new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 11

Unconstrained Model Merging for Enhanced LLM Reasoning

Recent advancements in building domain-specific large language models (LLMs) have shown remarkable success, especially in tasks requiring reasoning abilities like logical inference over complex relationships and multi-step problem solving. However, creating a powerful all-in-one LLM remains challenging due to the need for proprietary data and vast computational resources. As a resource-friendly alternative, we explore the potential of merging multiple expert models into a single LLM. Existing studies on model merging mainly focus on generalist LLMs instead of domain experts, or the LLMs under the same architecture and size. In this work, we propose an unconstrained model merging framework that accommodates both homogeneous and heterogeneous model architectures with a focus on reasoning tasks. A fine-grained layer-wise weight merging strategy is designed for homogeneous models merging, while heterogeneous model merging is built upon the probabilistic distribution knowledge derived from instruction-response fine-tuning data. Across 7 benchmarks and 9 reasoning-optimized LLMs, we reveal key findings that combinatorial reasoning emerges from merging which surpasses simple additive effects. We propose that unconstrained model merging could serve as a foundation for decentralized LLMs, marking a notable progression from the existing centralized LLM framework. This evolution could enhance wider participation and stimulate additional advancement in the field of artificial intelligence, effectively addressing the constraints posed by centralized models.

Ferret: Federated Full-Parameter Tuning at Scale for Large Language Models

Large Language Models (LLMs) have become indispensable in numerous real-world applications. Unfortunately, fine-tuning these models at scale, especially in federated settings where data privacy and communication efficiency are critical, presents significant challenges. Existing methods often resort to parameter-efficient fine-tuning (PEFT) to mitigate communication overhead, but this typically comes at the cost of model accuracy. To address these limitations, we propose federated full-parameter tuning at scale for LLMs (Ferret), the first first-order method with shared randomness to enable scalable full-parameter tuning of LLMs across decentralized data sources while maintaining competitive model accuracy. Ferret accomplishes this through three aspects: (1) it employs widely applied first-order methods for efficient local updates; (2) it projects these updates into a low-dimensional space to considerably reduce communication overhead; and (3) it reconstructs local updates from this low-dimensional space with shared randomness to facilitate effective full-parameter global aggregation, ensuring fast convergence and competitive final performance. Our rigorous theoretical analyses and insights along with extensive experiments, show that Ferret significantly enhances the scalability of existing federated full-parameter tuning approaches by achieving high computational efficiency, reduced communication overhead, and fast convergence, all while maintaining competitive model accuracy. Our implementation is available at https://github.com/allen4747/Ferret.

Scalable Multi-Robot Collaboration with Large Language Models: Centralized or Decentralized Systems?

A flurry of recent work has demonstrated that pre-trained large language models (LLMs) can be effective task planners for a variety of single-robot tasks. The planning performance of LLMs is significantly improved via prompting techniques, such as in-context learning or re-prompting with state feedback, placing new importance on the token budget for the context window. An under-explored but natural next direction is to investigate LLMs as multi-robot task planners. However, long-horizon, heterogeneous multi-robot planning introduces new challenges of coordination while also pushing up against the limits of context window length. It is therefore critical to find token-efficient LLM planning frameworks that are also able to reason about the complexities of multi-robot coordination. In this work, we compare the task success rate and token efficiency of four multi-agent communication frameworks (centralized, decentralized, and two hybrid) as applied to four coordination-dependent multi-agent 2D task scenarios for increasing numbers of agents. We find that a hybrid framework achieves better task success rates across all four tasks and scales better to more agents. We further demonstrate the hybrid frameworks in 3D simulations where the vision-to-text problem and dynamical errors are considered. See our project website https://yongchao98.github.io/MIT-REALM-Multi-Robot/ for prompts, videos, and code.

LLM-Powered Decentralized Generative Agents with Adaptive Hierarchical Knowledge Graph for Cooperative Planning

Developing intelligent agents for long-term cooperation in dynamic open-world scenarios is a major challenge in multi-agent systems. Traditional Multi-agent Reinforcement Learning (MARL) frameworks like centralized training decentralized execution (CTDE) struggle with scalability and flexibility. They require centralized long-term planning, which is difficult without custom reward functions, and face challenges in processing multi-modal data. CTDE approaches also assume fixed cooperation strategies, making them impractical in dynamic environments where agents need to adapt and plan independently. To address decentralized multi-agent cooperation, we propose Decentralized Adaptive Knowledge Graph Memory and Structured Communication System (DAMCS) in a novel Multi-agent Crafter environment. Our generative agents, powered by Large Language Models (LLMs), are more scalable than traditional MARL agents by leveraging external knowledge and language for long-term planning and reasoning. Instead of fully sharing information from all past experiences, DAMCS introduces a multi-modal memory system organized as a hierarchical knowledge graph and a structured communication protocol to optimize agent cooperation. This allows agents to reason from past interactions and share relevant information efficiently. Experiments on novel multi-agent open-world tasks show that DAMCS outperforms both MARL and LLM baselines in task efficiency and collaboration. Compared to single-agent scenarios, the two-agent scenario achieves the same goal with 63% fewer steps, and the six-agent scenario with 74% fewer steps, highlighting the importance of adaptive memory and structured communication in achieving long-term goals. We publicly release our project at: https://happyeureka.github.io/damcs.

Meta-Learning for Speeding Up Large Model Inference in Decentralized Environments

The deployment of large-scale models, such as large language models (LLMs) and sophisticated image generation systems, incurs substantial costs due to their computational demands. To mitigate these costs and address challenges related to scalability and data security, there is a growing shift towards decentralized systems for deploying such models. In these decentralized environments, efficient inference acceleration becomes crucial to manage computational resources effectively and enhance system responsiveness. In this work, we address the challenge of selecting optimal acceleration methods in decentralized systems by introducing a meta-learning-based framework. This framework automates the selection process by learning from historical performance data of various acceleration techniques across different tasks. Unlike traditional methods that rely on random selection or expert intuition, our approach systematically identifies the best acceleration strategies based on the specific characteristics of each task. We demonstrate that our meta-learning framework not only streamlines the decision-making process but also consistently outperforms conventional methods in terms of efficiency and performance. Our results highlight the potential of meta-learning to revolutionize inference acceleration in decentralized AI systems, offering a path towards more democratic and economically feasible artificial intelligence solutions.

Differentially Private Low-Rank Adaptation of Large Language Model Using Federated Learning

The surge in interest and application of large language models (LLMs) has sparked a drive to fine-tune these models to suit specific applications, such as finance and medical science. However, concerns regarding data privacy have emerged, especially when multiple stakeholders aim to collaboratively enhance LLMs using sensitive data. In this scenario, federated learning becomes a natural choice, allowing decentralized fine-tuning without exposing raw data to central servers. Motivated by this, we investigate how data privacy can be ensured in LLM fine-tuning through practical federated learning approaches, enabling secure contributions from multiple parties to enhance LLMs. Yet, challenges arise: 1) despite avoiding raw data exposure, there is a risk of inferring sensitive information from model outputs, and 2) federated learning for LLMs incurs notable communication overhead. To address these challenges, this article introduces DP-LoRA, a novel federated learning algorithm tailored for LLMs. DP-LoRA preserves data privacy by employing a Gaussian mechanism that adds noise in weight updates, maintaining individual data privacy while facilitating collaborative model training. Moreover, DP-LoRA optimizes communication efficiency via low-rank adaptation, minimizing the transmission of updated weights during distributed training. The experimental results across medical, financial, and general datasets using various LLMs demonstrate that DP-LoRA effectively ensures strict privacy constraints while minimizing communication overhead.

FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large Language Models in Federated Learning

LLMs have demonstrated great capabilities in various NLP tasks. Different entities can further improve the performance of those LLMs on their specific downstream tasks by fine-tuning LLMs. When several entities have similar interested tasks, but their data cannot be shared because of privacy concerns regulations, federated learning (FL) is a mainstream solution to leverage the data of different entities. However, fine-tuning LLMs in federated learning settings still lacks adequate support from existing FL frameworks because it has to deal with optimizing the consumption of significant communication and computational resources, data preparation for different tasks, and distinct information protection demands. This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution, which consists of the following components: (1) we build an end-to-end benchmarking pipeline, automizing the processes of dataset preprocessing, federated fine-tuning execution, and performance evaluation on federated LLM fine-tuning; (2) we provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios with low communication and computation costs, even without accessing the full model; (3) we adopt several accelerating and resource-efficient operators for fine-tuning LLMs with limited resources and the flexible pluggable sub-routines for interdisciplinary study. We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings, which also yields valuable insights into federated fine-tuning LLMs for the research community. To facilitate further research and adoption, we release FS-LLM at https://github.com/alibaba/FederatedScope/tree/llm.

Doing More with Less -- Implementing Routing Strategies in Large Language Model-Based Systems: An Extended Survey

Large Language Models (LLM)-based systems, i.e. interconnected elements that include an LLM as a central component (e.g., conversational agents), are typically monolithic static architectures that rely on a single LLM for all user queries. However, they often require different preprocessing strategies, levels of reasoning, or knowledge. Generalist LLMs (i.e. GPT-4), trained on very large multi-topic corpora, can perform well in a variety of tasks. However, they require significant financial, energy, and hardware resources that may not be justified for basic tasks. This implies potentially investing in unnecessary costs for a given query. To overcome this problem, a routing mechanism routes user queries to the most suitable components, such as smaller LLMs or experts in specific topics. This approach may improve response quality while minimising costs. Routing can be expanded to other components of the conversational agent architecture, such as the selection of optimal embedding strategies. This paper explores key considerations for integrating routing into LLM-based systems, focusing on resource management, cost definition, and strategy selection. Our main contributions include a formalisation of the problem, a novel taxonomy of existing approaches emphasising relevance and resource efficiency, and a comparative analysis of these strategies in relation to industry practices. Finally, we identify critical challenges and directions for future research.

BlockLLM: Multi-tenant Finer-grained Serving for Large Language Models

The growing demand for Large Language Models (LLMs) across diverse applications has prompted a paradigm shift in the design of deep learning serving systems. Deploying LLMs, especially in multi-tenant environments, presents considerable challenges due to their high computational and memory demands. We present BlockLLM, a serving system that exploits the potential of sharing components among fine-tuned LLM models to offer an efficient and flexible solution for LLM workloads. BlockLLM partitions the models into finer-grained blocks to enable the reuse of model components and independent provisioning to improve the computation efficiency. BlockLLM consists of an offline block zoo, for storing the blocks, and an online system to serve the requests through chains of blocks. It offers multi-fold flexibility: (1) Adaptive assembly of block chains on-the-fly is achieved with the help of equivalence evaluation among blocks in the zoo. (2) We enable per-block batch size and configure best-effort KV cache coordination at individual block level. (3) We adopt speculative execution and locality-aware block placement to mitigate the communication costs from dynamic block resource allocation. Our evaluation demonstrates that BlockLLM reduces memory and storage footprints and improves computation efficiency, outperforming existing serving approach in 95\%ile latency and GPU utilization by 33.5\% and 20.1\%, respectively.

MALT: Improving Reasoning with Multi-Agent LLM Training

Enabling effective collaboration among LLMs is a crucial step toward developing autonomous systems capable of solving complex problems. While LLMs are typically used as single-model generators, where humans critique and refine their outputs, the potential for jointly-trained collaborative models remains largely unexplored. Despite promising results in multi-agent communication and debate settings, little progress has been made in training models to work together on tasks. In this paper, we present a first step toward "Multi-agent LLM training" (MALT) on reasoning problems. Our approach employs a sequential multi-agent setup with heterogeneous LLMs assigned specialized roles: a generator, verifier, and refinement model iteratively solving problems. We propose a trajectory-expansion-based synthetic data generation process and a credit assignment strategy driven by joint outcome based rewards. This enables our post-training setup to utilize both positive and negative trajectories to autonomously improve each model's specialized capabilities as part of a joint sequential system. We evaluate our approach across MATH, GSM8k, and CQA, where MALT on Llama 3.1 8B models achieves relative improvements of 14.14%, 7.12%, and 9.40% respectively over the same baseline model. This demonstrates an early advance in multi-agent cooperative capabilities for performance on mathematical and common sense reasoning questions. More generally, our work provides a concrete direction for research around multi-agent LLM training approaches.

CELLM: An Efficient Communication in Large Language Models Training for Federated Learning

Federated Learning (FL) is a recent model training paradigm in which client devices collaboratively train a model without ever aggregating their data. Crucially, this scheme offers users potential privacy and security benefits by only ever communicating updates to the model weights to a central server as opposed to traditional machine learning (ML) training which directly communicates and aggregates data. However, FL training suffers from statistical heterogeneity as clients may have differing local data distributions. Large language models (LLMs) offer a potential solution to this issue of heterogeneity given that they have consistently been shown to be able to learn on vast amounts of noisy data. While LLMs are a promising development for resolving the consistent issue of non-I.I.D. Clients in federated settings exacerbate two other bottlenecks in FL: limited local computing and expensive communication. This thesis aims to develop efficient training methods for LLMs in FL. To this end, we employ two critical techniques in enabling efficient training. First, we use low-rank adaptation (LoRA) to reduce the computational load of local model training. Second, we communicate sparse updates throughout training to significantly cut down on communication costs. Taken together, our method reduces communication costs by up to 10x over vanilla LoRA and up to 5x over more complex sparse LoRA baselines while achieving greater utility. We emphasize the importance of carefully applying sparsity and picking effective rank and sparsity configurations for federated LLM training.

Improving the Model Consistency of Decentralized Federated Learning

To mitigate the privacy leakages and communication burdens of Federated Learning (FL), decentralized FL (DFL) discards the central server and each client only communicates with its neighbors in a decentralized communication network. However, existing DFL suffers from high inconsistency among local clients, which results in severe distribution shift and inferior performance compared with centralized FL (CFL), especially on heterogeneous data or sparse communication topology. To alleviate this issue, we propose two DFL algorithms named DFedSAM and DFedSAM-MGS to improve the performance of DFL. Specifically, DFedSAM leverages gradient perturbation to generate local flat models via Sharpness Aware Minimization (SAM), which searches for models with uniformly low loss values. DFedSAM-MGS further boosts DFedSAM by adopting Multiple Gossip Steps (MGS) for better model consistency, which accelerates the aggregation of local flat models and better balances communication complexity and generalization. Theoretically, we present improved convergence rates small Obig(1{KT}+1{T}+1{K^{1/2}T^{3/2}(1-lambda)^2}big) and small Obig(1{KT}+1{T}+lambda^Q+1{K^{1/2}T^{3/2}(1-lambda^Q)^2}big) in non-convex setting for DFedSAM and DFedSAM-MGS, respectively, where 1-lambda is the spectral gap of gossip matrix and Q is the number of MGS. Empirically, our methods can achieve competitive performance compared with CFL methods and outperform existing DFL methods.

Multi-Agent Collaboration Mechanisms: A Survey of LLMs

With recent advances in Large Language Models (LLMs), Agentic AI has become phenomenal in real-world applications, moving toward multiple LLM-based agents to perceive, learn, reason, and act collaboratively. These LLM-based Multi-Agent Systems (MASs) enable groups of intelligent agents to coordinate and solve complex tasks collectively at scale, transitioning from isolated models to collaboration-centric approaches. This work provides an extensive survey of the collaborative aspect of MASs and introduces an extensible framework to guide future research. Our framework characterizes collaboration mechanisms based on key dimensions: actors (agents involved), types (e.g., cooperation, competition, or coopetition), structures (e.g., peer-to-peer, centralized, or distributed), strategies (e.g., role-based or model-based), and coordination protocols. Through a review of existing methodologies, our findings serve as a foundation for demystifying and advancing LLM-based MASs toward more intelligent and collaborative solutions for complex, real-world use cases. In addition, various applications of MASs across diverse domains, including 5G/6G networks, Industry 5.0, question answering, and social and cultural settings, are also investigated, demonstrating their wider adoption and broader impacts. Finally, we identify key lessons learned, open challenges, and potential research directions of MASs towards artificial collective intelligence.

A Comprehensive Survey of Small Language Models in the Era of Large Language Models: Techniques, Enhancements, Applications, Collaboration with LLMs, and Trustworthiness

Large language models (LLM) have demonstrated emergent abilities in text generation, question answering, and reasoning, facilitating various tasks and domains. Despite their proficiency in various tasks, LLMs like LaPM 540B and Llama-3.1 405B face limitations due to large parameter sizes and computational demands, often requiring cloud API use which raises privacy concerns, limits real-time applications on edge devices, and increases fine-tuning costs. Additionally, LLMs often underperform in specialized domains such as healthcare and law due to insufficient domain-specific knowledge, necessitating specialized models. Therefore, Small Language Models (SLMs) are increasingly favored for their low inference latency, cost-effectiveness, efficient development, and easy customization and adaptability. These models are particularly well-suited for resource-limited environments and domain knowledge acquisition, addressing LLMs' challenges and proving ideal for applications that require localized data handling for privacy, minimal inference latency for efficiency, and domain knowledge acquisition through lightweight fine-tuning. The rising demand for SLMs has spurred extensive research and development. However, a comprehensive survey investigating issues related to the definition, acquisition, application, enhancement, and reliability of SLM remains lacking, prompting us to conduct a detailed survey on these topics. The definition of SLMs varies widely, thus to standardize, we propose defining SLMs by their capability to perform specialized tasks and suitability for resource-constrained settings, setting boundaries based on the minimal size for emergent abilities and the maximum size sustainable under resource constraints. For other aspects, we provide a taxonomy of relevant models/methods and develop general frameworks for each category to enhance and utilize SLMs effectively.

Automated Federated Pipeline for Parameter-Efficient Fine-Tuning of Large Language Models

Recently, there has been a surge in the development of advanced intelligent generative content (AIGC), especially large language models (LLMs). However, for many downstream tasks, it is necessary to fine-tune LLMs using private data. While federated learning offers a promising privacy-preserving solution to LLM fine-tuning, the substantial size of an LLM, combined with high computational and communication demands, makes it hard to apply to downstream tasks. More importantly, private edge servers often possess varying computing and network resources in real-world scenarios, introducing additional complexities to LLM fine-tuning. To tackle these problems, we design and implement an automated federated pipeline, named FedPipe, to fine-tune LLMs with minimal training cost but without adding any inference latency. FedPipe firstly identifies the weights to be fine-tuned based on their contributions to the LLM training. It then configures a low-rank adapter for each selected weight to train local low-rank adapters on an edge server, and aggregate local adapters of all edge servers to fine-tune the whole LLM. Finally, it appropriately quantizes the parameters of LLM to reduce memory space according to the requirements of edge servers. Extensive experiments demonstrate that FedPipe expedites the model training and achieves higher accuracy than state-of-the-art benchmarks.

MoDeST: Bridging the Gap between Federated and Decentralized Learning with Decentralized Sampling

Federated and decentralized machine learning leverage end-user devices for privacy-preserving training of models at lower operating costs than within a data center. In a round of Federated Learning (FL), a random sample of participants trains locally, then a central server aggregates the local models to produce a single model for the next round. In a round of Decentralized Learning (DL), all participants train locally and then aggregate with their immediate neighbors, resulting in many local models with residual variance between them. On the one hand, FL's sampling and lower model variance provides lower communication costs and faster convergence. On the other hand, DL removes the need for a central server and distributes the communication costs more evenly amongst nodes, albeit at a larger total communication cost and slower convergence. In this paper, we present MoDeST: Mostly-Consistent Decentralized Sampling Training. MoDeST implements decentralized sampling in which a random subset of nodes is responsible for training and aggregation every round: this provides the benefits of both FL and DL without their traditional drawbacks. Our evaluation of MoDeST on four common learning tasks: (i) confirms convergence as fast as FL, (ii) shows a 3x-14x reduction in communication costs compared to DL, and (iii) demonstrates that MoDeST quickly adapts to nodes joining, leaving, or failing, even when 80% of all nodes become unresponsive.

CE-CoLLM: Efficient and Adaptive Large Language Models Through Cloud-Edge Collaboration

Large Language Models (LLMs) have achieved remarkable success in serving end-users with human-like intelligence. However, LLMs demand high computational resources, making it challenging to deploy them to satisfy various performance objectives, such as meeting the resource constraints on edge devices close to end-users or achieving high accuracy with ample resources. In this paper, we introduce CE-CoLLM, a novel cloud-edge collaboration framework that supports efficient and adaptive LLM inference for end-users at the edge with two modes, (1) low-latency edge standalone inference and (2) highly accurate cloud-edge collaborative inference. First, we show that the inherent high communication costs for transmitting LLM contextual information between the edge and cloud dominate the overall latency, making it inefficient and costly to deploy LLMs using cloud-edge collaboration. Second, we propose several critical techniques to address this challenge, including early-exit mechanism, cloud context manager, and quantization in cloud-edge collaboration to enable not only low-latency standalone edge inference but also efficient and adaptive cloud-edge collaborative inference for LLMs. Third, we perform comprehensive experimental analysis, which demonstrates that CE-CoLLM significantly reduces inference time by up to 13.81% and cloud computation costs by up to 84.55% compared to the popular cloud-based LLM deployment, while maintaining comparable model accuracy. The proposed approach effectively shifts the computational load to the edge, reduces the communication overhead, scales efficiently with multiple edge clients, and provides reliable LLM deployment using cloud-edge collaboration.

Bristle: Decentralized Federated Learning in Byzantine, Non-i.i.d. Environments

Federated learning (FL) is a privacy-friendly type of machine learning where devices locally train a model on their private data and typically communicate model updates with a server. In decentralized FL (DFL), peers communicate model updates with each other instead. However, DFL is challenging since (1) the training data possessed by different peers is often non-i.i.d. (i.e., distributed differently between the peers) and (2) malicious, or Byzantine, attackers can share arbitrary model updates with other peers to subvert the training process. We address these two challenges and present Bristle, middleware between the learning application and the decentralized network layer. Bristle leverages transfer learning to predetermine and freeze the non-output layers of a neural network, significantly speeding up model training and lowering communication costs. To securely update the output layer with model updates from other peers, we design a fast distance-based prioritizer and a novel performance-based integrator. Their combined effect results in high resilience to Byzantine attackers and the ability to handle non-i.i.d. classes. We empirically show that Bristle converges to a consistent 95% accuracy in Byzantine environments, outperforming all evaluated baselines. In non-Byzantine environments, Bristle requires 83% fewer iterations to achieve 90% accuracy compared to state-of-the-art methods. We show that when the training classes are non-i.i.d., Bristle significantly outperforms the accuracy of the most Byzantine-resilient baselines by 2.3x while reducing communication costs by 90%.

Infinite-LLM: Efficient LLM Service for Long Context with DistAttention and Distributed KVCache

The rapid proliferation of Large Language Models (LLMs) has been a driving force in the growth of cloud-based LLM services, which are now integral to advancing AI applications. However, the dynamic auto-regressive nature of LLM service, along with the need to support exceptionally long context lengths, demands the flexible allocation and release of substantial resources. This presents considerable challenges in designing cloud-based LLM service systems, where inefficient management can lead to performance degradation or resource wastage. In response to these challenges, this work introduces DistAttention, a novel distributed attention algorithm that segments the KV Cache into smaller, manageable units, enabling distributed processing and storage of the attention module. Based on that, we propose DistKV-LLM, a distributed LLM serving system that dynamically manages KV Cache and effectively orchestrates all accessible GPU and CPU memories spanning across the data center. This ensures a high-performance LLM service on the cloud, adaptable to a broad range of context lengths. Validated in a cloud environment with 32 NVIDIA A100 GPUs in configurations from 2 to 32 instances, our system exhibited 1.03-2.4x end-to-end throughput improvements and supported context lengths 2-19x longer than current state-of-the-art LLM service systems, as evidenced by extensive testing across 18 datasets with context lengths up to 1,900K.

Towards Secure and Private AI: A Framework for Decentralized Inference

The rapid advancement of ML models in critical sectors such as healthcare, finance, and security has intensified the need for robust data security, model integrity, and reliable outputs. Large multimodal foundational models, while crucial for complex tasks, present challenges in scalability, reliability, and potential misuse. Decentralized systems offer a solution by distributing workload and mitigating central points of failure, but they introduce risks of unauthorized access to sensitive data across nodes. We address these challenges with a comprehensive framework designed for responsible AI development. Our approach incorporates: 1) Zero-knowledge proofs for secure model verification, enhancing trust without compromising privacy. 2) Consensus-based verification checks to ensure consistent outputs across nodes, mitigating hallucinations and maintaining model integrity. 3) Split Learning techniques that segment models across different nodes, preserving data privacy by preventing full data access at any point. 4) Hardware-based security through trusted execution environments (TEEs) to protect data and computations. This framework aims to enhance security and privacy and improve the reliability and fairness of multimodal AI systems. Promoting efficient resource utilization contributes to more sustainable AI development. Our state-of-the-art proofs and principles demonstrate the framework's effectiveness in responsibly democratizing artificial intelligence, offering a promising approach for building secure and private foundational models.

From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future

With the rise of large language models (LLMs), researchers are increasingly exploring their applications in var ious vertical domains, such as software engineering. LLMs have achieved remarkable success in areas including code generation and vulnerability detection. However, they also exhibit numerous limitations and shortcomings. LLM-based agents, a novel tech nology with the potential for Artificial General Intelligence (AGI), combine LLMs as the core for decision-making and action-taking, addressing some of the inherent limitations of LLMs such as lack of autonomy and self-improvement. Despite numerous studies and surveys exploring the possibility of using LLMs in software engineering, it lacks a clear distinction between LLMs and LLM based agents. It is still in its early stage for a unified standard and benchmarking to qualify an LLM solution as an LLM-based agent in its domain. In this survey, we broadly investigate the current practice and solutions for LLMs and LLM-based agents for software engineering. In particular we summarise six key topics: requirement engineering, code generation, autonomous decision-making, software design, test generation, and software maintenance. We review and differentiate the work of LLMs and LLM-based agents from these six topics, examining their differences and similarities in tasks, benchmarks, and evaluation metrics. Finally, we discuss the models and benchmarks used, providing a comprehensive analysis of their applications and effectiveness in software engineering. We anticipate this work will shed some lights on pushing the boundaries of LLM-based agents in software engineering for future research.

Parrot: Efficient Serving of LLM-based Applications with Semantic Variable

The rise of large language models (LLMs) has enabled LLM-based applications (a.k.a. AI agents or co-pilots), a new software paradigm that combines the strength of LLM and conventional software. Diverse LLM applications from different tenants could design complex workflows using multiple LLM requests to accomplish one task. However, they have to use the over-simplified request-level API provided by today's public LLM services, losing essential application-level information. Public LLM services have to blindly optimize individual LLM requests, leading to sub-optimal end-to-end performance of LLM applications. This paper introduces Parrot, an LLM service system that focuses on the end-to-end experience of LLM-based applications. Parrot proposes Semantic Variable, a unified abstraction to expose application-level knowledge to public LLM services. A Semantic Variable annotates an input/output variable in the prompt of a request, and creates the data pipeline when connecting multiple LLM requests, providing a natural way to program LLM applications. Exposing Semantic Variables to the public LLM service allows it to perform conventional data flow analysis to uncover the correlation across multiple LLM requests. This correlation opens a brand-new optimization space for the end-to-end performance of LLM-based applications. Extensive evaluations demonstrate that Parrot can achieve up to an order-of-magnitude improvement for popular and practical use cases of LLM applications.

Reasoning Capacity in Multi-Agent Systems: Limitations, Challenges and Human-Centered Solutions

Remarkable performance of large language models (LLMs) in a variety of tasks brings forth many opportunities as well as challenges of utilizing them in production settings. Towards practical adoption of LLMs, multi-agent systems hold great promise to augment, integrate, and orchestrate LLMs in the larger context of enterprise platforms that use existing proprietary data and models to tackle complex real-world tasks. Despite the tremendous success of these systems, current approaches rely on narrow, single-focus objectives for optimization and evaluation, often overlooking potential constraints in real-world scenarios, including restricted budgets, resources and time. Furthermore, interpreting, analyzing, and debugging these systems requires different components to be evaluated in relation to one another. This demand is currently not feasible with existing methodologies. In this postion paper, we introduce the concept of reasoning capacity as a unifying criterion to enable integration of constraints during optimization and establish connections among different components within the system, which also enable a more holistic and comprehensive approach to evaluation. We present a formal definition of reasoning capacity and illustrate its utility in identifying limitations within each component of the system. We then argue how these limitations can be addressed with a self-reflective process wherein human-feedback is used to alleviate shortcomings in reasoning and enhance overall consistency of the system.

WebRL: Training LLM Web Agents via Self-Evolving Online Curriculum Reinforcement Learning

Large language models (LLMs) have shown remarkable potential as autonomous agents, particularly in web-based tasks. However, existing LLM web agents heavily rely on expensive proprietary LLM APIs, while open LLMs lack the necessary decision-making capabilities. This paper introduces WebRL, a self-evolving online curriculum reinforcement learning framework designed to train high-performance web agents using open LLMs. WebRL addresses three key challenges in building LLM web agents, including the scarcity of training tasks, sparse feedback signals, and policy distribution drift in online learning. Specifically, WebRL incorporates 1) a self-evolving curriculum that generates new tasks from unsuccessful attempts, 2) a robust outcome-supervised reward model (ORM), and 3) adaptive reinforcement learning strategies to ensure consistent improvements. We apply WebRL to transform open Llama-3.1 and GLM-4 models into proficient web agents. On WebArena-Lite, WebRL improves the success rate of Llama-3.1-8B from 4.8% to 42.4%, and from 6.1% to 43% for GLM-4-9B. These open models significantly surpass the performance of GPT-4-Turbo (17.6%) and GPT-4o (13.9%) and outperform previous state-of-the-art web agents trained on open LLMs (AutoWebGLM, 18.2%). Our findings demonstrate WebRL's effectiveness in bridging the gap between open and proprietary LLM-based web agents, paving the way for more accessible and powerful autonomous web interaction systems.

The Open Source Advantage in Large Language Models (LLMs)

Large language models (LLMs) mark a key shift in natural language processing (NLP), having advanced text generation, translation, and domain-specific reasoning. Closed-source models like GPT-4, powered by proprietary datasets and extensive computational resources, lead with state-of-the-art performance today. However, they face criticism for their "black box" nature and for limiting accessibility in a manner that hinders reproducibility and equitable AI development. By contrast, open-source initiatives like LLaMA and BLOOM prioritize democratization through community-driven development and computational efficiency. These models have significantly reduced performance gaps, particularly in linguistic diversity and domain-specific applications, while providing accessible tools for global researchers and developers. Notably, both paradigms rely on foundational architectural innovations, such as the Transformer framework by Vaswani et al. (2017). Closed-source models excel by scaling effectively, while open-source models adapt to real-world applications in underrepresented languages and domains. Techniques like Low-Rank Adaptation (LoRA) and instruction-tuning datasets enable open-source models to achieve competitive results despite limited resources. To be sure, the tension between closed-source and open-source approaches underscores a broader debate on transparency versus proprietary control in AI. Ethical considerations further highlight this divide. Closed-source systems restrict external scrutiny, while open-source models promote reproducibility and collaboration but lack standardized auditing documentation frameworks to mitigate biases. Hybrid approaches that leverage the strengths of both paradigms are likely to shape the future of LLM innovation, ensuring accessibility, competitive technical performance, and ethical deployment.

TrustLLM: Trustworthiness in Large Language Models

Large language models (LLMs), exemplified by ChatGPT, have gained considerable attention for their excellent natural language processing capabilities. Nonetheless, these LLMs present many challenges, particularly in the realm of trustworthiness. Therefore, ensuring the trustworthiness of LLMs emerges as an important topic. This paper introduces TrustLLM, a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions. Specifically, we first propose a set of principles for trustworthy LLMs that span eight different dimensions. Based on these principles, we further establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics. We then present a study evaluating 16 mainstream LLMs in TrustLLM, consisting of over 30 datasets. Our findings firstly show that in general trustworthiness and utility (i.e., functional effectiveness) are positively related. Secondly, our observations reveal that proprietary LLMs generally outperform most open-source counterparts in terms of trustworthiness, raising concerns about the potential risks of widely accessible open-source LLMs. However, a few open-source LLMs come very close to proprietary ones. Thirdly, it is important to note that some LLMs may be overly calibrated towards exhibiting trustworthiness, to the extent that they compromise their utility by mistakenly treating benign prompts as harmful and consequently not responding. Finally, we emphasize the importance of ensuring transparency not only in the models themselves but also in the technologies that underpin trustworthiness. Knowing the specific trustworthy technologies that have been employed is crucial for analyzing their effectiveness.

A Web-Based Solution for Federated Learning with LLM-Based Automation

Federated Learning (FL) offers a promising approach for collaborative machine learning across distributed devices. However, its adoption is hindered by the complexity of building reliable communication architectures and the need for expertise in both machine learning and network programming. This paper presents a comprehensive solution that simplifies the orchestration of FL tasks while integrating intent-based automation. We develop a user-friendly web application supporting the federated averaging (FedAvg) algorithm, enabling users to configure parameters through an intuitive interface. The backend solution efficiently manages communication between the parameter server and edge nodes. We also implement model compression and scheduling algorithms to optimize FL performance. Furthermore, we explore intent-based automation in FL using a fine-tuned Language Model (LLM) trained on a tailored dataset, allowing users to conduct FL tasks using high-level prompts. We observe that the LLM-based automated solution achieves comparable test accuracy to the standard web-based solution while reducing transferred bytes by up to 64% and CPU time by up to 46% for FL tasks. Also, we leverage the neural architecture search (NAS) and hyperparameter optimization (HPO) using LLM to improve the performance. We observe that by using this approach test accuracy can be improved by 10-20% for the carried out FL tasks.

Multi-Agent Software Development through Cross-Team Collaboration

The latest breakthroughs in Large Language Models (LLMs), eg., ChatDev, have catalyzed profound transformations, particularly through multi-agent collaboration for software development. LLM agents can collaborate in teams like humans, and follow the waterfall model to sequentially work on requirements analysis, development, review, testing, and other phases to perform autonomous software generation. However, for an agent team, each phase in a single development process yields only one possible outcome. This results in the completion of only one development chain, thereby losing the opportunity to explore multiple potential decision paths within the solution space. Consequently, this may lead to obtaining suboptimal results. To address this challenge, we introduce Cross-Team Collaboration (CTC), a scalable multi-team framework that enables orchestrated teams to jointly propose various decisions and communicate with their insights in a cross-team collaboration environment for superior content generation. Experimental results in software development reveal a notable increase in quality compared to state-of-the-art baselines, underscoring the efficacy of our framework. The significant improvements in story generation demonstrate the promising generalization ability of our framework across various domains. We anticipate that our work will guide LLM agents towards a cross-team paradigm and contribute to their significant growth in but not limited to software development. The code and data will be available at https://github.com/OpenBMB/ChatDev.

Llumnix: Dynamic Scheduling for Large Language Model Serving

Inference serving for large language models (LLMs) is the key to unleashing their potential in people's daily lives. However, efficient LLM serving remains challenging today because the requests are inherently heterogeneous and unpredictable in terms of resource and latency requirements, as a result of the diverse applications and the dynamic execution nature of LLMs. Existing systems are fundamentally limited in handling these characteristics and cause problems such as severe queuing delays, poor tail latencies, and SLO violations. We introduce Llumnix, an LLM serving system that reacts to such heterogeneous and unpredictable requests by runtime rescheduling across multiple model instances. Similar to context switching across CPU cores in modern operating systems, Llumnix reschedules requests to improve load balancing and isolation, mitigate resource fragmentation, and differentiate request priorities and SLOs. Llumnix implements the rescheduling with an efficient and scalable live migration mechanism for requests and their in-memory states, and exploits it in a dynamic scheduling policy that unifies the multiple rescheduling scenarios elegantly. Our evaluations show that Llumnix improves tail latencies by an order of magnitude, accelerates high-priority requests by up to 1.5x, and delivers up to 36% cost savings while achieving similar tail latencies, compared against state-of-the-art LLM serving systems. Llumnix is publicly available at https://github.com/AlibabaPAI/llumnix.

LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of Large Language Models

The success of large language models (LLMs), like GPT-3 and ChatGPT, has led to the development of numerous cost-effective and accessible alternatives that are created by fine-tuning open-access LLMs with task-specific data (e.g., ChatDoctor) or instruction data (e.g., Alpaca). Among the various fine-tuning methods, adapter-based parameter-efficient fine-tuning (PEFT) is undoubtedly one of the most attractive topics, as it only requires fine-tuning a few external parameters instead of the entire LLMs while achieving comparable or even better performance. To enable further research on PEFT methods of LLMs, this paper presents LLM-Adapters, an easy-to-use framework that integrates various adapters into LLMs and can execute these adapter-based PEFT methods of LLMs for different tasks. The framework includes state-of-the-art open-access LLMs such as LLaMA, BLOOM, OPT, and GPT-J, as well as widely used adapters such as Series adapter, Parallel adapter, and LoRA. The framework is designed to be research-friendly, efficient, modular, and extendable, allowing the integration of new adapters and the evaluation of them with new and larger-scale LLMs. Furthermore, to evaluate the effectiveness of adapters in LLMs-Adapters, we conduct experiments on six math reasoning datasets. The results demonstrate that using adapter-based PEFT in smaller-scale LLMs (7B) with few extra trainable parameters yields comparable, and in some cases superior, performance to that of powerful LLMs (175B) in zero-shot inference on simple math reasoning datasets. Overall, we provide a promising framework for fine-tuning large LLMs on downstream tasks. We believe the proposed LLMs-Adapters will advance adapter-based PEFT research, facilitate the deployment of research pipelines, and enable practical applications to real-world systems.

LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents

The integration of tools in LLM-based agents overcame the difficulties of standalone LLMs and traditional agents' limited capabilities. However, the conjunction of these technologies and the proposed enhancements in several state-of-the-art works followed a non-unified software architecture resulting in a lack of modularity. Indeed, they focused mainly on functionalities and overlooked the definition of the component's boundaries within the agent. This caused terminological and architectural ambiguities between researchers which we addressed in this paper by proposing a unified framework that establishes a clear foundation for LLM-based agents' development from both functional and software architectural perspectives. Our framework, LLM-Agent-UMF (LLM-based Agent Unified Modeling Framework), clearly distinguishes between the different components of an agent, setting LLMs, and tools apart from a newly introduced element: the core-agent, playing the role of the central coordinator of the agent which comprises five modules: planning, memory, profile, action, and security, the latter often neglected in previous works. Differences in the internal structure of core-agents led us to classify them into a taxonomy of passive and active types. Based on this, we proposed different multi-core agent architectures combining unique characteristics of various individual agents. For evaluation purposes, we applied this framework to a selection of state-of-the-art agents, thereby demonstrating its alignment with their functionalities and clarifying the overlooked architectural aspects. Moreover, we thoroughly assessed four of our proposed architectures by integrating distinctive agents into hybrid active/passive core-agents' systems. This analysis provided clear insights into potential improvements and highlighted the challenges involved in the combination of specific agents.

Small LLMs Are Weak Tool Learners: A Multi-LLM Agent

Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs, empowering them to interact with external tools (e.g., APIs, functions) and complete complex tasks in a self-directed fashion. The challenge of tool use demands that LLMs not only understand user queries and generate answers but also excel in task planning, memory management, tool invocation, and result summarization. While traditional approaches focus on training a single LLM with all these capabilities, performance limitations become apparent, particularly with smaller models. Moreover, the entire LLM may require retraining when tools are updated. To overcome these challenges, we propose a novel strategy that decomposes the aforementioned capabilities into a planner, caller, and summarizer. Each component is implemented by a single LLM that focuses on a specific capability and collaborates with other components to accomplish the task. This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability. To effectively train this framework, we introduce a two-stage training paradigm. First, we fine-tune a backbone LLM on the entire dataset without discriminating sub-tasks, providing the model with a comprehensive understanding of the task. Second, the fine-tuned LLM is used to instantiate the planner, caller, and summarizer respectively, which are continually fine-tuned on respective sub-tasks. Evaluation across various tool-use benchmarks illustrates that our proposed multi-LLM framework surpasses the traditional single-LLM approach, highlighting its efficacy and advantages in tool learning.

Combining Fine-Tuning and LLM-based Agents for Intuitive Smart Contract Auditing with Justifications

Smart contracts are decentralized applications built atop blockchains like Ethereum. Recent research has shown that large language models (LLMs) have potential in auditing smart contracts, but the state-of-the-art indicates that even GPT-4 can achieve only 30% precision (when both decision and justification are correct). This is likely because off-the-shelf LLMs were primarily pre-trained on a general text/code corpus and not fine-tuned on the specific domain of Solidity smart contract auditing. In this paper, we propose TrustLLM, a general framework that combines fine-tuning and LLM-based agents for intuitive smart contract auditing with justifications. Specifically, TrustLLM is inspired by the observation that expert human auditors first perceive what could be wrong and then perform a detailed analysis of the code to identify the cause. As such, TrustLLM employs a two-stage fine-tuning approach: it first tunes a Detector model to make decisions and then tunes a Reasoner model to generate causes of vulnerabilities. However, fine-tuning alone faces challenges in accurately identifying the optimal cause of a vulnerability. Therefore, we introduce two LLM-based agents, the Ranker and Critic, to iteratively select and debate the most suitable cause of vulnerability based on the output of the fine-tuned Reasoner model. To evaluate TrustLLM, we collected a balanced dataset with 1,734 positive and 1,810 negative samples to fine-tune TrustLLM. We then compared it with traditional fine-tuned models (CodeBERT, GraphCodeBERT, CodeT5, and UnixCoder) as well as prompt learning-based LLMs (GPT4, GPT-3.5, and CodeLlama-13b/34b). On a dataset of 263 real smart contract vulnerabilities, TrustLLM achieves an F1 score of 91.21% and an accuracy of 91.11%. The causes generated by TrustLLM achieved a consistency of about 38% compared to the ground truth causes.

CollabStory: Multi-LLM Collaborative Story Generation and Authorship Analysis

The rise of unifying frameworks that enable seamless interoperability of Large Language Models (LLMs) has made LLM-LLM collaboration for open-ended tasks a possibility. Despite this, there have not been efforts to explore such collaborative writing. We take the next step beyond human-LLM collaboration to explore this multi-LLM scenario by generating the first exclusively LLM-generated collaborative stories dataset called CollabStory. We focus on single-author (N=1) to multi-author (up to N=5) scenarios, where multiple LLMs co-author stories. We generate over 32k stories using open-source instruction-tuned LLMs. Further, we take inspiration from the PAN tasks that have set the standard for human-human multi-author writing tasks and analysis. We extend their authorship-related tasks for multi-LLM settings and present baselines for LLM-LLM collaboration. We find that current baselines are not able to handle this emerging scenario. Thus, CollabStory is a resource that could help propel an understanding as well as the development of techniques to discern the use of multiple LLMs. This is crucial to study in the context of writing tasks since LLM-LLM collaboration could potentially overwhelm ongoing challenges related to plagiarism detection, credit assignment, maintaining academic integrity in educational settings, and addressing copyright infringement concerns. We make our dataset and code available at \url{https://github.com/saranya-venkatraman/multi_llm_story_writing}.

Large Language Model Adaptation for Networking

Many networking tasks now employ deep learning (DL) to solve complex prediction and system optimization problems. However, current design philosophy of DL-based algorithms entails intensive engineering overhead due to the manual design of deep neural networks (DNNs) for different networking tasks. Besides, DNNs tend to achieve poor generalization performance on unseen data distributions/environments. Motivated by the recent success of large language models (LLMs), for the first time, this work studies the LLM adaptation for networking to explore a more sustainable design philosophy. With the massive pre-trained knowledge and powerful inference ability, LLM can serve as the foundation model, and is expected to achieve "one model for all" with even better performance and stronger generalization for various tasks. In this paper, we present NetLLM, the first LLM adaptation framework that efficiently adapts LLMs to solve networking problems. NetLLM addresses many practical challenges in LLM adaptation, from how to process task-specific information with LLMs, to how to improve the efficiency of answer generation and acquiring domain knowledge for networking. Across three networking-related use cases - viewport prediction (VP), adaptive bitrate streaming (ABR) and cluster job scheduling (CJS), we showcase the effectiveness of NetLLM in LLM adaptation for networking. Results show that the adapted LLM surpasses state-of-the-art algorithms by 10.1-36.6% for VP, 14.5-36.6% for ABR, 6.8-41.3% for CJS, and also achieves superior generalization performance.

Benchmarking Foundation Models with Language-Model-as-an-Examiner

Numerous benchmarks have been established to assess the performance of foundation models on open-ended question answering, which serves as a comprehensive test of a model's ability to understand and generate language in a manner similar to humans. Most of these works focus on proposing new datasets, however, we see two main issues within previous benchmarking pipelines, namely testing leakage and evaluation automation. In this paper, we propose a novel benchmarking framework, Language-Model-as-an-Examiner, where the LM serves as a knowledgeable examiner that formulates questions based on its knowledge and evaluates responses in a reference-free manner. Our framework allows for effortless extensibility as various LMs can be adopted as the examiner, and the questions can be constantly updated given more diverse trigger topics. For a more comprehensive and equitable evaluation, we devise three strategies: (1) We instruct the LM examiner to generate questions across a multitude of domains to probe for a broad acquisition, and raise follow-up questions to engage in a more in-depth assessment. (2) Upon evaluation, the examiner combines both scoring and ranking measurements, providing a reliable result as it aligns closely with human annotations. (3) We additionally propose a decentralized Peer-examination method to address the biases in a single examiner. Our data and benchmarking results are available at: https://lmexam.com.

FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low-Rank Adaptations

The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients' local data through in-situ computation, eliminating the need for data movement. However, fine-tuning LLMs, given their massive scale of parameters, poses challenges for clients with constrained and heterogeneous resources in FL. Previous methods employed low-rank adaptation (LoRA) for efficient federated fine-tuning but utilized traditional FL aggregation strategies on LoRA adapters. These approaches led to mathematically inaccurate aggregation noise, reducing fine-tuning effectiveness and failing to address heterogeneous LoRAs. In this work, we first highlight the mathematical incorrectness of LoRA aggregation in existing federated fine-tuning methods. We introduce a new approach called FLORA that enables federated fine-tuning on heterogeneous LoRA adapters across clients through a novel stacking-based aggregation method. Our approach is noise-free and seamlessly supports heterogeneous LoRA adapters. Extensive experiments demonstrate FLORA' s superior performance in both homogeneous and heterogeneous settings, surpassing state-of-the-art methods. We envision this work as a milestone for efficient, privacy-preserving, and accurate federated fine-tuning of LLMs. Our code is available at https://github.com/ATP-1010/FederatedLLM.

Holmes: Towards Distributed Training Across Clusters with Heterogeneous NIC Environment

Large language models (LLMs) such as GPT-3, OPT, and LLaMA have demonstrated remarkable accuracy in a wide range of tasks. However, training these models can incur significant expenses, often requiring tens of thousands of GPUs for months of continuous operation. Typically, this training is carried out in specialized GPU clusters equipped with homogeneous high-speed Remote Direct Memory Access (RDMA) network interface cards (NICs). The acquisition and maintenance of such dedicated clusters is challenging. Current LLM training frameworks, like Megatron-LM and Megatron-DeepSpeed, focus primarily on optimizing training within homogeneous cluster settings. In this paper, we introduce Holmes, a training framework for LLMs that employs thoughtfully crafted data and model parallelism strategies over the heterogeneous NIC environment. Our primary technical contribution lies in a novel scheduling method that intelligently allocates distinct computational tasklets in LLM training to specific groups of GPU devices based on the characteristics of their connected NICs. Furthermore, our proposed framework, utilizing pipeline parallel techniques, demonstrates scalability to multiple GPU clusters, even in scenarios without high-speed interconnects between nodes in distinct clusters. We conducted comprehensive experiments that involved various scenarios in the heterogeneous NIC environment. In most cases, our framework achieves performance levels close to those achievable with homogeneous RDMA-capable networks (InfiniBand or RoCE), significantly exceeding training efficiency within the pure Ethernet environment. Additionally, we verified that our framework outperforms other mainstream LLM frameworks under heterogeneous NIC environment in terms of training efficiency and can be seamlessly integrated with them.

Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes

Pre-trained large language models (LLMs) require fine-tuning to improve their responsiveness to natural language instructions. Federated learning (FL) offers a way to perform fine-tuning using the abundant data on end devices without compromising data privacy. Most existing federated fine-tuning methods for LLMs rely on parameter-efficient fine-tuning techniques, which may not reach the performance heights possible with full-parameter tuning. However, the communication overhead associated with full-parameter tuning is prohibitively high for both servers and clients. This work introduces FedKSeed, a novel approach that employs zeroth-order optimization (ZOO) with a set of random seeds. It enables federated full-parameter tuning of billion-sized LLMs directly on devices. Our method significantly reduces transmission requirements between the server and clients to just a few scalar gradients and random seeds, amounting to only a few thousand bytes. Building on this, we develop a strategy to assess the significance of ZOO perturbations for FL, allowing for probability-differentiated seed sampling. This prioritizes perturbations that have a greater impact on model accuracy. Experiments across six scenarios with different LLMs, datasets and data partitions demonstrate that our approach outperforms existing federated LLM fine-tuning methods in terms of both communication efficiency and new task generalization.

Data-Juicer: A One-Stop Data Processing System for Large Language Models

The immense evolution in Large Language Models (LLMs) has underscored the importance of massive, diverse, and high-quality data. Despite this, existing open-source tools for LLM data processing remain limited and mostly tailored to specific datasets, with an emphasis on the reproducibility of released data over adaptability and usability, inhibiting potential applications. In response, we propose a one-stop, powerful yet flexible and user-friendly LLM data processing system named Data-Juicer. Our system offers over 50 built-in versatile operators and pluggable tools, which synergize modularity, composability, and extensibility dedicated to diverse LLM data processing needs. By incorporating visualized and automatic evaluation capabilities, Data-Juicer enables a timely feedback loop to accelerate data processing and gain data insights. To enhance usability, Data-Juicer provides out-of-the-box components for users with various backgrounds, and fruitful data recipes for LLM pre-training and post-tuning usages. Further, we employ multi-facet system optimization and seamlessly integrate Data-Juicer with both LLM and distributed computing ecosystems, to enable efficient and scalable data processing. Empirical validation of the generated data recipes reveals considerable improvements in LLaMA performance for various pre-training and post-tuning cases, demonstrating up to 7.45% relative improvement of averaged score across 16 LLM benchmarks and 16.25% higher win rate using pair-wise GPT-4 evaluation. The system's efficiency and scalability are also validated, supported by up to 88.7% reduction in single-machine processing time, 77.1% and 73.1% less memory and CPU usage respectively, and 7.91x processing acceleration when utilizing distributed computing ecosystems. Our system, data recipes, and multiple tutorial demos are released, calling for broader research centered on LLM data.

From Commands to Prompts: LLM-based Semantic File System for AIOS

Large language models (LLMs) have demonstrated significant potential in the development of intelligent applications and systems such as LLM-based agents and agent operating systems (AIOS). However, when these applications and systems interact with the underlying file system, the file system still remains the traditional paradigm: reliant on manual navigation through precise commands. This paradigm poses a bottleneck to the usability of these systems as users are required to navigate complex folder hierarchies and remember cryptic file names. To address this limitation, we propose an LLM-based semantic file system ( LSFS ) for prompt-driven file management. Unlike conventional approaches, LSFS incorporates LLMs to enable users or agents to interact with files through natural language prompts, facilitating semantic file management. At the macro-level, we develop a comprehensive API set to achieve semantic file management functionalities, such as semantic file retrieval, file update monitoring and summarization, and semantic file rollback). At the micro-level, we store files by constructing semantic indexes for them, design and implement syscalls of different semantic operations (e.g., CRUD, group by, join) powered by vector database. Our experiments show that LSFS offers significant improvements over traditional file systems in terms of user convenience, the diversity of supported functions, and the accuracy and efficiency of file operations. Additionally, with the integration of LLM, our system enables more intelligent file management tasks, such as content summarization and version comparison, further enhancing its capabilities.

A Survey on Large Language Model based Autonomous Agents

Autonomous agents have long been a prominent research focus in both academic and industry communities. Previous research in this field often focuses on training agents with limited knowledge within isolated environments, which diverges significantly from human learning processes, and thus makes the agents hard to achieve human-like decisions. Recently, through the acquisition of vast amounts of web knowledge, large language models (LLMs) have demonstrated remarkable potential in achieving human-level intelligence. This has sparked an upsurge in studies investigating LLM-based autonomous agents. In this paper, we present a comprehensive survey of these studies, delivering a systematic review of the field of LLM-based autonomous agents from a holistic perspective. More specifically, we first discuss the construction of LLM-based autonomous agents, for which we propose a unified framework that encompasses a majority of the previous work. Then, we present a comprehensive overview of the diverse applications of LLM-based autonomous agents in the fields of social science, natural science, and engineering. Finally, we delve into the evaluation strategies commonly used for LLM-based autonomous agents. Based on the previous studies, we also present several challenges and future directions in this field. To keep track of this field and continuously update our survey, we maintain a repository of relevant references at https://github.com/Paitesanshi/LLM-Agent-Survey.

ToolBridge: An Open-Source Dataset to Equip LLMs with External Tool Capabilities

Through the integration of external tools, large language models (LLMs) such as GPT-4o and Llama 3.1 significantly expand their functional capabilities, evolving from elementary conversational agents to general-purpose assistants. We argue that the primary drivers of these advancements are the quality and diversity of the training data. However, the existing LLMs with external tool integration provide only limited transparency regarding their datasets and data collection methods, which has led to the initiation of this research. Specifically, in this paper, our objective is to elucidate the detailed process involved in constructing datasets that empower LLMs to effectively learn how to utilize external tools and make this information available to the public through the introduction of ToolBridge. ToolBridge proposes to employ a collection of general open-access datasets as its raw dataset pool and applies a series of strategies to identify appropriate data entries from the pool for external tool API insertions. By supervised fine-tuning on these curated data entries, LLMs can invoke external tools in appropriate contexts to boost their predictive accuracy, particularly for basic functions including data processing, numerical computation, and factual retrieval. Our experiments rigorously isolates model architectures and training configurations, focusing exclusively on the role of data. The experimental results indicate that LLMs trained on ToolBridge demonstrate consistent performance improvements on both standard benchmarks and custom evaluation datasets. All the associated code and data will be open-source at https://github.com/CharlesPikachu/ToolBridge, promoting transparency and facilitating the broader community to explore approaches for equipping LLMs with external tools capabilities.

On the Design and Analysis of LLM-Based Algorithms

We initiate a formal investigation into the design and analysis of LLM-based algorithms, i.e. algorithms that contain one or multiple calls of large language models (LLMs) as sub-routines and critically rely on the capabilities of LLMs. While LLM-based algorithms, ranging from basic LLM calls with prompt engineering to complicated LLM-powered agent systems and compound AI systems, have achieved remarkable empirical success, the design and optimization of them have mostly relied on heuristics and trial-and-errors, which is largely due to a lack of formal and analytical study for these algorithms. To fill this gap, we start by identifying the computational-graph representation of LLM-based algorithms, the design principle of task decomposition, and some key abstractions, which then facilitate our formal analysis for the accuracy and efficiency of LLM-based algorithms, despite the black-box nature of LLMs. Through extensive analytical and empirical investigation in a series of case studies, we demonstrate that the proposed framework is broadly applicable to a wide range of scenarios and diverse patterns of LLM-based algorithms, such as parallel, hierarchical and recursive task decomposition. Our proposed framework holds promise for advancing LLM-based algorithms, by revealing the reasons behind curious empirical phenomena, guiding the choices of hyperparameters, predicting the empirical performance of algorithms, and inspiring new algorithm design. To promote further study of LLM-based algorithms, we release our source code at https://github.com/modelscope/agentscope/tree/main/examples/paper_llm_based_algorithm.

OpenMedLM: Prompt engineering can out-perform fine-tuning in medical question-answering with open-source large language models

LLMs have become increasingly capable at accomplishing a range of specialized-tasks and can be utilized to expand equitable access to medical knowledge. Most medical LLMs have involved extensive fine-tuning, leveraging specialized medical data and significant, thus costly, amounts of computational power. Many of the top performing LLMs are proprietary and their access is limited to very few research groups. However, open-source (OS) models represent a key area of growth for medical LLMs due to significant improvements in performance and an inherent ability to provide the transparency and compliance required in healthcare. We present OpenMedLM, a prompting platform which delivers state-of-the-art (SOTA) performance for OS LLMs on medical benchmarks. We evaluated a range of OS foundation LLMs (7B-70B) on four medical benchmarks (MedQA, MedMCQA, PubMedQA, MMLU medical-subset). We employed a series of prompting strategies, including zero-shot, few-shot, chain-of-thought (random selection and kNN selection), and ensemble/self-consistency voting. We found that OpenMedLM delivers OS SOTA results on three common medical LLM benchmarks, surpassing the previous best performing OS models that leveraged computationally costly extensive fine-tuning. The model delivers a 72.6% accuracy on the MedQA benchmark, outperforming the previous SOTA by 2.4%, and achieves 81.7% accuracy on the MMLU medical-subset, establishing itself as the first OS LLM to surpass 80% accuracy on this benchmark. Our results highlight medical-specific emergent properties in OS LLMs which have not yet been documented to date elsewhere, and showcase the benefits of further leveraging prompt engineering to improve the performance of accessible LLMs for medical applications.

On-Device Language Models: A Comprehensive Review

The advent of large language models (LLMs) revolutionized natural language processing applications, and running LLMs on edge devices has become increasingly attractive for reasons including reduced latency, data localization, and personalized user experiences. This comprehensive review examines the challenges of deploying computationally expensive LLMs on resource-constrained devices and explores innovative solutions across multiple domains. The paper investigates the development of on-device language models, their efficient architectures, including parameter sharing and modular designs, as well as state-of-the-art compression techniques like quantization, pruning, and knowledge distillation. Hardware acceleration strategies and collaborative edge-cloud deployment approaches are analyzed, highlighting the intricate balance between performance and resource utilization. Case studies of on-device language models from major mobile manufacturers demonstrate real-world applications and potential benefits. The review also addresses critical aspects such as adaptive learning, multi-modal capabilities, and personalization. By identifying key research directions and open challenges, this paper provides a roadmap for future advancements in on-device language models, emphasizing the need for interdisciplinary efforts to realize the full potential of ubiquitous, intelligent computing while ensuring responsible and ethical deployment. For a comprehensive review of research work and educational resources on on-device large language models (LLMs), please visit https://github.com/NexaAI/Awesome-LLMs-on-device. To download and run on-device LLMs, visit https://www.nexaai.com/models.

LLM Inference Unveiled: Survey and Roofline Model Insights

The field of efficient Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges. Although the field has expanded and is vibrant, there hasn't been a concise framework that analyzes the various methods of LLM Inference to provide a clear understanding of this domain. Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model for systematic analysis of LLM inference techniques. This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems, such as why LLMs are memory-bound, how much memory and computation they need, and how to choose the right hardware. We systematically collate the latest advancements in efficient LLM inference, covering crucial areas such as model compression (e.g., Knowledge Distillation and Quantization), algorithm improvements (e.g., Early Exit and Mixture-of-Expert), and both hardware and system-level enhancements. Our survey stands out by analyzing these methods with roofline model, helping us understand their impact on memory access and computation. This distinctive approach not only showcases the current research landscape but also delivers valuable insights for practical implementation, positioning our work as an indispensable resource for researchers new to the field as well as for those seeking to deepen their understanding of efficient LLM deployment. The analyze tool, LLM-Viewer, is open-sourced.

An Empirical Study of NetOps Capability of Pre-Trained Large Language Models

Large language models (LLMs) can respond to human language queries and have shown powerful potential applications in network operations (NetOps). Thanks to the large amount of commonsense knowledge inherent, LLMs achieve much better inference accuracy than traditional models and emerge with strong abilities in generalization, reasoning, and code generation. These abilities may have a crucial boost to automated and intelligent NetOps. However, it remains under-explored how well LLMs perform in various NetOps tasks. In this work, we make a systematic assessment of the capabilities, strengths, and limitations of selected LLMs in the field of NetOps. The evaluation is conducted on a collection of 5,732 questions about NetOps, encompassing 26 publicly available general-domain LLMs, including ChatGPT, LLaMA, Falcon, etc. We also finetune some of these LLMs with our collected NetOps corpus and evaluate the resulting models. The evaluation method follows the widely adopted benchmarks for general-domain LLMs, combined with Chain-of-Thought Prompts and Retrieval-Augmented Generation. The results show that only GPT-4 achieves high accuracy equivalent to passing the NetOps certification exam for humans, while all the other LLMs have much lower accuracy. However, some open models like LLaMA 2 still demonstrate significant potential. Furthermore, we evaluate the impact of factors such as model parameters, prompt engineering, instruction fine-tuning etc. This work shall be treated as the initial effort to systematic evaluation of LLMs in NetOps, and a more rigorous study is required for production use. The evaluation code and dataset will be released to benefit future research.

MMFactory: A Universal Solution Search Engine for Vision-Language Tasks

With advances in foundational and vision-language models, and effective fine-tuning techniques, a large number of both general and special-purpose models have been developed for a variety of visual tasks. Despite the flexibility and accessibility of these models, no single model is able to handle all tasks and/or applications that may be envisioned by potential users. Recent approaches, such as visual programming and multimodal LLMs with integrated tools aim to tackle complex visual tasks, by way of program synthesis. However, such approaches overlook user constraints (e.g., performance / computational needs), produce test-time sample-specific solutions that are difficult to deploy, and, sometimes, require low-level instructions that maybe beyond the abilities of a naive user. To address these limitations, we introduce MMFactory, a universal framework that includes model and metrics routing components, acting like a solution search engine across various available models. Based on a task description and few sample input-output pairs and (optionally) resource and/or performance constraints, MMFactory can suggest a diverse pool of programmatic solutions by instantiating and combining visio-lingual tools from its model repository. In addition to synthesizing these solutions, MMFactory also proposes metrics and benchmarks performance / resource characteristics, allowing users to pick a solution that meets their unique design constraints. From the technical perspective, we also introduced a committee-based solution proposer that leverages multi-agent LLM conversation to generate executable, diverse, universal, and robust solutions for the user. Experimental results show that MMFactory outperforms existing methods by delivering state-of-the-art solutions tailored to user problem specifications. Project page is available at https://davidhalladay.github.io/mmfactory_demo.

Can Open-Source LLMs Compete with Commercial Models? Exploring the Few-Shot Performance of Current GPT Models in Biomedical Tasks

Commercial large language models (LLMs), like OpenAI's GPT-4 powering ChatGPT and Anthropic's Claude 3 Opus, have dominated natural language processing (NLP) benchmarks across different domains. New competing Open-Source alternatives like Mixtral 8x7B or Llama 3 have emerged and seem to be closing the gap while often offering higher throughput and being less costly to use. Open-Source LLMs can also be self-hosted, which makes them interesting for enterprise and clinical use cases where sensitive data should not be processed by third parties. We participated in the 12th BioASQ challenge, which is a retrieval augmented generation (RAG) setting, and explored the performance of current GPT models Claude 3 Opus, GPT-3.5-turbo and Mixtral 8x7b with in-context learning (zero-shot, few-shot) and QLoRa fine-tuning. We also explored how additional relevant knowledge from Wikipedia added to the context-window of the LLM might improve their performance. Mixtral 8x7b was competitive in the 10-shot setting, both with and without fine-tuning, but failed to produce usable results in the zero-shot setting. QLoRa fine-tuning and Wikipedia context did not lead to measurable performance gains. Our results indicate that the performance gap between commercial and open-source models in RAG setups exists mainly in the zero-shot setting and can be closed by simply collecting few-shot examples for domain-specific use cases. The code needed to rerun these experiments is available through GitHub.

MetaTool Benchmark for Large Language Models: Deciding Whether to Use Tools and Which to Use

Large language models (LLMs) have garnered significant attention due to their impressive natural language processing (NLP) capabilities. Recently, many studies have focused on the tool utilization ability of LLMs. They primarily investigated how LLMs effectively collaborate with given specific tools. However, in scenarios where LLMs serve as intelligent agents, as seen in applications like AutoGPT and MetaGPT, LLMs are expected to engage in intricate decision-making processes that involve deciding whether to employ a tool and selecting the most suitable tool(s) from a collection of available tools to fulfill user requests. Therefore, in this paper, we introduce MetaTool, a benchmark designed to evaluate whether LLMs have tool usage awareness and can correctly choose tools. Specifically, we create a dataset called ToolE within the benchmark. This dataset contains various types of user queries in the form of prompts that trigger LLMs to use tools, including both single-tool and multi-tool scenarios. Subsequently, we set the tasks for both tool usage awareness and tool selection. We define four subtasks from different perspectives in tool selection, including tool selection with similar choices, tool selection in specific scenarios, tool selection with possible reliability issues, and multi-tool selection. We conduct experiments involving nine popular LLMs and find that the majority of them still struggle to effectively select tools, highlighting the existing gaps between LLMs and genuine intelligent agents. However, through the error analysis, we found there is still significant room for improvement. Finally, we conclude with insights for tool developers that follow ChatGPT to provide detailed descriptions that can enhance the tool selection performance of LLMs.

MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration

Large Language Models (LLMs) have marked a significant advancement in the field of natural language processing, demonstrating exceptional capabilities in reasoning, tool usage, and memory. As their applications extend into multi-agent environments, a need has arisen for a comprehensive evaluation framework that captures their abilities in reasoning, planning, collaboration, and more. This work introduces a novel benchmarking framework specifically tailored to assess LLMs within multi-agent settings, providing quantitative metrics to evaluate their judgment, reasoning, deception, self-awareness, cooperation, coordination, and rationality. We utilize games such as Chameleon and Undercover, alongside game theory scenarios like Cost Sharing, Multi-player Prisoner's Dilemma, and Public Good, to create diverse testing environments. Our framework is fortified with the Probabilistic Graphical Modeling (PGM) method, enhancing the LLMs' capabilities in navigating complex social and cognitive dimensions. The benchmark evaluates seven multi-agent systems powered by different LLMs, quantitatively highlighting a significant capability gap over threefold between the strongest, GPT-4, and the weakest, Llama-2-70B. It also confirms that our PGM enhancement boosts the inherent abilities of all selected models by 50% on average. Our codes are released here https://github.com/cathyxl/MAgIC.

WorkflowLLM: Enhancing Workflow Orchestration Capability of Large Language Models

Recent advancements in large language models (LLMs) have driven a revolutionary paradigm shift in process automation from Robotic Process Automation to Agentic Process Automation by automating the workflow orchestration procedure based on LLMs. However, existing LLMs (even the advanced OpenAI GPT-4o) are confined to achieving satisfactory capability in workflow orchestration. To address this limitation, we present WorkflowLLM, a data-centric framework elaborately designed to enhance the capability of LLMs in workflow orchestration. It first constructs a large-scale fine-tuning dataset WorkflowBench with 106,763 samples, covering 1,503 APIs from 83 applications across 28 categories. Specifically, the construction process can be divided into three phases: (1) Data Collection: we collect real-world workflow data from Apple Shortcuts and RoutineHub, transcribing them into Python-style code. We further equip them with generated hierarchical thought via ChatGPT. (2) Query Expansion: we prompt ChatGPT to generate more task queries to enrich the diversity and complexity of workflows. (3) Workflow Generation: we leverage an annotator model trained on collected data to generate workflows for synthesized queries. Finally, we merge the synthetic samples that pass quality confirmation with the collected samples to obtain the WorkflowBench. Based on WorkflowBench, we fine-tune Llama-3.1-8B to obtain WorkflowLlama. Our experiments show that WorkflowLlama demonstrates a strong capacity to orchestrate complex workflows, while also achieving notable generalization performance on previously unseen APIs. Additionally, WorkflowBench exhibits robust zero-shot generalization capabilities on an out-of-distribution task planning dataset, T-Eval. Our data and code are available at https://github.com/OpenBMB/WorkflowLLM.

Large Language Models as Tool Makers

Recent research shows the potential of enhancing the problem-solving ability of large language models (LLMs) through the use of external tools. However, prior work along this line depends on the availability of existing tools. In this work, we take an initial step towards removing this dependency by proposing a closed-loop framework, referred to as LLMs As Tool Makers (LATM), where LLMs create their own reusable tools for problem-solving. Our approach consists of two key phases: 1) tool making: an LLM acts as the tool maker that crafts tools for given tasks, where a tool is implemented as a Python utility function. 2) tool using: an LLM acts as the tool user, which applies the tool built by the tool maker for problem-solving. The tool user can be either the same or a different LLM from the tool maker. Tool-making enables an LLM to continually generate tools that can be applied to different requests so that future requests can call the corresponding APIs when beneficial for solving the tasks. Furthermore, the division of labor among LLMs for tool-making and tool-using phases introduces the opportunity to achieve cost effectiveness without degrading the quality of generated tools and problem solutions. For example, recognizing that tool-making demands more sophisticated capabilities than tool-using, we can apply a powerful yet resource-intensive model as the tool maker, and a lightweight while cost-effective model as the tool user. We validate the effectiveness of our approach across a variety of complex reasoning tasks, including Big-Bench tasks. With GPT-4 as the tool maker and GPT-3.5 as the tool user, LATM can achieve performance that is on par with using GPT-4 for both tool making and tool using, while the inference cost is significantly reduced.

Ollabench: Evaluating LLMs' Reasoning for Human-centric Interdependent Cybersecurity

Large Language Models (LLMs) have the potential to enhance Agent-Based Modeling by better representing complex interdependent cybersecurity systems, improving cybersecurity threat modeling and risk management. However, evaluating LLMs in this context is crucial for legal compliance and effective application development. Existing LLM evaluation frameworks often overlook the human factor and cognitive computing capabilities essential for interdependent cybersecurity. To address this gap, I propose OllaBench, a novel evaluation framework that assesses LLMs' accuracy, wastefulness, and consistency in answering scenario-based information security compliance and non-compliance questions. OllaBench is built on a foundation of 24 cognitive behavioral theories and empirical evidence from 38 peer-reviewed papers. OllaBench was used to evaluate 21 LLMs, including both open-weight and commercial models from OpenAI, Anthropic, Google, Microsoft, Meta and so on. The results reveal that while commercial LLMs have the highest overall accuracy scores, there is significant room for improvement. Smaller low-resolution open-weight LLMs are not far behind in performance, and there are significant differences in token efficiency and consistency among the evaluated models. OllaBench provides a user-friendly interface and supports a wide range of LLM platforms, making it a valuable tool for researchers and solution developers in the field of human-centric interdependent cybersecurity and beyond.

Web3Recommend: Decentralised recommendations with trust and relevance

Web3Recommend is a decentralized Social Recommender System implementation that enables Web3 Platforms on Android to generate recommendations that balance trust and relevance. Generating recommendations in decentralized networks is a non-trivial problem because these networks lack a global perspective due to the absence of a central authority. Further, decentralized networks are prone to Sybil Attacks in which a single malicious user can generate multiple fake or Sybil identities. Web3Recommend relies on a novel graph-based content recommendation design inspired by GraphJet, a recommendation system used in Twitter enhanced with MeritRank, a decentralized reputation scheme that provides Sybil-resistance to the system. By adding MeritRank's decay parameters to the vanilla Social Recommender Systems' personalized SALSA graph algorithm, we can provide theoretical guarantees against Sybil Attacks in the generated recommendations. Similar to GraphJet, we focus on generating real-time recommendations by only acting on recent interactions in the social network, allowing us to cater temporally contextual recommendations while keeping a tight bound on the memory usage in resource-constrained devices, allowing for a seamless user experience. As a proof-of-concept, we integrate our system with MusicDAO, an open-source Web3 music-sharing platform, to generate personalized, real-time recommendations. Thus, we provide the first Sybil-resistant Social Recommender System, allowing real-time recommendations beyond classic user-based collaborative filtering. The system is also rigorously tested with extensive unit and integration tests. Further, our experiments demonstrate the trust-relevance balance of recommendations against multiple adversarial strategies in a test network generated using data from real music platforms.

G-Rank: Unsupervised Continuous Learn-to-Rank for Edge Devices in a P2P Network

Ranking algorithms in traditional search engines are powered by enormous training data sets that are meticulously engineered and curated by a centralized entity. Decentralized peer-to-peer (p2p) networks such as torrenting applications and Web3 protocols deliberately eschew centralized databases and computational architectures when designing services and features. As such, robust search-and-rank algorithms designed for such domains must be engineered specifically for decentralized networks, and must be lightweight enough to operate on consumer-grade personal devices such as a smartphone or laptop computer. We introduce G-Rank, an unsupervised ranking algorithm designed exclusively for decentralized networks. We demonstrate that accurate, relevant ranking results can be achieved in fully decentralized networks without any centralized data aggregation, feature engineering, or model training. Furthermore, we show that such results are obtainable with minimal data preprocessing and computational overhead, and can still return highly relevant results even when a user's device is disconnected from the network. G-Rank is highly modular in design, is not limited to categorical data, and can be implemented in a variety of domains with minimal modification. The results herein show that unsupervised ranking models designed for decentralized p2p networks are not only viable, but worthy of further research.

MetaChain: A Fully-Automated and Zero-Code Framework for LLM Agents

Large Language Model (LLM) Agents have demonstrated remarkable capabilities in task automation and intelligent decision-making, driving the widespread adoption of agent development frameworks such as LangChain and AutoGen. However, these frameworks predominantly serve developers with extensive technical expertise - a significant limitation considering that only 0.03 % of the global population possesses the necessary programming skills. This stark accessibility gap raises a fundamental question: Can we enable everyone, regardless of technical background, to build their own LLM agents using natural language alone? To address this challenge, we introduce MetaChain-a Fully-Automated and highly Self-Developing framework that enables users to create and deploy LLM agents through Natural Language Alone. Operating as an autonomous Agent Operating System, MetaChain comprises four key components: i) Agentic System Utilities, ii) LLM-powered Actionable Engine, iii) Self-Managing File System, and iv) Self-Play Agent Customization module. This lightweight yet powerful system enables efficient and dynamic creation and modification of tools, agents, and workflows without coding requirements or manual intervention. Beyond its code-free agent development capabilities, MetaChain also serves as a versatile multi-agent system for General AI Assistants. Comprehensive evaluations on the GAIA benchmark demonstrate MetaChain's effectiveness in generalist multi-agent tasks, surpassing existing state-of-the-art methods. Furthermore, MetaChain's Retrieval-Augmented Generation (RAG)-related capabilities have shown consistently superior performance compared to many alternative LLM-based solutions.

Evaluating Large Language Models: A Comprehensive Survey

Large language models (LLMs) have demonstrated remarkable capabilities across a broad spectrum of tasks. They have attracted significant attention and been deployed in numerous downstream applications. Nevertheless, akin to a double-edged sword, LLMs also present potential risks. They could suffer from private data leaks or yield inappropriate, harmful, or misleading content. Additionally, the rapid progress of LLMs raises concerns about the potential emergence of superintelligent systems without adequate safeguards. To effectively capitalize on LLM capacities as well as ensure their safe and beneficial development, it is critical to conduct a rigorous and comprehensive evaluation of LLMs. This survey endeavors to offer a panoramic perspective on the evaluation of LLMs. We categorize the evaluation of LLMs into three major groups: knowledge and capability evaluation, alignment evaluation and safety evaluation. In addition to the comprehensive review on the evaluation methodologies and benchmarks on these three aspects, we collate a compendium of evaluations pertaining to LLMs' performance in specialized domains, and discuss the construction of comprehensive evaluation platforms that cover LLM evaluations on capabilities, alignment, safety, and applicability. We hope that this comprehensive overview will stimulate further research interests in the evaluation of LLMs, with the ultimate goal of making evaluation serve as a cornerstone in guiding the responsible development of LLMs. We envision that this will channel their evolution into a direction that maximizes societal benefit while minimizing potential risks. A curated list of related papers has been publicly available at https://github.com/tjunlp-lab/Awesome-LLMs-Evaluation-Papers.

On the Tool Manipulation Capability of Open-source Large Language Models

Recent studies on software tool manipulation with large language models (LLMs) mostly rely on closed model APIs. The industrial adoption of these models is substantially constrained due to the security and robustness risks in exposing information to closed LLM API services. In this paper, we ask can we enhance open-source LLMs to be competitive to leading closed LLM APIs in tool manipulation, with practical amount of human supervision. By analyzing common tool manipulation failures, we first demonstrate that open-source LLMs may require training with usage examples, in-context demonstration and generation style regulation to resolve failures. These insights motivate us to revisit classical methods in LLM literature, and demonstrate that we can adapt them as model alignment with programmatic data generation, system prompts and in-context demonstration retrievers to enhance open-source LLMs for tool manipulation. To evaluate these techniques, we create the ToolBench, a tool manipulation benchmark consisting of diverse software tools for real-world tasks. We demonstrate that our techniques can boost leading open-source LLMs by up to 90% success rate, showing capabilities competitive to OpenAI GPT-4 in 4 out of 8 ToolBench tasks. We show that such enhancement typically requires about one developer day to curate data for each tool, rendering a recipe with practical amount of human supervision.

Empowering 1000 tokens/second on-device LLM prefilling with mllm-NPU

On-device large language models (LLMs) are catalyzing novel mobile applications such as UI task automation and personalized email auto-reply, without giving away users' private data. However, on-device LLMs still suffer from unacceptably long inference latency, especially the time to first token (prefill stage) due to the need of long context for accurate, personalized content generation, as well as the lack of parallel computing capacity of mobile CPU/GPU. To enable practical on-device LLM, we present mllm-NPU, the first-of-its-kind LLM inference system that efficiently leverages on-device Neural Processing Unit (NPU) offloading. Essentially, mllm-NPU is an algorithm-system co-design that tackles a few semantic gaps between the LLM architecture and contemporary NPU design. Specifically, it re-constructs the prompt and model in three levels: (1) At prompt level, it divides variable-length prompts into multiple fixed-sized chunks while maintaining data dependencies; (2) At tensor level, it identifies and extracts significant outliers to run on the CPU/GPU in parallel with minimal overhead; (3) At block level, it schedules Transformer blocks in an out-of-order manner to the CPU/GPU and NPU based on their hardware affinity and sensitivity to accuracy. Compared to competitive baselines, mllm-NPU achieves 22.4x faster prefill speed and 30.7x energy savings on average, and up to 32.8x speedup in an end-to-end real-world application. For the first time, mllm-NPU achieves more than 1,000 tokens/sec prefilling for a billion-sized model (Qwen1.5-1.8B), paving the way towards practical on-device LLM.

Watch Out for Your Agents! Investigating Backdoor Threats to LLM-Based Agents

Leveraging the rapid development of Large Language Models LLMs, LLM-based agents have been developed to handle various real-world applications, including finance, healthcare, and shopping, etc. It is crucial to ensure the reliability and security of LLM-based agents during applications. However, the safety issues of LLM-based agents are currently under-explored. In this work, we take the first step to investigate one of the typical safety threats, backdoor attack, to LLM-based agents. We first formulate a general framework of agent backdoor attacks, then we present a thorough analysis on the different forms of agent backdoor attacks. Specifically, from the perspective of the final attacking outcomes, the attacker can either choose to manipulate the final output distribution, or only introduce malicious behavior in the intermediate reasoning process, while keeping the final output correct. Furthermore, the former category can be divided into two subcategories based on trigger locations: the backdoor trigger can be hidden either in the user query or in an intermediate observation returned by the external environment. We propose the corresponding data poisoning mechanisms to implement the above variations of agent backdoor attacks on two typical agent tasks, web shopping and tool utilization. Extensive experiments show that LLM-based agents suffer severely from backdoor attacks, indicating an urgent need for further research on the development of defenses against backdoor attacks on LLM-based agents. Warning: This paper may contain biased content.

Democratizing LLMs: An Exploration of Cost-Performance Trade-offs in Self-Refined Open-Source Models

The dominance of proprietary LLMs has led to restricted access and raised information privacy concerns. High-performing open-source alternatives are crucial for information-sensitive and high-volume applications but often lag behind in performance. To address this gap, we propose (1) A untargeted variant of iterative self-critique and self-refinement devoid of external influence. (2) A novel ranking metric - Performance, Refinement, and Inference Cost Score (PeRFICS) - to find the optimal model for a given task considering refined performance and cost. Our experiments show that SoTA open source models of varying sizes from 7B - 65B, on average, improve 8.2% from their baseline performance. Strikingly, even models with extremely small memory footprints, such as Vicuna-7B, show a 11.74% improvement overall and up to a 25.39% improvement in high-creativity, open ended tasks on the Vicuna benchmark. Vicuna-13B takes it a step further and outperforms ChatGPT post-refinement. This work has profound implications for resource-constrained and information-sensitive environments seeking to leverage LLMs without incurring prohibitive costs, compromising on performance and privacy. The domain-agnostic self-refinement process coupled with our novel ranking metric facilitates informed decision-making in model selection, thereby reducing costs and democratizing access to high-performing language models, as evidenced by case studies.

Exploring the Impact of Disrupted Peer-to-Peer Communications on Fully Decentralized Learning in Disaster Scenarios

Fully decentralized learning enables the distribution of learning resources and decision-making capabilities across multiple user devices or nodes, and is rapidly gaining popularity due to its privacy-preserving and decentralized nature. Importantly, this crowdsourcing of the learning process allows the system to continue functioning even if some nodes are affected or disconnected. In a disaster scenario, communication infrastructure and centralized systems may be disrupted or completely unavailable, hindering the possibility of carrying out standard centralized learning tasks in these settings. Thus, fully decentralized learning can help in this case. However, transitioning from centralized to peer-to-peer communications introduces a dependency between the learning process and the topology of the communication graph among nodes. In a disaster scenario, even peer-to-peer communications are susceptible to abrupt changes, such as devices running out of battery or getting disconnected from others due to their position. In this study, we investigate the effects of various disruptions to peer-to-peer communications on decentralized learning in a disaster setting. We examine the resilience of a decentralized learning process when a subset of devices drop from the process abruptly. To this end, we analyze the difference between losing devices holding data, i.e., potential knowledge, vs. devices contributing only to the graph connectivity, i.e., with no data. Our findings on a Barabasi-Albert graph topology, where training data is distributed across nodes in an IID fashion, indicate that the accuracy of the learning process is more affected by a loss of connectivity than by a loss of data. Nevertheless, the network remains relatively robust, and the learning process can achieve a good level of accuracy.

LLM Agent Operating System

The integration and deployment of large language model (LLM)-based intelligent agents have been fraught with challenges that compromise their efficiency and efficacy. Among these issues are sub-optimal scheduling and resource allocation of agent requests over the LLM, the difficulties in maintaining context during interactions between agent and LLM, and the complexities inherent in integrating heterogeneous agents with different capabilities and specializations. The rapid increase of agent quantity and complexity further exacerbates these issues, often leading to bottlenecks and sub-optimal utilization of resources. Inspired by these challenges, this paper presents AIOS, an LLM agent operating system, which embeds large language model into operating systems (OS). Specifically, AIOS is designed to optimize resource allocation, facilitate context switch across agents, enable concurrent execution of agents, provide tool service for agents, and maintain access control for agents. We present the architecture of such an operating system, outline the core challenges it aims to resolve, and provide the basic design and implementation of the AIOS. Our experiments on concurrent execution of multiple agents demonstrate the reliability and efficiency of our AIOS modules. Through this, we aim to not only improve the performance and efficiency of LLM agents but also to pioneer for better development and deployment of the AIOS ecosystem in the future. The project is open-source at https://github.com/agiresearch/AIOS.

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

Federated Learning (FL) typically involves a large-scale, distributed system with individual user devices/servers training models locally and then aggregating their model updates on a trusted central server. Existing systems for FL often use an always-on server for model aggregation, which can be inefficient in terms of resource utilization. They may also be inelastic in their resource management. This is particularly exacerbated when aggregating model updates at scale in a highly dynamic environment with varying numbers of heterogeneous user devices/servers. We present LIFL, a lightweight and elastic serverless cloud platform with fine-grained resource management for efficient FL aggregation at scale. LIFL is enhanced by a streamlined, event-driven serverless design that eliminates the individual heavy-weight message broker and replaces inefficient container-based sidecars with lightweight eBPF-based proxies. We leverage shared memory processing to achieve high-performance communication for hierarchical aggregation, which is commonly adopted to speed up FL aggregation at scale. We further introduce locality-aware placement in LIFL to maximize the benefits of shared memory processing. LIFL precisely scales and carefully reuses the resources for hierarchical aggregation to achieve the highest degree of parallelism while minimizing the aggregation time and resource consumption. Our experimental results show that LIFL achieves significant improvement in resource efficiency and aggregation speed for supporting FL at scale, compared to existing serverful and serverless FL systems.

MetaGPT: Meta Programming for Multi-Agent Collaborative Framework

Recently, remarkable progress has been made in automated task-solving through the use of multi-agent driven by large language models (LLMs). However, existing LLM-based multi-agent works primarily focus on solving simple dialogue tasks, and complex tasks are rarely studied, mainly due to the LLM hallucination problem. This type of hallucination becomes cascading when naively chaining multiple intelligent agents, resulting in a failure to effectively address complex problems. Therefore, we introduce MetaGPT, an innovative framework that incorporates efficient human workflows as a meta programming approach into LLM-based multi-agent collaboration. Specifically, MetaGPT encodes Standardized Operating Procedures (SOPs) into prompts to enhance structured coordination. Subsequently, it mandates modular outputs, empowering agents with domain expertise comparable to human professionals, to validate outputs and minimize compounded errors. In this way, MetaGPT leverages the assembly line paradigm to assign diverse roles to various agents, thereby establishing a framework that can effectively and cohesively deconstruct complex multi-agent collaborative problems. Our experiments on collaborative software engineering benchmarks demonstrate that MetaGPT generates more coherent and correct solutions compared to existing chat-based multi-agent systems. This highlights the potential of integrating human domain knowledge into multi-agent systems, thereby creating new opportunities to tackle complex real-world challenges. The GitHub repository of this project is publicly available on:https://github.com/geekan/MetaGPT.

Towards Building the Federated GPT: Federated Instruction Tuning

While ``instruction-tuned" generative large language models (LLMs) have demonstrated an impressive ability to generalize to new tasks, the training phases heavily rely on large amounts of diverse and high-quality instruction data (such as ChatGPT and GPT-4). Unfortunately, acquiring high-quality data, especially when it comes to human-written data, can pose significant challenges both in terms of cost and accessibility. Moreover, concerns related to privacy can further limit access to such data, making the process of obtaining it a complex and nuanced undertaking. Consequently, this hinders the generality of the tuned models and may restrict their effectiveness in certain contexts. To tackle this issue, our study introduces a new approach called Federated Instruction Tuning (FedIT), which leverages federated learning (FL) as the learning framework for the instruction tuning of LLMs. This marks the first exploration of FL-based instruction tuning for LLMs. This is especially important since text data is predominantly generated by end users. Therefore, it is imperative to design and adapt FL approaches to effectively leverage these users' diverse instructions stored on local devices, while preserving privacy and ensuring data security. In the current paper, by conducting widely used GPT-4 auto-evaluation, we demonstrate that by exploiting the heterogeneous and diverse sets of instructions on the client's end with the proposed framework FedIT, we improved the performance of LLMs compared to centralized training with only limited local instructions. Further, in this paper, we developed a Github repository named Shepherd. This repository offers a foundational framework for exploring federated fine-tuning of LLMs using heterogeneous instructions across diverse categories.

BitMoD: Bit-serial Mixture-of-Datatype LLM Acceleration

Large language models (LLMs) have demonstrated remarkable performance across various machine learning tasks. Yet the substantial memory footprint of LLMs significantly hinders their deployment. In this paper, we improve the accessibility of LLMs through BitMoD, an algorithm-hardware co-design solution that enables efficient LLM acceleration at low weight precision. On the algorithm side, BitMoD introduces fine-grained data type adaptation that uses a different numerical data type to quantize a group of (e.g., 128) weights. Through the careful design of these new data types, BitMoD is able to quantize LLM weights to very low precision (e.g., 4 bits and 3 bits) while maintaining high accuracy. On the hardware side, BitMoD employs a bit-serial processing element to easily support multiple numerical precisions and data types; our hardware design includes two key innovations: First, it employs a unified representation to process different weight data types, thus reducing the hardware cost. Second, it adopts a bit-serial dequantization unit to rescale the per-group partial sum with minimal hardware overhead. Our evaluation on six representative LLMs demonstrates that BitMoD significantly outperforms state-of-the-art LLM quantization and acceleration methods. For discriminative tasks, BitMoD can quantize LLM weights to 4-bit with <!0.5% accuracy loss on average. For generative tasks, BitMoD is able to quantize LLM weights to 3-bit while achieving better perplexity than prior LLM quantization scheme. Combining the superior model performance with an efficient accelerator design, BitMoD achieves an average of 1.69times and 1.48times speedups compared to prior LLM accelerators ANT and OliVe, respectively.

ORAN-Bench-13K: An Open Source Benchmark for Assessing LLMs in Open Radio Access Networks

Large Language Models (LLMs) can revolutionize how we deploy and operate Open Radio Access Networks (O-RAN) by enhancing network analytics, anomaly detection, and code generation and significantly increasing the efficiency and reliability of a plethora of O-RAN tasks. In this paper, we present ORAN-Bench-13K, the first comprehensive benchmark designed to evaluate the performance of Large Language Models (LLMs) within the context of O-RAN. Our benchmark consists of 13,952 meticulously curated multiple-choice questions generated from 116 O-RAN specification documents. We leverage a novel three-stage LLM framework, and the questions are categorized into three distinct difficulties to cover a wide spectrum of ORAN-related knowledge. We thoroughly evaluate the performance of several state-of-the-art LLMs, including Gemini, Chat-GPT, and Mistral. Additionally, we propose ORANSight, a Retrieval-Augmented Generation (RAG)-based pipeline that demonstrates superior performance on ORAN-Bench-13K compared to other tested closed-source models. Our findings indicate that current popular LLM models are not proficient in O-RAN, highlighting the need for specialized models. We observed a noticeable performance improvement when incorporating the RAG-based ORANSight pipeline, with a Macro Accuracy of 0.784 and a Weighted Accuracy of 0.776, which was on average 21.55% and 22.59% better than the other tested LLMs.

Measuring and Improving Persuasiveness of Large Language Models

LLMs are increasingly being used in workflows involving generating content to be consumed by humans (e.g., marketing) and also in directly interacting with humans (e.g., through chatbots). The development of such systems that are capable of generating verifiably persuasive messages presents both opportunities and challenges for society. On the one hand, such systems could positively impact domains like advertising and social good, such as addressing drug addiction, and on the other, they could be misused for spreading misinformation and shaping political opinions. To channel LLMs' impact on society, we need to develop systems to measure and benchmark their persuasiveness. With this motivation, we introduce PersuasionBench and PersuasionArena, the first large-scale benchmark and arena containing a battery of tasks to measure the persuasion ability of generative models automatically. We investigate to what extent LLMs know and leverage linguistic patterns that can help them generate more persuasive language. Our findings indicate that the persuasiveness of LLMs correlates positively with model size, but smaller models can also be made to have a higher persuasiveness than much larger models. Notably, targeted training using synthetic and natural datasets significantly enhances smaller models' persuasive capabilities, challenging scale-dependent assumptions. Our findings carry key implications for both model developers and policymakers. For instance, while the EU AI Act and California's SB-1047 aim to regulate AI models based on the number of floating point operations, we demonstrate that simple metrics like this alone fail to capture the full scope of AI's societal impact. We invite the community to explore and contribute to PersuasionArena and PersuasionBench, available at https://bit.ly/measure-persuasion, to advance our understanding of AI-driven persuasion and its societal implications.

HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling

Large Language Models (LLMs) have achieved remarkable success in various fields, prompting several studies to explore their potential in recommendation systems. However, these attempts have so far resulted in only modest improvements over traditional recommendation models. Moreover, three critical questions remain under-explored: firstly, the real value of LLMs' pre-trained weights, often considered to encapsulate world knowledge; secondly, the necessity of fine-tuning for recommendation tasks; lastly, whether LLMs can exhibit the same scalability benefits in recommendation systems as they do in other domains. In this paper, we propose a novel Hierarchical Large Language Model (HLLM) architecture designed to enhance sequential recommendation systems. Our approach employs a two-tier model: the first Item LLM extracts rich content features from the detailed text description of the item, while the second User LLM utilizes these features to predict users' future interests based on their interaction history. Extensive experiments demonstrate that our method effectively leverages the pre-trained capabilities of open-source LLMs, and further fine-tuning leads to significant performance boosts. Additionally, HLLM achieves excellent scalability, with the largest configuration utilizing 7B parameters for both item feature extraction and user interest modeling. Moreover, HLLM offers excellent training and serving efficiency, making it practical in real-world applications. Evaluations on two large-scale datasets, PixelRec and Amazon Reviews, show that HLLM achieves state-of-the-art results, outperforming traditional ID-based models by a wide margin. In online A/B testing, HLLM showcases notable gains, validating its practical impact in real-world recommendation scenarios. Codes are available at https://github.com/bytedance/HLLM.

SysBench: Can Large Language Models Follow System Messages?

Large Language Models (LLMs) have become instrumental across various applications, with the customization of these models to specific scenarios becoming increasingly critical. System message, a fundamental component of LLMs, is consist of carefully crafted instructions that guide the behavior of model to meet intended goals. Despite the recognized potential of system messages to optimize AI-driven solutions, there is a notable absence of a comprehensive benchmark for evaluating how well different LLMs follow these system messages. To fill this gap, we introduce SysBench, a benchmark that systematically analyzes system message following ability in terms of three challenging aspects: constraint complexity, instruction misalignment and multi-turn stability. In order to enable effective evaluation, SysBench constructs multi-turn user conversations covering various interaction relationships, based on six common types of constraints from system messages in real-world scenarios. Our dataset contains 500 system messages from various domains, each paired with 5 turns of user conversations, which have been manually formulated and checked to guarantee high quality. SysBench provides extensive evaluation across various LLMs, measuring their ability to follow specified constraints given in system messages. The results highlight both the strengths and weaknesses of existing models, offering key insights and directions for future research. The open source library SysBench is available at https://github.com/PKU-Baichuan-MLSystemLab/SysBench.

Leveraging Pre-trained Large Language Models to Construct and Utilize World Models for Model-based Task Planning

There is a growing interest in applying pre-trained large language models (LLMs) to planning problems. However, methods that use LLMs directly as planners are currently impractical due to several factors, including limited correctness of plans, strong reliance on feedback from interactions with simulators or even the actual environment, and the inefficiency in utilizing human feedback. In this work, we introduce a novel alternative paradigm that constructs an explicit world (domain) model in planning domain definition language (PDDL) and then uses it to plan with sound domain-independent planners. To address the fact that LLMs may not generate a fully functional PDDL model initially, we employ LLMs as an interface between PDDL and sources of corrective feedback, such as PDDL validators and humans. For users who lack a background in PDDL, we show that LLMs can translate PDDL into natural language and effectively encode corrective feedback back to the underlying domain model. Our framework not only enjoys the correctness guarantee offered by the external planners but also reduces human involvement by allowing users to correct domain models at the beginning, rather than inspecting and correcting (through interactive prompting) every generated plan as in previous work. On two IPC domains and a Household domain that is more complicated than commonly used benchmarks such as ALFWorld, we demonstrate that GPT-4 can be leveraged to produce high-quality PDDL models for over 40 actions, and the corrected PDDL models are then used to successfully solve 48 challenging planning tasks. Resources including the source code will be released at: https://guansuns.github.io/pages/llm-dm.

MiniCPM: Unveiling the Potential of Small Language Models with Scalable Training Strategies

The burgeoning interest in developing Large Language Models (LLMs) with up to trillion parameters has been met with concerns regarding resource efficiency and practical expense, particularly given the immense cost of experimentation. This scenario underscores the importance of exploring the potential of Small Language Models (SLMs) as a resource-efficient alternative. In this context, we introduce MiniCPM, specifically the 1.2B and 2.4B non-embedding parameter variants, not only excel in their respective categories but also demonstrate capabilities on par with 7B-13B LLMs. While focusing on SLMs, our approach exhibits scalability in both model and data dimensions for future LLM research. Regarding model scaling, we employ extensive model wind tunnel experiments for stable and optimal scaling. For data scaling, we introduce a Warmup-Stable-Decay (WSD) learning rate scheduler (LRS), conducive to continuous training and domain adaptation. We present an in-depth analysis of the intriguing training dynamics that occurred in the WSD LRS. With WSD LRS, we are now able to efficiently study data-model scaling law without extensive retraining experiments on both axes of model and data, from which we derive the much higher compute optimal data-model ratio than Chinchilla Optimal. Additionally, we introduce MiniCPM family, including MiniCPM-DPO, MiniCPM-MoE and MiniCPM-128K, whose excellent performance further cementing MiniCPM's foundation in diverse SLM applications. MiniCPM models are available publicly at https://github.com/OpenBMB/MiniCPM .

Flooding Spread of Manipulated Knowledge in LLM-Based Multi-Agent Communities

The rapid adoption of large language models (LLMs) in multi-agent systems has highlighted their impressive capabilities in various applications, such as collaborative problem-solving and autonomous negotiation. However, the security implications of these LLM-based multi-agent systems have not been thoroughly investigated, particularly concerning the spread of manipulated knowledge. In this paper, we investigate this critical issue by constructing a detailed threat model and a comprehensive simulation environment that mirrors real-world multi-agent deployments in a trusted platform. Subsequently, we propose a novel two-stage attack method involving Persuasiveness Injection and Manipulated Knowledge Injection to systematically explore the potential for manipulated knowledge (i.e., counterfactual and toxic knowledge) spread without explicit prompt manipulation. Our method leverages the inherent vulnerabilities of LLMs in handling world knowledge, which can be exploited by attackers to unconsciously spread fabricated information. Through extensive experiments, we demonstrate that our attack method can successfully induce LLM-based agents to spread both counterfactual and toxic knowledge without degrading their foundational capabilities during agent communication. Furthermore, we show that these manipulations can persist through popular retrieval-augmented generation frameworks, where several benign agents store and retrieve manipulated chat histories for future interactions. This persistence indicates that even after the interaction has ended, the benign agents may continue to be influenced by manipulated knowledge. Our findings reveal significant security risks in LLM-based multi-agent systems, emphasizing the imperative need for robust defenses against manipulated knowledge spread, such as introducing ``guardian'' agents and advanced fact-checking tools.

Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement

The rapid development of large language models (LLMs), like ChatGPT, has resulted in the widespread presence of LLM-generated content on social media platforms, raising concerns about misinformation, data biases, and privacy violations, which can undermine trust in online discourse. While detecting LLM-generated content is crucial for mitigating these risks, current methods often focus on binary classification, failing to address the complexities of real-world scenarios like human-LLM collaboration. To move beyond binary classification and address these challenges, we propose a new paradigm for detecting LLM-generated content. This approach introduces two novel tasks: LLM Role Recognition (LLM-RR), a multi-class classification task that identifies specific roles of LLM in content generation, and LLM Influence Measurement (LLM-IM), a regression task that quantifies the extent of LLM involvement in content creation. To support these tasks, we propose LLMDetect, a benchmark designed to evaluate detectors' performance on these new tasks. LLMDetect includes the Hybrid News Detection Corpus (HNDC) for training detectors, as well as DetectEval, a comprehensive evaluation suite that considers five distinct cross-context variations and two multi-intensity variations within the same LLM role. This allows for a thorough assessment of detectors' generalization and robustness across diverse contexts. Our empirical validation of 10 baseline detection methods demonstrates that fine-tuned PLM-based models consistently outperform others on both tasks, while advanced LLMs face challenges in accurately detecting their own generated content. Our experimental results and analysis offer insights for developing more effective detection models for LLM-generated content. This research enhances the understanding of LLM-generated content and establishes a foundation for more nuanced detection methodologies.

One QuantLLM for ALL: Fine-tuning Quantized LLMs Once for Efficient Deployments

Large Language Models (LLMs) have advanced rapidly but face significant memory demands. While quantization has shown promise for LLMs, current methods typically require lengthy training to alleviate the performance degradation from quantization loss. However, deploying LLMs across diverse scenarios with different resource constraints, e.g., servers and personal computers, requires repeated training per application, which amplifies the lengthy training problem. Given that, it is advantageous to train a once-for-all (OFA) supernet capable of yielding diverse optimal subnets for downstream applications through one-shot training. Nonetheless, the scale of current language models impedes efficiency and amplifies interference from weight sharing between subnets. We make an initial attempt to extend the once-for-all framework to large language models. Specifically, we decouple shared weights to eliminate the interference and incorporate Low-Rank adapters for training efficiency. Furthermore, we observe the imbalance allocation of training resources from the traditional uniform sampling. A non-parametric scheduler is introduced to adjust the sampling rate for each quantization configuration, achieving a more balanced allocation among subnets with varying demands. We validate the approach on LLaMA2 families, and downstream evaluation confirms our ability to maintain high performance while significantly reducing deployment time faced with multiple scenarios.

MoGU: A Framework for Enhancing Safety of Open-Sourced LLMs While Preserving Their Usability

Large Language Models (LLMs) are increasingly deployed in various applications. As their usage grows, concerns regarding their safety are rising, especially in maintaining harmless responses when faced with malicious instructions. Many defense strategies have been developed to enhance the safety of LLMs. However, our research finds that existing defense strategies lead LLMs to predominantly adopt a rejection-oriented stance, thereby diminishing the usability of their responses to benign instructions. To solve this problem, we introduce the MoGU framework, designed to enhance LLMs' safety while preserving their usability. Our MoGU framework transforms the base LLM into two variants: the usable LLM and the safe LLM, and further employs dynamic routing to balance their contribution. When encountering malicious instructions, the router will assign a higher weight to the safe LLM to ensure that responses are harmless. Conversely, for benign instructions, the router prioritizes the usable LLM, facilitating usable and helpful responses. On various open-sourced LLMs, we compare multiple defense strategies to verify the superiority of our MoGU framework. Besides, our analysis provides key insights into the effectiveness of MoGU and verifies that our designed routing mechanism can effectively balance the contribution of each variant by assigning weights. Our work released the safer Llama2, Vicuna, Falcon, Dolphin, and Baichuan2.

Formally Specifying the High-Level Behavior of LLM-Based Agents

LLM-based agents have recently emerged as promising tools for solving challenging problems without the need for task-specific finetuned models that can be expensive to procure. Currently, the design and implementation of such agents is ad hoc, as the wide variety of tasks that LLM-based agents may be applied to naturally means there can be no one-size-fits-all approach to agent design. In this work we aim to alleviate the difficulty of designing and implementing new agents by proposing a minimalistic, high-level generation framework that simplifies the process of building agents. The framework we introduce allows the user to specify desired agent behaviors in Linear Temporal Logic (LTL). The declarative LTL specification is then used to construct a constrained decoder that guarantees the LLM will produce an output exhibiting the desired behavior. By designing our framework in this way, we obtain several benefits, including the ability to enforce complex agent behavior, the ability to formally validate prompt examples, and the ability to seamlessly incorporate content-focused logical constraints into generation. In particular, our declarative approach, in which the desired behavior is simply described without concern for how it should be implemented or enforced, enables rapid design, implementation and experimentation with different LLM-based agents. We demonstrate how the proposed framework can be used to implement recent LLM-based agents, and show how the guardrails our approach provides can lead to improvements in agent performance. In addition, we release our code for general use.

Towards Human-Guided, Data-Centric LLM Co-Pilots

Machine learning (ML) has the potential to revolutionize various domains, but its adoption is often hindered by the disconnect between the needs of domain experts and translating these needs into robust and valid ML tools. Despite recent advances in LLM-based co-pilots to democratize ML for non-technical domain experts, these systems remain predominantly focused on model-centric aspects while overlooking critical data-centric challenges. This limitation is problematic in complex real-world settings where raw data often contains complex issues, such as missing values, label noise, and domain-specific nuances requiring tailored handling. To address this we introduce CliMB-DC, a human-guided, data-centric framework for LLM co-pilots that combines advanced data-centric tools with LLM-driven reasoning to enable robust, context-aware data processing. At its core, CliMB-DC introduces a novel, multi-agent reasoning system that combines a strategic coordinator for dynamic planning and adaptation with a specialized worker agent for precise execution. Domain expertise is then systematically incorporated to guide the reasoning process using a human-in-the-loop approach. To guide development, we formalize a taxonomy of key data-centric challenges that co-pilots must address. Thereafter, to address the dimensions of the taxonomy, we integrate state-of-the-art data-centric tools into an extensible, open-source architecture, facilitating the addition of new tools from the research community. Empirically, using real-world healthcare datasets we demonstrate CliMB-DC's ability to transform uncurated datasets into ML-ready formats, significantly outperforming existing co-pilot baselines for handling data-centric challenges. CliMB-DC promises to empower domain experts from diverse domains -- healthcare, finance, social sciences and more -- to actively participate in driving real-world impact using ML.

Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System

Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving, yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods. We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness in LLM-based MAS through LLM training. Optima employs an iterative generate, rank, select, and train paradigm with a reward function balancing task performance, token efficiency, and communication readability. We explore various RL algorithms, including Supervised Fine-Tuning, Direct Preference Optimization, and their hybrid approaches, providing insights into their effectiveness-efficiency trade-offs. We integrate Monte Carlo Tree Search-inspired techniques for DPO data generation, treating conversation turns as tree nodes to explore diverse interaction paths. Evaluated on common multi-agent tasks, including information-asymmetric question answering and complex reasoning, Optima shows consistent and substantial improvements over single-agent baselines and vanilla MAS based on Llama 3 8B, achieving up to 2.8x performance gain with less than 10\% tokens on tasks requiring heavy information exchange. Moreover, Optima's efficiency gains open new possibilities for leveraging inference-compute more effectively, leading to improved inference-time scaling laws. By addressing fundamental challenges in LLM-based MAS, Optima shows the potential towards scalable, efficient, and effective MAS (https://chenweize1998.github.io/optima-project-page).

Wireless Multi-Agent Generative AI: From Connected Intelligence to Collective Intelligence

The convergence of generative large language models (LLMs), edge networks, and multi-agent systems represents a groundbreaking synergy that holds immense promise for future wireless generations, harnessing the power of collective intelligence and paving the way for self-governed networks where intelligent decision-making happens right at the edge. This article puts the stepping-stone for incorporating multi-agent generative artificial intelligence (AI) in wireless networks, and sets the scene for realizing on-device LLMs, where multi-agent LLMs are collaboratively planning and solving tasks to achieve a number of network goals. We further investigate the profound limitations of cloud-based LLMs, and explore multi-agent LLMs from a game theoretic perspective, where agents collaboratively solve tasks in competitive environments. Moreover, we establish the underpinnings for the architecture design of wireless multi-agent generative AI systems at the network level and the agent level, and we identify the wireless technologies that are envisioned to play a key role in enabling on-device LLM. To demonstrate the promising potentials of wireless multi-agent generative AI networks, we highlight the benefits that can be achieved when implementing wireless generative agents in intent-based networking, and we provide a case study to showcase how on-device LLMs can contribute to solving network intents in a collaborative fashion. We finally shed lights on potential challenges and sketch a research roadmap towards realizing the vision of wireless collective intelligence.

Fed-SB: A Silver Bullet for Extreme Communication Efficiency and Performance in (Private) Federated LoRA Fine-Tuning

Low-Rank Adaptation (LoRA) has become ubiquitous for efficiently fine-tuning foundation models. However, federated fine-tuning using LoRA is challenging due to suboptimal updates arising from traditional federated averaging of individual adapters. Existing solutions either incur prohibitively high communication cost that scales linearly with the number of clients or suffer from performance degradation due to limited expressivity. We introduce Federated Silver Bullet (Fed-SB), a novel approach for federated fine-tuning of LLMs using LoRA-SB, a recently proposed low-rank adaptation method. LoRA-SB optimally aligns the optimization trajectory with the ideal low-rank full fine-tuning projection by learning a small square matrix (R) between adapters B and A, keeping other components fixed. Direct averaging of R guarantees exact updates, substantially reducing communication cost, which remains independent of the number of clients, and enables scalability. Fed-SB achieves state-of-the-art performance across commonsense reasoning, arithmetic reasoning, and language inference tasks while reducing communication costs by up to 230x. In private settings, Fed-SB further improves performance by (1) reducing trainable parameters, thereby lowering the noise required for differential privacy and (2) avoiding noise amplification introduced by other methods. Overall, Fed-SB establishes a new Pareto frontier in the tradeoff between communication and performance, offering an efficient and scalable solution for both private and non-private federated fine-tuning. Our code is publicly available at https://github.com/CERT-Lab/fed-sb.

Democratizing Reasoning Ability: Tailored Learning from Large Language Model

Large language models (LLMs) exhibit impressive emergent abilities in natural language processing, but their democratization is hindered due to huge computation requirements and closed-source nature. Recent research on advancing open-source smaller LMs by distilling knowledge from black-box LLMs has obtained promising results in the instruction-following ability. However, the reasoning ability which is more challenging to foster, is relatively rarely explored. In this paper, we propose a tailored learning approach to distill such reasoning ability to smaller LMs to facilitate the democratization of the exclusive reasoning ability. In contrast to merely employing LLM as a data annotator, we exploit the potential of LLM as a reasoning teacher by building an interactive multi-round learning paradigm. This paradigm enables the student to expose its deficiencies to the black-box teacher who then can provide customized training data in return. Further, to exploit the reasoning potential of the smaller LM, we propose self-reflection learning to motivate the student to learn from self-made mistakes. The learning from self-reflection and LLM are all tailored to the student's learning status, thanks to the seamless integration with the multi-round learning paradigm. Comprehensive experiments and analysis on mathematical and commonsense reasoning tasks demonstrate the effectiveness of our method. The code will be available at https://github.com/Raibows/Learn-to-Reason.

Blockchain-Based Federated Learning: Incentivizing Data Sharing and Penalizing Dishonest Behavior

With the increasing importance of data sharing for collaboration and innovation, it is becoming more important to ensure that data is managed and shared in a secure and trustworthy manner. Data governance is a common approach to managing data, but it faces many challenges such as data silos, data consistency, privacy, security, and access control. To address these challenges, this paper proposes a comprehensive framework that integrates data trust in federated learning with InterPlanetary File System, blockchain, and smart contracts to facilitate secure and mutually beneficial data sharing while providing incentives, access control mechanisms, and penalizing any dishonest behavior. The experimental results demonstrate that the proposed model is effective in improving the accuracy of federated learning models while ensuring the security and fairness of the data-sharing process. The research paper also presents a decentralized federated learning platform that successfully trained a CNN model on the MNIST dataset using blockchain technology. The platform enables multiple workers to train the model simultaneously while maintaining data privacy and security. The decentralized architecture and use of blockchain technology allow for efficient communication and coordination between workers. This platform has the potential to facilitate decentralized machine learning and support privacy-preserving collaboration in various domains.

Mobile-Bench: An Evaluation Benchmark for LLM-based Mobile Agents

With the remarkable advancements of large language models (LLMs), LLM-based agents have become a research hotspot in human-computer interaction. However, there is a scarcity of benchmarks available for LLM-based mobile agents. Benchmarking these agents generally faces three main challenges: (1) The inefficiency of UI-only operations imposes limitations to task evaluation. (2) Specific instructions within a singular application lack adequacy for assessing the multi-dimensional reasoning and decision-making capacities of LLM mobile agents. (3) Current evaluation metrics are insufficient to accurately assess the process of sequential actions. To this end, we propose Mobile-Bench, a novel benchmark for evaluating the capabilities of LLM-based mobile agents. First, we expand conventional UI operations by incorporating 103 collected APIs to accelerate the efficiency of task completion. Subsequently, we collect evaluation data by combining real user queries with augmentation from LLMs. To better evaluate different levels of planning capabilities for mobile agents, our data is categorized into three distinct groups: SAST, SAMT, and MAMT, reflecting varying levels of task complexity. Mobile-Bench comprises 832 data entries, with more than 200 tasks specifically designed to evaluate multi-APP collaboration scenarios. Furthermore, we introduce a more accurate evaluation metric, named CheckPoint, to assess whether LLM-based mobile agents reach essential points during their planning and reasoning steps.

LLM-PySC2: Starcraft II learning environment for Large Language Models

This paper introduces a new environment LLM-PySC2 (the Large Language Model StarCraft II Learning Environment), a platform derived from DeepMind's StarCraft II Learning Environment that serves to develop Large Language Models (LLMs) based decision-making methodologies. This environment is the first to offer the complete StarCraft II action space, multi-modal observation interfaces, and a structured game knowledge database, which are seamlessly connected with various LLMs to facilitate the research of LLMs-based decision-making. To further support multi-agent research, we developed an LLM collaborative framework that supports multi-agent concurrent queries and multi-agent communication. In our experiments, the LLM-PySC2 environment is adapted to be compatible with the StarCraft Multi-Agent Challenge (SMAC) task group and provided eight new scenarios focused on macro-decision abilities. We evaluated nine mainstream LLMs in the experiments, and results show that sufficient parameters are necessary for LLMs to make decisions, but improving reasoning ability does not directly lead to better decision-making outcomes. Our findings further indicate the importance of enabling large models to learn autonomously in the deployment environment through parameter training or train-free learning techniques. Ultimately, we expect that the LLM-PySC2 environment can promote research on learning methods for LLMs, helping LLM-based methods better adapt to task scenarios.

LLaMA-E: Empowering E-commerce Authoring with Multi-Aspect Instruction Following

E-commerce authoring involves creating attractive, abundant, and targeted promotional content to drive product sales. The emergence of large language models (LLMs) introduces an innovative paradigm, offering a unified solution to address various authoring tasks within this scenario. However, mainstream LLMs trained on general corpora with common sense knowledge reveal limitations in fitting complex and personalized features unique to e-commerce products and customers. Furthermore, LLMs like GPT-3.5 necessitate remote accessibility, raising concerns about safeguarding voluminous customer privacy data during transmission. This paper proposes the LLaMA-E, the unified and customized instruction-following language models focusing on diverse e-commerce authoring tasks. Specifically, the domain experts create the seed instruction set from the tasks of ads generation, query-enhanced product title rewriting, product classification, purchase intent speculation, and general Q&A. These tasks enable the models to comprehensively understand precise e-commerce authoring knowledge by interleaving features covering typical service aspects of customers, sellers, and platforms. The GPT-3.5 is introduced as a teacher model, which expands the seed instructions to form a training set for the LLaMA-E models with various scales. The experimental results show that the proposed LLaMA-E models achieve state-of-the-art results in quantitative and qualitative evaluations, also exhibiting the advantage in zero-shot scenes. To the best of our knowledge, this study is the first to serve the LLMs to specific e-commerce authoring scenarios.

MindAgent: Emergent Gaming Interaction

Large Language Models (LLMs) have the capacity of performing complex scheduling in a multi-agent system and can coordinate these agents into completing sophisticated tasks that require extensive collaboration. However, despite the introduction of numerous gaming frameworks, the community has insufficient benchmarks towards building general multi-agents collaboration infrastructure that encompass both LLM and human-NPCs collaborations. In this work, we propose a novel infrastructure - MindAgent - to evaluate planning and coordination emergent capabilities for gaming interaction. In particular, our infrastructure leverages existing gaming framework, to i) require understanding of the coordinator for a multi-agent system, ii) collaborate with human players via un-finetuned proper instructions, and iii) establish an in-context learning on few-shot prompt with feedback. Furthermore, we introduce CUISINEWORLD, a new gaming scenario and related benchmark that dispatch a multi-agent collaboration efficiency and supervise multiple agents playing the game simultaneously. We conduct comprehensive evaluations with new auto-metric CoS for calculating the collaboration efficiency. Finally, our infrastructure can be deployed into real-world gaming scenarios in a customized VR version of CUISINEWORLD and adapted in existing broader Minecraft gaming domain. We hope our findings on LLMs and the new infrastructure for general-purpose scheduling and coordination can help shed light on how such skills can be obtained by learning from large language corpora.