Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFRCRN: Boosting Feature Representation using Frequency Recurrence for Monaural Speech Enhancement
Convolutional recurrent networks (CRN) integrating a convolutional encoder-decoder (CED) structure and a recurrent structure have achieved promising performance for monaural speech enhancement. However, feature representation across frequency context is highly constrained due to limited receptive fields in the convolutions of CED. In this paper, we propose a convolutional recurrent encoder-decoder (CRED) structure to boost feature representation along the frequency axis. The CRED applies frequency recurrence on 3D convolutional feature maps along the frequency axis following each convolution, therefore, it is capable of catching long-range frequency correlations and enhancing feature representations of speech inputs. The proposed frequency recurrence is realized efficiently using a feedforward sequential memory network (FSMN). Besides the CRED, we insert two stacked FSMN layers between the encoder and the decoder to model further temporal dynamics. We name the proposed framework as Frequency Recurrent CRN (FRCRN). We design FRCRN to predict complex Ideal Ratio Mask (cIRM) in complex-valued domain and optimize FRCRN using both time-frequency-domain and time-domain losses. Our proposed approach achieved state-of-the-art performance on wideband benchmark datasets and achieved 2nd place for the real-time fullband track in terms of Mean Opinion Score (MOS) and Word Accuracy (WAcc) in the ICASSP 2022 Deep Noise Suppression (DNS) challenge (https://github.com/alibabasglab/FRCRN).
Image Shortcut Squeezing: Countering Perturbative Availability Poisons with Compression
Perturbative availability poisons (PAPs) add small changes to images to prevent their use for model training. Current research adopts the belief that practical and effective approaches to countering PAPs do not exist. In this paper, we argue that it is time to abandon this belief. We present extensive experiments showing that 12 state-of-the-art PAP methods are vulnerable to Image Shortcut Squeezing (ISS), which is based on simple compression. For example, on average, ISS restores the CIFAR-10 model accuracy to 81.73%, surpassing the previous best preprocessing-based countermeasures by 37.97% absolute. ISS also (slightly) outperforms adversarial training and has higher generalizability to unseen perturbation norms and also higher efficiency. Our investigation reveals that the property of PAP perturbations depends on the type of surrogate model used for poison generation, and it explains why a specific ISS compression yields the best performance for a specific type of PAP perturbation. We further test stronger, adaptive poisoning, and show it falls short of being an ideal defense against ISS. Overall, our results demonstrate the importance of considering various (simple) countermeasures to ensure the meaningfulness of analysis carried out during the development of PAP methods.
CheXmask: a large-scale dataset of anatomical segmentation masks for multi-center chest x-ray images
The development of successful artificial intelligence models for chest X-ray analysis relies on large, diverse datasets with high-quality annotations. While several databases of chest X-ray images have been released, most include disease diagnosis labels but lack detailed pixel-level anatomical segmentation labels. To address this gap, we introduce an extensive chest X-ray multi-center segmentation dataset with uniform and fine-grain anatomical annotations for images coming from six well-known publicly available databases: CANDID-PTX, ChestX-ray8, Chexpert, MIMIC-CXR-JPG, Padchest, and VinDr-CXR, resulting in 676,803 segmentation masks. Our methodology utilizes the HybridGNet model to ensure consistent and high-quality segmentations across all datasets. Rigorous validation, including expert physician evaluation and automatic quality control, was conducted to validate the resulting masks. Additionally, we provide individualized quality indices per mask and an overall quality estimation per dataset. This dataset serves as a valuable resource for the broader scientific community, streamlining the development and assessment of innovative methodologies in chest X-ray analysis. The CheXmask dataset is publicly available at: https://physionet.org/content/chexmask-cxr-segmentation-data/.
MAGE: MAsked Generative Encoder to Unify Representation Learning and Image Synthesis
Generative modeling and representation learning are two key tasks in computer vision. However, these models are typically trained independently, which ignores the potential for each task to help the other, and leads to training and model maintenance overheads. In this work, we propose MAsked Generative Encoder (MAGE), the first framework to unify SOTA image generation and self-supervised representation learning. Our key insight is that using variable masking ratios in masked image modeling pre-training can allow generative training (very high masking ratio) and representation learning (lower masking ratio) under the same training framework. Inspired by previous generative models, MAGE uses semantic tokens learned by a vector-quantized GAN at inputs and outputs, combining this with masking. We can further improve the representation by adding a contrastive loss to the encoder output. We extensively evaluate the generation and representation learning capabilities of MAGE. On ImageNet-1K, a single MAGE ViT-L model obtains 9.10 FID in the task of class-unconditional image generation and 78.9% top-1 accuracy for linear probing, achieving state-of-the-art performance in both image generation and representation learning. Code is available at https://github.com/LTH14/mage.
FSFM: A Generalizable Face Security Foundation Model via Self-Supervised Facial Representation Learning
This work asks: with abundant, unlabeled real faces, how to learn a robust and transferable facial representation that boosts various face security tasks with respect to generalization performance? We make the first attempt and propose a self-supervised pretraining framework to learn fundamental representations of real face images, FSFM, that leverages the synergy between masked image modeling (MIM) and instance discrimination (ID). We explore various facial masking strategies for MIM and present a simple yet powerful CRFR-P masking, which explicitly forces the model to capture meaningful intra-region consistency and challenging inter-region coherency. Furthermore, we devise the ID network that naturally couples with MIM to establish underlying local-to-global correspondence via tailored self-distillation. These three learning objectives, namely 3C, empower encoding both local features and global semantics of real faces. After pretraining, a vanilla ViT serves as a universal vision foundation model for downstream face security tasks: cross-dataset deepfake detection, cross-domain face anti-spoofing, and unseen diffusion facial forgery detection. Extensive experiments on 10 public datasets demonstrate that our model transfers better than supervised pretraining, visual and facial self-supervised learning arts, and even outperforms task-specialized SOTA methods.
Centroid-centered Modeling for Efficient Vision Transformer Pre-training
Masked Image Modeling (MIM) is a new self-supervised vision pre-training paradigm using Vision Transformer (ViT). Previous works can be pixel-based or token-based, using original pixels or discrete visual tokens from parametric tokenizer models, respectively. Our proposed approach, CCViT, leverages k-means clustering to obtain centroids for image modeling without supervised training of tokenizer model. The centroids represent patch pixels and index tokens and have the property of local invariance. Non-parametric centroid tokenizer only takes seconds to create and is faster for token inference. Specifically, we adopt patch masking and centroid replacement strategies to construct corrupted inputs, and two stacked encoder blocks to predict corrupted patch tokens and reconstruct original patch pixels. Experiments show that the ViT-B model with only 300 epochs achieves 84.3\% top-1 accuracy on ImageNet-1K classification and 51.6\% on ADE20K semantic segmentation. Our approach achieves competitive results with BEiTv2 without distillation training from other models and outperforms other methods such as MAE.
Integrally Pre-Trained Transformer Pyramid Networks
In this paper, we present an integral pre-training framework based on masked image modeling (MIM). We advocate for pre-training the backbone and neck jointly so that the transfer gap between MIM and downstream recognition tasks is minimal. We make two technical contributions. First, we unify the reconstruction and recognition necks by inserting a feature pyramid into the pre-training stage. Second, we complement mask image modeling (MIM) with masked feature modeling (MFM) that offers multi-stage supervision to the feature pyramid. The pre-trained models, termed integrally pre-trained transformer pyramid networks (iTPNs), serve as powerful foundation models for visual recognition. In particular, the base/large-level iTPN achieves an 86.2%/87.8% top-1 accuracy on ImageNet-1K, a 53.2%/55.6% box AP on COCO object detection with 1x training schedule using Mask-RCNN, and a 54.7%/57.7% mIoU on ADE20K semantic segmentation using UPerHead -- all these results set new records. Our work inspires the community to work on unifying upstream pre-training and downstream fine-tuning tasks. Code and the pre-trained models will be released at https://github.com/sunsmarterjie/iTPN.
Stare at What You See: Masked Image Modeling without Reconstruction
Masked Autoencoders (MAE) have been prevailing paradigms for large-scale vision representation pre-training. By reconstructing masked image patches from a small portion of visible image regions, MAE forces the model to infer semantic correlation within an image. Recently, some approaches apply semantic-rich teacher models to extract image features as the reconstruction target, leading to better performance. However, unlike the low-level features such as pixel values, we argue the features extracted by powerful teacher models already encode rich semantic correlation across regions in an intact image.This raises one question: is reconstruction necessary in Masked Image Modeling (MIM) with a teacher model? In this paper, we propose an efficient MIM paradigm named MaskAlign. MaskAlign simply learns the consistency of visible patch features extracted by the student model and intact image features extracted by the teacher model. To further advance the performance and tackle the problem of input inconsistency between the student and teacher model, we propose a Dynamic Alignment (DA) module to apply learnable alignment. Our experimental results demonstrate that masked modeling does not lose effectiveness even without reconstruction on masked regions. Combined with Dynamic Alignment, MaskAlign can achieve state-of-the-art performance with much higher efficiency. Code and models will be available at https://github.com/OpenPerceptionX/maskalign.
Assessment of Data Consistency through Cascades of Independently Recurrent Inference Machines for fast and robust accelerated MRI reconstruction
Machine Learning methods can learn how to reconstruct Magnetic Resonance Images and thereby accelerate acquisition, which is of paramount importance to the clinical workflow. Physics-informed networks incorporate the forward model of accelerated MRI reconstruction in the learning process. With increasing network complexity, robustness is not ensured when reconstructing data unseen during training. We aim to embed data consistency (DC) in deep networks while balancing the degree of network complexity. While doing so, we will assess whether either explicit or implicit enforcement of DC in varying network architectures is preferred to optimize performance. We propose a scheme called Cascades of Independently Recurrent Inference Machines (CIRIM) to assess DC through unrolled optimization. Herein we assess DC both implicitly by gradient descent and explicitly by a designed term. Extensive comparison of the CIRIM to CS as well as to other methods is performed: the E2EVN, CascadeNet, KIKINet, LPDNet, RIM, IRIM, and UNet. Models were trained and evaluated on T1-weighted and FLAIR contrast brain data, and T2-weighted knee data. Both 1D and 2D undersampling patterns were evaluated. Robustness was tested by reconstructing 7.5x prospectively undersampled 3D FLAIR MRI data of Multiple Sclerosis (MS) patients with white matter lesions. The CIRIM performed best when implicitly enforcing DC, while the E2EVN required an explicit DC formulation. In reconstructing MS patient data, prospectively acquired with a sampling pattern unseen during model training, the CIRIM maintained lesion contrast while efficiently denoising the images. The CIRIM showed highly promising generalization capabilities maintaining a very fair trade-off between reconstructed image quality and fast reconstruction times, which is crucial in the clinical workflow.
Hard Patches Mining for Masked Image Modeling
Masked image modeling (MIM) has attracted much research attention due to its promising potential for learning scalable visual representations. In typical approaches, models usually focus on predicting specific contents of masked patches, and their performances are highly related to pre-defined mask strategies. Intuitively, this procedure can be considered as training a student (the model) on solving given problems (predict masked patches). However, we argue that the model should not only focus on solving given problems, but also stand in the shoes of a teacher to produce a more challenging problem by itself. To this end, we propose Hard Patches Mining (HPM), a brand-new framework for MIM pre-training. We observe that the reconstruction loss can naturally be the metric of the difficulty of the pre-training task. Therefore, we introduce an auxiliary loss predictor, predicting patch-wise losses first and deciding where to mask next. It adopts a relative relationship learning strategy to prevent overfitting to exact reconstruction loss values. Experiments under various settings demonstrate the effectiveness of HPM in constructing masked images. Furthermore, we empirically find that solely introducing the loss prediction objective leads to powerful representations, verifying the efficacy of the ability to be aware of where is hard to reconstruct.
Ensemble everything everywhere: Multi-scale aggregation for adversarial robustness
Adversarial examples pose a significant challenge to the robustness, reliability and alignment of deep neural networks. We propose a novel, easy-to-use approach to achieving high-quality representations that lead to adversarial robustness through the use of multi-resolution input representations and dynamic self-ensembling of intermediate layer predictions. We demonstrate that intermediate layer predictions exhibit inherent robustness to adversarial attacks crafted to fool the full classifier, and propose a robust aggregation mechanism based on Vickrey auction that we call CrossMax to dynamically ensemble them. By combining multi-resolution inputs and robust ensembling, we achieve significant adversarial robustness on CIFAR-10 and CIFAR-100 datasets without any adversarial training or extra data, reaching an adversarial accuracy of approx72% (CIFAR-10) and approx48% (CIFAR-100) on the RobustBench AutoAttack suite (L_infty=8/255) with a finetuned ImageNet-pretrained ResNet152. This represents a result comparable with the top three models on CIFAR-10 and a +5 % gain compared to the best current dedicated approach on CIFAR-100. Adding simple adversarial training on top, we get approx78% on CIFAR-10 and approx51% on CIFAR-100, improving SOTA by 5 % and 9 % respectively and seeing greater gains on the harder dataset. We validate our approach through extensive experiments and provide insights into the interplay between adversarial robustness, and the hierarchical nature of deep representations. We show that simple gradient-based attacks against our model lead to human-interpretable images of the target classes as well as interpretable image changes. As a byproduct, using our multi-resolution prior, we turn pre-trained classifiers and CLIP models into controllable image generators and develop successful transferable attacks on large vision language models.
Pre-training with Random Orthogonal Projection Image Modeling
Masked Image Modeling (MIM) is a powerful self-supervised strategy for visual pre-training without the use of labels. MIM applies random crops to input images, processes them with an encoder, and then recovers the masked inputs with a decoder, which encourages the network to capture and learn structural information about objects and scenes. The intermediate feature representations obtained from MIM are suitable for fine-tuning on downstream tasks. In this paper, we propose an Image Modeling framework based on random orthogonal projection instead of binary masking as in MIM. Our proposed Random Orthogonal Projection Image Modeling (ROPIM) reduces spatially-wise token information under guaranteed bound on the noise variance and can be considered as masking entire spatial image area under locally varying masking degrees. Since ROPIM uses a random subspace for the projection that realizes the masking step, the readily available complement of the subspace can be used during unmasking to promote recovery of removed information. In this paper, we show that using random orthogonal projection leads to superior performance compared to crop-based masking. We demonstrate state-of-the-art results on several popular benchmarks.
SHISRCNet: Super-resolution And Classification Network For Low-resolution Breast Cancer Histopathology Image
The rapid identification and accurate diagnosis of breast cancer, known as the killer of women, have become greatly significant for those patients. Numerous breast cancer histopathological image classification methods have been proposed. But they still suffer from two problems. (1) These methods can only hand high-resolution (HR) images. However, the low-resolution (LR) images are often collected by the digital slide scanner with limited hardware conditions. Compared with HR images, LR images often lose some key features like texture, which deeply affects the accuracy of diagnosis. (2) The existing methods have fixed receptive fields, so they can not extract and fuse multi-scale features well for images with different magnification factors. To fill these gaps, we present a Single Histopathological Image Super-Resolution Classification network (SHISRCNet), which consists of two modules: Super-Resolution (SR) and Classification (CF) modules. SR module reconstructs LR images into SR ones. CF module extracts and fuses the multi-scale features of SR images for classification. In the training stage, we introduce HR images into the CF module to enhance SHISRCNet's performance. Finally, through the joint training of these two modules, super-resolution and classified of LR images are integrated into our model. The experimental results demonstrate that the effects of our method are close to the SOTA methods with taking HR images as inputs.
Pruning-aware Sparse Regularization for Network Pruning
Structural neural network pruning aims to remove the redundant channels in the deep convolutional neural networks (CNNs) by pruning the filters of less importance to the final output accuracy. To reduce the degradation of performance after pruning, many methods utilize the loss with sparse regularization to produce structured sparsity. In this paper, we analyze these sparsity-training-based methods and find that the regularization of unpruned channels is unnecessary. Moreover, it restricts the network's capacity, which leads to under-fitting. To solve this problem, we propose a novel pruning method, named MaskSparsity, with pruning-aware sparse regularization. MaskSparsity imposes the fine-grained sparse regularization on the specific filters selected by a pruning mask, rather than all the filters of the model. Before the fine-grained sparse regularization of MaskSparity, we can use many methods to get the pruning mask, such as running the global sparse regularization. MaskSparsity achieves 63.03%-FLOPs reduction on ResNet-110 by removing 60.34% of the parameters, with no top-1 accuracy loss on CIFAR-10. On ILSVRC-2012, MaskSparsity reduces more than 51.07% FLOPs on ResNet-50, with only a loss of 0.76% in the top-1 accuracy. The code is released at https://github.com/CASIA-IVA-Lab/MaskSparsity. Moreover, we have integrated the code of MaskSparity into a PyTorch pruning toolkit, EasyPruner, at https://gitee.com/casia_iva_engineer/easypruner.
MaskRIS: Semantic Distortion-aware Data Augmentation for Referring Image Segmentation
Referring Image Segmentation (RIS) is an advanced vision-language task that involves identifying and segmenting objects within an image as described by free-form text descriptions. While previous studies focused on aligning visual and language features, exploring training techniques, such as data augmentation, remains underexplored. In this work, we explore effective data augmentation for RIS and propose a novel training framework called Masked Referring Image Segmentation (MaskRIS). We observe that the conventional image augmentations fall short of RIS, leading to performance degradation, while simple random masking significantly enhances the performance of RIS. MaskRIS uses both image and text masking, followed by Distortion-aware Contextual Learning (DCL) to fully exploit the benefits of the masking strategy. This approach can improve the model's robustness to occlusions, incomplete information, and various linguistic complexities, resulting in a significant performance improvement. Experiments demonstrate that MaskRIS can easily be applied to various RIS models, outperforming existing methods in both fully supervised and weakly supervised settings. Finally, MaskRIS achieves new state-of-the-art performance on RefCOCO, RefCOCO+, and RefCOCOg datasets. Code is available at https://github.com/naver-ai/maskris.
Mask is All You Need: Rethinking Mask R-CNN for Dense and Arbitrary-Shaped Scene Text Detection
Due to the large success in object detection and instance segmentation, Mask R-CNN attracts great attention and is widely adopted as a strong baseline for arbitrary-shaped scene text detection and spotting. However, two issues remain to be settled. The first is dense text case, which is easy to be neglected but quite practical. There may exist multiple instances in one proposal, which makes it difficult for the mask head to distinguish different instances and degrades the performance. In this work, we argue that the performance degradation results from the learning confusion issue in the mask head. We propose to use an MLP decoder instead of the "deconv-conv" decoder in the mask head, which alleviates the issue and promotes robustness significantly. And we propose instance-aware mask learning in which the mask head learns to predict the shape of the whole instance rather than classify each pixel to text or non-text. With instance-aware mask learning, the mask branch can learn separated and compact masks. The second is that due to large variations in scale and aspect ratio, RPN needs complicated anchor settings, making it hard to maintain and transfer across different datasets. To settle this issue, we propose an adaptive label assignment in which all instances especially those with extreme aspect ratios are guaranteed to be associated with enough anchors. Equipped with these components, the proposed method named MAYOR achieves state-of-the-art performance on five benchmarks including DAST1500, MSRA-TD500, ICDAR2015, CTW1500, and Total-Text.
Better Diffusion Models Further Improve Adversarial Training
It has been recognized that the data generated by the denoising diffusion probabilistic model (DDPM) improves adversarial training. After two years of rapid development in diffusion models, a question naturally arises: can better diffusion models further improve adversarial training? This paper gives an affirmative answer by employing the most recent diffusion model which has higher efficiency (sim 20 sampling steps) and image quality (lower FID score) compared with DDPM. Our adversarially trained models achieve state-of-the-art performance on RobustBench using only generated data (no external datasets). Under the ell_infty-norm threat model with epsilon=8/255, our models achieve 70.69% and 42.67% robust accuracy on CIFAR-10 and CIFAR-100, respectively, i.e. improving upon previous state-of-the-art models by +4.58% and +8.03%. Under the ell_2-norm threat model with epsilon=128/255, our models achieve 84.86% on CIFAR-10 (+4.44%). These results also beat previous works that use external data. Our code is available at https://github.com/wzekai99/DM-Improves-AT.