Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAgents Thinking Fast and Slow: A Talker-Reasoner Architecture
Large language models have enabled agents of all kinds to interact with users through natural conversation. Consequently, agents now have two jobs: conversing and planning/reasoning. Their conversational responses must be informed by all available information, and their actions must help to achieve goals. This dichotomy between conversing with the user and doing multi-step reasoning and planning can be seen as analogous to the human systems of "thinking fast and slow" as introduced by Kahneman. Our approach is comprised of a "Talker" agent (System 1) that is fast and intuitive, and tasked with synthesizing the conversational response; and a "Reasoner" agent (System 2) that is slower, more deliberative, and more logical, and is tasked with multi-step reasoning and planning, calling tools, performing actions in the world, and thereby producing the new agent state. We describe the new Talker-Reasoner architecture and discuss its advantages, including modularity and decreased latency. We ground the discussion in the context of a sleep coaching agent, in order to demonstrate real-world relevance.
A Diversity-Promoting Objective Function for Neural Conversation Models
Sequence-to-sequence neural network models for generation of conversational responses tend to generate safe, commonplace responses (e.g., "I don't know") regardless of the input. We suggest that the traditional objective function, i.e., the likelihood of output (response) given input (message) is unsuited to response generation tasks. Instead we propose using Maximum Mutual Information (MMI) as the objective function in neural models. Experimental results demonstrate that the proposed MMI models produce more diverse, interesting, and appropriate responses, yielding substantive gains in BLEU scores on two conversational datasets and in human evaluations.
How to Build an AI Tutor that Can Adapt to Any Course and Provide Accurate Answers Using Large Language Model and Retrieval-Augmented Generation
Artificial intelligence is transforming education through data-driven, personalized learning solutions. This paper introduces AI Tutor, an innovative web application that provides personalized tutoring in any subject using state-of-the-art Large Language Model (LLM). AI Tutor ingests course materials to construct an adaptive knowledge base tailored to the course. When students pose questions, it retrieves the most relevant information and generates detailed, conversational responses citing supporting evidence. The system is powered by advanced large language models and Retrieval-Augmented Generation (RAG) techniques for accurate, natural question answering. We present a fully-functional web interface and video demonstration that showcase AI Tutor's versatility across diverse subjects and its ability to produce pedagogically cogent responses. While an initial prototype, this work represents a pioneering step toward AI-enabled tutoring systems that can democratize access to high-quality, customized educational support.
Jurassic is (almost) All You Need: Few-Shot Meaning-to-Text Generation for Open-Domain Dialogue
One challenge with open-domain dialogue systems is the need to produce truthful, high-quality responses on any topic. We aim to improve the quality and coverage of Athena, an Alexa Prize dialogue system. We experiment with few-shot prompt-based learning, comparing GPT-Neo to Jurassic-1, for the movies, music, TV, sports, and video game domains, both within and cross-domain, with different prompt set sizes (2, 3, 10), formats, and meaning representations consisting of either sets of WikiData KG triples, or dialogue acts. Our evaluation uses BLEURT and human metrics, and shows that with 10-shot prompting, Athena-Jurassic's performance is significantly better for coherence and semantic accuracy. Experiments with 2-shot cross-domain prompts results in a huge performance drop for Athena-GPT-Neo, whose semantic accuracy falls to 0.41, and whose untrue hallucination rate increases to 12%. Experiments with dialogue acts for video games show that with 10-shot prompting, both models learn to control dialogue acts, but Athena-Jurassic has significantly higher coherence, and only 4% untrue hallucinations. Our results suggest that Athena-Jurassic produces high enough quality outputs to be useful in live systems with real users. To our knowledge, these are the first results demonstrating that few-shot semantic prompt-based learning can create NLGs that generalize to new domains, and produce high-quality, semantically-controlled, conversational responses directly from meaning representations.
A Comparative Analysis of Conversational Large Language Models in Knowledge-Based Text Generation
Generating natural language text from graph-structured data is essential for conversational information seeking. Semantic triples derived from knowledge graphs can serve as a valuable source for grounding responses from conversational agents by providing a factual basis for the information they communicate. This is especially relevant in the context of large language models, which offer great potential for conversational interaction but are prone to hallucinating, omitting, or producing conflicting information. In this study, we conduct an empirical analysis of conversational large language models in generating natural language text from semantic triples. We compare four large language models of varying sizes with different prompting techniques. Through a series of benchmark experiments on the WebNLG dataset, we analyze the models' performance and identify the most common issues in the generated predictions. Our findings show that the capabilities of large language models in triple verbalization can be significantly improved through few-shot prompting, post-processing, and efficient fine-tuning techniques, particularly for smaller models that exhibit lower zero-shot performance.
TopiOCQA: Open-domain Conversational Question Answering with Topic Switching
In a conversational question answering scenario, a questioner seeks to extract information about a topic through a series of interdependent questions and answers. As the conversation progresses, they may switch to related topics, a phenomenon commonly observed in information-seeking search sessions. However, current datasets for conversational question answering are limiting in two ways: 1) they do not contain topic switches; and 2) they assume the reference text for the conversation is given, i.e., the setting is not open-domain. We introduce TopiOCQA (pronounced Tapioca), an open-domain conversational dataset with topic switches on Wikipedia. TopiOCQA contains 3,920 conversations with information-seeking questions and free-form answers. On average, a conversation in our dataset spans 13 question-answer turns and involves four topics (documents). TopiOCQA poses a challenging test-bed for models, where efficient retrieval is required on multiple turns of the same conversation, in conjunction with constructing valid responses using conversational history. We evaluate several baselines, by combining state-of-the-art document retrieval methods with neural reader models. Our best model achieves F1 of 55.8, falling short of human performance by 14.2 points, indicating the difficulty of our dataset. Our dataset and code is available at https://mcgill-nlp.github.io/topiocqa
Fine-grained Conversational Decoding via Isotropic and Proximal Search
General-purpose text decoding approaches are usually adopted for dialogue response generation. Although the quality of the generated responses can be improved with dialogue-specific encoding methods, conversational decoding methods are still under-explored. Inspired by wu2023learning that a good dialogue feature space should follow the rules of locality and isotropy, we present a fine-grained conversational decoding method, termed isotropic and proximal search (IPS). Our method is designed to generate the semantic-concentrated response, while still maintaining informativeness and discrimination against the context. Experiments show that our approach outperforms existing decoding strategies in the dialogue field across both automatic and human evaluation metrics. More in-depth analyses further confirm the effectiveness of our approach.
Evaluating Very Long-Term Conversational Memory of LLM Agents
Existing works on long-term open-domain dialogues focus on evaluating model responses within contexts spanning no more than five chat sessions. Despite advancements in long-context large language models (LLMs) and retrieval augmented generation (RAG) techniques, their efficacy in very long-term dialogues remains unexplored. To address this research gap, we introduce a machine-human pipeline to generate high-quality, very long-term dialogues by leveraging LLM-based agent architectures and grounding their dialogues on personas and temporal event graphs. Moreover, we equip each agent with the capability of sharing and reacting to images. The generated conversations are verified and edited by human annotators for long-range consistency and grounding to the event graphs. Using this pipeline, we collect LoCoMo, a dataset of very long-term conversations, each encompassing 300 turns and 9K tokens on avg., over up to 35 sessions. Based on LoCoMo, we present a comprehensive evaluation benchmark to measure long-term memory in models, encompassing question answering, event summarization, and multi-modal dialogue generation tasks. Our experimental results indicate that LLMs exhibit challenges in understanding lengthy conversations and comprehending long-range temporal and causal dynamics within dialogues. Employing strategies like long-context LLMs or RAG can offer improvements but these models still substantially lag behind human performance.
Local Knowledge Powered Conversational Agents
State-of-the-art conversational agents have advanced significantly in conjunction with the use of large transformer-based language models. However, even with these advancements, conversational agents still lack the ability to produce responses that are informative and coherent with the local context. In this work, we propose a dialog framework that incorporates both local knowledge as well as users' past dialogues to generate high quality conversations. We introduce an approach to build a dataset based on Reddit conversations, where outbound URL links are widely available in the conversations and the hyperlinked documents can be naturally included as local external knowledge. Using our framework and dataset, we demonstrate that incorporating local knowledge can largely improve informativeness, coherency and realisticness measures using human evaluations. In particular, our approach consistently outperforms the state-of-the-art conversational model on the Reddit dataset across all three measures. We also find that scaling the size of our models from 117M to 8.3B parameters yields consistent improvement of validation perplexity as well as human evaluated metrics. Our model with 8.3B parameters can generate human-like responses as rated by various human evaluations in a single-turn dialog setting.
Dialogue Chain-of-Thought Distillation for Commonsense-aware Conversational Agents
Human-like chatbots necessitate the use of commonsense reasoning in order to effectively comprehend and respond to implicit information present within conversations. Achieving such coherence and informativeness in responses, however, is a non-trivial task. Even for large language models (LLMs), the task of identifying and aggregating key evidence within a single hop presents a substantial challenge. This complexity arises because such evidence is scattered across multiple turns in a conversation, thus necessitating integration over multiple hops. Hence, our focus is to facilitate such multi-hop reasoning over a dialogue context, namely dialogue chain-of-thought (CoT) reasoning. To this end, we propose a knowledge distillation framework that leverages LLMs as unreliable teachers and selectively distills consistent and helpful rationales via alignment filters. We further present DOCTOR, a DialOgue Chain-of-ThOught Reasoner that provides reliable CoT rationales for response generation. We conduct extensive experiments to show that enhancing dialogue agents with high-quality rationales from DOCTOR significantly improves the quality of their responses.
DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation
We present a large, tunable neural conversational response generation model, DialoGPT (dialogue generative pre-trained transformer). Trained on 147M conversation-like exchanges extracted from Reddit comment chains over a period spanning from 2005 through 2017, DialoGPT extends the Hugging Face PyTorch transformer to attain a performance close to human both in terms of automatic and human evaluation in single-turn dialogue settings. We show that conversational systems that leverage DialoGPT generate more relevant, contentful and context-consistent responses than strong baseline systems. The pre-trained model and training pipeline are publicly released to facilitate research into neural response generation and the development of more intelligent open-domain dialogue systems.
Improving Conversational Recommendation Systems' Quality with Context-Aware Item Meta Information
Conversational recommendation systems (CRS) engage with users by inferring user preferences from dialog history, providing accurate recommendations, and generating appropriate responses. Previous CRSs use knowledge graph (KG) based recommendation modules and integrate KG with language models for response generation. Although KG-based approaches prove effective, two issues remain to be solved. First, KG-based approaches ignore the information in the conversational context but only rely on entity relations and bag of words to recommend items. Second, it requires substantial engineering efforts to maintain KGs that model domain-specific relations, thus leading to less flexibility. In this paper, we propose a simple yet effective architecture comprising a pre-trained language model (PLM) and an item metadata encoder. The encoder learns to map item metadata to embeddings that can reflect the semantic information in the dialog context. The PLM then consumes the semantic-aligned item embeddings together with dialog context to generate high-quality recommendations and responses. Instead of modeling entity relations with KGs, our model reduces engineering complexity by directly converting each item to an embedding. Experimental results on the benchmark dataset ReDial show that our model obtains state-of-the-art results on both recommendation and response generation tasks.
Enhancing Human-Like Responses in Large Language Models
This paper explores the advancements in making large language models (LLMs) more human-like. We focus on techniques that enhance natural language understanding, conversational coherence, and emotional intelligence in AI systems. The study evaluates various approaches, including fine-tuning with diverse datasets, incorporating psychological principles, and designing models that better mimic human reasoning patterns. Our findings demonstrate that these enhancements not only improve user interactions but also open new possibilities for AI applications across different domains. Future work will address the ethical implications and potential biases introduced by these human-like attributes.
Thanos: Enhancing Conversational Agents with Skill-of-Mind-Infused Large Language Model
To increase social bonding with interlocutors, humans naturally acquire the ability to respond appropriately in a given situation by considering which conversational skill is most suitable for the response - a process we call skill-of-mind. For large language model (LLM)-based conversational agents, planning appropriate conversational skills, as humans do, is challenging due to the complexity of social dialogue, especially in interactive scenarios. To address this, we propose a skill-of-mind-annotated conversation dataset, named Multifaceted Skill-of-Mind, which includes multi-turn and multifaceted conversational skills across various interactive scenarios (e.g., long-term, counseling, task-oriented), grounded in diverse social contexts (e.g., demographics, persona, rules of thumb). This dataset consists of roughly 100K conversations. Using this dataset, we introduce a new family of skill-of-mind-infused LLMs, named Thanos, with model sizes of 1B, 3B, and 8B parameters. With extensive experiments, these models successfully demonstrate the skill-of-mind process and exhibit strong generalizability in inferring multifaceted skills across a variety of domains. Moreover, we show that Thanos significantly enhances the quality of responses generated by LLM-based conversational agents and promotes prosocial behavior in human evaluations.
TUTORING: Instruction-Grounded Conversational Agent for Language Learners
In this paper, we propose Tutoring bot, a generative chatbot trained on a large scale of tutor-student conversations for English-language learning. To mimic a human tutor's behavior in language education, the tutor bot leverages diverse educational instructions and grounds to each instruction as additional input context for the tutor response generation. As a single instruction generally involves multiple dialogue turns to give the student sufficient speaking practice, the tutor bot is required to monitor and capture when the current instruction should be kept or switched to the next instruction. For that, the tutor bot is learned to not only generate responses but also infer its teaching action and progress on the current conversation simultaneously by a multi-task learning scheme. Our Tutoring bot is deployed under a non-commercial use license at https://tutoringai.com.
Muse: A Multimodal Conversational Recommendation Dataset with Scenario-Grounded User Profiles
Current conversational recommendation systems focus predominantly on text. However, real-world recommendation settings are generally multimodal, causing a significant gap between existing research and practical applications. To address this issue, we propose Muse, the first multimodal conversational recommendation dataset. Muse comprises 83,148 utterances from 7,000 conversations centered around the Clothing domain. Each conversation contains comprehensive multimodal interactions, rich elements, and natural dialogues. Data in Muse are automatically synthesized by a multi-agent framework powered by multimodal large language models (MLLMs). It innovatively derives user profiles from real-world scenarios rather than depending on manual design and history data for better scalability, and then it fulfills conversation simulation and optimization. Both human and LLM evaluations demonstrate the high quality of conversations in Muse. Additionally, fine-tuning experiments on three MLLMs demonstrate Muse's learnable patterns for recommendations and responses, confirming its value for multimodal conversational recommendation. Our dataset and codes are available at https://anonymous.4open.science/r/Muse-0086.
BiasAsker: Measuring the Bias in Conversational AI System
Powered by advanced Artificial Intelligence (AI) techniques, conversational AI systems, such as ChatGPT and digital assistants like Siri, have been widely deployed in daily life. However, such systems may still produce content containing biases and stereotypes, causing potential social problems. Due to the data-driven, black-box nature of modern AI techniques, comprehensively identifying and measuring biases in conversational systems remains a challenging task. Particularly, it is hard to generate inputs that can comprehensively trigger potential bias due to the lack of data containing both social groups as well as biased properties. In addition, modern conversational systems can produce diverse responses (e.g., chatting and explanation), which makes existing bias detection methods simply based on the sentiment and the toxicity hardly being adopted. In this paper, we propose BiasAsker, an automated framework to identify and measure social bias in conversational AI systems. To obtain social groups and biased properties, we construct a comprehensive social bias dataset, containing a total of 841 groups and 8,110 biased properties. Given the dataset, BiasAsker automatically generates questions and adopts a novel method based on existence measurement to identify two types of biases (i.e., absolute bias and related bias) in conversational systems. Extensive experiments on 8 commercial systems and 2 famous research models, such as ChatGPT and GPT-3, show that 32.83% of the questions generated by BiasAsker can trigger biased behaviors in these widely deployed conversational systems. All the code, data, and experimental results have been released to facilitate future research.
Keyword-Guided Neural Conversational Model
We study the problem of imposing conversational goals/keywords on open-domain conversational agents, where the agent is required to lead the conversation to a target keyword smoothly and fast. Solving this problem enables the application of conversational agents in many real-world scenarios, e.g., recommendation and psychotherapy. The dominant paradigm for tackling this problem is to 1) train a next-turn keyword classifier, and 2) train a keyword-augmented response retrieval model. However, existing approaches in this paradigm have two limitations: 1) the training and evaluation datasets for next-turn keyword classification are directly extracted from conversations without human annotations, thus, they are noisy and have low correlation with human judgements, and 2) during keyword transition, the agents solely rely on the similarities between word embeddings to move closer to the target keyword, which may not reflect how humans converse. In this paper, we assume that human conversations are grounded on commonsense and propose a keyword-guided neural conversational model that can leverage external commonsense knowledge graphs (CKG) for both keyword transition and response retrieval. Automatic evaluations suggest that commonsense improves the performance of both next-turn keyword prediction and keyword-augmented response retrieval. In addition, both self-play and human evaluations show that our model produces responses with smoother keyword transition and reaches the target keyword faster than competitive baselines.
Towards a Unified Conversational Recommendation System: Multi-task Learning via Contextualized Knowledge Distillation
In Conversational Recommendation System (CRS), an agent is asked to recommend a set of items to users within natural language conversations. To address the need for both conversational capability and personalized recommendations, prior works have utilized separate recommendation and dialogue modules. However, such approach inevitably results in a discrepancy between recommendation results and generated responses. To bridge the gap, we propose a multi-task learning for a unified CRS, where a single model jointly learns both tasks via Contextualized Knowledge Distillation (ConKD). We introduce two versions of ConKD: hard gate and soft gate. The former selectively gates between two task-specific teachers, while the latter integrates knowledge from both teachers. Our gates are computed on-the-fly in a context-specific manner, facilitating flexible integration of relevant knowledge. Extensive experiments demonstrate that our single model significantly improves recommendation performance while enhancing fluency, and achieves comparable results in terms of diversity.
CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation
Retrieval-Augmented Generation (RAG) has become a powerful paradigm for enhancing large language models (LLMs) through external knowledge retrieval. Despite its widespread attention, existing academic research predominantly focuses on single-turn RAG, leaving a significant gap in addressing the complexities of multi-turn conversations found in real-world applications. To bridge this gap, we introduce CORAL, a large-scale benchmark designed to assess RAG systems in realistic multi-turn conversational settings. CORAL includes diverse information-seeking conversations automatically derived from Wikipedia and tackles key challenges such as open-domain coverage, knowledge intensity, free-form responses, and topic shifts. It supports three core tasks of conversational RAG: passage retrieval, response generation, and citation labeling. We propose a unified framework to standardize various conversational RAG methods and conduct a comprehensive evaluation of these methods on CORAL, demonstrating substantial opportunities for improving existing approaches.
Adaptive Retrieval-Augmented Generation for Conversational Systems
Despite the success of integrating large language models into the development of conversational systems, many studies have shown the effectiveness of retrieving and augmenting external knowledge for informative responses. Hence, many existing studies commonly assume the always need for Retrieval Augmented Generation (RAG) in a conversational system without explicit control. This raises a research question about such a necessity. In this study, we propose to investigate the need for each turn of system response to be augmented with external knowledge. In particular, by leveraging human judgements on the binary choice of adaptive augmentation, we develop RAGate, a gating model, which models conversation context and relevant inputs to predict if a conversational system requires RAG for improved responses. We conduct extensive experiments on devising and applying RAGate to conversational models and well-rounded analyses of different conversational scenarios. Our experimental results and analysis indicate the effective application of RAGate in RAG-based conversational systems in identifying system responses for appropriate RAG with high-quality responses and a high generation confidence. This study also identifies the correlation between the generation's confidence level and the relevance of the augmented knowledge.
STICKERCONV: Generating Multimodal Empathetic Responses from Scratch
Stickers, while widely recognized for enhancing empathetic communication in online interactions, remain underexplored in current empathetic dialogue research, notably due to the challenge of a lack of comprehensive datasets. In this paper, we introduce the Agent for STICKERCONV (Agent4SC), which uses collaborative agent interactions to realistically simulate human behavior with sticker usage, thereby enhancing multimodal empathetic communication. Building on this foundation, we develop a multimodal empathetic dialogue dataset, STICKERCONV, comprising 12.9K dialogue sessions, 5.8K unique stickers, and 2K diverse conversational scenarios. This dataset serves as a benchmark for multimodal empathetic generation. To advance further, we propose PErceive and Generate Stickers (PEGS), a multimodal empathetic response generation framework, complemented by a comprehensive set of empathy evaluation metrics based on LLM. Our experiments demonstrate PEGS's effectiveness in generating contextually relevant and emotionally resonant multimodal empathetic responses, contributing to the advancement of more nuanced and engaging empathetic dialogue systems.
Large Language Models Know Your Contextual Search Intent: A Prompting Framework for Conversational Search
In this paper, we present a prompting framework called LLMCS that leverages large language models, such as code-davinci-002 of GPT-3, to perform few-shot conversational query rewriting for conversational search. We explore three prompting methods to generate multiple query rewrites and hypothetical responses, and propose aggregating them into an integrated representation that can robustly represent the user's real contextual search intent. Experimental results on two conversational search datasets, including CAst-19 and CAsT-20, show that our approach achieves significant improvements in search effectiveness over existing baselines and manual rewrites. Notably, LLMCS can significantly outperform the state-of-the-art baselines by up to +5.9\% and +32.9\% w.r.t. NDCG@3 on CAsT-19 and CAsT-20, highlighting the vast potential of large language models for conversational search. Our code will be released at https://github.com/kyriemao/LLMCS.
Extracting Accurate Materials Data from Research Papers with Conversational Language Models and Prompt Engineering
There has been a growing effort to replace hand extraction of data from research papers with automated data extraction based on natural language processing, language models, and recently, large language models (LLMs). Although these methods enable efficient extraction of data from large sets of research papers, they require a significant amount of up-front effort, expertise, and coding. In this work we propose the ChatExtract method that can fully automate very accurate data extraction with minimal initial effort and background, using an advanced conversational LLM. ChatExtract consists of a set of engineered prompts applied to a conversational LLM that both identify sentences with data, extract that data, and assure the data's correctness through a series of follow-up questions. These follow-up questions largely overcome known issues with LLMs providing factually inaccurate responses. ChatExtract can be applied with any conversational LLMs and yields very high quality data extraction. In tests on materials data we find precision and recall both close to 90% from the best conversational LLMs, like ChatGPT-4. We demonstrate that the exceptional performance is enabled by the information retention in a conversational model combined with purposeful redundancy and introducing uncertainty through follow-up prompts. These results suggest that approaches similar to ChatExtract, due to their simplicity, transferability, and accuracy are likely to become powerful tools for data extraction in the near future. Finally, databases for critical cooling rates of metallic glasses and yield strengths of high entropy alloys are developed using ChatExtract.
Towards Unified Conversational Recommender Systems via Knowledge-Enhanced Prompt Learning
Conversational recommender systems (CRS) aim to proactively elicit user preference and recommend high-quality items through natural language conversations. Typically, a CRS consists of a recommendation module to predict preferred items for users and a conversation module to generate appropriate responses. To develop an effective CRS, it is essential to seamlessly integrate the two modules. Existing works either design semantic alignment strategies, or share knowledge resources and representations between the two modules. However, these approaches still rely on different architectures or techniques to develop the two modules, making it difficult for effective module integration. To address this problem, we propose a unified CRS model named UniCRS based on knowledge-enhanced prompt learning. Our approach unifies the recommendation and conversation subtasks into the prompt learning paradigm, and utilizes knowledge-enhanced prompts based on a fixed pre-trained language model (PLM) to fulfill both subtasks in a unified approach. In the prompt design, we include fused knowledge representations, task-specific soft tokens, and the dialogue context, which can provide sufficient contextual information to adapt the PLM for the CRS task. Besides, for the recommendation subtask, we also incorporate the generated response template as an important part of the prompt, to enhance the information interaction between the two subtasks. Extensive experiments on two public CRS datasets have demonstrated the effectiveness of our approach.
RevCore: Review-augmented Conversational Recommendation
Existing conversational recommendation (CR) systems usually suffer from insufficient item information when conducted on short dialogue history and unfamiliar items. Incorporating external information (e.g., reviews) is a potential solution to alleviate this problem. Given that reviews often provide a rich and detailed user experience on different interests, they are potential ideal resources for providing high-quality recommendations within an informative conversation. In this paper, we design a novel end-to-end framework, namely, Review-augmented Conversational Recommender (RevCore), where reviews are seamlessly incorporated to enrich item information and assist in generating both coherent and informative responses. In detail, we extract sentiment-consistent reviews, perform review-enriched and entity-based recommendations for item suggestions, as well as use a review-attentive encoder-decoder for response generation. Experimental results demonstrate the superiority of our approach in yielding better performance on both recommendation and conversation responding.
KECRS: Towards Knowledge-Enriched Conversational Recommendation System
The chit-chat-based conversational recommendation systems (CRS) provide item recommendations to users through natural language interactions. To better understand user's intentions, external knowledge graphs (KG) have been introduced into chit-chat-based CRS. However, existing chit-chat-based CRS usually generate repetitive item recommendations, and they cannot properly infuse knowledge from KG into CRS to generate informative responses. To remedy these issues, we first reformulate the conversational recommendation task to highlight that the recommended items should be new and possibly interested by users. Then, we propose the Knowledge-Enriched Conversational Recommendation System (KECRS). Specifically, we develop the Bag-of-Entity (BOE) loss and the infusion loss to better integrate KG with CRS for generating more diverse and informative responses. BOE loss provides an additional supervision signal to guide CRS to learn from both human-written utterances and KG. Infusion loss bridges the gap between the word embeddings and entity embeddings by minimizing distances of the same words in these two embeddings. Moreover, we facilitate our study by constructing a high-quality KG, \ie The Movie Domain Knowledge Graph (TMDKG). Experimental results on a large-scale dataset demonstrate that KECRS outperforms state-of-the-art chit-chat-based CRS, in terms of both recommendation accuracy and response generation quality.
Chatbot is Not All You Need: Information-rich Prompting for More Realistic Responses
Recent Large Language Models (LLMs) have shown remarkable capabilities in mimicking fictional characters or real humans in conversational settings. However, the realism and consistency of these responses can be further enhanced by providing richer information of the agent being mimicked. In this paper, we propose a novel approach to generate more realistic and consistent responses from LLMs, leveraging five senses, attributes, emotional states, relationship with the interlocutor, and memories. By incorporating these factors, we aim to increase the LLM's capacity for generating natural and realistic reactions in conversational exchanges. Through our research, we expect to contribute to the development of LLMs that demonstrate improved capabilities in mimicking fictional characters. We release a new benchmark dataset and all our codes, prompts, and sample results on our Github: https://github.com/srafsasm/InfoRichBot
Exploiting Simulated User Feedback for Conversational Search: Ranking, Rewriting, and Beyond
This research aims to explore various methods for assessing user feedback in mixed-initiative conversational search (CS) systems. While CS systems enjoy profuse advancements across multiple aspects, recent research fails to successfully incorporate feedback from the users. One of the main reasons for that is the lack of system-user conversational interaction data. To this end, we propose a user simulator-based framework for multi-turn interactions with a variety of mixed-initiative CS systems. Specifically, we develop a user simulator, dubbed ConvSim, that, once initialized with an information need description, is capable of providing feedback to a system's responses, as well as answering potential clarifying questions. Our experiments on a wide variety of state-of-the-art passage retrieval and neural re-ranking models show that effective utilization of user feedback can lead to 16% retrieval performance increase in terms of nDCG@3. Moreover, we observe consistent improvements as the number of feedback rounds increases (35% relative improvement in terms of nDCG@3 after three rounds). This points to a research gap in the development of specific feedback processing modules and opens a potential for significant advancements in CS. To support further research in the topic, we release over 30,000 transcripts of system-simulator interactions based on well-established CS datasets.
ProsocialDialog: A Prosocial Backbone for Conversational Agents
Most existing dialogue systems fail to respond properly to potentially unsafe user utterances by either ignoring or passively agreeing with them. To address this issue, we introduce ProsocialDialog, the first large-scale multi-turn dialogue dataset to teach conversational agents to respond to problematic content following social norms. Covering diverse unethical, problematic, biased, and toxic situations, ProsocialDialog contains responses that encourage prosocial behavior, grounded in commonsense social rules (i.e., rules-of-thumb, RoTs). Created via a human-AI collaborative framework, ProsocialDialog consists of 58K dialogues, with 331K utterances, 160K unique RoTs, and 497K dialogue safety labels accompanied by free-form rationales. With this dataset, we introduce a dialogue safety detection module, Canary, capable of generating RoTs given conversational context, and a socially-informed dialogue agent, Prost. Empirical results show that Prost generates more socially acceptable dialogues compared to other state-of-the-art language and dialogue models in both in-domain and out-of-domain settings. Additionally, Canary effectively guides conversational agents and off-the-shelf language models to generate significantly more prosocial responses. Our work highlights the promise and importance of creating and steering conversational AI to be socially responsible.
RecInDial: A Unified Framework for Conversational Recommendation with Pretrained Language Models
Conversational Recommender System (CRS), which aims to recommend high-quality items to users through interactive conversations, has gained great research interest recently. A CRS is usually composed of a recommendation module and a generation module. In the previous work, these two modules are loosely connected in the model training and are shallowly integrated during inference, where a simple switching or copy mechanism is adopted to incorporate recommended items into generated responses. Moreover, the current end-to-end neural models trained on small crowd-sourcing datasets (e.g., 10K dialogs in the ReDial dataset) tend to overfit and have poor chit-chat ability. In this work, we propose a novel unified framework that integrates recommendation into the dialog (RecInDial) generation by introducing a vocabulary pointer. To tackle the low-resource issue in CRS, we finetune the large-scale pretrained language models to generate fluent and diverse responses, and introduce a knowledge-aware bias learned from an entity-oriented knowledge graph to enhance the recommendation performance. Furthermore, we propose to evaluate the CRS models in an end-to-end manner, which can reflect the overall performance of the entire system rather than the performance of individual modules, compared to the separate evaluations of the two modules used in previous work. Experiments on the benchmark dataset ReDial show our RecInDial model significantly surpasses the state-of-the-art methods. More extensive analyses show the effectiveness of our model.
Wizard of Wikipedia: Knowledge-Powered Conversational agents
In open-domain dialogue intelligent agents should exhibit the use of knowledge, however there are few convincing demonstrations of this to date. The most popular sequence to sequence models typically "generate and hope" generic utterances that can be memorized in the weights of the model when mapping from input utterance(s) to output, rather than employing recalled knowledge as context. Use of knowledge has so far proved difficult, in part because of the lack of a supervised learning benchmark task which exhibits knowledgeable open dialogue with clear grounding. To that end we collect and release a large dataset with conversations directly grounded with knowledge retrieved from Wikipedia. We then design architectures capable of retrieving knowledge, reading and conditioning on it, and finally generating natural responses. Our best performing dialogue models are able to conduct knowledgeable discussions on open-domain topics as evaluated by automatic metrics and human evaluations, while our new benchmark allows for measuring further improvements in this important research direction.
IRLab@iKAT24: Learned Sparse Retrieval with Multi-aspect LLM Query Generation for Conversational Search
The Interactive Knowledge Assistant Track (iKAT) 2024 focuses on advancing conversational assistants, able to adapt their interaction and responses from personalized user knowledge. The track incorporates a Personal Textual Knowledge Base (PTKB) alongside Conversational AI tasks, such as passage ranking and response generation. Query Rewrite being an effective approach for resolving conversational context, we explore Large Language Models (LLMs), as query rewriters. Specifically, our submitted runs explore multi-aspect query generation using the MQ4CS framework, which we further enhance with Learned Sparse Retrieval via the SPLADE architecture, coupled with robust cross-encoder models. We also propose an alternative to the previous interleaving strategy, aggregating multiple aspects during the reranking phase. Our findings indicate that multi-aspect query generation is effective in enhancing performance when integrated with advanced retrieval and reranking models. Our results also lead the way for better personalization in Conversational Search, relying on LLMs to integrate personalization within query rewrite, and outperforming human rewrite performance.
Learning When to Retrieve, What to Rewrite, and How to Respond in Conversational QA
Augmenting Large Language Models (LLMs) with information retrieval capabilities (i.e., Retrieval-Augmented Generation (RAG)) has proven beneficial for knowledge-intensive tasks. However, understanding users' contextual search intent when generating responses is an understudied topic for conversational question answering (QA). This conversational extension leads to additional concerns when compared to single-turn QA as it is more challenging for systems to comprehend conversational context and manage retrieved passages over multiple turns. In this work, we propose a method for enabling LLMs to decide when to retrieve in RAG settings given a conversational context. When retrieval is deemed necessary, the LLM then rewrites the conversation for passage retrieval and judges the relevance of returned passages before response generation. Operationally, we build on the single-turn SELF-RAG framework (Asai et al., 2023) and propose SELF-multi-RAG for conversational settings. SELF-multi-RAG demonstrates improved capabilities over single-turn variants with respect to retrieving relevant passages (by using summarized conversational context) and assessing the quality of generated responses. Experiments on three conversational QA datasets validate the enhanced response generation capabilities of SELF-multi-RAG, with improvements of ~13% measured by human annotation.
Balancing Enhancement, Harmlessness, and General Capabilities: Enhancing Conversational LLMs with Direct RLHF
In recent advancements in Conversational Large Language Models (LLMs), a concerning trend has emerged, showing that many new base LLMs experience a knowledge reduction in their foundational capabilities following Supervised Fine-Tuning (SFT). This process often leads to issues such as forgetting or a decrease in the base model's abilities. Moreover, fine-tuned models struggle to align with user preferences, inadvertently increasing the generation of toxic outputs when specifically prompted. To overcome these challenges, we adopted an innovative approach by completely bypassing SFT and directly implementing Harmless Reinforcement Learning from Human Feedback (RLHF). Our method not only preserves the base model's general capabilities but also significantly enhances its conversational abilities, while notably reducing the generation of toxic outputs. Our approach holds significant implications for fields that demand a nuanced understanding and generation of responses, such as customer service. We applied this methodology to Mistral, the most popular base model, thereby creating Mistral-Plus. Our validation across 11 general tasks demonstrates that Mistral-Plus outperforms similarly sized open-source base models and their corresponding instruct versions. Importantly, the conversational abilities of Mistral-Plus were significantly improved, indicating a substantial advancement over traditional SFT models in both safety and user preference alignment.
Plan-Grounded Large Language Models for Dual Goal Conversational Settings
Training Large Language Models (LLMs) to follow user instructions has been shown to supply the LLM with ample capacity to converse fluently while being aligned with humans. Yet, it is not completely clear how an LLM can lead a plan-grounded conversation in mixed-initiative settings where instructions flow in both directions of the conversation, i.e. both the LLM and the user provide instructions to one another. In this paper, we tackle a dual goal mixed-initiative conversational setting where the LLM not only grounds the conversation on an arbitrary plan but also seeks to satisfy both a procedural plan and user instructions. The LLM is then responsible for guiding the user through the plan and, at the same time, adapting to new circumstances, answering questions, and activating safety guardrails when needed. We propose a novel LLM that grounds the dialogue on a procedural plan, can take the dialogue initiative, and enforces guardrails on the system's behavior, while also improving the LLM's responses to unexpected user behavior. Experiments in controlled settings and with real users show that the best-performing model, which we call PlanLLM, achieves a 2.1x improvement over a strong baseline. Moreover, experiments also show good generalization to unseen domains.
CR-Walker: Tree-Structured Graph Reasoning and Dialog Acts for Conversational Recommendation
Growing interests have been attracted in Conversational Recommender Systems (CRS), which explore user preference through conversational interactions in order to make appropriate recommendation. However, there is still a lack of ability in existing CRS to (1) traverse multiple reasoning paths over background knowledge to introduce relevant items and attributes, and (2) arrange selected entities appropriately under current system intents to control response generation. To address these issues, we propose CR-Walker in this paper, a model that performs tree-structured reasoning on a knowledge graph, and generates informative dialog acts to guide language generation. The unique scheme of tree-structured reasoning views the traversed entity at each hop as part of dialog acts to facilitate language generation, which links how entities are selected and expressed. Automatic and human evaluations show that CR-Walker can arrive at more accurate recommendation, and generate more informative and engaging responses.
Time to Take Emoji Seriously: They Vastly Improve Casual Conversational Models
Graphical emoji are ubiquitous in modern-day online conversations. So is a single thumbs-up emoji able to signify an agreement, without any words. We argue that the current state-of-the-art systems are ill-equipped to correctly interpret these emoji, especially in a conversational context. However, in a casual context, the benefits might be high: a better understanding of users' utterances and more natural, emoji-rich responses. With this in mind, we modify BERT to fully support emoji, both from the Unicode Standard and custom emoji. This modified BERT is then trained on a corpus of question-answer (QA) tuples with a high number of emoji, where we're able to increase the 1-of-100 accuracy from 12.7% for the current state-of-the-art to 17.8% for our model with emoji support.
ReSpAct: Harmonizing Reasoning, Speaking, and Acting Towards Building Large Language Model-Based Conversational AI Agents
Large language model (LLM)-based agents have been increasingly used to interact with external environments (e.g., games, APIs, etc.) and solve tasks. However, current frameworks do not enable these agents to work with users and interact with them to align on the details of their tasks and reach user-defined goals; instead, in ambiguous situations, these agents may make decisions based on assumptions. This work introduces ReSpAct (Reason, Speak, and Act), a novel framework that synergistically combines the essential skills for building task-oriented "conversational" agents. ReSpAct addresses this need for agents, expanding on the ReAct approach. The ReSpAct framework enables agents to interpret user instructions, reason about complex tasks, execute appropriate actions, and engage in dynamic dialogue to seek guidance, clarify ambiguities, understand user preferences, resolve problems, and use the intermediate feedback and responses of users to update their plans. We evaluated ReSpAct in environments supporting user interaction, such as task-oriented dialogue (MultiWOZ) and interactive decision-making (AlfWorld, WebShop). ReSpAct is flexible enough to incorporate dynamic user feedback and addresses prevalent issues like error propagation and agents getting stuck in reasoning loops. This results in more interpretable, human-like task-solving trajectories than relying solely on reasoning traces. In two interactive decision-making benchmarks, AlfWorld and WebShop, ReSpAct outperform the strong reasoning-only method ReAct by an absolute success rate of 6% and 4%, respectively. In the task-oriented dialogue benchmark MultiWOZ, ReSpAct improved Inform and Success scores by 5.5% and 3%, respectively.
MARRS: Multimodal Reference Resolution System
Successfully handling context is essential for any dialog understanding task. This context maybe be conversational (relying on previous user queries or system responses), visual (relying on what the user sees, for example, on their screen), or background (based on signals such as a ringing alarm or playing music). In this work, we present an overview of MARRS, or Multimodal Reference Resolution System, an on-device framework within a Natural Language Understanding system, responsible for handling conversational, visual and background context. In particular, we present different machine learning models to enable handing contextual queries; specifically, one to enable reference resolution, and one to handle context via query rewriting. We also describe how these models complement each other to form a unified, coherent, lightweight system that can understand context while preserving user privacy.
Småprat: DialoGPT for Natural Language Generation of Swedish Dialogue by Transfer Learning
Building open-domain conversational systems (or chatbots) that produce convincing responses is a recognized challenge. Recent state-of-the-art (SoTA) transformer-based models for the generation of natural language dialogue have demonstrated impressive performance in simulating human-like, single-turn conversations in English. This work investigates, by an empirical study, the potential for transfer learning of such models to Swedish language. DialoGPT, an English language pre-trained model, is adapted by training on three different Swedish language conversational datasets obtained from publicly available sources. Perplexity score (an automated intrinsic language model metric) and surveys by human evaluation were used to assess the performances of the fine-tuned models, with results that indicate that the capacity for transfer learning can be exploited with considerable success. Human evaluators asked to score the simulated dialogue judged over 57% of the chatbot responses to be human-like for the model trained on the largest (Swedish) dataset. We provide the demos and model checkpoints of our English and Swedish chatbots on the HuggingFace platform for public use.
Ask Again, Then Fail: Large Language Models' Vacillations in Judgement
With the emergence of generative conversational large language models (LLMs) like ChatGPT, serving as virtual assistants in various fields, the stability and reliability of their responses have become crucial. However, during usage, it has been observed that these models tend to waver in their judgements when confronted with follow-up questions from users expressing skepticism or disagreement. In this work, we draw inspiration from questioning strategies in education and propose a Follow-up Questioning Mechanism along with two evaluation metrics to assess the judgement consistency of LLMs before and after exposure to disturbances. We evaluate the judgement consistency of ChatGPT, PaLM2-Bison, and Vicuna-13B under this mechanism across eight reasoning benchmarks. Empirical results show that even when the initial answers are correct, judgement consistency sharply decreases when LLMs face disturbances such as questioning, negation, or misleading. Additionally, we study these models' judgement consistency under various settings (sampling temperature and prompts) to validate this issue further, observing the impact of prompt tone and conducting an in-depth error analysis for deeper behavioral insights. Furthermore, we also explore several prompting methods to mitigate this issue and demonstrate their effectiveness\url{https://github.com/NUSTM/LLMs-Waver-In-Judgements}.
Iteration of Thought: Leveraging Inner Dialogue for Autonomous Large Language Model Reasoning
Iterative human engagement is a common and effective means of leveraging the advanced language processing power of large language models (LLMs). Using well-structured prompts in a conversational manner, human users can effectively influence an LLM to develop more thoughtful and accurate responses. Motivated by this insight, we propose the Iteration of Thought (IoT) framework for enhancing LLM responses by generating "thought"-provoking prompts vis a vis an input query and the current iteration of an LLM's response. Unlike static or semi-static approaches, e.g. Chain of Thought (CoT) or Tree of Thoughts (ToT), IoT adapts its reasoning path dynamically, based on evolving context, and without generating alternate explorative thoughts which are ultimately discarded. The three components of the IoT framework are (1) an Inner Dialogue Agent (IDA) responsible for generating instructive, context-specific prompts; (2) an LLM Agent (LLMA) that processes these prompts to refine its responses; and (3) an iterative prompting loop that implements a conversation between the former two components. We introduce two variants of our framework: Autonomous Iteration of Thought (AIoT), where an LLM decides when to stop iterating, and Guided Iteration of Thought (GIoT), which always forces a fixed number iterations. We investigate the performance of IoT across various datasets, spanning complex reasoning tasks from the GPQA dataset, explorative problem-solving in Game of 24, puzzle solving in Mini Crosswords, and multi-hop question answering from the HotpotQA dataset. Our results show that IoT represents a viable paradigm for autonomous response refinement in LLMs, showcasing significant improvements over CoT and thereby enabling more adaptive and efficient reasoning systems that minimize human intervention.
CARE: Commonsense-Aware Emotional Response Generation with Latent Concepts
Rationality and emotion are two fundamental elements of humans. Endowing agents with rationality and emotion has been one of the major milestones in AI. However, in the field of conversational AI, most existing models only specialize in one aspect and neglect the other, which often leads to dull or unrelated responses. In this paper, we hypothesize that combining rationality and emotion into conversational agents can improve response quality. To test the hypothesis, we focus on one fundamental aspect of rationality, i.e., commonsense, and propose CARE, a novel model for commonsense-aware emotional response generation. Specifically, we first propose a framework to learn and construct commonsense-aware emotional latent concepts of the response given an input message and a desired emotion. We then propose three methods to collaboratively incorporate the latent concepts into response generation. Experimental results on two large-scale datasets support our hypothesis and show that our model can produce more accurate and commonsense-aware emotional responses and achieve better human ratings than state-of-the-art models that only specialize in one aspect.
MindDial: Belief Dynamics Tracking with Theory-of-Mind Modeling for Situated Neural Dialogue Generation
Humans talk in free-form while negotiating the expressed meanings or common ground. Despite the impressive conversational abilities of the large generative language models, they do not consider the individual differences in contextual understanding in a shared situated environment. In this work, we propose MindDial, a novel conversational framework that can generate situated free-form responses to negotiate common ground. We design an explicit mind module that can track three-level beliefs -- the speaker's belief, the speaker's prediction of the listener's belief, and the common belief based on the gap between the first two. Then the speaking act classification head will decide to continue to talk, end this turn, or take task-related action. We augment a common ground alignment dataset MutualFriend with belief dynamics annotation, of which the goal is to find a single mutual friend based on the free chat between two agents. Experiments show that our model with mental state modeling can resemble human responses when aligning common ground meanwhile mimic the natural human conversation flow. The ablation study further validates the third-level common belief can aggregate information of the first and second-order beliefs and align common ground more efficiently.
Towards a Progression-Aware Autonomous Dialogue Agent
Recent advances in large-scale language modeling and generation have enabled the creation of dialogue agents that exhibit human-like responses in a wide range of conversational scenarios spanning a diverse set of tasks, from general chit-chat to focused goal-oriented discourse. While these agents excel at generating high-quality responses that are relevant to prior context, they suffer from a lack of awareness of the overall direction in which the conversation is headed, and the likelihood of task success inherent therein. Thus, we propose a framework in which dialogue agents can evaluate the progression of a conversation toward or away from desired outcomes, and use this signal to inform planning for subsequent responses. Our framework is composed of three key elements: (1) the notion of a "global" dialogue state (GDS) space, (2) a task-specific progression function (PF) computed in terms of a conversation's trajectory through this space, and (3) a planning mechanism based on dialogue rollouts by which an agent may use progression signals to select its next response.
Evaluating Open-Domain Dialogues in Latent Space with Next Sentence Prediction and Mutual Information
The long-standing one-to-many issue of the open-domain dialogues poses significant challenges for automatic evaluation methods, i.e., there may be multiple suitable responses which differ in semantics for a given conversational context. To tackle this challenge, we propose a novel learning-based automatic evaluation metric (CMN), which can robustly evaluate open-domain dialogues by augmenting Conditional Variational Autoencoders (CVAEs) with a Next Sentence Prediction (NSP) objective and employing Mutual Information (MI) to model the semantic similarity of text in the latent space. Experimental results on two open-domain dialogue datasets demonstrate the superiority of our method compared with a wide range of baselines, especially in handling responses which are distant to the golden reference responses in semantics.
ChatGPT Role-play Dataset: Analysis of User Motives and Model Naturalness
Recent advances in interactive large language models like ChatGPT have revolutionized various domains; however, their behavior in natural and role-play conversation settings remains underexplored. In our study, we address this gap by deeply investigating how ChatGPT behaves during conversations in different settings by analyzing its interactions in both a normal way and a role-play setting. We introduce a novel dataset of broad range of human-AI conversations annotated with user motives and model naturalness to examine (i) how humans engage with the conversational AI model, and (ii) how natural are AI model responses. Our study highlights the diversity of user motives when interacting with ChatGPT and variable AI naturalness, showing not only the nuanced dynamics of natural conversations between humans and AI, but also providing new avenues for improving the effectiveness of human-AI communication.
Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment
Larger language models (LLMs) have taken the world by storm with their massive multi-tasking capabilities simply by optimizing over a next-word prediction objective. With the emergence of their properties and encoded knowledge, the risk of LLMs producing harmful outputs increases, making them unfit for scalable deployment for the public. In this work, we propose a new safety evaluation benchmark RED-EVAL that carries out red-teaming. We show that even widely deployed models are susceptible to the Chain of Utterances-based (CoU) prompting, jailbreaking closed source LLM-based systems such as GPT-4 and ChatGPT to unethically respond to more than 65% and 73% of harmful queries. We also demonstrate the consistency of the RED-EVAL across 8 open-source LLMs in generating harmful responses in more than 86% of the red-teaming attempts. Next, we propose RED-INSTRUCT--An approach for the safety alignment of LLMs. It constitutes two phases: 1) HARMFULQA data collection: Leveraging CoU prompting, we collect a dataset that consists of 1.9K harmful questions covering a wide range of topics, 9.5K safe and 7.3K harmful conversations from ChatGPT; 2) SAFE-ALIGN: We demonstrate how the conversational dataset can be used for the safety alignment of LLMs by minimizing the negative log-likelihood over helpful responses and penalizing over harmful responses by gradient accent over sample loss. Our model STARLING, a fine-tuned Vicuna-7B, is observed to be more safely aligned when evaluated on RED-EVAL and HHH benchmarks while preserving the utility of the baseline models (TruthfulQA, MMLU, and BBH).
Saying No is An Art: Contextualized Fallback Responses for Unanswerable Dialogue Queries
Despite end-to-end neural systems making significant progress in the last decade for task-oriented as well as chit-chat based dialogue systems, most dialogue systems rely on hybrid approaches which use a combination of rule-based, retrieval and generative approaches for generating a set of ranked responses. Such dialogue systems need to rely on a fallback mechanism to respond to out-of-domain or novel user queries which are not answerable within the scope of the dialog system. While, dialog systems today rely on static and unnatural responses like "I don't know the answer to that question" or "I'm not sure about that", we design a neural approach which generates responses which are contextually aware with the user query as well as say no to the user. Such customized responses provide paraphrasing ability and contextualization as well as improve the interaction with the user and reduce dialogue monotonicity. Our simple approach makes use of rules over dependency parses and a text-to-text transformer fine-tuned on synthetic data of question-response pairs generating highly relevant, grammatical as well as diverse questions. We perform automatic and manual evaluations to demonstrate the efficacy of the system.
Question rewriting? Assessing its importance for conversational question answering
In conversational question answering, systems must correctly interpret the interconnected interactions and generate knowledgeable answers, which may require the retrieval of relevant information from a background repository. Recent approaches to this problem leverage neural language models, although different alternatives can be considered in terms of modules for (a) representing user questions in context, (b) retrieving the relevant background information, and (c) generating the answer. This work presents a conversational question answering system designed specifically for the Search-Oriented Conversational AI (SCAI) shared task, and reports on a detailed analysis of its question rewriting module. In particular, we considered different variations of the question rewriting module to evaluate the influence on the subsequent components, and performed a careful analysis of the results obtained with the best system configuration. Our system achieved the best performance in the shared task and our analysis emphasizes the importance of the conversation context representation for the overall system performance.
PCoQA: Persian Conversational Question Answering Dataset
Humans seek information regarding a specific topic through performing a conversation containing a series of questions and answers. In the pursuit of conversational question answering research, we introduce the PCoQA, the first Persian Conversational Question Answering dataset, a resource comprising information-seeking dialogs encompassing a total of 9,026 contextually-driven questions. Each dialog involves a questioner, a responder, and a document from the Wikipedia; The questioner asks several inter-connected questions from the text and the responder provides a span of the document as the answer for each question. PCoQA is designed to present novel challenges compared to previous question answering datasets including having more open-ended non-factual answers, longer answers, and fewer lexical overlaps. This paper not only presents the comprehensive PCoQA dataset but also reports the performance of various benchmark models. Our models include baseline models and pre-trained models, which are leveraged to boost the performance of the model. The dataset and benchmarks are available at our Github page.
Jewelry Shop Conversational Chatbot
Since the advent of chatbots in the commercial sector, they have been widely employed in the customer service department. Typically, these commercial chatbots are retrieval-based, so they are unable to respond to queries absent in the provided dataset. On the contrary, generative chatbots try to create the most appropriate response, but are mostly unable to create a smooth flow in the customer-bot dialog. Since the client has few options left for continuing after receiving a response, the dialog becomes short. Through our work, we try to maximize the intelligence of a simple conversational agent so it can answer unseen queries, and generate follow-up questions or remarks. We have built a chatbot for a jewelry shop that finds the underlying objective of the customer's query by finding similarity of the input to patterns in the corpus. Our system features an audio input interface for clients, so they may speak to it in natural language. After converting the audio to text, we trained the model to extract the intent of the query, to find an appropriate response and to speak to the client in a natural human voice. To gauge the system's performance, we used performance metrics such as Recall, Precision and F1 score.
Internet-Augmented Dialogue Generation
The largest store of continually updating knowledge on our planet can be accessed via internet search. In this work we study giving access to this information to conversational agents. Large language models, even though they store an impressive amount of knowledge within their weights, are known to hallucinate facts when generating dialogue (Shuster et al., 2021); moreover, those facts are frozen in time at the point of model training. In contrast, we propose an approach that learns to generate an internet search query based on the context, and then conditions on the search results to finally generate a response, a method that can employ up-to-the-minute relevant information. We train and evaluate such models on a newly collected dataset of human-human conversations whereby one of the speakers is given access to internet search during knowledgedriven discussions in order to ground their responses. We find that search-query based access of the internet in conversation provides superior performance compared to existing approaches that either use no augmentation or FAISS-based retrieval (Lewis et al., 2020).
CoQA: A Conversational Question Answering Challenge
Humans gather information by engaging in conversations involving a series of interconnected questions and answers. For machines to assist in information gathering, it is therefore essential to enable them to answer conversational questions. We introduce CoQA, a novel dataset for building Conversational Question Answering systems. Our dataset contains 127k questions with answers, obtained from 8k conversations about text passages from seven diverse domains. The questions are conversational, and the answers are free-form text with their corresponding evidence highlighted in the passage. We analyze CoQA in depth and show that conversational questions have challenging phenomena not present in existing reading comprehension datasets, e.g., coreference and pragmatic reasoning. We evaluate strong conversational and reading comprehension models on CoQA. The best system obtains an F1 score of 65.4%, which is 23.4 points behind human performance (88.8%), indicating there is ample room for improvement. We launch CoQA as a challenge to the community at http://stanfordnlp.github.io/coqa/
A Repository of Conversational Datasets
Progress in Machine Learning is often driven by the availability of large datasets, and consistent evaluation metrics for comparing modeling approaches. To this end, we present a repository of conversational datasets consisting of hundreds of millions of examples, and a standardised evaluation procedure for conversational response selection models using '1-of-100 accuracy'. The repository contains scripts that allow researchers to reproduce the standard datasets, or to adapt the pre-processing and data filtering steps to their needs. We introduce and evaluate several competitive baselines for conversational response selection, whose implementations are shared in the repository, as well as a neural encoder model that is trained on the entire training set.
The StatCan Dialogue Dataset: Retrieving Data Tables through Conversations with Genuine Intents
We introduce the StatCan Dialogue Dataset consisting of 19,379 conversation turns between agents working at Statistics Canada and online users looking for published data tables. The conversations stem from genuine intents, are held in English or French, and lead to agents retrieving one of over 5000 complex data tables. Based on this dataset, we propose two tasks: (1) automatic retrieval of relevant tables based on a on-going conversation, and (2) automatic generation of appropriate agent responses at each turn. We investigate the difficulty of each task by establishing strong baselines. Our experiments on a temporal data split reveal that all models struggle to generalize to future conversations, as we observe a significant drop in performance across both tasks when we move from the validation to the test set. In addition, we find that response generation models struggle to decide when to return a table. Considering that the tasks pose significant challenges to existing models, we encourage the community to develop models for our task, which can be directly used to help knowledge workers find relevant tables for live chat users.
"I'd rather just go to bed": Understanding Indirect Answers
We revisit a pragmatic inference problem in dialog: understanding indirect responses to questions. Humans can interpret 'I'm starving.' in response to 'Hungry?', even without direct cue words such as 'yes' and 'no'. In dialog systems, allowing natural responses rather than closed vocabularies would be similarly beneficial. However, today's systems are only as sensitive to these pragmatic moves as their language model allows. We create and release the first large-scale English language corpus 'Circa' with 34,268 (polar question, indirect answer) pairs to enable progress on this task. The data was collected via elaborate crowdsourcing, and contains utterances with yes/no meaning, as well as uncertain, middle-ground, and conditional responses. We also present BERT-based neural models to predict such categories for a question-answer pair. We find that while transfer learning from entailment works reasonably, performance is not yet sufficient for robust dialog. Our models reach 82-88% accuracy for a 4-class distinction, and 74-85% for 6 classes.
Perspectives on Large Language Models for Relevance Judgment
When asked, current large language models (LLMs) like ChatGPT claim that they can assist us with relevance judgments. Many researchers think this would not lead to credible IR research. In this perspective paper, we discuss possible ways for LLMs to assist human experts along with concerns and issues that arise. We devise a human-machine collaboration spectrum that allows categorizing different relevance judgment strategies, based on how much the human relies on the machine. For the extreme point of "fully automated assessment", we further include a pilot experiment on whether LLM-based relevance judgments correlate with judgments from trained human assessors. We conclude the paper by providing two opposing perspectives - for and against the use of LLMs for automatic relevance judgments - and a compromise perspective, informed by our analyses of the literature, our preliminary experimental evidence, and our experience as IR researchers. We hope to start a constructive discussion within the community to avoid a stale-mate during review, where work is dammed if is uses LLMs for evaluation and dammed if it doesn't.
ConvAI3: Generating Clarifying Questions for Open-Domain Dialogue Systems (ClariQ)
This document presents a detailed description of the challenge on clarifying questions for dialogue systems (ClariQ). The challenge is organized as part of the Conversational AI challenge series (ConvAI3) at Search Oriented Conversational AI (SCAI) EMNLP workshop in 2020. The main aim of the conversational systems is to return an appropriate answer in response to the user requests. However, some user requests might be ambiguous. In IR settings such a situation is handled mainly thought the diversification of the search result page. It is however much more challenging in dialogue settings with limited bandwidth. Therefore, in this challenge, we provide a common evaluation framework to evaluate mixed-initiative conversations. Participants are asked to rank clarifying questions in an information-seeking conversations. The challenge is organized in two stages where in Stage 1 we evaluate the submissions in an offline setting and single-turn conversations. Top participants of Stage 1 get the chance to have their model tested by human annotators.
Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves
Misunderstandings arise not only in interpersonal communication but also between humans and Large Language Models (LLMs). Such discrepancies can make LLMs interpret seemingly unambiguous questions in unexpected ways, yielding incorrect responses. While it is widely acknowledged that the quality of a prompt, such as a question, significantly impacts the quality of the response provided by LLMs, a systematic method for crafting questions that LLMs can better comprehend is still underdeveloped. In this paper, we present a method named `Rephrase and Respond' (RaR), which allows LLMs to rephrase and expand questions posed by humans and provide responses in a single prompt. This approach serves as a simple yet effective prompting method for improving performance. We also introduce a two-step variant of RaR, where a rephrasing LLM first rephrases the question and then passes the original and rephrased questions together to a different responding LLM. This facilitates the effective utilization of rephrased questions generated by one LLM with another. Our experiments demonstrate that our methods significantly improve the performance of different models across a wide range to tasks. We further provide a comprehensive comparison between RaR and the popular Chain-of-Thought (CoT) methods, both theoretically and empirically. We show that RaR is complementary to CoT and can be combined with CoT to achieve even better performance. Our work not only contributes to enhancing LLM performance efficiently and effectively but also sheds light on a fair evaluation of LLM capabilities. Data and codes are available at https://github.com/uclaml/Rephrase-and-Respond.
Beyond the Turn-Based Game: Enabling Real-Time Conversations with Duplex Models
As large language models (LLMs) increasingly permeate daily lives, there is a growing demand for real-time interactions that mirror human conversations. Traditional turn-based chat systems driven by LLMs prevent users from verbally interacting with the system while it is generating responses. To overcome these limitations, we adapt existing LLMs to duplex models so that these LLMs can listen for users while generating output and dynamically adjust themselves to provide users with instant feedback. % such as in response to interruptions. Specifically, we divide the queries and responses of conversations into several time slices and then adopt a time-division-multiplexing (TDM) encoding-decoding strategy to pseudo-simultaneously process these slices. Furthermore, to make LLMs proficient enough to handle real-time conversations, we build a fine-tuning dataset consisting of alternating time slices of queries and responses as well as covering typical feedback types in instantaneous interactions. Our experiments show that although the queries and responses of conversations are segmented into incomplete slices for processing, LLMs can preserve their original performance on standard benchmarks with a few fine-tuning steps on our dataset. Automatic and human evaluation indicate that duplex models make user-AI interactions more natural and human-like, and greatly improve user satisfaction compared to vanilla LLMs. Our duplex model and dataset will be released.
Modeling Multi-turn Conversation with Deep Utterance Aggregation
Multi-turn conversation understanding is a major challenge for building intelligent dialogue systems. This work focuses on retrieval-based response matching for multi-turn conversation whose related work simply concatenates the conversation utterances, ignoring the interactions among previous utterances for context modeling. In this paper, we formulate previous utterances into context using a proposed deep utterance aggregation model to form a fine-grained context representation. In detail, a self-matching attention is first introduced to route the vital information in each utterance. Then the model matches a response with each refined utterance and the final matching score is obtained after attentive turns aggregation. Experimental results show our model outperforms the state-of-the-art methods on three multi-turn conversation benchmarks, including a newly introduced e-commerce dialogue corpus.
Efficient Retrieval Augmented Generation from Unstructured Knowledge for Task-Oriented Dialog
This paper summarizes our work on the first track of the ninth Dialog System Technology Challenge (DSTC 9), "Beyond Domain APIs: Task-oriented Conversational Modeling with Unstructured Knowledge Access". The goal of the task is to generate responses to user turns in a task-oriented dialog that require knowledge from unstructured documents. The task is divided into three subtasks: detection, selection and generation. In order to be compute efficient, we formulate the selection problem in terms of hierarchical classification steps. We achieve our best results with this model. Alternatively, we employ siamese sequence embedding models, referred to as Dense Knowledge Retrieval, to retrieve relevant documents. This method further reduces the computation time by a factor of more than 100x at the cost of degradation in R@1 of 5-6% compared to the first model. Then for either approach, we use Retrieval Augmented Generation to generate responses based on multiple selected snippets and we show how the method can be used to fine-tune trained embeddings.
Joint Reasoning on Hybrid-knowledge sources for Task-Oriented Dialog
Traditional systems designed for task oriented dialog utilize knowledge present only in structured knowledge sources to generate responses. However, relevant information required to generate responses may also reside in unstructured sources, such as documents. Recent state of the art models such as HyKnow and SeKnow aimed at overcoming these challenges make limiting assumptions about the knowledge sources. For instance, these systems assume that certain types of information, such as a phone number, is always present in a structured knowledge base (KB) while information about aspects such as entrance ticket prices, would always be available in documents. In this paper, we create a modified version of the MutliWOZ-based dataset prepared by SeKnow to demonstrate how current methods have significant degradation in performance when strict assumptions about the source of information are removed. Then, in line with recent work exploiting pre-trained language models, we fine-tune a BART based model using prompts for the tasks of querying knowledge sources, as well as, for response generation, without making assumptions about the information present in each knowledge source. Through a series of experiments, we demonstrate that our model is robust to perturbations to knowledge modality (source of information), and that it can fuse information from structured as well as unstructured knowledge to generate responses.
Supporting Sensemaking of Large Language Model Outputs at Scale
Large language models (LLMs) are capable of generating multiple responses to a single prompt, yet little effort has been expended to help end-users or system designers make use of this capability. In this paper, we explore how to present many LLM responses at once. We design five features, which include both pre-existing and novel methods for computing similarities and differences across textual documents, as well as how to render their outputs. We report on a controlled user study (n=24) and eight case studies evaluating these features and how they support users in different tasks. We find that the features support a wide variety of sensemaking tasks and even make tasks previously considered to be too difficult by our participants now tractable. Finally, we present design guidelines to inform future explorations of new LLM interfaces.
Towards Exploiting Background Knowledge for Building Conversation Systems
Existing dialog datasets contain a sequence of utterances and responses without any explicit background knowledge associated with them. This has resulted in the development of models which treat conversation as a sequence-to-sequence generation task i.e, given a sequence of utterances generate the response sequence). This is not only an overly simplistic view of conversation but it is also emphatically different from the way humans converse by heavily relying on their background knowledge about the topic (as opposed to simply relying on the previous sequence of utterances). For example, it is common for humans to (involuntarily) produce utterances which are copied or suitably modified from background articles they have read about the topic. To facilitate the development of such natural conversation models which mimic the human process of conversing, we create a new dataset containing movie chats wherein each response is explicitly generated by copying and/or modifying sentences from unstructured background knowledge such as plots, comments and reviews about the movie. We establish baseline results on this dataset (90K utterances from 9K conversations) using three different models: (i) pure generation based models which ignore the background knowledge (ii) generation based models which learn to copy information from the background knowledge when required and (iii) span prediction based models which predict the appropriate response span in the background knowledge.
Evaluating Large Language Models in Semantic Parsing for Conversational Question Answering over Knowledge Graphs
Conversational question answering systems often rely on semantic parsing to enable interactive information retrieval, which involves the generation of structured database queries from a natural language input. For information-seeking conversations about facts stored within a knowledge graph, dialogue utterances are transformed into graph queries in a process that is called knowledge-based conversational question answering. This paper evaluates the performance of large language models that have not been explicitly pre-trained on this task. Through a series of experiments on an extensive benchmark dataset, we compare models of varying sizes with different prompting techniques and identify common issue types in the generated output. Our results demonstrate that large language models are capable of generating graph queries from dialogues, with significant improvements achievable through few-shot prompting and fine-tuning techniques, especially for smaller models that exhibit lower zero-shot performance.
BERT-CoQAC: BERT-based Conversational Question Answering in Context
As one promising way to inquire about any particular information through a dialog with the bot, question answering dialog systems have gained increasing research interests recently. Designing interactive QA systems has always been a challenging task in natural language processing and used as a benchmark to evaluate a machine's ability of natural language understanding. However, such systems often struggle when the question answering is carried out in multiple turns by the users to seek more information based on what they have already learned, thus, giving rise to another complicated form called Conversational Question Answering (CQA). CQA systems are often criticized for not understanding or utilizing the previous context of the conversation when answering the questions. To address the research gap, in this paper, we explore how to integrate conversational history into the neural machine comprehension system. On one hand, we introduce a framework based on a publically available pre-trained language model called BERT for incorporating history turns into the system. On the other hand, we propose a history selection mechanism that selects the turns that are relevant and contributes the most to answer the current question. Experimentation results revealed that our framework is comparable in performance with the state-of-the-art models on the QuAC leader board. We also conduct a number of experiments to show the side effects of using entire context information which brings unnecessary information and noise signals resulting in a decline in the model's performance.
Variational Learning for Unsupervised Knowledge Grounded Dialogs
Recent methods for knowledge grounded dialogs generate responses by incorporating information from an external textual document. These methods do not require the exact document to be known during training and rely on the use of a retrieval system to fetch relevant documents from a large index. The documents used to generate the responses are modeled as latent variables whose prior probabilities need to be estimated. Models such as RAG and REALM, marginalize the document probabilities over the documents retrieved from the index to define the log likelihood loss function which is optimized end-to-end. In this paper, we develop a variational approach to the above technique wherein, we instead maximize the Evidence Lower bound (ELBO). Using a collection of three publicly available open-conversation datasets, we demonstrate how the posterior distribution, that has information from the ground-truth response, allows for a better approximation of the objective function during training. To overcome the challenges associated with sampling over a large knowledge collection, we develop an efficient approach to approximate the ELBO. To the best of our knowledge we are the first to apply variational training for open-scale unsupervised knowledge grounded dialog systems.
Conversational Query Reformulation with the Guidance of Retrieved Documents
Conversational search seeks to retrieve relevant passages for the given questions in Conversational QA (ConvQA). Questions in ConvQA face challenges such as omissions and coreferences, making it difficult to obtain desired search results. Conversational Query Reformulation (CQR) transforms these current queries into de-contextualized forms to resolve these issues. However, existing CQR methods focus on rewriting human-friendly queries, which may not always yield optimal search results for the retriever. To overcome this challenge, we introduce GuideCQR, a framework that utilizes guided documents to refine queries, ensuring that they are optimal for retrievers. Specifically, we augment keywords, generate expected answers from the re-ranked documents, and unify them with the filtering process. Experimental results show that queries enhanced by guided documents outperform previous CQR methods. Especially, GuideCQR surpasses the performance of Large Language Model (LLM) prompt-powered approaches and demonstrates the importance of the guided documents in formulating retriever-friendly queries across diverse setups.
WeaverBird: Empowering Financial Decision-Making with Large Language Model, Knowledge Base, and Search Engine
We present WeaverBird, an intelligent dialogue system designed specifically for the finance domain. Our system harnesses a large language model of GPT architecture that has been tuned using extensive corpora of finance-related text. As a result, our system possesses the capability to understand complex financial queries, such as "How should I manage my investments during inflation?", and provide informed responses. Furthermore, our system incorporates a local knowledge base and a search engine to retrieve relevant information. The final responses are conditioned on the search results and include proper citations to the sources, thus enjoying an enhanced credibility. Through a range of finance-related questions, we have demonstrated the superior performance of our system compared to other models. To experience our system firsthand, users can interact with our live demo at https://weaverbird.ttic.edu, as well as watch our 2-min video illustration at https://www.youtube.com/watch?v=fyV2qQkX6Tc.
Adapting Document-Grounded Dialog Systems to Spoken Conversations using Data Augmentation and a Noisy Channel Model
This paper summarizes our submission to Task 2 of the second track of the 10th Dialog System Technology Challenge (DSTC10) "Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations". Similar to the previous year's iteration, the task consists of three subtasks: detecting whether a turn is knowledge seeking, selecting the relevant knowledge document and finally generating a grounded response. This year, the focus lies on adapting the system to noisy ASR transcripts. We explore different approaches to make the models more robust to this type of input and to adapt the generated responses to the style of spoken conversations. For the latter, we get the best results with a noisy channel model that additionally reduces the number of short and generic responses. Our best system achieved the 1st rank in the automatic and the 3rd rank in the human evaluation of the challenge.
A Surprisingly Simple yet Effective Multi-Query Rewriting Method for Conversational Passage Retrieval
Conversational passage retrieval is challenging as it often requires the resolution of references to previous utterances and needs to deal with the complexities of natural language, such as coreference and ellipsis. To address these challenges, pre-trained sequence-to-sequence neural query rewriters are commonly used to generate a single de-contextualized query based on conversation history. Previous research shows that combining multiple query rewrites for the same user utterance has a positive effect on retrieval performance. We propose the use of a neural query rewriter to generate multiple queries and show how to integrate those queries in the passage retrieval pipeline efficiently. The main strength of our approach lies in its simplicity: it leverages how the beam search algorithm works and can produce multiple query rewrites at no additional cost. Our contributions further include devising ways to utilize multi-query rewrites in both sparse and dense first-pass retrieval. We demonstrate that applying our approach on top of a standard passage retrieval pipeline delivers state-of-the-art performance without sacrificing efficiency.
Distilling Knowledge for Fast Retrieval-based Chat-bots
Response retrieval is a subset of neural ranking in which a model selects a suitable response from a set of candidates given a conversation history. Retrieval-based chat-bots are typically employed in information seeking conversational systems such as customer support agents. In order to make pairwise comparisons between a conversation history and a candidate response, two approaches are common: cross-encoders performing full self-attention over the pair and bi-encoders encoding the pair separately. The former gives better prediction quality but is too slow for practical use. In this paper, we propose a new cross-encoder architecture and transfer knowledge from this model to a bi-encoder model using distillation. This effectively boosts bi-encoder performance at no cost during inference time. We perform a detailed analysis of this approach on three response retrieval datasets.
MMDialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation
Responding with multi-modal content has been recognized as an essential capability for an intelligent conversational agent. In this paper, we introduce the MMDialog dataset to better facilitate multi-modal conversation. MMDialog is composed of a curated set of 1.08 million real-world dialogues with 1.53 million unique images across 4,184 topics. MMDialog has two main and unique advantages. First, it is the largest multi-modal conversation dataset by the number of dialogues by 88x. Second, it contains massive topics to generalize the open-domain. To build engaging dialogue system with this dataset, we propose and normalize two response producing tasks based on retrieval and generative scenarios. In addition, we build two baselines for above tasks with state-of-the-art techniques and report their experimental performance. We also propose a novel evaluation metric MM-Relevance to measure the multi-modal responses. Our dataset and scripts are available in https://github.com/victorsungo/MMDialog.
Toward Conversational Agents with Context and Time Sensitive Long-term Memory
There has recently been growing interest in conversational agents with long-term memory which has led to the rapid development of language models that use retrieval-augmented generation (RAG). Until recently, most work on RAG has focused on information retrieval from large databases of texts, like Wikipedia, rather than information from long-form conversations. In this paper, we argue that effective retrieval from long-form conversational data faces two unique problems compared to static database retrieval: 1) time/event-based queries, which requires the model to retrieve information about previous conversations based on time or the order of a conversational event (e.g., the third conversation on Tuesday), and 2) ambiguous queries that require surrounding conversational context to understand. To better develop RAG-based agents that can deal with these challenges, we generate a new dataset of ambiguous and time-based questions that build upon a recent dataset of long-form, simulated conversations, and demonstrate that standard RAG based approaches handle such questions poorly. We then develop a novel retrieval model which combines chained-of-table search methods, standard vector-database retrieval, and a prompting method to disambiguate queries, and demonstrate that this approach substantially improves over current methods at solving these tasks. We believe that this new dataset and more advanced RAG agent can act as a key benchmark and stepping stone towards effective memory augmented conversational agents that can be used in a wide variety of AI applications.
Regularizing Dialogue Generation by Imitating Implicit Scenarios
Human dialogues are scenario-based and appropriate responses generally relate to the latent context knowledge entailed by the specific scenario. To enable responses that are more meaningful and context-specific, we propose to improve generative dialogue systems from the scenario perspective, where both dialogue history and future conversation are taken into account to implicitly reconstruct the scenario knowledge. More importantly, the conversation scenarios are further internalized using imitation learning framework, where the conventional dialogue model that has no access to future conversations is effectively regularized by transferring the scenario knowledge contained in hierarchical supervising signals from the scenario-based dialogue model, so that the future conversation is not required in actual inference. Extensive evaluations show that our approach significantly outperforms state-of-the-art baselines on diversity and relevance, and expresses scenario-specific knowledge.
Conversational Recommendation as Retrieval: A Simple, Strong Baseline
Conversational recommendation systems (CRS) aim to recommend suitable items to users through natural language conversation. However, most CRS approaches do not effectively utilize the signal provided by these conversations. They rely heavily on explicit external knowledge e.g., knowledge graphs to augment the models' understanding of the items and attributes, which is quite hard to scale. To alleviate this, we propose an alternative information retrieval (IR)-styled approach to the CRS item recommendation task, where we represent conversations as queries and items as documents to be retrieved. We expand the document representation used for retrieval with conversations from the training set. With a simple BM25-based retriever, we show that our task formulation compares favorably with much more complex baselines using complex external knowledge on a popular CRS benchmark. We demonstrate further improvements using user-centric modeling and data augmentation to counter the cold start problem for CRSs.
Prompting and Evaluating Large Language Models for Proactive Dialogues: Clarification, Target-guided, and Non-collaboration
Conversational systems based on Large Language Models (LLMs), such as ChatGPT, show exceptional proficiency in context understanding and response generation. However, despite their impressive capabilities, they still possess limitations, such as providing randomly-guessed answers to ambiguous queries or failing to refuse users' requests, both of which are considered aspects of a conversational agent's proactivity. This raises the question of whether LLM-based conversational systems are equipped to handle proactive dialogue problems. In this work, we conduct a comprehensive analysis of LLM-based conversational systems, specifically focusing on three aspects of proactive dialogue systems: clarification, target-guided, and non-collaborative dialogues. To trigger the proactivity of LLMs, we propose the Proactive Chain-of-Thought prompting scheme, which augments LLMs with the goal planning capability over descriptive reasoning chains. Empirical findings are discussed to promote future studies on LLM-based proactive dialogue systems.
DELPHI: Data for Evaluating LLMs' Performance in Handling Controversial Issues
Controversy is a reflection of our zeitgeist, and an important aspect to any discourse. The rise of large language models (LLMs) as conversational systems has increased public reliance on these systems for answers to their various questions. Consequently, it is crucial to systematically examine how these models respond to questions that pertaining to ongoing debates. However, few such datasets exist in providing human-annotated labels reflecting the contemporary discussions. To foster research in this area, we propose a novel construction of a controversial questions dataset, expanding upon the publicly released Quora Question Pairs Dataset. This dataset presents challenges concerning knowledge recency, safety, fairness, and bias. We evaluate different LLMs using a subset of this dataset, illuminating how they handle controversial issues and the stances they adopt. This research ultimately contributes to our understanding of LLMs' interaction with controversial issues, paving the way for improvements in their comprehension and handling of complex societal debates.
Towards Deep Conversational Recommendations
There has been growing interest in using neural networks and deep learning techniques to create dialogue systems. Conversational recommendation is an interesting setting for the scientific exploration of dialogue with natural language as the associated discourse involves goal-driven dialogue that often transforms naturally into more free-form chat. This paper provides two contributions. First, until now there has been no publicly available large-scale dataset consisting of real-world dialogues centered around recommendations. To address this issue and to facilitate our exploration here, we have collected ReDial, a dataset consisting of over 10,000 conversations centered around the theme of providing movie recommendations. We make this data available to the community for further research. Second, we use this dataset to explore multiple facets of conversational recommendations. In particular we explore new neural architectures, mechanisms, and methods suitable for composing conversational recommendation systems. Our dataset allows us to systematically probe model sub-components addressing different parts of the overall problem domain ranging from: sentiment analysis and cold-start recommendation generation to detailed aspects of how natural language is used in this setting in the real world. We combine such sub-components into a full-blown dialogue system and examine its behavior.
Thread of Thought Unraveling Chaotic Contexts
Large Language Models (LLMs) have ushered in a transformative era in the field of natural language processing, excelling in tasks related to text comprehension and generation. Nevertheless, they encounter difficulties when confronted with chaotic contexts (e.g., distractors rather than long irrelevant context), leading to the inadvertent omission of certain details within the chaotic context. In response to these challenges, we introduce the "Thread of Thought" (ThoT) strategy, which draws inspiration from human cognitive processes. ThoT systematically segments and analyzes extended contexts while adeptly selecting pertinent information. This strategy serves as a versatile "plug-and-play" module, seamlessly integrating with various LLMs and prompting techniques. In the experiments, we utilize the PopQA and EntityQ datasets, as well as a Multi-Turn Conversation Response dataset (MTCR) we collected, to illustrate that ThoT significantly improves reasoning performance compared to other prompting techniques.
We are what we repeatedly do: Inducing and deploying habitual schemas in persona-based responses
Many practical applications of dialogue technology require the generation of responses according to a particular developer-specified persona. While a variety of personas can be elicited from recent large language models, the opaqueness and unpredictability of these models make it desirable to be able to specify personas in an explicit form. In previous work, personas have typically been represented as sets of one-off pieces of self-knowledge that are retrieved by the dialogue system for use in generation. However, in realistic human conversations, personas are often revealed through story-like narratives that involve rich habitual knowledge -- knowledge about kinds of events that an agent often participates in (e.g., work activities, hobbies, sporting activities, favorite entertainments, etc.), including typical goals, sub-events, preconditions, and postconditions of those events. We capture such habitual knowledge using an explicit schema representation, and propose an approach to dialogue generation that retrieves relevant schemas to condition a large language model to generate persona-based responses. Furthermore, we demonstrate a method for bootstrapping the creation of such schemas by first generating generic passages from a set of simple facts, and then inducing schemas from the generated passages.
Unsupervised Enrichment of Persona-grounded Dialog with Background Stories
Humans often refer to personal narratives, life experiences, and events to make a conversation more engaging and rich. While persona-grounded dialog models are able to generate responses that follow a given persona, they often miss out on stating detailed experiences or events related to a persona, often leaving conversations shallow and dull. In this work, we equip dialog models with 'background stories' related to a persona by leveraging fictional narratives from existing story datasets (e.g. ROCStories). Since current dialog datasets do not contain such narratives as responses, we perform an unsupervised adaptation of a retrieved story for generating a dialog response using a gradient-based rewriting technique. Our proposed method encourages the generated response to be fluent (i.e., highly likely) with the dialog history, minimally different from the retrieved story to preserve event ordering and consistent with the original persona. We demonstrate that our method can generate responses that are more diverse, and are rated more engaging and human-like by human evaluators, compared to outputs from existing dialog models.
Leveraging Large Language Models to Power Chatbots for Collecting User Self-Reported Data
Large language models (LLMs) provide a new way to build chatbots by accepting natural language prompts. Yet, it is unclear how to design prompts to power chatbots to carry on naturalistic conversations while pursuing a given goal, such as collecting self-report data from users. We explore what design factors of prompts can help steer chatbots to talk naturally and collect data reliably. To this aim, we formulated four prompt designs with different structures and personas. Through an online study (N = 48) where participants conversed with chatbots driven by different designs of prompts, we assessed how prompt designs and conversation topics affected the conversation flows and users' perceptions of chatbots. Our chatbots covered 79% of the desired information slots during conversations, and the designs of prompts and topics significantly influenced the conversation flows and the data collection performance. We discuss the opportunities and challenges of building chatbots with LLMs.
A Dataset for Document Grounded Conversations
This paper introduces a document grounded dataset for text conversations. We define "Document Grounded Conversations" as conversations that are about the contents of a specified document. In this dataset the specified documents were Wikipedia articles about popular movies. The dataset contains 4112 conversations with an average of 21.43 turns per conversation. This positions this dataset to not only provide a relevant chat history while generating responses but also provide a source of information that the models could use. We describe two neural architectures that provide benchmark performance on the task of generating the next response. We also evaluate our models for engagement and fluency, and find that the information from the document helps in generating more engaging and fluent responses.
Commonsense-augmented Memory Construction and Management in Long-term Conversations via Context-aware Persona Refinement
Memorizing and utilizing speakers' personas is a common practice for response generation in long-term conversations. Yet, human-authored datasets often provide uninformative persona sentences that hinder response quality. This paper presents a novel framework that leverages commonsense-based persona expansion to address such issues in long-term conversation. While prior work focuses on not producing personas that contradict others, we focus on transforming contradictory personas into sentences that contain rich speaker information, by refining them based on their contextual backgrounds with designed strategies. As the pioneer of persona expansion in multi-session settings, our framework facilitates better response generation via human-like persona refinement. The supplementary video of our work is available at https://caffeine-15bbf.web.app/.
Advancing Multi-Party Dialogue Systems with Speaker-ware Contrastive Learning
Dialogue response generation has made significant progress, but most research has focused on dyadic dialogue. In contrast, multi-party dialogues involve more participants, each potentially discussing different topics, making the task more complex. Current methods often rely on graph neural networks to model dialogue context, which helps capture the structural dynamics of multi-party conversations. However, these methods are heavily dependent on intricate graph structures and dataset annotations, and they often overlook the distinct speaking styles of participants. To address these challenges, we propose CMR, a Contrastive learning-based Multi-party dialogue Response generation model. CMR uses self-supervised contrastive learning to better distinguish "who says what." Additionally, by comparing speakers within the same conversation, the model captures differences in speaking styles and thematic transitions. To the best of our knowledge, this is the first approach to apply contrastive learning in multi-party dialogue generation. Experimental results show that CMR significantly outperforms state-of-the-art models in multi-party dialogue response tasks.
CoQAR: Question Rewriting on CoQA
Questions asked by humans during a conversation often contain contextual dependencies, i.e., explicit or implicit references to previous dialogue turns. These dependencies take the form of coreferences (e.g., via pronoun use) or ellipses, and can make the understanding difficult for automated systems. One way to facilitate the understanding and subsequent treatments of a question is to rewrite it into an out-of-context form, i.e., a form that can be understood without the conversational context. We propose CoQAR, a corpus containing 4.5K conversations from the Conversational Question-Answering dataset CoQA, for a total of 53K follow-up question-answer pairs. Each original question was manually annotated with at least 2 at most 3 out-of-context rewritings. CoQAR can be used in the supervised learning of three tasks: question paraphrasing, question rewriting and conversational question answering. In order to assess the quality of CoQAR's rewritings, we conduct several experiments consisting in training and evaluating models for these three tasks. Our results support the idea that question rewriting can be used as a preprocessing step for question answering models, thereby increasing their performances.
Sequencing Matters: A Generate-Retrieve-Generate Model for Building Conversational Agents
This paper contains what the Georgetown InfoSense group has done in regard to solving the challenges presented by TREC iKAT 2023. Our submitted runs outperform the median runs by a significant margin, exhibiting superior performance in nDCG across various cut numbers and in overall success rate. Our approach uses a Generate-Retrieve-Generate method, which we've found to greatly outpace Retrieve-Then-Generate approaches for the purposes of iKAT. Our solution involves the use of Large Language Models (LLMs) for initial answers, answer grounding by BM25, passage quality filtering by logistic regression, and answer generation by LLMs again. We leverage several purpose-built Language Models, including BERT, Chat-based, and text-to-transfer-based models, for text understanding, classification, generation, and summarization. The official results of the TREC evaluation contradict our initial self-evaluation, which may suggest that a decrease in the reliance on our retrieval and classification methods is better. Nonetheless, our findings suggest that the sequence of involving these different components matters, where we see an essentiality of using LLMs before using search engines.
A Survey on Conversational Recommender Systems
Recommender systems are software applications that help users to find items of interest in situations of information overload. Current research often assumes a one-shot interaction paradigm, where the users' preferences are estimated based on past observed behavior and where the presentation of a ranked list of suggestions is the main, one-directional form of user interaction. Conversational recommender systems (CRS) take a different approach and support a richer set of interactions. These interactions can, for example, help to improve the preference elicitation process or allow the user to ask questions about the recommendations and to give feedback. The interest in CRS has significantly increased in the past few years. This development is mainly due to the significant progress in the area of natural language processing, the emergence of new voice-controlled home assistants, and the increased use of chatbot technology. With this paper, we provide a detailed survey of existing approaches to conversational recommendation. We categorize these approaches in various dimensions, e.g., in terms of the supported user intents or the knowledge they use in the background. Moreover, we discuss technological approaches, review how CRS are evaluated, and finally identify a number of gaps that deserve more research in the future.
InfoQuest: Evaluating Multi-Turn Dialogue Agents for Open-Ended Conversations with Hidden Context
While large language models excel at following explicit instructions, they often struggle with ambiguous or incomplete user requests, defaulting to verbose, generic responses rather than seeking clarification. We introduce InfoQuest, a multi-turn chat benchmark designed to evaluate how dialogue agents handle hidden context in open-ended user requests. The benchmark presents intentionally ambiguous scenarios that require models to engage in information-seeking dialogue through clarifying questions before providing appropriate responses. Our evaluation of both open and closed-source models reveals that while proprietary models generally perform better, all current assistants struggle with effectively gathering critical information, often requiring multiple turns to infer user intent and frequently defaulting to generic responses without proper clarification. We provide a systematic methodology for generating diverse scenarios and evaluating models' information-seeking capabilities, offering insights into the current limitations of language models in handling ambiguous requests through multi-turn interactions.
The Goldilocks of Pragmatic Understanding: Fine-Tuning Strategy Matters for Implicature Resolution by LLMs
Despite widespread use of LLMs as conversational agents, evaluations of performance fail to capture a crucial aspect of communication: interpreting language in context -- incorporating its pragmatics. Humans interpret language using beliefs and prior knowledge about the world. For example, we intuitively understand the response "I wore gloves" to the question "Did you leave fingerprints?" as meaning "No". To investigate whether LLMs have the ability to make this type of inference, known as an implicature, we design a simple task and evaluate four categories of widely used state-of-the-art models. We find that, despite only evaluating on utterances that require a binary inference (yes or no), models in three of these categories perform close to random. However, LLMs instruction-tuned at the example-level perform significantly better. These results suggest that certain fine-tuning strategies are far better at inducing pragmatic understanding in models. We present our findings as the starting point for further research into evaluating how LLMs interpret language in context and to drive the development of more pragmatic and useful models of human discourse.
Likelihood as a Performance Gauge for Retrieval-Augmented Generation
Recent work finds that retrieval-augmented generation with large language models is prone to be influenced by the order of retrieved documents in the context. However, the lack of in-depth analysis limits the use of this phenomenon for prompt engineering in practice. In this study, we posit that likelihoods serve as an effective gauge for language model performance. Through experiments on two question-answering datasets with a variety of state-of-the-art language models, we reveal correlations between answer accuracy and the likelihood of the question at both the corpus level and the instance level. In addition, we find that question likelihood can also indicate the position of the task-relevant information in the context. Based on these findings, we propose two methods that use question likelihood as a gauge for selecting and constructing prompts that lead to better performance. We demonstrate their effectiveness with experiments. In addition, our likelihood-based methods are efficient, as they only need to compute the likelihood of the input, requiring much fewer language model passes than heuristic prompt engineering methods that require generating responses. Our analysis deepens our understanding of how input prompts affect model performance and provides a promising direction for efficient prompt optimization.
A Conversation is Worth A Thousand Recommendations: A Survey of Holistic Conversational Recommender Systems
Conversational recommender systems (CRS) generate recommendations through an interactive process. However, not all CRS approaches use human conversations as their source of interaction data; the majority of prior CRS work simulates interactions by exchanging entity-level information. As a result, claims of prior CRS work do not generalise to real-world settings where conversations take unexpected turns, or where conversational and intent understanding is not perfect. To tackle this challenge, the research community has started to examine holistic CRS, which are trained using conversational data collected from real-world scenarios. Despite their emergence, such holistic approaches are under-explored. We present a comprehensive survey of holistic CRS methods by summarizing the literature in a structured manner. Our survey recognises holistic CRS approaches as having three components: 1) a backbone language model, the optional use of 2) external knowledge, and/or 3) external guidance. We also give a detailed analysis of CRS datasets and evaluation methods in real application scenarios. We offer our insight as to the current challenges of holistic CRS and possible future trends.
How Do We Answer Complex Questions: Discourse Structure of Long-form Answers
Long-form answers, consisting of multiple sentences, can provide nuanced and comprehensive answers to a broader set of questions. To better understand this complex and understudied task, we study the functional structure of long-form answers collected from three datasets, ELI5, WebGPT and Natural Questions. Our main goal is to understand how humans organize information to craft complex answers. We develop an ontology of six sentence-level functional roles for long-form answers, and annotate 3.9k sentences in 640 answer paragraphs. Different answer collection methods manifest in different discourse structures. We further analyze model-generated answers -- finding that annotators agree less with each other when annotating model-generated answers compared to annotating human-written answers. Our annotated data enables training a strong classifier that can be used for automatic analysis. We hope our work can inspire future research on discourse-level modeling and evaluation of long-form QA systems.
Beyond ChatBots: ExploreLLM for Structured Thoughts and Personalized Model Responses
Large language model (LLM) powered chatbots are primarily text-based today, and impose a large interactional cognitive load, especially for exploratory or sensemaking tasks such as planning a trip or learning about a new city. Because the interaction is textual, users have little scaffolding in the way of structure, informational "scent", or ability to specify high-level preferences or goals. We introduce ExploreLLM that allows users to structure thoughts, help explore different options, navigate through the choices and recommendations, and to more easily steer models to generate more personalized responses. We conduct a user study and show that users find it helpful to use ExploreLLM for exploratory or planning tasks, because it provides a useful schema-like structure to the task, and guides users in planning. The study also suggests that users can more easily personalize responses with high-level preferences with ExploreLLM. Together, ExploreLLM points to a future where users interact with LLMs beyond the form of chatbots, and instead designed to support complex user tasks with a tighter integration between natural language and graphical user interfaces.
MASS: Masked Sequence to Sequence Pre-training for Language Generation
Pre-training and fine-tuning, e.g., BERT, have achieved great success in language understanding by transferring knowledge from rich-resource pre-training task to the low/zero-resource downstream tasks. Inspired by the success of BERT, we propose MAsked Sequence to Sequence pre-training (MASS) for the encoder-decoder based language generation tasks. MASS adopts the encoder-decoder framework to reconstruct a sentence fragment given the remaining part of the sentence: its encoder takes a sentence with randomly masked fragment (several consecutive tokens) as input, and its decoder tries to predict this masked fragment. In this way, MASS can jointly train the encoder and decoder to develop the capability of representation extraction and language modeling. By further fine-tuning on a variety of zero/low-resource language generation tasks, including neural machine translation, text summarization and conversational response generation (3 tasks and totally 8 datasets), MASS achieves significant improvements over the baselines without pre-training or with other pre-training methods. Specially, we achieve the state-of-the-art accuracy (37.5 in terms of BLEU score) on the unsupervised English-French translation, even beating the early attention-based supervised model.
Check Your Facts and Try Again: Improving Large Language Models with External Knowledge and Automated Feedback
Large language models (LLMs), such as ChatGPT, are able to generate human-like, fluent responses for many downstream tasks, e.g., task-oriented dialog and question answering. However, applying LLMs to real-world, mission-critical applications remains challenging mainly due to their tendency to generate hallucinations and their inability to use external knowledge. This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules. Our system makes the LLM generate responses grounded in external knowledge, e.g., stored in task-specific databases. It also iteratively revises LLM prompts to improve model responses using feedback generated by utility functions, e.g., the factuality score of a LLM-generated response. The effectiveness of LLM-Augmenter is empirically validated on two types of scenarios, task-oriented dialog and open-domain question answering. LLM-Augmenter significantly reduces ChatGPT's hallucinations without sacrificing the fluency and informativeness of its responses. We make the source code and models publicly available.
Target-Guided Dialogue Response Generation Using Commonsense and Data Augmentation
Target-guided response generation enables dialogue systems to smoothly transition a conversation from a dialogue context toward a target sentence. Such control is useful for designing dialogue systems that direct a conversation toward specific goals, such as creating non-obtrusive recommendations or introducing new topics in the conversation. In this paper, we introduce a new technique for target-guided response generation, which first finds a bridging path of commonsense knowledge concepts between the source and the target, and then uses the identified bridging path to generate transition responses. Additionally, we propose techniques to re-purpose existing dialogue datasets for target-guided generation. Experiments reveal that the proposed techniques outperform various baselines on this task. Finally, we observe that the existing automated metrics for this task correlate poorly with human judgement ratings. We propose a novel evaluation metric that we demonstrate is more reliable for target-guided response evaluation. Our work generally enables dialogue system designers to exercise more control over the conversations that their systems produce.
Automated Utterance Generation
Conversational AI assistants are becoming popular and question-answering is an important part of any conversational assistant. Using relevant utterances as features in question-answering has shown to improve both the precision and recall for retrieving the right answer by a conversational assistant. Hence, utterance generation has become an important problem with the goal of generating relevant utterances (sentences or phrases) from a knowledge base article that consists of a title and a description. However, generating good utterances usually requires a lot of manual effort, creating the need for an automated utterance generation. In this paper, we propose an utterance generation system which 1) uses extractive summarization to extract important sentences from the description, 2) uses multiple paraphrasing techniques to generate a diverse set of paraphrases of the title and summary sentences, and 3) selects good candidate paraphrases with the help of a novel candidate selection algorithm.
PSLM: Parallel Generation of Text and Speech with LLMs for Low-Latency Spoken Dialogue Systems
Multimodal language models that process both text and speech have a potential for applications in spoken dialogue systems. However, current models face two major challenges in response generation latency: (1) generating a spoken response requires the prior generation of a written response, and (2) speech sequences are significantly longer than text sequences. This study addresses these issues by extending the input and output sequences of the language model to support the parallel generation of text and speech. Our experiments on spoken question answering tasks demonstrate that our approach improves latency while maintaining the quality of response content. Additionally, we show that latency can be further reduced by generating speech in multiple sequences. Demo samples are available at https://rinnakk.github.io/research/publications/PSLM.
Learning an Unreferenced Metric for Online Dialogue Evaluation
Evaluating the quality of a dialogue interaction between two agents is a difficult task, especially in open-domain chit-chat style dialogue. There have been recent efforts to develop automatic dialogue evaluation metrics, but most of them do not generalize to unseen datasets and/or need a human-generated reference response during inference, making it infeasible for online evaluation. Here, we propose an unreferenced automated evaluation metric that uses large pre-trained language models to extract latent representations of utterances, and leverages the temporal transitions that exist between them. We show that our model achieves higher correlation with human annotations in an online setting, while not requiring true responses for comparison during inference.
Generative Echo Chamber? Effects of LLM-Powered Search Systems on Diverse Information Seeking
Large language models (LLMs) powered conversational search systems have already been used by hundreds of millions of people, and are believed to bring many benefits over conventional search. However, while decades of research and public discourse interrogated the risk of search systems in increasing selective exposure and creating echo chambers -- limiting exposure to diverse opinions and leading to opinion polarization, little is known about such a risk of LLM-powered conversational search. We conduct two experiments to investigate: 1) whether and how LLM-powered conversational search increases selective exposure compared to conventional search; 2) whether and how LLMs with opinion biases that either reinforce or challenge the user's view change the effect. Overall, we found that participants engaged in more biased information querying with LLM-powered conversational search, and an opinionated LLM reinforcing their views exacerbated this bias. These results present critical implications for the development of LLMs and conversational search systems, and the policy governing these technologies.
What Evidence Do Language Models Find Convincing?
Retrieval-augmented language models are being increasingly tasked with subjective, contentious, and conflicting queries such as "is aspartame linked to cancer". To resolve these ambiguous queries, one must search through a large range of websites and consider "which, if any, of this evidence do I find convincing?". In this work, we study how LLMs answer this question. In particular, we construct ConflictingQA, a dataset that pairs controversial queries with a series of real-world evidence documents that contain different facts (e.g., quantitative results), argument styles (e.g., appeals to authority), and answers (Yes or No). We use this dataset to perform sensitivity and counterfactual analyses to explore which text features most affect LLM predictions. Overall, we find that current models rely heavily on the relevance of a website to the query, while largely ignoring stylistic features that humans find important such as whether a text contains scientific references or is written with a neutral tone. Taken together, these results highlight the importance of RAG corpus quality (e.g., the need to filter misinformation), and possibly even a shift in how LLMs are trained to better align with human judgements.
DialoGPS: Dialogue Path Sampling in Continuous Semantic Space for Data Augmentation in Multi-Turn Conversations
In open-domain dialogue generation tasks, contexts and responses in most datasets are one-to-one mapped, violating an important many-to-many characteristic: a context leads to various responses, and a response answers multiple contexts. Without such patterns, models poorly generalize and prefer responding safely. Many attempts have been made in either multi-turn settings from a one-to-many perspective or in a many-to-many perspective but limited to single-turn settings. The major challenge to many-to-many augment multi-turn dialogues is that discretely replacing each turn with semantic similarity breaks fragile context coherence. In this paper, we propose DialoGue Path Sampling (DialoGPS) method in continuous semantic space, the first many-to-many augmentation method for multi-turn dialogues. Specifically, we map a dialogue to our extended Brownian Bridge, a special Gaussian process. We sample latent variables to form coherent dialogue paths in the continuous space. A dialogue path corresponds to a new multi-turn dialogue and is used as augmented training data. We show the effect of DialoGPS with both automatic and human evaluation.
STaR-GATE: Teaching Language Models to Ask Clarifying Questions
When prompting language models to complete a task, users often leave important aspects unsaid. While asking questions could resolve this ambiguity (GATE; Li et al., 2023), models often struggle to ask good questions. We explore a language model's ability to self-improve (STaR; Zelikman et al., 2022) by rewarding the model for generating useful questions-a simple method we dub STaR-GATE. We generate a synthetic dataset of 25,500 unique persona-task prompts to simulate conversations between a pretrained language model-the Questioner-and a Roleplayer whose preferences are unknown to the Questioner. By asking questions, the Questioner elicits preferences from the Roleplayer. The Questioner is iteratively finetuned on questions that increase the probability of high-quality responses to the task, which are generated by an Oracle with access to the Roleplayer's latent preferences. After two iterations of self-improvement, the Questioner asks better questions, allowing it to generate responses that are preferred over responses from the initial model on 72% of tasks. Our results indicate that teaching a language model to ask better questions leads to better personalized responses.
DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset
We develop a high-quality multi-turn dialog dataset, DailyDialog, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems.
SODA: Million-scale Dialogue Distillation with Social Commonsense Contextualization
We present SODA: the first publicly available, million-scale high-quality social dialogue dataset. Using SODA, we train COSMO: a generalizable conversation agent outperforming previous best-performing agents on both in- and out-of-domain datasets. In contrast to most existing crowdsourced, small-scale dialogue corpora, we distill 1.5M socially-grounded dialogues from a pre-trained language model (InstructGPT; Ouyang et al., 2022). Dialogues are distilled by contextualizing social commonsense knowledge from a knowledge graph (Atomic10x; West et al., 2022). Human evaluation shows that dialogues in SODA are more consistent, specific, and (surprisingly) natural than prior human-authored datasets - e.g., DailyDialog (Li et al., 2017), BlendedSkillTalk (Smith et al., 2020). In addition, extensive evaluations show that COSMO is significantly more natural and consistent on unseen datasets than best-performing dialogue models - e.g., GODEL (Peng et al., 2022), BlenderBot (Roller et al., 2021), DialoGPT (Zhang et al., 2020). Furthermore, it is sometimes even preferred to the original human-written gold responses. We make our data, models, and code public.
Call for Customized Conversation: Customized Conversation Grounding Persona and Knowledge
Humans usually have conversations by making use of prior knowledge about a topic and background information of the people whom they are talking to. However, existing conversational agents and datasets do not consider such comprehensive information, and thus they have a limitation in generating the utterances where the knowledge and persona are fused properly. To address this issue, we introduce a call For Customized conversation (FoCus) dataset where the customized answers are built with the user's persona and Wikipedia knowledge. To evaluate the abilities to make informative and customized utterances of pre-trained language models, we utilize BART and GPT-2 as well as transformer-based models. We assess their generation abilities with automatic scores and conduct human evaluations for qualitative results. We examine whether the model reflects adequate persona and knowledge with our proposed two sub-tasks, persona grounding (PG) and knowledge grounding (KG). Moreover, we show that the utterances of our data are constructed with the proper knowledge and persona through grounding quality assessment.
Wiki-LLaVA: Hierarchical Retrieval-Augmented Generation for Multimodal LLMs
Multimodal LLMs are the natural evolution of LLMs, and enlarge their capabilities so as to work beyond the pure textual modality. As research is being carried out to design novel architectures and vision-and-language adapters, in this paper we concentrate on endowing such models with the capability of answering questions that require external knowledge. Our approach, termed Wiki-LLaVA, aims at integrating an external knowledge source of multimodal documents, which is accessed through a hierarchical retrieval pipeline. Relevant passages, using this approach, are retrieved from the external knowledge source and employed as additional context for the LLM, augmenting the effectiveness and precision of generated dialogues. We conduct extensive experiments on datasets tailored for visual question answering with external data and demonstrate the appropriateness of our approach.
Retrieval Helps or Hurts? A Deeper Dive into the Efficacy of Retrieval Augmentation to Language Models
While large language models (LMs) demonstrate remarkable performance, they encounter challenges in providing accurate responses when queried for information beyond their pre-trained memorization. Although augmenting them with relevant external information can mitigate these issues, failure to consider the necessity of retrieval may adversely affect overall performance. Previous research has primarily focused on examining how entities influence retrieval models and knowledge recall in LMs, leaving other aspects relatively unexplored. In this work, our goal is to offer a more detailed, fact-centric analysis by exploring the effects of combinations of entities and relations. To facilitate this, we construct a new question answering (QA) dataset called WiTQA (Wikipedia Triple Question Answers). This dataset includes questions about entities and relations of various popularity levels, each accompanied by a supporting passage. Our extensive experiments with diverse LMs and retrievers reveal when retrieval does not consistently enhance LMs from the viewpoints of fact-centric popularity.Confirming earlier findings, we observe that larger LMs excel in recalling popular facts. However, they notably encounter difficulty with infrequent entity-relation pairs compared to retrievers. Interestingly, they can effectively retain popular relations of less common entities. We demonstrate the efficacy of our finer-grained metric and insights through an adaptive retrieval system that selectively employs retrieval and recall based on the frequencies of entities and relations in the question.
Commonsense-Focused Dialogues for Response Generation: An Empirical Study
Smooth and effective communication requires the ability to perform latent or explicit commonsense inference. Prior commonsense reasoning benchmarks (such as SocialIQA and CommonsenseQA) mainly focus on the discriminative task of choosing the right answer from a set of candidates, and do not involve interactive language generation as in dialogue. Moreover, existing dialogue datasets do not explicitly focus on exhibiting commonsense as a facet. In this paper, we present an empirical study of commonsense in dialogue response generation. We first auto-extract commonsensical dialogues from existing dialogue datasets by leveraging ConceptNet, a commonsense knowledge graph. Furthermore, building on social contexts/situations in SocialIQA, we collect a new dialogue dataset with 25K dialogues aimed at exhibiting social commonsense in an interactive setting. We evaluate response generation models trained using these datasets and find that models trained on both extracted and our collected data produce responses that consistently exhibit more commonsense than baselines. Finally we propose an approach for automatic evaluation of commonsense that relies on features derived from ConceptNet and pre-trained language and dialog models, and show reasonable correlation with human evaluation of responses' commonsense quality. We are releasing a subset of our collected data, Commonsense-Dialogues, containing about 11K dialogs.
Ask Optimal Questions: Aligning Large Language Models with Retriever's Preference in Conversational Search
Conversational search, unlike single-turn retrieval tasks, requires understanding the current question within a dialogue context. The common approach of rewrite-then-retrieve aims to decontextualize questions to be self-sufficient for off-the-shelf retrievers, but most existing methods produce sub-optimal query rewrites due to the limited ability to incorporate signals from the retrieval results. To overcome this limitation, we present a novel framework RetPO (Retriever's Preference Optimization), which is designed to optimize a language model (LM) for reformulating search queries in line with the preferences of the target retrieval systems. The process begins by prompting a large LM to produce various potential rewrites and then collects retrieval performance for these rewrites as the retrievers' preferences. Through the process, we construct a large-scale dataset called RF collection, containing Retrievers' Feedback on over 410K query rewrites across 12K conversations. Furthermore, we fine-tune a smaller LM using this dataset to align it with the retrievers' preferences as feedback. The resulting model achieves state-of-the-art performance on two recent conversational search benchmarks, significantly outperforming existing baselines, including GPT-3.5.
Query Resolution for Conversational Search with Limited Supervision
In this work we focus on multi-turn passage retrieval as a crucial component of conversational search. One of the key challenges in multi-turn passage retrieval comes from the fact that the current turn query is often underspecified due to zero anaphora, topic change, or topic return. Context from the conversational history can be used to arrive at a better expression of the current turn query, defined as the task of query resolution. In this paper, we model the query resolution task as a binary term classification problem: for each term appearing in the previous turns of the conversation decide whether to add it to the current turn query or not. We propose QuReTeC (Query Resolution by Term Classification), a neural query resolution model based on bidirectional transformers. We propose a distant supervision method to automatically generate training data by using query-passage relevance labels. Such labels are often readily available in a collection either as human annotations or inferred from user interactions. We show that QuReTeC outperforms state-of-the-art models, and furthermore, that our distant supervision method can be used to substantially reduce the amount of human-curated data required to train QuReTeC. We incorporate QuReTeC in a multi-turn, multi-stage passage retrieval architecture and demonstrate its effectiveness on the TREC CAsT dataset.
Fostering Appropriate Reliance on Large Language Models: The Role of Explanations, Sources, and Inconsistencies
Large language models (LLMs) can produce erroneous responses that sound fluent and convincing, raising the risk that users will rely on these responses as if they were correct. Mitigating such overreliance is a key challenge. Through a think-aloud study in which participants use an LLM-infused application to answer objective questions, we identify several features of LLM responses that shape users' reliance: explanations (supporting details for answers), inconsistencies in explanations, and sources. Through a large-scale, pre-registered, controlled experiment (N=308), we isolate and study the effects of these features on users' reliance, accuracy, and other measures. We find that the presence of explanations increases reliance on both correct and incorrect responses. However, we observe less reliance on incorrect responses when sources are provided or when explanations exhibit inconsistencies. We discuss the implications of these findings for fostering appropriate reliance on LLMs.
Advances and Challenges in Conversational Recommender Systems: A Survey
Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs in five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey can help to identify and address challenges in CRSs and inspire future research.
A Survey on Proactive Dialogue Systems: Problems, Methods, and Prospects
Proactive dialogue systems, related to a wide range of real-world conversational applications, equip the conversational agent with the capability of leading the conversation direction towards achieving pre-defined targets or fulfilling certain goals from the system side. It is empowered by advanced techniques to progress to more complicated tasks that require strategical and motivational interactions. In this survey, we provide a comprehensive overview of the prominent problems and advanced designs for conversational agent's proactivity in different types of dialogues. Furthermore, we discuss challenges that meet the real-world application needs but require a greater research focus in the future. We hope that this first survey of proactive dialogue systems can provide the community with a quick access and an overall picture to this practical problem, and stimulate more progresses on conversational AI to the next level.
Exploring the Integration Strategies of Retriever and Large Language Models
The integration of retrieved passages and large language models (LLMs), such as ChatGPTs, has significantly contributed to improving open-domain question answering. However, there is still a lack of exploration regarding the optimal approach for incorporating retrieved passages into the answer generation process. This paper aims to fill this gap by investigating different methods of combining retrieved passages with LLMs to enhance answer generation. We begin by examining the limitations of a commonly-used concatenation approach. Surprisingly, this approach often results in generating "unknown" outputs, even when the correct document is among the top-k retrieved passages. To address this issue, we explore four alternative strategies for integrating the retrieved passages with the LLMs. These strategies include two single-round methods that utilize chain-of-thought reasoning and two multi-round strategies that incorporate feedback loops. Through comprehensive analyses and experiments, we provide insightful observations on how to effectively leverage retrieved passages to enhance the answer generation capability of LLMs.
THEANINE: Revisiting Memory Management in Long-term Conversations with Timeline-augmented Response Generation
Large language models (LLMs) are capable of processing lengthy dialogue histories during prolonged interaction with users without additional memory modules; however, their responses tend to overlook or incorrectly recall information from the past. In this paper, we revisit memory-augmented response generation in the era of LLMs. While prior work focuses on getting rid of outdated memories, we argue that such memories can provide contextual cues that help dialogue systems understand the development of past events and, therefore, benefit response generation. We present Theanine, a framework that augments LLMs' response generation with memory timelines -- series of memories that demonstrate the development and causality of relevant past events. Along with Theanine, we introduce TeaFarm, a counterfactual-driven question-answering pipeline addressing the limitation of G-Eval in long-term conversations. Supplementary videos of our methods and the TeaBag dataset for TeaFarm evaluation are in https://theanine-693b0.web.app/.
Using Language Models to Detect Alarming Student Responses
This article details the advances made to a system that uses artificial intelligence to identify alarming student responses. This system is built into our assessment platform to assess whether a student's response indicates they are a threat to themselves or others. Such responses may include details concerning threats of violence, severe depression, suicide risks, and descriptions of abuse. Driven by advances in natural language processing, the latest model is a fine-tuned language model trained on a large corpus consisting of student responses and supplementary texts. We demonstrate that the use of a language model delivers a substantial improvement in accuracy over the previous iterations of this system.
DoQA -- Accessing Domain-Specific FAQs via Conversational QA
The goal of this work is to build conversational Question Answering (QA) interfaces for the large body of domain-specific information available in FAQ sites. We present DoQA, a dataset with 2,437 dialogues and 10,917 QA pairs. The dialogues are collected from three Stack Exchange sites using the Wizard of Oz method with crowdsourcing. Compared to previous work, DoQA comprises well-defined information needs, leading to more coherent and natural conversations with less factoid questions and is multi-domain. In addition, we introduce a more realistic information retrieval(IR) scenario where the system needs to find the answer in any of the FAQ documents. The results of an existing, strong, system show that, thanks to transfer learning from a Wikipedia QA dataset and fine tuning on a single FAQ domain, it is possible to build high quality conversational QA systems for FAQs without in-domain training data. The good results carry over into the more challenging IR scenario. In both cases, there is still ample room for improvement, as indicated by the higher human upperbound.
Rethinking Search: Making Domain Experts out of Dilettantes
When experiencing an information need, users want to engage with a domain expert, but often turn to an information retrieval system, such as a search engine, instead. Classical information retrieval systems do not answer information needs directly, but instead provide references to (hopefully authoritative) answers. Successful question answering systems offer a limited corpus created on-demand by human experts, which is neither timely nor scalable. Pre-trained language models, by contrast, are capable of directly generating prose that may be responsive to an information need, but at present they are dilettantes rather than domain experts -- they do not have a true understanding of the world, they are prone to hallucinating, and crucially they are incapable of justifying their utterances by referring to supporting documents in the corpus they were trained over. This paper examines how ideas from classical information retrieval and pre-trained language models can be synthesized and evolved into systems that truly deliver on the promise of domain expert advice.
Effective and Efficient Conversation Retrieval for Dialogue State Tracking with Implicit Text Summaries
Few-shot dialogue state tracking (DST) with Large Language Models (LLM) relies on an effective and efficient conversation retriever to find similar in-context examples for prompt learning. Previous works use raw dialogue context as search keys and queries, and a retriever is fine-tuned with annotated dialogues to achieve superior performance. However, the approach is less suited for scaling to new domains or new annotation languages, where fine-tuning data is unavailable. To address this problem, we handle the task of conversation retrieval based on text summaries of the conversations. A LLM-based conversation summarizer is adopted for query and key generation, which enables effective maximum inner product search. To avoid the extra inference cost brought by LLM-based conversation summarization, we further distill a light-weight conversation encoder which produces query embeddings without decoding summaries for test conversations. We validate our retrieval approach on MultiWOZ datasets with GPT-Neo-2.7B and LLaMA-7B/30B. The experimental results show a significant improvement over relevant baselines in real few-shot DST settings.
Task-oriented Document-Grounded Dialog Systems by HLTPR@RWTH for DSTC9 and DSTC10
This paper summarizes our contributions to the document-grounded dialog tasks at the 9th and 10th Dialog System Technology Challenges (DSTC9 and DSTC10). In both iterations the task consists of three subtasks: first detect whether the current turn is knowledge seeking, second select a relevant knowledge document, and third generate a response grounded on the selected document. For DSTC9 we proposed different approaches to make the selection task more efficient. The best method, Hierarchical Selection, actually improves the results compared to the original baseline and gives a speedup of 24x. In the DSTC10 iteration of the task, the challenge was to adapt systems trained on written dialogs to perform well on noisy automatic speech recognition transcripts. Therefore, we proposed data augmentation techniques to increase the robustness of the models as well as methods to adapt the style of generated responses to fit well into the proceeding dialog. Additionally, we proposed a noisy channel model that allows for increasing the factuality of the generated responses. In addition to summarizing our previous contributions, in this work, we also report on a few small improvements and reconsider the automatic evaluation metrics for the generation task which have shown a low correlation to human judgments.
Machines Getting with the Program: Understanding Intent Arguments of Non-Canonical Directives
Modern dialog managers face the challenge of having to fulfill human-level conversational skills as part of common user expectations, including but not limited to discourse with no clear objective. Along with these requirements, agents are expected to extrapolate intent from the user's dialogue even when subjected to non-canonical forms of speech. This depends on the agent's comprehension of paraphrased forms of such utterances. Especially in low-resource languages, the lack of data is a bottleneck that prevents advancements of the comprehension performance for these types of agents. In this regard, here we demonstrate the necessity of extracting the intent argument of non-canonical directives in a natural language format, which may yield more accurate parsing, and suggest guidelines for building a parallel corpus for this purpose. Following the guidelines, we construct a Korean corpus of 50K instances of question/command-intent pairs, including the labels for classification of the utterance type. We also propose a method for mitigating class imbalance, demonstrating the potential applications of the corpus generation method and its multilingual extensibility.
Neural Approaches to Conversational AI
The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.
Retrieval Augmentation Reduces Hallucination in Conversation
Despite showing increasingly human-like conversational abilities, state-of-the-art dialogue models often suffer from factual incorrectness and hallucination of knowledge (Roller et al., 2020). In this work we explore the use of neural-retrieval-in-the-loop architectures - recently shown to be effective in open-domain QA (Lewis et al., 2020b; Izacard and Grave, 2020) - for knowledge-grounded dialogue, a task that is arguably more challenging as it requires querying based on complex multi-turn dialogue context and generating conversationally coherent responses. We study various types of architectures with multiple components - retrievers, rankers, and encoder-decoders - with the goal of maximizing knowledgeability while retaining conversational ability. We demonstrate that our best models obtain state-of-the-art performance on two knowledge-grounded conversational tasks. The models exhibit open-domain conversational capabilities, generalize effectively to scenarios not within the training data, and, as verified by human evaluations, substantially reduce the well-known problem of knowledge hallucination in state-of-the-art chatbots.
For those who don't know (how) to ask: Building a dataset of technology questions for digital newcomers
While the rise of large language models (LLMs) has created rich new opportunities to learn about digital technology, many on the margins of this technology struggle to gain and maintain competency due to lexical or conceptual barriers that prevent them from asking appropriate questions. Although there have been many efforts to understand factuality of LLM-created content and ability of LLMs to answer questions, it is not well understood how unclear or nonstandard language queries affect the model outputs. We propose the creation of a dataset that captures questions of digital newcomers and outsiders, utilizing data we have compiled from a decade's worth of one-on-one tutoring. In this paper we lay out our planned efforts and some potential uses of this dataset.
Towards Dialogues for Joint Human-AI Reasoning and Value Alignment
We argue that enabling human-AI dialogue, purposed to support joint reasoning (i.e., 'inquiry'), is important for ensuring that AI decision making is aligned with human values and preferences. In particular, we point to logic-based models of argumentation and dialogue, and suggest that the traditional focus on persuasion dialogues be replaced by a focus on inquiry dialogues, and the distinct challenges that joint inquiry raises. Given recent dramatic advances in the performance of large language models (LLMs), and the anticipated increase in their use for decision making, we provide a roadmap for research into inquiry dialogues for supporting joint human-LLM reasoning tasks that are ethically salient, and that thereby require that decisions are value aligned.
Query-Response Interactions by Multi-tasks in Semantic Search for Chatbot Candidate Retrieval
Semantic search for candidate retrieval is an important yet neglected problem in retrieval-based Chatbots, which aims to select a bunch of candidate responses efficiently from a large pool. The existing bottleneck is to ensure the model architecture having two points: 1) rich interactions between a query and a response to produce query-relevant responses; 2) ability of separately projecting the query and the response into latent spaces to apply efficiently in semantic search during online inference. To tackle this problem, we propose a novel approach, called Multitask-based Semantic Search Neural Network (MSSNN) for candidate retrieval, which accomplishes query-response interactions through multi-tasks. The method employs a Seq2Seq modeling task to learn a good query encoder, and then performs a word prediction task to build response embeddings, finally conducts a simple matching model to form the dot-product scorer. Experimental studies have demonstrated the potential of the proposed approach.
Revealing Fine-Grained Values and Opinions in Large Language Models
Uncovering latent values and opinions in large language models (LLMs) can help identify biases and mitigate potential harm. Recently, this has been approached by presenting LLMs with survey questions and quantifying their stances towards morally and politically charged statements. However, the stances generated by LLMs can vary greatly depending on how they are prompted, and there are many ways to argue for or against a given position. In this work, we propose to address this by analysing a large and robust dataset of 156k LLM responses to the 62 propositions of the Political Compass Test (PCT) generated by 6 LLMs using 420 prompt variations. We perform coarse-grained analysis of their generated stances and fine-grained analysis of the plain text justifications for those stances. For fine-grained analysis, we propose to identify tropes in the responses: semantically similar phrases that are recurrent and consistent across different prompts, revealing patterns in the text that a given LLM is prone to produce. We find that demographic features added to prompts significantly affect outcomes on the PCT, reflecting bias, as well as disparities between the results of tests when eliciting closed-form vs. open domain responses. Additionally, patterns in the plain text rationales via tropes show that similar justifications are repeatedly generated across models and prompts even with disparate stances.
Learning from Emotions, Demographic Information and Implicit User Feedback in Task-Oriented Document-Grounded Dialogues
The success of task-oriented and document-grounded dialogue systems depends on users accepting and enjoying using them. To achieve this, recently published work in the field of Human-Computer Interaction suggests that the combination of considering demographic information, user emotions and learning from the implicit feedback in their utterances, is particularly important. However, these findings have not yet been transferred to the field of Natural Language Processing, where these data are primarily studied separately. Accordingly, no sufficiently annotated dataset is available. To address this gap, we introduce FEDI, the first English dialogue dataset for task-oriented document-grounded dialogues annotated with demographic information, user emotions and implicit feedback. Our experiments with FLAN-T5, GPT-2 and LLaMA-2 show that these data have the potential to improve task completion and the factual consistency of the generated responses and user acceptance.
Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context
In the continuously advancing AI landscape, crafting context-rich and meaningful responses via Large Language Models (LLMs) is essential. Researchers are becoming more aware of the challenges that LLMs with fewer parameters encounter when trying to provide suitable answers to open-ended questions. To address these hurdles, the integration of cutting-edge strategies, augmentation of rich external domain knowledge to LLMs, offers significant improvements. This paper introduces a novel framework that combines graph-driven context retrieval in conjunction to knowledge graphs based enhancement, honing the proficiency of LLMs, especially in domain specific community question answering platforms like AskUbuntu, Unix, and ServerFault. We conduct experiments on various LLMs with different parameter sizes to evaluate their ability to ground knowledge and determine factual accuracy in answers to open-ended questions. Our methodology GraphContextGen consistently outperforms dominant text-based retrieval systems, demonstrating its robustness and adaptability to a larger number of use cases. This advancement highlights the importance of pairing context rich data retrieval with LLMs, offering a renewed approach to knowledge sourcing and generation in AI systems. We also show that, due to rich contextual data retrieval, the crucial entities, along with the generated answer, remain factually coherent with the gold answer.
MilkQA: a Dataset of Consumer Questions for the Task of Answer Selection
We introduce MilkQA, a question answering dataset from the dairy domain dedicated to the study of consumer questions. The dataset contains 2,657 pairs of questions and answers, written in the Portuguese language and originally collected by the Brazilian Agricultural Research Corporation (Embrapa). All questions were motivated by real situations and written by thousands of authors with very different backgrounds and levels of literacy, while answers were elaborated by specialists from Embrapa's customer service. Our dataset was filtered and anonymized by three human annotators. Consumer questions are a challenging kind of question that is usually employed as a form of seeking information. Although several question answering datasets are available, most of such resources are not suitable for research on answer selection models for consumer questions. We aim to fill this gap by making MilkQA publicly available. We study the behavior of four answer selection models on MilkQA: two baseline models and two convolutional neural network archictetures. Our results show that MilkQA poses real challenges to computational models, particularly due to linguistic characteristics of its questions and to their unusually longer lengths. Only one of the experimented models gives reasonable results, at the cost of high computational requirements.
Three Ways of Using Large Language Models to Evaluate Chat
This paper describes the systems submitted by team6 for ChatEval, the DSTC 11 Track 4 competition. We present three different approaches to predicting turn-level qualities of chatbot responses based on large language models (LLMs). We report improvement over the baseline using dynamic few-shot examples from a vector store for the prompts for ChatGPT. We also analyze the performance of the other two approaches and report needed improvements for future work. We developed the three systems over just two weeks, showing the potential of LLMs for this task. An ablation study conducted after the challenge deadline shows that the new Llama 2 models are closing the performance gap between ChatGPT and open-source LLMs. However, we find that the Llama 2 models do not benefit from few-shot examples in the same way as ChatGPT.
You Truly Understand What I Need: Intellectual and Friendly Dialogue Agents grounding Knowledge and Persona
To build a conversational agent that interacts fluently with humans, previous studies blend knowledge or personal profile into the pre-trained language model. However, the model that considers knowledge and persona at the same time is still limited, leading to hallucination and a passive way of using personas. We propose an effective dialogue agent that grounds external knowledge and persona simultaneously. The agent selects the proper knowledge and persona to use for generating the answers with our candidate scoring implemented with a poly-encoder. Then, our model generates the utterance with lesser hallucination and more engagingness utilizing retrieval augmented generation with knowledge-persona enhanced query. We conduct experiments on the persona-knowledge chat and achieve state-of-the-art performance in grounding and generation tasks on the automatic metrics. Moreover, we validate the answers from the models regarding hallucination and engagingness through human evaluation and qualitative results. We show our retriever's effectiveness in extracting relevant documents compared to the other previous retrievers, along with the comparison of multiple candidate scoring methods. Code is available at https://github.com/dlawjddn803/INFO
A RAG-based Question Answering System Proposal for Understanding Islam: MufassirQAS LLM
There exist challenges in learning and understanding religions as the presence of complexity and depth of religious doctrines and teachings. Chatbots as question-answering systems can help in solving these challenges. LLM chatbots use NLP techniques to establish connections between topics and accurately respond to complex questions. These capabilities make it perfect to be used in enlightenment on religion as a question answering chatbot. However, LLMs also have a tendency to generate false information, known as hallucination. The responses of the chatbots can include content that insults personal religious beliefs, interfaith conflicts, and controversial or sensitive topics. It needs to avoid such cases without promoting hate speech or offending certain groups of people or their beliefs. This study uses a vector database-based Retrieval Augmented Generation (RAG) approach to enhance the accuracy and transparency of LLMs. Our question-answering system is called as "MufassirQAS". We created a vector database with several open-access books that include Turkish context. These are Turkish translations, and interpretations on Islam. We worked on creating system prompts with care, ensuring they provide instructions that prevent harmful, offensive, or disrespectful responses. We also tested the MufassirQAS and ChatGPT with sensitive questions. We got better performance with our system. Study and enhancements are still in progress. Results and future works are given.
ChatGPT and Software Testing Education: Promises & Perils
Over the past decade, predictive language modeling for code has proven to be a valuable tool for enabling new forms of automation for developers. More recently, we have seen the advent of general purpose "large language models", based on neural transformer architectures, that have been trained on massive datasets of human written text spanning code and natural language. However, despite the demonstrated representational power of such models, interacting with them has historically been constrained to specific task settings, limiting their general applicability. Many of these limitations were recently overcome with the introduction of ChatGPT, a language model created by OpenAI and trained to operate as a conversational agent, enabling it to answer questions and respond to a wide variety of commands from end users. The introduction of models, such as ChatGPT, has already spurred fervent discussion from educators, ranging from fear that students could use these AI tools to circumvent learning, to excitement about the new types of learning opportunities that they might unlock. However, given the nascent nature of these tools, we currently lack fundamental knowledge related to how well they perform in different educational settings, and the potential promise (or danger) that they might pose to traditional forms of instruction. As such, in this paper, we examine how well ChatGPT performs when tasked with answering common questions in a popular software testing curriculum. Our findings indicate that ChatGPT can provide correct or partially correct answers in 55.6% of cases, provide correct or partially correct explanations of answers in 53.0% of cases, and that prompting the tool in a shared question context leads to a marginally higher rate of correct responses. Based on these findings, we discuss the potential promises and perils related to the use of ChatGPT by students and instructors.
Dialogue Response Ranking Training with Large-Scale Human Feedback Data
Existing open-domain dialog models are generally trained to minimize the perplexity of target human responses. However, some human replies are more engaging than others, spawning more followup interactions. Current conversational models are increasingly capable of producing turns that are context-relevant, but in order to produce compelling agents, these models need to be able to predict and optimize for turns that are genuinely engaging. We leverage social media feedback data (number of replies and upvotes) to build a large-scale training dataset for feedback prediction. To alleviate possible distortion between the feedback and engagingness, we convert the ranking problem to a comparison of response pairs which involve few confounding factors. We trained DialogRPT, a set of GPT-2 based models on 133M pairs of human feedback data and the resulting ranker outperformed several baselines. Particularly, our ranker outperforms the conventional dialog perplexity baseline with a large margin on predicting Reddit feedback. We finally combine the feedback prediction models and a human-like scoring model to rank the machine-generated dialog responses. Crowd-sourced human evaluation shows that our ranking method correlates better with real human preferences than baseline models.
Meet Your Favorite Character: Open-domain Chatbot Mimicking Fictional Characters with only a Few Utterances
In this paper, we consider mimicking fictional characters as a promising direction for building engaging conversation models. To this end, we present a new practical task where only a few utterances of each fictional character are available to generate responses mimicking them. Furthermore, we propose a new method named Pseudo Dialog Prompting (PDP) that generates responses by leveraging the power of large-scale language models with prompts containing the target character's utterances. To better reflect the style of the character, PDP builds the prompts in the form of dialog that includes the character's utterances as dialog history. Since only utterances of the characters are available in the proposed task, PDP matches each utterance with an appropriate pseudo-context from a predefined set of context candidates using a retrieval model. Through human and automatic evaluation, we show that PDP generates responses that better reflect the style of fictional characters than baseline methods.
CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models
This paper introduces the "CIVICS: Culturally-Informed & Values-Inclusive Corpus for Societal impacts" dataset, designed to evaluate the social and cultural variation of Large Language Models (LLMs) across multiple languages and value-sensitive topics. We create a hand-crafted, multilingual dataset of value-laden prompts which address specific socially sensitive topics, including LGBTQI rights, social welfare, immigration, disability rights, and surrogacy. CIVICS is designed to generate responses showing LLMs' encoded and implicit values. Through our dynamic annotation processes, tailored prompt design, and experiments, we investigate how open-weight LLMs respond to value-sensitive issues, exploring their behavior across diverse linguistic and cultural contexts. Using two experimental set-ups based on log-probabilities and long-form responses, we show social and cultural variability across different LLMs. Specifically, experiments involving long-form responses demonstrate that refusals are triggered disparately across models, but consistently and more frequently in English or translated statements. Moreover, specific topics and sources lead to more pronounced differences across model answers, particularly on immigration, LGBTQI rights, and social welfare. As shown by our experiments, the CIVICS dataset aims to serve as a tool for future research, promoting reproducibility and transparency across broader linguistic settings, and furthering the development of AI technologies that respect and reflect global cultural diversities and value pluralism. The CIVICS dataset and tools will be made available upon publication under open licenses; an anonymized version is currently available at https://huggingface.co/CIVICS-dataset.
Learning to Memorize Entailment and Discourse Relations for Persona-Consistent Dialogues
Maintaining engagement and consistency is particularly important in dialogue systems. Existing works have improved the performance of dialogue systems by intentionally learning interlocutor personas with sophisticated network structures. One issue with this approach is that it requires more personal corpora with annotations. Additionally, these models typically perform the next utterance prediction to generate a response but neglect the discourse coherence in the entire conversation. To address these issues, this study proposes a method of learning to memorize entailment and discourse relations for persona-consistent dialogue tasks. Entailment text pairs in natural language inference dataset were applied to learn latent entailment relations as external memories by premise-to-hypothesis generation task. Furthermore, an internal memory with a similar architecture was applied to the discourse information in the dialogue. Placing orthogonality restrictions on these two memory spaces ensures that the latent entailment relations remain dialogue-independent. Both memories collaborate to obtain entailment and discourse representation for the generation, allowing a deeper understanding of both consistency and coherence. Experiments on two large public datasets, PersonaChat and DSTC7-AVSD, demonstrated the effectiveness of the proposed method. Both automatic and human evaluations indicate that the proposed model outperforms several strong baselines in terms of both persona consistency and response coherence. Our source code is available at https://github.com/Chenrj233/LMEDR.
Large Language Models as Zero-Shot Conversational Recommenders
In this paper, we present empirical studies on conversational recommendation tasks using representative large language models in a zero-shot setting with three primary contributions. (1) Data: To gain insights into model behavior in "in-the-wild" conversational recommendation scenarios, we construct a new dataset of recommendation-related conversations by scraping a popular discussion website. This is the largest public real-world conversational recommendation dataset to date. (2) Evaluation: On the new dataset and two existing conversational recommendation datasets, we observe that even without fine-tuning, large language models can outperform existing fine-tuned conversational recommendation models. (3) Analysis: We propose various probing tasks to investigate the mechanisms behind the remarkable performance of large language models in conversational recommendation. We analyze both the large language models' behaviors and the characteristics of the datasets, providing a holistic understanding of the models' effectiveness, limitations and suggesting directions for the design of future conversational recommenders
Pearl: A Review-driven Persona-Knowledge Grounded Conversational Recommendation Dataset
Conversational recommender system is an emerging area that has garnered an increasing interest in the community, especially with the advancements in large language models (LLMs) that enable diverse reasoning over conversational input. Despite the progress, the field has many aspects left to explore. The currently available public datasets for conversational recommendation lack specific user preferences and explanations for recommendations, hindering high-quality recommendations. To address such challenges, we present a novel conversational recommendation dataset named PEARL, synthesized with persona- and knowledge-augmented LLM simulators. We obtain detailed persona and knowledge from real-world reviews and construct a large-scale dataset with over 57k dialogues. Our experimental results demonstrate that utterances in PEARL include more specific user preferences, show expertise in the target domain, and provide recommendations more relevant to the dialogue context than those in prior datasets.
Rethinking the Evaluation for Conversational Recommendation in the Era of Large Language Models
The recent success of large language models (LLMs) has shown great potential to develop more powerful conversational recommender systems (CRSs), which rely on natural language conversations to satisfy user needs. In this paper, we embark on an investigation into the utilization of ChatGPT for conversational recommendation, revealing the inadequacy of the existing evaluation protocol. It might over-emphasize the matching with the ground-truth items or utterances generated by human annotators, while neglecting the interactive nature of being a capable CRS. To overcome the limitation, we further propose an interactive Evaluation approach based on LLMs named iEvaLM that harnesses LLM-based user simulators. Our evaluation approach can simulate various interaction scenarios between users and systems. Through the experiments on two publicly available CRS datasets, we demonstrate notable improvements compared to the prevailing evaluation protocol. Furthermore, we emphasize the evaluation of explainability, and ChatGPT showcases persuasive explanation generation for its recommendations. Our study contributes to a deeper comprehension of the untapped potential of LLMs for CRSs and provides a more flexible and easy-to-use evaluation framework for future research endeavors. The codes and data are publicly available at https://github.com/RUCAIBox/iEvaLM-CRS.
Linguistic Properties of Truthful Response
We investigate the phenomenon of an LLM's untruthful response using a large set of 220 handcrafted linguistic features. We focus on GPT-3 models and find that the linguistic profiles of responses are similar across model sizes. That is, how varying-sized LLMs respond to given prompts stays similar on the linguistic properties level. We expand upon this finding by training support vector machines that rely only upon the stylistic components of model responses to classify the truthfulness of statements. Though the dataset size limits our current findings, we present promising evidence that truthfulness detection is possible without evaluating the content itself.
Search Engines in an AI Era: The False Promise of Factual and Verifiable Source-Cited Responses
Large Language Model (LLM)-based applications are graduating from research prototypes to products serving millions of users, influencing how people write and consume information. A prominent example is the appearance of Answer Engines: LLM-based generative search engines supplanting traditional search engines. Answer engines not only retrieve relevant sources to a user query but synthesize answer summaries that cite the sources. To understand these systems' limitations, we first conducted a study with 21 participants, evaluating interactions with answer vs. traditional search engines and identifying 16 answer engine limitations. From these insights, we propose 16 answer engine design recommendations, linked to 8 metrics. An automated evaluation implementing our metrics on three popular engines (You.com, Perplexity.ai, BingChat) quantifies common limitations (e.g., frequent hallucination, inaccurate citation) and unique features (e.g., variation in answer confidence), with results mirroring user study insights. We release our Answer Engine Evaluation benchmark (AEE) to facilitate transparent evaluation of LLM-based applications.
Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models
Much recent work seeks to evaluate values and opinions in large language models (LLMs) using multiple-choice surveys and questionnaires. Most of this work is motivated by concerns around real-world LLM applications. For example, politically-biased LLMs may subtly influence society when they are used by millions of people. Such real-world concerns, however, stand in stark contrast to the artificiality of current evaluations: real users do not typically ask LLMs survey questions. Motivated by this discrepancy, we challenge the prevailing constrained evaluation paradigm for values and opinions in LLMs and explore more realistic unconstrained evaluations. As a case study, we focus on the popular Political Compass Test (PCT). In a systematic review, we find that most prior work using the PCT forces models to comply with the PCT's multiple-choice format. We show that models give substantively different answers when not forced; that answers change depending on how models are forced; and that answers lack paraphrase robustness. Then, we demonstrate that models give different answers yet again in a more realistic open-ended answer setting. We distill these findings into recommendations and open challenges in evaluating values and opinions in LLMs.
QADiscourse -- Discourse Relations as QA Pairs: Representation, Crowdsourcing and Baselines
Discourse relations describe how two propositions relate to one another, and identifying them automatically is an integral part of natural language understanding. However, annotating discourse relations typically requires expert annotators. Recently, different semantic aspects of a sentence have been represented and crowd-sourced via question-and-answer (QA) pairs. This paper proposes a novel representation of discourse relations as QA pairs, which in turn allows us to crowd-source wide-coverage data annotated with discourse relations, via an intuitively appealing interface for composing such questions and answers. Based on our proposed representation, we collect a novel and wide-coverage QADiscourse dataset, and present baseline algorithms for predicting QADiscourse relations.
Dialog Inpainting: Turning Documents into Dialogs
Many important questions (e.g. "How to eat healthier?") require conversation to establish context and explore in depth. However, conversational question answering (ConvQA) systems have long been stymied by scarce training data that is expensive to collect. To address this problem, we propose a new technique for synthetically generating diverse and high-quality dialog data: dialog inpainting. Our approach takes the text of any document and transforms it into a two-person dialog between the writer and an imagined reader: we treat sentences from the article as utterances spoken by the writer, and then use a dialog inpainter to predict what the imagined reader asked or said in between each of the writer's utterances. By applying this approach to passages from Wikipedia and the web, we produce WikiDialog and WebDialog, two datasets totalling 19 million diverse information-seeking dialogs -- 1,000x larger than the largest existing ConvQA dataset. Furthermore, human raters judge the answer adequacy and conversationality of WikiDialog to be as good or better than existing manually-collected datasets. Using our inpainted data to pre-train ConvQA retrieval systems, we significantly advance state-of-the-art across three benchmarks (QReCC, OR-QuAC, TREC CAsT) yielding up to 40% relative gains on standard evaluation metrics.
Interactive Natural Language Processing
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.
Retrieval-Generation Alignment for End-to-End Task-Oriented Dialogue System
Developing an efficient retriever to retrieve knowledge from a large-scale knowledge base (KB) is critical for task-oriented dialogue systems to effectively handle localized and specialized tasks. However, widely used generative models such as T5 and ChatGPT often struggle to differentiate subtle differences among the retrieved KB records when generating responses, resulting in suboptimal quality of generated responses. In this paper, we propose the application of maximal marginal likelihood to train a perceptive retriever by utilizing signals from response generation for supervision. In addition, our approach goes beyond considering solely retrieved entities and incorporates various meta knowledge to guide the generator, thus improving the utilization of knowledge. We evaluate our approach on three task-oriented dialogue datasets using T5 and ChatGPT as the backbone models. The results demonstrate that when combined with meta knowledge, the response generator can effectively leverage high-quality knowledge records from the retriever and enhance the quality of generated responses. The codes and models of this paper are available at https://github.com/shenwzh3/MK-TOD.
DialGuide: Aligning Dialogue Model Behavior with Developer Guidelines
Dialogue models are able to generate coherent and fluent responses, but they can still be challenging to control and may produce non-engaging, unsafe results. This unpredictability diminishes user trust and can hinder the use of the models in the real world. To address this, we introduce DialGuide, a novel framework for controlling dialogue model behavior using natural language rules, or guidelines. These guidelines provide information about the context they are applicable to and what should be included in the response, allowing the models to generate responses that are more closely aligned with the developer's expectations and intent. We evaluate DialGuide on three tasks in open-domain dialogue response generation: guideline selection, response generation, and response entailment verification. Our dataset contains 10,737 positive and 15,467 negative dialogue context-response-guideline triplets across two domains - chit-chat and safety. We provide baseline models for the tasks and benchmark their performance. We also demonstrate that DialGuide is effective in the dialogue safety domain, producing safe and engaging responses that follow developer guidelines.
GooAQ: Open Question Answering with Diverse Answer Types
While day-to-day questions come with a variety of answer types, the current question-answering (QA) literature has failed to adequately address the answer diversity of questions. To this end, we present GooAQ, a large-scale dataset with a variety of answer types. This dataset contains over 5 million questions and 3 million answers collected from Google. GooAQ questions are collected semi-automatically from the Google search engine using its autocomplete feature. This results in naturalistic questions of practical interest that are nonetheless short and expressed using simple language. GooAQ answers are mined from Google's responses to our collected questions, specifically from the answer boxes in the search results. This yields a rich space of answer types, containing both textual answers (short and long) as well as more structured ones such as collections. We benchmarkT5 models on GooAQ and observe that: (a) in line with recent work, LM's strong performance on GooAQ's short-answer questions heavily benefit from annotated data; however, (b) their quality in generating coherent and accurate responses for questions requiring long responses (such as 'how' and 'why' questions) is less reliant on observing annotated data and mainly supported by their pre-training. We release GooAQ to facilitate further research on improving QA with diverse response types.
Using In-Context Learning to Improve Dialogue Safety
While large neural-based conversational models have become increasingly proficient dialogue agents, recent work has highlighted safety issues with these systems. For example, these systems can be goaded into generating toxic content, which often perpetuates social biases or stereotypes. We investigate a retrieval-based method for reducing bias and toxicity in responses from chatbots. It uses in-context learning to steer a model towards safer generations. Concretely, to generate a response to an unsafe dialogue context, we retrieve demonstrations of safe responses to similar dialogue contexts. We find our method performs competitively with strong baselines without requiring training. For instance, using automatic evaluation, we find our best fine-tuned baseline only generates safe responses to unsafe dialogue contexts from DiaSafety 4.04% more than our approach. Finally, we also propose a re-ranking procedure which can further improve response safeness.
DuetSim: Building User Simulator with Dual Large Language Models for Task-Oriented Dialogues
User Simulators play a pivotal role in training and evaluating task-oriented dialogue systems. Traditional user simulators typically rely on human-engineered agendas, resulting in generated responses that often lack diversity and spontaneity. Although large language models (LLMs) exhibit a remarkable capacity for generating coherent and contextually appropriate utterances, they may fall short when tasked with generating responses that effectively guide users towards their goals, particularly in dialogues with intricate constraints and requirements. This paper introduces DuetSim, a novel framework designed to address the intricate demands of task-oriented dialogues by leveraging LLMs. DuetSim stands apart from conventional approaches by employing two LLMs in tandem: one dedicated to response generation and the other focused on verification. This dual LLM approach empowers DuetSim to produce responses that not only exhibit diversity but also demonstrate accuracy and are preferred by human users. We validate the efficacy of our method through extensive experiments conducted on the MultiWOZ dataset, highlighting improvements in response quality and correctness, largely attributed to the incorporation of the second LLM. Our code is accessible at: https://github.com/suntea233/DuetSim.
Trapping LLM Hallucinations Using Tagged Context Prompts
Recent advances in large language models (LLMs), such as ChatGPT, have led to highly sophisticated conversation agents. However, these models suffer from "hallucinations," where the model generates false or fabricated information. Addressing this challenge is crucial, particularly with AI-driven platforms being adopted across various sectors. In this paper, we propose a novel method to recognize and flag instances when LLMs perform outside their domain knowledge, and ensuring users receive accurate information. We find that the use of context combined with embedded tags can successfully combat hallucinations within generative language models. To do this, we baseline hallucination frequency in no-context prompt-response pairs using generated URLs as easily-tested indicators of fabricated data. We observed a significant reduction in overall hallucination when context was supplied along with question prompts for tested generative engines. Lastly, we evaluated how placing tags within contexts impacted model responses and were able to eliminate hallucinations in responses with 98.88% effectiveness.
Like hiking? You probably enjoy nature: Persona-grounded Dialog with Commonsense Expansions
Existing persona-grounded dialog models often fail to capture simple implications of given persona descriptions, something which humans are able to do seamlessly. For example, state-of-the-art models cannot infer that interest in hiking might imply love for nature or longing for a break. In this paper, we propose to expand available persona sentences using existing commonsense knowledge bases and paraphrasing resources to imbue dialog models with access to an expanded and richer set of persona descriptions. Additionally, we introduce fine-grained grounding on personas by encouraging the model to make a discrete choice among persona sentences while synthesizing a dialog response. Since such a choice is not observed in the data, we model it using a discrete latent random variable and use variational learning to sample from hundreds of persona expansions. Our model outperforms competitive baselines on the PersonaChat dataset in terms of dialog quality and diversity while achieving persona-consistent and controllable dialog generation.
VANiLLa : Verbalized Answers in Natural Language at Large Scale
In the last years, there have been significant developments in the area of Question Answering over Knowledge Graphs (KGQA). Despite all the notable advancements, current KGQA datasets only provide the answers as the direct output result of the formal query, rather than full sentences incorporating question context. For achieving coherent answers sentence with the question's vocabulary, template-based verbalization so are usually employed for a better representation of answers, which in turn require extensive expert intervention. Thus, making way for machine learning approaches; however, there is a scarcity of datasets that empower machine learning models in this area. Hence, we provide the VANiLLa dataset which aims at reducing this gap by offering answers in natural language sentences. The answer sentences in this dataset are syntactically and semantically closer to the question than to the triple fact. Our dataset consists of over 100k simple questions adapted from the CSQA and SimpleQuestionsWikidata datasets and generated using a semi-automatic framework. We also present results of training our dataset on multiple baseline models adapted from current state-of-the-art Natural Language Generation (NLG) architectures. We believe that this dataset will allow researchers to focus on finding suitable methodologies and architectures for answer verbalization.
Designing a Dashboard for Transparency and Control of Conversational AI
Conversational LLMs function as black box systems, leaving users guessing about why they see the output they do. This lack of transparency is potentially problematic, especially given concerns around bias and truthfulness. To address this issue, we present an end-to-end prototype-connecting interpretability techniques with user experience design-that seeks to make chatbots more transparent. We begin by showing evidence that a prominent open-source LLM has a "user model": examining the internal state of the system, we can extract data related to a user's age, gender, educational level, and socioeconomic status. Next, we describe the design of a dashboard that accompanies the chatbot interface, displaying this user model in real time. The dashboard can also be used to control the user model and the system's behavior. Finally, we discuss a study in which users conversed with the instrumented system. Our results suggest that users appreciate seeing internal states, which helped them expose biased behavior and increased their sense of control. Participants also made valuable suggestions that point to future directions for both design and machine learning research. The project page and video demo of our TalkTuner system are available at https://bit.ly/talktuner-project-page
The NarrativeQA Reading Comprehension Challenge
Reading comprehension (RC)---in contrast to information retrieval---requires integrating information and reasoning about events, entities, and their relations across a full document. Question answering is conventionally used to assess RC ability, in both artificial agents and children learning to read. However, existing RC datasets and tasks are dominated by questions that can be solved by selecting answers using superficial information (e.g., local context similarity or global term frequency); they thus fail to test for the essential integrative aspect of RC. To encourage progress on deeper comprehension of language, we present a new dataset and set of tasks in which the reader must answer questions about stories by reading entire books or movie scripts. These tasks are designed so that successfully answering their questions requires understanding the underlying narrative rather than relying on shallow pattern matching or salience. We show that although humans solve the tasks easily, standard RC models struggle on the tasks presented here. We provide an analysis of the dataset and the challenges it presents.
Large Language Models for Information Retrieval: A Survey
As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.
Learning to Explore and Select for Coverage-Conditioned Retrieval-Augmented Generation
Interactions with large language models (LLMs) often yield long and detailed responses, leveraging both parametric knowledge and retrieval-augmented generation (RAG). While these responses can provide rich insights, they often include redundant or less engaging content not aligned with user interests. This issue becomes apparent when users specify particular subtopics to include or exclude -- termed coverage-conditioned (C^2) queries -- as LLMs often struggle to provide tailored responses. To address this challenge, we investigate the role of query outlines, sequences of subqueries designed to guide LLMs in generating responses that meet specific user requirements. To systematically create and evaluate these outlines, we introduce QTree, a dataset of 10K hierarchical sets of information-seeking subqueries that define structured boundaries for outline creation and evaluation in C^2 scenarios. Additionally, we develop QPlanner, a 7B language model trained to generate customized outlines within boundaries of QTree. We evaluate the effectiveness of the generated outlines through automatic and human judgements, focusing on their impact within retrieval-augmented generation (RAG) systems. Experimental results demonstrate that QPlanner, especially when trained with alignment techniques like DPO, generates higher-quality outlines that better fulfill diverse user needs.
UniMS-RAG: A Unified Multi-source Retrieval-Augmented Generation for Personalized Dialogue Systems
Large Language Models (LLMs) has shown exceptional capabilities in many natual language understanding and generation tasks. However, the personalization issue still remains a much-coveted property, especially when it comes to the multiple sources involved in the dialogue system. To better plan and incorporate the use of multiple sources in generating personalized response, we firstly decompose it into three sub-tasks: Knowledge Source Selection, Knowledge Retrieval, and Response Generation. We then propose a novel Unified Multi-Source Retrieval-Augmented Generation system (UniMS-RAG) Specifically, we unify these three sub-tasks with different formulations into the same sequence-to-sequence paradigm during the training, to adaptively retrieve evidences and evaluate the relevance on-demand using special tokens, called acting tokens and evaluation tokens. Enabling language models to generate acting tokens facilitates interaction with various knowledge sources, allowing them to adapt their behavior to diverse task requirements. Meanwhile, evaluation tokens gauge the relevance score between the dialogue context and the retrieved evidence. In addition, we carefully design a self-refinement mechanism to iteratively refine the generated response considering 1) the consistency scores between the generated response and retrieved evidence; and 2) the relevance scores. Experiments on two personalized datasets (DuLeMon and KBP) show that UniMS-RAG achieves state-of-the-art performance on the knowledge source selection and response generation task with itself as a retriever in a unified manner. Extensive analyses and discussions are provided for shedding some new perspectives for personalized dialogue systems.
Multimodal Dialogue Response Generation
Responsing with image has been recognized as an important capability for an intelligent conversational agent. Yet existing works only focus on exploring the multimodal dialogue models which depend on retrieval-based methods, but neglecting generation methods. To fill in the gaps, we first present a multimodal dialogue generation model, which takes the dialogue history as input, then generates a textual sequence or an image as response. Learning such a model often requires multimodal dialogues containing both texts and images which are difficult to obtain. Motivated by the challenge in practice, we consider multimodal dialogue generation under a natural assumption that only limited training examples are available. In such a low-resource setting, we devise a novel conversational agent, Divter, in order to isolate parameters that depend on multimodal dialogues from the entire generation model. By this means, the major part of the model can be learned from a large number of text-only dialogues and text-image pairs respectively, then the whole parameters can be well fitted using the limited training examples. Extensive experiments demonstrate our method achieves state-of-the-art results in both automatic and human evaluation, and can generate informative text and high-resolution image responses.
Learning From Free-Text Human Feedback -- Collect New Datasets Or Extend Existing Ones?
Learning from free-text human feedback is essential for dialog systems, but annotated data is scarce and usually covers only a small fraction of error types known in conversational AI. Instead of collecting and annotating new datasets from scratch, recent advances in synthetic dialog generation could be used to augment existing dialog datasets with the necessary annotations. However, to assess the feasibility of such an effort, it is important to know the types and frequency of free-text human feedback included in these datasets. In this work, we investigate this question for a variety of commonly used dialog datasets, including MultiWoZ, SGD, BABI, PersonaChat, Wizards-of-Wikipedia, and the human-bot split of the Self-Feeding Chatbot. Using our observations, we derive new taxonomies for the annotation of free-text human feedback in dialogs and investigate the impact of including such data in response generation for three SOTA language generation models, including GPT-2, LLAMA, and Flan-T5. Our findings provide new insights into the composition of the datasets examined, including error types, user response types, and the relations between them.
ChatGPT Alternative Solutions: Large Language Models Survey
In recent times, the grandeur of Large Language Models (LLMs) has not only shone in the realm of natural language processing but has also cast its brilliance across a vast array of applications. This remarkable display of LLM capabilities has ignited a surge in research contributions within this domain, spanning a diverse spectrum of topics. These contributions encompass advancements in neural network architecture, context length enhancements, model alignment, training datasets, benchmarking, efficiency improvements, and more. Recent years have witnessed a dynamic synergy between academia and industry, propelling the field of LLM research to new heights. A notable milestone in this journey is the introduction of ChatGPT, a powerful AI chatbot grounded in LLMs, which has garnered widespread societal attention. The evolving technology of LLMs has begun to reshape the landscape of the entire AI community, promising a revolutionary shift in the way we create and employ AI algorithms. Given this swift-paced technical evolution, our survey embarks on a journey to encapsulate the recent strides made in the world of LLMs. Through an exploration of the background, key discoveries, and prevailing methodologies, we offer an up-to-the-minute review of the literature. By examining multiple LLM models, our paper not only presents a comprehensive overview but also charts a course that identifies existing challenges and points toward potential future research trajectories. This survey furnishes a well-rounded perspective on the current state of generative AI, shedding light on opportunities for further exploration, enhancement, and innovation.
LLM Task Interference: An Initial Study on the Impact of Task-Switch in Conversational History
With the recent emergence of powerful instruction-tuned large language models (LLMs), various helpful conversational Artificial Intelligence (AI) systems have been deployed across many applications. When prompted by users, these AI systems successfully perform a wide range of tasks as part of a conversation. To provide some sort of memory and context, such approaches typically condition their output on the entire conversational history. Although this sensitivity to the conversational history can often lead to improved performance on subsequent tasks, we find that performance can in fact also be negatively impacted, if there is a task-switch. To the best of our knowledge, our work makes the first attempt to formalize the study of such vulnerabilities and interference of tasks in conversational LLMs caused by task-switches in the conversational history. Our experiments across 5 datasets with 15 task switches using popular LLMs reveal that many of the task-switches can lead to significant performance degradation.
Dual Semantic Knowledge Composed Multimodal Dialog Systems
Textual response generation is an essential task for multimodal task-oriented dialog systems.Although existing studies have achieved fruitful progress, they still suffer from two critical limitations: 1) focusing on the attribute knowledge but ignoring the relation knowledge that can reveal the correlations between different entities and hence promote the response generation}, and 2) only conducting the cross-entropy loss based output-level supervision but lacking the representation-level regularization. To address these limitations, we devise a novel multimodal task-oriented dialog system (named MDS-S2). Specifically, MDS-S2 first simultaneously acquires the context related attribute and relation knowledge from the knowledge base, whereby the non-intuitive relation knowledge is extracted by the n-hop graph walk. Thereafter, considering that the attribute knowledge and relation knowledge can benefit the responding to different levels of questions, we design a multi-level knowledge composition module in MDS-S2 to obtain the latent composed response representation. Moreover, we devise a set of latent query variables to distill the semantic information from the composed response representation and the ground truth response representation, respectively, and thus conduct the representation-level semantic regularization. Extensive experiments on a public dataset have verified the superiority of our proposed MDS-S2. We have released the codes and parameters to facilitate the research community.
CONVERSER: Few-Shot Conversational Dense Retrieval with Synthetic Data Generation
Conversational search provides a natural interface for information retrieval (IR). Recent approaches have demonstrated promising results in applying dense retrieval to conversational IR. However, training dense retrievers requires large amounts of in-domain paired data. This hinders the development of conversational dense retrievers, as abundant in-domain conversations are expensive to collect. In this paper, we propose CONVERSER, a framework for training conversational dense retrievers with at most 6 examples of in-domain dialogues. Specifically, we utilize the in-context learning capability of large language models to generate conversational queries given a passage in the retrieval corpus. Experimental results on conversational retrieval benchmarks OR-QuAC and TREC CAsT 19 show that the proposed CONVERSER achieves comparable performance to fully-supervised models, demonstrating the effectiveness of our proposed framework in few-shot conversational dense retrieval. All source code and generated datasets are available at https://github.com/MiuLab/CONVERSER
Conv-CoA: Improving Open-domain Question Answering in Large Language Models via Conversational Chain-of-Action
We present a Conversational Chain-of-Action (Conv-CoA) framework for Open-domain Conversational Question Answering (OCQA). Compared with literature, Conv-CoA addresses three major challenges: (i) unfaithful hallucination that is inconsistent with real-time or domain facts, (ii) weak reasoning performance in conversational scenarios, and (iii) unsatisfying performance in conversational information retrieval. Our key contribution is a dynamic reasoning-retrieval mechanism that extracts the intent of the question and decomposes it into a reasoning chain to be solved via systematic prompting, pre-designed actions, updating the Contextual Knowledge Set (CKS), and a novel Hopfield-based retriever. Methodologically, we propose a resource-efficiency Hopfield retriever to enhance the efficiency and accuracy of conversational information retrieval within our actions. Additionally, we propose a conversational-multi-reference faith score (Conv-MRFS) to verify and resolve conflicts between retrieved knowledge and answers in conversations. Empirically, we conduct comparisons between our framework and 23 state-of-the-art methods across five different research directions and two public benchmarks. These comparisons demonstrate that our Conv-CoA outperforms other methods in both the accuracy and efficiency dimensions.
On the Benchmarking of LLMs for Open-Domain Dialogue Evaluation
Large Language Models (LLMs) have showcased remarkable capabilities in various Natural Language Processing tasks. For automatic open-domain dialogue evaluation in particular, LLMs have been seamlessly integrated into evaluation frameworks, and together with human evaluation, compose the backbone of most evaluations. However, existing evaluation benchmarks often rely on outdated datasets and evaluate aspects like Fluency and Relevance, which fail to adequately capture the capabilities and limitations of state-of-the-art chatbot models. This paper critically examines current evaluation benchmarks, highlighting that the use of older response generators and quality aspects fail to accurately reflect modern chatbot capabilities. A small annotation experiment on a recent LLM-generated dataset (SODA) reveals that LLM evaluators such as GPT-4 struggle to detect actual deficiencies in dialogues generated by current LLM chatbots.
ELI5: Long Form Question Answering
We introduce the first large-scale corpus for long-form question answering, a task requiring elaborate and in-depth answers to open-ended questions. The dataset comprises 270K threads from the Reddit forum ``Explain Like I'm Five'' (ELI5) where an online community provides answers to questions which are comprehensible by five year olds. Compared to existing datasets, ELI5 comprises diverse questions requiring multi-sentence answers. We provide a large set of web documents to help answer the question. Automatic and human evaluations show that an abstractive model trained with a multi-task objective outperforms conventional Seq2Seq, language modeling, as well as a strong extractive baseline. However, our best model is still far from human performance since raters prefer gold responses in over 86% of cases, leaving ample opportunity for future improvement.
The Second Conversational Intelligence Challenge (ConvAI2)
We describe the setting and results of the ConvAI2 NeurIPS competition that aims to further the state-of-the-art in open-domain chatbots. Some key takeaways from the competition are: (i) pretrained Transformer variants are currently the best performing models on this task, (ii) but to improve performance on multi-turn conversations with humans, future systems must go beyond single word metrics like perplexity to measure the performance across sequences of utterances (conversations) -- in terms of repetition, consistency and balance of dialogue acts (e.g. how many questions asked vs. answered).
Long-term Control for Dialogue Generation: Methods and Evaluation
Current approaches for controlling dialogue response generation are primarily focused on high-level attributes like style, sentiment, or topic. In this work, we focus on constrained long-term dialogue generation, which involves more fine-grained control and requires a given set of control words to appear in generated responses. This setting requires a model to not only consider the generation of these control words in the immediate context, but also produce utterances that will encourage the generation of the words at some time in the (possibly distant) future. We define the problem of constrained long-term control for dialogue generation, identify gaps in current methods for evaluation, and propose new metrics that better measure long-term control. We also propose a retrieval-augmented method that improves performance of long-term controlled generation via logit modification techniques. We show through experiments on three task-oriented dialogue datasets that our metrics better assess dialogue control relative to current alternatives and that our method outperforms state-of-the-art constrained generation baselines.
On the Way to LLM Personalization: Learning to Remember User Conversations
Large Language Models (LLMs) have quickly become an invaluable assistant for a variety of tasks. However, their effectiveness is constrained by their ability to tailor responses to human preferences and behaviors via personalization. Prior work in LLM personalization has largely focused on style transfer or incorporating small factoids about the user, as knowledge injection remains an open challenge. In this paper, we explore injecting knowledge of prior conversations into LLMs to enable future work on less redundant, personalized conversations. We identify two real-world constraints: (1) conversations are sequential in time and must be treated as such during training, and (2) per-user personalization is only viable in parameter-efficient settings. To this aim, we propose PLUM, a pipeline performing data augmentation for up-sampling conversations as question-answer pairs, that are then used to finetune a low-rank adaptation adapter with a weighted cross entropy loss. Even in this first exploration of the problem, we perform competitively with baselines such as RAG, attaining an accuracy of 81.5% across 100 conversations.
MS MARCO: A Human Generated MAchine Reading COmprehension Dataset
We introduce a large scale MAchine Reading COmprehension dataset, which we name MS MARCO. The dataset comprises of 1,010,916 anonymized questions---sampled from Bing's search query logs---each with a human generated answer and 182,669 completely human rewritten generated answers. In addition, the dataset contains 8,841,823 passages---extracted from 3,563,535 web documents retrieved by Bing---that provide the information necessary for curating the natural language answers. A question in the MS MARCO dataset may have multiple answers or no answers at all. Using this dataset, we propose three different tasks with varying levels of difficulty: (i) predict if a question is answerable given a set of context passages, and extract and synthesize the answer as a human would (ii) generate a well-formed answer (if possible) based on the context passages that can be understood with the question and passage context, and finally (iii) rank a set of retrieved passages given a question. The size of the dataset and the fact that the questions are derived from real user search queries distinguishes MS MARCO from other well-known publicly available datasets for machine reading comprehension and question-answering. We believe that the scale and the real-world nature of this dataset makes it attractive for benchmarking machine reading comprehension and question-answering models.
Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems
A long-term goal of machine learning is to build intelligent conversational agents. One recent popular approach is to train end-to-end models on a large amount of real dialog transcripts between humans (Sordoni et al., 2015; Vinyals & Le, 2015; Shang et al., 2015). However, this approach leaves many questions unanswered as an understanding of the precise successes and shortcomings of each model is hard to assess. A contrasting recent proposal are the bAbI tasks (Weston et al., 2015b) which are synthetic data that measure the ability of learning machines at various reasoning tasks over toy language. Unfortunately, those tests are very small and hence may encourage methods that do not scale. In this work, we propose a suite of new tasks of a much larger scale that attempt to bridge the gap between the two regimes. Choosing the domain of movies, we provide tasks that test the ability of models to answer factual questions (utilizing OMDB), provide personalization (utilizing MovieLens), carry short conversations about the two, and finally to perform on natural dialogs from Reddit. We provide a dataset covering 75k movie entities and with 3.5M training examples. We present results of various models on these tasks, and evaluate their performance.
AsyncMLD: Asynchronous Multi-LLM Framework for Dialogue Recommendation System
We have reached a practical and realistic phase in human-support dialogue agents by developing a large language model (LLM). However, when requiring expert knowledge or anticipating the utterance content using the massive size of the dialogue database, we still need help with the utterance content's effectiveness and the efficiency of its output speed, even if using LLM. Therefore, we propose a framework that uses LLM asynchronously in the part of the system that returns an appropriate response and in the part that understands the user's intention and searches the database. In particular, noting that it takes time for the robot to speak, threading related to database searches is performed while the robot is speaking.
Are Large Language Models Good at Utility Judgments?
Retrieval-augmented generation (RAG) is considered to be a promising approach to alleviate the hallucination issue of large language models (LLMs), and it has received widespread attention from researchers recently. Due to the limitation in the semantic understanding of retrieval models, the success of RAG heavily lies on the ability of LLMs to identify passages with utility. Recent efforts have explored the ability of LLMs to assess the relevance of passages in retrieval, but there has been limited work on evaluating the utility of passages in supporting question answering. In this work, we conduct a comprehensive study about the capabilities of LLMs in utility evaluation for open-domain QA. Specifically, we introduce a benchmarking procedure and collection of candidate passages with different characteristics, facilitating a series of experiments with five representative LLMs. Our experiments reveal that: (i) well-instructed LLMs can distinguish between relevance and utility, and that LLMs are highly receptive to newly generated counterfactual passages. Moreover, (ii) we scrutinize key factors that affect utility judgments in the instruction design. And finally, (iii) to verify the efficacy of utility judgments in practical retrieval augmentation applications, we delve into LLMs' QA capabilities using the evidence judged with utility and direct dense retrieval results. (iv) We propose a k-sampling, listwise approach to reduce the dependency of LLMs on the sequence of input passages, thereby facilitating subsequent answer generation. We believe that the way we formalize and study the problem along with our findings contributes to a critical assessment of retrieval-augmented LLMs. Our code and benchmark can be found at https://github.com/ict-bigdatalab/utility_judgments.
Reading with Intent
Retrieval augmented generation (RAG) systems augment how knowledge language models are by integrating external information sources such as Wikipedia, internal documents, scientific papers, or the open internet. RAG systems that rely on the open internet as their knowledge source have to contend with the complexities of human-generated content. Human communication extends much deeper than just the words rendered as text. Intent, tonality, and connotation can all change the meaning of what is being conveyed. Recent real-world deployments of RAG systems have shown some difficulty in understanding these nuances of human communication. One significant challenge for these systems lies in processing sarcasm. Though the Large Language Models (LLMs) that make up the backbone of these RAG systems are able to detect sarcasm, they currently do not always use these detections for the subsequent processing of text. To address these issues, in this paper, we synthetically generate sarcastic passages from Natural Question's Wikipedia retrieval corpus. We then test the impact of these passages on the performance of both the retriever and reader portion of the RAG pipeline. We introduce a prompting system designed to enhance the model's ability to interpret and generate responses in the presence of sarcasm, thus improving overall system performance. Finally, we conduct ablation studies to validate the effectiveness of our approach, demonstrating improvements in handling sarcastic content within RAG systems.
Efficient Task-Oriented Dialogue Systems with Response Selection as an Auxiliary Task
The adoption of pre-trained language models in task-oriented dialogue systems has resulted in significant enhancements of their text generation abilities. However, these architectures are slow to use because of the large number of trainable parameters and can sometimes fail to generate diverse responses. To address these limitations, we propose two models with auxiliary tasks for response selection - (1) distinguishing distractors from ground truth responses and (2) distinguishing synthetic responses from ground truth labels. They achieve state-of-the-art results on the MultiWOZ 2.1 dataset with combined scores of 107.5 and 108.3 and outperform a baseline with three times more parameters. We publish reproducible code and checkpoints and discuss the effects of applying auxiliary tasks to T5-based architectures.
Parameter-Efficient Conversational Recommender System as a Language Processing Task
Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation. Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items. This combination of multiple components suffers from a cumbersome training process, and leads to semantic misalignment issues between dialogue generation and item recommendation. In this paper, we represent items in natural language and formulate CRS as a natural language processing task. Accordingly, we leverage the power of pre-trained language models to encode items, understand user intent via conversation, perform item recommendation through semantic matching, and generate dialogues. As a unified model, our PECRS (Parameter-Efficient CRS), can be optimized in a single stage, without relying on non-textual metadata such as a knowledge graph. Experiments on two benchmark CRS datasets, ReDial and INSPIRED, demonstrate the effectiveness of PECRS on recommendation and conversation. Our code is available at: https://github.com/Ravoxsg/efficient_unified_crs.
What makes a good conversation? How controllable attributes affect human judgments
A good conversation requires balance -- between simplicity and detail; staying on topic and changing it; asking questions and answering them. Although dialogue agents are commonly evaluated via human judgments of overall quality, the relationship between quality and these individual factors is less well-studied. In this work, we examine two controllable neural text generation methods, conditional training and weighted decoding, in order to control four important attributes for chitchat dialogue: repetition, specificity, response-relatedness and question-asking. We conduct a large-scale human evaluation to measure the effect of these control parameters on multi-turn interactive conversations on the PersonaChat task. We provide a detailed analysis of their relationship to high-level aspects of conversation, and show that by controlling combinations of these variables our models obtain clear improvements in human quality judgments.
Advancing Large Language Models to Capture Varied Speaking Styles and Respond Properly in Spoken Conversations
In spoken dialogue, even if two current turns are the same sentence, their responses might still differ when they are spoken in different styles. The spoken styles, containing paralinguistic and prosodic information, mark the most significant difference between text and speech modality. When using text-only LLMs to model spoken dialogue, text-only LLMs cannot give different responses based on the speaking style of the current turn. In this paper, we focus on enabling LLMs to listen to the speaking styles and respond properly. Our goal is to teach the LLM that "even if the sentences are identical if they are spoken in different styles, their corresponding responses might be different". Since there is no suitable dataset for achieving this goal, we collect a speech-to-speech dataset, StyleTalk, with the following desired characteristics: when two current speeches have the same content but are spoken in different styles, their responses will be different. To teach LLMs to understand and respond properly to the speaking styles, we propose the Spoken-LLM framework that can model the linguistic content and the speaking styles. We train Spoken-LLM using the StyleTalk dataset and devise a two-stage training pipeline to help the Spoken-LLM better learn the speaking styles. Based on extensive experiments, we show that Spoken-LLM outperforms text-only baselines and prior speech LLMs methods.
Benchmarks for Pirá 2.0, a Reading Comprehension Dataset about the Ocean, the Brazilian Coast, and Climate Change
Pir\'a is a reading comprehension dataset focused on the ocean, the Brazilian coast, and climate change, built from a collection of scientific abstracts and reports on these topics. This dataset represents a versatile language resource, particularly useful for testing the ability of current machine learning models to acquire expert scientific knowledge. Despite its potential, a detailed set of baselines has not yet been developed for Pir\'a. By creating these baselines, researchers can more easily utilize Pir\'a as a resource for testing machine learning models across a wide range of question answering tasks. In this paper, we define six benchmarks over the Pir\'a dataset, covering closed generative question answering, machine reading comprehension, information retrieval, open question answering, answer triggering, and multiple choice question answering. As part of this effort, we have also produced a curated version of the original dataset, where we fixed a number of grammar issues, repetitions, and other shortcomings. Furthermore, the dataset has been extended in several new directions, so as to face the aforementioned benchmarks: translation of supporting texts from English into Portuguese, classification labels for answerability, automatic paraphrases of questions and answers, and multiple choice candidates. The results described in this paper provide several points of reference for researchers interested in exploring the challenges provided by the Pir\'a dataset.
Étude cognitive des processus de construction d'une requête dans un système de gestion de connaissances médicales
This article presents the Cogni-CISMeF project, which aims at improving medical information search in the CISMeF system (Catalog and Index of French-language health resources) by including a conversational agent to interact with the user in natural language. To study the cognitive processes involved during the information search, a bottom-up methodology was adopted. Experimentation has been set up to obtain human dialogs between a user (playing the role of patient) dealing with medical information search and a CISMeF expert refining the request. The analysis of these dialogs underlined the use of discursive evidence: vocabulary, reformulation, implicit or explicit expression of user intentions, conversational sequences, etc. A model of artificial agent is proposed. It leads the user in its information search by proposing to him examples, assistance and choices. This model was implemented and integrated in the CISMeF system. ---- Cet article d\'ecrit le projet Cogni-CISMeF qui propose un module de dialogue Homme-Machine \`a int\'egrer dans le syst\`eme d'indexation de connaissances m\'edicales CISMeF (Catalogue et Index des Sites M\'edicaux Francophones). Nous avons adopt\'e une d\'emarche de mod\'elisation cognitive en proc\'edant \`a un recueil de corpus de dialogues entre un utilisateur (jouant le r\^ole d'un patient) d\'esirant une information m\'edicale et un expert CISMeF af inant cette demande pour construire la requ\^ete. Nous avons analys\'e la structure des dialogues ainsi obtenus et avons \'etudi\'e un certain nombre d'indices discursifs : vocabulaire employ\'e, marques de reformulation, commentaires m\'eta et \'epilinguistiques, expression implicite ou explicite des intentions de l'utilisateur, encha\^inement conversationnel, etc. De cette analyse, nous avons construit un mod\`ele d'agent artificiel dot\'e de capacit\'es cognitives capables d'aider l'utilisateur dans sa t\^ache de recherche d'information. Ce mod\`ele a \'et\'e impl\'ement\'e et int\'egr\'e dans le syst\`eme CISMeF.
KIWI: A Dataset of Knowledge-Intensive Writing Instructions for Answering Research Questions
Large language models (LLMs) adapted to follow user instructions are now widely deployed as conversational agents. In this work, we examine one increasingly common instruction-following task: providing writing assistance to compose a long-form answer. To evaluate the capabilities of current LLMs on this task, we construct KIWI, a dataset of knowledge-intensive writing instructions in the scientific domain. Given a research question, an initial model-generated answer and a set of relevant papers, an expert annotator iteratively issues instructions for the model to revise and improve its answer. We collect 1,260 interaction turns from 234 interaction sessions with three state-of-the-art LLMs. Each turn includes a user instruction, a model response, and a human evaluation of the model response. Through a detailed analysis of the collected responses, we find that all models struggle to incorporate new information into an existing answer, and to perform precise and unambiguous edits. Further, we find that models struggle to judge whether their outputs successfully followed user instructions, with accuracy at least 10 points short of human agreement. Our findings indicate that KIWI will be a valuable resource to measure progress and improve LLMs' instruction-following capabilities for knowledge intensive writing tasks.
Estimation-Action-Reflection: Towards Deep Interaction Between Conversational and Recommender Systems
Recommender systems are embracing conversational technologies to obtain user preferences dynamically, and to overcome inherent limitations of their static models. A successful Conversational Recommender System (CRS) requires proper handling of interactions between conversation and recommendation. We argue that three fundamental problems need to be solved: 1) what questions to ask regarding item attributes, 2) when to recommend items, and 3) how to adapt to the users' online feedback. To the best of our knowledge, there lacks a unified framework that addresses these problems. In this work, we fill this missing interaction framework gap by proposing a new CRS framework named Estimation-Action-Reflection, or EAR, which consists of three stages to better converse with users. (1) Estimation, which builds predictive models to estimate user preference on both items and item attributes; (2) Action, which learns a dialogue policy to determine whether to ask attributes or recommend items, based on Estimation stage and conversation history; and (3) Reflection, which updates the recommender model when a user rejects the recommendations made by the Action stage. We present two conversation scenarios on binary and enumerated questions, and conduct extensive experiments on two datasets from Yelp and LastFM, for each scenario, respectively. Our experiments demonstrate significant improvements over the state-of-the-art method CRM [32], corresponding to fewer conversation turns and a higher level of recommendation hits.
End-to-End Conversational Search for Online Shopping with Utterance Transfer
Successful conversational search systems can present natural, adaptive and interactive shopping experience for online shopping customers. However, building such systems from scratch faces real word challenges from both imperfect product schema/knowledge and lack of training dialog data.In this work we first propose ConvSearch, an end-to-end conversational search system that deeply combines the dialog system with search. It leverages the text profile to retrieve products, which is more robust against imperfect product schema/knowledge compared with using product attributes alone. We then address the lack of data challenges by proposing an utterance transfer approach that generates dialogue utterances by using existing dialog from other domains, and leveraging the search behavior data from e-commerce retailer. With utterance transfer, we introduce a new conversational search dataset for online shopping. Experiments show that our utterance transfer method can significantly improve the availability of training dialogue data without crowd-sourcing, and the conversational search system significantly outperformed the best tested baseline.
Do Answers to Boolean Questions Need Explanations? Yes
Existing datasets that contain boolean questions, such as BoolQ and TYDI QA , provide the user with a YES/NO response to the question. However, a one word response is not sufficient for an explainable system. We promote explainability by releasing a new set of annotations marking the evidence in existing TyDi QA and BoolQ datasets. We show that our annotations can be used to train a model that extracts improved evidence spans compared to models that rely on existing resources. We confirm our findings with a user study which shows that our extracted evidence spans enhance the user experience. We also provide further insight into the challenges of answering boolean questions, such as passages containing conflicting YES and NO answers, and varying degrees of relevance of the predicted evidence.
Controllable Factuality in Document-Grounded Dialog Systems Using a Noisy Channel Model
In this work, we present a model for document-grounded response generation in dialog that is decomposed into two components according to Bayes theorem. One component is a traditional ungrounded response generation model and the other component models the reconstruction of the grounding document based on the dialog context and generated response. We propose different approximate decoding schemes and evaluate our approach on multiple open-domain and task-oriented document-grounded dialog datasets. Our experiments show that the model is more factual in terms of automatic factuality metrics than the baseline model. Furthermore, we outline how introducing scaling factors between the components allows for controlling the tradeoff between factuality and fluency in the model output. Finally, we compare our approach to a recently proposed method to control factuality in grounded dialog, CTRL (arXiv:2107.06963), and show that both approaches can be combined to achieve additional improvements.
Using clarification questions to improve software developers' Web search
Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.
Leveraging Retrieval-Augmented Generation for University Knowledge Retrieval
This paper introduces an innovative approach using Retrieval-Augmented Generation (RAG) pipelines with Large Language Models (LLMs) to enhance information retrieval and query response systems for university-related question answering. By systematically extracting data from the university official webpage and employing advanced prompt engineering techniques, we generate accurate, contextually relevant responses to user queries. We developed a comprehensive university benchmark, UniversityQuestionBench (UQB), to rigorously evaluate our system performance, based on common key metrics in the filed of RAG pipelines, assessing accuracy and reliability through various metrics and real-world scenarios. Our experimental results demonstrate significant improvements in the precision and relevance of generated responses, enhancing user experience and reducing the time required to obtain relevant answers. In summary, this paper presents a novel application of RAG pipelines and LLMs, supported by a meticulously prepared university benchmark, offering valuable insights into advanced AI techniques for academic data retrieval and setting the stage for future research in this domain.
TREC CAsT 2019: The Conversational Assistance Track Overview
The Conversational Assistance Track (CAsT) is a new track for TREC 2019 to facilitate Conversational Information Seeking (CIS) research and to create a large-scale reusable test collection for conversational search systems. The document corpus is 38,426,252 passages from the TREC Complex Answer Retrieval (CAR) and Microsoft MAchine Reading COmprehension (MARCO) datasets. Eighty information seeking dialogues (30 train, 50 test) are an average of 9 to 10 questions long. Relevance assessments are provided for 30 training topics and 20 test topics. This year 21 groups submitted a total of 65 runs using varying methods for conversational query understanding and ranking. Methods include traditional retrieval based methods, feature based learning-to-rank, neural models, and knowledge enhanced methods. A common theme through the runs is the use of BERT-based neural reranking methods. Leading methods also employed document expansion, conversational query expansion, and generative language models for conversational query rewriting (GPT-2). The results show a gap between automatic systems and those using the manually resolved utterances, with a 35% relative improvement of manual rewrites over the best automatic system.
Recent Advances in Deep Learning Based Dialogue Systems: A Systematic Survey
Dialogue systems are a popular natural language processing (NLP) task as it is promising in real-life applications. It is also a complicated task since many NLP tasks deserving study are involved. As a result, a multitude of novel works on this task are carried out, and most of them are deep learning based due to the outstanding performance. In this survey, we mainly focus on the deep learning based dialogue systems. We comprehensively review state-of-the-art research outcomes in dialogue systems and analyze them from two angles: model type and system type. Specifically, from the angle of model type, we discuss the principles, characteristics, and applications of different models that are widely used in dialogue systems. This will help researchers acquaint these models and see how they are applied in state-of-the-art frameworks, which is rather helpful when designing a new dialogue system. From the angle of system type, we discuss task-oriented and open-domain dialogue systems as two streams of research, providing insight into the hot topics related. Furthermore, we comprehensively review the evaluation methods and datasets for dialogue systems to pave the way for future research. Finally, some possible research trends are identified based on the recent research outcomes. To the best of our knowledge, this survey is the most comprehensive and up-to-date one at present for deep learning based dialogue systems, extensively covering the popular techniques. We speculate that this work is a good starting point for academics who are new to the dialogue systems or those who want to quickly grasp up-to-date techniques in this area.
Synthesizing Conversations from Unlabeled Documents using Automatic Response Segmentation
In this study, we tackle the challenge of inadequate and costly training data that has hindered the development of conversational question answering (ConvQA) systems. Enterprises have a large corpus of diverse internal documents. Instead of relying on a searching engine, a more compelling approach for people to comprehend these documents is to create a dialogue system. In this paper, we propose a robust dialog synthesising method. We learn the segmentation of data for the dialog task instead of using segmenting at sentence boundaries. The synthetic dataset generated by our proposed method achieves superior quality when compared to WikiDialog, as assessed through machine and human evaluations. By employing our inpainted data for ConvQA retrieval system pre-training, we observed a notable improvement in performance across OR-QuAC benchmarks.
RELIC: Investigating Large Language Model Responses using Self-Consistency
Large Language Models (LLMs) are notorious for blending fact with fiction and generating non-factual content, known as hallucinations. To tackle this challenge, we propose an interactive system that helps users obtain insights into the reliability of the generated text. Our approach is based on the idea that the self-consistency of multiple samples generated by the same LLM relates to its confidence in individual claims in the generated texts. Using this idea, we design RELIC, an interactive system that enables users to investigate and verify semantic-level variations in multiple long-form responses. This allows users to recognize potentially inaccurate information in the generated text and make necessary corrections. From a user study with ten participants, we demonstrate that our approach helps users better verify the reliability of the generated text. We further summarize the design implications and lessons learned from this research for inspiring future studies on reliable human-LLM interactions.
Ranking Large Language Models without Ground Truth
Evaluation and ranking of large language models (LLMs) has become an important problem with the proliferation of these models and their impact. Evaluation methods either require human responses which are expensive to acquire or use pairs of LLMs to evaluate each other which can be unreliable. In this paper, we provide a novel perspective where, given a dataset of prompts (viz. questions, instructions, etc.) and a set of LLMs, we rank them without access to any ground truth or reference responses. Inspired by real life where both an expert and a knowledgeable person can identify a novice our main idea is to consider triplets of models, where each one of them evaluates the other two, correctly identifying the worst model in the triplet with high probability. We also analyze our idea and provide sufficient conditions for it to succeed. Applying this idea repeatedly, we propose two methods to rank LLMs. In experiments on different generative tasks (summarization, multiple-choice, and dialog), our methods reliably recover close to true rankings without reference data. This points to a viable low-resource mechanism for practical use.
CEM: Commonsense-aware Empathetic Response Generation
A key trait of daily conversations between individuals is the ability to express empathy towards others, and exploring ways to implement empathy is a crucial step towards human-like dialogue systems. Previous approaches on this topic mainly focus on detecting and utilizing the user's emotion for generating empathetic responses. However, since empathy includes both aspects of affection and cognition, we argue that in addition to identifying the user's emotion, cognitive understanding of the user's situation should also be considered. To this end, we propose a novel approach for empathetic response generation, which leverages commonsense to draw more information about the user's situation and uses this additional information to further enhance the empathy expression in generated responses. We evaluate our approach on EmpatheticDialogues, which is a widely-used benchmark dataset for empathetic response generation. Empirical results demonstrate that our approach outperforms the baseline models in both automatic and human evaluations and can generate more informative and empathetic responses.
What would Harry say? Building Dialogue Agents for Characters in a Story
We have a Christmas gift for Harry Potter fans all over the world. In this paper, we present Harry Potter Dialogue (HPD), a dataset that helps train Harry Potter-like dialogue agents. Such a task is typically viewed as a variant of personalized dialogue agents, but they differ significantly in three respects: 1) Harry lived in a virtual world of wizards, thus, real-world commonsense may not apply to Harry's conversations; 2) Harry's behavior is strongly linked to background information in conversations: the scene, its attributes and its relationship to other speakers; and 3) Such backgrounds are dynamically altered as the storyline goes on. The HPD dataset, as the first dataset to facilitate the study of dialogue agent construction for characters within a story, provides rich contextual information about each dialogue session such as scenes, character attributes, and relations. More importantly, all the background information will change over the course of the story. In addition, HPD could support both dialogue generation and retrieval tasks. We evaluate baselines such as Dialog-GPT and BOB to determine the extent to which they can generate Harry Potter-like responses. The experimental results disappoint us in that although the generated responses are fluent, they still seem out of character for Harry. Besides, we validate the current most robust dialogue agent, ChatGPT, which also can't generate plausible Harry-Potter-like responses in some cases, either. Our results suggest that there is much scope for future research.
Imagination is All You Need! Curved Contrastive Learning for Abstract Sequence Modeling Utilized on Long Short-Term Dialogue Planning
Inspired by the curvature of space-time (Einstein, 1921), we introduce Curved Contrastive Learning (CCL), a novel representation learning technique for learning the relative turn distance between utterance pairs in multi-turn dialogues. The resulting bi-encoder models can guide transformers as a response ranking model towards a goal in a zero-shot fashion by projecting the goal utterance and the corresponding reply candidates into a latent space. Here the cosine similarity indicates the distance/reachability of a candidate utterance toward the corresponding goal. Furthermore, we explore how these forward-entailing language representations can be utilized for assessing the likelihood of sequences by the entailment strength i.e. through the cosine similarity of its individual members (encoded separately) as an emergent property in the curved space. These non-local properties allow us to imagine the likelihood of future patterns in dialogues, specifically by ordering/identifying future goal utterances that are multiple turns away, given a dialogue context. As part of our analysis, we investigate characteristics that make conversations (un)plannable and find strong evidence of planning capability over multiple turns (in 61.56% over 3 turns) in conversations from the DailyDialog (Li et al., 2017) dataset. Finally, we show how we achieve higher efficiency in sequence modeling tasks compared to previous work thanks to our relativistic approach, where only the last utterance needs to be encoded and computed during inference.
InterroLang: Exploring NLP Models and Datasets through Dialogue-based Explanations
While recently developed NLP explainability methods let us open the black box in various ways (Madsen et al., 2022), a missing ingredient in this endeavor is an interactive tool offering a conversational interface. Such a dialogue system can help users explore datasets and models with explanations in a contextualized manner, e.g. via clarification or follow-up questions, and through a natural language interface. We adapt the conversational explanation framework TalkToModel (Slack et al., 2022) to the NLP domain, add new NLP-specific operations such as free-text rationalization, and illustrate its generalizability on three NLP tasks (dialogue act classification, question answering, hate speech detection). To recognize user queries for explanations, we evaluate fine-tuned and few-shot prompting models and implement a novel Adapter-based approach. We then conduct two user studies on (1) the perceived correctness and helpfulness of the dialogues, and (2) the simulatability, i.e. how objectively helpful dialogical explanations are for humans in figuring out the model's predicted label when it's not shown. We found rationalization and feature attribution were helpful in explaining the model behavior. Moreover, users could more reliably predict the model outcome based on an explanation dialogue rather than one-off explanations.
Topic Aware Neural Response Generation
We consider incorporating topic information into the sequence-to-sequence framework to generate informative and interesting responses for chatbots. To this end, we propose a topic aware sequence-to-sequence (TA-Seq2Seq) model. The model utilizes topics to simulate prior knowledge of human that guides them to form informative and interesting responses in conversation, and leverages the topic information in generation by a joint attention mechanism and a biased generation probability. The joint attention mechanism summarizes the hidden vectors of an input message as context vectors by message attention, synthesizes topic vectors by topic attention from the topic words of the message obtained from a pre-trained LDA model, and let these vectors jointly affect the generation of words in decoding. To increase the possibility of topic words appearing in responses, the model modifies the generation probability of topic words by adding an extra probability item to bias the overall distribution. Empirical study on both automatic evaluation metrics and human annotations shows that TA-Seq2Seq can generate more informative and interesting responses, and significantly outperform the-state-of-the-art response generation models.
On the Robustness of Dialogue History Representation in Conversational Question Answering: A Comprehensive Study and a New Prompt-based Method
Most works on modeling the conversation history in Conversational Question Answering (CQA) report a single main result on a common CQA benchmark. While existing models show impressive results on CQA leaderboards, it remains unclear whether they are robust to shifts in setting (sometimes to more realistic ones), training data size (e.g. from large to small sets) and domain. In this work, we design and conduct the first large-scale robustness study of history modeling approaches for CQA. We find that high benchmark scores do not necessarily translate to strong robustness, and that various methods can perform extremely differently under different settings. Equipped with the insights from our study, we design a novel prompt-based history modeling approach, and demonstrate its strong robustness across various settings. Our approach is inspired by existing methods that highlight historic answers in the passage. However, instead of highlighting by modifying the passage token embeddings, we add textual prompts directly in the passage text. Our approach is simple, easy-to-plug into practically any model, and highly effective, thus we recommend it as a starting point for future model developers. We also hope that our study and insights will raise awareness to the importance of robustness-focused evaluation, in addition to obtaining high leaderboard scores, leading to better CQA systems.
A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers
Readers of academic research papers often read with the goal of answering specific questions. Question Answering systems that can answer those questions can make consumption of the content much more efficient. However, building such tools requires data that reflect the difficulty of the task arising from complex reasoning about claims made in multiple parts of a paper. In contrast, existing information-seeking question answering datasets usually contain questions about generic factoid-type information. We therefore present QASPER, a dataset of 5,049 questions over 1,585 Natural Language Processing papers. Each question is written by an NLP practitioner who read only the title and abstract of the corresponding paper, and the question seeks information present in the full text. The questions are then answered by a separate set of NLP practitioners who also provide supporting evidence to answers. We find that existing models that do well on other QA tasks do not perform well on answering these questions, underperforming humans by at least 27 F1 points when answering them from entire papers, motivating further research in document-grounded, information-seeking QA, which our dataset is designed to facilitate.
Generating Synthetic Documents for Cross-Encoder Re-Rankers: A Comparative Study of ChatGPT and Human Experts
We investigate the usefulness of generative Large Language Models (LLMs) in generating training data for cross-encoder re-rankers in a novel direction: generating synthetic documents instead of synthetic queries. We introduce a new dataset, ChatGPT-RetrievalQA, and compare the effectiveness of models fine-tuned on LLM-generated and human-generated data. Data generated with generative LLMs can be used to augment training data, especially in domains with smaller amounts of labeled data. We build ChatGPT-RetrievalQA based on an existing dataset, human ChatGPT Comparison Corpus (HC3), consisting of public question collections with human responses and answers from ChatGPT. We fine-tune a range of cross-encoder re-rankers on either human-generated or ChatGPT-generated data. Our evaluation on MS MARCO DEV, TREC DL'19, and TREC DL'20 demonstrates that cross-encoder re-ranking models trained on ChatGPT responses are statistically significantly more effective zero-shot re-rankers than those trained on human responses. In a supervised setting, the human-trained re-rankers outperform the LLM-trained re-rankers. Our novel findings suggest that generative LLMs have high potential in generating training data for neural retrieval models. Further work is needed to determine the effect of factually wrong information in the generated responses and test our findings' generalizability with open-source LLMs. We release our data, code, and cross-encoders checkpoints for future work.
Open-Domain Question Answering Goes Conversational via Question Rewriting
We introduce a new dataset for Question Rewriting in Conversational Context (QReCC), which contains 14K conversations with 80K question-answer pairs. The task in QReCC is to find answers to conversational questions within a collection of 10M web pages (split into 54M passages). Answers to questions in the same conversation may be distributed across several web pages. QReCC provides annotations that allow us to train and evaluate individual subtasks of question rewriting, passage retrieval and reading comprehension required for the end-to-end conversational question answering (QA) task. We report the effectiveness of a strong baseline approach that combines the state-of-the-art model for question rewriting, and competitive models for open-domain QA. Our results set the first baseline for the QReCC dataset with F1 of 19.10, compared to the human upper bound of 75.45, indicating the difficulty of the setup and a large room for improvement.
SS-MPC: A Sequence-Structured Multi-Party Conversation System
Recent Multi-Party Conversation (MPC) models typically rely on graph-based approaches to capture dialogue structures. However, these methods have limitations, such as information loss during the projection of utterances into structural embeddings and constraints in leveraging pre-trained language models directly. In this paper, we propose SS-MPC, a response generation model for MPC that eliminates the need for explicit graph structures. Unlike existing models that depend on graphs to analyze conversation structures, SS-MPC internally encodes the dialogue structure as a sequential input, enabling direct utilization of pre-trained language models. Experimental results show that SS-MPC achieves 15.60\% BLEU-1 and 12.44\% ROUGE-L score, outperforming the current state-of-the-art MPC response generation model by 3.91\%p in BLEU-1 and 0.62\%p in ROUGE-L. Additionally, human evaluation confirms that SS-MPC generates more fluent and accurate responses compared to existing MPC models.