Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCost Aggregation Is All You Need for Few-Shot Segmentation
We introduce a novel cost aggregation network, dubbed Volumetric Aggregation with Transformers (VAT), to tackle the few-shot segmentation task by using both convolutions and transformers to efficiently handle high dimensional correlation maps between query and support. In specific, we propose our encoder consisting of volume embedding module to not only transform the correlation maps into more tractable size but also inject some convolutional inductive bias and volumetric transformer module for the cost aggregation. Our encoder has a pyramidal structure to let the coarser level aggregation to guide the finer level and enforce to learn complementary matching scores. We then feed the output into our affinity-aware decoder along with the projected feature maps for guiding the segmentation process. Combining these components, we conduct experiments to demonstrate the effectiveness of the proposed method, and our method sets a new state-of-the-art for all the standard benchmarks in few-shot segmentation task. Furthermore, we find that the proposed method attains state-of-the-art performance even for the standard benchmarks in semantic correspondence task although not specifically designed for this task. We also provide an extensive ablation study to validate our architectural choices. The trained weights and codes are available at: https://seokju-cho.github.io/VAT/.
GoMVS: Geometrically Consistent Cost Aggregation for Multi-View Stereo
Matching cost aggregation plays a fundamental role in learning-based multi-view stereo networks. However, directly aggregating adjacent costs can lead to suboptimal results due to local geometric inconsistency. Related methods either seek selective aggregation or improve aggregated depth in the 2D space, both are unable to handle geometric inconsistency in the cost volume effectively. In this paper, we propose GoMVS to aggregate geometrically consistent costs, yielding better utilization of adjacent geometries. More specifically, we correspond and propagate adjacent costs to the reference pixel by leveraging the local geometric smoothness in conjunction with surface normals. We achieve this by the geometric consistent propagation (GCP) module. It computes the correspondence from the adjacent depth hypothesis space to the reference depth space using surface normals, then uses the correspondence to propagate adjacent costs to the reference geometry, followed by a convolution for aggregation. Our method achieves new state-of-the-art performance on DTU, Tanks & Temple, and ETH3D datasets. Notably, our method ranks 1st on the Tanks & Temple Advanced benchmark.
Unifying Feature and Cost Aggregation with Transformers for Semantic and Visual Correspondence
This paper introduces a Transformer-based integrative feature and cost aggregation network designed for dense matching tasks. In the context of dense matching, many works benefit from one of two forms of aggregation: feature aggregation, which pertains to the alignment of similar features, or cost aggregation, a procedure aimed at instilling coherence in the flow estimates across neighboring pixels. In this work, we first show that feature aggregation and cost aggregation exhibit distinct characteristics and reveal the potential for substantial benefits stemming from the judicious use of both aggregation processes. We then introduce a simple yet effective architecture that harnesses self- and cross-attention mechanisms to show that our approach unifies feature aggregation and cost aggregation and effectively harnesses the strengths of both techniques. Within the proposed attention layers, the features and cost volume both complement each other, and the attention layers are interleaved through a coarse-to-fine design to further promote accurate correspondence estimation. Finally at inference, our network produces multi-scale predictions, computes their confidence scores, and selects the most confident flow for final prediction. Our framework is evaluated on standard benchmarks for semantic matching, and also applied to geometric matching, where we show that our approach achieves significant improvements compared to existing methods.
AANet: Adaptive Aggregation Network for Efficient Stereo Matching
Despite the remarkable progress made by learning based stereo matching algorithms, one key challenge remains unsolved. Current state-of-the-art stereo models are mostly based on costly 3D convolutions, the cubic computational complexity and high memory consumption make it quite expensive to deploy in real-world applications. In this paper, we aim at completely replacing the commonly used 3D convolutions to achieve fast inference speed while maintaining comparable accuracy. To this end, we first propose a sparse points based intra-scale cost aggregation method to alleviate the well-known edge-fattening issue at disparity discontinuities. Further, we approximate traditional cross-scale cost aggregation algorithm with neural network layers to handle large textureless regions. Both modules are simple, lightweight, and complementary, leading to an effective and efficient architecture for cost aggregation. With these two modules, we can not only significantly speed up existing top-performing models (e.g., 41times than GC-Net, 4times than PSMNet and 38times than GA-Net), but also improve the performance of fast stereo models (e.g., StereoNet). We also achieve competitive results on Scene Flow and KITTI datasets while running at 62ms, demonstrating the versatility and high efficiency of the proposed method. Our full framework is available at https://github.com/haofeixu/aanet .
A Simple Single-Scale Vision Transformer for Object Localization and Instance Segmentation
This work presents a simple vision transformer design as a strong baseline for object localization and instance segmentation tasks. Transformers recently demonstrate competitive performance in image classification tasks. To adopt ViT to object detection and dense prediction tasks, many works inherit the multistage design from convolutional networks and highly customized ViT architectures. Behind this design, the goal is to pursue a better trade-off between computational cost and effective aggregation of multiscale global contexts. However, existing works adopt the multistage architectural design as a black-box solution without a clear understanding of its true benefits. In this paper, we comprehensively study three architecture design choices on ViT -- spatial reduction, doubled channels, and multiscale features -- and demonstrate that a vanilla ViT architecture can fulfill this goal without handcrafting multiscale features, maintaining the original ViT design philosophy. We further complete a scaling rule to optimize our model's trade-off on accuracy and computation cost / model size. By leveraging a constant feature resolution and hidden size throughout the encoder blocks, we propose a simple and compact ViT architecture called Universal Vision Transformer (UViT) that achieves strong performance on COCO object detection and instance segmentation tasks.
Flexible Model Aggregation for Quantile Regression
Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions, or to model a diverse population without being overly reductive. For instance, epidemiological forecasts, cost estimates, and revenue predictions all benefit from being able to quantify the range of possible values accurately. As such, many models have been developed for this problem over many years of research in statistics, machine learning, and related fields. Rather than proposing yet another (new) algorithm for quantile regression we adopt a meta viewpoint: we investigate methods for aggregating any number of conditional quantile models, in order to improve accuracy and robustness. We consider weighted ensembles where weights may vary over not only individual models, but also over quantile levels, and feature values. All of the models we consider in this paper can be fit using modern deep learning toolkits, and hence are widely accessible (from an implementation point of view) and scalable. To improve the accuracy of the predicted quantiles (or equivalently, prediction intervals), we develop tools for ensuring that quantiles remain monotonically ordered, and apply conformal calibration methods. These can be used without any modification of the original library of base models. We also review some basic theory surrounding quantile aggregation and related scoring rules, and contribute a few new results to this literature (for example, the fact that post sorting or post isotonic regression can only improve the weighted interval score). Finally, we provide an extensive suite of empirical comparisons across 34 data sets from two different benchmark repositories.
LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement
Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning, yet full parameter fine-tuning is often computationally prohibitive for large models. Parameter-efficient fine-tuning (PEFT) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters. While LoRA allows for efficient fine-tuning, it requires significant data for adaptation, making Federated Learning (FL) an appealing solution due to its privacy-preserving collaborative framework. However, combining LoRA with FL introduces two key challenges: the Server-Side LoRA Aggregation Bias, where server-side averaging of LoRA matrices diverges from the ideal global update, and the Client-Side LoRA Initialization Drift, emphasizing the need for consistent initialization across rounds. Existing approaches address these challenges individually, limiting their effectiveness. We propose LoRA-FAIR, a novel method that tackles both issues by introducing a correction term on the server while keeping the original LoRA modules, enhancing aggregation efficiency and accuracy. LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods. Experimental results on ViT and MLP-Mixer models across large-scale datasets demonstrate that LoRA-FAIR consistently achieves performance improvements in FL settings.
MAMBA: Multi-level Aggregation via Memory Bank for Video Object Detection
State-of-the-art video object detection methods maintain a memory structure, either a sliding window or a memory queue, to enhance the current frame using attention mechanisms. However, we argue that these memory structures are not efficient or sufficient because of two implied operations: (1) concatenating all features in memory for enhancement, leading to a heavy computational cost; (2) frame-wise memory updating, preventing the memory from capturing more temporal information. In this paper, we propose a multi-level aggregation architecture via memory bank called MAMBA. Specifically, our memory bank employs two novel operations to eliminate the disadvantages of existing methods: (1) light-weight key-set construction which can significantly reduce the computational cost; (2) fine-grained feature-wise updating strategy which enables our method to utilize knowledge from the whole video. To better enhance features from complementary levels, i.e., feature maps and proposals, we further propose a generalized enhancement operation (GEO) to aggregate multi-level features in a unified manner. We conduct extensive evaluations on the challenging ImageNetVID dataset. Compared with existing state-of-the-art methods, our method achieves superior performance in terms of both speed and accuracy. More remarkably, MAMBA achieves mAP of 83.7/84.6% at 12.6/9.1 FPS with ResNet-101. Code is available at https://github.com/guanxiongsun/video_feature_enhancement.
Cross-Layer Cache Aggregation for Token Reduction in Ultra-Fine-Grained Image Recognition
Ultra-fine-grained image recognition (UFGIR) is a challenging task that involves classifying images within a macro-category. While traditional FGIR deals with classifying different species, UFGIR goes beyond by classifying sub-categories within a species such as cultivars of a plant. In recent times the usage of Vision Transformer-based backbones has allowed methods to obtain outstanding recognition performances in this task but this comes at a significant cost in terms of computation specially since this task significantly benefits from incorporating higher resolution images. Therefore, techniques such as token reduction have emerged to reduce the computational cost. However, dropping tokens leads to loss of essential information for fine-grained categories, specially as the token keep rate is reduced. Therefore, to counteract the loss of information brought by the usage of token reduction we propose a novel Cross-Layer Aggregation Classification Head and a Cross-Layer Cache mechanism to recover and access information from previous layers in later locations. Extensive experiments covering more than 2000 runs across diverse settings including 5 datasets, 9 backbones, 7 token reduction methods, 5 keep rates, and 2 image sizes demonstrate the effectiveness of the proposed plug-and-play modules and allow us to push the boundaries of accuracy vs cost for UFGIR by reducing the kept tokens to extremely low ratios of up to 10\% while maintaining a competitive accuracy to state-of-the-art models. Code is available at: https://github.com/arkel23/CLCA
Open-YOLO 3D: Towards Fast and Accurate Open-Vocabulary 3D Instance Segmentation
Recent works on open-vocabulary 3D instance segmentation show strong promise, but at the cost of slow inference speed and high computation requirements. This high computation cost is typically due to their heavy reliance on 3D clip features, which require computationally expensive 2D foundation models like Segment Anything (SAM) and CLIP for multi-view aggregation into 3D. As a consequence, this hampers their applicability in many real-world applications that require both fast and accurate predictions. To this end, we propose a fast yet accurate open-vocabulary 3D instance segmentation approach, named Open-YOLO 3D, that effectively leverages only 2D object detection from multi-view RGB images for open-vocabulary 3D instance segmentation. We address this task by generating class-agnostic 3D masks for objects in the scene and associating them with text prompts. We observe that the projection of class-agnostic 3D point cloud instances already holds instance information; thus, using SAM might only result in redundancy that unnecessarily increases the inference time. We empirically find that a better performance of matching text prompts to 3D masks can be achieved in a faster fashion with a 2D object detector. We validate our Open-YOLO 3D on two benchmarks, ScanNet200 and Replica, under two scenarios: (i) with ground truth masks, where labels are required for given object proposals, and (ii) with class-agnostic 3D proposals generated from a 3D proposal network. Our Open-YOLO 3D achieves state-of-the-art performance on both datasets while obtaining up to sim16times speedup compared to the best existing method in literature. On ScanNet200 val. set, our Open-YOLO 3D achieves mean average precision (mAP) of 24.7\% while operating at 22 seconds per scene. Code and model are available at github.com/aminebdj/OpenYOLO3D.
MVSFormer++: Revealing the Devil in Transformer's Details for Multi-View Stereo
Recent advancements in learning-based Multi-View Stereo (MVS) methods have prominently featured transformer-based models with attention mechanisms. However, existing approaches have not thoroughly investigated the profound influence of transformers on different MVS modules, resulting in limited depth estimation capabilities. In this paper, we introduce MVSFormer++, a method that prudently maximizes the inherent characteristics of attention to enhance various components of the MVS pipeline. Formally, our approach involves infusing cross-view information into the pre-trained DINOv2 model to facilitate MVS learning. Furthermore, we employ different attention mechanisms for the feature encoder and cost volume regularization, focusing on feature and spatial aggregations respectively. Additionally, we uncover that some design details would substantially impact the performance of transformer modules in MVS, including normalized 3D positional encoding, adaptive attention scaling, and the position of layer normalization. Comprehensive experiments on DTU, Tanks-and-Temples, BlendedMVS, and ETH3D validate the effectiveness of the proposed method. Notably, MVSFormer++ achieves state-of-the-art performance on the challenging DTU and Tanks-and-Temples benchmarks.
What are the best systems? New perspectives on NLP Benchmarking
In Machine Learning, a benchmark refers to an ensemble of datasets associated with one or multiple metrics together with a way to aggregate different systems performances. They are instrumental in (i) assessing the progress of new methods along different axes and (ii) selecting the best systems for practical use. This is particularly the case for NLP with the development of large pre-trained models (e.g. GPT, BERT) that are expected to generalize well on a variety of tasks. While the community mainly focused on developing new datasets and metrics, there has been little interest in the aggregation procedure, which is often reduced to a simple average over various performance measures. However, this procedure can be problematic when the metrics are on a different scale, which may lead to spurious conclusions. This paper proposes a new procedure to rank systems based on their performance across different tasks. Motivated by the social choice theory, the final system ordering is obtained through aggregating the rankings induced by each task and is theoretically grounded. We conduct extensive numerical experiments (on over 270k scores) to assess the soundness of our approach both on synthetic and real scores (e.g. GLUE, EXTREM, SEVAL, TAC, FLICKR). In particular, we show that our method yields different conclusions on state-of-the-art systems than the mean-aggregation procedure while being both more reliable and robust.
Distributed Learning of Mixtures of Experts
In modern machine learning problems we deal with datasets that are either distributed by nature or potentially large for which distributing the computations is usually a standard way to proceed, since centralized algorithms are in general ineffective. We propose a distributed learning approach for mixtures of experts (MoE) models with an aggregation strategy to construct a reduction estimator from local estimators fitted parallelly to distributed subsets of the data. The aggregation is based on an optimal minimization of an expected transportation divergence between the large MoE composed of local estimators and the unknown desired MoE model. We show that the provided reduction estimator is consistent as soon as the local estimators to be aggregated are consistent, and its construction is performed by a proposed majorization-minimization (MM) algorithm that is computationally effective. We study the statistical and numerical properties for the proposed reduction estimator on experiments that demonstrate its performance compared to namely the global estimator constructed in a centralized way from the full dataset. For some situations, the computation time is more than ten times faster, for a comparable performance. Our source codes are publicly available on Github.
Vote'n'Rank: Revision of Benchmarking with Social Choice Theory
The development of state-of-the-art systems in different applied areas of machine learning (ML) is driven by benchmarks, which have shaped the paradigm of evaluating generalisation capabilities from multiple perspectives. Although the paradigm is shifting towards more fine-grained evaluation across diverse tasks, the delicate question of how to aggregate the performances has received particular interest in the community. In general, benchmarks follow the unspoken utilitarian principles, where the systems are ranked based on their mean average score over task-specific metrics. Such aggregation procedure has been viewed as a sub-optimal evaluation protocol, which may have created the illusion of progress. This paper proposes Vote'n'Rank, a framework for ranking systems in multi-task benchmarks under the principles of the social choice theory. We demonstrate that our approach can be efficiently utilised to draw new insights on benchmarking in several ML sub-fields and identify the best-performing systems in research and development case studies. The Vote'n'Rank's procedures are more robust than the mean average while being able to handle missing performance scores and determine conditions under which the system becomes the winner.
Neural Optimal Transport with General Cost Functionals
We introduce a novel neural network-based algorithm to compute optimal transport (OT) plans for general cost functionals. In contrast to common Euclidean costs, i.e., ell^1 or ell^2, such functionals provide more flexibility and allow using auxiliary information, such as class labels, to construct the required transport map. Existing methods for general costs are discrete and have limitations in practice, i.e. they do not provide an out-of-sample estimation. We address the challenge of designing a continuous OT approach for general costs that generalizes to new data points in high-dimensional spaces, such as images. Additionally, we provide the theoretical error analysis for our recovered transport plans. As an application, we construct a cost functional to map data distributions while preserving the class-wise structure.
Generalized Reductions: Making any Hierarchical Clustering Fair and Balanced with Low Cost
Clustering is a fundamental building block of modern statistical analysis pipelines. Fair clustering has seen much attention from the machine learning community in recent years. We are some of the first to study fairness in the context of hierarchical clustering, after the results of Ahmadian et al. from NeurIPS in 2020. We evaluate our results using Dasgupta's cost function, perhaps one of the most prevalent theoretical metrics for hierarchical clustering evaluation. Our work vastly improves the previous O(n^{5/6}polylog(n)) fair approximation for cost to a near polylogarithmic O(n^delta polylog(n)) fair approximation for any constant deltain(0,1). This result establishes a cost-fairness tradeoff and extends to broader fairness constraints than the previous work. We also show how to alter existing hierarchical clusterings to guarantee fairness and cluster balance across any level in the hierarchy.
Power Hungry Processing: Watts Driving the Cost of AI Deployment?
Recent years have seen a surge in the popularity of commercial AI products based on generative, multi-purpose AI systems promising a unified approach to building machine learning (ML) models into technology. However, this ambition of "generality" comes at a steep cost to the environment, given the amount of energy these systems require and the amount of carbon that they emit. In this work, we propose the first systematic comparison of the ongoing inference cost of various categories of ML systems, covering both task-specific (i.e. finetuned models that carry out a single task) and `general-purpose' models, (i.e. those trained for multiple tasks). We measure deployment cost as the amount of energy and carbon required to perform 1,000 inferences on representative benchmark dataset using these models. We find that multi-purpose, generative architectures are orders of magnitude more expensive than task-specific systems for a variety of tasks, even when controlling for the number of model parameters. We conclude with a discussion around the current trend of deploying multi-purpose generative ML systems, and caution that their utility should be more intentionally weighed against increased costs in terms of energy and emissions. All the data from our study can be accessed via an interactive demo to carry out further exploration and analysis.
Flag Aggregator: Scalable Distributed Training under Failures and Augmented Losses using Convex Optimization
Modern ML applications increasingly rely on complex deep learning models and large datasets. There has been an exponential growth in the amount of computation needed to train the largest models. Therefore, to scale computation and data, these models are inevitably trained in a distributed manner in clusters of nodes, and their updates are aggregated before being applied to the model. However, a distributed setup is prone to Byzantine failures of individual nodes, components, and software. With data augmentation added to these settings, there is a critical need for robust and efficient aggregation systems. We define the quality of workers as reconstruction ratios in (0,1], and formulate aggregation as a Maximum Likelihood Estimation procedure using Beta densities. We show that the Regularized form of log-likelihood wrt subspace can be approximately solved using iterative least squares solver, and provide convergence guarantees using recent Convex Optimization landscape results. Our empirical findings demonstrate that our approach significantly enhances the robustness of state-of-the-art Byzantine resilient aggregators. We evaluate our method in a distributed setup with a parameter server, and show simultaneous improvements in communication efficiency and accuracy across various tasks. The code is publicly available at https://github.com/hamidralmasi/FlagAggregator
The rising costs of training frontier AI models
The costs of training frontier AI models have grown dramatically in recent years, but there is limited public data on the magnitude and growth of these expenses. This paper develops a detailed cost model to address this gap, estimating training costs using three approaches that account for hardware, energy, cloud rental, and staff expenses. The analysis reveals that the amortized cost to train the most compute-intensive models has grown precipitously at a rate of 2.4x per year since 2016 (95% CI: 2.0x to 3.1x). For key frontier models, such as GPT-4 and Gemini, the most significant expenses are AI accelerator chips and staff costs, each costing tens of millions of dollars. Other notable costs include server components (15-22%), cluster-level interconnect (9-13%), and energy consumption (2-6%). If the trend of growing development costs continues, the largest training runs will cost more than a billion dollars by 2027, meaning that only the most well-funded organizations will be able to finance frontier AI models.
Analytic Federated Learning
In this paper, we introduce analytic federated learning (AFL), a new training paradigm that brings analytical (i.e., closed-form) solutions to the federated learning (FL) community. Our AFL draws inspiration from analytic learning -- a gradient-free technique that trains neural networks with analytical solutions in one epoch. In the local client training stage, the AFL facilitates a one-epoch training, eliminating the necessity for multi-epoch updates. In the aggregation stage, we derive an absolute aggregation (AA) law. This AA law allows a single-round aggregation, removing the need for multiple aggregation rounds. More importantly, the AFL exhibits a weight-invariant property, meaning that regardless of how the full dataset is distributed among clients, the aggregated result remains identical. This could spawn various potentials, such as data heterogeneity invariance, client-number invariance, absolute convergence, and being hyperparameter-free (our AFL is the first hyperparameter-free method in FL history). We conduct experiments across various FL settings including extremely non-IID ones, and scenarios with a large number of clients (e.g., ge 1000). In all these settings, our AFL constantly performs competitively while existing FL techniques encounter various obstacles. Code is available at https://github.com/ZHUANGHP/Analytic-federated-learning
COST-EFF: Collaborative Optimization of Spatial and Temporal Efficiency with Slenderized Multi-exit Language Models
Transformer-based pre-trained language models (PLMs) mostly suffer from excessive overhead despite their advanced capacity. For resource-constrained devices, there is an urgent need for a spatially and temporally efficient model which retains the major capacity of PLMs. However, existing statically compressed models are unaware of the diverse complexities between input instances, potentially resulting in redundancy and inadequacy for simple and complex inputs. Also, miniature models with early exiting encounter challenges in the trade-off between making predictions and serving the deeper layers. Motivated by such considerations, we propose a collaborative optimization for PLMs that integrates static model compression and dynamic inference acceleration. Specifically, the PLM is slenderized in width while the depth remains intact, complementing layer-wise early exiting to speed up inference dynamically. To address the trade-off of early exiting, we propose a joint training approach that calibrates slenderization and preserves contributive structures to each exit instead of only the final layer. Experiments are conducted on GLUE benchmark and the results verify the Pareto optimality of our approach at high compression and acceleration rate with 1/8 parameters and 1/19 FLOPs of BERT.
Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference
Large Language Models (LLMs) have sparked significant interest in their generative capabilities, leading to the development of various commercial applications. The high cost of using the models drives application builders to maximize the value of generation under a limited inference budget. This paper presents a study of optimizing inference hyperparameters such as the number of responses, temperature and max tokens, which significantly affects the utility/cost of text generation. We design a framework named EcoOptiGen which leverages economical hyperparameter optimization and cost-based pruning. Experiments with the GPT-3.5/GPT-4 models on a variety of tasks verify its effectiveness. EcoOptiGen is implemented in the `autogen' package of the FLAML library: https://aka.ms/autogen.
Cost-Based Goal Recognition Meets Deep Learning
The ability to observe the effects of actions performed by others and to infer their intent, most likely goals, or course of action, is known as a plan or intention recognition cognitive capability and has long been one of the fundamental research challenges in AI. Deep learning has recently been making significant inroads on various pattern recognition problems, except for intention recognition. While extensively explored since the seventies, the problem remains unsolved for most interesting cases in various areas, ranging from natural language understanding to human behavior understanding based on video feeds. This paper compares symbolic inverse planning, one of the most investigated approaches to goal recognition, to deep learning using CNN and LTSM neural network architectures, on five synthetic benchmarks often used in the literature. The results show that the deep learning approach achieves better goal-prediction accuracy and timeliness than the symbolic cost-based plan recognizer in these domains. Although preliminary, these results point to interesting future research avenues.
InstInfer: In-Storage Attention Offloading for Cost-Effective Long-Context LLM Inference
The widespread of Large Language Models (LLMs) marks a significant milestone in generative AI. Nevertheless, the increasing context length and batch size in offline LLM inference escalate the memory requirement of the key-value (KV) cache, which imposes a huge burden on the GPU VRAM, especially for resource-constraint scenarios (e.g., edge computing and personal devices). Several cost-effective solutions leverage host memory or SSDs to reduce storage costs for offline inference scenarios and improve the throughput. Nevertheless, they suffer from significant performance penalties imposed by intensive KV cache accesses due to limited PCIe bandwidth. To address these issues, we propose InstInfer, a novel LLM inference system that offloads the most performance-critical computation (i.e., attention in decoding phase) and data (i.e., KV cache) parts to Computational Storage Drives (CSDs), which minimize the enormous KV transfer overheads. InstInfer designs a dedicated flash-aware in-storage attention engine with KV cache management mechanisms to exploit the high internal bandwidths of CSDs instead of being limited by the PCIe bandwidth. The optimized P2P transmission between GPU and CSDs further reduces data migration overheads. Experimental results demonstrate that for a 13B model using an NVIDIA A6000 GPU, InstInfer improves throughput for long-sequence inference by up to 11.1times, compared to existing SSD-based solutions such as FlexGen.
Minions: Cost-efficient Collaboration Between On-device and Cloud Language Models
We investigate an emerging setup in which a small, on-device language model (LM) with access to local data communicates with a frontier, cloud-hosted LM to solve real-world tasks involving financial, medical, and scientific reasoning over long documents. Can a local-remote collaboration reduce cloud inference costs while preserving quality? First, we consider a naive collaboration protocol where the local and remote models simply chat back and forth. Because only the local model reads the full context, this protocol achieves a 30.4x reduction in remote costs, but recovers only 87% of the performance of the frontier model. We identify two key limitations of this protocol: the local model struggles to (1) follow the remote model's multi-step instructions and (2) reason over long contexts. Motivated by these observations, we study an extension of this protocol, coined MinionS, in which the remote model decomposes the task into easier subtasks over shorter chunks of the document, that are executed locally in parallel. MinionS reduces costs by 5.7x on average while recovering 97.9% of the performance of the remote model alone. Our analysis reveals several key design choices that influence the trade-off between cost and performance in local-remote systems.
Balancing Cost and Effectiveness of Synthetic Data Generation Strategies for LLMs
As large language models (LLMs) are applied to more use cases, creating high quality, task-specific datasets for fine-tuning becomes a bottleneck for model improvement. Using high quality human data has been the most common approach to unlock model performance, but is prohibitively expensive in many scenarios. Several alternative methods have also emerged, such as generating synthetic or hybrid data, but the effectiveness of these approaches remain unclear, especially in resource-constrained scenarios and tasks that are not easily verified. To investigate this, we group various synthetic data generation strategies into three representative categories -- Answer Augmentation, Question Rephrase and New Question -- and study the performance of student LLMs trained under various constraints, namely seed instruction set size and query budget. We demonstrate that these strategies are not equally effective across settings. Notably, the optimal data generation strategy depends strongly on the ratio between the available teacher query budget and the size of the seed instruction set. When this ratio is low, generating new answers to existing questions proves most effective, but as this ratio increases, generating new questions becomes optimal. Across all tasks, we find that choice of augmentation method and other design choices matter substantially more in low to mid data regimes than in high data regimes. We provide a practical framework for selecting the appropriate augmentation method across settings, taking into account additional factors such as the scalability of each method, the importance of verifying synthetic data, and the use of different LLMs for synthetic data generation.
Mélange: Cost Efficient Large Language Model Serving by Exploiting GPU Heterogeneity
Large language models (LLMs) are increasingly integrated into many online services. However, a major challenge in deploying LLMs is their high cost, due primarily to the use of expensive GPU instances. To address this problem, we find that the significant heterogeneity of GPU types presents an opportunity to increase GPU cost efficiency and reduce deployment costs. The broad and growing market of GPUs creates a diverse option space with varying costs and hardware specifications. Within this space, we show that there is not a linear relationship between GPU cost and performance, and identify three key LLM service characteristics that significantly affect which GPU type is the most cost effective: model request size, request rate, and latency service-level objective (SLO). We then present M\'elange, a framework for navigating the diversity of GPUs and LLM service specifications to derive the most cost-efficient set of GPUs for a given LLM service. We frame the task of GPU selection as a cost-aware bin-packing problem, where GPUs are bins with a capacity and cost, and items are request slices defined by a request size and rate. Upon solution, M\'elange derives the minimal-cost GPU allocation that adheres to a configurable latency SLO. Our evaluations across both real-world and synthetic datasets demonstrate that M\'elange can reduce deployment costs by up to 77% as compared to utilizing only a single GPU type, highlighting the importance of making heterogeneity-aware GPU provisioning decisions for LLM serving. Our source code is publicly available at https://github.com/tyler-griggs/melange-release.
CAPIVARA: Cost-Efficient Approach for Improving Multilingual CLIP Performance on Low-Resource Languages
This work introduces CAPIVARA, a cost-efficient framework designed to enhance the performance of multilingual CLIP models in low-resource languages. While CLIP has excelled in zero-shot vision-language tasks, the resource-intensive nature of model training remains challenging. Many datasets lack linguistic diversity, featuring solely English descriptions for images. CAPIVARA addresses this by augmenting text data using image captioning and machine translation to generate multiple synthetic captions in low-resource languages. We optimize the training pipeline with LiT, LoRA, and gradient checkpointing to alleviate the computational cost. Through extensive experiments, CAPIVARA emerges as state of the art in zero-shot tasks involving images and Portuguese texts. We show the potential for significant improvements in other low-resource languages, achieved by fine-tuning the pre-trained multilingual CLIP using CAPIVARA on a single GPU for 2 hours. Our model and code is available at https://github.com/hiaac-nlp/CAPIVARA.
A cost-benefit analysis of cross-lingual transfer methods
An effective method for cross-lingual transfer is to fine-tune a bilingual or multilingual model on a supervised dataset in one language and evaluating it on another language in a zero-shot manner. Translating examples at training time or inference time are also viable alternatives. However, there are costs associated with these methods that are rarely addressed in the literature. In this work, we analyze cross-lingual methods in terms of their effectiveness (e.g., accuracy), development and deployment costs, as well as their latencies at inference time. Our experiments on three tasks indicate that the best cross-lingual method is highly task-dependent. Finally, by combining zero-shot and translation methods, we achieve the state-of-the-art in two of the three datasets used in this work. Based on these results, we question the need for manually labeled training data in a target language. Code and translated datasets are available at https://github.com/unicamp-dl/cross-lingual-analysis
A cost-effective method for improving and re-purposing large, pre-trained GANs by fine-tuning their class-embeddings
Large, pre-trained generative models have been increasingly popular and useful to both the research and wider communities. Specifically, BigGANs a class-conditional Generative Adversarial Networks trained on ImageNet---achieved excellent, state-of-the-art capability in generating realistic photos. However, fine-tuning or training BigGANs from scratch is practically impossible for most researchers and engineers because (1) GAN training is often unstable and suffering from mode-collapse; and (2) the training requires a significant amount of computation, 256 Google TPUs for 2 days or 8xV100 GPUs for 15 days. Importantly, many pre-trained generative models both in NLP and image domains were found to contain biases that are harmful to society. Thus, we need computationally-feasible methods for modifying and re-purposing these huge, pre-trained models for downstream tasks. In this paper, we propose a cost-effective optimization method for improving and re-purposing BigGANs by fine-tuning only the class-embedding layer. We show the effectiveness of our model-editing approach in three tasks: (1) significantly improving the realism and diversity of samples of complete mode-collapse classes; (2) re-purposing ImageNet BigGANs for generating images for Places365; and (3) de-biasing or improving the sample diversity for selected ImageNet classes.
OpenBezoar: Small, Cost-Effective and Open Models Trained on Mixes of Instruction Data
Instruction fine-tuning pretrained LLMs for diverse downstream tasks has demonstrated remarkable success and has captured the interest of both academics and practitioners. To ensure such fine-tuned LLMs align with human preferences, techniques such as RLHF and DPO have emerged. At the same time, there is increasing interest in smaller parameter counts for models. In this work, using OpenLLaMA 3Bv2 as a base model, we describe the recipe used to fine-tune the OpenBezoar family of models. In this recipe: We first generate synthetic instruction fine-tuning data using an open and commercially non-restrictive instruction fine-tuned variant of the Falcon-40B model under three schemes based on: LaMini-LM, WizardLM/Evol-Instruct (with databricks-dolly-15k as a seed dataset) and Orca (with the Flan Collection as a seed dataset), then filter these generations using GPT-4 as a human proxy. We then perform cost-effective QLoRA-based supervised fine-tuning sequentially with each scheme. The resulting checkpoint is further fine-tuned with a subset of the HH-RLHF dataset to minimize distribution shift prior to using the DPO loss to obtain the final checkpoint. Evaluation is done with the LM Eval Harness tasks/metrics as well as on MT-Bench using the "LLM-as-a-judge" framework with Claude 2.1, with the finding that the final checkpoint, "OpenBezoar-HH-RLHF-DPO", demonstrates superior performance over many models at the 3B parameter scale, even outperforming the top model in one of the categories on the Huggingface Open LLM Leaderboard. We release "OpenBezoar-SFT", "OpenBezoar-HH-RLHF-SFT", "OpenBezoar-HH-RLHF-DPO" checkpoints, alongside our generated datasets on HuggingFace at https://huggingface.co/collections/SurgeGlobal/open-bezoar-6620a24923e12127e9e2b9cc and our codebase at https://bitbucket.org/paladinanalytics/workspace/projects/OP.
LEAP Hand: Low-Cost, Efficient, and Anthropomorphic Hand for Robot Learning
Dexterous manipulation has been a long-standing challenge in robotics. While machine learning techniques have shown some promise, results have largely been currently limited to simulation. This can be mostly attributed to the lack of suitable hardware. In this paper, we present LEAP Hand, a low-cost dexterous and anthropomorphic hand for machine learning research. In contrast to previous hands, LEAP Hand has a novel kinematic structure that allows maximal dexterity regardless of finger pose. LEAP Hand is low-cost and can be assembled in 4 hours at a cost of 2000 USD from readily available parts. It is capable of consistently exerting large torques over long durations of time. We show that LEAP Hand can be used to perform several manipulation tasks in the real world -- from visual teleoperation to learning from passive video data and sim2real. LEAP Hand significantly outperforms its closest competitor Allegro Hand in all our experiments while being 1/8th of the cost. We release detailed assembly instructions, the Sim2Real pipeline and a development platform with useful APIs on our website at https://leap-hand.github.io/
FrugalGPT: How to Use Large Language Models While Reducing Cost and Improving Performance
There is a rapidly growing number of large language models (LLMs) that users can query for a fee. We review the cost associated with querying popular LLM APIs, e.g. GPT-4, ChatGPT, J1-Jumbo, and find that these models have heterogeneous pricing structures, with fees that can differ by two orders of magnitude. In particular, using LLMs on large collections of queries and text can be expensive. Motivated by this, we outline and discuss three types of strategies that users can exploit to reduce the inference cost associated with using LLMs: 1) prompt adaptation, 2) LLM approximation, and 3) LLM cascade. As an example, we propose FrugalGPT, a simple yet flexible instantiation of LLM cascade which learns which combinations of LLMs to use for different queries in order to reduce cost and improve accuracy. Our experiments show that FrugalGPT can match the performance of the best individual LLM (e.g. GPT-4) with up to 98% cost reduction or improve the accuracy over GPT-4 by 4% with the same cost. The ideas and findings presented here lay a foundation for using LLMs sustainably and efficiently.
Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware
Fine manipulation tasks, such as threading cable ties or slotting a battery, are notoriously difficult for robots because they require precision, careful coordination of contact forces, and closed-loop visual feedback. Performing these tasks typically requires high-end robots, accurate sensors, or careful calibration, which can be expensive and difficult to set up. Can learning enable low-cost and imprecise hardware to perform these fine manipulation tasks? We present a low-cost system that performs end-to-end imitation learning directly from real demonstrations, collected with a custom teleoperation interface. Imitation learning, however, presents its own challenges, particularly in high-precision domains: errors in the policy can compound over time, and human demonstrations can be non-stationary. To address these challenges, we develop a simple yet novel algorithm, Action Chunking with Transformers (ACT), which learns a generative model over action sequences. ACT allows the robot to learn 6 difficult tasks in the real world, such as opening a translucent condiment cup and slotting a battery with 80-90% success, with only 10 minutes worth of demonstrations. Project website: https://tonyzhaozh.github.io/aloha/
Effortless Efficiency: Low-Cost Pruning of Diffusion Models
Diffusion models have achieved impressive advancements in various vision tasks. However, these gains often rely on increasing model size, which escalates computational complexity and memory demands, complicating deployment, raising inference costs, and causing environmental impact. While some studies have explored pruning techniques to improve the memory efficiency of diffusion models, most existing methods require extensive retraining to retain the model performance. Retraining a modern large diffusion model is extremely costly and resource-intensive, which limits the practicality of these methods. In this work, we achieve low-cost diffusion pruning without retraining by proposing a model-agnostic structural pruning framework for diffusion models that learns a differentiable mask to sparsify the model. To ensure effective pruning that preserves the quality of the final denoised latent, we design a novel end-to-end pruning objective that spans the entire diffusion process. As end-to-end pruning is memory-intensive, we further propose time step gradient checkpointing, a technique that significantly reduces memory usage during optimization, enabling end-to-end pruning within a limited memory budget. Results on state-of-the-art U-Net diffusion models SDXL and diffusion transformers (FLUX) demonstrate that our method can effectively prune up to 20% parameters with minimal perceptible performance degradation, and notably, without the need for model retraining. We also showcase that our method can still prune on top of time step distilled diffusion models.
LPZero: Language Model Zero-cost Proxy Search from Zero
In spite of the outstanding performance, Neural Architecture Search (NAS) is criticized for massive computation. Recently, Zero-shot NAS has emerged as a promising approach by exploiting Zero-cost (ZC) proxies, which markedly reduce computational demands. Despite this, existing ZC proxies heavily rely on expert knowledge and incur significant trial-and-error costs. Particularly in NLP tasks, most existing ZC proxies fail to surpass the performance of the naive baseline. To address these challenges, we introduce a novel framework, LPZero, which is the first to automatically design ZC proxies for various tasks, achieving higher ranking consistency than human-designed proxies. Specifically, we model the ZC proxy as a symbolic equation and incorporate a unified proxy search space that encompasses existing ZC proxies, which are composed of a predefined set of mathematical symbols. To heuristically search for the best ZC proxy, LPZero incorporates genetic programming to find the optimal symbolic composition. We propose a Rule-based Pruning Strategy (RPS), which preemptively eliminates unpromising proxies, thereby mitigating the risk of proxy degradation. Extensive experiments on FlexiBERT, GPT-2, and LLaMA-7B demonstrate LPZero's superior ranking ability and performance on downstream tasks compared to current approaches.
SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models
Large pre-trained models (LPMs), such as large language models, have become ubiquitous and are employed in many applications. These models are often adapted to a desired domain or downstream task through a fine-tuning stage. This paper proposes SQFT, an end-to-end solution for low-precision sparse parameter-efficient fine-tuning of LPMs, allowing for effective model manipulation in resource-constrained environments. Additionally, an innovative strategy enables the merging of sparse weights with low-rank adapters without losing sparsity and accuracy, overcoming the limitations of previous approaches. SQFT also addresses the challenge of having quantized weights and adapters with different numerical precisions, enabling merging in the desired numerical format without sacrificing accuracy. Multiple adaptation scenarios, models, and comprehensive sparsity levels demonstrate the effectiveness of SQFT. Models and code are available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.
ManiCast: Collaborative Manipulation with Cost-Aware Human Forecasting
Seamless human-robot manipulation in close proximity relies on accurate forecasts of human motion. While there has been significant progress in learning forecast models at scale, when applied to manipulation tasks, these models accrue high errors at critical transition points leading to degradation in downstream planning performance. Our key insight is that instead of predicting the most likely human motion, it is sufficient to produce forecasts that capture how future human motion would affect the cost of a robot's plan. We present ManiCast, a novel framework that learns cost-aware human forecasts and feeds them to a model predictive control planner to execute collaborative manipulation tasks. Our framework enables fluid, real-time interactions between a human and a 7-DoF robot arm across a number of real-world tasks such as reactive stirring, object handovers, and collaborative table setting. We evaluate both the motion forecasts and the end-to-end forecaster-planner system against a range of learned and heuristic baselines while additionally contributing new datasets. We release our code and datasets at https://portal-cornell.github.io/manicast/.
Rethinking Memory and Communication Cost for Efficient Large Language Model Training
Recently, various distributed strategies for large language model training have been proposed. However, these methods provided limited solutions for the trade-off between memory consumption and communication cost. In this paper, we rethink the impact of memory consumption and communication costs on the training speed of large language models, and propose a memory-communication balanced strategy set Partial Redundancy Optimizer (PaRO). PaRO provides comprehensive options which reduces the amount and frequency of inter-group communication with minor memory redundancy by fine-grained sharding strategy, thereby improving the training efficiency in various training scenarios. Additionally, we propose a Hierarchical Overlapping Ring (HO-Ring) communication topology to enhance communication efficiency between nodes or across switches in large language model training. Our experiments demonstrate that PaRO significantly improves training throughput by 1.19x-2.50x compared to the SOTA method and achieves a near-linear scalability. The HO-Ring algorithm improves communication efficiency by 36.5% compared to the traditional Ring algorithm.
Nearly Zero-Cost Protection Against Mimicry by Personalized Diffusion Models
Recent advancements in diffusion models revolutionize image generation but pose risks of misuse, such as replicating artworks or generating deepfakes. Existing image protection methods, though effective, struggle to balance protection efficacy, invisibility, and latency, thus limiting practical use. We introduce perturbation pre-training to reduce latency and propose a mixture-of-perturbations approach that dynamically adapts to input images to minimize performance degradation. Our novel training strategy computes protection loss across multiple VAE feature spaces, while adaptive targeted protection at inference enhances robustness and invisibility. Experiments show comparable protection performance with improved invisibility and drastically reduced inference time. The code and demo are available at https://webtoon.github.io/impasto
Poison-splat: Computation Cost Attack on 3D Gaussian Splatting
3D Gaussian splatting (3DGS), known for its groundbreaking performance and efficiency, has become a dominant 3D representation and brought progress to many 3D vision tasks. However, in this work, we reveal a significant security vulnerability that has been largely overlooked in 3DGS: the computation cost of training 3DGS could be maliciously tampered by poisoning the input data. By developing an attack named Poison-splat, we reveal a novel attack surface where the adversary can poison the input images to drastically increase the computation memory and time needed for 3DGS training, pushing the algorithm towards its worst computation complexity. In extreme cases, the attack can even consume all allocable memory, leading to a Denial-of-Service (DoS) that disrupts servers, resulting in practical damages to real-world 3DGS service vendors. Such a computation cost attack is achieved by addressing a bi-level optimization problem through three tailored strategies: attack objective approximation, proxy model rendering, and optional constrained optimization. These strategies not only ensure the effectiveness of our attack but also make it difficult to defend with simple defensive measures. We hope the revelation of this novel attack surface can spark attention to this crucial yet overlooked vulnerability of 3DGS systems. Our code is available at https://github.com/jiahaolu97/poison-splat .
Faster Neighborhood Attention: Reducing the O(n^2) Cost of Self Attention at the Threadblock Level
Neighborhood attention reduces the cost of self attention by restricting each token's attention span to its nearest neighbors. This restriction, parameterized by a window size and dilation factor, draws a spectrum of possible attention patterns between linear projection and self attention. Neighborhood attention, and more generally sliding window attention patterns, have long been bounded by infrastructure, particularly in higher-rank spaces (2-D and 3-D), calling for the development of custom kernels, which have been limited in either functionality, or performance, if not both. In this work, we first show that neighborhood attention can be represented as a batched GEMM problem, similar to standard attention, and implement it for 1-D and 2-D neighborhood attention. These kernels on average provide 895% and 272% improvement in full precision latency compared to existing naive kernels for 1-D and 2-D neighborhood attention respectively. We find certain inherent inefficiencies in all unfused neighborhood attention kernels that bound their performance and lower-precision scalability. We also developed fused neighborhood attention; an adaptation of fused dot-product attention kernels that allow fine-grained control over attention across different spatial axes. Known for reducing the quadratic time complexity of self attention to a linear complexity, neighborhood attention can now enjoy a reduced and constant memory footprint, and record-breaking half precision latency. We observe that our fused kernels successfully circumvent some of the unavoidable inefficiencies in unfused implementations. While our unfused GEMM-based kernels only improve half precision performance compared to naive kernels by an average of 496% and 113% in 1-D and 2-D problems respectively, our fused kernels improve naive kernels by an average of 1607% and 581% in 1-D and 2-D problems respectively.
ZeroI2V: Zero-Cost Adaptation of Pre-trained Transformers from Image to Video
Adapting image models to the video domain has emerged as an efficient paradigm for solving video recognition tasks. Due to the huge number of parameters and effective transferability of image models, performing full fine-tuning is less efficient and even unnecessary. Thus, recent research is shifting its focus toward parameter-efficient image-to-video adaptation. However, these adaptation strategies inevitably introduce extra computational costs to deal with the domain gap and temporal modeling in videos. In this paper, we present a new adaptation paradigm (ZeroI2V) to transfer the image transformers to video recognition tasks (i.e., introduce zero extra cost to the original models during inference). To achieve this goal, we present two core designs. First, to capture the dynamics in videos and reduce the difficulty of image-to-video adaptation, we exploit the flexibility of self-attention and introduce spatial-temporal dual-headed attention (STDHA). This approach efficiently endows the image transformers with temporal modeling capability at zero extra parameters and computation. Second, to handle the domain gap between images and videos, we propose a linear adaption strategy that utilizes lightweight densely placed linear adapters to fully transfer the frozen image models to video recognition. Thanks to the customized linear design, all newly added adapters could be easily merged with the original modules through structural reparameterization after training, enabling zero extra cost during inference. Extensive experiments on representative fully-supervised and few-shot video recognition benchmarks showcase that ZeroI2V can match or even outperform previous state-of-the-art methods while enjoying superior parameter and inference efficiency.
Flash-LLM: Enabling Cost-Effective and Highly-Efficient Large Generative Model Inference with Unstructured Sparsity
With the fast growth of parameter size, it becomes increasingly challenging to deploy large generative models as they typically require large GPU memory consumption and massive computation. Unstructured model pruning has been a common approach to reduce both GPU memory footprint and the overall computation while retaining good model accuracy. However, the existing solutions do not provide a highly-efficient support for handling unstructured sparsity on modern GPUs, especially on the highly-structured Tensor Core hardware. Therefore, we propose Flash-LLM for enabling low-cost and highly-efficient large generative model inference with the sophisticated support of unstructured sparsity on high-performance but highly restrictive Tensor Cores. Based on our key observation that the main bottleneck of generative model inference is the several skinny matrix multiplications for which Tensor Cores would be significantly under-utilized due to low computational intensity, we propose a general Load-as-Sparse and Compute-as-Dense methodology for unstructured sparse matrix multiplication. The basic insight is to address the significant memory bandwidth bottleneck while tolerating redundant computations that are not critical for end-to-end performance on Tensor Cores. Based on this, we design an effective software framework for Tensor Core based unstructured SpMM, leveraging on-chip resources for efficient sparse data extraction and computation/memory-access overlapping. At SpMM kernel level, Flash-LLM significantly outperforms the state-of-the-art library, i.e., Sputnik and SparTA by an average of 2.9x and 1.5x, respectively. At end-to-end framework level on OPT-30B/66B/175B models, for tokens per GPU-second, Flash-LLM achieves up to 3.8x and 3.6x improvement over DeepSpeed and FasterTransformer, respectively, with significantly lower inference cost.
Raising the Cost of Malicious AI-Powered Image Editing
We present an approach to mitigating the risks of malicious image editing posed by large diffusion models. The key idea is to immunize images so as to make them resistant to manipulation by these models. This immunization relies on injection of imperceptible adversarial perturbations designed to disrupt the operation of the targeted diffusion models, forcing them to generate unrealistic images. We provide two methods for crafting such perturbations, and then demonstrate their efficacy. Finally, we discuss a policy component necessary to make our approach fully effective and practical -- one that involves the organizations developing diffusion models, rather than individual users, to implement (and support) the immunization process.
Soft Masking for Cost-Constrained Channel Pruning
Structured channel pruning has been shown to significantly accelerate inference time for convolution neural networks (CNNs) on modern hardware, with a relatively minor loss of network accuracy. Recent works permanently zero these channels during training, which we observe to significantly hamper final accuracy, particularly as the fraction of the network being pruned increases. We propose Soft Masking for cost-constrained Channel Pruning (SMCP) to allow pruned channels to adaptively return to the network while simultaneously pruning towards a target cost constraint. By adding a soft mask re-parameterization of the weights and channel pruning from the perspective of removing input channels, we allow gradient updates to previously pruned channels and the opportunity for the channels to later return to the network. We then formulate input channel pruning as a global resource allocation problem. Our method outperforms prior works on both the ImageNet classification and PASCAL VOC detection datasets.
CPM-2: Large-scale Cost-effective Pre-trained Language Models
In recent years, the size of pre-trained language models (PLMs) has grown by leaps and bounds. However, efficiency issues of these large-scale PLMs limit their utilization in real-world scenarios. We present a suite of cost-effective techniques for the use of PLMs to deal with the efficiency issues of pre-training, fine-tuning, and inference. (1) We introduce knowledge inheritance to accelerate the pre-training process by exploiting existing PLMs instead of training models from scratch. (2) We explore the best practice of prompt tuning with large-scale PLMs. Compared with conventional fine-tuning, prompt tuning significantly reduces the number of task-specific parameters. (3) We implement a new inference toolkit, namely InfMoE, for using large-scale PLMs with limited computational resources. Based on our cost-effective pipeline, we pre-train two models: an encoder-decoder bilingual model with 11 billion parameters (CPM-2) and its corresponding MoE version with 198 billion parameters. In our experiments, we compare CPM-2 with mT5 on downstream tasks. Experimental results show that CPM-2 has excellent general language intelligence. Moreover, we validate the efficiency of InfMoE when conducting inference of large-scale models having tens of billions of parameters on a single GPU. All source code and model parameters are available at https://github.com/TsinghuaAI/CPM.
CARROT: A Cost Aware Rate Optimal Router
With the rapid growth in the number of Large Language Models (LLMs), there has been a recent interest in LLM routing, or directing queries to the cheapest LLM that can deliver a suitable response. Following this line of work, we introduce CARROT, a Cost AwaRe Rate Optimal rouTer that can select models based on any desired trade-off between performance and cost. Given a query, CARROT selects a model based on estimates of models' cost and performance. Its simplicity lends CARROT computational efficiency, while our theoretical analysis demonstrates minimax rate-optimality in its routing performance. Alongside CARROT, we also introduce the Smart Price-aware Routing (SPROUT) dataset to facilitate routing on a wide spectrum of queries with the latest state-of-the-art LLMs. Using SPROUT and prior benchmarks such as Routerbench and open-LLM-leaderboard-v2 we empirically validate CARROT's performance against several alternative routers.
LLM Bandit: Cost-Efficient LLM Generation via Preference-Conditioned Dynamic Routing
The rapid advancement in large language models (LLMs) has brought forth a diverse range of models with varying capabilities that excel in different tasks and domains. However, selecting the optimal LLM for user queries often involves a challenging trade-off between accuracy and cost, a problem exacerbated by the diverse demands of individual queries. In this work, we present a novel framework that formulates the LLM selection process as a multi-armed bandit problem, enabling dynamic and intelligent routing of queries to the most appropriate model. Our approach incorporates a preference-conditioned dynamic routing mechanism, allowing users to specify their preferences at inference time, thereby offering a customizable balance between performance and cost. Additionally, our selection policy is designed to generalize to unseen LLMs, ensuring adaptability to new models as they emerge. Experimental results demonstrate that our method achieves significant improvements in both accuracy and cost-effectiveness across various LLM platforms, showcasing the potential of our framework to adaptively optimize LLM selection in real-world scenarios.
Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion
Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
ELECTRA and GPT-4o: Cost-Effective Partners for Sentiment Analysis
Bidirectional transformers excel at sentiment analysis, and Large Language Models (LLM) are effective zero-shot learners. Might they perform better as a team? This paper explores collaborative approaches between ELECTRA and GPT-4o for three-way sentiment classification. We fine-tuned (FT) four models (ELECTRA Base/Large, GPT-4o/4o-mini) using a mix of reviews from Stanford Sentiment Treebank (SST) and DynaSent. We provided input from ELECTRA to GPT as: predicted label, probabilities, and retrieved examples. Sharing ELECTRA Base FT predictions with GPT-4o-mini significantly improved performance over either model alone (82.74 macro F1 vs. 79.29 ELECTRA Base FT, 79.52 GPT-4o-mini) and yielded the lowest cost/performance ratio (\0.12/F1 point). However, when GPT models were fine-tuned, including predictions decreased performance. GPT-4o FT-M was the top performer (86.99), with GPT-4o-mini FT close behind (86.77) at much less cost (0.38 vs. \$1.59/F1 point). Our results show that augmenting prompts with predictions from fine-tuned encoders is an efficient way to boost performance, and a fine-tuned GPT-4o-mini is nearly as good as GPT-4o FT at 76% less cost. Both are affordable options for projects with limited resources.
CORAG: A Cost-Constrained Retrieval Optimization System for Retrieval-Augmented Generation
Large Language Models (LLMs) have demonstrated remarkable generation capabilities but often struggle to access up-to-date information, which can lead to hallucinations. Retrieval-Augmented Generation (RAG) addresses this issue by incorporating knowledge from external databases, enabling more accurate and relevant responses. Due to the context window constraints of LLMs, it is impractical to input the entire external database context directly into the model. Instead, only the most relevant information, referred to as chunks, is selectively retrieved. However, current RAG research faces three key challenges. First, existing solutions often select each chunk independently, overlooking potential correlations among them. Second, in practice the utility of chunks is non-monotonic, meaning that adding more chunks can decrease overall utility. Traditional methods emphasize maximizing the number of included chunks, which can inadvertently compromise performance. Third, each type of user query possesses unique characteristics that require tailored handling, an aspect that current approaches do not fully consider. To overcome these challenges, we propose a cost constrained retrieval optimization system CORAG for retrieval-augmented generation. We employ a Monte Carlo Tree Search (MCTS) based policy framework to find optimal chunk combinations sequentially, allowing for a comprehensive consideration of correlations among chunks. Additionally, rather than viewing budget exhaustion as a termination condition, we integrate budget constraints into the optimization of chunk combinations, effectively addressing the non-monotonicity of chunk utility.
Understanding the Performance and Estimating the Cost of LLM Fine-Tuning
Due to the cost-prohibitive nature of training Large Language Models (LLMs), fine-tuning has emerged as an attractive alternative for specializing LLMs for specific tasks using limited compute resources in a cost-effective manner. In this paper, we characterize sparse Mixture of Experts (MoE) based LLM fine-tuning to understand their accuracy and runtime performance on a single GPU. Our evaluation provides unique insights into the training efficacy of sparse and dense versions of MoE models, as well as their runtime characteristics, including maximum batch size, execution time breakdown, end-to-end throughput, GPU hardware utilization, and load distribution. Our study identifies the optimization of the MoE layer as crucial for further improving the performance of LLM fine-tuning. Using our profiling results, we also develop and validate an analytical model to estimate the cost of LLM fine-tuning on the cloud. This model, based on parameters of the model and GPU architecture, estimates LLM throughput and the cost of training, aiding practitioners in industry and academia to budget the cost of fine-tuning a specific model.
Keep the Cost Down: A Review on Methods to Optimize LLM' s KV-Cache Consumption
Large Language Models (LLMs), epitomized by ChatGPT' s release in late 2022, have revolutionized various industries with their advanced language comprehension. However, their efficiency is challenged by the Transformer architecture' s struggle with handling long texts. KV-Cache has emerged as a pivotal solution to this issue, converting the time complexity of token generation from quadratic to linear, albeit with increased GPU memory overhead proportional to conversation length. With the development of the LLM community and academia, various KV-Cache compression methods have been proposed. In this review, we dissect the various properties of KV-Cache and elaborate on various methods currently used to optimize the KV-Cache space usage of LLMs. These methods span the pre-training phase, deployment phase, and inference phase, and we summarize the commonalities and differences among these methods. Additionally, we list some metrics for evaluating the long-text capabilities of large language models, from both efficiency and capability perspectives. Our review thus sheds light on the evolving landscape of LLM optimization, offering insights into future advancements in this dynamic field.
Long-Term 3D Point Tracking By Cost Volume Fusion
Long-term point tracking is essential to understand non-rigid motion in the physical world better. Deep learning approaches have recently been incorporated into long-term point tracking, but most prior work predominantly functions in 2D. Although these methods benefit from the well-established backbones and matching frameworks, the motions they produce do not always make sense in the 3D physical world. In this paper, we propose the first deep learning framework for long-term point tracking in 3D that generalizes to new points and videos without requiring test-time fine-tuning. Our model contains a cost volume fusion module that effectively integrates multiple past appearances and motion information via a transformer architecture, significantly enhancing overall tracking performance. In terms of 3D tracking performance, our model significantly outperforms simple scene flow chaining and previous 2D point tracking methods, even if one uses ground truth depth and camera pose to backproject 2D point tracks in a synthetic scenario.
S3D: A Simple and Cost-Effective Self-Speculative Decoding Scheme for Low-Memory GPUs
Speculative decoding (SD) has attracted a significant amount of research attention due to the substantial speedup it can achieve for LLM inference. However, despite the high speedups they offer, speculative decoding methods often achieve optimal performance on high-end devices or with a substantial GPU memory overhead. Given limited memory and the necessity of quantization, a high-performing model on a high-end GPU can slow down by up to 7 times. To this end, we propose Skippy Simultaneous Speculative Decoding (or S3D), a cost-effective self-speculative SD method based on simultaneous multi-token decoding and mid-layer skipping. When compared against recent effective open-source SD systems, our method has achieved one of the top performance-memory ratios while requiring minimal architecture changes and training data. Leveraging our memory efficiency, we created a smaller yet more effective SD model based on Phi-3. It is 1.4 to 2 times faster than the quantized EAGLE model and operates in half-precision while using less VRAM.
Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing
Large language models (LLMs) excel in most NLP tasks but also require expensive cloud servers for deployment due to their size, while smaller models that can be deployed on lower cost (e.g., edge) devices, tend to lag behind in terms of response quality. Therefore in this work we propose a hybrid inference approach which combines their respective strengths to save cost and maintain quality. Our approach uses a router that assigns queries to the small or large model based on the predicted query difficulty and the desired quality level. The desired quality level can be tuned dynamically at test time to seamlessly trade quality for cost as per the scenario requirements. In experiments our approach allows us to make up to 40% fewer calls to the large model, with no drop in response quality.
Multi-News+: Cost-efficient Dataset Cleansing via LLM-based Data Annotation
The quality of the dataset is crucial for ensuring optimal performance and reliability of downstream task models. However, datasets often contain noisy data inadvertently included during the construction process. Numerous attempts have been made to correct this issue through human annotators. However, hiring and managing human annotators is expensive and time-consuming. As an alternative, recent studies are exploring the use of large language models (LLMs) for data annotation. In this study, we present a case study that extends the application of LLM-based data annotation to enhance the quality of existing datasets through a cleansing strategy. Specifically, we leverage approaches such as chain-of-thought (CoT) and majority voting to imitate human annotation and classify unrelated documents from the Multi-News dataset, which is widely used for the multi-document summarization task. Through our proposed cleansing method, we introduce an enhanced Multi-News+. By employing LLMs for data cleansing, we demonstrate an efficient and effective approach to improving dataset quality without relying on expensive human annotation efforts.
Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs
Recently, considerable efforts have been directed towards compressing Large Language Models (LLMs), which showcase groundbreaking capabilities across diverse applications but entail significant deployment costs due to their large sizes. Meanwhile, much less attention has been given to mitigating the costs associated with deploying multiple LLMs of varying sizes despite its practical significance. Thus, this paper introduces any-precision LLM, extending the concept of any-precision DNN to LLMs. Addressing challenges in any-precision LLM, we propose a lightweight method for any-precision quantization of LLMs, leveraging a post-training quantization framework, and develop a specialized software engine for its efficient serving. As a result, our solution significantly reduces the high costs of deploying multiple, different-sized LLMs by overlaying LLMs quantized to varying bit-widths, such as 3, 4, ..., n bits, into a memory footprint comparable to a single n-bit LLM. All the supported LLMs with varying bit-widths demonstrate state-of-the-art model quality and inference throughput, proving itself to be a compelling option for deployment of multiple, different-sized LLMs. The source code will be publicly available soon.
ParZC: Parametric Zero-Cost Proxies for Efficient NAS
Recent advancements in Zero-shot Neural Architecture Search (NAS) highlight the efficacy of zero-cost proxies in various NAS benchmarks. Several studies propose the automated design of zero-cost proxies to achieve SOTA performance but require tedious searching progress. Furthermore, we identify a critical issue with current zero-cost proxies: they aggregate node-wise zero-cost statistics without considering the fact that not all nodes in a neural network equally impact performance estimation. Our observations reveal that node-wise zero-cost statistics significantly vary in their contributions to performance, with each node exhibiting a degree of uncertainty. Based on this insight, we introduce a novel method called Parametric Zero-Cost Proxies (ParZC) framework to enhance the adaptability of zero-cost proxies through parameterization. To address the node indiscrimination, we propose a Mixer Architecture with Bayesian Network (MABN) to explore the node-wise zero-cost statistics and estimate node-specific uncertainty. Moreover, we propose DiffKendall as a loss function to directly optimize Kendall's Tau coefficient in a differentiable manner so that our ParZC can better handle the discrepancies in ranking architectures. Comprehensive experiments on NAS-Bench-101, 201, and NDS demonstrate the superiority of our proposed ParZC compared to existing zero-shot NAS methods. Additionally, we demonstrate the versatility and adaptability of ParZC by transferring it to the Vision Transformer search space.
Escape Sky-high Cost: Early-stopping Self-Consistency for Multi-step Reasoning
Self-consistency (SC) has been a widely used decoding strategy for chain-of-thought reasoning. Despite bringing significant performance improvements across a variety of multi-step reasoning tasks, it is a high-cost method that requires multiple sampling with the preset size. In this paper, we propose a simple and scalable sampling process, Early-Stopping Self-Consistency (ESC), to greatly reduce the cost of SC without sacrificing performance. On this basis, one control scheme for ESC is further derivated to dynamically choose the performance-cost balance for different tasks and models. To demonstrate ESC's effectiveness, we conducted extensive experiments on three popular categories of reasoning tasks: arithmetic, commonsense and symbolic reasoning over language models with varying scales. The empirical results show that ESC reduces the average number of sampling of chain-of-thought reasoning by a significant margin on six benchmarks, including MATH (-33.8%), GSM8K (-80.1%), StrategyQA (-76.8%), CommonsenseQA (-78.5%), Coin Flip (-84.2%) and Last Letters (-67.4%), while attaining comparable performances.
An Agnostic View on the Cost of Overfitting in (Kernel) Ridge Regression
We study the cost of overfitting in noisy kernel ridge regression (KRR), which we define as the ratio between the test error of the interpolating ridgeless model and the test error of the optimally-tuned model. We take an "agnostic" view in the following sense: we consider the cost as a function of sample size for any target function, even if the sample size is not large enough for consistency or the target is outside the RKHS. We analyze the cost of overfitting under a Gaussian universality ansatz using recently derived (non-rigorous) risk estimates in terms of the task eigenstructure. Our analysis provides a more refined characterization of benign, tempered and catastrophic overfitting (cf. Mallinar et al. 2022).
C2F2NeUS: Cascade Cost Frustum Fusion for High Fidelity and Generalizable Neural Surface Reconstruction
There is an emerging effort to combine the two popular 3D frameworks using Multi-View Stereo (MVS) and Neural Implicit Surfaces (NIS) with a specific focus on the few-shot / sparse view setting. In this paper, we introduce a novel integration scheme that combines the multi-view stereo with neural signed distance function representations, which potentially overcomes the limitations of both methods. MVS uses per-view depth estimation and cross-view fusion to generate accurate surfaces, while NIS relies on a common coordinate volume. Based on this strategy, we propose to construct per-view cost frustum for finer geometry estimation, and then fuse cross-view frustums and estimate the implicit signed distance functions to tackle artifacts that are due to noise and holes in the produced surface reconstruction. We further apply a cascade frustum fusion strategy to effectively captures global-local information and structural consistency. Finally, we apply cascade sampling and a pseudo-geometric loss to foster stronger integration between the two architectures. Extensive experiments demonstrate that our method reconstructs robust surfaces and outperforms existing state-of-the-art methods.
ML-driven Hardware Cost Model for MLIR
During early optimization passes, compilers must make predictions for machine-dependent characteristics such as execution unit utilization, number of register spills, latency, throughput etc. to generate better code. Often a hand-written static/analytical hardware cost model is built into the compiler. However, the need for more sophisticated and varied predictions has become more pronounced with the development of deep learning compilers which need to optimize dataflow graphs. Such compilers usually employ a much higher level MLIR form as an IR representation before lowering to traditional LLVM-IR. A static/analytical cost model in such a scenario is cumbersome and error prone as the opcodes represent very high level algebraic/arithmetic operations. Hence, we develop a machine learning-based cost model for high-level MLIR which can predict different target variables of interest such as CPU/GPU/xPU utilization, instructions executed, register usage etc. By considering the incoming MLIR as a text input a la NLP models we can apply well-known techniques from modern NLP research to help predict hardware characteristics more accurately. We expect such precise ML-driven hardware cost models to guide our deep learning compiler in graph level optimizations around operator fusion, local memory allocation, kernel scheduling etc. as well as in many kernel-level optimizations such as loop interchange, LICM and unroll. We report early work-in -progress results of developing such models on high-level MLIR representing dataflow graphs emitted by Pytorch/Tensorflow-like frameworks as well as lower-level dialects like affine. We show that these models can provide reasonably good estimates with low error bounds for various hardware characteristics of interest and can be a go-to mechanism for hardware cost modelling in the future.
InPars-Light: Cost-Effective Unsupervised Training of Efficient Rankers
We carried out a reproducibility study of InPars recipe for unsupervised training of neural rankers. As a by-product of this study, we developed a simple-yet-effective modification of InPars, which we called InPars-light. Unlike InPars, InPars-light uses only a freely available language model BLOOM and 7x-100x smaller ranking models. On all five English retrieval collections (used in the original InPars study) we obtained substantial (7-30%) and statistically significant improvements over BM25 in nDCG or MRR using only a 30M parameter six-layer MiniLM ranker. In contrast, in the InPars study only a 100x larger MonoT5-3B model consistently outperformed BM25, whereas their smaller MonoT5-220M model (which is still 7x larger than our MiniLM ranker), outperformed BM25 only on MS MARCO and TREC DL 2020. In a purely unsupervised setting, our 435M parameter DeBERTA v3 ranker was roughly at par with the 7x larger MonoT5-3B: In fact, on three out of five datasets, it slightly outperformed MonoT5-3B. Finally, these good results were achieved by re-ranking only 100 candidate documents compared to 1000 used in InPars. We believe that InPars-light is the first truly cost-effective prompt-based unsupervised recipe to train and deploy neural ranking models that outperform BM25.
A Low-cost Humanoid Prototype Intended to assist people with disability using Raspberry Pi
This paper will try to delineate the making of a Humanoid prototype intended to assist people with disability (PWD). The assistance that this prototype will offer is rather rudimentary. However, our key focus is to make the prototype cost-friendly while pertaining to its humanoid-like functionalities. Considering growing needs of Robots, facilities for further installment of features have been made available in this project. The prototype will be of humanoid shape harnessing the power of Artificial Neural Network (ANN) to converse with the users. The prototype uses a raspberry pi and as the computational capability of a raspberry pi is minimal, we cut corners to squeeze the last drop of performance and make it as efficient as possible.
Differentially Private Optimization on Large Model at Small Cost
Differentially private (DP) optimization is the standard paradigm to learn large neural networks that are accurate and privacy-preserving. The computational cost for DP deep learning, however, is notoriously heavy due to the per-sample gradient clipping. Existing DP implementations are 2-1000times more costly in time and space complexity than the standard (non-private) training. In this work, we develop a novel Book-Keeping (BK) technique that implements existing DP optimizers (thus achieving the same accuracy), with a substantial improvement on the computational cost. Specifically, BK enables DP training on large models and high dimensional data to be roughly as efficient as the standard training, whereas previous DP algorithms can be inefficient or incapable of training due to memory error. The computational advantage of BK is supported by the complexity analysis as well as extensive experiments on vision and language tasks. Our implementation achieves state-of-the-art (SOTA) accuracy with very small extra cost: on GPT2 and at the same memory cost, BK has 1.0times the time complexity of the standard training (0.75times training speed in practice), and 0.6times the time complexity of the most efficient DP implementation (1.24times training speed in practice). We will open-source the codebase for the BK algorithm.
A low-cost ultraviolet-to-infrared absolute quantum efficiency characterization system of detectors
We present a low-cost ultraviolet to infrared absolute quantum efficiency detector characterization system developed using commercial off-the-shelf components. The key components of the experiment include a light source,a regulated power supply, a monochromator, an integrating sphere, and a calibrated photodiode. We provide a step-by-step procedure to construct the photon and quantum efficiency transfer curves of imaging sensors. We present results for the GSENSE 2020 BSI CMOS sensor and the Sony IMX 455 BSI CMOS sensor. As a reference for similar characterizations, we provide a list of parts and associated costs along with images of our setup.
Assessment of a cost-effective headphone calibration procedure for soundscape evaluations
To increase the availability and adoption of the soundscape standard, a low-cost calibration procedure for reproduction of audio stimuli over headphones was proposed as part of the global ``Soundscape Attributes Translation Project'' (SATP) for validating ISO/TS~12913-2:2018 perceived affective quality (PAQ) attribute translations. A previous preliminary study revealed significant deviations from the intended equivalent continuous A-weighted sound pressure levels (L_{A,eq}) using the open-circuit voltage (OCV) calibration procedure. For a more holistic human-centric perspective, the OCV method is further investigated here in terms of psychoacoustic parameters, including relevant exceedance levels to account for temporal effects on the same 27 stimuli from the SATP. Moreover, a within-subjects experiment with 36 participants was conducted to examine the effects of OCV calibration on the PAQ attributes in ISO/TS~12913-2:2018. Bland-Altman analysis of the objective indicators revealed large biases in the OCV method across all weighted sound level and loudness indicators; and roughness indicators at 5{\%} and 10{\%} exceedance levels. Significant perceptual differences due to the OCV method were observed in about 20{\%} of the stimuli, which did not correspond clearly with the biased acoustic indicators. A cautioned interpretation of the objective and perceptual differences due to small and unpaired samples nevertheless provide grounds for further investigation.
Preliminary assessment of a cost-effective headphone calibration procedure for soundscape evaluations
The introduction of ISO 12913-2:2018 has provided a framework for standardized data collection and reporting procedures for soundscape practitioners. A strong emphasis was placed on the use of calibrated head and torso simulators (HATS) for binaural audio capture to obtain an accurate subjective impression and acoustic measure of the soundscape under evaluation. To auralise the binaural recordings as recorded or at set levels, the audio stimuli and the headphone setup are usually calibrated with a HATS. However, calibrated HATS are too financially prohibitive for most research teams, inevitably diminishing the availability of the soundscape standard. With the increasing availability of soundscape binaural recording datasets, and the importance of cross-cultural validation of the soundscape ISO standards, e.g.\ via the Soundscape Attributes Translation Project (SATP), it is imperative to assess the suitability of cost-effective headphone calibration methods to maximise availability without severely compromising on accuracy. Hence, this study objectively examines an open-circuit voltage (OCV) calibration method in comparison to a calibrated HATS on various soundcard and headphone combinations. Preliminary experiments found that calibration with the OCV method differed significantly from the reference binaural recordings in sound pressure levels, whereas negligible differences in levels were observed with the HATS calibration.
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling
Transformer-based models are widely used in natural language processing (NLP). Central to the transformer model is the self-attention mechanism, which captures the interactions of token pairs in the input sequences and depends quadratically on the sequence length. Training such models on longer sequences is expensive. In this paper, we show that a Bernoulli sampling attention mechanism based on Locality Sensitive Hashing (LSH), decreases the quadratic complexity of such models to linear. We bypass the quadratic cost by considering self-attention as a sum of individual tokens associated with Bernoulli random variables that can, in principle, be sampled at once by a single hash (although in practice, this number may be a small constant). This leads to an efficient sampling scheme to estimate self-attention which relies on specific modifications of LSH (to enable deployment on GPU architectures). We evaluate our algorithm on the GLUE benchmark with standard 512 sequence length where we see favorable performance relative to a standard pretrained Transformer. On the Long Range Arena (LRA) benchmark, for evaluating performance on long sequences, our method achieves results consistent with softmax self-attention but with sizable speed-ups and memory savings and often outperforms other efficient self-attention methods. Our code is available at https://github.com/mlpen/YOSO
A Survey on Cost Types, Interaction Schemes, and Annotator Performance Models in Selection Algorithms for Active Learning in Classification
Pool-based active learning (AL) aims to optimize the annotation process (i.e., labeling) as the acquisition of annotations is often time-consuming and therefore expensive. For this purpose, an AL strategy queries annotations intelligently from annotators to train a high-performance classification model at a low annotation cost. Traditional AL strategies operate in an idealized framework. They assume a single, omniscient annotator who never gets tired and charges uniformly regardless of query difficulty. However, in real-world applications, we often face human annotators, e.g., crowd or in-house workers, who make annotation mistakes and can be reluctant to respond if tired or faced with complex queries. Recently, a wide range of novel AL strategies has been proposed to address these issues. They differ in at least one of the following three central aspects from traditional AL: (1) They explicitly consider (multiple) human annotators whose performances can be affected by various factors, such as missing expertise. (2) They generalize the interaction with human annotators by considering different query and annotation types, such as asking an annotator for feedback on an inferred classification rule. (3) They take more complex cost schemes regarding annotations and misclassifications into account. This survey provides an overview of these AL strategies and refers to them as real-world AL. Therefore, we introduce a general real-world AL strategy as part of a learning cycle and use its elements, e.g., the query and annotator selection algorithm, to categorize about 60 real-world AL strategies. Finally, we outline possible directions for future research in the field of AL.
Revisiting Weighted Aggregation in Federated Learning with Neural Networks
In federated learning (FL), weighted aggregation of local models is conducted to generate a global model, and the aggregation weights are normalized (the sum of weights is 1) and proportional to the local data sizes. In this paper, we revisit the weighted aggregation process and gain new insights into the training dynamics of FL. First, we find that the sum of weights can be smaller than 1, causing global weight shrinking effect (analogous to weight decay) and improving generalization. We explore how the optimal shrinking factor is affected by clients' data heterogeneity and local epochs. Second, we dive into the relative aggregation weights among clients to depict the clients' importance. We develop client coherence to study the learning dynamics and find a critical point that exists. Before entering the critical point, more coherent clients play more essential roles in generalization. Based on the above insights, we propose an effective method for Federated Learning with Learnable Aggregation Weights, named as FedLAW. Extensive experiments verify that our method can improve the generalization of the global model by a large margin on different datasets and models.
Fire-Flyer AI-HPC: A Cost-Effective Software-Hardware Co-Design for Deep Learning
The rapid progress in Deep Learning (DL) and Large Language Models (LLMs) has exponentially increased demands of computational power and bandwidth. This, combined with the high costs of faster computing chips and interconnects, has significantly inflated High Performance Computing (HPC) construction costs. To address these challenges, we introduce the Fire-Flyer AI-HPC architecture, a synergistic hardware-software co-design framework and its best practices. For DL training, we deployed the Fire-Flyer 2 with 10,000 PCIe A100 GPUs, achieved performance approximating the DGX-A100 while reducing costs by half and energy consumption by 40%. We specifically engineered HFReduce to accelerate allreduce communication and implemented numerous measures to keep our Computation-Storage Integrated Network congestion-free. Through our software stack, including HaiScale, 3FS, and HAI-Platform, we achieved substantial scalability by overlapping computation and communication. Our system-oriented experience from DL training provides valuable insights to drive future advancements in AI-HPC.
Safety Fine-Tuning at (Almost) No Cost: A Baseline for Vision Large Language Models
Current vision large language models (VLLMs) exhibit remarkable capabilities yet are prone to generate harmful content and are vulnerable to even the simplest jailbreaking attacks. Our initial analysis finds that this is due to the presence of harmful data during vision-language instruction fine-tuning, and that VLLM fine-tuning can cause forgetting of safety alignment previously learned by the underpinning LLM. To address this issue, we first curate a vision-language safe instruction-following dataset VLGuard covering various harmful categories. Our experiments demonstrate that integrating this dataset into standard vision-language fine-tuning or utilizing it for post-hoc fine-tuning effectively safety aligns VLLMs. This alignment is achieved with minimal impact on, or even enhancement of, the models' helpfulness. The versatility of our safety fine-tuning dataset makes it a valuable resource for safety-testing existing VLLMs, training new models or safeguarding pre-trained VLLMs. Empirical results demonstrate that fine-tuned VLLMs effectively reject unsafe instructions and substantially reduce the success rates of several black-box adversarial attacks, which approach zero in many cases. The code and dataset are available at https://github.com/ys-zong/VLGuard.
Democratizing LLMs: An Exploration of Cost-Performance Trade-offs in Self-Refined Open-Source Models
The dominance of proprietary LLMs has led to restricted access and raised information privacy concerns. High-performing open-source alternatives are crucial for information-sensitive and high-volume applications but often lag behind in performance. To address this gap, we propose (1) A untargeted variant of iterative self-critique and self-refinement devoid of external influence. (2) A novel ranking metric - Performance, Refinement, and Inference Cost Score (PeRFICS) - to find the optimal model for a given task considering refined performance and cost. Our experiments show that SoTA open source models of varying sizes from 7B - 65B, on average, improve 8.2% from their baseline performance. Strikingly, even models with extremely small memory footprints, such as Vicuna-7B, show a 11.74% improvement overall and up to a 25.39% improvement in high-creativity, open ended tasks on the Vicuna benchmark. Vicuna-13B takes it a step further and outperforms ChatGPT post-refinement. This work has profound implications for resource-constrained and information-sensitive environments seeking to leverage LLMs without incurring prohibitive costs, compromising on performance and privacy. The domain-agnostic self-refinement process coupled with our novel ranking metric facilitates informed decision-making in model selection, thereby reducing costs and democratizing access to high-performing language models, as evidenced by case studies.
A Mixture of Expert Approach for Low-Cost Customization of Deep Neural Networks
The ability to customize a trained Deep Neural Network (DNN) locally using user-specific data may greatly enhance user experiences, reduce development costs, and protect user's privacy. In this work, we propose to incorporate a novel Mixture of Experts (MOE) approach to accomplish this goal. This architecture comprises of a Global Expert (GE), a Local Expert (LE) and a Gating Network (GN). The GE is a trained DNN developed on a large training dataset representative of many potential users. After deployment on an embedded edge device, GE will be subject to customized, user-specific data (e.g., accent in speech) and its performance may suffer. This problem may be alleviated by training a local DNN (the local expert, LE) on a small size customized training data to correct the errors made by GE. A gating network then will be trained to determine whether an incoming data should be handled by GE or LE. Since the customized dataset is in general very small, the cost of training LE and GN would be much lower than that of re-training of GE. The training of LE and GN thus can be performed at local device, properly protecting the privacy of customized training data. In this work, we developed a prototype MOE architecture for handwritten alphanumeric character recognition task. We use EMNIST as the generic dataset, LeNet5 as GE, and handwritings of 10 users as the customized dataset. We show that with the LE and GN, the classification accuracy is significantly enhanced over the customized dataset with almost no degradation of accuracy over the generic dataset. In terms of energy and network size, the overhead of LE and GN is around 2.5% compared to those of GE.
Adafactor: Adaptive Learning Rates with Sublinear Memory Cost
In several recently proposed stochastic optimization methods (e.g. RMSProp, Adam, Adadelta), parameter updates are scaled by the inverse square roots of exponential moving averages of squared past gradients. Maintaining these per-parameter second-moment estimators requires memory equal to the number of parameters. For the case of neural network weight matrices, we propose maintaining only the per-row and per-column sums of these moving averages, and estimating the per-parameter second moments based on these sums. We demonstrate empirically that this method produces similar results to the baseline. Secondly, we show that adaptive methods can produce larger-than-desired updates when the decay rate of the second moment accumulator is too slow. We propose update clipping and a gradually increasing decay rate scheme as remedies. Combining these methods and dropping momentum, we achieve comparable results to the published Adam regime in training the Transformer model on the WMT 2014 English-German machine translation task, while using very little auxiliary storage in the optimizer. Finally, we propose scaling the parameter updates based on the scale of the parameters themselves.
vTrain: A Simulation Framework for Evaluating Cost-effective and Compute-optimal Large Language Model Training
As large language models (LLMs) become widespread in various application domains, a critical challenge the AI community is facing is how to train these large AI models in a cost-effective manner. Existing LLM training plans typically employ a heuristic based parallel training strategy which is based on empirical observations rather than grounded upon a thorough examination of the search space of LLM parallelization. Such limitation renders existing systems to leave significant performance left on the table, wasting millions of dollars worth of training cost. This paper presents our profiling-driven simulator called vTrain, providing AI practitioners a fast yet accurate software framework to determine an efficient and cost-effective LLM training system configuration. We demonstrate vTrain's practicality through several case studies, e.g., effectively evaluating optimal training parallelization strategies that balances training time and its associated training cost, efficient multi-tenant GPU cluster schedulers targeting multiple LLM training jobs, and determining a compute-optimal LLM model architecture given a fixed compute budget.
Active Self-Supervised Learning: A Few Low-Cost Relationships Are All You Need
Self-Supervised Learning (SSL) has emerged as the solution of choice to learn transferable representations from unlabeled data. However, SSL requires to build samples that are known to be semantically akin, i.e. positive views. Requiring such knowledge is the main limitation of SSL and is often tackled by ad-hoc strategies e.g. applying known data-augmentations to the same input. In this work, we generalize and formalize this principle through Positive Active Learning (PAL) where an oracle queries semantic relationships between samples. PAL achieves three main objectives. First, it unveils a theoretically grounded learning framework beyond SSL, that can be extended to tackle supervised and semi-supervised learning depending on the employed oracle. Second, it provides a consistent algorithm to embed a priori knowledge, e.g. some observed labels, into any SSL losses without any change in the training pipeline. Third, it provides a proper active learning framework yielding low-cost solutions to annotate datasets, arguably bringing the gap between theory and practice of active learning that is based on simple-to-answer-by-non-experts queries of semantic relationships between inputs.
HyperMixer: An MLP-based Low Cost Alternative to Transformers
Transformer-based architectures are the model of choice for natural language understanding, but they come at a significant cost, as they have quadratic complexity in the input length, require a lot of training data, and can be difficult to tune. In the pursuit of lower costs, we investigate simple MLP-based architectures. We find that existing architectures such as MLPMixer, which achieves token mixing through a static MLP applied to each feature independently, are too detached from the inductive biases required for natural language understanding. In this paper, we propose a simple variant, HyperMixer, which forms the token mixing MLP dynamically using hypernetworks. Empirically, we demonstrate that our model performs better than alternative MLP-based models, and on par with Transformers. In contrast to Transformers, HyperMixer achieves these results at substantially lower costs in terms of processing time, training data, and hyperparameter tuning.
Combiner: Full Attention Transformer with Sparse Computation Cost
Transformers provide a class of expressive architectures that are extremely effective for sequence modeling. However, the key limitation of transformers is their quadratic memory and time complexity O(L^2) with respect to the sequence length in attention layers, which restricts application in extremely long sequences. Most existing approaches leverage sparsity or low-rank assumptions in the attention matrix to reduce cost, but sacrifice expressiveness. Instead, we propose Combiner, which provides full attention capability in each attention head while maintaining low computation and memory complexity. The key idea is to treat the self-attention mechanism as a conditional expectation over embeddings at each location, and approximate the conditional distribution with a structured factorization. Each location can attend to all other locations, either via direct attention, or through indirect attention to abstractions, which are again conditional expectations of embeddings from corresponding local regions. We show that most sparse attention patterns used in existing sparse transformers are able to inspire the design of such factorization for full attention, resulting in the same sub-quadratic cost (O(Llog(L)) or O(LL)). Combiner is a drop-in replacement for attention layers in existing transformers and can be easily implemented in common frameworks. An experimental evaluation on both autoregressive and bidirectional sequence tasks demonstrates the effectiveness of this approach, yielding state-of-the-art results on several image and text modeling tasks.
Progressive Query Expansion for Retrieval Over Cost-constrained Data Sources
Query expansion has been employed for a long time to improve the accuracy of query retrievers. Earlier works relied on pseudo-relevance feedback (PRF) techniques, which augment a query with terms extracted from documents retrieved in a first stage. However, the documents may be noisy hindering the effectiveness of the ranking. To avoid this, recent studies have instead used Large Language Models (LLMs) to generate additional content to expand a query. These techniques are prone to hallucination and also focus on the LLM usage cost. However, the cost may be dominated by the retrieval in several important practical scenarios, where the corpus is only available via APIs which charge a fee per retrieved document. We propose combining classic PRF techniques with LLMs and create a progressive query expansion algorithm ProQE that iteratively expands the query as it retrieves more documents. ProQE is compatible with both sparse and dense retrieval systems. Our experimental results on four retrieval datasets show that ProQE outperforms state-of-the-art baselines by 37% and is the most cost-effective.
Language Models on a Diet: Cost-Efficient Development of Encoders for Closely-Related Languages via Additional Pretraining
The world of language models is going through turbulent times, better and ever larger models are coming out at an unprecedented speed. However, we argue that, especially for the scientific community, encoder models of up to 1 billion parameters are still very much needed, their primary usage being in enriching large collections of data with metadata necessary for downstream research. We investigate the best way to ensure the existence of such encoder models on the set of very closely related languages - Croatian, Serbian, Bosnian and Montenegrin, by setting up a diverse benchmark for these languages, and comparing the trained-from-scratch models with the new models constructed via additional pretraining of existing multilingual models. We show that comparable performance to dedicated from-scratch models can be obtained by additionally pretraining available multilingual models even with a limited amount of computation. We also show that neighboring languages, in our case Slovenian, can be included in the additional pretraining with little to no loss in the performance of the final model.
Cross-Architecture Transfer Learning for Linear-Cost Inference Transformers
Recently, multiple architectures has been proposed to improve the efficiency of the Transformer Language Models through changing the design of the self-attention block to have a linear-cost inference (LCI). A notable approach in this realm is the State-Space Machines (SSMs) architecture, which showed on-par performance on language modeling tasks with the self-attention transformers. However, such an architectural change requires a full pretraining of the weights from scratch, which incurs a huge cost to researchers and practitioners who want to use the new architectures. In the more traditional linear attention works, it has been proposed to approximate full attention with linear attention by swap-and-finetune framework. Motivated by this approach, we propose Cross-Architecture Transfer Learning (XATL), in which the weights of the shared components between LCI and self-attention-based transformers, such as layernorms, MLPs, input/output embeddings, are directly transferred to the new architecture from already pre-trained model parameters. We experimented the efficacy of the method on varying sizes and alternative attention architectures and show that \methodabbr significantly reduces the training time up to 2.5x times and converges to a better minimum with up to 2.6% stronger model on the LM benchmarks within the same compute budget.
Switching the Loss Reduces the Cost in Batch Reinforcement Learning
We propose training fitted Q-iteration with log-loss (FQI-LOG) for batch reinforcement learning (RL). We show that the number of samples needed to learn a near-optimal policy with FQI-LOG scales with the accumulated cost of the optimal policy, which is zero in problems where acting optimally achieves the goal and incurs no cost. In doing so, we provide a general framework for proving small-cost bounds, i.e. bounds that scale with the optimal achievable cost, in batch RL. Moreover, we empirically verify that FQI-LOG uses fewer samples than FQI trained with squared loss on problems where the optimal policy reliably achieves the goal.
Machine Learning Force Fields with Data Cost Aware Training
Machine learning force fields (MLFF) have been proposed to accelerate molecular dynamics (MD) simulation, which finds widespread applications in chemistry and biomedical research. Even for the most data-efficient MLFFs, reaching chemical accuracy can require hundreds of frames of force and energy labels generated by expensive quantum mechanical algorithms, which may scale as O(n^3) to O(n^7), with n proportional to the number of basis functions. To address this issue, we propose a multi-stage computational framework -- ASTEROID, which lowers the data cost of MLFFs by leveraging a combination of cheap inaccurate data and expensive accurate data. The motivation behind ASTEROID is that inaccurate data, though incurring large bias, can help capture the sophisticated structures of the underlying force field. Therefore, we first train a MLFF model on a large amount of inaccurate training data, employing a bias-aware loss function to prevent the model from overfitting tahe potential bias of this data. We then fine-tune the obtained model using a small amount of accurate training data, which preserves the knowledge learned from the inaccurate training data while significantly improving the model's accuracy. Moreover, we propose a variant of ASTEROID based on score matching for the setting where the inaccurate training data are unlabeled. Extensive experiments on MD datasets and downstream tasks validate the efficacy of ASTEROID. Our code and data are available at https://github.com/abukharin3/asteroid.
FusionDepth: Complement Self-Supervised Monocular Depth Estimation with Cost Volume
Multi-view stereo depth estimation based on cost volume usually works better than self-supervised monocular depth estimation except for moving objects and low-textured surfaces. So in this paper, we propose a multi-frame depth estimation framework which monocular depth can be refined continuously by multi-frame sequential constraints, leveraging a Bayesian fusion layer within several iterations. Both monocular and multi-view networks can be trained with no depth supervision. Our method also enhances the interpretability when combining monocular estimation with multi-view cost volume. Detailed experiments show that our method surpasses state-of-the-art unsupervised methods utilizing single or multiple frames at test time on KITTI benchmark.
A Generative Framework for Low-Cost Result Validation of Machine Learning-as-a-Service Inference
The growing popularity of Machine Learning (ML) has led to its deployment in various sensitive domains, which has resulted in significant research focused on ML security and privacy. However, in some applications, such as Augmented/Virtual Reality, integrity verification of the outsourced ML tasks is more critical--a facet that has not received much attention. Existing solutions, such as multi-party computation and proof-based systems, impose significant computation overhead, which makes them unfit for real-time applications. We propose Fides, a novel framework for real-time integrity validation of ML-as-a-Service (MLaaS) inference. Fides features a novel and efficient distillation technique--Greedy Distillation Transfer Learning--that dynamically distills and fine-tunes a space and compute-efficient verification model for verifying the corresponding service model while running inside a trusted execution environment. Fides features a client-side attack detection model that uses statistical analysis and divergence measurements to identify, with a high likelihood, if the service model is under attack. Fides also offers a re-classification functionality that predicts the original class whenever an attack is identified. We devised a generative adversarial network framework for training the attack detection and re-classification models. The evaluation shows that Fides achieves an accuracy of up to 98% for attack detection and 94% for re-classification.
SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion optimization through diffusion
Multi-objective optimization problems are ubiquitous in robotics, e.g., the optimization of a robot manipulation task requires a joint consideration of grasp pose configurations, collisions and joint limits. While some demands can be easily hand-designed, e.g., the smoothness of a trajectory, several task-specific objectives need to be learned from data. This work introduces a method for learning data-driven SE(3) cost functions as diffusion models. Diffusion models can represent highly-expressive multimodal distributions and exhibit proper gradients over the entire space due to their score-matching training objective. Learning costs as diffusion models allows their seamless integration with other costs into a single differentiable objective function, enabling joint gradient-based motion optimization. In this work, we focus on learning SE(3) diffusion models for 6DoF grasping, giving rise to a novel framework for joint grasp and motion optimization without needing to decouple grasp selection from trajectory generation. We evaluate the representation power of our SE(3) diffusion models w.r.t. classical generative models, and we showcase the superior performance of our proposed optimization framework in a series of simulated and real-world robotic manipulation tasks against representative baselines.
Distributed Contextual Linear Bandits with Minimax Optimal Communication Cost
We study distributed contextual linear bandits with stochastic contexts, where N agents act cooperatively to solve a linear bandit-optimization problem with d-dimensional features over the course of T rounds. For this problem, we derive the first ever information-theoretic lower bound Omega(dN) on the communication cost of any algorithm that performs optimally in a regret minimization setup. We then propose a distributed batch elimination version of the LinUCB algorithm, DisBE-LUCB, where the agents share information among each other through a central server. We prove that the communication cost of DisBE-LUCB matches our lower bound up to logarithmic factors. In particular, for scenarios with known context distribution, the communication cost of DisBE-LUCB is only mathcal{O}(dN) and its regret is {mathcal{O}}(dNT), which is of the same order as that incurred by an optimal single-agent algorithm for NT rounds. We also provide similar bounds for practical settings where the context distribution can only be estimated. Therefore, our proposed algorithm is nearly minimax optimal in terms of both regret and communication cost. Finally, we propose DecBE-LUCB, a fully decentralized version of DisBE-LUCB, which operates without a central server, where agents share information with their immediate neighbors through a carefully designed consensus procedure.
Training Deep Nets with Sublinear Memory Cost
We propose a systematic approach to reduce the memory consumption of deep neural network training. Specifically, we design an algorithm that costs O(sqrt(n)) memory to train a n layer network, with only the computational cost of an extra forward pass per mini-batch. As many of the state-of-the-art models hit the upper bound of the GPU memory, our algorithm allows deeper and more complex models to be explored, and helps advance the innovations in deep learning research. We focus on reducing the memory cost to store the intermediate feature maps and gradients during training. Computation graph analysis is used for automatic in-place operation and memory sharing optimizations. We show that it is possible to trade computation for memory - giving a more memory efficient training algorithm with a little extra computation cost. In the extreme case, our analysis also shows that the memory consumption can be reduced to O(log n) with as little as O(n log n) extra cost for forward computation. Our experiments show that we can reduce the memory cost of a 1,000-layer deep residual network from 48G to 7G with only 30 percent additional running time cost on ImageNet problems. Similarly, significant memory cost reduction is observed in training complex recurrent neural networks on very long sequences.