Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeExploring Model Dynamics for Accumulative Poisoning Discovery
Adversarial poisoning attacks pose huge threats to various machine learning applications. Especially, the recent accumulative poisoning attacks show that it is possible to achieve irreparable harm on models via a sequence of imperceptible attacks followed by a trigger batch. Due to the limited data-level discrepancy in real-time data streaming, current defensive methods are indiscriminate in handling the poison and clean samples. In this paper, we dive into the perspective of model dynamics and propose a novel information measure, namely, Memorization Discrepancy, to explore the defense via the model-level information. By implicitly transferring the changes in the data manipulation to that in the model outputs, Memorization Discrepancy can discover the imperceptible poison samples based on their distinct dynamics from the clean samples. We thoroughly explore its properties and propose Discrepancy-aware Sample Correction (DSC) to defend against accumulative poisoning attacks. Extensive experiments comprehensively characterized Memorization Discrepancy and verified its effectiveness. The code is publicly available at: https://github.com/tmlr-group/Memorization-Discrepancy.
Online Deep Learning: Learning Deep Neural Networks on the Fly
Deep Neural Networks (DNNs) are typically trained by backpropagation in a batch learning setting, which requires the entire training data to be made available prior to the learning task. This is not scalable for many real-world scenarios where new data arrives sequentially in a stream form. We aim to address an open challenge of "Online Deep Learning" (ODL) for learning DNNs on the fly in an online setting. Unlike traditional online learning that often optimizes some convex objective function with respect to a shallow model (e.g., a linear/kernel-based hypothesis), ODL is significantly more challenging since the optimization of the DNN objective function is non-convex, and regular backpropagation does not work well in practice, especially for online learning settings. In this paper, we present a new online deep learning framework that attempts to tackle the challenges by learning DNN models of adaptive depth from a sequence of training data in an online learning setting. In particular, we propose a novel Hedge Backpropagation (HBP) method for online updating the parameters of DNN effectively, and validate the efficacy of our method on large-scale data sets, including both stationary and concept drifting scenarios.
Sampling Streaming Data with Parallel Vector Quantization -- PVQ
Accumulation of corporate data in the cloud has attracted more enterprise applications to the cloud creating data gravity. As a consequence, network traffic has become more cloud centric. This increase in cloud centric traffic poses new challenges in designing learning systems for streaming data due to class imbalance. The number of classes plays a vital role in the accuracy of the classifiers built from the data streams. In this paper, we present a vector quantization-based sampling method, which substantially reduces the class imbalance in data streams. We demonstrate its effectiveness by conducting experiments on network traffic and anomaly dataset with commonly used ML model building methods; Multilayered Perceptron on TensorFlow backend, Support Vector Machines, K-Nearest Neighbour, and Random Forests. We built models using parallel processing, batch processing, and randomly selecting samples. We show that the accuracy of classification models improves when the data streams are pre-processed with our method. We used out of the box hyper-parameters of these classifiers and auto sklearn for hyperparameter optimization.
River: machine learning for streaming data in Python
River is a machine learning library for dynamic data streams and continual learning. It provides multiple state-of-the-art learning methods, data generators/transformers, performance metrics and evaluators for different stream learning problems. It is the result from the merger of the two most popular packages for stream learning in Python: Creme and scikit-multiflow. River introduces a revamped architecture based on the lessons learnt from the seminal packages. River's ambition is to be the go-to library for doing machine learning on streaming data. Additionally, this open source package brings under the same umbrella a large community of practitioners and researchers. The source code is available at https://github.com/online-ml/river.
Twitch Plays Pokemon, Machine Learns Twitch: Unsupervised Context-Aware Anomaly Detection for Identifying Trolls in Streaming Data
With the increasing importance of online communities, discussion forums, and customer reviews, Internet "trolls" have proliferated thereby making it difficult for information seekers to find relevant and correct information. In this paper, we consider the problem of detecting and identifying Internet trolls, almost all of which are human agents. Identifying a human agent among a human population presents significant challenges compared to detecting automated spam or computerized robots. To learn a troll's behavior, we use contextual anomaly detection to profile each chat user. Using clustering and distance-based methods, we use contextual data such as the group's current goal, the current time, and the username to classify each point as an anomaly. A user whose features significantly differ from the norm will be classified as a troll. We collected 38 million data points from the viral Internet fad, Twitch Plays Pokemon. Using clustering and distance-based methods, we develop heuristics for identifying trolls. Using MapReduce techniques for preprocessing and user profiling, we are able to classify trolls based on 10 features extracted from a user's lifetime history.
A Hybrid Framework for Real-Time Data Drift and Anomaly Identification Using Hierarchical Temporal Memory and Statistical Tests
Data Drift is the phenomenon where the generating model behind the data changes over time. Due to data drift, any model built on the past training data becomes less relevant and inaccurate over time. Thus, detecting and controlling for data drift is critical in machine learning models. Hierarchical Temporal Memory (HTM) is a machine learning model developed by Jeff Hawkins, inspired by how the human brain processes information. It is a biologically inspired model of memory that is similar in structure to the neocortex, and whose performance is claimed to be comparable to state of the art models in detecting anomalies in time series data. Another unique benefit of HTMs is its independence from training and testing cycle; all the learning takes place online with streaming data and no separate training and testing cycle is required. In sequential learning paradigm, Sequential Probability Ratio Test (SPRT) offers some unique benefit for online learning and inference. This paper proposes a novel hybrid framework combining HTM and SPRT for real-time data drift detection and anomaly identification. Unlike existing data drift methods, our approach eliminates frequent retraining and ensures low false positive rates. HTMs currently work with one dimensional or univariate data. In a second study, we also propose an application of HTM in multidimensional supervised scenario for anomaly detection by combining the outputs of multiple HTM columns, one for each dimension of the data, through a neural network. Experimental evaluations demonstrate that the proposed method outperforms conventional drift detection techniques like the Kolmogorov-Smirnov (KS) test, Wasserstein distance, and Population Stability Index (PSI) in terms of accuracy, adaptability, and computational efficiency. Our experiments also provide insights into optimizing hyperparameters for real-time deployment in domains such as Telecom.
Fair yet Asymptotically Equal Collaborative Learning
In collaborative learning with streaming data, nodes (e.g., organizations) jointly and continuously learn a machine learning (ML) model by sharing the latest model updates computed from their latest streaming data. For the more resourceful nodes to be willing to share their model updates, they need to be fairly incentivized. This paper explores an incentive design that guarantees fairness so that nodes receive rewards commensurate to their contributions. Our approach leverages an explore-then-exploit formulation to estimate the nodes' contributions (i.e., exploration) for realizing our theoretically guaranteed fair incentives (i.e., exploitation). However, we observe a "rich get richer" phenomenon arising from the existing approaches to guarantee fairness and it discourages the participation of the less resourceful nodes. To remedy this, we additionally preserve asymptotic equality, i.e., less resourceful nodes achieve equal performance eventually to the more resourceful/"rich" nodes. We empirically demonstrate in two settings with real-world streaming data: federated online incremental learning and federated reinforcement learning, that our proposed approach outperforms existing baselines in fairness and learning performance while remaining competitive in preserving equality.
Robot Fleet Learning via Policy Merging
Fleets of robots ingest massive amounts of heterogeneous streaming data silos generated by interacting with their environments, far more than what can be stored or transmitted with ease. At the same time, teams of robots should co-acquire diverse skills through their heterogeneous experiences in varied settings. How can we enable such fleet-level learning without having to transmit or centralize fleet-scale data? In this paper, we investigate policy merging (PoMe) from such distributed heterogeneous datasets as a potential solution. To efficiently merge policies in the fleet setting, we propose FLEET-MERGE, an instantiation of distributed learning that accounts for the permutation invariance that arises when parameterizing the control policies with recurrent neural networks. We show that FLEET-MERGE consolidates the behavior of policies trained on 50 tasks in the Meta-World environment, with good performance on nearly all training tasks at test time. Moreover, we introduce a novel robotic tool-use benchmark, FLEET-TOOLS, for fleet policy learning in compositional and contact-rich robot manipulation tasks, to validate the efficacy of FLEET-MERGE on the benchmark.
Online Adversarial Attacks
Adversarial attacks expose important vulnerabilities of deep learning models, yet little attention has been paid to settings where data arrives as a stream. In this paper, we formalize the online adversarial attack problem, emphasizing two key elements found in real-world use-cases: attackers must operate under partial knowledge of the target model, and the decisions made by the attacker are irrevocable since they operate on a transient data stream. We first rigorously analyze a deterministic variant of the online threat model by drawing parallels to the well-studied k-secretary problem in theoretical computer science and propose Virtual+, a simple yet practical online algorithm. Our main theoretical result shows Virtual+ yields provably the best competitive ratio over all single-threshold algorithms for k<5 -- extending the previous analysis of the k-secretary problem. We also introduce the stochastic k-secretary -- effectively reducing online blackbox transfer attacks to a k-secretary problem under noise -- and prove theoretical bounds on the performance of Virtual+ adapted to this setting. Finally, we complement our theoretical results by conducting experiments on MNIST, CIFAR-10, and Imagenet classifiers, revealing the necessity of online algorithms in achieving near-optimal performance and also the rich interplay between attack strategies and online attack selection, enabling simple strategies like FGSM to outperform stronger adversaries.
Live2Diff: Live Stream Translation via Uni-directional Attention in Video Diffusion Models
Large Language Models have shown remarkable efficacy in generating streaming data such as text and audio, thanks to their temporally uni-directional attention mechanism, which models correlations between the current token and previous tokens. However, video streaming remains much less explored, despite a growing need for live video processing. State-of-the-art video diffusion models leverage bi-directional temporal attention to model the correlations between the current frame and all the surrounding (i.e. including future) frames, which hinders them from processing streaming videos. To address this problem, we present Live2Diff, the first attempt at designing a video diffusion model with uni-directional temporal attention, specifically targeting live streaming video translation. Compared to previous works, our approach ensures temporal consistency and smoothness by correlating the current frame with its predecessors and a few initial warmup frames, without any future frames. Additionally, we use a highly efficient denoising scheme featuring a KV-cache mechanism and pipelining, to facilitate streaming video translation at interactive framerates. Extensive experiments demonstrate the effectiveness of the proposed attention mechanism and pipeline, outperforming previous methods in terms of temporal smoothness and/or efficiency.
Dive into Time-Series Anomaly Detection: A Decade Review
Recent advances in data collection technology, accompanied by the ever-rising volume and velocity of streaming data, underscore the vital need for time series analytics. In this regard, time-series anomaly detection has been an important activity, entailing various applications in fields such as cyber security, financial markets, law enforcement, and health care. While traditional literature on anomaly detection is centered on statistical measures, the increasing number of machine learning algorithms in recent years call for a structured, general characterization of the research methods for time-series anomaly detection. This survey groups and summarizes anomaly detection existing solutions under a process-centric taxonomy in the time series context. In addition to giving an original categorization of anomaly detection methods, we also perform a meta-analysis of the literature and outline general trends in time-series anomaly detection research.
Sequential Kernelized Independence Testing
Independence testing is a fundamental and classical statistical problem that has been extensively studied in the batch setting when one fixes the sample size before collecting data. However, practitioners often prefer procedures that adapt to the complexity of a problem at hand instead of setting sample size in advance. Ideally, such procedures should (a) allow stopping earlier on easy tasks (and later on harder tasks), hence making better use of available resources, and (b) continuously monitor the data and efficiently incorporate statistical evidence after collecting new data, while controlling the false alarm rate. It is well known that classical batch tests are not tailored for streaming data settings: valid inference after data peeking requires correcting for multiple testing but such corrections generally result in low power. Following the principle of testing by betting, we design sequential kernelized independence tests (SKITs) that overcome such shortcomings. We exemplify our broad framework using bets inspired by kernelized dependence measures, e.g, the Hilbert-Schmidt independence criterion. Our test is valid under non-i.i.d. time-varying settings, for which there exist no batch tests. We demonstrate the power of our approaches on both simulated and real data.
Online Orthogonal Dictionary Learning Based on Frank-Wolfe Method
Dictionary learning is a widely used unsupervised learning method in signal processing and machine learning. Most existing works of dictionary learning are in an offline manner. There are mainly two offline ways for dictionary learning. One is to do an alternative optimization of both the dictionary and the sparse code; the other way is to optimize the dictionary by restricting it over the orthogonal group. The latter one is called orthogonal dictionary learning which has a lower complexity implementation, hence, it is more favorable for lowcost devices. However, existing schemes on orthogonal dictionary learning only work with batch data and can not be implemented online, which is not applicable for real-time applications. This paper proposes a novel online orthogonal dictionary scheme to dynamically learn the dictionary from streaming data without storing the historical data. The proposed scheme includes a novel problem formulation and an efficient online algorithm design with convergence analysis. In the problem formulation, we relax the orthogonal constraint to enable an efficient online algorithm. In the algorithm design, we propose a new Frank-Wolfe-based online algorithm with a convergence rate of O(ln t/t^(1/4)). The convergence rate in terms of key system parameters is also derived. Experiments with synthetic data and real-world sensor readings demonstrate the effectiveness and efficiency of the proposed online orthogonal dictionary learning scheme.
Continual Learning with Pre-Trained Models: A Survey
Nowadays, real-world applications often face streaming data, which requires the learning system to absorb new knowledge as data evolves. Continual Learning (CL) aims to achieve this goal and meanwhile overcome the catastrophic forgetting of former knowledge when learning new ones. Typical CL methods build the model from scratch to grow with incoming data. However, the advent of the pre-trained model (PTM) era has sparked immense research interest, particularly in leveraging PTMs' robust representational capabilities. This paper presents a comprehensive survey of the latest advancements in PTM-based CL. We categorize existing methodologies into three distinct groups, providing a comparative analysis of their similarities, differences, and respective advantages and disadvantages. Additionally, we offer an empirical study contrasting various state-of-the-art methods to highlight concerns regarding fairness in comparisons. The source code to reproduce these evaluations is available at: https://github.com/sun-hailong/LAMDA-PILOT
Domain-Agnostic Neural Architecture for Class Incremental Continual Learning in Document Processing Platform
Production deployments in complex systems require ML architectures to be highly efficient and usable against multiple tasks. Particularly demanding are classification problems in which data arrives in a streaming fashion and each class is presented separately. Recent methods with stochastic gradient learning have been shown to struggle in such setups or have limitations like memory buffers, and being restricted to specific domains that disable its usage in real-world scenarios. For this reason, we present a fully differentiable architecture based on the Mixture of Experts model, that enables the training of high-performance classifiers when examples from each class are presented separately. We conducted exhaustive experiments that proved its applicability in various domains and ability to learn online in production environments. The proposed technique achieves SOTA results without a memory buffer and clearly outperforms the reference methods.
Adapting Vision-Language Models Without Labels: A Comprehensive Survey
Vision-Language Models (VLMs) have demonstrated remarkable generalization capabilities across a wide range of tasks. However, their performance often remains suboptimal when directly applied to specific downstream scenarios without task-specific adaptation. To enhance their utility while preserving data efficiency, recent research has increasingly focused on unsupervised adaptation methods that do not rely on labeled data. Despite the growing interest in this area, there remains a lack of a unified, task-oriented survey dedicated to unsupervised VLM adaptation. To bridge this gap, we present a comprehensive and structured overview of the field. We propose a taxonomy based on the availability and nature of unlabeled visual data, categorizing existing approaches into four key paradigms: Data-Free Transfer (no data), Unsupervised Domain Transfer (abundant data), Episodic Test-Time Adaptation (batch data), and Online Test-Time Adaptation (streaming data). Within this framework, we analyze core methodologies and adaptation strategies associated with each paradigm, aiming to establish a systematic understanding of the field. Additionally, we review representative benchmarks across diverse applications and highlight open challenges and promising directions for future research. An actively maintained repository of relevant literature is available at https://github.com/tim-learn/Awesome-LabelFree-VLMs.
Building a Safer Maritime Environment Through Multi-Path Long-Term Vessel Trajectory Forecasting
Maritime transportation is paramount in achieving global economic growth, entailing concurrent ecological obligations in sustainability and safeguarding endangered marine species, most notably preserving large whale populations. In this regard, the Automatic Identification System (AIS) data plays a significant role by offering real-time streaming data on vessel movement, allowing enhanced traffic monitoring. This study explores using AIS data to prevent vessel-to-whale collisions by forecasting long-term vessel trajectories from engineered AIS data sequences. For such a task, we have developed an encoder-decoder model architecture using Bidirectional Long Short-Term Memory Networks (Bi-LSTM) to predict the next 12 hours of vessel trajectories using 1 to 3 hours of AIS data as input. We feed the model with probabilistic features engineered from historical AIS data that refer to each trajectory's potential route and destination. The model then predicts the vessel's trajectory, considering these additional features by leveraging convolutional layers for spatial feature learning and a position-aware attention mechanism that increases the importance of recent timesteps of a sequence during temporal feature learning. The probabilistic features have an F1 Score of approximately 85% and 75% for each feature type, respectively, demonstrating their effectiveness in augmenting information to the neural network. We test our model on the Gulf of St. Lawrence, a region known to be the habitat of North Atlantic Right Whales (NARW). Our model achieved a high R2 score of over 98% using various techniques and features. It stands out among other approaches as it can make complex decisions during turnings and path selection. Our study highlights the potential of data engineering and trajectory forecasting models for marine life species preservation.
Continual Semi-Supervised Learning through Contrastive Interpolation Consistency
Continual Learning (CL) investigates how to train Deep Networks on a stream of tasks without incurring forgetting. CL settings proposed in literature assume that every incoming example is paired with ground-truth annotations. However, this clashes with many real-world applications: gathering labeled data, which is in itself tedious and expensive, becomes infeasible when data flow as a stream. This work explores Continual Semi-Supervised Learning (CSSL): here, only a small fraction of labeled input examples are shown to the learner. We assess how current CL methods (e.g.: EWC, LwF, iCaRL, ER, GDumb, DER) perform in this novel and challenging scenario, where overfitting entangles forgetting. Subsequently, we design a novel CSSL method that exploits metric learning and consistency regularization to leverage unlabeled examples while learning. We show that our proposal exhibits higher resilience to diminishing supervision and, even more surprisingly, relying only on 25% supervision suffices to outperform SOTA methods trained under full supervision.
TimeGraphs: Graph-based Temporal Reasoning
Many real-world systems exhibit temporal, dynamic behaviors, which are captured as time series of complex agent interactions. To perform temporal reasoning, current methods primarily encode temporal dynamics through simple sequence-based models. However, in general these models fail to efficiently capture the full spectrum of rich dynamics in the input, since the dynamics is not uniformly distributed. In particular, relevant information might be harder to extract and computing power is wasted for processing all individual timesteps, even if they contain no significant changes or no new information. Here we propose TimeGraphs, a novel approach that characterizes dynamic interactions as a hierarchical temporal graph, diverging from traditional sequential representations. Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales. Adopting a self-supervised method, TimeGraphs constructs a multi-level event hierarchy from a temporal input, which is then used to efficiently reason about the unevenly distributed dynamics. This construction process is scalable and incremental to accommodate streaming data. We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset. The results demonstrate both robustness and efficiency of TimeGraphs on a range of temporal reasoning tasks. Our approach obtains state-of-the-art performance and leads to a performance increase of up to 12.2% on event prediction and recognition tasks over current approaches. Our experiments further demonstrate a wide array of capabilities including zero-shot generalization, robustness in case of data sparsity, and adaptability to streaming data flow.
High Throughput Training of Deep Surrogates from Large Ensemble Runs
Recent years have seen a surge in deep learning approaches to accelerate numerical solvers, which provide faithful but computationally intensive simulations of the physical world. These deep surrogates are generally trained in a supervised manner from limited amounts of data slowly generated by the same solver they intend to accelerate. We propose an open-source framework that enables the online training of these models from a large ensemble run of simulations. It leverages multiple levels of parallelism to generate rich datasets. The framework avoids I/O bottlenecks and storage issues by directly streaming the generated data. A training reservoir mitigates the inherent bias of streaming while maximizing GPU throughput. Experiment on training a fully connected network as a surrogate for the heat equation shows the proposed approach enables training on 8TB of data in 2 hours with an accuracy improved by 47% and a batch throughput multiplied by 13 compared to a traditional offline procedure.
TeSLA: Test-Time Self-Learning With Automatic Adversarial Augmentation
Most recent test-time adaptation methods focus on only classification tasks, use specialized network architectures, destroy model calibration or rely on lightweight information from the source domain. To tackle these issues, this paper proposes a novel Test-time Self-Learning method with automatic Adversarial augmentation dubbed TeSLA for adapting a pre-trained source model to the unlabeled streaming test data. In contrast to conventional self-learning methods based on cross-entropy, we introduce a new test-time loss function through an implicitly tight connection with the mutual information and online knowledge distillation. Furthermore, we propose a learnable efficient adversarial augmentation module that further enhances online knowledge distillation by simulating high entropy augmented images. Our method achieves state-of-the-art classification and segmentation results on several benchmarks and types of domain shifts, particularly on challenging measurement shifts of medical images. TeSLA also benefits from several desirable properties compared to competing methods in terms of calibration, uncertainty metrics, insensitivity to model architectures, and source training strategies, all supported by extensive ablations. Our code and models are available on GitHub.
Active Test-Time Adaptation: Theoretical Analyses and An Algorithm
Test-time adaptation (TTA) addresses distribution shifts for streaming test data in unsupervised settings. Currently, most TTA methods can only deal with minor shifts and rely heavily on heuristic and empirical studies. To advance TTA under domain shifts, we propose the novel problem setting of active test-time adaptation (ATTA) that integrates active learning within the fully TTA setting. We provide a learning theory analysis, demonstrating that incorporating limited labeled test instances enhances overall performances across test domains with a theoretical guarantee. We also present a sample entropy balancing for implementing ATTA while avoiding catastrophic forgetting (CF). We introduce a simple yet effective ATTA algorithm, known as SimATTA, using real-time sample selection techniques. Extensive experimental results confirm consistency with our theoretical analyses and show that the proposed ATTA method yields substantial performance improvements over TTA methods while maintaining efficiency and shares similar effectiveness to the more demanding active domain adaptation (ADA) methods. Our code is available at https://github.com/divelab/ATTA
Project Aria: A New Tool for Egocentric Multi-Modal AI Research
Egocentric, multi-modal data as available on future augmented reality (AR) devices provides unique challenges and opportunities for machine perception. These future devices will need to be all-day wearable in a socially acceptable form-factor to support always available, context-aware and personalized AI applications. Our team at Meta Reality Labs Research built the Aria device, an egocentric, multi-modal data recording and streaming device with the goal to foster and accelerate research in this area. In this paper, we describe the Aria device hardware including its sensor configuration and the corresponding software tools that enable recording and processing of such data.
One Copy Is All You Need: Resource-Efficient Streaming of Medical Imaging Data at Scale
Large-scale medical imaging datasets have accelerated development of artificial intelligence tools for clinical decision support. However, the large size of these datasets is a bottleneck for users with limited storage and bandwidth. Many users may not even require such large datasets as AI models are often trained on lower resolution images. If users could directly download at their desired resolution, storage and bandwidth requirements would significantly decrease. However, it is impossible to anticipate every users' requirements and impractical to store the data at multiple resolutions. What if we could store images at a single resolution but send them at different ones? We propose MIST, an open-source framework to operationalize progressive resolution for streaming medical images at multiple resolutions from a single high-resolution copy. We demonstrate that MIST can dramatically reduce imaging infrastructure inefficiencies for hosting and streaming medical images by >90%, while maintaining diagnostic quality for deep learning applications.
Proactive Assistant Dialogue Generation from Streaming Egocentric Videos
Recent advances in conversational AI have been substantial, but developing real-time systems for perceptual task guidance remains challenging. These systems must provide interactive, proactive assistance based on streaming visual inputs, yet their development is constrained by the costly and labor-intensive process of data collection and system evaluation. To address these limitations, we present a comprehensive framework with three key contributions. First, we introduce a novel data curation pipeline that synthesizes dialogues from annotated egocentric videos, resulting in \dataset, a large-scale synthetic dialogue dataset spanning multiple domains. Second, we develop a suite of automatic evaluation metrics, validated through extensive human studies. Third, we propose an end-to-end model that processes streaming video inputs to generate contextually appropriate responses, incorporating novel techniques for handling data imbalance and long-duration videos. This work lays the foundation for developing real-time, proactive AI assistants capable of guiding users through diverse tasks. Project page: https://pro-assist.github.io/
Machine Unlearning for Streaming Forgetting
Machine unlearning aims to remove knowledge of the specific training data in a well-trained model. Currently, machine unlearning methods typically handle all forgetting data in a single batch, removing the corresponding knowledge all at once upon request. However, in practical scenarios, requests for data removal often arise in a streaming manner rather than in a single batch, leading to reduced efficiency and effectiveness in existing methods. Such challenges of streaming forgetting have not been the focus of much research. In this paper, to address the challenges of performance maintenance, efficiency, and data access brought about by streaming unlearning requests, we introduce a streaming unlearning paradigm, formalizing the unlearning as a distribution shift problem. We then estimate the altered distribution and propose a novel streaming unlearning algorithm to achieve efficient streaming forgetting without requiring access to the original training data. Theoretical analyses confirm an O(T + V_T) error bound on the streaming unlearning regret, where V_T represents the cumulative total variation in the optimal solution over T learning rounds. This theoretical guarantee is achieved under mild conditions without the strong restriction of convex loss function. Experiments across various models and datasets validate the performance of our proposed method.
Label-Efficient Online Continual Object Detection in Streaming Video
Humans can watch a continuous video stream and effortlessly perform continual acquisition and transfer of new knowledge with minimal supervision yet retaining previously learnt experiences. In contrast, existing continual learning (CL) methods require fully annotated labels to effectively learn from individual frames in a video stream. Here, we examine a more realistic and challenging problemx2014Label-Efficient Online Continual Object Detection (LEOCOD) in streaming video. We propose a plug-and-play module, Efficient-CLS, that can be easily inserted into and improve existing continual learners for object detection in video streams with reduced data annotation costs and model retraining time. We show that our method has achieved significant improvement with minimal forgetting across all supervision levels on two challenging CL benchmarks for streaming real-world videos. Remarkably, with only 25% annotated video frames, our method still outperforms the base CL learners, which are trained with 100% annotations on all video frames. The data and source code will be publicly available at https://github.com/showlab/Efficient-CLS.
Streaming DiLoCo with overlapping communication: Towards a Distributed Free Lunch
Training of large language models (LLMs) is typically distributed across a large number of accelerators to reduce training time. Since internal states and parameter gradients need to be exchanged at each and every single gradient step, all devices need to be co-located using low-latency high-bandwidth communication links to support the required high volume of exchanged bits. Recently, distributed algorithms like DiLoCo have relaxed such co-location constraint: accelerators can be grouped into ``workers'', where synchronizations between workers only occur infrequently. This in turn means that workers can afford being connected by lower bandwidth communication links without affecting learning quality. However, in these methods, communication across workers still requires the same peak bandwidth as before, as the synchronizations require all parameters to be exchanged across all workers. In this paper, we improve DiLoCo in three ways. First, we synchronize only subsets of parameters in sequence, rather than all at once, which greatly reduces peak bandwidth. Second, we allow workers to continue training while synchronizing, which decreases wall clock time. Third, we quantize the data exchanged by workers, which further reduces bandwidth across workers. By properly combining these modifications, we show experimentally that we can distribute training of billion-scale parameters and reach similar quality as before, but reducing required bandwidth by two orders of magnitude.
Semi-Autoregressive Streaming ASR With Label Context
Non-autoregressive (NAR) modeling has gained significant interest in speech processing since these models achieve dramatically lower inference time than autoregressive (AR) models while also achieving good transcription accuracy. Since NAR automatic speech recognition (ASR) models must wait for the completion of the entire utterance before processing, some works explore streaming NAR models based on blockwise attention for low-latency applications. However, streaming NAR models significantly lag in accuracy compared to streaming AR and non-streaming NAR models. To address this, we propose a streaming "semi-autoregressive" ASR model that incorporates the labels emitted in previous blocks as additional context using a Language Model (LM) subnetwork. We also introduce a novel greedy decoding algorithm that addresses insertion and deletion errors near block boundaries while not significantly increasing the inference time. Experiments show that our method outperforms the existing streaming NAR model by 19% relative on Tedlium2, 16%/8% on Librispeech-100 clean/other test sets, and 19%/8% on the Switchboard(SWB) / Callhome(CH) test sets. It also reduced the accuracy gap with streaming AR and non-streaming NAR models while achieving 2.5x lower latency. We also demonstrate that our approach can effectively utilize external text data to pre-train the LM subnetwork to further improve streaming ASR accuracy.
Fast Streaming Transducer ASR Prototyping via Knowledge Distillation with Whisper
The training of automatic speech recognition (ASR) with little to no supervised data remains an open question. In this work, we demonstrate that streaming Transformer-Transducer (TT) models can be trained from scratch in consumer and accessible GPUs in their entirety with pseudo-labeled (PL) speech from foundational speech models (FSM). This allows training a robust ASR model just in one stage and does not require large data and computational budget compared to the two-step scenario with pre-training and fine-tuning. We perform a comprehensive ablation on different aspects of PL-based streaming TT models such as the impact of (1) shallow fusion of n-gram LMs, (2) contextual biasing with named entities, (3) chunk-wise decoding for low-latency streaming applications, and (4) TT overall performance as the function of the FSM size. Our results demonstrate that TT can be trained from scratch without supervised data, even with very noisy PLs. We validate the proposed framework on 6 languages from CommonVoice and propose multiple heuristics to filter out hallucinated PLs.
Don't Think It Twice: Exploit Shift Invariance for Efficient Online Streaming Inference of CNNs
Deep learning time-series processing often relies on convolutional neural networks with overlapping windows. This overlap allows the network to produce an output faster than the window length. However, it introduces additional computations. This work explores the potential to optimize computational efficiency during inference by exploiting convolution's shift-invariance properties to skip the calculation of layer activations between successive overlapping windows. Although convolutions are shift-invariant, zero-padding and pooling operations, widely used in such networks, are not efficient and complicate efficient streaming inference. We introduce StreamiNNC, a strategy to deploy Convolutional Neural Networks for online streaming inference. We explore the adverse effects of zero padding and pooling on the accuracy of streaming inference, deriving theoretical error upper bounds for pooling during streaming. We address these limitations by proposing signal padding and pooling alignment and provide guidelines for designing and deploying models for StreamiNNC. We validate our method in simulated data and on three real-world biomedical signal processing applications. StreamiNNC achieves a low deviation between streaming output and normal inference for all three networks (2.03 - 3.55% NRMSE). This work demonstrates that it is possible to linearly speed up the inference of streaming CNNs processing overlapping windows, negating the additional computation typically incurred by overlapping windows.
Efficient Adapter Finetuning for Tail Languages in Streaming Multilingual ASR
The end-to-end ASR model is often desired in the streaming multilingual scenario since it is easier to deploy and can benefit from pre-trained speech models such as powerful foundation models. Meanwhile, the heterogeneous nature and imbalanced data abundance of different languages may cause performance degradation, leading to asynchronous peak performance for different languages during training, especially on tail ones. Sometimes even the data itself may become unavailable as a result of the enhanced privacy protection. Existing work tend to significantly increase the model size or learn language-specific decoders to accommodate each language separately. In this study, we explore simple yet effective Language-Dependent Adapter (LDA) finetuning under a cascaded Conformer transducer framework enhanced by teacher pseudo-labeling for tail languages in the streaming multilingual ASR. The adapter only accounts for 0.4% of the full model per language. It is plugged into the frozen foundation model and is the only trainable module during the finetuning process with noisy student training. The final model merges the adapter parameters from different checkpoints for different languages. The model performance is validated on a challenging multilingual dictation dataset, which includes 39 tail languages across Latin, Greek, Arabic, etc. Our proposed method brings 12.2% word error rate reduction on average and up to 37.5% on a single locale. Furthermore, we show that our parameter-efficient LDA can match the quality of the full model finetuning, thus greatly alleviating the asynchronous peak performance issue.
From Judgment to Interference: Early Stopping LLM Harmful Outputs via Streaming Content Monitoring
Though safety alignment has been applied to most large language models (LLMs), LLM service providers generally deploy a subsequent moderation as the external safety guardrail in real-world products. Existing moderators mainly practice a conventional full detection, which determines the harmfulness based on the complete LLM output, causing high service latency. Recent works pay more attention to partial detection where moderators oversee the generation midway and early stop the output if harmfulness is detected, but they directly apply moderators trained with the full detection paradigm to incomplete outputs, introducing a training-inference gap that lowers the performance. In this paper, we explore how to form a data-and-model solution that natively supports partial detection. For the data, we construct FineHarm, a dataset consisting of 29K prompt-response pairs with fine-grained annotations to provide reasonable supervision for token-level training. Then, we propose the streaming content monitor, which is trained with dual supervision of response- and token-level labels and can follow the output stream of LLM to make a timely judgment of harmfulness. Experiments show that SCM gains 0.95+ in macro F1 score that is comparable to full detection, by only seeing the first 18% of tokens in responses on average. Moreover, the SCM can serve as a pseudo-harmfulness annotator for improving safety alignment and lead to a higher harmlessness score than DPO.
Streaming Submodular Maximization with Differential Privacy
In this work, we study the problem of privately maximizing a submodular function in the streaming setting. Extensive work has been done on privately maximizing submodular functions in the general case when the function depends upon the private data of individuals. However, when the size of the data stream drawn from the domain of the objective function is large or arrives very fast, one must privately optimize the objective within the constraints of the streaming setting. We establish fundamental differentially private baselines for this problem and then derive better trade-offs between privacy and utility for the special case of decomposable submodular functions. A submodular function is decomposable when it can be written as a sum of submodular functions; this structure arises naturally when each summand function models the utility of an individual and the goal is to study the total utility of the whole population as in the well-known Combinatorial Public Projects Problem. Finally, we complement our theoretical analysis with experimental corroboration.
Efficient NLP Model Finetuning via Multistage Data Filtering
As model finetuning is central to the modern NLP, we set to maximize its efficiency. Motivated by redundancy in training examples and the sheer sizes of pretrained models, we exploit a key opportunity: training only on important data. To this end, we set to filter training examples in a streaming fashion, in tandem with training the target model. Our key techniques are two: (1) automatically determine a training loss threshold for skipping backward training passes; (2) run a meta predictor for further skipping forward training passes. We integrate the above techniques in a holistic, three-stage training process. On a diverse set of benchmarks, our method reduces the required training examples by up to 5.3times and training time by up to 6.8times, while only seeing minor accuracy degradation. Our method is effective even when training one epoch, where each training example is encountered only once. It is simple to implement and is compatible with the existing finetuning techniques. Code is available at: https://github.com/xo28/efficient- NLP-multistage-training
LiveCC: Learning Video LLM with Streaming Speech Transcription at Scale
Recent video large language models (Video LLMs) often depend on costly human annotations or proprietary model APIs (e.g., GPT-4o) to produce training data, which limits their training at scale. In this paper, we explore large-scale training for Video LLM with cheap automatic speech recognition (ASR) transcripts. Specifically, we propose a novel streaming training approach that densely interleaves the ASR words and video frames according to their timestamps. Compared to previous studies in vision-language representation with ASR, our method naturally fits the streaming characteristics of ASR, thus enabling the model to learn temporally-aligned, fine-grained vision-language modeling. To support the training algorithm, we introduce a data production pipeline to process YouTube videos and their closed captions (CC, same as ASR), resulting in Live-CC-5M dataset for pre-training and Live-WhisperX-526K dataset for high-quality supervised fine-tuning (SFT). Remarkably, even without SFT, the ASR-only pre-trained LiveCC-7B-Base model demonstrates competitive general video QA performance and exhibits a new capability in real-time video commentary. To evaluate this, we carefully design a new LiveSports-3K benchmark, using LLM-as-a-judge to measure the free-form commentary. Experiments show our final LiveCC-7B-Instruct model can surpass advanced 72B models (Qwen2.5-VL-72B-Instruct, LLaVA-Video-72B) in commentary quality even working in a real-time mode. Meanwhile, it achieves state-of-the-art results at the 7B/8B scale on popular video QA benchmarks such as VideoMME and OVOBench, demonstrating the broad generalizability of our approach. All resources of this paper have been released at https://showlab.github.io/livecc.
Multimodal Data and Resource Efficient Device-Directed Speech Detection with Large Foundation Models
Interactions with virtual assistants typically start with a trigger phrase followed by a command. In this work, we explore the possibility of making these interactions more natural by eliminating the need for a trigger phrase. Our goal is to determine whether a user addressed the virtual assistant based on signals obtained from the streaming audio recorded by the device microphone. We address this task by combining 1-best hypotheses and decoder signals from an automatic speech recognition system with acoustic representations from an audio encoder as input features to a large language model (LLM). In particular, we are interested in data and resource efficient systems that require only a small amount of training data and can operate in scenarios with only a single frozen LLM available on a device. For this reason, our model is trained on 80k or less examples of multimodal data using a combination of low-rank adaptation and prefix tuning. We compare the proposed system to unimodal baselines and show that the multimodal approach achieves lower equal-error-rates (EERs), while using only a fraction of the training data. We also show that low-dimensional specialized audio representations lead to lower EERs than high-dimensional general audio representations.
AsyncFlow: An Asynchronous Streaming RL Framework for Efficient LLM Post-Training
Reinforcement learning (RL) has become a pivotal technology in the post-training phase of large language models (LLMs). Traditional task-colocated RL frameworks suffer from significant scalability bottlenecks, while task-separated RL frameworks face challenges in complex dataflows and the corresponding resource idling and workload imbalance. Moreover, most existing frameworks are tightly coupled with LLM training or inference engines, making it difficult to support custom-designed engines. To address these challenges, we propose AsyncFlow, an asynchronous streaming RL framework for efficient post-training. Specifically, we introduce a distributed data storage and transfer module that provides a unified data management and fine-grained scheduling capability in a fully streamed manner. This architecture inherently facilitates automated pipeline overlapping among RL tasks and dynamic load balancing. Moreover, we propose a producer-consumer-based asynchronous workflow engineered to minimize computational idleness by strategically deferring parameter update process within staleness thresholds. Finally, the core capability of AsynFlow is architecturally decoupled from underlying training and inference engines and encapsulated by service-oriented user interfaces, offering a modular and customizable user experience. Extensive experiments demonstrate an average of 1.59 throughput improvement compared with state-of-the-art baseline. The presented architecture in this work provides actionable insights for next-generation RL training system designs.
Algorithm Development in Neural Networks: Insights from the Streaming Parity Task
Even when massively overparameterized, deep neural networks show a remarkable ability to generalize. Research on this phenomenon has focused on generalization within distribution, via smooth interpolation. Yet in some settings neural networks also learn to extrapolate to data far beyond the bounds of the original training set, sometimes even allowing for infinite generalization, implying that an algorithm capable of solving the task has been learned. Here we undertake a case study of the learning dynamics of recurrent neural networks (RNNs) trained on the streaming parity task in order to develop an effective theory of algorithm development. The streaming parity task is a simple but nonlinear task defined on sequences up to arbitrary length. We show that, with sufficient finite training experience, RNNs exhibit a phase transition to perfect infinite generalization. Using an effective theory for the representational dynamics, we find an implicit representational merger effect which can be interpreted as the construction of a finite automaton that reproduces the task. Overall, our results disclose one mechanism by which neural networks can generalize infinitely from finite training experience.
SirLLM: Streaming Infinite Retentive LLM
As Large Language Models (LLMs) become increasingly prevalent in various domains, their ability to process inputs of any length and maintain a degree of memory becomes essential. However, the one-off input of overly long texts is limited, as studies have shown that when input lengths exceed the LLMs' pre-trained text length, there is a dramatic decline in text generation capabilities. Moreover, simply extending the length of pre-training texts is impractical due to the difficulty in obtaining long text data and the substantial memory consumption costs this would entail for LLMs. Recent efforts have employed streaming inputs to alleviate the pressure of excessively long text inputs, but this approach can significantly impair the model's long-term memory capabilities. Motivated by this challenge, we introduce Streaming Infinite Retentive LLM (SirLLM), which allows LLMs to maintain longer memory during infinite-length dialogues without the need for fine-tuning. SirLLM utilizes the Token Entropy metric and a memory decay mechanism to filter key phrases, endowing LLMs with both long-lasting and flexible memory. We designed three distinct tasks and constructed three datasets to measure the effectiveness of SirLLM from various angles: (1) DailyDialog; (2) Grocery Shopping; (3) Rock-Paper-Scissors. Our experimental results robustly demonstrate that SirLLM can achieve stable and significant improvements across different LLMs and tasks, compellingly proving its effectiveness. When having a coversation, "A sir could forget himself," but SirLLM never does! Our code is publicly available at https://github.com/Zoeyyao27/SirLLM
Fairness in Streaming Submodular Maximization over a Matroid Constraint
Streaming submodular maximization is a natural model for the task of selecting a representative subset from a large-scale dataset. If datapoints have sensitive attributes such as gender or race, it becomes important to enforce fairness to avoid bias and discrimination. This has spurred significant interest in developing fair machine learning algorithms. Recently, such algorithms have been developed for monotone submodular maximization under a cardinality constraint. In this paper, we study the natural generalization of this problem to a matroid constraint. We give streaming algorithms as well as impossibility results that provide trade-offs between efficiency, quality and fairness. We validate our findings empirically on a range of well-known real-world applications: exemplar-based clustering, movie recommendation, and maximum coverage in social networks.
Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages
Transformer based architectures have shown notable results on many down streaming tasks including question answering. The availability of data, on the other hand, impedes obtaining legitimate performance for low-resource languages. In this paper, we investigate the applicability of pre-trained multilingual models to improve the performance of question answering in low-resource languages. We tested four combinations of language and task adapters using multilingual transformer architectures on seven languages similar to MLQA dataset. Additionally, we have also proposed zero-shot transfer learning of low-resource question answering using language and task adapters. We observed that stacking the language and the task adapters improves the multilingual transformer models' performance significantly for low-resource languages.
Streaming Video Understanding and Multi-round Interaction with Memory-enhanced Knowledge
Recent advances in Large Language Models (LLMs) have enabled the development of Video-LLMs, advancing multimodal learning by bridging video data with language tasks. However, current video understanding models struggle with processing long video sequences, supporting multi-turn dialogues, and adapting to real-world dynamic scenarios. To address these issues, we propose StreamChat, a training-free framework for streaming video reasoning and conversational interaction. StreamChat leverages a novel hierarchical memory system to efficiently process and compress video features over extended sequences, enabling real-time, multi-turn dialogue. Our framework incorporates a parallel system scheduling strategy that enhances processing speed and reduces latency, ensuring robust performance in real-world applications. Furthermore, we introduce StreamBench, a versatile benchmark that evaluates streaming video understanding across diverse media types and interactive scenarios, including multi-turn interactions and complex reasoning tasks. Extensive evaluations on StreamBench and other public benchmarks demonstrate that StreamChat significantly outperforms existing state-of-the-art models in terms of accuracy and response times, confirming its effectiveness for streaming video understanding. Code is available at StreamChat: https://github.com/hmxiong/StreamChat.
Prompt-augmented Temporal Point Process for Streaming Event Sequence
Neural Temporal Point Processes (TPPs) are the prevalent paradigm for modeling continuous-time event sequences, such as user activities on the web and financial transactions. In real-world applications, event data is typically received in a streaming manner, where the distribution of patterns may shift over time. Additionally, privacy and memory constraints are commonly observed in practical scenarios, further compounding the challenges. Therefore, the continuous monitoring of a TPP to learn the streaming event sequence is an important yet under-explored problem. Our work paper addresses this challenge by adopting Continual Learning (CL), which makes the model capable of continuously learning a sequence of tasks without catastrophic forgetting under realistic constraints. Correspondingly, we propose a simple yet effective framework, PromptTPPOur code is available at {\small \url{ https://github.com/yanyanSann/PromptTPP}}, by integrating the base TPP with a continuous-time retrieval prompt pool. The prompts, small learnable parameters, are stored in a memory space and jointly optimized with the base TPP, ensuring that the model learns event streams sequentially without buffering past examples or task-specific attributes. We present a novel and realistic experimental setup for modeling event streams, where PromptTPP consistently achieves state-of-the-art performance across three real user behavior datasets.
Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA
We study principal component analysis (PCA), where given a dataset in R^d from a distribution, the task is to find a unit vector v that approximately maximizes the variance of the distribution after being projected along v. Despite being a classical task, standard estimators fail drastically if the data contains even a small fraction of outliers, motivating the problem of robust PCA. Recent work has developed computationally-efficient algorithms for robust PCA that either take super-linear time or have sub-optimal error guarantees. Our main contribution is to develop a nearly-linear time algorithm for robust PCA with near-optimal error guarantees. We also develop a single-pass streaming algorithm for robust PCA with memory usage nearly-linear in the dimension.
Streaming keyword spotting on mobile devices
In this work we explore the latency and accuracy of keyword spotting (KWS) models in streaming and non-streaming modes on mobile phones. NN model conversion from non-streaming mode (model receives the whole input sequence and then returns the classification result) to streaming mode (model receives portion of the input sequence and classifies it incrementally) may require manual model rewriting. We address this by designing a Tensorflow/Keras based library which allows automatic conversion of non-streaming models to streaming ones with minimum effort. With this library we benchmark multiple KWS models in both streaming and non-streaming modes on mobile phones and demonstrate different tradeoffs between latency and accuracy. We also explore novel KWS models with multi-head attention which reduce the classification error over the state-of-art by 10% on Google speech commands data sets V2. The streaming library with all experiments is open-sourced.
InternLM-XComposer2.5-OmniLive: A Comprehensive Multimodal System for Long-term Streaming Video and Audio Interactions
Creating AI systems that can interact with environments over long periods, similar to human cognition, has been a longstanding research goal. Recent advancements in multimodal large language models (MLLMs) have made significant strides in open-world understanding. However, the challenge of continuous and simultaneous streaming perception, memory, and reasoning remains largely unexplored. Current MLLMs are constrained by their sequence-to-sequence architecture, which limits their ability to process inputs and generate responses simultaneously, akin to being unable to think while perceiving. Furthermore, relying on long contexts to store historical data is impractical for long-term interactions, as retaining all information becomes costly and inefficient. Therefore, rather than relying on a single foundation model to perform all functions, this project draws inspiration from the concept of the Specialized Generalist AI and introduces disentangled streaming perception, reasoning, and memory mechanisms, enabling real-time interaction with streaming video and audio input. The proposed framework InternLM-XComposer2.5-OmniLive (IXC2.5-OL) consists of three key modules: (1) Streaming Perception Module: Processes multimodal information in real-time, storing key details in memory and triggering reasoning in response to user queries. (2) Multi-modal Long Memory Module: Integrates short-term and long-term memory, compressing short-term memories into long-term ones for efficient retrieval and improved accuracy. (3) Reasoning Module: Responds to queries and executes reasoning tasks, coordinating with the perception and memory modules. This project simulates human-like cognition, enabling multimodal large language models to provide continuous and adaptive service over time.
VideoLLM-online: Online Video Large Language Model for Streaming Video
Recent Large Language Models have been enhanced with vision capabilities, enabling them to comprehend images, videos, and interleaved vision-language content. However, the learning methods of these large multimodal models typically treat videos as predetermined clips, making them less effective and efficient at handling streaming video inputs. In this paper, we propose a novel Learning-In-Video-Stream (LIVE) framework, which enables temporally aligned, long-context, and real-time conversation within a continuous video stream. Our LIVE framework comprises comprehensive approaches to achieve video streaming dialogue, encompassing: (1) a training objective designed to perform language modeling for continuous streaming inputs, (2) a data generation scheme that converts offline temporal annotations into a streaming dialogue format, and (3) an optimized inference pipeline to speed up the model responses in real-world video streams. With our LIVE framework, we built VideoLLM-online model upon Llama-2/Llama-3 and demonstrate its significant advantages in processing streaming videos. For instance, on average, our model can support streaming dialogue in a 5-minute video clip at over 10 FPS on an A100 GPU. Moreover, it also showcases state-of-the-art performance on public offline video benchmarks, such as recognition, captioning, and forecasting. The code, model, data, and demo have been made available at https://showlab.github.io/videollm-online.
Interleaved Speech-Text Language Models are Simple Streaming Text to Speech Synthesizers
This paper introduces Interleaved Speech-Text Language Model (IST-LM) for streaming zero-shot Text-to-Speech (TTS). Unlike many previous approaches, IST-LM is directly trained on interleaved sequences of text and speech tokens with a fixed ratio, eliminating the need for additional efforts in duration prediction and grapheme-to-phoneme alignment. The ratio of text chunk size to speech chunk size is crucial for the performance of IST-LM. To explore this, we conducted a comprehensive series of statistical analyses on the training data and performed correlation analysis with the final performance, uncovering several key factors: 1) the distance between speech tokens and their corresponding text tokens, 2) the number of future text tokens accessible to each speech token, and 3) the frequency of speech tokens precedes their corresponding text tokens. Experimental results demonstrate how to achieve an optimal streaming TTS system without complicated engineering optimization, which has a limited gap with the non-streaming system. IST-LM is conceptually simple and empirically powerful, paving the way for streaming TTS with minimal overhead while largely maintaining performance, showcasing broad prospects coupled with real-time text stream from LLMs.
Matrix-Game 2.0: An Open-Source, Real-Time, and Streaming Interactive World Model
Recent advances in interactive video generations have demonstrated diffusion model's potential as world models by capturing complex physical dynamics and interactive behaviors. However, existing interactive world models depend on bidirectional attention and lengthy inference steps, severely limiting real-time performance. Consequently, they are hard to simulate real-world dynamics, where outcomes must update instantaneously based on historical context and current actions. To address this, we present Matrix-Game 2.0, an interactive world model generates long videos on-the-fly via few-step auto-regressive diffusion. Our framework consists of three key components: (1) A scalable data production pipeline for Unreal Engine and GTA5 environments to effectively produce massive amounts (about 1200 hours) of video data with diverse interaction annotations; (2) An action injection module that enables frame-level mouse and keyboard inputs as interactive conditions; (3) A few-step distillation based on the casual architecture for real-time and streaming video generation. Matrix Game 2.0 can generate high-quality minute-level videos across diverse scenes at an ultra-fast speed of 25 FPS. We open-source our model weights and codebase to advance research in interactive world modeling.
DuoAttention: Efficient Long-Context LLM Inference with Retrieval and Streaming Heads
Deploying long-context large language models (LLMs) is essential but poses significant computational and memory challenges. Caching all Key and Value (KV) states across all attention heads consumes substantial memory. Existing KV cache pruning methods either damage the long-context capabilities of LLMs or offer only limited efficiency improvements. In this paper, we identify that only a fraction of attention heads, a.k.a, Retrieval Heads, are critical for processing long contexts and require full attention across all tokens. In contrast, all other heads, which primarily focus on recent tokens and attention sinks--referred to as Streaming Heads--do not require full attention. Based on this insight, we introduce DuoAttention, a framework that only applies a full KV cache to retrieval heads while using a light-weight, constant-length KV cache for streaming heads, which reduces both LLM's decoding and pre-filling memory and latency without compromising its long-context abilities. DuoAttention uses a lightweight, optimization-based algorithm with synthetic data to identify retrieval heads accurately. Our method significantly reduces long-context inference memory by up to 2.55x for MHA and 1.67x for GQA models while speeding up decoding by up to 2.18x and 1.50x and accelerating pre-filling by up to 1.73x and 1.63x for MHA and GQA models, respectively, with minimal accuracy loss compared to full attention. Notably, combined with quantization, DuoAttention enables Llama-3-8B decoding with 3.3 million context length on a single A100 GPU. Code is provided in https://github.com/mit-han-lab/duo-attention.
The Fine Line: Navigating Large Language Model Pretraining with Down-streaming Capability Analysis
Uncovering early-stage metrics that reflect final model performance is one core principle for large-scale pretraining. The existing scaling law demonstrates the power-law correlation between pretraining loss and training flops, which serves as an important indicator of the current training state for large language models. However, this principle only focuses on the model's compression properties on the training data, resulting in an inconsistency with the ability improvements on the downstream tasks. Some follow-up works attempted to extend the scaling-law to more complex metrics (such as hyperparameters), but still lacked a comprehensive analysis of the dynamic differences among various capabilities during pretraining. To address the aforementioned limitations, this paper undertakes a comprehensive comparison of model capabilities at various pretraining intermediate checkpoints. Through this analysis, we confirm that specific downstream metrics exhibit similar training dynamics across models of different sizes, up to 67 billion parameters. In addition to our core findings, we've reproduced Amber and OpenLLaMA, releasing their intermediate checkpoints. This initiative offers valuable resources to the research community and facilitates the verification and exploration of LLM pretraining by open-source researchers. Besides, we provide empirical summaries, including performance comparisons of different models and capabilities, and tuition of key metrics for different training phases. Based on these findings, we provide a more user-friendly strategy for evaluating the optimization state, offering guidance for establishing a stable pretraining process.
Towards High-Quality and Efficient Video Super-Resolution via Spatial-Temporal Data Overfitting
As deep convolutional neural networks (DNNs) are widely used in various fields of computer vision, leveraging the overfitting ability of the DNN to achieve video resolution upscaling has become a new trend in the modern video delivery system. By dividing videos into chunks and overfitting each chunk with a super-resolution model, the server encodes videos before transmitting them to the clients, thus achieving better video quality and transmission efficiency. However, a large number of chunks are expected to ensure good overfitting quality, which substantially increases the storage and consumes more bandwidth resources for data transmission. On the other hand, decreasing the number of chunks through training optimization techniques usually requires high model capacity, which significantly slows down execution speed. To reconcile such, we propose a novel method for high-quality and efficient video resolution upscaling tasks, which leverages the spatial-temporal information to accurately divide video into chunks, thus keeping the number of chunks as well as the model size to minimum. Additionally, we advance our method into a single overfitting model by a data-aware joint training technique, which further reduces the storage requirement with negligible quality drop. We deploy our models on an off-the-shelf mobile phone, and experimental results show that our method achieves real-time video super-resolution with high video quality. Compared with the state-of-the-art, our method achieves 28 fps streaming speed with 41.6 PSNR, which is 14times faster and 2.29 dB better in the live video resolution upscaling tasks. Code available in https://github.com/coulsonlee/STDO-CVPR2023.git
Generalized Incremental Learning under Concept Drift across Evolving Data Streams
Real-world data streams exhibit inherent non-stationarity characterized by concept drift, posing significant challenges for adaptive learning systems. While existing methods address isolated distribution shifts, they overlook the critical co-evolution of label spaces and distributions under limited supervision and persistent uncertainty. To address this, we formalize Generalized Incremental Learning under Concept Drift (GILCD), characterizing the joint evolution of distributions and label spaces in open-environment streaming contexts, and propose a novel framework called Calibrated Source-Free Adaptation (CSFA). First, CSFA introduces a training-free prototype calibration mechanism that dynamically fuses emerging prototypes with base representations, enabling stable new-class identification without optimization overhead. Second, we design a novel source-free adaptation algorithm, i.e., Reliable Surrogate Gap Sharpness-aware (RSGS) minimization. It integrates sharpness-aware perturbation loss optimization with surrogate gap minimization, while employing entropy-based uncertainty filtering to discard unreliable samples. This mechanism ensures robust distribution alignment and mitigates generalization degradation caused by uncertainties. Therefore, CSFA establishes a unified framework for stable adaptation to evolving semantics and distributions in open-world streaming scenarios. Extensive experiments validate the superior performance and effectiveness of CSFA compared to state-of-the-art approaches.
H2VU-Benchmark: A Comprehensive Benchmark for Hierarchical Holistic Video Understanding
With the rapid development of multimodal models, the demand for assessing video understanding capabilities has been steadily increasing. However, existing benchmarks for evaluating video understanding exhibit significant limitations in coverage, task diversity, and scene adaptability. These shortcomings hinder the accurate assessment of models' comprehensive video understanding capabilities. To tackle this challenge, we propose a hierarchical and holistic video understanding (H2VU) benchmark designed to evaluate both general video and online streaming video comprehension. This benchmark contributes three key features: Extended video duration: Spanning videos from brief 3-second clips to comprehensive 1.5-hour recordings, thereby bridging the temporal gaps found in current benchmarks. Comprehensive assessment tasks: Beyond traditional perceptual and reasoning tasks, we have introduced modules for countercommonsense comprehension and trajectory state tracking. These additions test the models' deep understanding capabilities beyond mere prior knowledge. Enriched video data: To keep pace with the rapid evolution of current AI agents, we have expanded first-person streaming video datasets. This expansion allows for the exploration of multimodal models' performance in understanding streaming videos from a first-person perspective. Extensive results from H2VU reveal that existing multimodal large language models (MLLMs) possess substantial potential for improvement in our newly proposed evaluation tasks. We expect that H2VU will facilitate advancements in video understanding research by offering a comprehensive and in-depth analysis of MLLMs.
StreamDiffusion: A Pipeline-level Solution for Real-time Interactive Generation
We introduce StreamDiffusion, a real-time diffusion pipeline designed for interactive image generation. Existing diffusion models are adept at creating images from text or image prompts, yet they often fall short in real-time interaction. This limitation becomes particularly evident in scenarios involving continuous input, such as Metaverse, live video streaming, and broadcasting, where high throughput is imperative. To address this, we present a novel approach that transforms the original sequential denoising into the batching denoising process. Stream Batch eliminates the conventional wait-and-interact approach and enables fluid and high throughput streams. To handle the frequency disparity between data input and model throughput, we design a novel input-output queue for parallelizing the streaming process. Moreover, the existing diffusion pipeline uses classifier-free guidance(CFG), which requires additional U-Net computation. To mitigate the redundant computations, we propose a novel residual classifier-free guidance (RCFG) algorithm that reduces the number of negative conditional denoising steps to only one or even zero. Besides, we introduce a stochastic similarity filter(SSF) to optimize power consumption. Our Stream Batch achieves around 1.5x speedup compared to the sequential denoising method at different denoising levels. The proposed RCFG leads to speeds up to 2.05x higher than the conventional CFG. Combining the proposed strategies and existing mature acceleration tools makes the image-to-image generation achieve up-to 91.07fps on one RTX4090, improving the throughputs of AutoPipline developed by Diffusers over 59.56x. Furthermore, our proposed StreamDiffusion also significantly reduces the energy consumption by 2.39x on one RTX3060 and 1.99x on one RTX4090, respectively.
TimelineQA: A Benchmark for Question Answering over Timelines
Lifelogs are descriptions of experiences that a person had during their life. Lifelogs are created by fusing data from the multitude of digital services, such as online photos, maps, shopping and content streaming services. Question answering over lifelogs can offer personal assistants a critical resource when they try to provide advice in context. However, obtaining answers to questions over lifelogs is beyond the current state of the art of question answering techniques for a variety of reasons, the most pronounced of which is that lifelogs combine free text with some degree of structure such as temporal and geographical information. We create and publicly release TimelineQA1, a benchmark for accelerating progress on querying lifelogs. TimelineQA generates lifelogs of imaginary people. The episodes in the lifelog range from major life episodes such as high school graduation to those that occur on a daily basis such as going for a run. We describe a set of experiments on TimelineQA with several state-of-the-art QA models. Our experiments reveal that for atomic queries, an extractive QA system significantly out-performs a state-of-the-art retrieval-augmented QA system. For multi-hop queries involving aggregates, we show that the best result is obtained with a state-of-the-art table QA technique, assuming the ground truth set of episodes for deriving the answer is available.
REINA: Regularized Entropy Information-Based Loss for Efficient Simultaneous Speech Translation
Simultaneous Speech Translation (SimulST) systems stream in audio while simultaneously emitting translated text or speech. Such systems face the significant challenge of balancing translation quality and latency. We introduce a strategy to optimize this tradeoff: wait for more input only if you gain information by doing so. Based on this strategy, we present Regularized Entropy INformation Adaptation (REINA), a novel loss to train an adaptive policy using an existing non-streaming translation model. We derive REINA from information theory principles and show that REINA helps push the reported Pareto frontier of the latency/quality tradeoff over prior works. Utilizing REINA, we train a SimulST model on French, Spanish and German, both from and into English. Training on only open source or synthetically generated data, we achieve state-of-the-art (SOTA) streaming results for models of comparable size. We also introduce a metric for streaming efficiency, quantitatively showing REINA improves the latency/quality trade-off by as much as 21% compared to prior approaches, normalized against non-streaming baseline BLEU scores.
VADv2: End-to-End Vectorized Autonomous Driving via Probabilistic Planning
Learning a human-like driving policy from large-scale driving demonstrations is promising, but the uncertainty and non-deterministic nature of planning make it challenging. In this work, to cope with the uncertainty problem, we propose VADv2, an end-to-end driving model based on probabilistic planning. VADv2 takes multi-view image sequences as input in a streaming manner, transforms sensor data into environmental token embeddings, outputs the probabilistic distribution of action, and samples one action to control the vehicle. Only with camera sensors, VADv2 achieves state-of-the-art closed-loop performance on the CARLA Town05 benchmark, significantly outperforming all existing methods. It runs stably in a fully end-to-end manner, even without the rule-based wrapper. Closed-loop demos are presented at https://hgao-cv.github.io/VADv2.
Online Analytic Exemplar-Free Continual Learning with Large Models for Imbalanced Autonomous Driving Task
In the field of autonomous driving, even a meticulously trained model can encounter failures when faced with unfamiliar sceanrios. One of these scenarios can be formulated as an online continual learning (OCL) problem. That is, data come in an online fashion, and models are updated according to these streaming data. Two major OCL challenges are catastrophic forgetting and data imbalance. To address these challenges, in this paper, we propose an Analytic Exemplar-Free Online Continual Learning (AEF-OCL). The AEF-OCL leverages analytic continual learning principles and employs ridge regression as a classifier for features extracted by a large backbone network. It solves the OCL problem by recursively calculating the analytical solution, ensuring an equalization between the continual learning and its joint-learning counterpart, and works without the need to save any used samples (i.e., exemplar-free). Additionally, we introduce a Pseudo-Features Generator (PFG) module that recursively estimates the deviation of real features. The PFG generates offset pseudo-features following a normal distribution, thereby addressing the data imbalance issue. Experimental results demonstrate that despite being an exemplar-free strategy, our method outperforms various methods on the autonomous driving SODA10M dataset. Source code is available at https://github.com/ZHUANGHP/Analytic-continual-learning.
Transformers Meet ACT-R: Repeat-Aware and Sequential Listening Session Recommendation
Music streaming services often leverage sequential recommender systems to predict the best music to showcase to users based on past sequences of listening sessions. Nonetheless, most sequential recommendation methods ignore or insufficiently account for repetitive behaviors. This is a crucial limitation for music recommendation, as repeatedly listening to the same song over time is a common phenomenon that can even change the way users perceive this song. In this paper, we introduce PISA (Psychology-Informed Session embedding using ACT-R), a session-level sequential recommender system that overcomes this limitation. PISA employs a Transformer architecture learning embedding representations of listening sessions and users using attention mechanisms inspired by Anderson's ACT-R (Adaptive Control of Thought-Rational), a cognitive architecture modeling human information access and memory dynamics. This approach enables us to capture dynamic and repetitive patterns from user behaviors, allowing us to effectively predict the songs they will listen to in subsequent sessions, whether they are repeated or new ones. We demonstrate the empirical relevance of PISA using both publicly available listening data from Last.fm and proprietary data from Deezer, a global music streaming service, confirming the critical importance of repetition modeling for sequential listening session recommendation. Along with this paper, we publicly release our proprietary dataset to foster future research in this field, as well as the source code of PISA to facilitate its future use.
OpenS2S: Advancing Open-Source End-to-End Empathetic Large Speech Language Model
Empathetic interaction is a cornerstone of human-machine communication, due to the need for understanding speech enriched with paralinguistic cues and generating emotional and expressive responses. However, the most powerful empathetic LSLMs are increasingly closed off, leaving the crucial details about the architecture, data and development opaque to researchers. Given the critical need for transparent research into the LSLMs and empathetic behavior, we present OpenS2S, a fully open-source, transparent and end-to-end LSLM designed to enable empathetic speech interactions. Based on our empathetic speech-to-text model BLSP-Emo, OpenS2S further employs a streaming interleaved decoding architecture to achieve low-latency speech generation. To facilitate end-to-end training, OpenS2S incorporates an automated data construction pipeline that synthesizes diverse, high-quality empathetic speech dialogues at low cost. By leveraging large language models to generate empathetic content and controllable text-to-speech systems to introduce speaker and emotional variation, we construct a scalable training corpus with rich paralinguistic diversity and minimal human supervision. We release the fully open-source OpenS2S model, including the dataset, model weights, pre-training and fine-tuning codes, to empower the broader research community and accelerate innovation in empathetic speech systems. The project webpage can be accessed at https://casia-lm.github.io/OpenS2S
Perceive Anything: Recognize, Explain, Caption, and Segment Anything in Images and Videos
We present Perceive Anything Model (PAM), a conceptually straightforward and efficient framework for comprehensive region-level visual understanding in images and videos. Our approach extends the powerful segmentation model SAM 2 by integrating Large Language Models (LLMs), enabling simultaneous object segmentation with the generation of diverse, region-specific semantic outputs, including categories, label definition, functional explanations, and detailed captions. A key component, Semantic Perceiver, is introduced to efficiently transform SAM 2's rich visual features, which inherently carry general vision, localization, and semantic priors into multi-modal tokens for LLM comprehension. To support robust multi-granularity understanding, we also develop a dedicated data refinement and augmentation pipeline, yielding a high-quality dataset of 1.5M image and 0.6M video region-semantic annotations, including novel region-level streaming video caption data. PAM is designed for lightweightness and efficiency, while also demonstrates strong performance across a diverse range of region understanding tasks. It runs 1.2-2.4x faster and consumes less GPU memory than prior approaches, offering a practical solution for real-world applications. We believe that our effective approach will serve as a strong baseline for future research in region-level visual understanding.
The Atacama Cosmology Telescope: DR6 Constraints on Extended Cosmological Models
We use new cosmic microwave background (CMB) primary temperature and polarization anisotropy measurements from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) to test foundational assumptions of the standard cosmological model and set constraints on extensions to it. We derive constraints from the ACT DR6 power spectra alone, as well as in combination with legacy data from Planck. To break geometric degeneracies, we include ACT and Planck CMB lensing data and baryon acoustic oscillation data from DESI Year-1, and further add supernovae measurements from Pantheon+ for models that affect the late-time expansion history. We verify the near-scale-invariance (running of the spectral index d n_s/dln k = 0.0062 pm 0.0052) and adiabaticity of the primordial perturbations. Neutrino properties are consistent with Standard Model predictions: we find no evidence for new light, relativistic species that are free-streaming (N_{rm eff} = 2.86 pm 0.13, which combined with external BBN data becomes N_{rm eff} = 2.89 pm 0.11), for non-zero neutrino masses (sum m_nu < 0.082 eV at 95% CL), or for neutrino self-interactions. We also find no evidence for self-interacting dark radiation (N_{rm idr} < 0.134), early-universe variation of fundamental constants, early dark energy, primordial magnetic fields, or modified recombination. Our data are consistent with standard BBN, the FIRAS-inferred CMB temperature, a dark matter component that is collisionless and with only a small fraction allowed as axion-like particles, a cosmological constant, and the late-time growth rate predicted by general relativity. We find no statistically significant preference for a departure from the baseline LambdaCDM model. In general, models introduced to increase the Hubble constant or to decrease the amplitude of density fluctuations inferred from the primary CMB are not favored by our data.
Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors
Large pre-trained models decay over long-term deployment as input distributions shift, user requirements change, or crucial knowledge gaps are discovered. Recently, model editors have been proposed to modify a model's behavior by adjusting its weights during deployment. However, when editing the same model multiple times, these approaches quickly decay a model's performance on upstream data and forget how to fix previous errors. We propose and study a novel Lifelong Model Editing setting, where streaming errors are identified for a deployed model and we update the model to correct its predictions without influencing unrelated inputs without access to training edits, exogenous datasets, or any upstream data for the edited model. To approach this problem, we introduce General Retrieval Adaptors for Continual Editing, or GRACE, which learns to cache a chosen layer's activations in an adaptive codebook as edits stream in, leaving original model weights frozen. GRACE can thus edit models thousands of times in a row using only streaming errors, without influencing unrelated inputs. Experimentally, we show that GRACE improves over recent alternatives and generalizes to unseen inputs. Our code is available at https://www.github.com/thartvigsen/grace.
R-ACP: Real-Time Adaptive Collaborative Perception Leveraging Robust Task-Oriented Communications
Collaborative perception enhances sensing in multirobot and vehicular networks by fusing information from multiple agents, improving perception accuracy and sensing range. However, mobility and non-rigid sensor mounts introduce extrinsic calibration errors, necessitating online calibration, further complicated by limited overlap in sensing regions. Moreover, maintaining fresh information is crucial for timely and accurate sensing. To address calibration errors and ensure timely and accurate perception, we propose a robust task-oriented communication strategy to optimize online self-calibration and efficient feature sharing for Real-time Adaptive Collaborative Perception (R-ACP). Specifically, we first formulate an Age of Perceived Targets (AoPT) minimization problem to capture data timeliness of multi-view streaming. Then, in the calibration phase, we introduce a channel-aware self-calibration technique based on reidentification (Re-ID), which adaptively compresses key features according to channel capacities, effectively addressing calibration issues via spatial and temporal cross-camera correlations. In the streaming phase, we tackle the trade-off between bandwidth and inference accuracy by leveraging an Information Bottleneck (IB) based encoding method to adjust video compression rates based on task relevance, thereby reducing communication overhead and latency. Finally, we design a priority-aware network to filter corrupted features to mitigate performance degradation from packet corruption. Extensive studies demonstrate that our framework outperforms five baselines, improving multiple object detection accuracy (MODA) by 25.49% and reducing communication costs by 51.36% under severely poor channel conditions. Code will be made publicly available: github.com/fangzr/R-ACP.
BIOMEDICA: An Open Biomedical Image-Caption Archive, Dataset, and Vision-Language Models Derived from Scientific Literature
The development of vision-language models (VLMs) is driven by large-scale and diverse multimodal datasets. However, progress toward generalist biomedical VLMs is limited by the lack of annotated, publicly accessible datasets across biology and medicine. Existing efforts are restricted to narrow domains, missing the full diversity of biomedical knowledge encoded in scientific literature. To address this gap, we introduce BIOMEDICA, a scalable, open-source framework to extract, annotate, and serialize the entirety of the PubMed Central Open Access subset into an easy-to-use, publicly accessible dataset.Our framework produces a comprehensive archive with over 24 million unique image-text pairs from over 6 million articles. Metadata and expert-guided annotations are also provided. We demonstrate the utility and accessibility of our resource by releasing BMCA-CLIP, a suite of CLIP-style models continuously pre-trained on the BIOMEDICA dataset via streaming, eliminating the need to download 27 TB of data locally.On average, our models achieve state-of-the-art performance across 40 tasks - spanning pathology, radiology, ophthalmology, dermatology, surgery, molecular biology, parasitology, and cell biology - excelling in zero-shot classification with a 6.56% average improvement (as high as 29.8% and 17.5% in dermatology and ophthalmology, respectively), and stronger image-text retrieval, all while using 10x less compute. To foster reproducibility and collaboration, we release our codebase and dataset for the broader research community.
Phi-Omni-ST: A multimodal language model for direct speech-to-speech translation
Speech-aware language models (LMs) have demonstrated capabilities in understanding spoken language while generating text-based responses. However, enabling them to produce speech output efficiently and effectively remains a challenge. In this paper, we present Phi-Omni-ST, a multimodal LM for direct speech-to-speech translation (ST), built on the open-source Phi-4 MM model. Phi-Omni-ST extends its predecessor by generating translated speech using an audio transformer head that predicts audio tokens with a delay relative to text tokens, followed by a streaming vocoder for waveform synthesis. Our experimental results on the CVSS-C dataset demonstrate Phi-Omni-ST's superior performance, significantly surpassing existing baseline models trained on the same dataset. Furthermore, when we scale up the training data and the model size, Phi-Omni-ST reaches on-par performance with the current SOTA model.
ShowUI: One Vision-Language-Action Model for GUI Visual Agent
Building Graphical User Interface (GUI) assistants holds significant promise for enhancing human workflow productivity. While most agents are language-based, relying on closed-source API with text-rich meta-information (e.g., HTML or accessibility tree), they show limitations in perceiving UI visuals as humans do, highlighting the need for GUI visual agents. In this work, we develop a vision-language-action model in digital world, namely ShowUI, which features the following innovations: (i) UI-Guided Visual Token Selection to reduce computational costs by formulating screenshots as an UI connected graph, adaptively identifying their redundant relationship and serve as the criteria for token selection during self-attention blocks; (ii) Interleaved Vision-Language-Action Streaming that flexibly unifies diverse needs within GUI tasks, enabling effective management of visual-action history in navigation or pairing multi-turn query-action sequences per screenshot to enhance training efficiency; (iii) Small-scale High-quality GUI Instruction-following Datasets by careful data curation and employing a resampling strategy to address significant data type imbalances. With above components, ShowUI, a lightweight 2B model using 256K data, achieves a strong 75.1% accuracy in zero-shot screenshot grounding. Its UI-guided token selection further reduces 33% of redundant visual tokens during training and speeds up the performance by 1.4x. Navigation experiments across web Mind2Web, mobile AITW, and online MiniWob environments further underscore the effectiveness and potential of our model in advancing GUI visual agents. The models are available at https://github.com/showlab/ShowUI.
Tutorial Recommendation for Livestream Videos using Discourse-Level Consistency and Ontology-Based Filtering
Streaming videos is one of the methods for creators to share their creative works with their audience. In these videos, the streamer share how they achieve their final objective by using various tools in one or several programs for creative projects. To this end, the steps required to achieve the final goal can be discussed. As such, these videos could provide substantial educational content that can be used to learn how to employ the tools used by the streamer. However, one of the drawbacks is that the streamer might not provide enough details for every step. Therefore, for the learners, it might be difficult to catch up with all the steps. In order to alleviate this issue, one solution is to link the streaming videos with the relevant tutorial available for the tools used in the streaming video. More specifically, a system can analyze the content of the live streaming video and recommend the most relevant tutorials. Since the existing document recommendation models cannot handle this situation, in this work, we present a novel dataset and model for the task of tutorial recommendation for live-streamed videos. We conduct extensive analyses on the proposed dataset and models, revealing the challenging nature of this task.
The Music Streaming Sessions Dataset
At the core of many important machine learning problems faced by online streaming services is a need to model how users interact with the content they are served. Unfortunately, there are no public datasets currently available that enable researchers to explore this topic. In order to spur that research, we release the Music Streaming Sessions Dataset (MSSD), which consists of 160 million listening sessions and associated user actions. Furthermore, we provide audio features and metadata for the approximately 3.7 million unique tracks referred to in the logs. This is the largest collection of such track metadata currently available to the public. This dataset enables research on important problems including how to model user listening and interaction behaviour in streaming, as well as Music Information Retrieval (MIR), and session-based sequential recommendations. Additionally, a subset of sessions were collected using a uniformly random recommendation setting, enabling their use for counterfactual evaluation of such sequential recommendations. Finally, we provide an analysis of user behavior and suggest further research problems which can be addressed using the dataset.
Speculative Streaming: Fast LLM Inference without Auxiliary Models
Speculative decoding is a prominent technique to speed up the inference of a large target language model based on predictions of an auxiliary draft model. While effective, in application-specific settings, it often involves fine-tuning both draft and target models to achieve high acceptance rates. As the number of downstream tasks grows, these draft models add significant complexity to inference systems. We propose Speculative Streaming, a single-model speculative decoding method that fuses drafting into the target model by changing the fine-tuning objective from next token prediction to future n-gram prediction. Speculative Streaming speeds up decoding by 1.8 - 3.1X in a diverse set of tasks, such as Summarization, Structured Queries, and Meaning Representation, without sacrificing generation quality. Additionally, Speculative Streaming is parameter-efficient. It achieves on-par/higher speed-ups than Medusa-style architectures while using ~10000X fewer extra parameters, making it well-suited for resource-constrained devices.
stream-learn -- open-source Python library for difficult data stream batch analysis
stream-learn is a Python package compatible with scikit-learn and developed for the drifting and imbalanced data stream analysis. Its main component is a stream generator, which allows to produce a synthetic data stream that may incorporate each of the three main concept drift types (i.e. sudden, gradual and incremental drift) in their recurring or non-recurring versions. The package allows conducting experiments following established evaluation methodologies (i.e. Test-Then-Train and Prequential). In addition, estimators adapted for data stream classification have been implemented, including both simple classifiers and state-of-art chunk-based and online classifier ensembles. To improve computational efficiency, package utilises its own implementations of prediction metrics for imbalanced binary classification tasks.
Learning Streaming Video Representation via Multitask Training
Understanding continuous video streams plays a fundamental role in real-time applications including embodied AI and autonomous driving. Unlike offline video understanding, streaming video understanding requires the ability to process video streams frame by frame, preserve historical information, and make low-latency decisions. To address these challenges, our main contributions are three-fold. (i) We develop a novel streaming video backbone, termed as StreamFormer, by incorporating causal temporal attention into a pre-trained vision transformer. This enables efficient streaming video processing while maintaining image representation capability. (ii) To train StreamFormer, we propose to unify diverse spatial-temporal video understanding tasks within a multitask visual-language alignment framework. Hence, StreamFormer learns global semantics, temporal dynamics, and fine-grained spatial relationships simultaneously. (iii) We conduct extensive experiments on online action detection, online video instance segmentation, and video question answering. StreamFormer achieves competitive results while maintaining efficiency, demonstrating its potential for real-time applications.
StreamAtt: Direct Streaming Speech-to-Text Translation with Attention-based Audio History Selection
Streaming speech-to-text translation (StreamST) is the task of automatically translating speech while incrementally receiving an audio stream. Unlike simultaneous ST (SimulST), which deals with pre-segmented speech, StreamST faces the challenges of handling continuous and unbounded audio streams. This requires additional decisions about what to retain of the previous history, which is impractical to keep entirely due to latency and computational constraints. Despite the real-world demand for real-time ST, research on streaming translation remains limited, with existing works solely focusing on SimulST. To fill this gap, we introduce StreamAtt, the first StreamST policy, and propose StreamLAAL, the first StreamST latency metric designed to be comparable with existing metrics for SimulST. Extensive experiments across all 8 languages of MuST-C v1.0 show the effectiveness of StreamAtt compared to a naive streaming baseline and the related state-of-the-art SimulST policy, providing a first step in StreamST research.
StreamDiT: Real-Time Streaming Text-to-Video Generation
Recently, great progress has been achieved in text-to-video (T2V) generation by scaling transformer-based diffusion models to billions of parameters, which can generate high-quality videos. However, existing models typically produce only short clips offline, restricting their use cases in interactive and real-time applications. This paper addresses these challenges by proposing StreamDiT, a streaming video generation model. StreamDiT training is based on flow matching by adding a moving buffer. We design mixed training with different partitioning schemes of buffered frames to boost both content consistency and visual quality. StreamDiT modeling is based on adaLN DiT with varying time embedding and window attention. To practice the proposed method, we train a StreamDiT model with 4B parameters. In addition, we propose a multistep distillation method tailored for StreamDiT. Sampling distillation is performed in each segment of a chosen partitioning scheme. After distillation, the total number of function evaluations (NFEs) is reduced to the number of chunks in a buffer. Finally, our distilled model reaches real-time performance at 16 FPS on one GPU, which can generate video streams at 512p resolution. We evaluate our method through both quantitative metrics and human evaluation. Our model enables real-time applications, e.g. streaming generation, interactive generation, and video-to-video. We provide video results and more examples in our project website: <a href="https://cumulo-autumn.github.io/StreamDiT/">this https URL.</a>
StreamHover: Livestream Transcript Summarization and Annotation
With the explosive growth of livestream broadcasting, there is an urgent need for new summarization technology that enables us to create a preview of streamed content and tap into this wealth of knowledge. However, the problem is nontrivial due to the informal nature of spoken language. Further, there has been a shortage of annotated datasets that are necessary for transcript summarization. In this paper, we present StreamHover, a framework for annotating and summarizing livestream transcripts. With a total of over 500 hours of videos annotated with both extractive and abstractive summaries, our benchmark dataset is significantly larger than currently existing annotated corpora. We explore a neural extractive summarization model that leverages vector-quantized variational autoencoder to learn latent vector representations of spoken utterances and identify salient utterances from the transcripts to form summaries. We show that our model generalizes better and improves performance over strong baselines. The results of this study provide an avenue for future research to improve summarization solutions for efficient browsing of livestreams.
Recycling the Web: A Method to Enhance Pre-training Data Quality and Quantity for Language Models
Scaling laws predict that the performance of large language models improves with increasing model size and data size. In practice, pre-training has been relying on massive web crawls, using almost all data sources publicly available on the internet so far. However, this pool of natural data does not grow at the same rate as the compute supply. Furthermore, the availability of high-quality texts is even more limited: data filtering pipelines often remove up to 99% of the initial web scrapes to achieve state-of-the-art. To address the "data wall" of pre-training scaling, our work explores ways to transform and recycle data discarded in existing filtering processes. We propose REWIRE, REcycling the Web with guIded REwrite, a method to enrich low-quality documents so that they could become useful for training. This in turn allows us to increase the representation of synthetic data in the final pre-training set. Experiments at 1B, 3B and 7B scales of the DCLM benchmark show that mixing high-quality raw texts and our rewritten texts lead to 1.0, 1.3 and 2.5 percentage points improvement respectively across 22 diverse tasks, compared to training on only filtered web data. Training on the raw-synthetic data mix is also more effective than having access to 2x web data. Through further analysis, we demonstrate that about 82% of the mixed in texts come from transforming lower-quality documents that would otherwise be discarded. REWIRE also outperforms related approaches of generating synthetic data, including Wikipedia-style paraphrasing, question-answer synthesizing and knowledge extraction. These results suggest that recycling web texts holds the potential for being a simple and effective approach for scaling pre-training data.
CarelessWhisper: Turning Whisper into a Causal Streaming Model
Automatic Speech Recognition (ASR) has seen remarkable progress, with models like OpenAI Whisper and NVIDIA Canary achieving state-of-the-art (SOTA) performance in offline transcription. However, these models are not designed for streaming (online or real-time) transcription, due to limitations in their architecture and training methodology. We propose a method to turn the transformer encoder-decoder model into a low-latency streaming model that is careless about future context. We present an analysis explaining why it is not straightforward to convert an encoder-decoder transformer to a low-latency streaming model. Our proposed method modifies the existing (non-causal) encoder to a causal encoder by fine-tuning both the encoder and decoder using Low-Rank Adaptation (LoRA) and a weakly aligned dataset. We then propose an updated inference mechanism that utilizes the fine-tune causal encoder and decoder to yield greedy and beam-search decoding, and is shown to be locally optimal. Experiments on low-latency chunk sizes (less than 300 msec) show that our fine-tuned model outperforms existing non-fine-tuned streaming approaches in most cases, while using a lower complexity. Additionally, we observe that our training process yields better alignment, enabling a simple method for extracting word-level timestamps. We release our training and inference code, along with the fine-tuned models, to support further research and development in streaming ASR.
WavePulse: Real-time Content Analytics of Radio Livestreams
Radio remains a pervasive medium for mass information dissemination, with AM/FM stations reaching more Americans than either smartphone-based social networking or live television. Increasingly, radio broadcasts are also streamed online and accessed over the Internet. We present WavePulse, a framework that records, documents, and analyzes radio content in real-time. While our framework is generally applicable, we showcase the efficacy of WavePulse in a collaborative project with a team of political scientists focusing on the 2024 Presidential Elections. We use WavePulse to monitor livestreams of 396 news radio stations over a period of three months, processing close to 500,000 hours of audio streams. These streams were converted into time-stamped, diarized transcripts and analyzed to track answer key political science questions at both the national and state levels. Our analysis revealed how local issues interacted with national trends, providing insights into information flow. Our results demonstrate WavePulse's efficacy in capturing and analyzing content from radio livestreams sourced from the Web. Code and dataset can be accessed at https://wave-pulse.io.
PySAD: A Streaming Anomaly Detection Framework in Python
Streaming anomaly detection requires algorithms that operate under strict constraints: bounded memory, single-pass processing, and constant-time complexity. We present PySAD, a comprehensive Python framework addressing these challenges through a unified architecture. The framework implements 17+ streaming algorithms (LODA, Half-Space Trees, xStream) with specialized components including projectors, probability calibrators, and postprocessors. Unlike existing batch-focused frameworks, PySAD enables efficient real-time processing with bounded memory while maintaining compatibility with PyOD and scikit-learn. Supporting all learning paradigms for univariate and multivariate streams, PySAD provides the most comprehensive streaming anomaly detection toolkit in Python. The source code is publicly available at github.com/selimfirat/pysad.
A survey on online active learning
Online active learning is a paradigm in machine learning that aims to select the most informative data points to label from a data stream. The problem of minimizing the cost associated with collecting labeled observations has gained a lot of attention in recent years, particularly in real-world applications where data is only available in an unlabeled form. Annotating each observation can be time-consuming and costly, making it difficult to obtain large amounts of labeled data. To overcome this issue, many active learning strategies have been proposed in the last decades, aiming to select the most informative observations for labeling in order to improve the performance of machine learning models. These approaches can be broadly divided into two categories: static pool-based and stream-based active learning. Pool-based active learning involves selecting a subset of observations from a closed pool of unlabeled data, and it has been the focus of many surveys and literature reviews. However, the growing availability of data streams has led to an increase in the number of approaches that focus on online active learning, which involves continuously selecting and labeling observations as they arrive in a stream. This work aims to provide an overview of the most recently proposed approaches for selecting the most informative observations from data streams in real time. We review the various techniques that have been proposed and discuss their strengths and limitations, as well as the challenges and opportunities that exist in this area of research.
Streaming Dense Video Captioning
An ideal model for dense video captioning -- predicting captions localized temporally in a video -- should be able to handle long input videos, predict rich, detailed textual descriptions, and be able to produce outputs before processing the entire video. Current state-of-the-art models, however, process a fixed number of downsampled frames, and make a single full prediction after seeing the whole video. We propose a streaming dense video captioning model that consists of two novel components: First, we propose a new memory module, based on clustering incoming tokens, which can handle arbitrarily long videos as the memory is of a fixed size. Second, we develop a streaming decoding algorithm that enables our model to make predictions before the entire video has been processed. Our model achieves this streaming ability, and significantly improves the state-of-the-art on three dense video captioning benchmarks: ActivityNet, YouCook2 and ViTT. Our code is released at https://github.com/google-research/scenic.
Efficient Streaming Language Models with Attention Sinks
Deploying Large Language Models (LLMs) in streaming applications such as multi-round dialogue, where long interactions are expected, is urgently needed but poses two major challenges. Firstly, during the decoding stage, caching previous tokens' Key and Value states (KV) consumes extensive memory. Secondly, popular LLMs cannot generalize to longer texts than the training sequence length. Window attention, where only the most recent KVs are cached, is a natural approach -- but we show that it fails when the text length surpasses the cache size. We observe an interesting phenomenon, namely attention sink, that keeping the KV of initial tokens will largely recover the performance of window attention. In this paper, we first demonstrate that the emergence of attention sink is due to the strong attention scores towards initial tokens as a ``sink'' even if they are not semantically important. Based on the above analysis, we introduce StreamingLLM, an efficient framework that enables LLMs trained with a finite length attention window to generalize to infinite sequence lengths without any fine-tuning. We show that StreamingLLM can enable Llama-2, MPT, Falcon, and Pythia to perform stable and efficient language modeling with up to 4 million tokens and more. In addition, we discover that adding a placeholder token as a dedicated attention sink during pre-training can further improve streaming deployment. In streaming settings, StreamingLLM outperforms the sliding window recomputation baseline by up to 22.2x speedup. Code and datasets are provided at https://github.com/mit-han-lab/streaming-llm.
HEAPO -- An Open Dataset for Heat Pump Optimization with Smart Electricity Meter Data and On-Site Inspection Protocols
Heat pumps are essential for decarbonizing residential heating but consume substantial electrical energy, impacting operational costs and grid demand. Many systems run inefficiently due to planning flaws, operational faults, or misconfigurations. While optimizing performance requires skilled professionals, labor shortages hinder large-scale interventions. However, digital tools and improved data availability create new service opportunities for energy efficiency, predictive maintenance, and demand-side management. To support research and practical solutions, we present an open-source dataset of electricity consumption from 1,408 households with heat pumps and smart electricity meters in the canton of Zurich, Switzerland, recorded at 15-minute and daily resolutions between 2018-11-03 and 2024-03-21. The dataset includes household metadata, weather data from 8 stations, and ground truth data from 410 field visit protocols collected by energy consultants during system optimizations. Additionally, the dataset includes a Python-based data loader to facilitate seamless data processing and exploration.
Implementing and Optimizing the Scaled Dot-Product Attention on Streaming Dataflow
Transformer models serve as the backbone of many state-ofthe-art language models, and most use the scaled dot-product attention (SDPA) mechanism to capture relationships between tokens. However, the straightforward implementation of SDPA has quadratic compute and memory complexity with respect to the sequence length. On processor architectures such as GPUs and TPUs, there is a robust body of prior work. However, little work has been performed on non-processor architectures.In this work, we show how the architecture and execution model of Streaming Dataflow Accelerators can help tackle this challenge. We first define abstract hardware that adopts a streaming execution model, and we implement a cycle-accurate simulator of the abstract hardware using the Dataflow Abstract Machine simulation framework. Second, we implement the naive SDPA algorithm on this abstract hardware and show it requires linear (O(N)) intermediate memory. Third, we then modify the naive algorithm, taking inspiration from prior processor-oriented works, by reordering the multiplication and division operations. Finally, we map the modified algorithm to abstract hardware, and confirm that the implementation computes SDPA at full throughput while only using a constant amount (O(1)) of intermediate memory.
VoiceFilter-Lite: Streaming Targeted Voice Separation for On-Device Speech Recognition
We introduce VoiceFilter-Lite, a single-channel source separation model that runs on the device to preserve only the speech signals from a target user, as part of a streaming speech recognition system. Delivering such a model presents numerous challenges: It should improve the performance when the input signal consists of overlapped speech, and must not hurt the speech recognition performance under all other acoustic conditions. Besides, this model must be tiny, fast, and perform inference in a streaming fashion, in order to have minimal impact on CPU, memory, battery and latency. We propose novel techniques to meet these multi-faceted requirements, including using a new asymmetric loss, and adopting adaptive runtime suppression strength. We also show that such a model can be quantized as a 8-bit integer model and run in realtime.
Scaling Laws for Data Filtering -- Data Curation cannot be Compute Agnostic
Vision-language models (VLMs) are trained for thousands of GPU hours on carefully curated web datasets. In recent times, data curation has gained prominence with several works developing strategies to retain 'high-quality' subsets of 'raw' scraped data. For instance, the LAION public dataset retained only 10% of the total crawled data. However, these strategies are typically developed agnostic of the available compute for training. In this paper, we first demonstrate that making filtering decisions independent of training compute is often suboptimal: the limited high-quality data rapidly loses its utility when repeated, eventually requiring the inclusion of 'unseen' but 'lower-quality' data. To address this quality-quantity tradeoff (QQT), we introduce neural scaling laws that account for the non-homogeneous nature of web data, an angle ignored in existing literature. Our scaling laws (i) characterize the differing 'utility' of various quality subsets of web data; (ii) account for how utility diminishes for a data point at its 'nth' repetition; and (iii) formulate the mutual interaction of various data pools when combined, enabling the estimation of model performance on a combination of multiple data pools without ever jointly training on them. Our key message is that data curation cannot be agnostic of the total compute that a model will be trained for. Our scaling laws allow us to curate the best possible pool for achieving top performance on Datacomp at various compute budgets, carving out a pareto-frontier for data curation. Code is available at https://github.com/locuslab/scaling_laws_data_filtering.
Andes: Defining and Enhancing Quality-of-Experience in LLM-Based Text Streaming Services
The advent of large language models (LLMs) has transformed text-based services, enabling capabilities ranging from real-time translation to AI-driven chatbots. However, existing serving systems primarily focus on optimizing server-side aggregate metrics like token generation throughput, ignoring individual user experience with streamed text. As a result, under high and/or bursty load, a significant number of users can receive unfavorable service quality or poor Quality-of-Experience (QoE). In this paper, we first formally define QoE of text streaming services, where text is delivered incrementally and interactively to users, by considering the end-to-end token delivery process throughout the entire interaction with the user. Thereafter, we propose Andes, a QoE-aware serving system that enhances user experience for LLM-enabled text streaming services. At its core, Andes strategically allocates contended GPU resources among multiple requests over time to optimize their QoE. Our evaluations demonstrate that, compared to the state-of-the-art LLM serving systems like vLLM, Andes improves the average QoE by up to 3.2times under high request rate, or alternatively, it attains up to 1.6times higher request rate while preserving high QoE.
TouchTTS: An Embarrassingly Simple TTS Framework that Everyone Can Touch
It is well known that LLM-based systems are data-hungry. Recent LLM-based TTS works typically employ complex data processing pipelines to obtain high-quality training data. These sophisticated pipelines require excellent models at each stage (e.g., speech denoising, speech enhancement, speaker diarization, and punctuation models), which themselves demand high-quality training data and are rarely open-sourced. Even with state-of-the-art models, issues persist, such as incomplete background noise removal and misalignment between punctuation and actual speech pauses. Moreover, the stringent filtering strategies often retain only 10-30\% of the original data, significantly impeding data scaling efforts. In this work, we leverage a noise-robust audio tokenizer (S3Tokenizer) to design a simplified yet effective TTS data processing pipeline that maintains data quality while substantially reducing data acquisition costs, achieving a data retention rate of over 50\%. Beyond data scaling challenges, LLM-based TTS systems also incur higher deployment costs compared to conventional approaches. Current systems typically use LLMs solely for text-to-token generation, while requiring separate models (e.g., flow matching models) for token-to-waveform generation, which cannot be directly executed by LLM inference engines, further complicating deployment. To address these challenges, we eliminate redundant modules in both LLM and flow components, replacing the flow model backbone with an LLM architecture. Building upon this simplified flow backbone, we propose a unified architecture for both streaming and non-streaming inference, significantly reducing deployment costs. Finally, we explore the feasibility of unifying TTS and ASR tasks using the same data for training, thanks to the simplified pipeline and the S3Tokenizer that reduces the quality requirements for TTS training data.
Streaming Video Question-Answering with In-context Video KV-Cache Retrieval
We propose ReKV, a novel training-free approach that enables efficient streaming video question-answering (StreamingVQA), by seamlessly integrating with existing Video Large Language Models (Video-LLMs). Traditional VideoQA systems struggle with long videos, as they must process entire videos before responding to queries, and repeat this process for each new question. In contrast, our approach analyzes long videos in a streaming manner, allowing for prompt responses as soon as user queries are received. Building on a common Video-LLM, we first incorporate a sliding-window attention mechanism, ensuring that input frames attend to a limited number of preceding frames, thereby reducing computational overhead. To prevent information loss, we store processed video key-value caches (KV-Caches) in RAM and disk, reloading them into GPU memory as needed. Additionally, we introduce a retrieval method that leverages an external retriever or the parameters within Video-LLMs to retrieve only query-relevant KV-Caches, ensuring both efficiency and accuracy in question answering. ReKV enables the separation of video encoding and question-answering across different processes and GPUs, significantly enhancing the efficiency of StreamingVQA. Through comprehensive experimentation, we validate the efficacy and practicality of our approach, which significantly boosts efficiency and enhances applicability over existing VideoQA models.
Efficient Encoders for Streaming Sequence Tagging
A naive application of state-of-the-art bidirectional encoders for streaming sequence tagging would require encoding each token from scratch for each new token in an incremental streaming input (like transcribed speech). The lack of re-usability of previous computation leads to a higher number of Floating Point Operations (or FLOPs) and higher number of unnecessary label flips. Increased FLOPs consequently lead to higher wall-clock time and increased label flipping leads to poorer streaming performance. In this work, we present a Hybrid Encoder with Adaptive Restart (HEAR) that addresses these issues while maintaining the performance of bidirectional encoders over the offline (or complete) inputs while improving performance on streaming (or incomplete) inputs. HEAR has a Hybrid unidirectional-bidirectional encoder architecture to perform sequence tagging, along with an Adaptive Restart Module (ARM) to selectively guide the restart of bidirectional portion of the encoder. Across four sequence tagging tasks, HEAR offers FLOP savings in streaming settings upto 71.1% and also outperforms bidirectional encoders for streaming predictions by upto +10% streaming exact match.
Data-Juicer 2.0: Cloud-Scale Adaptive Data Processing for and with Foundation Models
The burgeoning field of foundation models necessitates advanced data processing mechanisms capable of harnessing vast and valuable data with various types used by these models. Nevertheless, the current landscape presents unique challenges that traditional data processing frameworks struggle to handle effectively, particularly in handling the complexity of multimodal data. In response, we present Data-Juicer 2.0, a data processing system backed by 100+ data processing operators spanning text, image, video, and audio modalities, supporting more critical tasks including data analysis, synthesis, annotation, and foundation model post-training. With seamless compatibility and dedicated optimization for popular dataset hubs like Hugging Face and computing engines like Ray, it improves upon its predecessor in terms of usability, efficiency, and programmability. It features an easily accessible user interface layer that supports decoupled Python interactions, RESTful APIs, and conversational commands. It contains a new runtime layer optimized for adaptive execution and management across varying dataset scales, processing demands, and computational environments, while hiding unnecessary system details. Extensive empirical evaluations demonstrate Data-Juicer 2.0's remarkable performance and scalability, highlighting its capability to efficiently process TB-level data with 10k+ CPU cores. The system is publicly available and has been widely adopted in diverse research fields and real-world products such as Alibaba Cloud PAI. We actively maintain it and share insights from practical feedback, with the goal of facilitating research and application of next-generation foundation models.
Dataverse: Open-Source ETL (Extract, Transform, Load) Pipeline for Large Language Models
To address the challenges associated with data processing at scale, we propose Dataverse, a unified open-source Extract-Transform-Load (ETL) pipeline for large language models (LLMs) with a user-friendly design at its core. Easy addition of custom processors with block-based interface in Dataverse allows users to readily and efficiently use Dataverse to build their own ETL pipeline. We hope that Dataverse will serve as a vital tool for LLM development and open source the entire library to welcome community contribution. Additionally, we provide a concise, two-minute video demonstration of our system, illustrating its capabilities and implementation.
LLM as Effective Streaming Processor: Bridging Streaming-Batch Mismatches with Group Position Encoding
Large Language Models (LLMs) are primarily designed for batch processing. Existing methods for adapting LLMs to streaming rely either on expensive re-encoding or specialized architectures with limited scalability. This work identifies three key mismatches in adapting batch-oriented LLMs to streaming: (1) input-attention, (2) output-attention, and (3) position-ID mismatches. While it is commonly assumed that the latter two mismatches require frequent re-encoding, our analysis reveals that only the input-attention mismatch significantly impacts performance, indicating re-encoding outputs is largely unnecessary. To better understand this discrepancy with the common assumption, we provide the first comprehensive analysis of the impact of position encoding on LLMs in streaming, showing that preserving relative positions within source and target contexts is more critical than maintaining absolute order. Motivated by the above analysis, we introduce a group position encoding paradigm built on batch architectures to enhance consistency between streaming and batch modes. Extensive experiments on cross-lingual and cross-modal tasks demonstrate that our method outperforms existing approaches. Our method requires no architectural modifications, exhibits strong generalization in both streaming and batch modes. The code is available at repository https://github.com/EIT-NLP/StreamingLLM.
DataFinder: Scientific Dataset Recommendation from Natural Language Descriptions
Modern machine learning relies on datasets to develop and validate research ideas. Given the growth of publicly available data, finding the right dataset to use is increasingly difficult. Any research question imposes explicit and implicit constraints on how well a given dataset will enable researchers to answer this question, such as dataset size, modality, and domain. We operationalize the task of recommending datasets given a short natural language description of a research idea, to help people find relevant datasets for their needs. Dataset recommendation poses unique challenges as an information retrieval problem; datasets are hard to directly index for search and there are no corpora readily available for this task. To facilitate this task, we build the DataFinder Dataset which consists of a larger automatically-constructed training set (17.5K queries) and a smaller expert-annotated evaluation set (392 queries). Using this data, we compare various information retrieval algorithms on our test set and present a superior bi-encoder retriever for text-based dataset recommendation. This system, trained on the DataFinder Dataset, finds more relevant search results than existing third-party dataset search engines. To encourage progress on dataset recommendation, we release our dataset and models to the public.
BaichuanSEED: Sharing the Potential of ExtensivE Data Collection and Deduplication by Introducing a Competitive Large Language Model Baseline
The general capabilities of Large Language Models (LLM) highly rely on the composition and selection on extensive pretraining datasets, treated as commercial secrets by several institutions. To mitigate this issue, we open-source the details of a universally applicable data processing pipeline and validate its effectiveness and potential by introducing a competitive LLM baseline. Specifically, the data processing pipeline consists of broad collection to scale up and reweighting to improve quality. We then pretrain a 7B model BaichuanSEED with 3T tokens processed by our pipeline without any deliberate downstream task-related optimization, followed by an easy but effective supervised fine-tuning stage. BaichuanSEED demonstrates consistency and predictability throughout training and achieves comparable performance on comprehensive benchmarks with several commercial advanced large language models, such as Qwen1.5 and Llama3. We also conduct several heuristic experiments to discuss the potential for further optimization of downstream tasks, such as mathematics and coding.
UltraVideo: High-Quality UHD Video Dataset with Comprehensive Captions
The quality of the video dataset (image quality, resolution, and fine-grained caption) greatly influences the performance of the video generation model. The growing demand for video applications sets higher requirements for high-quality video generation models. For example, the generation of movie-level Ultra-High Definition (UHD) videos and the creation of 4K short video content. However, the existing public datasets cannot support related research and applications. In this paper, we first propose a high-quality open-sourced UHD-4K (22.4\% of which are 8K) text-to-video dataset named UltraVideo, which contains a wide range of topics (more than 100 kinds), and each video has 9 structured captions with one summarized caption (average of 824 words). Specifically, we carefully design a highly automated curation process with four stages to obtain the final high-quality dataset: i) collection of diverse and high-quality video clips. ii) statistical data filtering. iii) model-based data purification. iv) generation of comprehensive, structured captions. In addition, we expand Wan to UltraWan-1K/-4K, which can natively generate high-quality 1K/4K videos with more consistent text controllability, demonstrating the effectiveness of our data curation.We believe that this work can make a significant contribution to future research on UHD video generation. UltraVideo dataset and UltraWan models are available at https://xzc-zju.github.io/projects/UltraVideo.
Adaptive Machine Learning for Resource-Constrained Environments
The Internet of Things is an example domain where data is perpetually generated in ever-increasing quantities, reflecting the proliferation of connected devices and the formation of continuous data streams over time. Consequently, the demand for ad-hoc, cost-effective machine learning solutions must adapt to this evolving data influx. This study tackles the task of offloading in small gateways, exacerbated by their dynamic availability over time. An approach leveraging CPU utilization metrics using online and continual machine learning techniques is proposed to predict gateway availability. These methods are compared to popular machine learning algorithms and a recent time-series foundation model, Lag-Llama, for fine-tuned and zero-shot setups. Their performance is benchmarked on a dataset of CPU utilization measurements over time from an IoT gateway and focuses on model metrics such as prediction errors, training and inference times, and memory consumption. Our primary objective is to study new efficient ways to predict CPU performance in IoT environments. Across various scenarios, our findings highlight that ensemble and online methods offer promising results for this task in terms of accuracy while maintaining a low resource footprint.
AI Competitions and Benchmarks: Dataset Development
Machine learning is now used in many applications thanks to its ability to predict, generate, or discover patterns from large quantities of data. However, the process of collecting and transforming data for practical use is intricate. Even in today's digital era, where substantial data is generated daily, it is uncommon for it to be readily usable; most often, it necessitates meticulous manual data preparation. The haste in developing new models can frequently result in various shortcomings, potentially posing risks when deployed in real-world scenarios (eg social discrimination, critical failures), leading to the failure or substantial escalation of costs in AI-based projects. This chapter provides a comprehensive overview of established methodological tools, enriched by our practical experience, in the development of datasets for machine learning. Initially, we develop the tasks involved in dataset development and offer insights into their effective management (including requirements, design, implementation, evaluation, distribution, and maintenance). Then, we provide more details about the implementation process which includes data collection, transformation, and quality evaluation. Finally, we address practical considerations regarding dataset distribution and maintenance.
Faster Re-translation Using Non-Autoregressive Model For Simultaneous Neural Machine Translation
Recently, simultaneous translation has gathered a lot of attention since it enables compelling applications such as subtitle translation for a live event or real-time video-call translation. Some of these translation applications allow editing of partial translation giving rise to re-translation approaches. The current re-translation approaches are based on autoregressive sequence generation models (ReTA), which generate tar-get tokens in the (partial) translation sequentially. The multiple re-translations with sequential generation inReTAmodelslead to an increased inference time gap between the incoming source input and the corresponding target output as the source input grows. Besides, due to the large number of inference operations involved, the ReTA models are not favorable for resource-constrained devices. In this work, we propose a faster re-translation system based on a non-autoregressive sequence generation model (FReTNA) to overcome the aforementioned limitations. We evaluate the proposed model on multiple translation tasks and our model reduces the inference times by several orders and achieves a competitive BLEUscore compared to the ReTA and streaming (Wait-k) models.The proposed model reduces the average computation time by a factor of 20 when compared to the ReTA model by incurring a small drop in the translation quality. It also outperforms the streaming-based Wait-k model both in terms of computation time (1.5 times lower) and translation quality.
MAGI-1: Autoregressive Video Generation at Scale
We present MAGI-1, a world model that generates videos by autoregressively predicting a sequence of video chunks, defined as fixed-length segments of consecutive frames. Trained to denoise per-chunk noise that increases monotonically over time, MAGI-1 enables causal temporal modeling and naturally supports streaming generation. It achieves strong performance on image-to-video (I2V) tasks conditioned on text instructions, providing high temporal consistency and scalability, which are made possible by several algorithmic innovations and a dedicated infrastructure stack. MAGI-1 facilitates controllable generation via chunk-wise prompting and supports real-time, memory-efficient deployment by maintaining constant peak inference cost, regardless of video length. The largest variant of MAGI-1 comprises 24 billion parameters and supports context lengths of up to 4 million tokens, demonstrating the scalability and robustness of our approach. The code and models are available at https://github.com/SandAI-org/MAGI-1 and https://github.com/SandAI-org/MagiAttention. The product can be accessed at https://sand.ai.
TimeChat-Online: 80% Visual Tokens are Naturally Redundant in Streaming Videos
The rapid growth of online video platforms, particularly live streaming services, has created an urgent need for real-time video understanding systems. These systems must process continuous video streams and respond to user queries instantaneously, presenting unique challenges for current Video Large Language Models (VideoLLMs). While existing VideoLLMs excel at processing complete videos, they face significant limitations in streaming scenarios due to their inability to handle dense, redundant frames efficiently. We introduce TimeChat-Online, a novel online VideoLLM that revolutionizes real-time video interaction. At its core lies our innovative Differential Token Drop (DTD) module, which addresses the fundamental challenge of visual redundancy in streaming videos. Drawing inspiration from human visual perception's Change Blindness phenomenon, DTD preserves meaningful temporal changes while filtering out static, redundant content between frames. Remarkably, our experiments demonstrate that DTD achieves an 82.8% reduction in video tokens while maintaining 98% performance on StreamingBench, revealing that over 80% of visual content in streaming videos is naturally redundant without requiring language guidance. To enable seamless real-time interaction, we present TimeChat-Online-139K, a comprehensive streaming video dataset featuring diverse interaction patterns including backward-tracing, current-perception, and future-responding scenarios. TimeChat-Online's unique Proactive Response capability, naturally achieved through continuous monitoring of video scene transitions via DTD, sets it apart from conventional approaches. Our extensive evaluation demonstrates TimeChat-Online's superior performance on streaming benchmarks (StreamingBench and OvOBench) and maintaining competitive results on long-form video tasks such as Video-MME and MLVU.
CLAIMED -- the open source framework for building coarse-grained operators for accelerated discovery in science
In modern data-driven science, reproducibility and reusability are key challenges. Scientists are well skilled in the process from data to publication. Although some publication channels require source code and data to be made accessible, rerunning and verifying experiments is usually hard due to a lack of standards. Therefore, reusing existing scientific data processing code from state-of-the-art research is hard as well. This is why we introduce CLAIMED, which has a proven track record in scientific research for addressing the repeatability and reusability issues in modern data-driven science. CLAIMED is a framework to build reusable operators and scalable scientific workflows by supporting the scientist to draw from previous work by re-composing workflows from existing libraries of coarse-grained scientific operators. Although various implementations exist, CLAIMED is programming language, scientific library, and execution environment agnostic.
Avalanche: an End-to-End Library for Continual Learning
Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning community. However, algorithmic solutions are often difficult to re-implement, evaluate and port across different settings, where even results on standard benchmarks are hard to reproduce. In this work, we propose Avalanche, an open-source end-to-end library for continual learning research based on PyTorch. Avalanche is designed to provide a shared and collaborative codebase for fast prototyping, training, and reproducible evaluation of continual learning algorithms.
Kubric: A scalable dataset generator
Data is the driving force of machine learning, with the amount and quality of training data often being more important for the performance of a system than architecture and training details. But collecting, processing and annotating real data at scale is difficult, expensive, and frequently raises additional privacy, fairness and legal concerns. Synthetic data is a powerful tool with the potential to address these shortcomings: 1) it is cheap 2) supports rich ground-truth annotations 3) offers full control over data and 4) can circumvent or mitigate problems regarding bias, privacy and licensing. Unfortunately, software tools for effective data generation are less mature than those for architecture design and training, which leads to fragmented generation efforts. To address these problems we introduce Kubric, an open-source Python framework that interfaces with PyBullet and Blender to generate photo-realistic scenes, with rich annotations, and seamlessly scales to large jobs distributed over thousands of machines, and generating TBs of data. We demonstrate the effectiveness of Kubric by presenting a series of 13 different generated datasets for tasks ranging from studying 3D NeRF models to optical flow estimation. We release Kubric, the used assets, all of the generation code, as well as the rendered datasets for reuse and modification.
StreamBridge: Turning Your Offline Video Large Language Model into a Proactive Streaming Assistant
We present StreamBridge, a simple yet effective framework that seamlessly transforms offline Video-LLMs into streaming-capable models. It addresses two fundamental challenges in adapting existing models into online scenarios: (1) limited capability for multi-turn real-time understanding, and (2) lack of proactive response mechanisms. Specifically, StreamBridge incorporates (1) a memory buffer combined with a round-decayed compression strategy, supporting long-context multi-turn interactions, and (2) a decoupled, lightweight activation model that can be effortlessly integrated into existing Video-LLMs, enabling continuous proactive responses. To further support StreamBridge, we construct Stream-IT, a large-scale dataset tailored for streaming video understanding, featuring interleaved video-text sequences and diverse instruction formats. Extensive experiments show that StreamBridge significantly improves the streaming understanding capabilities of offline Video-LLMs across various tasks, outperforming even proprietary models such as GPT-4o and Gemini 1.5 Pro. Simultaneously, it achieves competitive or superior performance on standard video understanding benchmarks.
Modeling Performance of Data Collection Systems for High-Energy Physics
Exponential increases in scientific experimental data are outstripping the rate of progress in silicon technology. As a result, heterogeneous combinations of architectures and process or device technologies are increasingly important to meet the computing demands of future scientific experiments. However, the complexity of heterogeneous computing systems requires systematic modeling to understand performance. We present a model which addresses this need by framing key aspects of data collection pipelines and constraints, and combines them with the important vectors of technology that shape alternatives, computing metrics that allow complex alternatives to be compared. For instance, a data collection pipeline may be characterized by parameters such as sensor sampling rates, amount of data collected, and the overall relevancy of retrieved samples. Alternatives to this pipeline are enabled by hardware development vectors including advancing CMOS, GPUs, neuromorphic computing, and edge computing. By calculating metrics for each alternative such as overall F1 score, power, hardware cost, and energy expended per relevant sample, this model allows alternate data collection systems to be rigorously compared. To demonstrate this model's capability, we apply it to the CMS experiment (and planned HL-LHC upgrade) to evaluate and compare the application of novel technologies in the data acquisition system (DAQ). We demonstrate that improvements to early stages in the DAQ are highly beneficial, greatly reducing the resources required at later stages of processing (such as a 60% power reduction) and increasing the amount of relevant data retrieved from the experiment per unit power (improving from 0.065 to 0.31 samples/kJ) However, we predict further advances will be required in order to meet overall power and cost constraints for the DAQ.
SeedEdit 3.0: Fast and High-Quality Generative Image Editing
We introduce SeedEdit 3.0, in companion with our T2I model Seedream 3.0, which significantly improves over our previous SeedEdit versions in both aspects of edit instruction following and image content (e.g., ID/IP) preservation on real image inputs. Additional to model upgrading with T2I, in this report, we present several key improvements. First, we develop an enhanced data curation pipeline with a meta-info paradigm and meta-info embedding strategy that help mix images from multiple data sources. This allows us to scale editing data effectively, and meta information is helpfult to connect VLM with diffusion model more closely. Second, we introduce a joint learning pipeline for computing a diffusion loss and reward losses. Finally, we evaluate SeedEdit 3.0 on our testing benchmarks, for real/synthetic image editing, where it achieves a best trade-off between multiple aspects, yielding a high usability rate of 56.1%, compared to SeedEdit 1.6 (38.4%), GPT4o (37.1%) and Gemini 2.0 (30.3%).
Lossless data compression by large models
Modern data compression methods are slowly reaching their limits after 80 years of research, millions of papers, and wide range of applications. Yet, the extravagant 6G communication speed requirement raises a major open question for revolutionary new ideas of data compression. We have previously shown all understanding or learning are compression, under reasonable assumptions. Large language models (LLMs) understand data better than ever before. Can they help us to compress data? The LLMs may be seen to approximate the uncomputable Solomonoff induction. Therefore, under this new uncomputable paradigm, we present LMCompress. LMCompress shatters all previous lossless compression algorithms, doubling the lossless compression ratios of JPEG-XL for images, FLAC for audios, and H.264 for videos, and quadrupling the compression ratio of bz2 for texts. The better a large model understands the data, the better LMCompress compresses.
DataPerf: Benchmarks for Data-Centric AI Development
Machine learning research has long focused on models rather than datasets, and prominent datasets are used for common ML tasks without regard to the breadth, difficulty, and faithfulness of the underlying problems. Neglecting the fundamental importance of data has given rise to inaccuracy, bias, and fragility in real-world applications, and research is hindered by saturation across existing dataset benchmarks. In response, we present DataPerf, a community-led benchmark suite for evaluating ML datasets and data-centric algorithms. We aim to foster innovation in data-centric AI through competition, comparability, and reproducibility. We enable the ML community to iterate on datasets, instead of just architectures, and we provide an open, online platform with multiple rounds of challenges to support this iterative development. The first iteration of DataPerf contains five benchmarks covering a wide spectrum of data-centric techniques, tasks, and modalities in vision, speech, acquisition, debugging, and diffusion prompting, and we support hosting new contributed benchmarks from the community. The benchmarks, online evaluation platform, and baseline implementations are open source, and the MLCommons Association will maintain DataPerf to ensure long-term benefits to academia and industry.
BatchLLM: Optimizing Large Batched LLM Inference with Global Prefix Sharing and Throughput-oriented Token Batching
Many LLM tasks are performed in large batches or even offline, and the performance indictor for which is throughput. These tasks usually show the characteristic of prefix sharing, where different prompt input can partially show the common prefix. However, the existing LLM inference engines tend to optimize the streaming requests and show limitations of supporting the large batched tasks with the prefix sharing characteristic. The existing solutions use the LRU-based cache to reuse the KV context of common prefix. The KV context that is about to be reused may prematurely be evicted with the implicit cache management. Even if not evicted, the lifetime of the shared KV context is extended since requests sharing the same context are not scheduled together, resulting in larger memory usage. These streaming oriented systems schedule the requests in the first-come-first-serve or similar order. As a result, the requests with larger ratio of decoding steps may be scheduled too late to be able to mix with the prefill chunks to increase the hardware utilization. Besides, the token and request number based batching can limit the size of token-batch, which keeps the GPU from saturating for the iterations dominated by decoding tokens. We propose BatchLLM to address the above problems. BatchLLM explicitly identifies the common prefixes globally. The requests sharing the same prefix will be scheduled together to reuse the KV context the best, which also shrinks the lifetime of common KV memory. BatchLLM reorders the requests and schedules the requests with larger ratio of decoding first to better mix the decoding tokens with the latter prefill chunks and applies memory-centric token batching to enlarge the token-batch sizes, which helps to increase the GPU utilization. Extensive evaluation shows that BatchLLM outperforms vLLM by 1.1x to 2x on a set of microbenchmarks and two typical industry workloads.
ShotAdapter: Text-to-Multi-Shot Video Generation with Diffusion Models
Current diffusion-based text-to-video methods are limited to producing short video clips of a single shot and lack the capability to generate multi-shot videos with discrete transitions where the same character performs distinct activities across the same or different backgrounds. To address this limitation we propose a framework that includes a dataset collection pipeline and architectural extensions to video diffusion models to enable text-to-multi-shot video generation. Our approach enables generation of multi-shot videos as a single video with full attention across all frames of all shots, ensuring character and background consistency, and allows users to control the number, duration, and content of shots through shot-specific conditioning. This is achieved by incorporating a transition token into the text-to-video model to control at which frames a new shot begins and a local attention masking strategy which controls the transition token's effect and allows shot-specific prompting. To obtain training data we propose a novel data collection pipeline to construct a multi-shot video dataset from existing single-shot video datasets. Extensive experiments demonstrate that fine-tuning a pre-trained text-to-video model for a few thousand iterations is enough for the model to subsequently be able to generate multi-shot videos with shot-specific control, outperforming the baselines. You can find more details in https://shotadapter.github.io/
Streamable Neural Audio Synthesis With Non-Causal Convolutions
Deep learning models are mostly used in an offline inference fashion. However, this strongly limits the use of these models inside audio generation setups, as most creative workflows are based on real-time digital signal processing. Although approaches based on recurrent networks can be naturally adapted to this buffer-based computation, the use of convolutions still poses some serious challenges. To tackle this issue, the use of causal streaming convolutions have been proposed. However, this requires specific complexified training and can impact the resulting audio quality. In this paper, we introduce a new method allowing to produce non-causal streaming models. This allows to make any convolutional model compatible with real-time buffer-based processing. As our method is based on a post-training reconfiguration of the model, we show that it is able to transform models trained without causal constraints into a streaming model. We show how our method can be adapted to fit complex architectures with parallel branches. To evaluate our method, we apply it on the recent RAVE model, which provides high-quality real-time audio synthesis. We test our approach on multiple music and speech datasets and show that it is faster than overlap-add methods, while having no impact on the generation quality. Finally, we introduce two open-source implementation of our work as Max/MSP and PureData externals, and as a VST audio plugin. This allows to endow traditional digital audio workstation with real-time neural audio synthesis on a laptop CPU.
Deep Learning, Machine Learning, Advancing Big Data Analytics and Management
Advancements in artificial intelligence, machine learning, and deep learning have catalyzed the transformation of big data analytics and management into pivotal domains for research and application. This work explores the theoretical foundations, methodological advancements, and practical implementations of these technologies, emphasizing their role in uncovering actionable insights from massive, high-dimensional datasets. The study presents a systematic overview of data preprocessing techniques, including data cleaning, normalization, integration, and dimensionality reduction, to prepare raw data for analysis. Core analytics methodologies such as classification, clustering, regression, and anomaly detection are examined, with a focus on algorithmic innovation and scalability. Furthermore, the text delves into state-of-the-art frameworks for data mining and predictive modeling, highlighting the role of neural networks, support vector machines, and ensemble methods in tackling complex analytical challenges. Special emphasis is placed on the convergence of big data with distributed computing paradigms, including cloud and edge computing, to address challenges in storage, computation, and real-time analytics. The integration of ethical considerations, including data privacy and compliance with global standards, ensures a holistic perspective on data management. Practical applications across healthcare, finance, marketing, and policy-making illustrate the real-world impact of these technologies. Through comprehensive case studies and Python-based implementations, this work equips researchers, practitioners, and data enthusiasts with the tools to navigate the complexities of modern data analytics. It bridges the gap between theory and practice, fostering the development of innovative solutions for managing and leveraging data in the era of artificial intelligence.
Data Processing for the OpenGPT-X Model Family
This paper presents a comprehensive overview of the data preparation pipeline developed for the OpenGPT-X project, a large-scale initiative aimed at creating open and high-performance multilingual large language models (LLMs). The project goal is to deliver models that cover all major European languages, with a particular focus on real-world applications within the European Union. We explain all data processing steps, starting with the data selection and requirement definition to the preparation of the final datasets for model training. We distinguish between curated data and web data, as each of these categories is handled by distinct pipelines, with curated data undergoing minimal filtering and web data requiring extensive filtering and deduplication. This distinction guided the development of specialized algorithmic solutions for both pipelines. In addition to describing the processing methodologies, we provide an in-depth analysis of the datasets, increasing transparency and alignment with European data regulations. Finally, we share key insights and challenges faced during the project, offering recommendations for future endeavors in large-scale multilingual data preparation for LLMs.
Open-Sora Plan: Open-Source Large Video Generation Model
We introduce Open-Sora Plan, an open-source project that aims to contribute a large generation model for generating desired high-resolution videos with long durations based on various user inputs. Our project comprises multiple components for the entire video generation process, including a Wavelet-Flow Variational Autoencoder, a Joint Image-Video Skiparse Denoiser, and various condition controllers. Moreover, many assistant strategies for efficient training and inference are designed, and a multi-dimensional data curation pipeline is proposed for obtaining desired high-quality data. Benefiting from efficient thoughts, our Open-Sora Plan achieves impressive video generation results in both qualitative and quantitative evaluations. We hope our careful design and practical experience can inspire the video generation research community. All our codes and model weights are publicly available at https://github.com/PKU-YuanGroup/Open-Sora-Plan.
LMUFormer: Low Complexity Yet Powerful Spiking Model With Legendre Memory Units
Transformer models have demonstrated high accuracy in numerous applications but have high complexity and lack sequential processing capability making them ill-suited for many streaming applications at the edge where devices are heavily resource-constrained. Thus motivated, many researchers have proposed reformulating the transformer models as RNN modules which modify the self-attention computation with explicit states. However, these approaches often incur significant performance degradation. The ultimate goal is to develop a model that has the following properties: parallel training, streaming and low-cost inference, and SOTA performance. In this paper, we propose a new direction to achieve this goal. We show how architectural modifications to a recurrent model can help push its performance toward Transformer models while retaining its sequential processing capability. Specifically, inspired by the recent success of Legendre Memory Units (LMU) in sequence learning tasks, we propose LMUFormer, which augments the LMU with convolutional patch embedding and convolutional channel mixer. Moreover, we present a spiking version of this architecture, which introduces the benefit of states within the patch embedding and channel mixer modules while simultaneously reducing the computing complexity. We evaluated our architectures on multiple sequence datasets. In comparison to SOTA transformer-based models within the ANN domain on the SCv2 dataset, our LMUFormer demonstrates comparable performance while necessitating a remarkable 53 times reduction in parameters and a substantial 65 times decrement in FLOPs. Additionally, owing to our model's proficiency in real-time data processing, we can achieve a 32.03% reduction in sequence length, all while incurring an inconsequential decline in performance. Our code is publicly available at https://github.com/zeyuliu1037/LMUFormer.git.
Leveraging Large Language Models to Democratize Access to Costly Financial Datasets for Academic Research
Unequal access to costly datasets essential for empirical research has long hindered researchers from disadvantaged institutions, limiting their ability to contribute to their fields and advance their careers. Recent breakthroughs in Large Language Models (LLMs) have the potential to democratize data access by automating data collection from unstructured sources. We develop and evaluate a novel methodology using GPT-4o-mini within a Retrieval-Augmented Generation (RAG) framework to collect data from corporate disclosures. Our approach achieves human-level accuracy in collecting CEO pay ratios from approximately 10,000 proxy statements and Critical Audit Matters (CAMs) from more than 12,000 10-K filings, with LLM processing times of 9 and 40 minutes respectively, each at a cost under $10. This stands in stark contrast to the hundreds of hours needed for manual collection or the thousands of dollars required for commercial database subscriptions. To foster a more inclusive research community by empowering researchers with limited resources to explore new avenues of inquiry, we share our methodology and the resulting datasets.
KramaBench: A Benchmark for AI Systems on Data-to-Insight Pipelines over Data Lakes
Constructing real-world data-to-insight pipelines often involves data extraction from data lakes, data integration across heterogeneous data sources, and diverse operations from data cleaning to analysis. The design and implementation of data science pipelines require domain knowledge, technical expertise, and even project-specific insights. AI systems have shown remarkable reasoning, coding, and understanding capabilities. However, it remains unclear to what extent these capabilities translate into successful design and execution of such complex pipelines. We introduce KRAMABENCH: a benchmark composed of 104 manually-curated real-world data science pipelines spanning 1700 data files from 24 data sources in 6 different domains. We show that these pipelines test the end-to-end capabilities of AI systems on data processing, requiring data discovery, wrangling and cleaning, efficient processing, statistical reasoning, and orchestrating data processing steps given a high-level task. Our evaluation tests 5 general models and 3 code generation models using our reference framework, DS-GURU, which instructs the AI model to decompose a question into a sequence of subtasks, reason through each step, and synthesize Python code that implements the proposed design. Our results on KRAMABENCH show that, although the models are sufficiently capable of solving well-specified data science code generation tasks, when extensive data processing and domain knowledge are required to construct real-world data science pipelines, existing out-of-box models fall short. Progress on KramaBench represents crucial steps towards developing autonomous data science agents for real-world applications. Our code, reference framework, and data are available at https://github.com/mitdbg/KramaBench.
Large-Scale User Modeling with Recurrent Neural Networks for Music Discovery on Multiple Time Scales
The amount of content on online music streaming platforms is immense, and most users only access a tiny fraction of this content. Recommender systems are the application of choice to open up the collection to these users. Collaborative filtering has the disadvantage that it relies on explicit ratings, which are often unavailable, and generally disregards the temporal nature of music consumption. On the other hand, item co-occurrence algorithms, such as the recently introduced word2vec-based recommenders, are typically left without an effective user representation. In this paper, we present a new approach to model users through recurrent neural networks by sequentially processing consumed items, represented by any type of embeddings and other context features. This way we obtain semantically rich user representations, which capture a user's musical taste over time. Our experimental analysis on large-scale user data shows that our model can be used to predict future songs a user will likely listen to, both in the short and long term.
COMET: Towards Partical W4A4KV4 LLMs Serving
Quantization is a widely-used compression technology to reduce the overhead of serving large language models (LLMs) on terminal devices and in cloud data centers. However, prevalent quantization methods, such as 8-bit weight-activation or 4-bit weight-only quantization, achieve limited performance improvements due to poor support for low-precision (e.g., 4-bit) activation. This work, for the first time, realizes practical W4A4KV4 serving for LLMs, fully utilizing the INT4 tensor cores on modern GPUs and reducing the memory bottleneck caused by the KV cache. Specifically, we propose a novel fine-grained mixed-precision quantization algorithm (FMPQ) that compresses most activations into 4-bit with negligible accuracy loss. To support mixed-precision matrix multiplication for W4A4 and W4A8, we develop a highly optimized W4Ax kernel. Our approach introduces a novel mixed-precision data layout to facilitate access and fast dequantization for activation and weight tensors, utilizing the GPU's software pipeline to hide the overhead of data loading and conversion. Additionally, we propose fine-grained streaming multiprocessor (SM) scheduling to achieve load balance across different SMs. We integrate the optimized W4Ax kernel into our inference framework, COMET, and provide efficient management to support popular LLMs such as LLaMA-3-70B. Extensive evaluations demonstrate that, when running LLaMA family models on a single A100-80G-SMX4, COMET achieves a kernel-level speedup of 2.88times over cuBLAS and a 2.02 times throughput improvement compared to TensorRT-LLM from an end-to-end framework perspective.
OpenDataLab: Empowering General Artificial Intelligence with Open Datasets
The advancement of artificial intelligence (AI) hinges on the quality and accessibility of data, yet the current fragmentation and variability of data sources hinder efficient data utilization. The dispersion of data sources and diversity of data formats often lead to inefficiencies in data retrieval and processing, significantly impeding the progress of AI research and applications. To address these challenges, this paper introduces OpenDataLab, a platform designed to bridge the gap between diverse data sources and the need for unified data processing. OpenDataLab integrates a wide range of open-source AI datasets and enhances data acquisition efficiency through intelligent querying and high-speed downloading services. The platform employs a next-generation AI Data Set Description Language (DSDL), which standardizes the representation of multimodal and multi-format data, improving interoperability and reusability. Additionally, OpenDataLab optimizes data processing through tools that complement DSDL. By integrating data with unified data descriptions and smart data toolchains, OpenDataLab can improve data preparation efficiency by 30\%. We anticipate that OpenDataLab will significantly boost artificial general intelligence (AGI) research and facilitate advancements in related AI fields. For more detailed information, please visit the platform's official website: https://opendatalab.com.
Real-Time Community Detection in Large Social Networks on a Laptop
For a broad range of research, governmental and commercial applications it is important to understand the allegiances, communities and structure of key players in society. One promising direction towards extracting this information is to exploit the rich relational data in digital social networks (the social graph). As social media data sets are very large, most approaches make use of distributed computing systems for this purpose. Distributing graph processing requires solving many difficult engineering problems, which has lead some researchers to look at single-machine solutions that are faster and easier to maintain. In this article, we present a single-machine real-time system for large-scale graph processing that allows analysts to interactively explore graph structures. The key idea is that the aggregate actions of large numbers of users can be compressed into a data structure that encapsulates user similarities while being robust to noise and queryable in real-time. We achieve single machine real-time performance by compressing the neighbourhood of each vertex using minhash signatures and facilitate rapid queries through Locality Sensitive Hashing. These techniques reduce query times from hours using industrial desktop machines operating on the full graph to milliseconds on standard laptops. Our method allows exploration of strongly associated regions (i.e. communities) of large graphs in real-time on a laptop. It has been deployed in software that is actively used by social network analysts and offers another channel for media owners to monetise their data, helping them to continue to provide free services that are valued by billions of people globally.
Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain
Time series has been left behind in the era of pre-training and transfer learning. While research in the fields of natural language processing and computer vision are enjoying progressively larger datasets to train massive models, the most popular time series datasets consist of only tens of thousands of time steps, limiting our ability to study the effectiveness of pre-training and scaling. Recent studies have also cast doubt on the need for expressive models and scale. To alleviate these issues, we introduce three large-scale time series forecasting datasets from the cloud operations (CloudOps) domain, the largest having billions of observations, enabling further study into pre-training and scaling of time series models. We build the empirical groundwork for studying pre-training and scaling of time series models and pave the way for future research by identifying a promising candidate architecture. We show that it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size. Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method - achieving a 27% reduction in error on the largest dataset. Code and datasets will be released.
A Survey on Data Selection for Language Models
A major factor in the recent success of large language models is the use of enormous and ever-growing text datasets for unsupervised pre-training. However, naively training a model on all available data may not be optimal (or feasible), as the quality of available text data can vary. Filtering out data can also decrease the carbon footprint and financial costs of training models by reducing the amount of training required. Data selection methods aim to determine which candidate data points to include in the training dataset and how to appropriately sample from the selected data points. The promise of improved data selection methods has caused the volume of research in the area to rapidly expand. However, because deep learning is mostly driven by empirical evidence and experimentation on large-scale data is expensive, few organizations have the resources for extensive data selection research. Consequently, knowledge of effective data selection practices has become concentrated within a few organizations, many of which do not openly share their findings and methodologies. To narrow this gap in knowledge, we present a comprehensive review of existing literature on data selection methods and related research areas, providing a taxonomy of existing approaches. By describing the current landscape of research, this work aims to accelerate progress in data selection by establishing an entry point for new and established researchers. Additionally, throughout this review we draw attention to noticeable holes in the literature and conclude the paper by proposing promising avenues for future research.
DriftMoE: A Mixture of Experts Approach to Handle Concept Drifts
Learning from non-stationary data streams subject to concept drift requires models that can adapt on-the-fly while remaining resource-efficient. Existing adaptive ensemble methods often rely on coarse-grained adaptation mechanisms or simple voting schemes that fail to optimally leverage specialized knowledge. This paper introduces DriftMoE, an online Mixture-of-Experts (MoE) architecture that addresses these limitations through a novel co-training framework. DriftMoE features a compact neural router that is co-trained alongside a pool of incremental Hoeffding tree experts. The key innovation lies in a symbiotic learning loop that enables expert specialization: the router selects the most suitable expert for prediction, the relevant experts update incrementally with the true label, and the router refines its parameters using a multi-hot correctness mask that reinforces every accurate expert. This feedback loop provides the router with a clear training signal while accelerating expert specialization. We evaluate DriftMoE's performance across nine state-of-the-art data stream learning benchmarks spanning abrupt, gradual, and real-world drifts testing two distinct configurations: one where experts specialize on data regimes (multi-class variant), and another where they focus on single-class specialization (task-based variant). Our results demonstrate that DriftMoE achieves competitive results with state-of-the-art stream learning adaptive ensembles, offering a principled and efficient approach to concept drift adaptation. All code, data pipelines, and reproducibility scripts are available in our public GitHub repository: https://github.com/miguel-ceadar/drift-moe.
Documenting Geographically and Contextually Diverse Data Sources: The BigScience Catalogue of Language Data and Resources
In recent years, large-scale data collection efforts have prioritized the amount of data collected in order to improve the modeling capabilities of large language models. This prioritization, however, has resulted in concerns with respect to the rights of data subjects represented in data collections, particularly when considering the difficulty in interrogating these collections due to insufficient documentation and tools for analysis. Mindful of these pitfalls, we present our methodology for a documentation-first, human-centered data collection project as part of the BigScience initiative. We identified a geographically diverse set of target language groups (Arabic, Basque, Chinese, Catalan, English, French, Indic languages, Indonesian, Niger-Congo languages, Portuguese, Spanish, and Vietnamese, as well as programming languages) for which to collect metadata on potential data sources. To structure this effort, we developed our online catalogue as a supporting tool for gathering metadata through organized public hackathons. We present our development process; analyses of the resulting resource metadata, including distributions over languages, regions, and resource types; and our lessons learned in this endeavor.
QuerYD: A video dataset with high-quality text and audio narrations
We introduce QuerYD, a new large-scale dataset for retrieval and event localisation in video. A unique feature of our dataset is the availability of two audio tracks for each video: the original audio, and a high-quality spoken description of the visual content. The dataset is based on YouDescribe, a volunteer project that assists visually-impaired people by attaching voiced narrations to existing YouTube videos. This ever-growing collection of videos contains highly detailed, temporally aligned audio and text annotations. The content descriptions are more relevant than dialogue, and more detailed than previous description attempts, which can be observed to contain many superficial or uninformative descriptions. To demonstrate the utility of the QuerYD dataset, we show that it can be used to train and benchmark strong models for retrieval and event localisation. Data, code and models are made publicly available, and we hope that QuerYD inspires further research on video understanding with written and spoken natural language.
CursorCore: Assist Programming through Aligning Anything
Large language models have been successfully applied to programming assistance tasks, such as code completion, code insertion, and instructional code editing. However, these applications remain insufficiently automated and struggle to effectively integrate various types of information during the programming process, including coding history, current code, and user instructions. In this work, we propose a new conversational framework that comprehensively integrates these information sources, collect data to train our models and evaluate their performance. Firstly, to thoroughly evaluate how well models align with different types of information and the quality of their outputs, we introduce a new benchmark, APEval (Assist Programming Eval), to comprehensively assess the performance of models in programming assistance tasks. Then, for data collection, we develop a data generation pipeline, Programming-Instruct, which synthesizes training data from diverse sources, such as GitHub and online judge platforms. This pipeline can automatically generate various types of messages throughout the programming process. Finally, using this pipeline, we generate 219K samples, fine-tune multiple models, and develop the CursorCore series. We show that CursorCore outperforms other models of comparable size. This framework unifies applications such as inline chat and automated editing, contributes to the advancement of coding assistants. Code, models and data are freely available at https://github.com/TechxGenus/CursorCore.
Lookahead When It Matters: Adaptive Non-causal Transformers for Streaming Neural Transducers
Streaming speech recognition architectures are employed for low-latency, real-time applications. Such architectures are often characterized by their causality. Causal architectures emit tokens at each frame, relying only on current and past signal, while non-causal models are exposed to a window of future frames at each step to increase predictive accuracy. This dichotomy amounts to a trade-off for real-time Automatic Speech Recognition (ASR) system design: profit from the low-latency benefit of strictly-causal architectures while accepting predictive performance limitations, or realize the modeling benefits of future-context models accompanied by their higher latency penalty. In this work, we relax the constraints of this choice and present the Adaptive Non-Causal Attention Transducer (ANCAT). Our architecture is non-causal in the traditional sense, but executes in a low-latency, streaming manner by dynamically choosing when to rely on future context and to what degree within the audio stream. The resulting mechanism, when coupled with our novel regularization algorithms, delivers comparable accuracy to non-causal configurations while improving significantly upon latency, closing the gap with their causal counterparts. We showcase our design experimentally by reporting comparative ASR task results with measures of accuracy and latency on both publicly accessible and production-scale, voice-assistant datasets.
An Empirical Evaluation of Columnar Storage Formats
Columnar storage is a core component of a modern data analytics system. Although many database management systems (DBMSs) have proprietary storage formats, most provide extensive support to open-source storage formats such as Parquet and ORC to facilitate cross-platform data sharing. But these formats were developed over a decade ago, in the early 2010s, for the Hadoop ecosystem. Since then, both the hardware and workload landscapes have changed. In this paper, we revisit the most widely adopted open-source columnar storage formats (Parquet and ORC) with a deep dive into their internals. We designed a benchmark to stress-test the formats' performance and space efficiency under different workload configurations. From our comprehensive evaluation of Parquet and ORC, we identify design decisions advantageous with modern hardware and real-world data distributions. These include using dictionary encoding by default, favoring decoding speed over compression ratio for integer encoding algorithms, making block compression optional, and embedding finer-grained auxiliary data structures. We also point out the inefficiencies in the format designs when handling common machine learning workloads and using GPUs for decoding. Our analysis identified important considerations that may guide future formats to better fit modern technology trends.
Data-Copilot: Bridging Billions of Data and Humans with Autonomous Workflow
Various industries such as finance, meteorology, and energy generate vast amounts of heterogeneous data every day. There is a natural demand for humans to manage, process, and display data efficiently. However, it necessitates labor-intensive efforts and a high level of expertise for these data-related tasks. Considering that large language models (LLMs) have showcased promising capabilities in semantic understanding and reasoning, we advocate that the deployment of LLMs could autonomously manage and process massive amounts of data while displaying and interacting in a human-friendly manner. Based on this belief, we propose Data-Copilot, an LLM-based system that connects numerous data sources on one end and caters to diverse human demands on the other end. Acting like an experienced expert, Data-Copilot autonomously transforms raw data into visualization results that best match the user's intent. Specifically, Data-Copilot autonomously designs versatile interfaces (tools) for data management, processing, prediction, and visualization. In real-time response, it automatically deploys a concise workflow by invoking corresponding interfaces step by step for the user's request. The interface design and deployment processes are fully controlled by Data-Copilot itself, without human assistance. Besides, we create a Data-Copilot demo that links abundant data from different domains (stock, fund, company, economics, and live news) and accurately respond to diverse requests, serving as a reliable AI assistant.
Datasheets for Datasets
The machine learning community currently has no standardized process for documenting datasets, which can lead to severe consequences in high-stakes domains. To address this gap, we propose datasheets for datasets. In the electronics industry, every component, no matter how simple or complex, is accompanied with a datasheet that describes its operating characteristics, test results, recommended uses, and other information. By analogy, we propose that every dataset be accompanied with a datasheet that documents its motivation, composition, collection process, recommended uses, and so on. Datasheets for datasets will facilitate better communication between dataset creators and dataset consumers, and encourage the machine learning community to prioritize transparency and accountability.
Will we run out of data? An analysis of the limits of scaling datasets in Machine Learning
We analyze the growth of dataset sizes used in machine learning for natural language processing and computer vision, and extrapolate these using two methods; using the historical growth rate and estimating the compute-optimal dataset size for future predicted compute budgets. We investigate the growth in data usage by estimating the total stock of unlabeled data available on the internet over the coming decades. Our analysis indicates that the stock of high-quality language data will be exhausted soon; likely before 2026. By contrast, the stock of low-quality language data and image data will be exhausted only much later; between 2030 and 2050 (for low-quality language) and between 2030 and 2060 (for images). Our work suggests that the current trend of ever-growing ML models that rely on enormous datasets might slow down if data efficiency is not drastically improved or new sources of data become available.
Transformer Transducer: A Streamable Speech Recognition Model with Transformer Encoders and RNN-T Loss
In this paper we present an end-to-end speech recognition model with Transformer encoders that can be used in a streaming speech recognition system. Transformer computation blocks based on self-attention are used to encode both audio and label sequences independently. The activations from both audio and label encoders are combined with a feed-forward layer to compute a probability distribution over the label space for every combination of acoustic frame position and label history. This is similar to the Recurrent Neural Network Transducer (RNN-T) model, which uses RNNs for information encoding instead of Transformer encoders. The model is trained with the RNN-T loss well-suited to streaming decoding. We present results on the LibriSpeech dataset showing that limiting the left context for self-attention in the Transformer layers makes decoding computationally tractable for streaming, with only a slight degradation in accuracy. We also show that the full attention version of our model beats the-state-of-the art accuracy on the LibriSpeech benchmarks. Our results also show that we can bridge the gap between full attention and limited attention versions of our model by attending to a limited number of future frames.
Direct Telemetry Access
The emergence of programmable switches allows operators to collect a vast amount of fine-grained telemetry data in real time. However, consolidating the telemetry reports at centralized collectors to gain a network-wide view poses an immense challenge. The received data has to be transported from the switches, parsed, manipulated, and inserted in queryable data structures. As the network scales, this requires excessive CPU processing. RDMA is a transport protocol that bypasses the CPU and allows extremely high data transfer rates. Yet, RDMA is not designed for telemetry collection: it requires a stateful connection, supports only a small number of concurrent writers, and has limited writing primitives, which restricts its data aggregation applicability. We introduce Direct Telemetry Access (DTA), a solution that allows fast and efficient telemetry collection, aggregation, and indexing. Our system establishes RDMA connections only from collectors' ToR switches, called translators, that process DTA reports from all other switches. DTA features novel and expressive reporting primitives such as Key-Write, Append, Sketch-Merge, and Key-Increment that allow integration of telemetry systems such as INT and others. The translators then aggregate, batch, and write the reports to collectors' memory in queryable form.
MOOCdb: Developing Standards and Systems to Support MOOC Data Science
We present a shared data model for enabling data science in Massive Open Online Courses (MOOCs). The model captures students interactions with the online platform. The data model is platform agnostic and is based on some basic core actions that students take on an online learning platform. Students usually interact with the platform in four different modes: Observing, Submitting, Collaborating and giving feedback. In observing mode students are simply browsing the online platform, watching videos, reading material, reading book or watching forums. In submitting mode, students submit information to the platform. This includes submissions towards quizzes, homeworks, or any assessment modules. In collaborating mode students interact with other students or instructors on forums, collaboratively editing wiki or chatting on google hangout or other hangout venues. With this basic definitions of activities, and a data model to store events pertaining to these activities, we then create a common terminology to map Coursera and edX data into this shared data model. This shared data model called MOOCdb becomes the foundation for a number of collaborative frameworks that enable progress in data science without the need to share the data.
Unsupervised Topic Models are Data Mixers for Pre-training Language Models
The performance of large language models (LLMs) is significantly affected by the quality and composition of their pre-training data, which is inherently diverse, spanning various domains, sources, and topics. Effectively integrating these heterogeneous data sources is crucial for optimizing LLM performance. Previous research has predominantly concentrated on domain-based data mixing, often neglecting the nuanced topic-level characteristics of the data. To address this gap, we propose a simple yet effective topic-based data mixing strategy that utilizes fine-grained topics generated through our topic modeling method, DataWeave. DataWeave employs a multi-stage clustering process to group semantically similar documents and utilizes LLMs to generate detailed topics, thereby facilitating a more nuanced understanding of dataset composition. Our strategy employs heuristic methods to upsample or downsample specific topics, which significantly enhances LLM performance on downstream tasks, achieving superior results compared to previous, more complex data mixing approaches. Furthermore, we confirm that the topics Science and Relationships are particularly effective, yielding the most substantial performance improvements. We will make our code and datasets publicly available.
LEANN: A Low-Storage Vector Index
Embedding-based search is widely used in applications such as recommendation and retrieval-augmented generation (RAG). Recently, there is a growing demand to support these capabilities over personal data stored locally on devices. However, maintaining the necessary data structure associated with the embedding-based search is often infeasible due to its high storage overhead. For example, indexing 100 GB of raw data requires 150 to 700 GB of storage, making local deployment impractical. Reducing this overhead while maintaining search quality and latency becomes a critical challenge. In this paper, we present LEANN, a storage-efficient approximate nearest neighbor (ANN) search index optimized for resource-constrained personal devices. LEANN combines a compact graph-based structure with an efficient on-the-fly recomputation strategy to enable fast and accurate retrieval with minimal storage overhead. Our evaluation shows that LEANN reduces index size to under 5% of the original raw data, achieving up to 50 times smaller storage than standard indexes, while maintaining 90% top-3 recall in under 2 seconds on real-world question answering benchmarks.
Exploring the Potential of AI-Generated Synthetic Datasets: A Case Study on Telematics Data with ChatGPT
This research delves into the construction and utilization of synthetic datasets, specifically within the telematics sphere, leveraging OpenAI's powerful language model, ChatGPT. Synthetic datasets present an effective solution to challenges pertaining to data privacy, scarcity, and control over variables - characteristics that make them particularly valuable for research pursuits. The utility of these datasets, however, largely depends on their quality, measured through the lenses of diversity, relevance, and coherence. To illustrate this data creation process, a hands-on case study is conducted, focusing on the generation of a synthetic telematics dataset. The experiment involved an iterative guidance of ChatGPT, progressively refining prompts and culminating in the creation of a comprehensive dataset for a hypothetical urban planning scenario in Columbus, Ohio. Upon generation, the synthetic dataset was subjected to an evaluation, focusing on the previously identified quality parameters and employing descriptive statistics and visualization techniques for a thorough analysis. Despite synthetic datasets not serving as perfect replacements for actual world data, their potential in specific use-cases, when executed with precision, is significant. This research underscores the potential of AI models like ChatGPT in enhancing data availability for complex sectors like telematics, thus paving the way for a myriad of new research opportunities.
Predicting Bandwidth Utilization on Network Links Using Machine Learning
Predicting the bandwidth utilization on network links can be extremely useful for detecting congestion in order to correct them before they occur. In this paper, we present a solution to predict the bandwidth utilization between different network links with a very high accuracy. A simulated network is created to collect data related to the performance of the network links on every interface. These data are processed and expanded with feature engineering in order to create a training set. We evaluate and compare three types of machine learning algorithms, namely ARIMA (AutoRegressive Integrated Moving Average), MLP (Multi Layer Perceptron) and LSTM (Long Short-Term Memory), in order to predict the future bandwidth consumption. The LSTM outperforms ARIMA and MLP with very accurate predictions, rarely exceeding a 3\% error (40\% for ARIMA and 20\% for the MLP). We then show that the proposed solution can be used in real time with a reaction managed by a Software-Defined Networking (SDN) platform.
DataRater: Meta-Learned Dataset Curation
The quality of foundation models depends heavily on their training data. Consequently, great efforts have been put into dataset curation. Yet most approaches rely on manual tuning of coarse-grained mixtures of large buckets of data, or filtering by hand-crafted heuristics. An approach that is ultimately more scalable (let alone more satisfying) is to learn which data is actually valuable for training. This type of meta-learning could allow more sophisticated, fine-grained, and effective curation. Our proposed DataRater is an instance of this idea. It estimates the value of training on any particular data point. This is done by meta-learning using `meta-gradients', with the objective of improving training efficiency on held out data. In extensive experiments across a range of model scales and datasets, we find that using our DataRater to filter data is highly effective, resulting in significantly improved compute efficiency.
Data Portraits: Recording Foundation Model Training Data
Foundation models are trained on increasingly immense and opaque datasets. Even while these models are now key in AI system building, it can be difficult to answer the straightforward question: has the model already encountered a given example during training? We therefore propose a widespread adoption of Data Portraits: artifacts that record training data and allow for downstream inspection. First we outline the properties of such an artifact and discuss how existing solutions can be used to increase transparency. We then propose and implement a solution based on data sketching, stressing fast and space efficient querying. Using our tools, we document a popular language modeling corpus (The Pile) and a recently released code modeling dataset (The Stack). We show that our solution enables answering questions about test set leakage and model plagiarism. Our tool is lightweight and fast, costing only 3% of the dataset size in overhead. We release a live interface of our tools at https://dataportraits.org/ and call on dataset and model creators to release Data Portraits as a complement to current documentation practices.
SIESTA: Efficient Online Continual Learning with Sleep
In supervised continual learning, a deep neural network (DNN) is updated with an ever-growing data stream. Unlike the offline setting where data is shuffled, we cannot make any distributional assumptions about the data stream. Ideally, only one pass through the dataset is needed for computational efficiency. However, existing methods are inadequate and make many assumptions that cannot be made for real-world applications, while simultaneously failing to improve computational efficiency. In this paper, we do not propose a novel method. Instead, we present SIESTA, an incremental improvement to the continual learning algorithm REMIND. Unlike REMIND, SIESTA uses a wake/sleep framework for training, which is well aligned to the needs of on-device learning. SIESTA is far more computationally efficient than existing methods, enabling continual learning on ImageNet-1K in under 3 hours on a single GPU; moreover, in the augmentation-free setting it matches the performance of the offline learner, a milestone critical to driving adoption of continual learning in real-world applications.
R2D2: Reducing Redundancy and Duplication in Data Lakes
Enterprise data lakes often suffer from substantial amounts of duplicate and redundant data, with data volumes ranging from terabytes to petabytes. This leads to both increased storage costs and unnecessarily high maintenance costs for these datasets. In this work, we focus on identifying and reducing redundancy in enterprise data lakes by addressing the problem of 'dataset containment'. To the best of our knowledge, this is one of the first works that addresses table-level containment at a large scale. We propose R2D2: a three-step hierarchical pipeline that efficiently identifies almost all instances of containment by progressively reducing the search space in the data lake. It first builds (i) a schema containment graph, followed by (ii) statistical min-max pruning, and finally, (iii) content level pruning. We further propose minimizing the total storage and access costs by optimally identifying redundant datasets that can be deleted (and reconstructed on demand) while respecting latency constraints. We implement our system on Azure Databricks clusters using Apache Spark for enterprise data stored in ADLS Gen2, and on AWS clusters for open-source data. In contrast to existing modified baselines that are inaccurate or take several days to run, our pipeline can process an enterprise customer data lake at the TB scale in approximately 5 hours with high accuracy. We present theoretical results as well as extensive empirical validation on both enterprise (scale of TBs) and open-source datasets (scale of MBs - GBs), which showcase the effectiveness of our pipeline.
Generative models for wearables data
Data scarcity is a common obstacle in medical research due to the high costs associated with data collection and the complexity of gaining access to and utilizing data. Synthesizing health data may provide an efficient and cost-effective solution to this shortage, enabling researchers to explore distributions and populations that are not represented in existing observations or difficult to access due to privacy considerations. To that end, we have developed a multi-task self-attention model that produces realistic wearable activity data. We examine the characteristics of the generated data and quantify its similarity to genuine samples with both quantitative and qualitative approaches.
Aria-MIDI: A Dataset of Piano MIDI Files for Symbolic Music Modeling
We introduce an extensive new dataset of MIDI files, created by transcribing audio recordings of piano performances into their constituent notes. The data pipeline we use is multi-stage, employing a language model to autonomously crawl and score audio recordings from the internet based on their metadata, followed by a stage of pruning and segmentation using an audio classifier. The resulting dataset contains over one million distinct MIDI files, comprising roughly 100,000 hours of transcribed audio. We provide an in-depth analysis of our techniques, offering statistical insights, and investigate the content by extracting metadata tags, which we also provide. Dataset available at https://github.com/loubbrad/aria-midi.
Movie Gen: A Cast of Media Foundation Models
We present Movie Gen, a cast of foundation models that generates high-quality, 1080p HD videos with different aspect ratios and synchronized audio. We also show additional capabilities such as precise instruction-based video editing and generation of personalized videos based on a user's image. Our models set a new state-of-the-art on multiple tasks: text-to-video synthesis, video personalization, video editing, video-to-audio generation, and text-to-audio generation. Our largest video generation model is a 30B parameter transformer trained with a maximum context length of 73K video tokens, corresponding to a generated video of 16 seconds at 16 frames-per-second. We show multiple technical innovations and simplifications on the architecture, latent spaces, training objectives and recipes, data curation, evaluation protocols, parallelization techniques, and inference optimizations that allow us to reap the benefits of scaling pre-training data, model size, and training compute for training large scale media generation models. We hope this paper helps the research community to accelerate progress and innovation in media generation models. All videos from this paper are available at https://go.fb.me/MovieGenResearchVideos.
Zero-CPU Collection with Direct Telemetry Access
Programmable switches are driving a massive increase in fine-grained measurements. This puts significant pressure on telemetry collectors that have to process reports from many switches. Past research acknowledged this problem by either improving collectors' stack performance or by limiting the amount of data sent from switches. In this paper, we take a different and radical approach: switches are responsible for directly inserting queryable telemetry data into the collectors' memory, bypassing their CPU, and thereby improving their collection scalability. We propose to use a method we call direct telemetry access, where switches jointly write telemetry reports directly into the same collector's memory region, without coordination. Our solution, DART, is probabilistic, trading memory redundancy and query success probability for CPU resources at collectors. We prototype DART using commodity hardware such as P4 switches and RDMA NICs and show that we get high query success rates with a reasonable memory overhead. For example, we can collect INT path tracing information on a fat tree topology without a collector's CPU involvement while achieving 99.9\% query success probability and using just 300 bytes per flow.
OneFlow: Redesign the Distributed Deep Learning Framework from Scratch
Deep learning frameworks such as TensorFlow and PyTorch provide a productive interface for expressing and training a deep neural network (DNN) model on a single device or using data parallelism. Still, they may not be flexible or efficient enough in training emerging large models on distributed devices, which require more sophisticated parallelism beyond data parallelism. Plugins or wrappers have been developed to strengthen these frameworks for model or pipeline parallelism, but they complicate the usage and implementation of distributed deep learning. Aiming at a simple, neat redesign of distributed deep learning frameworks for various parallelism paradigms, we present OneFlow, a novel distributed training framework based on an SBP (split, broadcast and partial-value) abstraction and the actor model. SBP enables much easier programming of data parallelism and model parallelism than existing frameworks, and the actor model provides a succinct runtime mechanism to manage the complex dependencies imposed by resource constraints, data movement and computation in distributed deep learning. We demonstrate the general applicability and efficiency of OneFlow for training various large DNN models with case studies and extensive experiments. The results show that OneFlow outperforms many well-known customized libraries built on top of the state-of-the-art frameworks. The code of OneFlow is available at: https://github.com/Oneflow-Inc/oneflow.
Streaming Active Learning with Deep Neural Networks
Active learning is perhaps most naturally posed as an online learning problem. However, prior active learning approaches with deep neural networks assume offline access to the entire dataset ahead of time. This paper proposes VeSSAL, a new algorithm for batch active learning with deep neural networks in streaming settings, which samples groups of points to query for labels at the moment they are encountered. Our approach trades off between uncertainty and diversity of queried samples to match a desired query rate without requiring any hand-tuned hyperparameters. Altogether, we expand the applicability of deep neural networks to realistic active learning scenarios, such as applications relevant to HCI and large, fractured datasets.
InfiniPot-V: Memory-Constrained KV Cache Compression for Streaming Video Understanding
Modern multimodal large language models (MLLMs) can reason over hour-long video, yet their key-value (KV) cache grows linearly with time--quickly exceeding the fixed memory of phones, AR glasses, and edge robots. Prior compression schemes either assume the whole video and user query are available offline or must first build the full cache, so memory still scales with stream length. InfiniPot-V is the first training-free, query-agnostic framework that enforces a hard, length-independent memory cap for streaming video understanding. During video encoding it monitors the cache and, once a user-set threshold is reached, runs a lightweight compression pass that (i) removes temporally redundant tokens via Temporal-axis Redundancy (TaR) metric and (ii) keeps semantically significant tokens via Value-Norm (VaN) ranking. Across four open-source MLLMs and four long-video and two streaming-video benchmarks, InfiniPot-V cuts peak GPU memory by up to 94%, sustains real-time generation, and matches or surpasses full-cache accuracy--even in multi-turn dialogues. By dissolving the KV cache bottleneck without retraining or query knowledge, InfiniPot-V closes the gap for on-device streaming video assistants.
Applying Text Mining to Protest Stories as Voice against Media Censorship
Data driven activism attempts to collect, analyze and visualize data to foster social change. However, during media censorship it is often impossible to collect such data. Here we demonstrate that data from personal stories can also help us to gain insights about protests and activism which can work as a voice for the activists. We analyze protest story data by extracting location network from the stories and perform emotion mining to get insight about the protest.
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
In this paper, we propose Test-Time Training, a general approach for improving the performance of predictive models when training and test data come from different distributions. We turn a single unlabeled test sample into a self-supervised learning problem, on which we update the model parameters before making a prediction. This also extends naturally to data in an online stream. Our simple approach leads to improvements on diverse image classification benchmarks aimed at evaluating robustness to distribution shifts.
PCR: Proxy-based Contrastive Replay for Online Class-Incremental Continual Learning
Online class-incremental continual learning is a specific task of continual learning. It aims to continuously learn new classes from data stream and the samples of data stream are seen only once, which suffers from the catastrophic forgetting issue, i.e., forgetting historical knowledge of old classes. Existing replay-based methods effectively alleviate this issue by saving and replaying part of old data in a proxy-based or contrastive-based replay manner. Although these two replay manners are effective, the former would incline to new classes due to class imbalance issues, and the latter is unstable and hard to converge because of the limited number of samples. In this paper, we conduct a comprehensive analysis of these two replay manners and find that they can be complementary. Inspired by this finding, we propose a novel replay-based method called proxy-based contrastive replay (PCR). The key operation is to replace the contrastive samples of anchors with corresponding proxies in the contrastive-based way. It alleviates the phenomenon of catastrophic forgetting by effectively addressing the imbalance issue, as well as keeps a faster convergence of the model. We conduct extensive experiments on three real-world benchmark datasets, and empirical results consistently demonstrate the superiority of PCR over various state-of-the-art methods.
Scaling Retrieval-Based Language Models with a Trillion-Token Datastore
Scaling laws with respect to the amount of training data and the number of parameters allow us to predict the cost-benefit trade-offs of pretraining language models (LMs) in different configurations. In this paper, we consider another dimension of scaling: the amount of data available at inference time. Specifically, we find that increasing the size of the datastore used by a retrieval-based LM monotonically improves language modeling and several downstream tasks without obvious saturation, such that a smaller model augmented with a large datastore outperforms a larger LM-only model on knowledge-intensive tasks. By plotting compute-optimal scaling curves with varied datastore, model, and pretraining data sizes, we show that using larger datastores can significantly improve model performance for the same training compute budget. We carry out our study by constructing a 1.4 trillion-token datastore named MassiveDS, which is the largest and the most diverse open-sourced datastore for retrieval-based LMs to date, and designing an efficient pipeline for studying datastore scaling in a computationally accessible manner. Finally, we analyze the effect of improving the retriever, datastore quality filtering, and other design choices on our observed scaling trends. Overall, our results show that datastore size should be considered as an integral part of LM efficiency and performance trade-offs. To facilitate future research, we open-source our datastore and code at https://github.com/RulinShao/retrieval-scaling.
Data-Driven Time Series Reconstruction for Modern Power Systems Research
A critical aspect of power systems research is the availability of suitable data, access to which is limited by privacy concerns and the sensitive nature of energy infrastructure. This lack of data, in turn, hinders the development of modern research avenues such as machine learning approaches or stochastic formulations. To overcome this challenge, this paper proposes a systematic, data-driven framework for reconstructing high-fidelity time series, using publicly-available grid snapshots and historical data published by transmission system operators. The proposed approach, from geo-spatial data and generation capacity reconstruction, to time series disaggregation, is applied to the French transmission grid. Thereby, synthetic but highly realistic time series data, spanning multiple years with a 5-minute granularity, is generated at the individual component level.
FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset
The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning
Offline multi-agent reinforcement learning (MARL) is an exciting direction of research that uses static datasets to find optimal control policies for multi-agent systems. Though the field is by definition data-driven, efforts have thus far neglected data in their drive to achieve state-of-the-art results. We first substantiate this claim by surveying the literature, showing how the majority of works generate their own datasets without consistent methodology and provide sparse information about the characteristics of these datasets. We then show why neglecting the nature of the data is problematic, through salient examples of how tightly algorithmic performance is coupled to the dataset used, necessitating a common foundation for experiments in the field. In response, we take a big step towards improving data usage and data awareness in offline MARL, with three key contributions: (1) a clear guideline for generating novel datasets; (2) a standardisation of over 80 existing datasets, hosted in a publicly available repository, using a consistent storage format and easy-to-use API; and (3) a suite of analysis tools that allow us to understand these datasets better, aiding further development.
Using Data Analytics to Derive Business Intelligence: A Case Study
The data revolution experienced in recent times has thrown up new challenges and opportunities for businesses of all sizes in diverse industries. Big data analytics is already at the forefront of innovations to help make meaningful business decisions from the abundance of raw data available today. Business intelligence and analytics has become a huge trend in todays IT world as companies of all sizes are looking to improve their business processes and scale up using data driven solutions. This paper aims to demonstrate the data analytical process of deriving business intelligence via the historical data of a fictional bike share company seeking to find innovative ways to convert their casual riders to annual paying registered members. The dataset used is freely available as Chicago Divvy Bicycle Sharing Data on Kaggle. The authors used the RTidyverse library in RStudio to analyse the data and followed the six data analysis steps of ask, prepare, process, analyse, share, and act to recommend some actionable approaches the company could adopt to convert casual riders to paying annual members. The findings from this research serve as a valuable case example, of a real world deployment of BIA technologies in the industry, and a demonstration of the data analysis cycle for data practitioners, researchers, and other potential users.
AutoSDT: Scaling Data-Driven Discovery Tasks Toward Open Co-Scientists
Despite long-standing efforts in accelerating scientific discovery with AI, building AI co-scientists remains challenging due to limited high-quality data for training and evaluation. To tackle this data scarcity issue, we present AutoSDT, an automatic pipeline that collects high-quality coding tasks in real-world data-driven discovery workflows. AutoSDT leverages the coding capabilities and parametric knowledge of LLMs to search for diverse sources, select ecologically valid tasks, and synthesize accurate task instructions and code solutions. Using our pipeline, we construct AutoSDT-5K, a dataset of 5,404 coding tasks for data-driven discovery that covers four scientific disciplines and 756 unique Python packages. To the best of our knowledge, AutoSDT-5K is the only automatically collected and the largest open dataset for data-driven scientific discovery. Expert feedback on a subset of 256 tasks shows the effectiveness of AutoSDT: 93% of the collected tasks are ecologically valid, and 92.2% of the synthesized programs are functionally correct. Trained on AutoSDT-5K, the Qwen2.5-Coder-Instruct LLM series, dubbed AutoSDT-Coder, show substantial improvement on two challenging data-driven discovery benchmarks, ScienceAgentBench and DiscoveryBench. Most notably, AutoSDT-Coder-32B reaches the same level of performance as GPT-4o on ScienceAgentBench with a success rate of 7.8%, doubling the performance of its base model. On DiscoveryBench, it lifts the hypothesis matching score to 8.1, bringing a 17.4% relative improvement and closing the gap between open-weight models and GPT-4o.
Data Management For Large Language Models: A Survey
Data plays a fundamental role in the training of Large Language Models (LLMs). Effective data management, particularly in the formulation of a well-suited training dataset, holds significance for enhancing model performance and improving training efficiency during pretraining and supervised fine-tuning phases. Despite the considerable importance of data management, the current research community still falls short in providing a systematic analysis of the rationale behind management strategy selection, its consequential effects, methodologies for evaluating curated datasets, and the ongoing pursuit of improved strategies. Consequently, the exploration of data management has attracted more and more attention among the research community. This survey provides a comprehensive overview of current research in data management within both the pretraining and supervised fine-tuning stages of LLMs, covering various noteworthy aspects of data management strategy design: data quantity, data quality, domain/task composition, etc. Looking toward the future, we extrapolate existing challenges and outline promising directions for development in this field. Therefore, this survey serves as a guiding resource for practitioners aspiring to construct powerful LLMs through effective data management practices. The collection of the latest papers is available at https://github.com/ZigeW/data_management_LLM.
TAPEX: Table Pre-training via Learning a Neural SQL Executor
Recent progress in language model pre-training has achieved a great success via leveraging large-scale unstructured textual data. However, it is still a challenge to apply pre-training on structured tabular data due to the absence of large-scale high-quality tabular data. In this paper, we propose TAPEX to show that table pre-training can be achieved by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically synthesizing executable SQL queries and their execution outputs. TAPEX addresses the data scarcity challenge via guiding the language model to mimic a SQL executor on the diverse, large-scale and high-quality synthetic corpus. We evaluate TAPEX on four benchmark datasets. Experimental results demonstrate that TAPEX outperforms previous table pre-training approaches by a large margin and achieves new state-of-the-art results on all of them. This includes the improvements on the weakly-supervised WikiSQL denotation accuracy to 89.5% (+2.3%), the WikiTableQuestions denotation accuracy to 57.5% (+4.8%), the SQA denotation accuracy to 74.5% (+3.5%), and the TabFact accuracy to 84.2% (+3.2%). To our knowledge, this is the first work to exploit table pre-training via synthetic executable programs and to achieve new state-of-the-art results on various downstream tasks. Our code can be found at https://github.com/microsoft/Table-Pretraining.
Data Cards: Purposeful and Transparent Dataset Documentation for Responsible AI
As research and industry moves towards large-scale models capable of numerous downstream tasks, the complexity of understanding multi-modal datasets that give nuance to models rapidly increases. A clear and thorough understanding of a dataset's origins, development, intent, ethical considerations and evolution becomes a necessary step for the responsible and informed deployment of models, especially those in people-facing contexts and high-risk domains. However, the burden of this understanding often falls on the intelligibility, conciseness, and comprehensiveness of the documentation. It requires consistency and comparability across the documentation of all datasets involved, and as such documentation must be treated as a user-centric product in and of itself. In this paper, we propose Data Cards for fostering transparent, purposeful and human-centered documentation of datasets within the practical contexts of industry and research. Data Cards are structured summaries of essential facts about various aspects of ML datasets needed by stakeholders across a dataset's lifecycle for responsible AI development. These summaries provide explanations of processes and rationales that shape the data and consequently the models, such as upstream sources, data collection and annotation methods; training and evaluation methods, intended use; or decisions affecting model performance. We also present frameworks that ground Data Cards in real-world utility and human-centricity. Using two case studies, we report on desirable characteristics that support adoption across domains, organizational structures, and audience groups. Finally, we present lessons learned from deploying over 20 Data Cards.
eDWaaS: A Scalable Educational Data Warehouse as a Service
The university management is perpetually in the process of innovating policies to improve the quality of service. Intellectual growth of the students, the popularity of university are some of the major areas that management strives to improve upon. Relevant historical data is needed in support of taking any decision. Furthermore, providing data to various university ranking frameworks is a frequent activity in recent years. The format of such requirement changes frequently which requires efficient manual effort. Maintaining a data warehouse can be a solution to this problem. However, both in-house and outsourced implementation of a dedicated data warehouse may not be a cost-effective and smart solution. This work proposes an educational data warehouse as a service (eDWaaS) model to store historical data for multiple universities. The proposed multi-tenant schema facilitates the universities to maintain their data warehouse in a cost-effective solution. It also addresses the scalability issues in implementing such data warehouse as a service model.
"ScatSpotter" 2024 -- A Distributed Dog Poop Detection Dataset
We introduce a new -- currently 42 gigabyte -- ``living'' dataset of phone images of dog feces, annotated with manually drawn or AI-assisted polygon labels. There are 6k full resolution images and 4k detailed polygon annotations. The collection and annotation of images started in late 2020 and the dataset grows by roughly 1GB a month. We train VIT and MaskRCNN baseline models to explore the difficulty of the dataset. The best model achieves a pixelwise average precision of 0.858 on a 691-image validation set and 0.847 on a small independently captured 30-image contributor test set. The most recent snapshot of dataset is made publicly available through three different distribution methods: one centralized (Girder) and two decentralized (IPFS and BitTorrent). We study of the trade-offs between distribution methods and discuss the feasibility of each with respect to reliably sharing open scientific data. The code to reproduce the experiments is hosted on GitHub, and the data is published under the Creative Commons Attribution 4.0 International license. Model weights are made publicly available with the dataset. Experimental hardware, time, energy, and emissions are quantified.
Learn over Past, Evolve for Future: Forecasting Temporal Trends for Fake News Detection
Fake news detection has been a critical task for maintaining the health of the online news ecosystem. However, very few existing works consider the temporal shift issue caused by the rapidly-evolving nature of news data in practice, resulting in significant performance degradation when training on past data and testing on future data. In this paper, we observe that the appearances of news events on the same topic may display discernible patterns over time, and posit that such patterns can assist in selecting training instances that could make the model adapt better to future data. Specifically, we design an effective framework FTT (Forecasting Temporal Trends), which could forecast the temporal distribution patterns of news data and then guide the detector to fast adapt to future distribution. Experiments on the real-world temporally split dataset demonstrate the superiority of our proposed framework. The code is available at https://github.com/ICTMCG/FTT-ACL23.
Tabular Transformers for Modeling Multivariate Time Series
Tabular datasets are ubiquitous in data science applications. Given their importance, it seems natural to apply state-of-the-art deep learning algorithms in order to fully unlock their potential. Here we propose neural network models that represent tabular time series that can optionally leverage their hierarchical structure. This results in two architectures for tabular time series: one for learning representations that is analogous to BERT and can be pre-trained end-to-end and used in downstream tasks, and one that is akin to GPT and can be used for generation of realistic synthetic tabular sequences. We demonstrate our models on two datasets: a synthetic credit card transaction dataset, where the learned representations are used for fraud detection and synthetic data generation, and on a real pollution dataset, where the learned encodings are used to predict atmospheric pollutant concentrations. Code and data are available at https://github.com/IBM/TabFormer.
Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations
Large-scale recommendation systems are characterized by their reliance on high cardinality, heterogeneous features and the need to handle tens of billions of user actions on a daily basis. Despite being trained on huge volume of data with thousands of features, most Deep Learning Recommendation Models (DLRMs) in industry fail to scale with compute. Inspired by success achieved by Transformers in language and vision domains, we revisit fundamental design choices in recommendation systems. We reformulate recommendation problems as sequential transduction tasks within a generative modeling framework (``Generative Recommenders''), and propose a new architecture, HSTU, designed for high cardinality, non-stationary streaming recommendation data. HSTU outperforms baselines over synthetic and public datasets by up to 65.8\% in NDCG, and is 5.3x to 15.2x faster than FlashAttention2-based Transformers on 8192 length sequences. HSTU-based Generative Recommenders, with 1.5 trillion parameters, improve metrics in online A/B tests by 12.4\% and have been deployed on multiple surfaces of a large internet platform with billions of users. More importantly, the model quality of Generative Recommenders empirically scales as a power-law of training compute across three orders of magnitude, up to GPT-3/LLaMa-2 scale, which reduces carbon footprint needed for future model developments, and further paves the way for the first foundational models in recommendations.
Solving Data Quality Problems with Desbordante: a Demo
Data profiling is an essential process in modern data-driven industries. One of its critical components is the discovery and validation of complex statistics, including functional dependencies, data constraints, association rules, and others. However, most existing data profiling systems that focus on complex statistics do not provide proper integration with the tools used by contemporary data scientists. This creates a significant barrier to the adoption of these tools in the industry. Moreover, existing systems were not created with industrial-grade workloads in mind. Finally, they do not aim to provide descriptive explanations, i.e. why a given pattern is not found. It is a significant issue as it is essential to understand the underlying reasons for a specific pattern's absence to make informed decisions based on the data. Because of that, these patterns are effectively rest in thin air: their application scope is rather limited, they are rarely used by the broader public. At the same time, as we are going to demonstrate in this presentation, complex statistics can be efficiently used to solve many classic data quality problems. Desbordante is an open-source data profiler that aims to close this gap. It is built with emphasis on industrial application: it is efficient, scalable, resilient to crashes, and provides explanations. Furthermore, it provides seamless Python integration by offloading various costly operations to the C++ core, not only mining. In this demonstration, we show several scenarios that allow end users to solve different data quality problems. Namely, we showcase typo detection, data deduplication, and data anomaly detection scenarios.
Self-healing Nodes with Adaptive Data-Sharding
Data sharding, a technique for partitioning and distributing data among multiple servers or nodes, offers enhancements in the scalability, performance, and fault tolerance of extensive distributed systems. Nonetheless, this strategy introduces novel challenges, including load balancing among shards, management of node failures and data loss, and adaptation to evolving data and workload patterns. This paper proposes an innovative approach to tackle these challenges by empowering self-healing nodes with adaptive data sharding. Leveraging concepts such as self-replication, fractal regeneration, sentient data sharding, and symbiotic node clusters, our approach establishes a dynamic and resilient data sharding scheme capable of addressing diverse scenarios and meeting varied requirements. Implementation and evaluation of our approach involve a prototype system simulating a large-scale distributed database across various data sharding scenarios. Comparative analyses against existing data sharding techniques highlight the superior scalability, performance, fault tolerance, and adaptability of our approach. Additionally, the paper delves into potential applications and limitations, providing insights into the future research directions that can further advance this innovative approach.
3DLNews: A Three-decade Dataset of US Local News Articles
We present 3DLNews, a novel dataset with local news articles from the United States spanning the period from 1996 to 2024. It contains almost 1 million URLs (with HTML text) from over 14,000 local newspapers, TV, and radio stations across all 50 states, and provides a broad snapshot of the US local news landscape. The dataset was collected by scraping Google and Twitter search results. We employed a multi-step filtering process to remove non-news article links and enriched the dataset with metadata such as the names and geo-coordinates of the source news media organizations, article publication dates, etc. Furthermore, we demonstrated the utility of 3DLNews by outlining four applications.
Embedded Named Entity Recognition using Probing Classifiers
Extracting semantic information from generated text is a useful tool for applications such as automated fact checking or retrieval augmented generation. Currently, this requires either separate models during inference, which increases computational cost, or destructive fine-tuning of the language model. Instead, we propose directly embedding information extraction capabilities into pre-trained language models using probing classifiers, enabling efficient simultaneous text generation and information extraction. For this, we introduce an approach called EMBER and show that it enables named entity recognition in decoder-only language models without fine-tuning them and while incurring minimal additional computational cost at inference time. Specifically, our experiments using GPT-2 show that EMBER maintains high token generation rates during streaming text generation, with only a negligible decrease in speed of around 1% compared to a 43.64% slowdown measured for a baseline using a separate NER model. Code and data are available at https://github.com/nicpopovic/EMBER.
HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips
Learning text-video embeddings usually requires a dataset of video clips with manually provided captions. However, such datasets are expensive and time consuming to create and therefore difficult to obtain on a large scale. In this work, we propose instead to learn such embeddings from video data with readily available natural language annotations in the form of automatically transcribed narrations. The contributions of this work are three-fold. First, we introduce HowTo100M: a large-scale dataset of 136 million video clips sourced from 1.22M narrated instructional web videos depicting humans performing and describing over 23k different visual tasks. Our data collection procedure is fast, scalable and does not require any additional manual annotation. Second, we demonstrate that a text-video embedding trained on this data leads to state-of-the-art results for text-to-video retrieval and action localization on instructional video datasets such as YouCook2 or CrossTask. Finally, we show that this embedding transfers well to other domains: fine-tuning on generic Youtube videos (MSR-VTT dataset) and movies (LSMDC dataset) outperforms models trained on these datasets alone. Our dataset, code and models will be publicly available at: www.di.ens.fr/willow/research/howto100m/.
Allegro: Open the Black Box of Commercial-Level Video Generation Model
Significant advancements have been made in the field of video generation, with the open-source community contributing a wealth of research papers and tools for training high-quality models. However, despite these efforts, the available information and resources remain insufficient for achieving commercial-level performance. In this report, we open the black box and introduce Allegro, an advanced video generation model that excels in both quality and temporal consistency. We also highlight the current limitations in the field and present a comprehensive methodology for training high-performance, commercial-level video generation models, addressing key aspects such as data, model architecture, training pipeline, and evaluation. Our user study shows that Allegro surpasses existing open-source models and most commercial models, ranking just behind Hailuo and Kling. Code: https://github.com/rhymes-ai/Allegro , Model: https://huggingface.co/rhymes-ai/Allegro , Gallery: https://rhymes.ai/allegro_gallery .
PILOT: A Pre-Trained Model-Based Continual Learning Toolbox
While traditional machine learning can effectively tackle a wide range of problems, it primarily operates within a closed-world setting, which presents limitations when dealing with streaming data. As a solution, incremental learning emerges to address real-world scenarios involving new data's arrival. Recently, pre-training has made significant advancements and garnered the attention of numerous researchers. The strong performance of these pre-trained models (PTMs) presents a promising avenue for developing continual learning algorithms that can effectively adapt to real-world scenarios. Consequently, exploring the utilization of PTMs in incremental learning has become essential. This paper introduces a pre-trained model-based continual learning toolbox known as PILOT. On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt. On the other hand, PILOT also fits typical class-incremental learning algorithms (e.g., DER, FOSTER, and MEMO) within the context of pre-trained models to evaluate their effectiveness.
PyTorch Distributed: Experiences on Accelerating Data Parallel Training
This paper presents the design, implementation, and evaluation of the PyTorch distributed data parallel module. PyTorch is a widely-adopted scientific computing package used in deep learning research and applications. Recent advances in deep learning argue for the value of large datasets and large models, which necessitates the ability to scale out model training to more computational resources. Data parallelism has emerged as a popular solution for distributed training thanks to its straightforward principle and broad applicability. In general, the technique of distributed data parallelism replicates the model on every computational resource to generate gradients independently and then communicates those gradients at each iteration to keep model replicas consistent. Despite the conceptual simplicity of the technique, the subtle dependencies between computation and communication make it non-trivial to optimize the distributed training efficiency. As of v1.5, PyTorch natively provides several techniques to accelerate distributed data parallel, including bucketing gradients, overlapping computation with communication, and skipping gradient synchronization. Evaluations show that, when configured appropriately, the PyTorch distributed data parallel module attains near-linear scalability using 256 GPUs.
Large Scale Organization and Inference of an Imagery Dataset for Public Safety
Video applications and analytics are routinely projected as a stressing and significant service of the Nationwide Public Safety Broadband Network. As part of a NIST PSCR funded effort, the New Jersey Office of Homeland Security and Preparedness and MIT Lincoln Laboratory have been developing a computer vision dataset of operational and representative public safety scenarios. The scale and scope of this dataset necessitates a hierarchical organization approach for efficient compute and storage. We overview architectural considerations using the Lincoln Laboratory Supercomputing Cluster as a test architecture. We then describe how we intelligently organized the dataset across LLSC and evaluated it with large scale imagery inference across terabytes of data.
Computing in the Era of Large Generative Models: From Cloud-Native to AI-Native
In this paper, we investigate the intersection of large generative AI models and cloud-native computing architectures. Recent large models such as ChatGPT, while revolutionary in their capabilities, face challenges like escalating costs and demand for high-end GPUs. Drawing analogies between large-model-as-a-service (LMaaS) and cloud database-as-a-service (DBaaS), we describe an AI-native computing paradigm that harnesses the power of both cloud-native technologies (e.g., multi-tenancy and serverless computing) and advanced machine learning runtime (e.g., batched LoRA inference). These joint efforts aim to optimize costs-of-goods-sold (COGS) and improve resource accessibility. The journey of merging these two domains is just at the beginning and we hope to stimulate future research and development in this area.
Large Language Models(LLMs) on Tabular Data: Prediction, Generation, and Understanding -- A Survey
Recent breakthroughs in large language modeling have facilitated rigorous exploration of their application in diverse tasks related to tabular data modeling, such as prediction, tabular data synthesis, question answering, and table understanding. Each task presents unique challenges and opportunities. However, there is currently a lack of comprehensive review that summarizes and compares the key techniques, metrics, datasets, models, and optimization approaches in this research domain. This survey aims to address this gap by consolidating recent progress in these areas, offering a thorough survey and taxonomy of the datasets, metrics, and methodologies utilized. It identifies strengths, limitations, unexplored territories, and gaps in the existing literature, while providing some insights for future research directions in this vital and rapidly evolving field. It also provides relevant code and datasets references. Through this comprehensive review, we hope to provide interested readers with pertinent references and insightful perspectives, empowering them with the necessary tools and knowledge to effectively navigate and address the prevailing challenges in the field.
SemiPFL: Personalized Semi-Supervised Federated Learning Framework for Edge Intelligence
Recent advances in wearable devices and Internet-of-Things (IoT) have led to massive growth in sensor data generated in edge devices. Labeling such massive data for classification tasks has proven to be challenging. In addition, data generated by different users bear various personal attributes and edge heterogeneity, rendering it impractical to develop a global model that adapts well to all users. Concerns over data privacy and communication costs also prohibit centralized data accumulation and training. We propose SemiPFL that supports edge users having no label or limited labeled datasets and a sizable amount of unlabeled data that is insufficient to train a well-performing model. In this work, edge users collaborate to train a Hyper-network in the server, generating personalized autoencoders for each user. After receiving updates from edge users, the server produces a set of base models for each user, which the users locally aggregate them using their own labeled dataset. We comprehensively evaluate our proposed framework on various public datasets from a wide range of application scenarios, from wearable health to IoT, and demonstrate that SemiPFL outperforms state-of-art federated learning frameworks under the same assumptions regarding user performance, network footprint, and computational consumption. We also show that the solution performs well for users without label or having limited labeled datasets and increasing performance for increased labeled data and number of users, signifying the effectiveness of SemiPFL for handling data heterogeneity and limited annotation. We also demonstrate the stability of SemiPFL for handling user hardware resource heterogeneity in three real-time scenarios.
OpenTwins: An open-source framework for the design, development and integration of effective 3D-IoT-AI-powered digital twins
Although digital twins have recently emerged as a clear alternative for reliable asset representations, most of the solutions and tools available for the development of digital twins are tailored to specific environments. Furthermore, achieving reliable digital twins often requires the orchestration of technologies and paradigms such as machine learning, the Internet of Things, and 3D visualization, which are rarely seamlessly aligned. In this paper, we present a generic framework for the development of effective digital twins combining some of the aforementioned areas. In this open framework, digital twins can be easily developed and orchestrated with 3D connected visualizations, IoT data streams, and real-time machine-learning predictions. To demonstrate the feasibility of the framework, a use case in the Petrochemical Industry 4.0 has been developed.
The Cambridge Report on Database Research
On October 19 and 20, 2023, the authors of this report convened in Cambridge, MA, to discuss the state of the database research field, its recent accomplishments and ongoing challenges, and future directions for research and community engagement. This gathering continues a long standing tradition in the database community, dating back to the late 1980s, in which researchers meet roughly every five years to produce a forward looking report. This report summarizes the key takeaways from our discussions. We begin with a retrospective on the academic, open source, and commercial successes of the community over the past five years. We then turn to future opportunities, with a focus on core data systems, particularly in the context of cloud computing and emerging hardware, as well as on the growing impact of data science, data governance, and generative AI. This document is not intended as an exhaustive survey of all technical challenges or industry innovations in the field. Rather, it reflects the perspectives of senior community members on the most pressing challenges and promising opportunities ahead.
VCR: Video representation for Contextual Retrieval
Streamlining content discovery within media archives requires integrating advanced data representations and effective visualization techniques for clear communication of video topics to users. The proposed system addresses the challenge of efficiently navigating large video collections by exploiting a fusion of visual, audio, and textual features to accurately index and categorize video content through a text-based method. Additionally, semantic embeddings are employed to provide contextually relevant information and recommendations to users, resulting in an intuitive and engaging exploratory experience over our topics ontology map using OpenAI GPT-4.
A Feature-space Multimodal Data Augmentation Technique for Text-video Retrieval
Every hour, huge amounts of visual contents are posted on social media and user-generated content platforms. To find relevant videos by means of a natural language query, text-video retrieval methods have received increased attention over the past few years. Data augmentation techniques were introduced to increase the performance on unseen test examples by creating new training samples with the application of semantics-preserving techniques, such as color space or geometric transformations on images. Yet, these techniques are usually applied on raw data, leading to more resource-demanding solutions and also requiring the shareability of the raw data, which may not always be true, e.g. copyright issues with clips from movies or TV series. To address this shortcoming, we propose a multimodal data augmentation technique which works in the feature space and creates new videos and captions by mixing semantically similar samples. We experiment our solution on a large scale public dataset, EPIC-Kitchens-100, and achieve considerable improvements over a baseline method, improved state-of-the-art performance, while at the same time performing multiple ablation studies. We release code and pretrained models on Github at https://github.com/aranciokov/FSMMDA_VideoRetrieval.
AutoPureData: Automated Filtering of Web Data for LLM Fine-tuning
Up-to-date and reliable Large Language Models (LLMs) are consistently sought after. Typically, LLMs are trained on a fixed dataset and then deployed. However, the training data continually becomes outdated. Enable automatic training of AI using web data involves significant concerns regarding data quality and safety due to bias, spam, and other unsafe or unwanted text. Pure data is essential for producing reliable models. Training a model on impure data may result in undesirable outcomes. This research proposes a system that collects web data and automatically filters out unwanted text with the assistance of existing trusted AI models. In the experiment, a small sample of web data was collected and filtered, demonstrating the system's effectiveness in purifying the data.
Fabricator: An Open Source Toolkit for Generating Labeled Training Data with Teacher LLMs
Most NLP tasks are modeled as supervised learning and thus require labeled training data to train effective models. However, manually producing such data at sufficient quality and quantity is known to be costly and time-intensive. Current research addresses this bottleneck by exploring a novel paradigm called zero-shot learning via dataset generation. Here, a powerful LLM is prompted with a task description to generate labeled data that can be used to train a downstream NLP model. For instance, an LLM might be prompted to "generate 500 movie reviews with positive overall sentiment, and another 500 with negative sentiment." The generated data could then be used to train a binary sentiment classifier, effectively leveraging an LLM as a teacher to a smaller student model. With this demo, we introduce Fabricator, an open-source Python toolkit for dataset generation. Fabricator implements common dataset generation workflows, supports a wide range of downstream NLP tasks (such as text classification, question answering, and entity recognition), and is integrated with well-known libraries to facilitate quick experimentation. With Fabricator, we aim to support researchers in conducting reproducible dataset generation experiments using LLMs and help practitioners apply this approach to train models for downstream tasks.
Training Transformers Together
The infrastructure necessary for training state-of-the-art models is becoming overly expensive, which makes training such models affordable only to large corporations and institutions. Recent work proposes several methods for training such models collaboratively, i.e., by pooling together hardware from many independent parties and training a shared model over the Internet. In this demonstration, we collaboratively trained a text-to-image transformer similar to OpenAI DALL-E. We invited the viewers to join the ongoing training run, showing them instructions on how to contribute using the available hardware. We explained how to address the engineering challenges associated with such a training run (slow communication, limited memory, uneven performance between devices, and security concerns) and discussed how the viewers can set up collaborative training runs themselves. Finally, we show that the resulting model generates images of reasonable quality on a number of prompts.
KAIROS: Building Cost-Efficient Machine Learning Inference Systems with Heterogeneous Cloud Resources
Online inference is becoming a key service product for many businesses, deployed in cloud platforms to meet customer demands. Despite their revenue-generation capability, these services need to operate under tight Quality-of-Service (QoS) and cost budget constraints. This paper introduces KAIROS, a novel runtime framework that maximizes the query throughput while meeting QoS target and a cost budget. KAIROS designs and implements novel techniques to build a pool of heterogeneous compute hardware without online exploration overhead, and distribute inference queries optimally at runtime. Our evaluation using industry-grade deep learning (DL) models shows that KAIROS yields up to 2X the throughput of an optimal homogeneous solution, and outperforms state-of-the-art schemes by up to 70%, despite advantageous implementations of the competing schemes to ignore their exploration overhead.
Infrastructure for Usable Machine Learning: The Stanford DAWN Project
Despite incredible recent advances in machine learning, building machine learning applications remains prohibitively time-consuming and expensive for all but the best-trained, best-funded engineering organizations. This expense comes not from a need for new and improved statistical models but instead from a lack of systems and tools for supporting end-to-end machine learning application development, from data preparation and labeling to productionization and monitoring. In this document, we outline opportunities for infrastructure supporting usable, end-to-end machine learning applications in the context of the nascent DAWN (Data Analytics for What's Next) project at Stanford.
DeFine: A Decomposed and Fine-Grained Annotated Dataset for Long-form Article Generation
Long-form article generation (LFAG) presents challenges such as maintaining logical consistency, comprehensive topic coverage, and narrative coherence across extended articles. Existing datasets often lack both the hierarchical structure and fine-grained annotation needed to effectively decompose tasks, resulting in shallow, disorganized article generation. To address these limitations, we introduce DeFine, a Decomposed and Fine-grained annotated dataset for long-form article generation. DeFine is characterized by its hierarchical decomposition strategy and the integration of domain-specific knowledge with multi-level annotations, ensuring granular control and enhanced depth in article generation. To construct the dataset, a multi-agent collaborative pipeline is proposed, which systematically segments the generation process into four parts: Data Miner, Cite Retreiver, Q&A Annotator and Data Cleaner. To validate the effectiveness of DeFine, we designed and tested three LFAG baselines: the web retrieval, the local retrieval, and the grounded reference. We fine-tuned the Qwen2-7b-Instruct model using the DeFine training dataset. The experimental results showed significant improvements in text quality, specifically in topic coverage, depth of information, and content fidelity. Our dataset publicly available to facilitate future research.
Mapping the Podcast Ecosystem with the Structured Podcast Research Corpus
Podcasts provide highly diverse content to a massive listener base through a unique on-demand modality. However, limited data has prevented large-scale computational analysis of the podcast ecosystem. To fill this gap, we introduce a massive dataset of over 1.1M podcast transcripts that is largely comprehensive of all English language podcasts available through public RSS feeds from May and June of 2020. This data is not limited to text, but rather includes audio features and speaker turns for a subset of 370K episodes, and speaker role inferences and other metadata for all 1.1M episodes. Using this data, we also conduct a foundational investigation into the content, structure, and responsiveness of this ecosystem. Together, our data and analyses open the door to continued computational research of this popular and impactful medium.
Essential-Web v1.0: 24T tokens of organized web data
Data plays the most prominent role in how language models acquire skills and knowledge. The lack of massive, well-organized pre-training datasets results in costly and inaccessible data pipelines. We present Essential-Web v1.0, a 24-trillion-token dataset in which every document is annotated with a twelve-category taxonomy covering topic, format, content complexity, and quality. Taxonomy labels are produced by EAI-Distill-0.5b, a fine-tuned 0.5b-parameter model that achieves an annotator agreement within 3% of Qwen2.5-32B-Instruct. With nothing more than SQL-style filters, we obtain competitive web-curated datasets in math (-8.0% relative to SOTA), web code (+14.3%), STEM (+24.5%) and medical (+8.6%). Essential-Web v1.0 is available on HuggingFace: https://huggingface.co/datasets/EssentialAI/essential-web-v1.0
SC2EGSet: StarCraft II Esport Replay and Game-state Dataset
As a relatively new form of sport, esports offers unparalleled data availability. Despite the vast amounts of data that are generated by game engines, it can be challenging to extract them and verify their integrity for the purposes of practical and scientific use. Our work aims to open esports to a broader scientific community by supplying raw and pre-processed files from StarCraft II esports tournaments. These files can be used in statistical and machine learning modeling tasks and related to various laboratory-based measurements (e.g., behavioral tests, brain imaging). We have gathered publicly available game-engine generated "replays" of tournament matches and performed data extraction and cleanup using a low-level application programming interface (API) parser library. Additionally, we open-sourced and published all the custom tools that were developed in the process of creating our dataset. These tools include PyTorch and PyTorch Lightning API abstractions to load and model the data. Our dataset contains replays from major and premiere StarCraft II tournaments since 2016. To prepare the dataset, we processed 55 tournament "replaypacks" that contained 17930 files with game-state information. Based on initial investigation of available StarCraft II datasets, we observed that our dataset is the largest publicly available source of StarCraft II esports data upon its publication. Analysis of the extracted data holds promise for further Artificial Intelligence (AI), Machine Learning (ML), psychological, Human-Computer Interaction (HCI), and sports-related studies in a variety of supervised and self-supervised tasks.
Data-centric Artificial Intelligence: A Survey
Artificial Intelligence (AI) is making a profound impact in almost every domain. A vital enabler of its great success is the availability of abundant and high-quality data for building machine learning models. Recently, the role of data in AI has been significantly magnified, giving rise to the emerging concept of data-centric AI. The attention of researchers and practitioners has gradually shifted from advancing model design to enhancing the quality and quantity of the data. In this survey, we discuss the necessity of data-centric AI, followed by a holistic view of three general data-centric goals (training data development, inference data development, and data maintenance) and the representative methods. We also organize the existing literature from automation and collaboration perspectives, discuss the challenges, and tabulate the benchmarks for various tasks. We believe this is the first comprehensive survey that provides a global view of a spectrum of tasks across various stages of the data lifecycle. We hope it can help the readers efficiently grasp a broad picture of this field, and equip them with the techniques and further research ideas to systematically engineer data for building AI systems. A companion list of data-centric AI resources will be regularly updated on https://github.com/daochenzha/data-centric-AI
FastWARC: Optimizing Large-Scale Web Archive Analytics
Web search and other large-scale web data analytics rely on processing archives of web pages stored in a standardized and efficient format. Since its introduction in 2008, the IIPC's Web ARCive (WARC) format has become the standard format for this purpose. As a list of individually compressed records of HTTP requests and responses, it allows for constant-time random access to all kinds of web data via off-the-shelf open source parsers in many programming languages, such as WARCIO, the de-facto standard for Python. When processing web archives at the terabyte or petabyte scale, however, even small inefficiencies in these tools add up quickly, resulting in hours, days, or even weeks of wasted compute time. Reviewing the basic components of WARCIO and analyzing its bottlenecks, we proceed to build FastWARC, a new high-performance WARC processing library for Python, written in C++/Cython, which yields performance improvements by factors of 1.6-8x.
WanJuan: A Comprehensive Multimodal Dataset for Advancing English and Chinese Large Models
The rise in popularity of ChatGPT and GPT-4 has significantly accelerated the development of large models, leading to the creation of numerous impressive large language models(LLMs) and multimodal large language models (MLLMs). These cutting-edge models owe their remarkable performance to high-quality data. However, the details of the training data used in leading paradigms are often kept confidential. This lack of transparency, coupled with the scarcity of open-source data, impedes further developments within the community. As a response, this paper presents "Wan Juan", a large-scale multimodal dataset composed of both Chinese and English data, collected from a wide range of web sources. The dataset incorporates text, image-text, and video modalities, with a total volume exceeding 2TB. It was utilized in the training of InternLM, a model that demonstrated significant advantages in multi-dimensional evaluations when compared to models of a similar scale. All data can be accessed at https://opendatalab.org.cn/WanJuan1.0.
Large Language Model Adaptation for Networking
Many networking tasks now employ deep learning (DL) to solve complex prediction and system optimization problems. However, current design philosophy of DL-based algorithms entails intensive engineering overhead due to the manual design of deep neural networks (DNNs) for different networking tasks. Besides, DNNs tend to achieve poor generalization performance on unseen data distributions/environments. Motivated by the recent success of large language models (LLMs), for the first time, this work studies the LLM adaptation for networking to explore a more sustainable design philosophy. With the massive pre-trained knowledge and powerful inference ability, LLM can serve as the foundation model, and is expected to achieve "one model for all" with even better performance and stronger generalization for various tasks. In this paper, we present NetLLM, the first LLM adaptation framework that efficiently adapts LLMs to solve networking problems. NetLLM addresses many practical challenges in LLM adaptation, from how to process task-specific information with LLMs, to how to improve the efficiency of answer generation and acquiring domain knowledge for networking. Across three networking-related use cases - viewport prediction (VP), adaptive bitrate streaming (ABR) and cluster job scheduling (CJS), we showcase the effectiveness of NetLLM in LLM adaptation for networking. Results show that the adapted LLM surpasses state-of-the-art algorithms by 10.1-36.6% for VP, 14.5-36.6% for ABR, 6.8-41.3% for CJS, and also achieves superior generalization performance.
Data Efficiency for Large Recommendation Models
Large recommendation models (LRMs) are fundamental to the multi-billion dollar online advertising industry, processing massive datasets of hundreds of billions of examples before transitioning to continuous online training to adapt to rapidly changing user behavior. The massive scale of data directly impacts both computational costs and the speed at which new methods can be evaluated (R&D velocity). This paper presents actionable principles and high-level frameworks to guide practitioners in optimizing training data requirements. These strategies have been successfully deployed in Google's largest Ads CTR prediction models and are broadly applicable beyond LRMs. We outline the concept of data convergence, describe methods to accelerate this convergence, and finally, detail how to optimally balance training data volume with model size.
IDEL: In-Database Entity Linking with Neural Embeddings
We present a novel architecture, In-Database Entity Linking (IDEL), in which we integrate the analytics-optimized RDBMS MonetDB with neural text mining abilities. Our system design abstracts core tasks of most neural entity linking systems for MonetDB. To the best of our knowledge, this is the first defacto implemented system integrating entity-linking in a database. We leverage the ability of MonetDB to support in-database-analytics with user defined functions (UDFs) implemented in Python. These functions call machine learning libraries for neural text mining, such as TensorFlow. The system achieves zero cost for data shipping and transformation by utilizing MonetDB's ability to embed Python processes in the database kernel and exchange data in NumPy arrays. IDEL represents text and relational data in a joint vector space with neural embeddings and can compensate errors with ambiguous entity representations. For detecting matching entities, we propose a novel similarity function based on joint neural embeddings which are learned via minimizing pairwise contrastive ranking loss. This function utilizes a high dimensional index structures for fast retrieval of matching entities. Our first implementation and experiments using the WebNLG corpus show the effectiveness and the potentials of IDEL.
trajdata: A Unified Interface to Multiple Human Trajectory Datasets
The field of trajectory forecasting has grown significantly in recent years, partially owing to the release of numerous large-scale, real-world human trajectory datasets for autonomous vehicles (AVs) and pedestrian motion tracking. While such datasets have been a boon for the community, they each use custom and unique data formats and APIs, making it cumbersome for researchers to train and evaluate methods across multiple datasets. To remedy this, we present trajdata: a unified interface to multiple human trajectory datasets. At its core, trajdata provides a simple, uniform, and efficient representation and API for trajectory and map data. As a demonstration of its capabilities, in this work we conduct a comprehensive empirical evaluation of existing trajectory datasets, providing users with a rich understanding of the data underpinning much of current pedestrian and AV motion forecasting research, and proposing suggestions for future datasets from these insights. trajdata is permissively licensed (Apache 2.0) and can be accessed online at https://github.com/NVlabs/trajdata
StreamAdapter: Efficient Test Time Adaptation from Contextual Streams
In-context learning (ICL) allows large language models (LLMs) to adapt to new tasks directly from the given demonstrations without requiring gradient updates. While recent advances have expanded context windows to accommodate more demonstrations, this approach increases inference costs without necessarily improving performance. To mitigate these issues, We propose StreamAdapter, a novel approach that directly updates model parameters from context at test time, eliminating the need for explicit in-context demonstrations. StreamAdapter employs context mapping and weight absorption mechanisms to dynamically transform ICL demonstrations into parameter updates with minimal additional parameters. By reducing reliance on numerous in-context examples, StreamAdapter significantly reduce inference costs and allows for efficient inference with constant time complexity, regardless of demonstration count. Extensive experiments across diverse tasks and model architectures demonstrate that StreamAdapter achieves comparable or superior adaptation capability to ICL while requiring significantly fewer demonstrations. The superior task adaptation and context encoding capabilities of StreamAdapter on both language understanding and generation tasks provides a new perspective for adapting LLMs at test time using context, allowing for more efficient adaptation across scenarios and more cost-effective inference
Data Mixing Made Efficient: A Bivariate Scaling Law for Language Model Pretraining
Large language models exhibit exceptional generalization capabilities, primarily attributed to the utilization of diversely sourced data. However, conventional practices in integrating this diverse data heavily rely on heuristic schemes, lacking theoretical guidance. This research tackles these limitations by investigating strategies based on low-cost proxies for data mixtures, with the aim of streamlining data curation to enhance training efficiency. Specifically, we propose a unified scaling law, termed BiMix, which accurately models the bivariate scaling behaviors of both data quantity and mixing proportions. We conduct systematic experiments and provide empirical evidence for the predictive power and fundamental principles of BiMix. Notably, our findings reveal that entropy-driven training-free data mixtures can achieve comparable or even better performance than more resource-intensive methods. We hope that our quantitative insights can shed light on further judicious research and development in cost-effective language modeling.
Supervised Compression for Resource-Constrained Edge Computing Systems
There has been much interest in deploying deep learning algorithms on low-powered devices, including smartphones, drones, and medical sensors. However, full-scale deep neural networks are often too resource-intensive in terms of energy and storage. As a result, the bulk part of the machine learning operation is therefore often carried out on an edge server, where the data is compressed and transmitted. However, compressing data (such as images) leads to transmitting information irrelevant to the supervised task. Another popular approach is to split the deep network between the device and the server while compressing intermediate features. To date, however, such split computing strategies have barely outperformed the aforementioned naive data compression baselines due to their inefficient approaches to feature compression. This paper adopts ideas from knowledge distillation and neural image compression to compress intermediate feature representations more efficiently. Our supervised compression approach uses a teacher model and a student model with a stochastic bottleneck and learnable prior for entropy coding (Entropic Student). We compare our approach to various neural image and feature compression baselines in three vision tasks and found that it achieves better supervised rate-distortion performance while maintaining smaller end-to-end latency. We furthermore show that the learned feature representations can be tuned to serve multiple downstream tasks.
StreamBP: Memory-Efficient Exact Backpropagation for Long Sequence Training of LLMs
Training language models on long sequence data is a demanding requirement for enhancing the model's capability on complex tasks, e.g., long-chain reasoning. However, as the sequence length scales up, the memory cost for storing activation values becomes huge during the Backpropagation (BP) process, even with the application of gradient checkpointing technique. To tackle this challenge, we propose a memory-efficient and exact BP method called StreamBP, which performs a linear decomposition of the chain rule along the sequence dimension in a layer-wise manner, significantly reducing the memory cost of activation values and logits. The proposed method is applicable to common objectives such as SFT, GRPO, and DPO. From an implementation perspective, StreamBP achieves less computational FLOPs and faster BP speed by leveraging the causal structure of the language model. Compared to gradient checkpointing, StreamBP scales up the maximum sequence length of BP by 2.8-5.5 times larger, while using comparable or even less BP time. Note that StreamBP's sequence length scaling ability can be directly transferred to batch size scaling for accelerating training. We further develop a communication-efficient distributed StreamBP to effectively support multi-GPU training and broaden its applicability. Our code can be easily integrated into the training pipeline of any transformer models and is available at https://github.com/Ledzy/StreamBP.
3D radio data visualisation in open science platforms for next-generation observatories
Next-generation telescopes will bring groundbreaking discoveries but they will also present new technological challenges. The Square Kilometre Array Observatory (SKAO) will be one of the most demanding scientific infrastructures, with a projected data output of 700 PB per year to be distributed to a network of SKA Regional Centres. Current tools are not fully suited to manage such massive data volumes, therefore, new research is required to transform science archives from data providers into service providers. In this paper we examine how a science archive can deliver advanced visualisation capabilities for the SKA science archive. In particular, we have conducted a thorough exploration of existing visualisation software for astronomy and other fields to identify tools capable of addressing Big Data requirements. Using selected technologies, we have developed a prototype archive that provides access to interactive visualisations of 3D radio data through web-based interfaces, adhering to International Virtual Observatory Alliance (IVOA) recommendations to favour interoperability and Open Science practices. In addition, we discuss how current IVOA recommendations support these visualisation capabilities and how they could be expanded. Our prototype archive includes a service to generate 3D models on the fly as a server operation, enabling remote visualisations in a flexible manner; for instance, a set of parameters can be used to customise the models and their visualisation. We have used SKA precursor and pathfinder data to test its usability and scalability, concluding that remote visualisation is a viable solution for handling high-volume data. However, our prototype is constrained by memory limitations, requiring techniques to reduce memory usage.
Scaling Data-Constrained Language Models
The current trend of scaling language models involves increasing both parameter count and training dataset size. Extrapolating this trend suggests that training dataset size may soon be limited by the amount of text data available on the internet. Motivated by this limit, we investigate scaling language models in data-constrained regimes. Specifically, we run a large set of experiments varying the extent of data repetition and compute budget, ranging up to 900 billion training tokens and 9 billion parameter models. We find that with constrained data for a fixed compute budget, training with up to 4 epochs of repeated data yields negligible changes to loss compared to having unique data. However, with more repetition, the value of adding compute eventually decays to zero. We propose and empirically validate a scaling law for compute optimality that accounts for the decreasing value of repeated tokens and excess parameters. Finally, we experiment with approaches mitigating data scarcity, including augmenting the training dataset with code data or removing commonly used filters. Models and datasets from our 400 training runs are publicly available at https://github.com/huggingface/datablations.
Wikidata-lite for Knowledge Extraction and Exploration
Wikidata is the largest collaborative general knowledge graph supported by a worldwide community. It includes many helpful topics for knowledge exploration and data science applications. However, due to the enormous size of Wikidata, it is challenging to retrieve a large amount of data with millions of results, make complex queries requiring large aggregation operations, or access too many statement references. This paper introduces our preliminary works on Wikidata-lite, a toolkit to build a database offline for knowledge extraction and exploration, e.g., retrieving item information, statements, provenances, or searching entities by their keywords and attributes. Wikidata-lite has high performance and memory efficiency, much faster than the official Wikidata SPARQL endpoint for big queries. The Wikidata-lite repository is available at https://github.com/phucty/wikidb.
Fine Tuning LLM for Enterprise: Practical Guidelines and Recommendations
There is a compelling necessity from enterprises for fine tuning LLMs (Large Language Models) o get them trained on proprietary domain knowledge. The challenge is to imbibe the LLMs with domain specific knowledge using the most optimial resource and cost and in the best possible time. Many enterprises rely on RAG (Retrieval Augmented Generation) which does not need LLMs to be ine-tuned but they are limited by the quality of vector databases and their retrieval capabilities rather than the intrinsic capabilities of the LLMs themselves. In our current work we focus on fine tuning LLaMA, an open source LLM using proprietary documents and code from an enterprise repository and use the fine tuned models to evaluate the quality of responses. As part of this work, we aim to guide beginners on how to start with fine tuning an LLM for documentation and code by making educated guesses on size of GPU required and options that are available for formatting the data. We also propose pre processing recipes for both documentation and code to prepare dataset in different formats. The proposed methods of data preparation for document datasets are forming paragraph chunks, forming question and answer pairs and forming keyword and paragraph chunk pairs. For code dataset we propose forming summary and function pairs. Further, we qualitatively evaluate the results of the models for domain specific queries. Finally, we also propose practical guidelines and recommendations for fine tuning LLMs.
A new paradigm for accelerating clinical data science at Stanford Medicine
Stanford Medicine is building a new data platform for our academic research community to do better clinical data science. Hospitals have a large amount of patient data and researchers have demonstrated the ability to reuse that data and AI approaches to derive novel insights, support patient care, and improve care quality. However, the traditional data warehouse and Honest Broker approaches that are in current use, are not scalable. We are establishing a new secure Big Data platform that aims to reduce time to access and analyze data. In this platform, data is anonymized to preserve patient data privacy and made available preparatory to Institutional Review Board (IRB) submission. Furthermore, the data is standardized such that analysis done at Stanford can be replicated elsewhere using the same analytical code and clinical concepts. Finally, the analytics data warehouse integrates with a secure data science computational facility to support large scale data analytics. The ecosystem is designed to bring the modern data science community to highly sensitive clinical data in a secure and collaborative big data analytics environment with a goal to enable bigger, better and faster science.
Yambda-5B -- A Large-Scale Multi-modal Dataset for Ranking And Retrieval
We present Yambda-5B, a large-scale open dataset sourced from the Yandex.Music streaming platform. Yambda-5B contains 4.79 billion user-item interactions from 1 million users across 9.39 million tracks. The dataset includes two primary types of interactions: implicit feedback (listening events) and explicit feedback (likes, dislikes, unlikes and undislikes). In addition, we provide audio embeddings for most tracks, generated by a convolutional neural network trained on audio spectrograms. A key distinguishing feature of Yambda-5B is the inclusion of the is_organic flag, which separates organic user actions from recommendation-driven events. This distinction is critical for developing and evaluating machine learning algorithms, as Yandex.Music relies on recommender systems to personalize track selection for users. To support rigorous benchmarking, we introduce an evaluation protocol based on a Global Temporal Split, allowing recommendation algorithms to be assessed in conditions that closely mirror real-world use. We report benchmark results for standard baselines (ItemKNN, iALS) and advanced models (SANSA, SASRec) using a variety of evaluation metrics. By releasing Yambda-5B to the community, we aim to provide a readily accessible, industrial-scale resource to advance research, foster innovation, and promote reproducible results in recommender systems.
SPARQL as a Foreign Language
In the last years, the Linked Data Cloud has achieved a size of more than 100 billion facts pertaining to a multitude of domains. However, accessing this information has been significantly challenging for lay users. Approaches to problems such as Question Answering on Linked Data and Link Discovery have notably played a role in increasing information access. These approaches are often based on handcrafted and/or statistical models derived from data observation. Recently, Deep Learning architectures based on Neural Networks called seq2seq have shown to achieve state-of-the-art results at translating sequences into sequences. In this direction, we propose Neural SPARQL Machines, end-to-end deep architectures to translate any natural language expression into sentences encoding SPARQL queries. Our preliminary results, restricted on selected DBpedia classes, show that Neural SPARQL Machines are a promising approach for Question Answering on Linked Data, as they can deal with known problems such as vocabulary mismatch and perform graph pattern composition.
Incidents1M: a large-scale dataset of images with natural disasters, damage, and incidents
Natural disasters, such as floods, tornadoes, or wildfires, are increasingly pervasive as the Earth undergoes global warming. It is difficult to predict when and where an incident will occur, so timely emergency response is critical to saving the lives of those endangered by destructive events. Fortunately, technology can play a role in these situations. Social media posts can be used as a low-latency data source to understand the progression and aftermath of a disaster, yet parsing this data is tedious without automated methods. Prior work has mostly focused on text-based filtering, yet image and video-based filtering remains largely unexplored. In this work, we present the Incidents1M Dataset, a large-scale multi-label dataset which contains 977,088 images, with 43 incident and 49 place categories. We provide details of the dataset construction, statistics and potential biases; introduce and train a model for incident detection; and perform image-filtering experiments on millions of images on Flickr and Twitter. We also present some applications on incident analysis to encourage and enable future work in computer vision for humanitarian aid. Code, data, and models are available at http://incidentsdataset.csail.mit.edu.
NanoFlow: Towards Optimal Large Language Model Serving Throughput
The increasing usage of Large Language Models (LLMs) has resulted in a surging demand for planet-scale serving systems, where tens of thousands of GPUs continuously serve hundreds of millions of users. Consequently, throughput (under reasonable latency constraints) has emerged as a key metric that determines serving systems' performance. To boost throughput, various methods of inter-device parallelism (e.g., data, tensor, pipeline) have been explored. However, existing methods do not consider overlapping the utilization of different resources within a single device, leading to underutilization and sub-optimal performance. We propose NanoFlow, a novel serving framework that exploits intra-device parallelism, which overlaps the usage of resources including compute, memory, and network within a single device through operation co-scheduling. To exploit intra-device parallelism, NanoFlow introduces two key innovations: First, NanoFlow splits requests into nano-batches at the granularity of operations, which breaks the dependency of sequential operations in LLM inference and enables overlapping; then, to get benefit from overlapping, NanoFlow uses an operation-level pipeline with execution unit scheduling, which partitions the device's functional units and simultaneously executes different operations in each unit. NanoFlow automates the pipeline setup using a parameter search algorithm, which enables easily porting NanoFlow to different models. We implement NanoFlow on NVIDIA GPUs and evaluate end-to-end serving throughput on several popular models such as LLaMA-2-70B, Mixtral 8x7B, LLaMA-3-8B, etc.. With practical workloads, NanoFlow provides 1.91x throughput boost compared to state-of-the-art serving systems achieving 59% to 72% of optimal throughput across ported models.
EBES: Easy Benchmarking for Event Sequences
Event sequences, characterized by irregular sampling intervals and a mix of categorical and numerical features, are common data structures in various real-world domains such as healthcare, finance, and user interaction logs. Despite advances in temporal data modeling techniques, there is no standardized benchmarks for evaluating their performance on event sequences. This complicates result comparison across different papers due to varying evaluation protocols, potentially misleading progress in this field. We introduce EBES, a comprehensive benchmarking tool with standardized evaluation scenarios and protocols, focusing on regression and classification problems with sequence-level targets. Our library simplifies benchmarking, dataset addition, and method integration through a unified interface. It includes a novel synthetic dataset and provides preprocessed real-world datasets, including the largest publicly available banking dataset. Our results provide an in-depth analysis of datasets, identifying some as unsuitable for model comparison. We investigate the importance of modeling temporal and sequential components, as well as the robustness and scaling properties of the models. These findings highlight potential directions for future research. Our benchmark aim is to facilitate reproducible research, expediting progress and increasing real-world impacts.
The Heap: A Contamination-Free Multilingual Code Dataset for Evaluating Large Language Models
The recent rise in the popularity of large language models has spurred the development of extensive code datasets needed to train them. This has left limited code available for collection and use in the downstream investigation of specific behaviors, or evaluation of large language models without suffering from data contamination. To address this problem, we release The Heap, a large multilingual dataset covering 57 programming languages that has been deduplicated with respect to other open datasets of code, enabling researchers to conduct fair evaluations of large language models without significant data cleaning overhead.
Not Every AI Problem is a Data Problem: We Should Be Intentional About Data Scaling
While Large Language Models require more and more data to train and scale, rather than looking for any data to acquire, we should consider what types of tasks are more likely to benefit from data scaling. We should be intentional in our data acquisition. We argue that the topology of data itself informs which tasks to prioritize in data scaling, and shapes the development of the next generation of compute paradigms for tasks where data scaling is inefficient, or even insufficient.
Prototype-based HyperAdapter for Sample-Efficient Multi-task Tuning
Parameter-efficient fine-tuning (PEFT) has shown its effectiveness in adapting the pre-trained language models to downstream tasks while only updating a small number of parameters. Despite the success, most existing methods independently adapt to each task without considering knowledge transfer between tasks and are limited to low-data regimes. To overcome this issue, we propose Prototype-based HyperAdapter (PHA), a novel framework built on the adapter-tuning and hypernetwork. It introduces an instance-dense retriever and a prototypical hypernetwork to generate the conditional modules in a sample-efficient manner. This leads to comparable performance improvements against existing PEFT methods on multi-task learning and few-shot transfer learning. More importantly, when the available data size gets smaller, our method outperforms other strong baselines by a large margin. Based on our extensive empirical experiments across various datasets, we demonstrate that PHA strikes a better trade-off between trainable parameters, accuracy on stream tasks, and sample efficiency.
ViSpeak: Visual Instruction Feedback in Streaming Videos
Recent advances in Large Multi-modal Models (LMMs) are primarily focused on offline video understanding. Instead, streaming video understanding poses great challenges to recent models due to its time-sensitive, omni-modal and interactive characteristics. In this work, we aim to extend the streaming video understanding from a new perspective and propose a novel task named Visual Instruction Feedback in which models should be aware of visual contents and learn to extract instructions from them. For example, when users wave their hands to agents, agents should recognize the gesture and start conversations with welcome information. Thus, following instructions in visual modality greatly enhances user-agent interactions. To facilitate research, we define seven key subtasks highly relevant to visual modality and collect the ViSpeak-Instruct dataset for training and the ViSpeak-Bench for evaluation. Further, we propose the ViSpeak model, which is a SOTA streaming video understanding LMM with GPT-4o-level performance on various streaming video understanding benchmarks. After finetuning on our ViSpeak-Instruct dataset, ViSpeak is equipped with basic visual instruction feedback ability, serving as a solid baseline for future research.
Efficient Tabular Data Preprocessing of ML Pipelines
Data preprocessing pipelines, which includes data decoding, cleaning, and transforming, are a crucial component of Machine Learning (ML) training. Thy are computationally intensive and often become a major bottleneck, due to the increasing performance gap between the CPUs used for preprocessing and the GPUs used for model training. Recent studies show that a significant number of CPUs across several machines are required to achieve sufficient throughput to saturate the GPUs, leading to increased resource and energy consumption. When the pipeline involves vocabulary generation, the preprocessing performance scales poorly due to significant row-wise synchronization overhead between different CPU cores and servers. To address this limitation, in this paper we present the design of Piper, a hardware accelerator for tabular data preprocessing, prototype it on FPGAs, and demonstrate its potential for training pipelines of commercial recommender systems. Piper achieves 4.7 sim 71.3times speedup in latency over a 128-core CPU server and outperforms a data-center GPU by 4.8sim 20.3times when using binary input. The impressive performance showcases Piper's potential to increase the efficiency of data preprocessing pipelines and significantly reduce their resource consumption.
TokenWeave: Efficient Compute-Communication Overlap for Distributed LLM Inference
Distributed inference of large language models (LLMs) can introduce overheads of up to 20% even over GPUs connected via high-speed interconnects such as NVLINK. Multiple techniques have been proposed to mitigate these overheads by decomposing computations into finer-grained tasks and overlapping communication with sub-tasks as they complete. However, fine-grained decomposition of a large computation into many smaller computations on GPUs results in overheads. Further, the communication itself uses many streaming multiprocessors (SMs), adding to the overhead. We present TokenWeave to address these challenges. TokenWeave proposes a Token-Splitting technique that divides the tokens in the inference batch into two approximately equal subsets in a wave-aware manner. The computation of one subset is then overlapped with the communication of the other. In addition, TokenWeave optimizes the order of the layer normalization computation with respect to communication operations and implements a novel fused AllReduce-RMSNorm kernel carefully leveraging Multimem instruction support available on NVIDIA Hopper GPUs. These optimizations allow TokenWeave to perform communication and RMSNorm using only 2-8 SMs. Moreover, our kernel enables the memory bound RMSNorm to be overlapped with the other batch's computation, providing additional gains. Our evaluations demonstrate up to 29% latency gains and up to 26% throughput gains across multiple models and workloads. In several settings, TokenWeave results in better performance compared to an equivalent model with all communication removed.
KeyVideoLLM: Towards Large-scale Video Keyframe Selection
Recently, with the rise of web videos, managing and understanding large-scale video datasets has become increasingly important. Video Large Language Models (VideoLLMs) have emerged in recent years due to their strong video understanding capabilities. However, training and inference processes for VideoLLMs demand vast amounts of data, presenting significant challenges to data management, particularly regarding efficiency, robustness, and effectiveness. In this work, we present KeyVideoLLM, a text-video frame similarity-based keyframe selection method designed to manage VideoLLM data efficiently, robustly, and effectively. Specifically, KeyVideoLLM achieves a remarkable data compression rate of up to 60.9 times, substantially lowering disk space requirements, which proves its high efficiency. Additionally, it maintains a 100% selection success rate across all video formats and scales, enhances processing speed by up to 200 times compared to existing keyframe selection methods, and does not require hyperparameter tuning. Beyond its outstanding efficiency and robustness, KeyVideoLLM further improves model performance in video question-answering tasks during both training and inference stages. Notably, it consistently achieved the state-of-the-art (SoTA) experimental results on diverse datasets.
Audio-Language Datasets of Scenes and Events: A Survey
Audio-language models (ALMs) process sounds to provide a linguistic description of sound-producing events and scenes. Recent advances in computing power and dataset creation have led to significant progress in this domain. This paper surveys existing datasets used for training audio-language models, emphasizing the recent trend towards using large, diverse datasets to enhance model performance. Key sources of these datasets include the Freesound platform and AudioSet that have contributed to the field's rapid growth. Although prior surveys primarily address techniques and training details, this survey categorizes and evaluates a wide array of datasets, addressing their origins, characteristics, and use cases. It also performs a data leak analysis to ensure dataset integrity and mitigate bias between datasets. This survey was conducted by analyzing research papers up to and including December 2023, and does not contain any papers after that period.
LP Data Pipeline: Lightweight, Purpose-driven Data Pipeline for Large Language Models
Creating high-quality, large-scale datasets for large language models (LLMs) often relies on resource-intensive, GPU-accelerated models for quality filtering, making the process time-consuming and costly. This dependence on GPUs limits accessibility for organizations lacking significant computational infrastructure. To address this issue, we introduce the Lightweight, Purpose-driven (LP) Data Pipeline, a framework that operates entirely on CPUs to streamline the processes of dataset extraction, filtering, and curation. Based on our four core principles, the LP Data Pipeline significantly reduces preparation time and cost while maintaining high data quality. Importantly, our pipeline enables the creation of purpose-driven datasets tailored to specific domains and languages, enhancing the applicability of LLMs in specialized contexts. We anticipate that our pipeline will lower the barriers to LLM development, enabling a wide range of organizations to access LLMs more easily.
The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only
Large language models are commonly trained on a mixture of filtered web data and curated high-quality corpora, such as social media conversations, books, or technical papers. This curation process is believed to be necessary to produce performant models with broad zero-shot generalization abilities. However, as larger models requiring pretraining on trillions of tokens are considered, it is unclear how scalable is curation and whether we will run out of unique high-quality data soon. At variance with previous beliefs, we show that properly filtered and deduplicated web data alone can lead to powerful models; even significantly outperforming models from the state-of-the-art trained on The Pile. Despite extensive filtering, the high-quality data we extract from the web is still plentiful, and we are able to obtain five trillion tokens from CommonCrawl. We publicly release an extract of 600 billion tokens from our RefinedWeb dataset, and 1.3/7.5B parameters language models trained on it.
Data Filtering Networks
Large training sets have become a cornerstone of machine learning and are the foundation for recent advances in language modeling and multimodal learning. While data curation for pre-training is often still ad-hoc, one common paradigm is to first collect a massive pool of data from the Web and then filter this candidate pool down to an actual training set via various heuristics. In this work, we study the problem of learning a data filtering network (DFN) for this second step of filtering a large uncurated dataset. Our key finding is that the quality of a network for filtering is distinct from its performance on downstream tasks: for instance, a model that performs well on ImageNet can yield worse training sets than a model with low ImageNet accuracy that is trained on a small amount of high-quality data. Based on our insights, we construct new data filtering networks that induce state-of-the-art image-text datasets. Specifically, our best performing dataset DFN-5B enables us to train state-of-the-art models for their compute budgets: among other improvements on a variety of tasks, a ViT-H trained on our dataset achieves 83.0% zero-shot transfer accuracy on ImageNet, out-performing models trained on other datasets such as LAION-2B, DataComp-1B, or OpenAI's WIT. In order to facilitate further research in dataset design, we also release a new 2 billion example dataset DFN-2B and show that high performance data filtering networks can be trained from scratch using only publicly available data.
Mastering the Craft of Data Synthesis for CodeLLMs
Large language models (LLMs) have shown impressive performance in code understanding and generation, making coding tasks a key focus for researchers due to their practical applications and value as a testbed for LLM evaluation. Data synthesis and filtering techniques have been widely adopted and shown to be highly effective in this context. In this paper, we present a focused survey and taxonomy of these techniques, emphasizing recent advancements. We highlight key challenges, explore future research directions, and offer practical guidance for new researchers entering the field.
AI and Memory Wall
The availability of unprecedented unsupervised training data, along with neural scaling laws, has resulted in an unprecedented surge in model size and compute requirements for serving/training LLMs. However, the main performance bottleneck is increasingly shifting to memory bandwidth. Over the past 20 years, peak server hardware FLOPS has been scaling at 3.0x/2yrs, outpacing the growth of DRAM and interconnect bandwidth, which have only scaled at 1.6 and 1.4 times every 2 years, respectively. This disparity has made memory, rather than compute, the primary bottleneck in AI applications, particularly in serving. Here, we analyze encoder and decoder Transformer models and show how memory bandwidth can become the dominant bottleneck for decoder models. We argue for a redesign in model architecture, training, and deployment strategies to overcome this memory limitation.
BASKET: A Large-Scale Video Dataset for Fine-Grained Skill Estimation
We present BASKET, a large-scale basketball video dataset for fine-grained skill estimation. BASKET contains 4,477 hours of video capturing 32,232 basketball players from all over the world. Compared to prior skill estimation datasets, our dataset includes a massive number of skilled participants with unprecedented diversity in terms of gender, age, skill level, geographical location, etc. BASKET includes 20 fine-grained basketball skills, challenging modern video recognition models to capture the intricate nuances of player skill through in-depth video analysis. Given a long highlight video (8-10 minutes) of a particular player, the model needs to predict the skill level (e.g., excellent, good, average, fair, poor) for each of the 20 basketball skills. Our empirical analysis reveals that the current state-of-the-art video models struggle with this task, significantly lagging behind the human baseline. We believe that BASKET could be a useful resource for developing new video models with advanced long-range, fine-grained recognition capabilities. In addition, we hope that our dataset will be useful for domain-specific applications such as fair basketball scouting, personalized player development, and many others. Dataset and code are available at https://github.com/yulupan00/BASKET.
ESPN: Memory-Efficient Multi-Vector Information Retrieval
Recent advances in large language models have demonstrated remarkable effectiveness in information retrieval (IR) tasks. While many neural IR systems encode queries and documents into single-vector representations, multi-vector models elevate the retrieval quality by producing multi-vector representations and facilitating similarity searches at the granularity of individual tokens. However, these models significantly amplify memory and storage requirements for retrieval indices by an order of magnitude. This escalation in index size renders the scalability of multi-vector IR models progressively challenging due to their substantial memory demands. We introduce Embedding from Storage Pipelined Network (ESPN) where we offload the entire re-ranking embedding tables to SSDs and reduce the memory requirements by 5-16x. We design a software prefetcher with hit rates exceeding 90%, improving SSD based retrieval up to 6.4x, and demonstrate that we can maintain near memory levels of query latency even for large query batch sizes.
Exploring Sequence-to-Sequence Models for SPARQL Pattern Composition
A booming amount of information is continuously added to the Internet as structured and unstructured data, feeding knowledge bases such as DBpedia and Wikidata with billions of statements describing millions of entities. The aim of Question Answering systems is to allow lay users to access such data using natural language without needing to write formal queries. However, users often submit questions that are complex and require a certain level of abstraction and reasoning to decompose them into basic graph patterns. In this short paper, we explore the use of architectures based on Neural Machine Translation called Neural SPARQL Machines to learn pattern compositions. We show that sequence-to-sequence models are a viable and promising option to transform long utterances into complex SPARQL queries.
TensorFlow: A system for large-scale machine learning
TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. TensorFlow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous "parameter server" designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with particularly strong support for training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model in contrast to existing systems, and demonstrate the compelling performance that TensorFlow achieves for several real-world applications.