LLMs, while operating at comparable latency and UTMOS score. By decoupling speech synthesis from LLM processing via a multi-queue token streaming system, LLMVoX supports seamless, infinite-length dialogues. Its plug-and-play design also facilitates extension to various tasks with different backbones. Furthermore, LLMVoX generalizes to new languages with only dataset adaptation, attaining a low Character Error Rate on an Arabic speech task. Additionally, we have integrated LLMVoX with a Vision-Language Model to create an omni-model with speech, text, and vision capabilities, without requiring additional multimodal training. Our code base and project page is available at https://mbzuai-oryx.github.io/LLMVoX . 8 authors · Mar 6 4
1 Task Oriented Dialogue as a Catalyst for Self-Supervised Automatic Speech Recognition While word error rates of automatic speech recognition (ASR) systems have consistently fallen, natural language understanding (NLU) applications built on top of ASR systems still attribute significant numbers of failures to low-quality speech recognition results. Existing assistant systems collect large numbers of these unsuccessful interactions, but these systems usually fail to learn from these interactions, even in an offline fashion. In this work, we introduce CLC: Contrastive Learning for Conversations, a family of methods for contrastive fine-tuning of models in a self-supervised fashion, making use of easily detectable artifacts in unsuccessful conversations with assistants. We demonstrate that our CLC family of approaches can improve the performance of ASR models on OD3, a new public large-scale semi-synthetic meta-dataset of audio task-oriented dialogues, by up to 19.2%. These gains transfer to real-world systems as well, where we show that CLC can help to improve performance by up to 6.7% over baselines. We make OD3 publicly available at https://github.com/amazon-science/amazon-od3 . 5 authors · Jan 4, 2024
- GigaSpeech 2: An Evolving, Large-Scale and Multi-domain ASR Corpus for Low-Resource Languages with Automated Crawling, Transcription and Refinement The evolution of speech technology has been spurred by the rapid increase in dataset sizes. Traditional speech models generally depend on a large amount of labeled training data, which is scarce for low-resource languages. This paper presents GigaSpeech 2, a large-scale, multi-domain, multilingual speech recognition corpus. It is designed for low-resource languages and does not rely on paired speech and text data. GigaSpeech 2 comprises about 30,000 hours of automatically transcribed speech, including Thai, Indonesian, and Vietnamese, gathered from unlabeled YouTube videos. We also introduce an automated pipeline for data crawling, transcription, and label refinement. Specifically, this pipeline uses Whisper for initial transcription and TorchAudio for forced alignment, combined with multi-dimensional filtering for data quality assurance. A modified Noisy Student Training is developed to further refine flawed pseudo labels iteratively, thus enhancing model performance. Experimental results on our manually transcribed evaluation set and two public test sets from Common Voice and FLEURS confirm our corpus's high quality and broad applicability. Notably, ASR models trained on GigaSpeech 2 can reduce the word error rate for Thai, Indonesian, and Vietnamese on our challenging and realistic YouTube test set by 25% to 40% compared to the Whisper large-v3 model, with merely 10% model parameters. Furthermore, our ASR models trained on Gigaspeech 2 yield superior performance compared to commercial services. We believe that our newly introduced corpus and pipeline will open a new avenue for low-resource speech recognition and significantly facilitate research in this area. 16 authors · Jun 17, 2024
- AudioGen: Textually Guided Audio Generation We tackle the problem of generating audio samples conditioned on descriptive text captions. In this work, we propose AaudioGen, an auto-regressive generative model that generates audio samples conditioned on text inputs. AudioGen operates on a learnt discrete audio representation. The task of text-to-audio generation poses multiple challenges. Due to the way audio travels through a medium, differentiating ``objects'' can be a difficult task (e.g., separating multiple people simultaneously speaking). This is further complicated by real-world recording conditions (e.g., background noise, reverberation, etc.). Scarce text annotations impose another constraint, limiting the ability to scale models. Finally, modeling high-fidelity audio requires encoding audio at high sampling rate, leading to extremely long sequences. To alleviate the aforementioned challenges we propose an augmentation technique that mixes different audio samples, driving the model to internally learn to separate multiple sources. We curated 10 datasets containing different types of audio and text annotations to handle the scarcity of text-audio data points. For faster inference, we explore the use of multi-stream modeling, allowing the use of shorter sequences while maintaining a similar bitrate and perceptual quality. We apply classifier-free guidance to improve adherence to text. Comparing to the evaluated baselines, AudioGen outperforms over both objective and subjective metrics. Finally, we explore the ability of the proposed method to generate audio continuation conditionally and unconditionally. Samples: https://felixkreuk.github.io/audiogen 9 authors · Sep 30, 2022
1 HiFi-Codec: Group-residual Vector quantization for High Fidelity Audio Codec Audio codec models are widely used in audio communication as a crucial technique for compressing audio into discrete representations. Nowadays, audio codec models are increasingly utilized in generation fields as intermediate representations. For instance, AudioLM is an audio generation model that uses the discrete representation of SoundStream as a training target, while VALL-E employs the Encodec model as an intermediate feature to aid TTS tasks. Despite their usefulness, two challenges persist: (1) training these audio codec models can be difficult due to the lack of publicly available training processes and the need for large-scale data and GPUs; (2) achieving good reconstruction performance requires many codebooks, which increases the burden on generation models. In this study, we propose a group-residual vector quantization (GRVQ) technique and use it to develop a novel High Fidelity Audio Codec model, HiFi-Codec, which only requires 4 codebooks. We train all the models using publicly available TTS data such as LibriTTS, VCTK, AISHELL, and more, with a total duration of over 1000 hours, using 8 GPUs. Our experimental results show that HiFi-Codec outperforms Encodec in terms of reconstruction performance despite requiring only 4 codebooks. To facilitate research in audio codec and generation, we introduce AcademiCodec, the first open-source audio codec toolkit that offers training codes and pre-trained models for Encodec, SoundStream, and HiFi-Codec. Code and pre-trained model can be found on: https://github.com/yangdongchao/AcademiCodec{https://github.com/yangdongchao/AcademiCodec} 6 authors · May 4, 2023 1
1 Single-Codec: Single-Codebook Speech Codec towards High-Performance Speech Generation The multi-codebook speech codec enables the application of large language models (LLM) in TTS but bottlenecks efficiency and robustness due to multi-sequence prediction. To avoid this obstacle, we propose Single-Codec, a single-codebook single-sequence codec, which employs a disentangled VQ-VAE to decouple speech into a time-invariant embedding and a phonetically-rich discrete sequence. Furthermore, the encoder is enhanced with 1) contextual modeling with a BLSTM module to exploit the temporal information, 2) a hybrid sampling module to alleviate distortion from upsampling and downsampling, and 3) a resampling module to encourage discrete units to carry more phonetic information. Compared with multi-codebook codecs, e.g., EnCodec and TiCodec, Single-Codec demonstrates higher reconstruction quality with a lower bandwidth of only 304bps. The effectiveness of Single-Code is further validated by LLM-TTS experiments, showing improved naturalness and intelligibility. 9 authors · Jun 11, 2024
- MRI2Speech: Speech Synthesis from Articulatory Movements Recorded by Real-time MRI Previous real-time MRI (rtMRI)-based speech synthesis models depend heavily on noisy ground-truth speech. Applying loss directly over ground truth mel-spectrograms entangles speech content with MRI noise, resulting in poor intelligibility. We introduce a novel approach that adapts the multi-modal self-supervised AV-HuBERT model for text prediction from rtMRI and incorporates a new flow-based duration predictor for speaker-specific alignment. The predicted text and durations are then used by a speech decoder to synthesize aligned speech in any novel voice. We conduct thorough experiments on two datasets and demonstrate our method's generalization ability to unseen speakers. We assess our framework's performance by masking parts of the rtMRI video to evaluate the impact of different articulators on text prediction. Our method achieves a 15.18% Word Error Rate (WER) on the USC-TIMIT MRI corpus, marking a huge improvement over the current state-of-the-art. Speech samples are available at https://mri2speech.github.io/MRI2Speech/ 4 authors · Dec 25, 2024
- Open Challenge for Correcting Errors of Speech Recognition Systems The paper announces the new long-term challenge for improving the performance of automatic speech recognition systems. The goal of the challenge is to investigate methods of correcting the recognition results on the basis of previously made errors by the speech processing system. The dataset prepared for the task is described and evaluation criteria are presented. 4 authors · Jan 9, 2020
1 Audiobox TTA-RAG: Improving Zero-Shot and Few-Shot Text-To-Audio with Retrieval-Augmented Generation Current leading Text-To-Audio (TTA) generation models suffer from degraded performance on zero-shot and few-shot settings. It is often challenging to generate high-quality audio for audio events that are unseen or uncommon in the training set. Inspired by the success of Retrieval-Augmented Generation (RAG) in Large Language Model (LLM)-based knowledge-intensive tasks, we extend the TTA process with additional conditioning contexts. We propose Audiobox TTA-RAG, a novel retrieval-augmented TTA approach based on Audiobox, a conditional flow-matching audio generation model. Unlike the vanilla Audiobox TTA solution which generates audio conditioned on text, we augmented the conditioning input with retrieved audio samples that provide additional acoustic information to generate the target audio. Our retrieval method does not require the external database to have labeled audio, offering more practical use cases. To evaluate our proposed method, we curated test sets in zero-shot and few-shot settings. Our empirical results show that the proposed model can effectively leverage the retrieved audio samples and significantly improve zero-shot and few-shot TTA performance, with large margins on multiple evaluation metrics, while maintaining the ability to generate semantically aligned audio for the in-domain setting. In addition, we investigate the effect of different retrieval methods and data sources. 5 authors · Nov 7, 2024
- The People's Speech: A Large-Scale Diverse English Speech Recognition Dataset for Commercial Usage The People's Speech is a free-to-download 30,000-hour and growing supervised conversational English speech recognition dataset licensed for academic and commercial usage under CC-BY-SA (with a CC-BY subset). The data is collected via searching the Internet for appropriately licensed audio data with existing transcriptions. We describe our data collection methodology and release our data collection system under the Apache 2.0 license. We show that a model trained on this dataset achieves a 9.98% word error rate on Librispeech's test-clean test set.Finally, we discuss the legal and ethical issues surrounding the creation of a sizable machine learning corpora and plans for continued maintenance of the project under MLCommons's sponsorship. 10 authors · Nov 17, 2021
19 VALL-E 2: Neural Codec Language Models are Human Parity Zero-Shot Text to Speech Synthesizers This paper introduces VALL-E 2, the latest advancement in neural codec language models that marks a milestone in zero-shot text-to-speech synthesis (TTS), achieving human parity for the first time. Based on its predecessor, VALL-E, the new iteration introduces two significant enhancements: Repetition Aware Sampling refines the original nucleus sampling process by accounting for token repetition in the decoding history. It not only stabilizes the decoding but also circumvents the infinite loop issue. Grouped Code Modeling organizes codec codes into groups to effectively shorten the sequence length, which not only boosts inference speed but also addresses the challenges of long sequence modeling. Our experiments on the LibriSpeech and VCTK datasets show that VALL-E 2 surpasses previous systems in speech robustness, naturalness, and speaker similarity. It is the first of its kind to reach human parity on these benchmarks. Moreover, VALL-E 2 consistently synthesizes high-quality speech, even for sentences that are traditionally challenging due to their complexity or repetitive phrases. The advantages of this work could contribute to valuable endeavors, such as generating speech for individuals with aphasia or people with amyotrophic lateral sclerosis. Demos of VALL-E 2 will be posted to https://aka.ms/valle2. 9 authors · Jun 8, 2024
2 CrisperWhisper: Accurate Timestamps on Verbatim Speech Transcriptions We demonstrate that carefully adjusting the tokenizer of the Whisper speech recognition model significantly improves the precision of word-level timestamps when applying dynamic time warping to the decoder's cross-attention scores. We fine-tune the model to produce more verbatim speech transcriptions and employ several techniques to increase robustness against multiple speakers and background noise. These adjustments achieve state-of-the-art performance on benchmarks for verbatim speech transcription, word segmentation, and the timed detection of filler events, and can further mitigate transcription hallucinations. The code is available open https://github.com/nyrahealth/CrisperWhisper. 3 authors · Aug 29, 2024
- WavMark: Watermarking for Audio Generation Recent breakthroughs in zero-shot voice synthesis have enabled imitating a speaker's voice using just a few seconds of recording while maintaining a high level of realism. Alongside its potential benefits, this powerful technology introduces notable risks, including voice fraud and speaker impersonation. Unlike the conventional approach of solely relying on passive methods for detecting synthetic data, watermarking presents a proactive and robust defence mechanism against these looming risks. This paper introduces an innovative audio watermarking framework that encodes up to 32 bits of watermark within a mere 1-second audio snippet. The watermark is imperceptible to human senses and exhibits strong resilience against various attacks. It can serve as an effective identifier for synthesized voices and holds potential for broader applications in audio copyright protection. Moreover, this framework boasts high flexibility, allowing for the combination of multiple watermark segments to achieve heightened robustness and expanded capacity. Utilizing 10 to 20-second audio as the host, our approach demonstrates an average Bit Error Rate (BER) of 0.48\% across ten common attacks, a remarkable reduction of over 2800\% in BER compared to the state-of-the-art watermarking tool. See https://aka.ms/wavmark for demos of our work. 6 authors · Aug 24, 2023
1 Evaluating and reducing the distance between synthetic and real speech distributions While modern Text-to-Speech (TTS) systems can produce speech rated highly in terms of subjective evaluation, the distance between real and synthetic speech distributions remains understudied, where we use the term distribution to mean the sample space of all possible real speech recordings from a given set of speakers; or of the synthetic samples that could be generated for the same set of speakers. We evaluate the distance of real and synthetic speech distributions along the dimensions of the acoustic environment, speaker characteristics and prosody using a range of speech processing measures and the respective Wasserstein distances of their distributions. We reduce these distribution distances along said dimensions by providing utterance-level information derived from the measures to the model and show they can be generated at inference time. The improvements to the dimensions translate to overall distribution distance reduction approximated using Automatic Speech Recognition (ASR) by evaluating the fitness of the synthetic data as training data. 3 authors · Nov 29, 2022
1 Codec-SUPERB: An In-Depth Analysis of Sound Codec Models The sound codec's dual roles in minimizing data transmission latency and serving as tokenizers underscore its critical importance. Recent years have witnessed significant developments in codec models. The ideal sound codec should preserve content, paralinguistics, speakers, and audio information. However, the question of which codec achieves optimal sound information preservation remains unanswered, as in different papers, models are evaluated on their selected experimental settings. This study introduces Codec-SUPERB, an acronym for Codec sound processing Universal PERformance Benchmark. It is an ecosystem designed to assess codec models across representative sound applications and signal-level metrics rooted in sound domain knowledge.Codec-SUPERB simplifies result sharing through an online leaderboard, promoting collaboration within a community-driven benchmark database, thereby stimulating new development cycles for codecs. Furthermore, we undertake an in-depth analysis to offer insights into codec models from both application and signal perspectives, diverging from previous codec papers mainly concentrating on signal-level comparisons. Finally, we will release codes, the leaderboard, and data to accelerate progress within the community. 10 authors · Feb 20, 2024
1 TTSDS -- Text-to-Speech Distribution Score Many recently published Text-to-Speech (TTS) systems produce audio close to real speech. However, TTS evaluation needs to be revisited to make sense of the results obtained with the new architectures, approaches and datasets. We propose evaluating the quality of synthetic speech as a combination of multiple factors such as prosody, speaker identity, and intelligibility. Our approach assesses how well synthetic speech mirrors real speech by obtaining correlates of each factor and measuring their distance from both real speech datasets and noise datasets. We benchmark 35 TTS systems developed between 2008 and 2024 and show that our score computed as an unweighted average of factors strongly correlates with the human evaluations from each time period. 3 authors · Jul 17, 2024 1
- WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks. As speech signal contains multi-faceted information including speaker identity, paralinguistics, spoken content, etc., learning universal representations for all speech tasks is challenging. To tackle the problem, we propose a new pre-trained model, WavLM, to solve full-stack downstream speech tasks. WavLM jointly learns masked speech prediction and denoising in pre-training. By this means, WavLM does not only keep the speech content modeling capability by the masked speech prediction, but also improves the potential to non-ASR tasks by the speech denoising. In addition, WavLM employs gated relative position bias for the Transformer structure to better capture the sequence ordering of input speech. We also scale up the training dataset from 60k hours to 94k hours. WavLM Large achieves state-of-the-art performance on the SUPERB benchmark, and brings significant improvements for various speech processing tasks on their representative benchmarks. The code and pre-trained models are available at https://aka.ms/wavlm. 19 authors · Oct 26, 2021
- Neural Audio Fingerprint for High-specific Audio Retrieval based on Contrastive Learning Most of existing audio fingerprinting systems have limitations to be used for high-specific audio retrieval at scale. In this work, we generate a low-dimensional representation from a short unit segment of audio, and couple this fingerprint with a fast maximum inner-product search. To this end, we present a contrastive learning framework that derives from the segment-level search objective. Each update in training uses a batch consisting of a set of pseudo labels, randomly selected original samples, and their augmented replicas. These replicas can simulate the degrading effects on original audio signals by applying small time offsets and various types of distortions, such as background noise and room/microphone impulse responses. In the segment-level search task, where the conventional audio fingerprinting systems used to fail, our system using 10x smaller storage has shown promising results. Our code and dataset are available at https://mimbres.github.io/neural-audio-fp/. 7 authors · Oct 22, 2020
- The order in speech disorder: a scoping review of state of the art machine learning methods for clinical speech classification Background:Speech patterns have emerged as potential diagnostic markers for conditions with varying etiologies. Machine learning (ML) presents an opportunity to harness these patterns for accurate disease diagnosis. Objective: This review synthesized findings from studies exploring ML's capability in leveraging speech for the diagnosis of neurological, laryngeal and mental disorders. Methods: A systematic examination of 564 articles was conducted with 91 articles included in the study, which encompassed a wide spectrum of conditions, ranging from voice pathologies to mental and neurological disorders. Methods for speech classifications were assessed based on the relevant studies and scored between 0-10 based on the reported diagnostic accuracy of their ML models. Results: High diagnostic accuracies were consistently observed for laryngeal disorders, dysarthria, and changes related to speech in Parkinsons disease. These findings indicate the robust potential of speech as a diagnostic tool. Disorders like depression, schizophrenia, mild cognitive impairment and Alzheimers dementia also demonstrated high accuracies, albeit with some variability across studies. Meanwhile, disorders like OCD and autism highlighted the need for more extensive research to ascertain the relationship between speech patterns and the respective conditions. Conclusion: ML models utilizing speech patterns demonstrate promising potential in diagnosing a range of mental, laryngeal, and neurological disorders. However, the efficacy varies across conditions, and further research is needed. The integration of these models into clinical practice could potentially revolutionize the evaluation and diagnosis of a number of different medical conditions. 4 authors · Mar 3
- DeepFilterNet: Perceptually Motivated Real-Time Speech Enhancement Multi-frame algorithms for single-channel speech enhancement are able to take advantage from short-time correlations within the speech signal. Deep Filtering (DF) was proposed to directly estimate a complex filter in frequency domain to take advantage of these correlations. In this work, we present a real-time speech enhancement demo using DeepFilterNet. DeepFilterNet's efficiency is enabled by exploiting domain knowledge of speech production and psychoacoustic perception. Our model is able to match state-of-the-art speech enhancement benchmarks while achieving a real-time-factor of 0.19 on a single threaded notebook CPU. The framework as well as pretrained weights have been published under an open source license. 4 authors · May 14, 2023
- Scaling Rich Style-Prompted Text-to-Speech Datasets We introduce Paralinguistic Speech Captions (ParaSpeechCaps), a large-scale dataset that annotates speech utterances with rich style captions. While rich abstract tags (e.g. guttural, nasal, pained) have been explored in small-scale human-annotated datasets, existing large-scale datasets only cover basic tags (e.g. low-pitched, slow, loud). We combine off-the-shelf text and speech embedders, classifiers and an audio language model to automatically scale rich tag annotations for the first time. ParaSpeechCaps covers a total of 59 style tags, including both speaker-level intrinsic tags and utterance-level situational tags. It consists of 342 hours of human-labelled data (PSC-Base) and 2427 hours of automatically annotated data (PSC-Scaled). We finetune Parler-TTS, an open-source style-prompted TTS model, on ParaSpeechCaps, and achieve improved style consistency (+7.9% Consistency MOS) and speech quality (+15.5% Naturalness MOS) over the best performing baseline that combines existing rich style tag datasets. We ablate several of our dataset design choices to lay the foundation for future work in this space. Our dataset, models and code are released at https://github.com/ajd12342/paraspeechcaps . 4 authors · Mar 6
- Enhancing Speaker Diarization with Large Language Models: A Contextual Beam Search Approach Large language models (LLMs) have shown great promise for capturing contextual information in natural language processing tasks. We propose a novel approach to speaker diarization that incorporates the prowess of LLMs to exploit contextual cues in human dialogues. Our method builds upon an acoustic-based speaker diarization system by adding lexical information from an LLM in the inference stage. We model the multi-modal decoding process probabilistically and perform joint acoustic and lexical beam search to incorporate cues from both modalities: audio and text. Our experiments demonstrate that infusing lexical knowledge from the LLM into an acoustics-only diarization system improves overall speaker-attributed word error rate (SA-WER). The experimental results show that LLMs can provide complementary information to acoustic models for the speaker diarization task via proposed beam search decoding approach showing up to 39.8% relative delta-SA-WER improvement from the baseline system. Thus, we substantiate that the proposed technique is able to exploit contextual information that is inaccessible to acoustics-only systems which is represented by speaker embeddings. In addition, these findings point to the potential of using LLMs to improve speaker diarization and other speech processing tasks by capturing semantic and contextual cues. 4 authors · Sep 11, 2023
27 Mega-TTS 2: Zero-Shot Text-to-Speech with Arbitrary Length Speech Prompts Zero-shot text-to-speech aims at synthesizing voices with unseen speech prompts. Previous large-scale multispeaker TTS models have successfully achieved this goal with an enrolled recording within 10 seconds. However, most of them are designed to utilize only short speech prompts. The limited information in short speech prompts significantly hinders the performance of fine-grained identity imitation. In this paper, we introduce Mega-TTS 2, a generic zero-shot multispeaker TTS model that is capable of synthesizing speech for unseen speakers with arbitrary-length prompts. Specifically, we 1) design a multi-reference timbre encoder to extract timbre information from multiple reference speeches; 2) and train a prosody language model with arbitrary-length speech prompts; With these designs, our model is suitable for prompts of different lengths, which extends the upper bound of speech quality for zero-shot text-to-speech. Besides arbitrary-length prompts, we introduce arbitrary-source prompts, which leverages the probabilities derived from multiple P-LLM outputs to produce expressive and controlled prosody. Furthermore, we propose a phoneme-level auto-regressive duration model to introduce in-context learning capabilities to duration modeling. Experiments demonstrate that our method could not only synthesize identity-preserving speech with a short prompt of an unseen speaker but also achieve improved performance with longer speech prompts. Audio samples can be found in https://mega-tts.github.io/mega2_demo/. 11 authors · Jul 14, 2023 10
- MARS6: A Small and Robust Hierarchical-Codec Text-to-Speech Model Codec-based text-to-speech (TTS) models have shown impressive quality with zero-shot voice cloning abilities. However, they often struggle with more expressive references or complex text inputs. We present MARS6, a robust encoder-decoder transformer for rapid, expressive TTS. MARS6 is built on recent improvements in spoken language modelling. Utilizing a hierarchical setup for its decoder, new speech tokens are processed at a rate of only 12 Hz, enabling efficient modelling of long-form text while retaining reconstruction quality. We combine several recent training and inference techniques to reduce repetitive generation and improve output stability and quality. This enables the 70M-parameter MARS6 to achieve similar performance to models many times larger. We show this in objective and subjective evaluations, comparing TTS output quality and reference speaker cloning ability. Project page: https://camb-ai.github.io/mars6-turbo/ 6 authors · Jan 10
- The Greek podcast corpus: Competitive speech models for low-resourced languages with weakly supervised data The development of speech technologies for languages with limited digital representation poses significant challenges, primarily due to the scarcity of available data. This issue is exacerbated in the era of large, data-intensive models. Recent research has underscored the potential of leveraging weak supervision to augment the pool of available data. In this study, we compile an 800-hour corpus of Modern Greek from podcasts and employ Whisper large-v3 to generate silver transcriptions. This corpus is utilized to fine-tune our models, aiming to assess the efficacy of this approach in enhancing ASR performance. Our analysis spans 16 distinct podcast domains, alongside evaluations on established datasets for Modern Greek. The findings indicate consistent WER improvements, correlating with increases in both data volume and model size. Our study confirms that assembling large, weakly supervised corpora serves as a cost-effective strategy for advancing speech technologies in under-resourced languages. 4 authors · Jun 21, 2024
7 3D-Speaker: A Large-Scale Multi-Device, Multi-Distance, and Multi-Dialect Corpus for Speech Representation Disentanglement Disentangling uncorrelated information in speech utterances is a crucial research topic within speech community. Different speech-related tasks focus on extracting distinct speech representations while minimizing the affects of other uncorrelated information. We present a large-scale speech corpus to facilitate the research of speech representation disentanglement. 3D-Speaker contains over 10,000 speakers, each of whom are simultaneously recorded by multiple Devices, locating at different Distances, and some speakers are speaking multiple Dialects. The controlled combinations of multi-dimensional audio data yield a matrix of a diverse blend of speech representation entanglement, thereby motivating intriguing methods to untangle them. The multi-domain nature of 3D-Speaker also makes it a suitable resource to evaluate large universal speech models and experiment methods of out-of-domain learning and self-supervised learning. https://3dspeaker.github.io/ 5 authors · Jun 27, 2023
16 SemantiCodec: An Ultra Low Bitrate Semantic Audio Codec for General Sound Large language models (LLMs) have significantly advanced audio processing through audio codecs that convert audio into discrete tokens, enabling the application of language modelling techniques to audio data. However, traditional codecs often operate at high bitrates or within narrow domains such as speech and lack the semantic clues required for efficient language modelling. Addressing these challenges, we introduce SemantiCodec, a novel codec designed to compress audio into fewer than a hundred tokens per second across diverse audio types, including speech, general audio, and music, without compromising quality. SemantiCodec features a dual-encoder architecture: a semantic encoder using a self-supervised AudioMAE, discretized using k-means clustering on extensive audio data, and an acoustic encoder to capture the remaining details. The semantic and acoustic encoder outputs are used to reconstruct audio via a diffusion-model-based decoder. SemantiCodec is presented in three variants with token rates of 25, 50, and 100 per second, supporting a range of ultra-low bit rates between 0.31 kbps and 1.43 kbps. Experimental results demonstrate that SemantiCodec significantly outperforms the state-of-the-art Descript codec on reconstruction quality. Our results also suggest that SemantiCodec contains significantly richer semantic information than all evaluated audio codecs, even at significantly lower bitrates. Our code and demos are available at https://haoheliu.github.io/SemantiCodec/. 6 authors · Apr 30, 2024 1
- NaturalSpeech: End-to-End Text to Speech Synthesis with Human-Level Quality Text to speech (TTS) has made rapid progress in both academia and industry in recent years. Some questions naturally arise that whether a TTS system can achieve human-level quality, how to define/judge that quality and how to achieve it. In this paper, we answer these questions by first defining the human-level quality based on the statistical significance of subjective measure and introducing appropriate guidelines to judge it, and then developing a TTS system called NaturalSpeech that achieves human-level quality on a benchmark dataset. Specifically, we leverage a variational autoencoder (VAE) for end-to-end text to waveform generation, with several key modules to enhance the capacity of the prior from text and reduce the complexity of the posterior from speech, including phoneme pre-training, differentiable duration modeling, bidirectional prior/posterior modeling, and a memory mechanism in VAE. Experiment evaluations on popular LJSpeech dataset show that our proposed NaturalSpeech achieves -0.01 CMOS (comparative mean opinion score) to human recordings at the sentence level, with Wilcoxon signed rank test at p-level p >> 0.05, which demonstrates no statistically significant difference from human recordings for the first time on this dataset. 14 authors · May 9, 2022
1 High-Fidelity Speech Synthesis with Minimal Supervision: All Using Diffusion Models Text-to-speech (TTS) methods have shown promising results in voice cloning, but they require a large number of labeled text-speech pairs. Minimally-supervised speech synthesis decouples TTS by combining two types of discrete speech representations(semantic \& acoustic) and using two sequence-to-sequence tasks to enable training with minimal supervision. However, existing methods suffer from information redundancy and dimension explosion in semantic representation, and high-frequency waveform distortion in discrete acoustic representation. Autoregressive frameworks exhibit typical instability and uncontrollability issues. And non-autoregressive frameworks suffer from prosodic averaging caused by duration prediction models. To address these issues, we propose a minimally-supervised high-fidelity speech synthesis method, where all modules are constructed based on the diffusion models. The non-autoregressive framework enhances controllability, and the duration diffusion model enables diversified prosodic expression. Contrastive Token-Acoustic Pretraining (CTAP) is used as an intermediate semantic representation to solve the problems of information redundancy and dimension explosion in existing semantic coding methods. Mel-spectrogram is used as the acoustic representation. Both semantic and acoustic representations are predicted by continuous variable regression tasks to solve the problem of high-frequency fine-grained waveform distortion. Experimental results show that our proposed method outperforms the baseline method. We provide audio samples on our website. 7 authors · Sep 27, 2023
- Hearing voices at the National Library -- a speech corpus and acoustic model for the Swedish language This paper explains our work in developing new acoustic models for automated speech recognition (ASR) at KBLab, the infrastructure for data-driven research at the National Library of Sweden (KB). We evaluate different approaches for a viable speech-to-text pipeline for audiovisual resources in Swedish, using the wav2vec 2.0 architecture in combination with speech corpuses created from KB's collections. These approaches include pretraining an acoustic model for Swedish from the ground up, and fine-tuning existing monolingual and multilingual models. The collections-based corpuses we use have been sampled from millions of hours of speech, with a conscious attempt to balance regional dialects to produce a more representative, and thus more democratic, model. The acoustic model this enabled, "VoxRex", outperforms existing models for Swedish ASR. We also evaluate combining this model with various pretrained language models, which further enhanced performance. We conclude by highlighting the potential of such technology for cultural heritage institutions with vast collections of previously unlabelled audiovisual data. Our models are released for further exploration and research here: https://huggingface.co/KBLab. 3 authors · May 6, 2022
- On The Open Prompt Challenge In Conditional Audio Generation Text-to-audio generation (TTA) produces audio from a text description, learning from pairs of audio samples and hand-annotated text. However, commercializing audio generation is challenging as user-input prompts are often under-specified when compared to text descriptions used to train TTA models. In this work, we treat TTA models as a ``blackbox'' and address the user prompt challenge with two key insights: (1) User prompts are generally under-specified, leading to a large alignment gap between user prompts and training prompts. (2) There is a distribution of audio descriptions for which TTA models are better at generating higher quality audio, which we refer to as ``audionese''. To this end, we rewrite prompts with instruction-tuned models and propose utilizing text-audio alignment as feedback signals via margin ranking learning for audio improvements. On both objective and subjective human evaluations, we observed marked improvements in both text-audio alignment and music audio quality. 11 authors · Nov 1, 2023
- What Do Language Models Hear? Probing for Auditory Representations in Language Models This work explores whether language models encode meaningfully grounded representations of sounds of objects. We learn a linear probe that retrieves the correct text representation of an object given a snippet of audio related to that object, where the sound representation is given by a pretrained audio model. This probe is trained via a contrastive loss that pushes the language representations and sound representations of an object to be close to one another. After training, the probe is tested on its ability to generalize to objects that were not seen during training. Across different language models and audio models, we find that the probe generalization is above chance in many cases, indicating that despite being trained only on raw text, language models encode grounded knowledge of sounds for some objects. 2 authors · Feb 26, 2024
- OverFlow: Putting flows on top of neural transducers for better TTS Neural HMMs are a type of neural transducer recently proposed for sequence-to-sequence modelling in text-to-speech. They combine the best features of classic statistical speech synthesis and modern neural TTS, requiring less data and fewer training updates, and are less prone to gibberish output caused by neural attention failures. In this paper, we combine neural HMM TTS with normalising flows for describing the highly non-Gaussian distribution of speech acoustics. The result is a powerful, fully probabilistic model of durations and acoustics that can be trained using exact maximum likelihood. Compared to dominant flow-based acoustic models, our approach integrates autoregression for improved modelling of long-range dependences such as utterance-level prosody. Experiments show that a system based on our proposal gives more accurate pronunciations and better subjective speech quality than comparable methods, whilst retaining the original advantages of neural HMMs. Audio examples and code are available at https://shivammehta25.github.io/OverFlow/ 6 authors · Nov 13, 2022
- StableVC: Style Controllable Zero-Shot Voice Conversion with Conditional Flow Matching Zero-shot voice conversion (VC) aims to transfer the timbre from the source speaker to an arbitrary unseen speaker while preserving the original linguistic content. Despite recent advancements in zero-shot VC using language model-based or diffusion-based approaches, several challenges remain: 1) current approaches primarily focus on adapting timbre from unseen speakers and are unable to transfer style and timbre to different unseen speakers independently; 2) these approaches often suffer from slower inference speeds due to the autoregressive modeling methods or the need for numerous sampling steps; 3) the quality and similarity of the converted samples are still not fully satisfactory. To address these challenges, we propose a style controllable zero-shot VC approach named StableVC, which aims to transfer timbre and style from source speech to different unseen target speakers. Specifically, we decompose speech into linguistic content, timbre, and style, and then employ a conditional flow matching module to reconstruct the high-quality mel-spectrogram based on these decomposed features. To effectively capture timbre and style in a zero-shot manner, we introduce a novel dual attention mechanism with an adaptive gate, rather than using conventional feature concatenation. With this non-autoregressive design, StableVC can efficiently capture the intricate timbre and style from different unseen speakers and generate high-quality speech significantly faster than real-time. Experiments demonstrate that our proposed StableVC outperforms state-of-the-art baseline systems in zero-shot VC and achieves flexible control over timbre and style from different unseen speakers. Moreover, StableVC offers approximately 25x and 1.65x faster sampling compared to autoregressive and diffusion-based baselines. 7 authors · Dec 5, 2024
59 Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling As the size of pre-trained speech recognition models increases, running these large models in low-latency or resource-constrained environments becomes challenging. In this work, we leverage pseudo-labelling to assemble a large-scale open-source dataset which we use to distill the Whisper model into a smaller variant, called Distil-Whisper. Using a simple word error rate (WER) heuristic, we select only the highest quality pseudo-labels for training. The distilled model is 5.8 times faster with 51% fewer parameters, while performing to within 1% WER on out-of-distribution test data in a zero-shot transfer setting. Distil-Whisper maintains the robustness of the Whisper model to difficult acoustic conditions, while being less prone to hallucination errors on long-form audio. Distil-Whisper is designed to be paired with Whisper for speculative decoding, yielding a 2 times speed-up while mathematically ensuring the same outputs as the original model. To facilitate further research in this domain, we make our training code, inference code and models publicly accessible. 3 authors · Nov 1, 2023 2
- ViT-TTS: Visual Text-to-Speech with Scalable Diffusion Transformer Text-to-speech(TTS) has undergone remarkable improvements in performance, particularly with the advent of Denoising Diffusion Probabilistic Models (DDPMs). However, the perceived quality of audio depends not solely on its content, pitch, rhythm, and energy, but also on the physical environment. In this work, we propose ViT-TTS, the first visual TTS model with scalable diffusion transformers. ViT-TTS complement the phoneme sequence with the visual information to generate high-perceived audio, opening up new avenues for practical applications of AR and VR to allow a more immersive and realistic audio experience. To mitigate the data scarcity in learning visual acoustic information, we 1) introduce a self-supervised learning framework to enhance both the visual-text encoder and denoiser decoder; 2) leverage the diffusion transformer scalable in terms of parameters and capacity to learn visual scene information. Experimental results demonstrate that ViT-TTS achieves new state-of-the-art results, outperforming cascaded systems and other baselines regardless of the visibility of the scene. With low-resource data (1h, 2h, 5h), ViT-TTS achieves comparative results with rich-resource baselines.~Audio samples are available at \url{https://ViT-TTS.github.io/.} 8 authors · May 22, 2023
3 MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer The recent large-scale text-to-speech (TTS) systems are usually grouped as autoregressive and non-autoregressive systems. The autoregressive systems implicitly model duration but exhibit certain deficiencies in robustness and lack of duration controllability. Non-autoregressive systems require explicit alignment information between text and speech during training and predict durations for linguistic units (e.g. phone), which may compromise their naturalness. In this paper, we introduce Masked Generative Codec Transformer (MaskGCT), a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision, as well as phone-level duration prediction. MaskGCT is a two-stage model: in the first stage, the model uses text to predict semantic tokens extracted from a speech self-supervised learning (SSL) model, and in the second stage, the model predicts acoustic tokens conditioned on these semantic tokens. MaskGCT follows the mask-and-predict learning paradigm. During training, MaskGCT learns to predict masked semantic or acoustic tokens based on given conditions and prompts. During inference, the model generates tokens of a specified length in a parallel manner. Experiments with 100K hours of in-the-wild speech demonstrate that MaskGCT outperforms the current state-of-the-art zero-shot TTS systems in terms of quality, similarity, and intelligibility. Audio samples are available at https://maskgct.github.io/. 10 authors · Sep 1, 2024
1 SpeechAlign: Aligning Speech Generation to Human Preferences Speech language models have significantly advanced in generating realistic speech, with neural codec language models standing out. However, the integration of human feedback to align speech outputs to human preferences is often neglected. This paper addresses this gap by first analyzing the distribution gap in codec language models, highlighting how it leads to discrepancies between the training and inference phases, which negatively affects performance. Then we explore leveraging learning from human feedback to bridge the distribution gap. We introduce SpeechAlign, an iterative self-improvement strategy that aligns speech language models to human preferences. SpeechAlign involves constructing a preference codec dataset contrasting golden codec tokens against synthetic tokens, followed by preference optimization to improve the codec language model. This cycle of improvement is carried out iteratively to steadily convert weak models to strong ones. Through both subjective and objective evaluations, we show that SpeechAlign can bridge the distribution gap and facilitating continuous self-improvement of the speech language model. Moreover, SpeechAlign exhibits robust generalization capabilities and works for smaller models. Code and models will be available at https://github.com/0nutation/SpeechGPT. 7 authors · Apr 8, 2024
7 Retrieval-Augmented Text-to-Audio Generation Despite recent progress in text-to-audio (TTA) generation, we show that the state-of-the-art models, such as AudioLDM, trained on datasets with an imbalanced class distribution, such as AudioCaps, are biased in their generation performance. Specifically, they excel in generating common audio classes while underperforming in the rare ones, thus degrading the overall generation performance. We refer to this problem as long-tailed text-to-audio generation. To address this issue, we propose a simple retrieval-augmented approach for TTA models. Specifically, given an input text prompt, we first leverage a Contrastive Language Audio Pretraining (CLAP) model to retrieve relevant text-audio pairs. The features of the retrieved audio-text data are then used as additional conditions to guide the learning of TTA models. We enhance AudioLDM with our proposed approach and denote the resulting augmented system as Re-AudioLDM. On the AudioCaps dataset, Re-AudioLDM achieves a state-of-the-art Frechet Audio Distance (FAD) of 1.37, outperforming the existing approaches by a large margin. Furthermore, we show that Re-AudioLDM can generate realistic audio for complex scenes, rare audio classes, and even unseen audio types, indicating its potential in TTA tasks. 6 authors · Sep 14, 2023
- ELLA-V: Stable Neural Codec Language Modeling with Alignment-guided Sequence Reordering The language model (LM) approach based on acoustic and linguistic prompts, such as VALL-E, has achieved remarkable progress in the field of zero-shot audio generation. However, existing methods still have some limitations: 1) repetitions, transpositions, and omissions in the output synthesized speech due to limited alignment constraints between audio and phoneme tokens; 2) challenges of fine-grained control over the synthesized speech with autoregressive (AR) language model; 3) infinite silence generation due to the nature of AR-based decoding, especially under the greedy strategy. To alleviate these issues, we propose ELLA-V, a simple but efficient LM-based zero-shot text-to-speech (TTS) framework, which enables fine-grained control over synthesized audio at the phoneme level. The key to ELLA-V is interleaving sequences of acoustic and phoneme tokens, where phoneme tokens appear ahead of the corresponding acoustic tokens. The experimental findings reveal that our model outperforms VALL-E in terms of accuracy and delivers more stable results using both greedy and sampling-based decoding strategies. The code of ELLA-V will be open-sourced after cleanups. Audio samples are available at https://ereboas.github.io/ELLAV/. 5 authors · Jan 14, 2024
1 Towards Cross-Lingual Audio Abuse Detection in Low-Resource Settings with Few-Shot Learning Online abusive content detection, particularly in low-resource settings and within the audio modality, remains underexplored. We investigate the potential of pre-trained audio representations for detecting abusive language in low-resource languages, in this case, in Indian languages using Few Shot Learning (FSL). Leveraging powerful representations from models such as Wav2Vec and Whisper, we explore cross-lingual abuse detection using the ADIMA dataset with FSL. Our approach integrates these representations within the Model-Agnostic Meta-Learning (MAML) framework to classify abusive language in 10 languages. We experiment with various shot sizes (50-200) evaluating the impact of limited data on performance. Additionally, a feature visualization study was conducted to better understand model behaviour. This study highlights the generalization ability of pre-trained models in low-resource scenarios and offers valuable insights into detecting abusive language in multilingual contexts. 3 authors · Dec 2, 2024 2
- Killkan: The Automatic Speech Recognition Dataset for Kichwa with Morphosyntactic Information This paper presents Killkan, the first dataset for automatic speech recognition (ASR) in the Kichwa language, an indigenous language of Ecuador. Kichwa is an extremely low-resource endangered language, and there have been no resources before Killkan for Kichwa to be incorporated in applications of natural language processing. The dataset contains approximately 4 hours of audio with transcription, translation into Spanish, and morphosyntactic annotation in the format of Universal Dependencies. The audio data was retrieved from a publicly available radio program in Kichwa. This paper also provides corpus-linguistic analyses of the dataset with a special focus on the agglutinative morphology of Kichwa and frequent code-switching with Spanish. The experiments show that the dataset makes it possible to develop the first ASR system for Kichwa with reliable quality despite its small dataset size. This dataset, the ASR model, and the code used to develop them will be publicly available. Thus, our study positively showcases resource building and its applications for low-resource languages and their community. 4 authors · Apr 23, 2024
- Exact Prosody Cloning in Zero-Shot Multispeaker Text-to-Speech The cloning of a speaker's voice using an untranscribed reference sample is one of the great advances of modern neural text-to-speech (TTS) methods. Approaches for mimicking the prosody of a transcribed reference audio have also been proposed recently. In this work, we bring these two tasks together for the first time through utterance level normalization in conjunction with an utterance level speaker embedding. We further introduce a lightweight aligner for extracting fine-grained prosodic features, that can be finetuned on individual samples within seconds. We show that it is possible to clone the voice of a speaker as well as the prosody of a spoken reference independently without any degradation in quality and high similarity to both original voice and prosody, as our objective evaluation and human study show. All of our code and trained models are available, alongside static and interactive demos. 3 authors · Jun 24, 2022
- URO-Bench: A Comprehensive Benchmark for End-to-End Spoken Dialogue Models In recent years, with advances in large language models (LLMs), end-to-end spoken dialogue models (SDMs) have made significant strides. Compared to text-based LLMs, the evaluation of SDMs needs to take speech-related aspects into account, such as paralinguistic information and speech quality. However, there is still a lack of comprehensive evaluations for SDMs in speech-to-speech (S2S) scenarios. To address this gap, we propose URO-Bench, an extensive benchmark for SDMs. Notably, URO-Bench is the first S2S benchmark that covers evaluations about multilingualism, multi-round dialogues, and paralinguistics. Our benchmark is divided into two difficulty levels: basic track and pro track, consisting of 16 and 20 datasets respectively, evaluating the model's abilities in Understanding, Reasoning, and Oral conversation. Evaluations on our proposed benchmark reveal that current open-source SDMs perform rather well in daily QA tasks, but lag behind their backbone LLMs in terms of instruction-following ability and also suffer from catastrophic forgetting. Their performance in advanced evaluations of paralinguistic information and audio understanding remains subpar, highlighting the need for further research in this direction. We hope that URO-Bench can effectively facilitate the development of spoken dialogue models by providing a multifaceted evaluation of existing models and helping to track progress in this area. 8 authors · Feb 24
- A Dataset of Dynamic Reverberant Sound Scenes with Directional Interferers for Sound Event Localization and Detection This report presents the dataset and baseline of Task 3 of the DCASE2021 Challenge on Sound Event Localization and Detection (SELD). The dataset is based on emulation of real recordings of static or moving sound events under real conditions of reverberation and ambient noise, using spatial room impulse responses captured in a variety of rooms and delivered in two spatial formats. The acoustical synthesis remains the same as in the previous iteration of the challenge, however the new dataset brings more challenging conditions of polyphony and overlapping instances of the same class. The most important difference of the new dataset is the introduction of directional interferers, meaning sound events that are localized in space but do not belong to the target classes to be detected and are not annotated. Since such interfering events are expected in every real-world scenario of SELD, the new dataset aims to promote systems that deal with this condition effectively. A modified SELDnet baseline employing the recent ACCDOA representation of SELD problems accompanies the dataset and it is shown to outperform the previous one. The new dataset is shown to be significantly more challenging for both baselines according to all considered metrics. To investigate the individual and combined effects of ambient noise, interferers, and reverberation, we study the performance of the baseline on different versions of the dataset excluding or including combinations of these factors. The results indicate that by far the most detrimental effects are caused by directional interferers. 6 authors · Jun 13, 2021
- MAIN-VC: Lightweight Speech Representation Disentanglement for One-shot Voice Conversion One-shot voice conversion aims to change the timbre of any source speech to match that of the unseen target speaker with only one speech sample. Existing methods face difficulties in satisfactory speech representation disentanglement and suffer from sizable networks as some of them leverage numerous complex modules for disentanglement. In this paper, we propose a model named MAIN-VC to effectively disentangle via a concise neural network. The proposed model utilizes Siamese encoders to learn clean representations, further enhanced by the designed mutual information estimator. The Siamese structure and the newly designed convolution module contribute to the lightweight of our model while ensuring performance in diverse voice conversion tasks. The experimental results show that the proposed model achieves comparable subjective scores and exhibits improvements in objective metrics compared to existing methods in a one-shot voice conversion scenario. 6 authors · May 1, 2024
- Moonshine: Speech Recognition for Live Transcription and Voice Commands This paper introduces Moonshine, a family of speech recognition models optimized for live transcription and voice command processing. Moonshine is based on an encoder-decoder transformer architecture and employs Rotary Position Embedding (RoPE) instead of traditional absolute position embeddings. The model is trained on speech segments of various lengths, but without using zero-padding, leading to greater efficiency for the encoder during inference time. When benchmarked against OpenAI's Whisper tiny.en, Moonshine Tiny demonstrates a 5x reduction in compute requirements for transcribing a 10-second speech segment while incurring no increase in word error rates across standard evaluation datasets. These results highlight Moonshine's potential for real-time and resource-constrained applications. 6 authors · Oct 20, 2024
- Guided-TTS 2: A Diffusion Model for High-quality Adaptive Text-to-Speech with Untranscribed Data We propose Guided-TTS 2, a diffusion-based generative model for high-quality adaptive TTS using untranscribed data. Guided-TTS 2 combines a speaker-conditional diffusion model with a speaker-dependent phoneme classifier for adaptive text-to-speech. We train the speaker-conditional diffusion model on large-scale untranscribed datasets for a classifier-free guidance method and further fine-tune the diffusion model on the reference speech of the target speaker for adaptation, which only takes 40 seconds. We demonstrate that Guided-TTS 2 shows comparable performance to high-quality single-speaker TTS baselines in terms of speech quality and speaker similarity with only a ten-second untranscribed data. We further show that Guided-TTS 2 outperforms adaptive TTS baselines on multi-speaker datasets even with a zero-shot adaptation setting. Guided-TTS 2 can adapt to a wide range of voices only using untranscribed speech, which enables adaptive TTS with the voice of non-human characters such as Gollum in "The Lord of the Rings". 3 authors · May 30, 2022
- ItôTTS and ItôWave: Linear Stochastic Differential Equation Is All You Need For Audio Generation In this paper, we propose to unify the two aspects of voice synthesis, namely text-to-speech (TTS) and vocoder, into one framework based on a pair of forward and reverse-time linear stochastic differential equations (SDE). The solutions of this SDE pair are two stochastic processes, one of which turns the distribution of mel spectrogram (or wave), that we want to generate, into a simple and tractable distribution. The other is the generation procedure that turns this tractable simple signal into the target mel spectrogram (or wave). The model that generates mel spectrogram is called It\^oTTS, and the model that generates wave is called It\^oWave. It\^oTTS and It\^oWave use the Wiener process as a driver to gradually subtract the excess signal from the noise signal to generate realistic corresponding meaningful mel spectrogram and audio respectively, under the conditional inputs of original text or mel spectrogram. The results of the experiment show that the mean opinion scores (MOS) of It\^oTTS and It\^oWave can exceed the current state-of-the-art methods, and reached 3.925pm0.160 and 4.35pm0.115 respectively. The generated audio samples are available at https://wushoule.github.io/ItoAudio/. All authors contribute equally to this work. 2 authors · May 16, 2021
- AudioBench: A Universal Benchmark for Audio Large Language Models We introduce AudioBench, a new benchmark designed to evaluate audio large language models (AudioLLMs). AudioBench encompasses 8 distinct tasks and 26 carefully selected or newly curated datasets, focusing on speech understanding, voice interpretation, and audio scene understanding. Despite the rapid advancement of large language models, including multimodal versions, a significant gap exists in comprehensive benchmarks for thoroughly evaluating their capabilities. AudioBench addresses this gap by providing relevant datasets and evaluation metrics. In our study, we evaluated the capabilities of four models across various aspects and found that no single model excels consistently across all tasks. We outline the research outlook for AudioLLMs and anticipate that our open-source code, data, and leaderboard will offer a robust testbed for future model developments. 9 authors · Jun 23, 2024
- A Language Modeling Approach to Diacritic-Free Hebrew TTS We tackle the task of text-to-speech (TTS) in Hebrew. Traditional Hebrew contains Diacritics, which dictate the way individuals should pronounce given words, however, modern Hebrew rarely uses them. The lack of diacritics in modern Hebrew results in readers expected to conclude the correct pronunciation and understand which phonemes to use based on the context. This imposes a fundamental challenge on TTS systems to accurately map between text-to-speech. In this work, we propose to adopt a language modeling Diacritics-Free approach, for the task of Hebrew TTS. The model operates on discrete speech representations and is conditioned on a word-piece tokenizer. We optimize the proposed method using in-the-wild weakly supervised data and compare it to several diacritic-based TTS systems. Results suggest the proposed method is superior to the evaluated baselines considering both content preservation and naturalness of the generated speech. Samples can be found under the following link: pages.cs.huji.ac.il/adiyoss-lab/HebTTS/ 3 authors · Jul 16, 2024
- Towards a Universal Method for Meaningful Signal Detection It is known that human speech and certain animal vocalizations can convey meaningful content because we can decipher the content that a given utterance does convey. This paper explores an alternative approach to determining whether a signal is meaningful, one that analyzes only the signal itself and is independent of what the conveyed meaning might be. We devise a method that takes a waveform as input and outputs a score indicating its degree of `meaningfulness`. We cluster contiguous portions of the input to minimize the total description length, and then take the length of the code of the assigned cluster labels as meaningfulness score. We evaluate our method empirically, against several baselines, and show that it is the only one to give a high score to human speech in various languages and with various speakers, a moderate score to animal vocalizations from birds and orcas, and a low score to ambient noise from various sources. 1 authors · Jul 28, 2024
1 Multi-resolution HuBERT: Multi-resolution Speech Self-Supervised Learning with Masked Unit Prediction Existing Self-Supervised Learning (SSL) models for speech typically process speech signals at a fixed resolution of 20 milliseconds. This approach overlooks the varying informational content present at different resolutions in speech signals. In contrast, this paper aims to incorporate multi-resolution information into speech self-supervised representation learning. We introduce a SSL model that leverages a hierarchical Transformer architecture, complemented by HuBERT-style masked prediction objectives, to process speech at multiple resolutions. Experimental results indicate that the proposed model not only achieves more efficient inference but also exhibits superior or comparable performance to the original HuBERT model over various tasks. Specifically, significant performance improvements over the original HuBERT have been observed in fine-tuning experiments on the LibriSpeech speech recognition benchmark as well as in evaluations using the Speech Universal PERformance Benchmark (SUPERB) and Multilingual SUPERB (ML-SUPERB). 5 authors · Oct 4, 2023
- Improving the Inclusivity of Dutch Speech Recognition by Fine-tuning Whisper on the JASMIN-CGN Corpus We test and study the variation in speech recognition of fine-tuned versions of the Whisper model on child, elderly and non-native Dutch speech from the JASMIN-CGN corpus. Our primary goal is to evaluate how speakers' age and linguistic background influence Whisper's performance. Whisper achieves varying Word Error Rates (WER) when fine-tuned on subpopulations of specific ages and linguistic backgrounds. Fine-tuned performance is remarkably better than zero-shot performance, achieving a relative reduction in WER of 81% for native children, 72% for non-native children, 67% for non-native adults, and 65% for native elderly people. Our findings underscore the importance of training speech recognition models like Whisper on underrepresented subpopulations such as children, the elderly, and non-native speakers. 3 authors · Feb 24
- Towards cross-language prosody transfer for dialog Speech-to-speech translation systems today do not adequately support use for dialog purposes. In particular, nuances of speaker intent and stance can be lost due to improper prosody transfer. We present an exploration of what needs to be done to overcome this. First, we developed a data collection protocol in which bilingual speakers re-enact utterances from an earlier conversation in their other language, and used this to collect an English-Spanish corpus, so far comprising 1871 matched utterance pairs. Second, we developed a simple prosodic dissimilarity metric based on Euclidean distance over a broad set of prosodic features. We then used these to investigate cross-language prosodic differences, measure the likely utility of three simple baseline models, and identify phenomena which will require more powerful modeling. Our findings should inform future research on cross-language prosody and the design of speech-to-speech translation systems capable of effective prosody transfer. 2 authors · Jul 9, 2023
1 Exploration on HuBERT with Multiple Resolutions Hidden-unit BERT (HuBERT) is a widely-used self-supervised learning (SSL) model in speech processing. However, we argue that its fixed 20ms resolution for hidden representations would not be optimal for various speech-processing tasks since their attributes (e.g., speaker characteristics and semantics) are based on different time scales. To address this limitation, we propose utilizing HuBERT representations at multiple resolutions for downstream tasks. We explore two approaches, namely the parallel and hierarchical approaches, for integrating HuBERT features with different resolutions. Through experiments, we demonstrate that HuBERT with multiple resolutions outperforms the original model. This highlights the potential of utilizing multiple resolutions in SSL models like HuBERT to capture diverse information from speech signals. 6 authors · Jun 1, 2023