new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 11

Multi-Temporal Relationship Inference in Urban Areas

Finding multiple temporal relationships among locations can benefit a bunch of urban applications, such as dynamic offline advertising and smart public transport planning. While some efforts have been made on finding static relationships among locations, little attention is focused on studying time-aware location relationships. Indeed, abundant location-based human activities are time-varying and the availability of these data enables a new paradigm for understanding the dynamic relationships in a period among connective locations. To this end, we propose to study a new problem, namely multi-Temporal relationship inference among locations (Trial for short), where the major challenge is how to integrate dynamic and geographical influence under the relationship sparsity constraint. Specifically, we propose a solution to Trial with a graph learning scheme, which includes a spatially evolving graph neural network (SEENet) with two collaborative components: spatially evolving graph convolution module (SEConv) and spatially evolving self-supervised learning strategy (SE-SSL). SEConv performs the intra-time aggregation and inter-time propagation to capture the multifaceted spatially evolving contexts from the view of location message passing. In addition, SE-SSL designs time-aware self-supervised learning tasks in a global-local manner with additional evolving constraint to enhance the location representation learning and further handle the relationship sparsity. Finally, experiments on four real-world datasets demonstrate the superiority of our method over several state-of-the-art approaches.

DETRs with Collaborative Hybrid Assignments Training

In this paper, we provide the observation that too few queries assigned as positive samples in DETR with one-to-one set matching leads to sparse supervision on the encoder's output which considerably hurt the discriminative feature learning of the encoder and vice visa for attention learning in the decoder. To alleviate this, we present a novel collaborative hybrid assignments training scheme, namely Co-DETR, to learn more efficient and effective DETR-based detectors from versatile label assignment manners. This new training scheme can easily enhance the encoder's learning ability in end-to-end detectors by training the multiple parallel auxiliary heads supervised by one-to-many label assignments such as ATSS and Faster RCNN. In addition, we conduct extra customized positive queries by extracting the positive coordinates from these auxiliary heads to improve the training efficiency of positive samples in the decoder. In inference, these auxiliary heads are discarded and thus our method introduces no additional parameters and computational cost to the original detector while requiring no hand-crafted non-maximum suppression (NMS). We conduct extensive experiments to evaluate the effectiveness of the proposed approach on DETR variants, including DAB-DETR, Deformable-DETR, and DINO-Deformable-DETR. The state-of-the-art DINO-Deformable-DETR with Swin-L can be improved from 58.5% to 59.5% AP on COCO val. Surprisingly, incorporated with ViT-L backbone, we achieve 66.0% AP on COCO test-dev and 67.9% AP on LVIS val, outperforming previous methods by clear margins with much fewer model sizes. Codes are available at https://github.com/Sense-X/Co-DETR.

From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents

Since the first instances of online education, where courses were uploaded to accessible and shared online platforms, this form of scaling the dissemination of human knowledge to reach a broader audience has sparked extensive discussion and widespread adoption. Recognizing that personalized learning still holds significant potential for improvement, new AI technologies have been continuously integrated into this learning format, resulting in a variety of educational AI applications such as educational recommendation and intelligent tutoring. The emergence of intelligence in large language models (LLMs) has allowed for these educational enhancements to be built upon a unified foundational model, enabling deeper integration. In this context, we propose MAIC (Massive AI-empowered Course), a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom, balancing scalability with adaptivity. Beyond exploring the conceptual framework and technical innovations, we conduct preliminary experiments at Tsinghua University, one of China's leading universities. Drawing from over 100,000 learning records of more than 500 students, we obtain a series of valuable observations and initial analyses. This project will continue to evolve, ultimately aiming to establish a comprehensive open platform that supports and unifies research, technology, and applications in exploring the possibilities of online education in the era of large model AI. We envision this platform as a collaborative hub, bringing together educators, researchers, and innovators to collectively explore the future of AI-driven online education.

CollabStory: Multi-LLM Collaborative Story Generation and Authorship Analysis

The rise of unifying frameworks that enable seamless interoperability of Large Language Models (LLMs) has made LLM-LLM collaboration for open-ended tasks a possibility. Despite this, there have not been efforts to explore such collaborative writing. We take the next step beyond human-LLM collaboration to explore this multi-LLM scenario by generating the first exclusively LLM-generated collaborative stories dataset called CollabStory. We focus on single-author (N=1) to multi-author (up to N=5) scenarios, where multiple LLMs co-author stories. We generate over 32k stories using open-source instruction-tuned LLMs. Further, we take inspiration from the PAN tasks that have set the standard for human-human multi-author writing tasks and analysis. We extend their authorship-related tasks for multi-LLM settings and present baselines for LLM-LLM collaboration. We find that current baselines are not able to handle this emerging scenario. Thus, CollabStory is a resource that could help propel an understanding as well as the development of techniques to discern the use of multiple LLMs. This is crucial to study in the context of writing tasks since LLM-LLM collaboration could potentially overwhelm ongoing challenges related to plagiarism detection, credit assignment, maintaining academic integrity in educational settings, and addressing copyright infringement concerns. We make our dataset and code available at \url{https://github.com/saranya-venkatraman/multi_llm_story_writing}.

Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System

Collaborative filtering recommender systems (CF-RecSys) have shown successive results in enhancing the user experience on social media and e-commerce platforms. However, as CF-RecSys struggles under cold scenarios with sparse user-item interactions, recent strategies have focused on leveraging modality information of user/items (e.g., text or images) based on pre-trained modality encoders and Large Language Models (LLMs). Despite their effectiveness under cold scenarios, we observe that they underperform simple traditional collaborative filtering models under warm scenarios due to the lack of collaborative knowledge. In this work, we propose an efficient All-round LLM-based Recommender system, called A-LLMRec, that excels not only in the cold scenario but also in the warm scenario. Our main idea is to enable an LLM to directly leverage the collaborative knowledge contained in a pre-trained state-of-the-art CF-RecSys so that the emergent ability of the LLM as well as the high-quality user/item embeddings that are already trained by the state-of-the-art CF-RecSys can be jointly exploited. This approach yields two advantages: (1) model-agnostic, allowing for integration with various existing CF-RecSys, and (2) efficiency, eliminating the extensive fine-tuning typically required for LLM-based recommenders. Our extensive experiments on various real-world datasets demonstrate the superiority of A-LLMRec in various scenarios, including cold/warm, few-shot, cold user, and cross-domain scenarios. Beyond the recommendation task, we also show the potential of A-LLMRec in generating natural language outputs based on the understanding of the collaborative knowledge by performing a favorite genre prediction task. Our code is available at https://github.com/ghdtjr/A-LLMRec .

Can LLMs Learn by Teaching? A Preliminary Study

Teaching to improve student models (e.g., knowledge distillation) is an extensively studied methodology in LLMs. However, for humans, teaching not only improves students but also improves teachers. We ask: Can LLMs also learn by teaching (LbT)? If yes, we can potentially unlock the possibility of continuously advancing the models without solely relying on human-produced data or stronger models. In this paper, we provide a preliminary exploration of this ambitious agenda. We show that LbT ideas can be incorporated into existing LLM training/prompting pipelines and provide noticeable improvements. Specifically, we design three methods, each mimicking one of the three levels of LbT in humans: observing students' feedback, learning from the feedback, and learning iteratively, with the goals of improving answer accuracy without training and improving models' inherent capability with fine-tuning. The findings are encouraging. For example, similar to LbT in human, we see that: (1) LbT can induce weak-to-strong generalization: strong models can improve themselves by teaching other weak models; (2) Diversity in students might help: teaching multiple students could be better than teaching one student or the teacher itself. We hope that this early promise can inspire future research on LbT and more broadly adopting the advanced techniques in education to improve LLMs. The code is available at https://github.com/imagination-research/lbt.

Unleashing Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration

Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: https://github.com/MikeWangWZHL/Solo-Performance-Prompting.git.

Learning to Learn: How to Continuously Teach Humans and Machines

Curriculum design is a fundamental component of education. For example, when we learn mathematics at school, we build upon our knowledge of addition to learn multiplication. These and other concepts must be mastered before our first algebra lesson, which also reinforces our addition and multiplication skills. Designing a curriculum for teaching either a human or a machine shares the underlying goal of maximizing knowledge transfer from earlier to later tasks, while also minimizing forgetting of learned tasks. Prior research on curriculum design for image classification focuses on the ordering of training examples during a single offline task. Here, we investigate the effect of the order in which multiple distinct tasks are learned in a sequence. We focus on the online class-incremental continual learning setting, where algorithms or humans must learn image classes one at a time during a single pass through a dataset. We find that curriculum consistently influences learning outcomes for humans and for multiple continual machine learning algorithms across several benchmark datasets. We introduce a novel-object recognition dataset for human curriculum learning experiments and observe that curricula that are effective for humans are highly correlated with those that are effective for machines. As an initial step towards automated curriculum design for online class-incremental learning, we propose a novel algorithm, dubbed Curriculum Designer (CD), that designs and ranks curricula based on inter-class feature similarities. We find significant overlap between curricula that are empirically highly effective and those that are highly ranked by our CD. Our study establishes a framework for further research on teaching humans and machines to learn continuously using optimized curricula.

Multi-Agent Collaboration Mechanisms: A Survey of LLMs

With recent advances in Large Language Models (LLMs), Agentic AI has become phenomenal in real-world applications, moving toward multiple LLM-based agents to perceive, learn, reason, and act collaboratively. These LLM-based Multi-Agent Systems (MASs) enable groups of intelligent agents to coordinate and solve complex tasks collectively at scale, transitioning from isolated models to collaboration-centric approaches. This work provides an extensive survey of the collaborative aspect of MASs and introduces an extensible framework to guide future research. Our framework characterizes collaboration mechanisms based on key dimensions: actors (agents involved), types (e.g., cooperation, competition, or coopetition), structures (e.g., peer-to-peer, centralized, or distributed), strategies (e.g., role-based or model-based), and coordination protocols. Through a review of existing methodologies, our findings serve as a foundation for demystifying and advancing LLM-based MASs toward more intelligent and collaborative solutions for complex, real-world use cases. In addition, various applications of MASs across diverse domains, including 5G/6G networks, Industry 5.0, question answering, and social and cultural settings, are also investigated, demonstrating their wider adoption and broader impacts. Finally, we identify key lessons learned, open challenges, and potential research directions of MASs towards artificial collective intelligence.

CLASS Meet SPOCK: An Education Tutoring Chatbot based on Learning Science Principles

We present a design framework called Conversational Learning with Analytical Step-by-Step Strategies (CLASS) for developing high-performance Intelligent Tutoring Systems (ITS). The CLASS framework aims to empower ITS with with two critical capabilities: imparting tutor-like step-by-step guidance and enabling tutor-like conversations in natural language to effectively engage learners. To empower ITS with the aforementioned capabilities, the CLASS framework employs two carefully curated synthetic datasets. The first scaffolding dataset encompasses a variety of elements, including problems, their corresponding subproblems, hints, incorrect solutions, and tailored feedback. This dataset provides ITS with essential problem-solving strategies necessary for guiding students through each step of the conversation. The second conversational dataset contains simulated student-tutor conversations that involve the application of problem-solving strategies learned from the first dataset. In the second dataset, the tutoring system adheres to a pre-defined response template, which helps to maintain consistency and structure in ITS's responses during its interactions. This structured methodology facilitates seamless integration of user feedback and yields valuable insights into ITS's internal decision-making process, allowing for continuous refinement and improvement of the system. We also present a proof-of-concept ITS, referred to as SPOCK, trained using the CLASS framework with a focus on college level introductory biology content. A carefully constructed protocol was developed for SPOCK's preliminary evaluation, examining aspects such as the factual accuracy and relevance of its responses. Experts in the field of biology offered favorable remarks, particularly highlighting SPOCK's capability to break down questions into manageable subproblems and provide step-by-step guidance to students.

Large Language Models Enhanced Collaborative Filtering

Recent advancements in Large Language Models (LLMs) have attracted considerable interest among researchers to leverage these models to enhance Recommender Systems (RSs). Existing work predominantly utilizes LLMs to generate knowledge-rich texts or utilizes LLM-derived embeddings as features to improve RSs. Although the extensive world knowledge embedded in LLMs generally benefits RSs, the application can only take limited number of users and items as inputs, without adequately exploiting collaborative filtering information. Considering its crucial role in RSs, one key challenge in enhancing RSs with LLMs lies in providing better collaborative filtering information through LLMs. In this paper, drawing inspiration from the in-context learning and chain of thought reasoning in LLMs, we propose the Large Language Models enhanced Collaborative Filtering (LLM-CF) framework, which distils the world knowledge and reasoning capabilities of LLMs into collaborative filtering. We also explored a concise and efficient instruction-tuning method, which improves the recommendation capabilities of LLMs while preserving their general functionalities (e.g., not decreasing on the LLM benchmark). Comprehensive experiments on three real-world datasets demonstrate that LLM-CF significantly enhances several backbone recommendation models and consistently outperforms competitive baselines, showcasing its effectiveness in distilling the world knowledge and reasoning capabilities of LLM into collaborative filtering.

MALT: Improving Reasoning with Multi-Agent LLM Training

Enabling effective collaboration among LLMs is a crucial step toward developing autonomous systems capable of solving complex problems. While LLMs are typically used as single-model generators, where humans critique and refine their outputs, the potential for jointly-trained collaborative models remains largely unexplored. Despite promising results in multi-agent communication and debate settings, little progress has been made in training models to work together on tasks. In this paper, we present a first step toward "Multi-agent LLM training" (MALT) on reasoning problems. Our approach employs a sequential multi-agent setup with heterogeneous LLMs assigned specialized roles: a generator, verifier, and refinement model iteratively solving problems. We propose a trajectory-expansion-based synthetic data generation process and a credit assignment strategy driven by joint outcome based rewards. This enables our post-training setup to utilize both positive and negative trajectories to autonomously improve each model's specialized capabilities as part of a joint sequential system. We evaluate our approach across MATH, GSM8k, and CQA, where MALT on Llama 3.1 8B models achieves relative improvements of 14.14%, 7.12%, and 9.40% respectively over the same baseline model. This demonstrates an early advance in multi-agent cooperative capabilities for performance on mathematical and common sense reasoning questions. More generally, our work provides a concrete direction for research around multi-agent LLM training approaches.

MindForge: Empowering Embodied Agents with Theory of Mind for Lifelong Collaborative Learning

Contemporary embodied agents, such as Voyager in Minecraft, have demonstrated promising capabilities in open-ended individual learning. However, when powered with open large language models (LLMs), these agents often struggle with rudimentary tasks, even when fine-tuned on domain-specific knowledge. Inspired by human cultural learning, we present \collabvoyager, a novel framework that enhances Voyager with lifelong collaborative learning through explicit perspective-taking. \collabvoyager introduces three key innovations: (1) theory of mind representations linking percepts, beliefs, desires, and actions; (2) natural language communication between agents; and (3) semantic memory of task and environment knowledge and episodic memory of collaboration episodes. These advancements enable agents to reason about their and others' mental states, empirically addressing two prevalent failure modes: false beliefs and faulty task executions. In mixed-expertise Minecraft experiments, \collabvoyager agents outperform Voyager counterparts, significantly improving task completion rate by 66.6% (+39.4%) for collecting one block of dirt and 70.8% (+20.8%) for collecting one wood block. They exhibit emergent behaviors like knowledge transfer from expert to novice agents and collaborative code correction. \collabvoyager agents also demonstrate the ability to adapt to out-of-distribution tasks by using their previous experiences and beliefs obtained through collaboration. In this open-ended social learning paradigm, \collabvoyager paves the way for the democratic development of embodied AI, where agents learn in deployment from both peer and environmental feedback.

Aligning Teacher with Student Preferences for Tailored Training Data Generation

Large Language Models (LLMs) have shown significant promise as copilots in various tasks. Local deployment of LLMs on edge devices is necessary when handling privacy-sensitive data or latency-sensitive tasks. The computational constraints of such devices make direct deployment of powerful large-scale LLMs impractical, necessitating the Knowledge Distillation from large-scale models to lightweight models. Lots of work has been done to elicit diversity and quality training examples from LLMs, but little attention has been paid to aligning teacher instructional content based on student preferences, akin to "responsive teaching" in pedagogy. Thus, we propose ARTE, dubbed Aligning TeacheR with StudenT PreferencEs, a framework that aligns the teacher model with student preferences to generate tailored training examples for Knowledge Distillation. Specifically, we elicit draft questions and rationales from the teacher model, then collect student preferences on these questions and rationales using students' performance with in-context learning as a proxy, and finally align the teacher model with student preferences. In the end, we repeat the first step with the aligned teacher model to elicit tailored training examples for the student model on the target task. Extensive experiments on academic benchmarks demonstrate the superiority of ARTE over existing instruction-tuning datasets distilled from powerful LLMs. Moreover, we thoroughly investigate the generalization of ARTE, including the generalization of fine-tuned student models in reasoning ability and the generalization of aligned teacher models to generate tailored training data across tasks and students. In summary, our contributions lie in proposing a novel framework for tailored training example generation, demonstrating its efficacy in experiments, and investigating the generalization of both student & aligned teacher models in ARTE.

Unlock the Power: Competitive Distillation for Multi-Modal Large Language Models

Recently, multi-modal content generation has attracted lots of attention from researchers by investigating the utilization of visual instruction tuning based on large language models (LLMs). To enhance the performance and generalization ability of such LLMs, the practice of distilling knowledge from pretrained multi-modal models (a.k.a. teachers) to more compact multi-modal LLMs (students) has gained considerable interest. However, the prevailing paradigm of instructiontuning in multi-modal LLMs knowledge distillation is resource-intensive and unidirectional, neglecting the potential for mutual feedback between the student and teacher models. Thus, we propose an innovative Competitive Multi-modal Distillation framework (CoMD), which captures bidirectional feedback between teacher and student models and continually updates the multi-modal capabilities that the student model has learned. It comprises two stages: multi-modal pre-training and multi-modal competitive distillation. The first stage pre-trains the student model on a large number of filtered multi-modal datasets. The second stage facilitates a bidirectional knowledge transfer between the student and teacher models. Our experimental analysis of diverse datasets shows that our knowledge transfer method consistently improves the capabilities of the student model. Finally, the 7B-sized student model after four distillations surpassed the current state-of-the-art model LLaVA-13B on the ScienceQA and LLaVA Test dataset, also outperforms other strong baselines in the zero-shot setting.

Learning to Actively Learn: A Robust Approach

This work proposes a procedure for designing algorithms for specific adaptive data collection tasks like active learning and pure-exploration multi-armed bandits. Unlike the design of traditional adaptive algorithms that rely on concentration of measure and careful analysis to justify the correctness and sample complexity of the procedure, our adaptive algorithm is learned via adversarial training over equivalence classes of problems derived from information theoretic lower bounds. In particular, a single adaptive learning algorithm is learned that competes with the best adaptive algorithm learned for each equivalence class. Our procedure takes as input just the available queries, set of hypotheses, loss function, and total query budget. This is in contrast to existing meta-learning work that learns an adaptive algorithm relative to an explicit, user-defined subset or prior distribution over problems which can be challenging to define and be mismatched to the instance encountered at test time. This work is particularly focused on the regime when the total query budget is very small, such as a few dozen, which is much smaller than those budgets typically considered by theoretically derived algorithms. We perform synthetic experiments to justify the stability and effectiveness of the training procedure, and then evaluate the method on tasks derived from real data including a noisy 20 Questions game and a joke recommendation task.

Towards Lifelong Learning of Large Language Models: A Survey

As the applications of large language models (LLMs) expand across diverse fields, the ability of these models to adapt to ongoing changes in data, tasks, and user preferences becomes crucial. Traditional training methods, relying on static datasets, are increasingly inadequate for coping with the dynamic nature of real-world information. Lifelong learning, also known as continual or incremental learning, addresses this challenge by enabling LLMs to learn continuously and adaptively over their operational lifetime, integrating new knowledge while retaining previously learned information and preventing catastrophic forgetting. This survey delves into the sophisticated landscape of lifelong learning, categorizing strategies into two primary groups: Internal Knowledge and External Knowledge. Internal Knowledge includes continual pretraining and continual finetuning, each enhancing the adaptability of LLMs in various scenarios. External Knowledge encompasses retrieval-based and tool-based lifelong learning, leveraging external data sources and computational tools to extend the model's capabilities without modifying core parameters. The key contributions of our survey are: (1) Introducing a novel taxonomy categorizing the extensive literature of lifelong learning into 12 scenarios; (2) Identifying common techniques across all lifelong learning scenarios and classifying existing literature into various technique groups within each scenario; (3) Highlighting emerging techniques such as model expansion and data selection, which were less explored in the pre-LLM era. Through a detailed examination of these groups and their respective categories, this survey aims to enhance the adaptability, reliability, and overall performance of LLMs in real-world applications.

KnFu: Effective Knowledge Fusion

Federated Learning (FL) has emerged as a prominent alternative to the traditional centralized learning approach. Generally speaking, FL is a decentralized approach that allows for collaborative training of Machine Learning (ML) models across multiple local nodes, ensuring data privacy and security while leveraging diverse datasets. Conventional FL, however, is susceptible to gradient inversion attacks, restrictively enforces a uniform architecture on local models, and suffers from model heterogeneity (model drift) due to non-IID local datasets. To mitigate some of these challenges, the new paradigm of Federated Knowledge Distillation (FKD) has emerged. FDK is developed based on the concept of Knowledge Distillation (KD), which involves extraction and transfer of a large and well-trained teacher model's knowledge to lightweight student models. FKD, however, still faces the model drift issue. Intuitively speaking, not all knowledge is universally beneficial due to the inherent diversity of data among local nodes. This calls for innovative mechanisms to evaluate the relevance and effectiveness of each client's knowledge for others, to prevent propagation of adverse knowledge. In this context, the paper proposes Effective Knowledge Fusion (KnFu) algorithm that evaluates knowledge of local models to only fuse semantic neighbors' effective knowledge for each client. The KnFu is a personalized effective knowledge fusion scheme for each client, that analyzes effectiveness of different local models' knowledge prior to the aggregation phase. Comprehensive experiments were performed on MNIST and CIFAR10 datasets illustrating effectiveness of the proposed KnFu in comparison to its state-of-the-art counterparts. A key conclusion of the work is that in scenarios with large and highly heterogeneous local datasets, local training could be preferable to knowledge fusion-based solutions.

Towards Collaborative Plan Acquisition through Theory of Mind Modeling in Situated Dialogue

Collaborative tasks often begin with partial task knowledge and incomplete initial plans from each partner. To complete these tasks, agents need to engage in situated communication with their partners and coordinate their partial plans towards a complete plan to achieve a joint task goal. While such collaboration seems effortless in a human-human team, it is highly challenging for human-AI collaboration. To address this limitation, this paper takes a step towards collaborative plan acquisition, where humans and agents strive to learn and communicate with each other to acquire a complete plan for joint tasks. Specifically, we formulate a novel problem for agents to predict the missing task knowledge for themselves and for their partners based on rich perceptual and dialogue history. We extend a situated dialogue benchmark for symmetric collaborative tasks in a 3D blocks world and investigate computational strategies for plan acquisition. Our empirical results suggest that predicting the partner's missing knowledge is a more viable approach than predicting one's own. We show that explicit modeling of the partner's dialogue moves and mental states produces improved and more stable results than without. These results provide insight for future AI agents that can predict what knowledge their partner is missing and, therefore, can proactively communicate such information to help their partner acquire such missing knowledge toward a common understanding of joint tasks.

When Do Curricula Work in Federated Learning?

An oft-cited open problem of federated learning is the existence of data heterogeneity at the clients. One pathway to understanding the drastic accuracy drop in federated learning is by scrutinizing the behavior of the clients' deep models on data with different levels of "difficulty", which has been left unaddressed. In this paper, we investigate a different and rarely studied dimension of FL: ordered learning. Specifically, we aim to investigate how ordered learning principles can contribute to alleviating the heterogeneity effects in FL. We present theoretical analysis and conduct extensive empirical studies on the efficacy of orderings spanning three kinds of learning: curriculum, anti-curriculum, and random curriculum. We find that curriculum learning largely alleviates non-IIDness. Interestingly, the more disparate the data distributions across clients the more they benefit from ordered learning. We provide analysis explaining this phenomenon, specifically indicating how curriculum training appears to make the objective landscape progressively less convex, suggesting fast converging iterations at the beginning of the training procedure. We derive quantitative results of convergence for both convex and nonconvex objectives by modeling the curriculum training on federated devices as local SGD with locally biased stochastic gradients. Also, inspired by ordered learning, we propose a novel client selection technique that benefits from the real-world disparity in the clients. Our proposed approach to client selection has a synergic effect when applied together with ordered learning in FL.

MechGPT, a language-based strategy for mechanics and materials modeling that connects knowledge across scales, disciplines and modalities

For centuries, researchers have sought out ways to connect disparate areas of knowledge. While early scholars (Galileo, da Vinci, etc.) were experts across fields, specialization has taken hold later. With the advent of Artificial Intelligence, we can now explore relationships across areas (e.g., mechanics-biology) or disparate domains (e.g., failure mechanics-art). To achieve this, we use a fine-tuned Large Language Model (LLM), here for a subset of knowledge in multiscale materials failure. The approach includes the use of a general-purpose LLM to distill question-answer pairs from raw sources followed by LLM fine-tuning. The resulting MechGPT LLM foundation model is used in a series of computational experiments to explore its capacity for knowledge retrieval, various language tasks, hypothesis generation, and connecting knowledge across disparate areas. While the model has some ability to recall knowledge from training, we find that LLMs are particularly useful to extract structural insights through Ontological Knowledge Graphs. These interpretable graph structures provide explanatory insights, frameworks for new research questions, and visual representations of knowledge that also can be used in retrieval-augmented generation. Three versions of MechGPT are discussed, featuring different sizes from 13 billion to 70 billion parameters, and reaching context lengths of more than 10,000 tokens. This provides ample capacity for sophisticated retrieval augmented strategies, as well as agent-based modeling where multiple LLMs interact collaboratively and/or adversarially, the incorporation of new data from the literature or web searches, as well as multimodality.

Instruction Tuning with Human Curriculum

The dominant paradigm for instruction tuning is the random-shuffled training of maximally diverse instruction-response pairs. This paper explores the potential benefits of applying a structured cognitive learning approach to instruction tuning in contemporary large language models like ChatGPT and GPT-4. Unlike the previous conventional randomized instruction dataset, we propose a highly structured synthetic dataset that mimics the progressive and organized nature of human education. We curate our dataset by aligning it with educational frameworks, incorporating meta information including its topic and cognitive rigor level for each sample. Our dataset covers comprehensive fine-grained topics spanning diverse educational stages (from middle school to graduate school) with various questions for each topic to enhance conceptual depth using Bloom's taxonomy-a classification framework distinguishing various levels of human cognition for each concept. The results demonstrate that this cognitive rigorous training approach yields significant performance enhancements - +3.06 on the MMLU benchmark and an additional +1.28 on AI2 Reasoning Challenge (hard set) - compared to conventional randomized training, all while avoiding additional computational costs. This research highlights the potential of leveraging human learning principles to enhance the capabilities of language models in comprehending and responding to complex instructions and tasks.

Iterative Service-Learning: A Computing-Based Case-study Applied to Small Rural Organizations

This paper describes the iterative use of service learning to develop, review, and improve computing-based artifacts. It is well-known that computing students benefit from service-learning experiences as do the community partners. It is also well-known that computing artifacts rarely function well long-term without versioning and updates. Service-learning projects are often one-time engagements, completed by single teams of students over the course of a semester course. This limits the benefit for community partners that do not have the expertise or resources to review and update a project on their own. Over several years, teams of undergraduate students in a capstone course created tailored social media plans for numerous small rural organizations. The projects were required to meet client specific needs, with identified audiences, measurable goals, and strategies and tactics to reach the identified goals. This paper builds on previously results for 60 projects conducted over several years. Nine clients were selected to participate in the iterative follow-up process, where new student teams conducted client interviews, reviewed the initial plans, and analyzed metrics from the current strategies and tactics to provide updated, improved artifacts. Using ABET learning objectives as a basis, clients reviewed the student teams and artifacts. This longitudinal study discusses the impact of this intervention to increase implementation and sustained use rates of computing artifacts developed through service learning. Both students and clients reported high satisfaction levels, and clients were particularly satisfied with the iterative improvement process. This research demonstrates an innovative practice for creating and maintaining computing artifacts through iterative service learning, while addressing the resource constraints of small organizations.

Collaborative Metric Learning Recommendation System: Application to Theatrical Movie Releases

Product recommendation systems are important for major movie studios during the movie greenlight process and as part of machine learning personalization pipelines. Collaborative Filtering (CF) models have proved to be effective at powering recommender systems for online streaming services with explicit customer feedback data. CF models do not perform well in scenarios in which feedback data is not available, in cold start situations like new product launches, and situations with markedly different customer tiers (e.g., high frequency customers vs. casual customers). Generative natural language models that create useful theme-based representations of an underlying corpus of documents can be used to represent new product descriptions, like new movie plots. When combined with CF, they have shown to increase the performance in cold start situations. Outside of those cases though in which explicit customer feedback is available, recommender engines must rely on binary purchase data, which materially degrades performance. Fortunately, purchase data can be combined with product descriptions to generate meaningful representations of products and customer trajectories in a convenient product space in which proximity represents similarity. Learning to measure the distance between points in this space can be accomplished with a deep neural network that trains on customer histories and on dense vectorizations of product descriptions. We developed a system based on Collaborative (Deep) Metric Learning (CML) to predict the purchase probabilities of new theatrical releases. We trained and evaluated the model using a large dataset of customer histories, and tested the model for a set of movies that were released outside of the training window. Initial experiments show gains relative to models that do not train on collaborative preferences.

Susu Box or Piggy Bank: Assessing Cultural Commonsense Knowledge between Ghana and the U.S

Recent work has highlighted the culturally-contingent nature of commonsense knowledge. We introduce AMAMMER{epsilon}, a test set of 525 multiple-choice questions designed to evaluate the commonsense knowledge of English LLMs, relative to the cultural contexts of Ghana and the United States. To create AMAMMER{epsilon}, we select a set of multiple-choice questions (MCQs) from existing commonsense datasets and rewrite them in a multi-stage process involving surveys of Ghanaian and U.S. participants. In three rounds of surveys, participants from both pools are solicited to (1) write correct and incorrect answer choices, (2) rate individual answer choices on a 5-point Likert scale, and (3) select the best answer choice from the newly-constructed MCQ items, in a final validation step. By engaging participants at multiple stages, our procedure ensures that participant perspectives are incorporated both in the creation and validation of test items, resulting in high levels of agreement within each pool. We evaluate several off-the-shelf English LLMs on AMAMMER{epsilon}. Uniformly, models prefer answers choices that align with the preferences of U.S. annotators over Ghanaian annotators. Additionally, when test items specify a cultural context (Ghana or the U.S.), models exhibit some ability to adapt, but performance is consistently better in U.S. contexts than Ghanaian. As large resources are devoted to the advancement of English LLMs, our findings underscore the need for culturally adaptable models and evaluations to meet the needs of diverse English-speaking populations around the world.

Talking Models: Distill Pre-trained Knowledge to Downstream Models via Interactive Communication

Many recent breakthroughs in machine learning have been enabled by the pre-trained foundation models. By scaling up model parameters, training data, and computation resources, foundation models have significantly advanced the state-of-the-art in many applications. However, it is still an open question of how to use these models to perform downstream tasks efficiently. Knowledge distillation (KD) has been explored to tackle this challenge. KD transfers knowledge from a large teacher model to a smaller student model. While KD has been successful in improving student model performance, recent research has discovered that a powerful teacher does not necessarily lead to a powerful student, due to their huge capacity gap. In addition, the potential distribution shifts between the pre-training data and downstream tasks can make knowledge transfer in KD sub-optimal for improving downstream task performance. In this paper, we extend KD with an interactive communication process to help students of downstream tasks learn effectively from pre-trained foundation models. Our design is inspired by the way humans learn from teachers who can explain knowledge in a way that meets the students' needs. Specifically, we let each model (i.e., student and teacher) train two components: (1) an encoder encoding the model's hidden states to a message and (2) a decoder decoding any messages to its own hidden states. With encoder and decoder, not only can the teacher transfer rich information by encoding its hidden states, but also the student can send messages with information of downstream tasks to the teacher. Therefore, knowledge passing from teacher to student can be tailored to the student's capacity and downstream tasks' distributions. We conducted experiments on benchmark datasets to show that our communication mechanism outperforms state-of-the-art distillation techniques.

Bold but Cautious: Unlocking the Potential of Personalized Federated Learning through Cautiously Aggressive Collaboration

Personalized federated learning (PFL) reduces the impact of non-independent and identically distributed (non-IID) data among clients by allowing each client to train a personalized model when collaborating with others. A key question in PFL is to decide which parameters of a client should be localized or shared with others. In current mainstream approaches, all layers that are sensitive to non-IID data (such as classifier layers) are generally personalized. The reasoning behind this approach is understandable, as localizing parameters that are easily influenced by non-IID data can prevent the potential negative effect of collaboration. However, we believe that this approach is too conservative for collaboration. For example, for a certain client, even if its parameters are easily influenced by non-IID data, it can still benefit by sharing these parameters with clients having similar data distribution. This observation emphasizes the importance of considering not only the sensitivity to non-IID data but also the similarity of data distribution when determining which parameters should be localized in PFL. This paper introduces a novel guideline for client collaboration in PFL. Unlike existing approaches that prohibit all collaboration of sensitive parameters, our guideline allows clients to share more parameters with others, leading to improved model performance. Additionally, we propose a new PFL method named FedCAC, which employs a quantitative metric to evaluate each parameter's sensitivity to non-IID data and carefully selects collaborators based on this evaluation. Experimental results demonstrate that FedCAC enables clients to share more parameters with others, resulting in superior performance compared to state-of-the-art methods, particularly in scenarios where clients have diverse distributions.

Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View

As Natural Language Processing (NLP) systems are increasingly employed in intricate social environments, a pressing query emerges: Can these NLP systems mirror human-esque collaborative intelligence, in a multi-agent society consisting of multiple large language models (LLMs)? This paper probes the collaboration mechanisms among contemporary NLP systems by melding practical experiments with theoretical insights. We fabricate four unique `societies' comprised of LLM agents, where each agent is characterized by a specific `trait' (easy-going or overconfident) and engages in collaboration with a distinct `thinking pattern' (debate or reflection). Evaluating these multi-agent societies on three benchmark datasets, we discern that LLM agents navigate tasks by leveraging diverse social behaviors, from active debates to introspective reflections. Notably, certain collaborative strategies only optimize efficiency (using fewer API tokens), but also outshine previous top-tier approaches. Moreover, our results further illustrate that LLM agents manifest human-like social behaviors, such as conformity or majority rule, mirroring foundational Social Psychology theories. In conclusion, we integrate insights from Social Psychology to contextualize the collaboration of LLM agents, inspiring further investigations into the collaboration mechanism for LLMs. We commit to sharing our code and datasets (already submitted in supplementary materials), hoping to catalyze further research in this promising avenue (All code and data are available at https://github.com/zjunlp/MachineSoM.).

SIGHT: A Large Annotated Dataset on Student Insights Gathered from Higher Education Transcripts

Lectures are a learning experience for both students and teachers. Students learn from teachers about the subject material, while teachers learn from students about how to refine their instruction. However, online student feedback is unstructured and abundant, making it challenging for teachers to learn and improve. We take a step towards tackling this challenge. First, we contribute a dataset for studying this problem: SIGHT is a large dataset of 288 math lecture transcripts and 15,784 comments collected from the Massachusetts Institute of Technology OpenCourseWare (MIT OCW) YouTube channel. Second, we develop a rubric for categorizing feedback types using qualitative analysis. Qualitative analysis methods are powerful in uncovering domain-specific insights, however they are costly to apply to large data sources. To overcome this challenge, we propose a set of best practices for using large language models (LLMs) to cheaply classify the comments at scale. We observe a striking correlation between the model's and humans' annotation: Categories with consistent human annotations (>0.9 inter-rater reliability, IRR) also display higher human-model agreement (>0.7), while categories with less consistent human annotations (0.7-0.8 IRR) correspondingly demonstrate lower human-model agreement (0.3-0.5). These techniques uncover useful student feedback from thousands of comments, costing around 0.002$ per comment. We conclude by discussing exciting future directions on using online student feedback and improving automated annotation techniques for qualitative research.

Can Language Models Teach Weaker Agents? Teacher Explanations Improve Students via Theory of Mind

Large Language Models (LLMs) perform complex reasoning by generating explanations for their predictions. However, a complementary goal of explanations is to also communicate useful knowledge that improves weaker agents. Hence, we investigate whether LLMs also make good teachers for weaker agents. In particular, we consider a student-teacher framework between two LLM agents and study if, when, and how the teacher should intervene with natural language explanations to improve the student's performance. Since communication is expensive, we define a budget such that the teacher only communicates explanations for a fraction of the data, after which the student should perform well on its own. We decompose the teaching problem along four axes: (1) if teacher's test time intervention improve student predictions, (2) when it is worth explaining a data point, (3) how the teacher should personalize explanations to better teach the student, and (4) if teacher explanations also improve student performance on future unexplained data. We first show that teacher LLMs can indeed intervene on student reasoning to improve their performance. Next, we propose a Theory of Mind approach, in which the teacher builds two few-shot mental models of the student. The first model defines an Intervention Function that simulates the utility of an intervention, allowing the teacher to intervene when this utility is the highest and improving student performance at lower budgets. The second model enables the teacher to personalize explanations for a particular student and outperform unpersonalized teachers. We also demonstrate that in multi-turn interactions, teacher explanations generalize and learning from explained data improves student performance on future unexplained data. Finally, we also verify that misaligned teachers can lower student performance to random chance by intentionally misleading them.

Pedagogical Alignment of Large Language Models

In this paper, we introduce the novel concept of pedagogically aligned Large Language Models (LLMs) that signifies a transformative shift in the application of LLMs within educational contexts. Rather than providing direct responses to user queries, pedagogically-aligned LLMs function as scaffolding tools, breaking complex problems into manageable subproblems and guiding students towards the final answer through constructive feedback and hints. The objective is to equip learners with problem-solving strategies that deepen their understanding and internalization of the subject matter. Previous research in this field has primarily applied the supervised finetuning approach without framing the objective as an alignment problem, hence not employing reinforcement learning through human feedback (RLHF) methods. This study reinterprets the narrative by viewing the task through the lens of alignment and demonstrates how RLHF methods emerge naturally as a superior alternative for aligning LLM behaviour. Building on this perspective, we propose a novel approach for constructing a reward dataset specifically designed for the pedagogical alignment of LLMs. We apply three state-of-the-art RLHF algorithms and find that they outperform SFT significantly. Our qualitative analyses across model differences and hyperparameter sensitivity further validate the superiority of RLHF over SFT. Also, our study sheds light on the potential of online feedback for enhancing the performance of pedagogically-aligned LLMs, thus providing valuable insights for the advancement of these models in educational settings.

Collaboration and Transition: Distilling Item Transitions into Multi-Query Self-Attention for Sequential Recommendation

Modern recommender systems employ various sequential modules such as self-attention to learn dynamic user interests. However, these methods are less effective in capturing collaborative and transitional signals within user interaction sequences. First, the self-attention architecture uses the embedding of a single item as the attention query, making it challenging to capture collaborative signals. Second, these methods typically follow an auto-regressive framework, which is unable to learn global item transition patterns. To overcome these limitations, we propose a new method called Multi-Query Self-Attention with Transition-Aware Embedding Distillation (MQSA-TED). First, we propose an L-query self-attention module that employs flexible window sizes for attention queries to capture collaborative signals. In addition, we introduce a multi-query self-attention method that balances the bias-variance trade-off in modeling user preferences by combining long and short-query self-attentions. Second, we develop a transition-aware embedding distillation module that distills global item-to-item transition patterns into item embeddings, which enables the model to memorize and leverage transitional signals and serves as a calibrator for collaborative signals. Experimental results on four real-world datasets demonstrate the effectiveness of the proposed modules.

GUIDE: A Guideline-Guided Dataset for Instructional Video Comprehension

There are substantial instructional videos on the Internet, which provide us tutorials for completing various tasks. Existing instructional video datasets only focus on specific steps at the video level, lacking experiential guidelines at the task level, which can lead to beginners struggling to learn new tasks due to the lack of relevant experience. Moreover, the specific steps without guidelines are trivial and unsystematic, making it difficult to provide a clear tutorial. To address these problems, we present the GUIDE (Guideline-Guided) dataset, which contains 3.5K videos of 560 instructional tasks in 8 domains related to our daily life. Specifically, we annotate each instructional task with a guideline, representing a common pattern shared by all task-related videos. On this basis, we annotate systematic specific steps, including their associated guideline steps, specific step descriptions and timestamps. Our proposed benchmark consists of three sub-tasks to evaluate comprehension ability of models: (1) Step Captioning: models have to generate captions for specific steps from videos. (2) Guideline Summarization: models have to mine the common pattern in task-related videos and summarize a guideline from them. (3) Guideline-Guided Captioning: models have to generate captions for specific steps under the guide of guideline. We evaluate plenty of foundation models with GUIDE and perform in-depth analysis. Given the diversity and practicality of GUIDE, we believe that it can be used as a better benchmark for instructional video comprehension.

LLM-PySC2: Starcraft II learning environment for Large Language Models

This paper introduces a new environment LLM-PySC2 (the Large Language Model StarCraft II Learning Environment), a platform derived from DeepMind's StarCraft II Learning Environment that serves to develop Large Language Models (LLMs) based decision-making methodologies. This environment is the first to offer the complete StarCraft II action space, multi-modal observation interfaces, and a structured game knowledge database, which are seamlessly connected with various LLMs to facilitate the research of LLMs-based decision-making. To further support multi-agent research, we developed an LLM collaborative framework that supports multi-agent concurrent queries and multi-agent communication. In our experiments, the LLM-PySC2 environment is adapted to be compatible with the StarCraft Multi-Agent Challenge (SMAC) task group and provided eight new scenarios focused on macro-decision abilities. We evaluated nine mainstream LLMs in the experiments, and results show that sufficient parameters are necessary for LLMs to make decisions, but improving reasoning ability does not directly lead to better decision-making outcomes. Our findings further indicate the importance of enabling large models to learn autonomously in the deployment environment through parameter training or train-free learning techniques. Ultimately, we expect that the LLM-PySC2 environment can promote research on learning methods for LLMs, helping LLM-based methods better adapt to task scenarios.

Online Prototype Learning for Online Continual Learning

Online continual learning (CL) studies the problem of learning continuously from a single-pass data stream while adapting to new data and mitigating catastrophic forgetting. Recently, by storing a small subset of old data, replay-based methods have shown promising performance. Unlike previous methods that focus on sample storage or knowledge distillation against catastrophic forgetting, this paper aims to understand why the online learning models fail to generalize well from a new perspective of shortcut learning. We identify shortcut learning as the key limiting factor for online CL, where the learned features may be biased, not generalizable to new tasks, and may have an adverse impact on knowledge distillation. To tackle this issue, we present the online prototype learning (OnPro) framework for online CL. First, we propose online prototype equilibrium to learn representative features against shortcut learning and discriminative features to avoid class confusion, ultimately achieving an equilibrium status that separates all seen classes well while learning new classes. Second, with the feedback of online prototypes, we devise a novel adaptive prototypical feedback mechanism to sense the classes that are easily misclassified and then enhance their boundaries. Extensive experimental results on widely-used benchmark datasets demonstrate the superior performance of OnPro over the state-of-the-art baseline methods. Source code is available at https://github.com/weilllllls/OnPro.

BD-KD: Balancing the Divergences for Online Knowledge Distillation

Knowledge distillation (KD) has gained a lot of attention in the field of model compression for edge devices thanks to its effectiveness in compressing large powerful networks into smaller lower-capacity models. Online distillation, in which both the teacher and the student are learning collaboratively, has also gained much interest due to its ability to improve on the performance of the networks involved. The Kullback-Leibler (KL) divergence ensures the proper knowledge transfer between the teacher and student. However, most online KD techniques present some bottlenecks under the network capacity gap. By cooperatively and simultaneously training, the models the KL distance becomes incapable of properly minimizing the teacher's and student's distributions. Alongside accuracy, critical edge device applications are in need of well-calibrated compact networks. Confidence calibration provides a sensible way of getting trustworthy predictions. We propose BD-KD: Balancing of Divergences for online Knowledge Distillation. We show that adaptively balancing between the reverse and forward divergences shifts the focus of the training strategy to the compact student network without limiting the teacher network's learning process. We demonstrate that, by performing this balancing design at the level of the student distillation loss, we improve upon both performance accuracy and calibration of the compact student network. We conducted extensive experiments using a variety of network architectures and show improvements on multiple datasets including CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet. We illustrate the effectiveness of our approach through comprehensive comparisons and ablations with current state-of-the-art online and offline KD techniques.

CSGCL: Community-Strength-Enhanced Graph Contrastive Learning

Graph Contrastive Learning (GCL) is an effective way to learn generalized graph representations in a self-supervised manner, and has grown rapidly in recent years. However, the underlying community semantics has not been well explored by most previous GCL methods. Research that attempts to leverage communities in GCL regards them as having the same influence on the graph, leading to extra representation errors. To tackle this issue, we define ''community strength'' to measure the difference of influence among communities. Under this premise, we propose a Community-Strength-enhanced Graph Contrastive Learning (CSGCL) framework to preserve community strength throughout the learning process. Firstly, we present two novel graph augmentation methods, Communal Attribute Voting (CAV) and Communal Edge Dropping (CED), where the perturbations of node attributes and edges are guided by community strength. Secondly, we propose a dynamic ''Team-up'' contrastive learning scheme, where community strength is used to progressively fine-tune the contrastive objective. We report extensive experiment results on three downstream tasks: node classification, node clustering, and link prediction. CSGCL achieves state-of-the-art performance compared with other GCL methods, validating that community strength brings effectiveness and generality to graph representations. Our code is available at https://github.com/HanChen-HUST/CSGCL.

FRL: Federated Rank Learning

Federated learning (FL) allows mutually untrusted clients to collaboratively train a common machine learning model without sharing their private/proprietary training data among each other. FL is unfortunately susceptible to poisoning by malicious clients who aim to hamper the accuracy of the commonly trained model through sending malicious model updates during FL's training process. We argue that the key factor to the success of poisoning attacks against existing FL systems is the large space of model updates available to the clients, allowing malicious clients to search for the most poisonous model updates, e.g., by solving an optimization problem. To address this, we propose Federated Rank Learning (FRL). FRL reduces the space of client updates from model parameter updates (a continuous space of float numbers) in standard FL to the space of parameter rankings (a discrete space of integer values). To be able to train the global model using parameter ranks (instead of parameter weights), FRL leverage ideas from recent supermasks training mechanisms. Specifically, FRL clients rank the parameters of a randomly initialized neural network (provided by the server) based on their local training data. The FRL server uses a voting mechanism to aggregate the parameter rankings submitted by clients in each training epoch to generate the global ranking of the next training epoch. Intuitively, our voting-based aggregation mechanism prevents poisoning clients from making significant adversarial modifications to the global model, as each client will have a single vote! We demonstrate the robustness of FRL to poisoning through analytical proofs and experimentation. We also show FRL's high communication efficiency. Our experiments demonstrate the superiority of FRL in real-world FL settings.

A Unified and General Framework for Continual Learning

Continual Learning (CL) focuses on learning from dynamic and changing data distributions while retaining previously acquired knowledge. Various methods have been developed to address the challenge of catastrophic forgetting, including regularization-based, Bayesian-based, and memory-replay-based techniques. However, these methods lack a unified framework and common terminology for describing their approaches. This research aims to bridge this gap by introducing a comprehensive and overarching framework that encompasses and reconciles these existing methodologies. Notably, this new framework is capable of encompassing established CL approaches as special instances within a unified and general optimization objective. An intriguing finding is that despite their diverse origins, these methods share common mathematical structures. This observation highlights the compatibility of these seemingly distinct techniques, revealing their interconnectedness through a shared underlying optimization objective. Moreover, the proposed general framework introduces an innovative concept called refresh learning, specifically designed to enhance the CL performance. This novel approach draws inspiration from neuroscience, where the human brain often sheds outdated information to improve the retention of crucial knowledge and facilitate the acquisition of new information. In essence, refresh learning operates by initially unlearning current data and subsequently relearning it. It serves as a versatile plug-in that seamlessly integrates with existing CL methods, offering an adaptable and effective enhancement to the learning process. Extensive experiments on CL benchmarks and theoretical analysis demonstrate the effectiveness of the proposed refresh learning. Code is available at https://github.com/joey-wang123/CL-refresh-learning.

Progressive Collaborative and Semantic Knowledge Fusion for Generative Recommendation

With the recent surge in interest surrounding generative paradigms, generative recommendation has increasingly attracted the attention of researchers in the recommendation community. This paradigm generally consists of two stages. In the first stage, pretrained semantic embeddings or collaborative ID embeddings are quantized to create item codes, aiming to capture and preserve rich semantic or collaborative knowledge within these codes. The second stage involves utilizing these discrete codes to perform an autoregressive sequence generation task. Existing methods often either overlook collaborative or semantic knowledge, or combine the two roughly. In this paper, we observe that naively concatenating representations from semantic and collaborative modality leads to a semantic domination issue, where the resulting representation is overly influenced by semantic information, effectively overshadowing the collaborative representation. Consequently, downstream recommendation tasks fail to fully exploit the knowledge from both modalities, resulting in suboptimal performance. To address this, we propose a progressive collaborative and semantic knowledge fusion model for generative recommendation, named PRORec, which integrates semantic and collaborative knowledge with a unified code through a two-stage framework. Specifically, in the first stage, we propose a cross-modality knowledge alignment task, which integrates semantic knowledge into collaborative embeddings, enhancing their representational capability. In the second stage, we propose an in-modality knowledge distillation task, designed to effectively capture and integrate knowledge from both semantic and collaborative modalities. Extensive experiments on three widely used benchmarks validate the effectiveness of our approach, demonstrating its superiority compared to existing methods.

Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) mitigates issues of the factual errors and hallucinated outputs generated by Large Language Models (LLMs) in open-domain question-answering tasks (OpenQA) via introducing external knowledge. For complex QA, however, existing RAG methods use LLMs to actively predict retrieval timing and directly use the retrieved information for generation, regardless of whether the retrieval timing accurately reflects the actual information needs, or sufficiently considers prior retrieved knowledge, which may result in insufficient information gathering and interaction, yielding low-quality answers. To address these, we propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks, which includes the iterative information collector, adaptive memory reviewer, and task-oriented generator, while following a new Retriever-and-Memory paradigm. Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes and updating them into the existing optimal knowledge structure, enhancing high-quality knowledge interactions. In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration. We conduct extensive experiments on five complex QA datasets, and the results demonstrate the superiority and effectiveness of our method and its components. The code and data are at https://github.com/thunlp/Adaptive-Note.

UnUnlearning: Unlearning is not sufficient for content regulation in advanced generative AI

Exact unlearning was first introduced as a privacy mechanism that allowed a user to retract their data from machine learning models on request. Shortly after, inexact schemes were proposed to mitigate the impractical costs associated with exact unlearning. More recently unlearning is often discussed as an approach for removal of impermissible knowledge i.e. knowledge that the model should not possess such as unlicensed copyrighted, inaccurate, or malicious information. The promise is that if the model does not have a certain malicious capability, then it cannot be used for the associated malicious purpose. In this paper we revisit the paradigm in which unlearning is used for in Large Language Models (LLMs) and highlight an underlying inconsistency arising from in-context learning. Unlearning can be an effective control mechanism for the training phase, yet it does not prevent the model from performing an impermissible act during inference. We introduce a concept of ununlearning, where unlearned knowledge gets reintroduced in-context, effectively rendering the model capable of behaving as if it knows the forgotten knowledge. As a result, we argue that content filtering for impermissible knowledge will be required and even exact unlearning schemes are not enough for effective content regulation. We discuss feasibility of ununlearning for modern LLMs and examine broader implications.

Meta-Prompting: Enhancing Language Models with Task-Agnostic Scaffolding

We introduce meta-prompting, an effective scaffolding technique designed to enhance the functionality of language models (LMs). This approach transforms a single LM into a multi-faceted conductor, adept at managing and integrating multiple independent LM queries. By employing high-level instructions, meta-prompting guides the LM to break down complex tasks into smaller, more manageable subtasks. These subtasks are then handled by distinct "expert" instances of the same LM, each operating under specific, tailored instructions. Central to this process is the LM itself, in its role as the conductor, which ensures seamless communication and effective integration of the outputs from these expert models. It additionally employs its inherent critical thinking and robust verification processes to refine and authenticate the end result. This collaborative prompting approach empowers a single LM to simultaneously act as a comprehensive orchestrator and a panel of diverse experts, significantly enhancing its performance across a wide array of tasks. The zero-shot, task-agnostic nature of meta-prompting greatly simplifies user interaction by obviating the need for detailed, task-specific instructions. Furthermore, our research demonstrates the seamless integration of external tools, such as a Python interpreter, into the meta-prompting framework, thereby broadening its applicability and utility. Through rigorous experimentation with GPT-4, we establish the superiority of meta-prompting over conventional scaffolding methods: When averaged across all tasks, including the Game of 24, Checkmate-in-One, and Python Programming Puzzles, meta-prompting, augmented with a Python interpreter functionality, surpasses standard prompting by 17.1%, expert (dynamic) prompting by 17.3%, and multipersona prompting by 15.2%.

Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation

We primarily focus on the field of large language models (LLMs) for recommendation, which has been actively explored recently and poses a significant challenge in effectively enhancing recommender systems with logical reasoning abilities and open-world knowledge. Current mainstream efforts mainly center around injecting personalized information from recommendation models into LLMs by customizing input templates or aligning representations between semantic and recommendation spaces at the prediction layer. However, they face three significant limitations: (1) LoRA is mostly used as a core component in existing works, but personalization is not well established in LoRA parameters as the LoRA matrix shared by every user may not cater to different users' characteristics, leading to suboptimal performance. (2) Although lifelong personalized behavior sequences are ideal for personalization, their use raises effectiveness and efficiency issues since LLMs require escalating training and inference time to extend text lengths. (3) Existing approaches aren't scalable for large datasets due to training efficiency constraints. Thus, LLMs only see a small fraction of the datasets (e.g., less than 10%) instead of the whole datasets, limiting their exposure to the full training space. To address these problems, we propose RecLoRA. This model incorporates a Personalized LoRA module that maintains independent LoRAs for different users and a Long-Short Modality Retriever that retrieves different history lengths for different modalities, significantly improving performance while adding minimal time cost. Furthermore, we design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces. Extensive experiments on public datasets demonstrate the efficacy of our RecLoRA compared to existing baseline models.

CELLM: An Efficient Communication in Large Language Models Training for Federated Learning

Federated Learning (FL) is a recent model training paradigm in which client devices collaboratively train a model without ever aggregating their data. Crucially, this scheme offers users potential privacy and security benefits by only ever communicating updates to the model weights to a central server as opposed to traditional machine learning (ML) training which directly communicates and aggregates data. However, FL training suffers from statistical heterogeneity as clients may have differing local data distributions. Large language models (LLMs) offer a potential solution to this issue of heterogeneity given that they have consistently been shown to be able to learn on vast amounts of noisy data. While LLMs are a promising development for resolving the consistent issue of non-I.I.D. Clients in federated settings exacerbate two other bottlenecks in FL: limited local computing and expensive communication. This thesis aims to develop efficient training methods for LLMs in FL. To this end, we employ two critical techniques in enabling efficient training. First, we use low-rank adaptation (LoRA) to reduce the computational load of local model training. Second, we communicate sparse updates throughout training to significantly cut down on communication costs. Taken together, our method reduces communication costs by up to 10x over vanilla LoRA and up to 5x over more complex sparse LoRA baselines while achieving greater utility. We emphasize the importance of carefully applying sparsity and picking effective rank and sparsity configurations for federated LLM training.

A Deep Learning Framework for Lifelong Machine Learning

Humans can learn a variety of concepts and skills incrementally over the course of their lives while exhibiting many desirable properties, such as continual learning without forgetting, forward transfer and backward transfer of knowledge, and learning a new concept or task with only a few examples. Several lines of machine learning research, such as lifelong machine learning, few-shot learning, and transfer learning attempt to capture these properties. However, most previous approaches can only demonstrate subsets of these properties, often by different complex mechanisms. In this work, we propose a simple yet powerful unified deep learning framework that supports almost all of these properties and approaches through one central mechanism. Experiments on toy examples support our claims. We also draw connections between many peculiarities of human learning (such as memory loss and "rain man") and our framework. As academics, we often lack resources required to build and train, deep neural networks with billions of parameters on hundreds of TPUs. Thus, while our framework is still conceptual, and our experiment results are surely not SOTA, we hope that this unified lifelong learning framework inspires new work towards large-scale experiments and understanding human learning in general. This paper is summarized in two short YouTube videos: https://youtu.be/gCuUyGETbTU (part 1) and https://youtu.be/XsaGI01b-1o (part 2).

Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)

For a long time, different recommendation tasks typically require designing task-specific architectures and training objectives. As a result, it is hard to transfer the learned knowledge and representations from one task to another, thus restricting the generalization ability of existing recommendation approaches, e.g., a sequential recommendation model can hardly be applied or transferred to a review generation method. To deal with such issues, considering that language can describe almost anything and language grounding is a powerful medium to represent various problems or tasks, we present a flexible and unified text-to-text paradigm called "Pretrain, Personalized Prompt, and Predict Paradigm" (P5) for recommendation, which unifies various recommendation tasks in a shared framework. In P5, all data such as user-item interactions, user descriptions, item metadata, and user reviews are converted to a common format -- natural language sequences. The rich information from natural language assists P5 to capture deeper semantics for personalization and recommendation. Specifically, P5 learns different tasks with the same language modeling objective during pretraining. Thus, it serves as the foundation model for various downstream recommendation tasks, allows easy integration with other modalities, and enables instruction-based recommendation based on prompts. P5 advances recommender systems from shallow model to deep model to big model, and will revolutionize the technical form of recommender systems towards universal recommendation engine. With adaptive personalized prompt for different users, P5 is able to make predictions in a zero-shot or few-shot manner and largely reduces the necessity for extensive fine-tuning. On several recommendation benchmarks, we conduct experiments to show the effectiveness of P5. We release the source code at https://github.com/jeykigung/P5.

Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval

Our objective in this work is video-text retrieval - in particular a joint embedding that enables efficient text-to-video retrieval. The challenges in this area include the design of the visual architecture and the nature of the training data, in that the available large scale video-text training datasets, such as HowTo100M, are noisy and hence competitive performance is achieved only at scale through large amounts of compute. We address both these challenges in this paper. We propose an end-to-end trainable model that is designed to take advantage of both large-scale image and video captioning datasets. Our model is an adaptation and extension of the recent ViT and Timesformer architectures, and consists of attention in both space and time. The model is flexible and can be trained on both image and video text datasets, either independently or in conjunction. It is trained with a curriculum learning schedule that begins by treating images as 'frozen' snapshots of video, and then gradually learns to attend to increasing temporal context when trained on video datasets. We also provide a new video-text pretraining dataset WebVid-2M, comprised of over two million videos with weak captions scraped from the internet. Despite training on datasets that are an order of magnitude smaller, we show that this approach yields state-of-the-art results on standard downstream video-retrieval benchmarks including MSR-VTT, MSVD, DiDeMo and LSMDC.

Democratizing Reasoning Ability: Tailored Learning from Large Language Model

Large language models (LLMs) exhibit impressive emergent abilities in natural language processing, but their democratization is hindered due to huge computation requirements and closed-source nature. Recent research on advancing open-source smaller LMs by distilling knowledge from black-box LLMs has obtained promising results in the instruction-following ability. However, the reasoning ability which is more challenging to foster, is relatively rarely explored. In this paper, we propose a tailored learning approach to distill such reasoning ability to smaller LMs to facilitate the democratization of the exclusive reasoning ability. In contrast to merely employing LLM as a data annotator, we exploit the potential of LLM as a reasoning teacher by building an interactive multi-round learning paradigm. This paradigm enables the student to expose its deficiencies to the black-box teacher who then can provide customized training data in return. Further, to exploit the reasoning potential of the smaller LM, we propose self-reflection learning to motivate the student to learn from self-made mistakes. The learning from self-reflection and LLM are all tailored to the student's learning status, thanks to the seamless integration with the multi-round learning paradigm. Comprehensive experiments and analysis on mathematical and commonsense reasoning tasks demonstrate the effectiveness of our method. The code will be available at https://github.com/Raibows/Learn-to-Reason.

Deep Knowledge Tracing with Learning Curves

Knowledge tracing (KT) has recently been an active research area of computational pedagogy. The task is to model students' mastery level of knowledge concepts based on their responses to the questions in the past, as well as predict the probabilities that they correctly answer subsequent questions in the future. KT tasks were historically solved using statistical modeling methods such as Bayesian inference and factor analysis, but recent advances in deep learning have led to the successive proposals that leverage deep neural networks, including long short-term memory networks, memory-augmented networks and self-attention networks. While those deep models demonstrate superior performance over the traditional approaches, they all neglect the explicit modeling of the learning curve theory, which generally says that more practice on the same knowledge concept enhances one's mastery level of the concept. Based on this theory, we propose a Convolution-Augmented Knowledge Tracing (CAKT) model in this paper. The model employs three-dimensional convolutional neural networks to explicitly learn a student's recent experience on applying the same knowledge concept with that in the next question, and fuses the learnt feature with the feature representing her overall latent knowledge state obtained using a classic LSTM network. The fused feature is then fed into a second LSTM network to predict the student's response to the next question. Experimental results show that CAKT achieves the new state-of-the-art performance in predicting students' responses compared with existing models. We also conduct extensive sensitivity analysis and ablation study to show the stability of the results and justify the particular architecture of CAKT, respectively.

Fine-Grained Guidance for Retrievers: Leveraging LLMs' Feedback in Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) has proven to be an effective method for mitigating hallucination issues inherent in large language models (LLMs). Previous approaches typically train retrievers based on semantic similarity, lacking optimization for RAG. More recent works have proposed aligning retrievers with the preference signals of LLMs. However, these preference signals are often difficult for dense retrievers, which typically have weaker language capabilities, to understand and learn effectively. Drawing inspiration from pedagogical theories like Guided Discovery Learning, we propose a novel framework, FiGRet (Fine-grained Guidance for Retrievers), which leverages the language capabilities of LLMs to construct examples from a more granular, information-centric perspective to guide the learning of retrievers. Specifically, our method utilizes LLMs to construct easy-to-understand examples from samples where the retriever performs poorly, focusing on three learning objectives highly relevant to the RAG scenario: relevance, comprehensiveness, and purity. These examples serve as scaffolding to ultimately align the retriever with the LLM's preferences. Furthermore, we employ a dual curriculum learning strategy and leverage the reciprocal feedback between LLM and retriever to further enhance the performance of the RAG system. A series of experiments demonstrate that our proposed framework enhances the performance of RAG systems equipped with different retrievers and is applicable to various LLMs.

Item-Language Model for Conversational Recommendation

Large-language Models (LLMs) have been extremely successful at tasks like complex dialogue understanding, reasoning and coding due to their emergent abilities. These emergent abilities have been extended with multi-modality to include image, audio, and video capabilities. Recommender systems, on the other hand, have been critical for information seeking and item discovery needs. Recently, there have been attempts to apply LLMs for recommendations. One difficulty of current attempts is that the underlying LLM is usually not trained on the recommender system data, which largely contains user interaction signals and is often not publicly available. Another difficulty is user interaction signals often have a different pattern from natural language text, and it is currently unclear if the LLM training setup can learn more non-trivial knowledge from interaction signals compared with traditional recommender system methods. Finally, it is difficult to train multiple LLMs for different use-cases, and to retain the original language and reasoning abilities when learning from recommender system data. To address these three limitations, we propose an Item-Language Model (ILM), which is composed of an item encoder to produce text-aligned item representations that encode user interaction signals, and a frozen LLM that can understand those item representations with preserved pretrained knowledge. We conduct extensive experiments which demonstrate both the importance of the language-alignment and of user interaction knowledge in the item encoder.

Understanding the Role of Mixup in Knowledge Distillation: An Empirical Study

Mixup is a popular data augmentation technique based on creating new samples by linear interpolation between two given data samples, to improve both the generalization and robustness of the trained model. Knowledge distillation (KD), on the other hand, is widely used for model compression and transfer learning, which involves using a larger network's implicit knowledge to guide the learning of a smaller network. At first glance, these two techniques seem very different, however, we found that "smoothness" is the connecting link between the two and is also a crucial attribute in understanding KD's interplay with mixup. Although many mixup variants and distillation methods have been proposed, much remains to be understood regarding the role of a mixup in knowledge distillation. In this paper, we present a detailed empirical study on various important dimensions of compatibility between mixup and knowledge distillation. We also scrutinize the behavior of the networks trained with a mixup in the light of knowledge distillation through extensive analysis, visualizations, and comprehensive experiments on image classification. Finally, based on our findings, we suggest improved strategies to guide the student network to enhance its effectiveness. Additionally, the findings of this study provide insightful suggestions to researchers and practitioners that commonly use techniques from KD. Our code is available at https://github.com/hchoi71/MIX-KD.

Modeling of learning curves with applications to pos tagging

An algorithm to estimate the evolution of learning curves on the whole of a training data base, based on the results obtained from a portion and using a functional strategy, is introduced. We approximate iteratively the sought value at the desired time, independently of the learning technique used and once a point in the process, called prediction level, has been passed. The proposal proves to be formally correct with respect to our working hypotheses and includes a reliable proximity condition. This allows the user to fix a convergence threshold with respect to the accuracy finally achievable, which extends the concept of stopping criterion and seems to be effective even in the presence of distorting observations. Our aim is to evaluate the training effort, supporting decision making in order to reduce the need for both human and computational resources during the learning process. The proposal is of interest in at least three operational procedures. The first is the anticipation of accuracy gain, with the purpose of measuring how much work is needed to achieve a certain degree of performance. The second relates the comparison of efficiency between systems at training time, with the objective of completing this task only for the one that best suits our requirements. The prediction of accuracy is also a valuable item of information for customizing systems, since we can estimate in advance the impact of settings on both the performance and the development costs. Using the generation of part-of-speech taggers as an example application, the experimental results are consistent with our expectations.

Continual Learning of Large Language Models: A Comprehensive Survey

The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at https://github.com/Wang-ML-Lab/llm-continual-learning-survey.

MoDeST: Bridging the Gap between Federated and Decentralized Learning with Decentralized Sampling

Federated and decentralized machine learning leverage end-user devices for privacy-preserving training of models at lower operating costs than within a data center. In a round of Federated Learning (FL), a random sample of participants trains locally, then a central server aggregates the local models to produce a single model for the next round. In a round of Decentralized Learning (DL), all participants train locally and then aggregate with their immediate neighbors, resulting in many local models with residual variance between them. On the one hand, FL's sampling and lower model variance provides lower communication costs and faster convergence. On the other hand, DL removes the need for a central server and distributes the communication costs more evenly amongst nodes, albeit at a larger total communication cost and slower convergence. In this paper, we present MoDeST: Mostly-Consistent Decentralized Sampling Training. MoDeST implements decentralized sampling in which a random subset of nodes is responsible for training and aggregation every round: this provides the benefits of both FL and DL without their traditional drawbacks. Our evaluation of MoDeST on four common learning tasks: (i) confirms convergence as fast as FL, (ii) shows a 3x-14x reduction in communication costs compared to DL, and (iii) demonstrates that MoDeST quickly adapts to nodes joining, leaving, or failing, even when 80% of all nodes become unresponsive.

DiffKG: Knowledge Graph Diffusion Model for Recommendation

Knowledge Graphs (KGs) have emerged as invaluable resources for enriching recommendation systems by providing a wealth of factual information and capturing semantic relationships among items. Leveraging KGs can significantly enhance recommendation performance. However, not all relations within a KG are equally relevant or beneficial for the target recommendation task. In fact, certain item-entity connections may introduce noise or lack informative value, thus potentially misleading our understanding of user preferences. To bridge this research gap, we propose a novel knowledge graph diffusion model for recommendation, referred to as DiffKG. Our framework integrates a generative diffusion model with a data augmentation paradigm, enabling robust knowledge graph representation learning. This integration facilitates a better alignment between knowledge-aware item semantics and collaborative relation modeling. Moreover, we introduce a collaborative knowledge graph convolution mechanism that incorporates collaborative signals reflecting user-item interaction patterns, guiding the knowledge graph diffusion process. We conduct extensive experiments on three publicly available datasets, consistently demonstrating the superiority of our DiffKG compared to various competitive baselines. We provide the source code repository of our proposed DiffKG model at the following link: https://github.com/HKUDS/DiffKG.

Cultural Evolution of Cooperation among LLM Agents

Large language models (LLMs) provide a compelling foundation for building generally-capable AI agents. These agents may soon be deployed at scale in the real world, representing the interests of individual humans (e.g., AI assistants) or groups of humans (e.g., AI-accelerated corporations). At present, relatively little is known about the dynamics of multiple LLM agents interacting over many generations of iterative deployment. In this paper, we examine whether a "society" of LLM agents can learn mutually beneficial social norms in the face of incentives to defect, a distinctive feature of human sociality that is arguably crucial to the success of civilization. In particular, we study the evolution of indirect reciprocity across generations of LLM agents playing a classic iterated Donor Game in which agents can observe the recent behavior of their peers. We find that the evolution of cooperation differs markedly across base models, with societies of Claude 3.5 Sonnet agents achieving significantly higher average scores than Gemini 1.5 Flash, which, in turn, outperforms GPT-4o. Further, Claude 3.5 Sonnet can make use of an additional mechanism for costly punishment to achieve yet higher scores, while Gemini 1.5 Flash and GPT-4o fail to do so. For each model class, we also observe variation in emergent behavior across random seeds, suggesting an understudied sensitive dependence on initial conditions. We suggest that our evaluation regime could inspire an inexpensive and informative new class of LLM benchmarks, focussed on the implications of LLM agent deployment for the cooperative infrastructure of society.

I2D2: Inductive Knowledge Distillation with NeuroLogic and Self-Imitation

Pre-trained language models, despite their rapid advancements powered by scale, still fall short of robust commonsense capabilities. And yet, scale appears to be the winning recipe; after all, the largest models seem to have acquired the largest amount of commonsense capabilities. Or is it? In this paper, we investigate the possibility of a seemingly impossible match: can smaller language models with dismal commonsense capabilities (i.e., GPT-2), ever win over models that are orders of magnitude larger and better (i.e., GPT-3), if the smaller models are powered with novel commonsense distillation algorithms? The key intellectual question we ask here is whether it is possible, if at all, to design a learning algorithm that does not benefit from scale, yet leads to a competitive level of commonsense acquisition. In this work, we study the generative models of commonsense knowledge, focusing on the task of generating generics, statements of commonsense facts about everyday concepts, e.g., birds can fly. We introduce a novel commonsense distillation framework, I2D2, that loosely follows the Symbolic Knowledge Distillation of West et al. but breaks the dependence on the extreme-scale models as the teacher model by two innovations: (1) the novel adaptation of NeuroLogic Decoding to enhance the generation quality of the weak, off-the-shelf language models, and (2) self-imitation learning to iteratively learn from the model's own enhanced commonsense acquisition capabilities. Empirical results suggest that scale is not the only way, as novel algorithms can be a promising alternative. Moreover, our study leads to a new corpus of generics, Gen-A-Tomic, that is of the largest and highest quality available to date.

Italian Crossword Generator: Enhancing Education through Interactive Word Puzzles

Educational crosswords offer numerous benefits for students, including increased engagement, improved understanding, critical thinking, and memory retention. Creating high-quality educational crosswords can be challenging, but recent advances in natural language processing and machine learning have made it possible to use language models to generate nice wordplays. The exploitation of cutting-edge language models like GPT3-DaVinci, GPT3-Curie, GPT3-Babbage, GPT3-Ada, and BERT-uncased has led to the development of a comprehensive system for generating and verifying crossword clues. A large dataset of clue-answer pairs was compiled to fine-tune the models in a supervised manner to generate original and challenging clues from a given keyword. On the other hand, for generating crossword clues from a given text, Zero/Few-shot learning techniques were used to extract clues from the input text, adding variety and creativity to the puzzles. We employed the fine-tuned model to generate data and labeled the acceptability of clue-answer parts with human supervision. To ensure quality, we developed a classifier by fine-tuning existing language models on the labeled dataset. Conversely, to assess the quality of clues generated from the given text using zero/few-shot learning, we employed a zero-shot learning approach to check the quality of generated clues. The results of the evaluation have been very promising, demonstrating the effectiveness of the approach in creating high-standard educational crosswords that offer students engaging and rewarding learning experiences.

MathDial: A Dialogue Tutoring Dataset with Rich Pedagogical Properties Grounded in Math Reasoning Problems

While automatic dialogue tutors hold great potential in making education personalized and more accessible, research on such systems has been hampered by a lack of sufficiently large and high-quality datasets. Collecting such datasets remains challenging, as recording tutoring sessions raises privacy concerns and crowdsourcing leads to insufficient data quality. To address this, we propose a framework to generate such dialogues by pairing human teachers with a Large Language Model (LLM) prompted to represent common student errors. We describe how we use this framework to collect MathDial, a dataset of 3k one-to-one teacher-student tutoring dialogues grounded in multi-step math reasoning problems. While models like GPT-3 are good problem solvers, they fail at tutoring because they generate factually incorrect feedback or are prone to revealing solutions to students too early. To overcome this, we let teachers provide learning opportunities to students by guiding them using various scaffolding questions according to a taxonomy of teacher moves. We demonstrate MathDial and its extensive annotations can be used to finetune models to be more effective tutors (and not just solvers). We confirm this by automatic and human evaluation, notably in an interactive setting that measures the trade-off between student solving success and telling solutions. The dataset is released publicly.

Automatic assessment of text-based responses in post-secondary education: A systematic review

Text-based open-ended questions in academic formative and summative assessments help students become deep learners and prepare them to understand concepts for a subsequent conceptual assessment. However, grading text-based questions, especially in large courses, is tedious and time-consuming for instructors. Text processing models continue progressing with the rapid development of Artificial Intelligence (AI) tools and Natural Language Processing (NLP) algorithms. Especially after breakthroughs in Large Language Models (LLM), there is immense potential to automate rapid assessment and feedback of text-based responses in education. This systematic review adopts a scientific and reproducible literature search strategy based on the PRISMA process using explicit inclusion and exclusion criteria to study text-based automatic assessment systems in post-secondary education, screening 838 papers and synthesizing 93 studies. To understand how text-based automatic assessment systems have been developed and applied in education in recent years, three research questions are considered. All included studies are summarized and categorized according to a proposed comprehensive framework, including the input and output of the system, research motivation, and research outcomes, aiming to answer the research questions accordingly. Additionally, the typical studies of automated assessment systems, research methods, and application domains in these studies are investigated and summarized. This systematic review provides an overview of recent educational applications of text-based assessment systems for understanding the latest AI/NLP developments assisting in text-based assessments in higher education. Findings will particularly benefit researchers and educators incorporating LLMs such as ChatGPT into their educational activities.

Skills-in-Context Prompting: Unlocking Compositionality in Large Language Models

We consider the problem of eliciting compositional generalization capabilities in large language models (LLMs) with a novel type of prompting strategy. Compositional generalization empowers the LLMs to solve problems that are harder than the ones they have seen (i.e., easy-to-hard generalization), which is a critical reasoning capability of human-like intelligence. However, even the current state-of-the-art LLMs still struggle with this form of reasoning. To bridge this gap, we propose skills-in-context (SKiC) prompting, which instructs LLMs how to compose basic skills to resolve more complex problems. We find that it is crucial to demonstrate both the skills and the compositional examples within the same prompting context. With as few as two examplars, our SKiC prompting initiates strong synergies between skills and their composition capabilities. Notably, it empowers LLMs to solve unseen problems that require innovative skill compositions, achieving near-perfect generalization on a broad range of challenging compositionality tasks. Intriguingly, SKiC prompting unlocks the latent potential of LLMs, enabling them to leverage pre-existing internal skills acquired during earlier pre-training stages, even when these skills are not explicitly presented in the prompting context. This results in the capability of LLMs to solve unseen complex problems by activating and composing internal competencies. With such prominent features, SKiC prompting is able to achieve state-of-the-art performance on challenging mathematical reasoning benchmarks (e.g., MATH).

Synthetic Data (Almost) from Scratch: Generalized Instruction Tuning for Language Models

We introduce Generalized Instruction Tuning (called GLAN), a general and scalable method for instruction tuning of Large Language Models (LLMs). Unlike prior work that relies on seed examples or existing datasets to construct instruction tuning data, GLAN exclusively utilizes a pre-curated taxonomy of human knowledge and capabilities as input and generates large-scale synthetic instruction data across all disciplines. Specifically, inspired by the systematic structure in human education system, we build the taxonomy by decomposing human knowledge and capabilities to various fields, sub-fields and ultimately, distinct disciplines semi-automatically, facilitated by LLMs. Subsequently, we generate a comprehensive list of subjects for every discipline and proceed to design a syllabus tailored to each subject, again utilizing LLMs. With the fine-grained key concepts detailed in every class session of the syllabus, we are able to generate diverse instructions with a broad coverage across the entire spectrum of human knowledge and skills. Extensive experiments on large language models (e.g., Mistral) demonstrate that GLAN excels in multiple dimensions from mathematical reasoning, coding, academic exams, logical reasoning to general instruction following without using task-specific training data of these tasks. In addition, GLAN allows for easy customization and new fields or skills can be added by simply incorporating a new node into our taxonomy.

Retrieval-Augmented Meta Learning for Low-Resource Text Classification

Meta learning have achieved promising performance in low-resource text classification which aims to identify target classes with knowledge transferred from source classes with sets of small tasks named episodes. However, due to the limited training data in the meta-learning scenario and the inherent properties of parameterized neural networks, poor generalization performance has become a pressing problem that needs to be addressed. To deal with this issue, we propose a meta-learning based method called Retrieval-Augmented Meta Learning(RAML). It not only uses parameterization for inference but also retrieves non-parametric knowledge from an external corpus to make inferences, which greatly alleviates the problem of poor generalization performance caused by the lack of diverse training data in meta-learning. This method differs from previous models that solely rely on parameters, as it explicitly emphasizes the importance of non-parametric knowledge, aiming to strike a balance between parameterized neural networks and non-parametric knowledge. The model is required to determine which knowledge to access and utilize during inference. Additionally, our multi-view passages fusion network module can effectively and efficiently integrate the retrieved information into low-resource classification task. The extensive experiments demonstrate that RAML significantly outperforms current SOTA low-resource text classification models.

A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

CREAK: A Dataset for Commonsense Reasoning over Entity Knowledge

Most benchmark datasets targeting commonsense reasoning focus on everyday scenarios: physical knowledge like knowing that you could fill a cup under a waterfall [Talmor et al., 2019], social knowledge like bumping into someone is awkward [Sap et al., 2019], and other generic situations. However, there is a rich space of commonsense inferences anchored to knowledge about specific entities: for example, deciding the truthfulness of a claim "Harry Potter can teach classes on how to fly on a broomstick." Can models learn to combine entity knowledge with commonsense reasoning in this fashion? We introduce CREAK, a testbed for commonsense reasoning about entity knowledge, bridging fact-checking about entities (Harry Potter is a wizard and is skilled at riding a broomstick) with commonsense inferences (if you're good at a skill you can teach others how to do it). Our dataset consists of 13k human-authored English claims about entities that are either true or false, in addition to a small contrast set. Crowdworkers can easily come up with these statements and human performance on the dataset is high (high 90s); we argue that models should be able to blend entity knowledge and commonsense reasoning to do well here. In our experiments, we focus on the closed-book setting and observe that a baseline model finetuned on existing fact verification benchmark struggles on CREAK. Training a model on CREAK improves accuracy by a substantial margin, but still falls short of human performance. Our benchmark provides a unique probe into natural language understanding models, testing both its ability to retrieve facts (e.g., who teaches at the University of Chicago?) and unstated commonsense knowledge (e.g., butlers do not yell at guests).

Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing

This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website http://pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.

Federated Orthogonal Training: Mitigating Global Catastrophic Forgetting in Continual Federated Learning

Federated Learning (FL) has gained significant attraction due to its ability to enable privacy-preserving training over decentralized data. Current literature in FL mostly focuses on single-task learning. However, over time, new tasks may appear in the clients and the global model should learn these tasks without forgetting previous tasks. This real-world scenario is known as Continual Federated Learning (CFL). The main challenge of CFL is Global Catastrophic Forgetting, which corresponds to the fact that when the global model is trained on new tasks, its performance on old tasks decreases. There have been a few recent works on CFL to propose methods that aim to address the global catastrophic forgetting problem. However, these works either have unrealistic assumptions on the availability of past data samples or violate the privacy principles of FL. We propose a novel method, Federated Orthogonal Training (FOT), to overcome these drawbacks and address the global catastrophic forgetting in CFL. Our algorithm extracts the global input subspace of each layer for old tasks and modifies the aggregated updates of new tasks such that they are orthogonal to the global principal subspace of old tasks for each layer. This decreases the interference between tasks, which is the main cause for forgetting. We empirically show that FOT outperforms state-of-the-art continual learning methods in the CFL setting, achieving an average accuracy gain of up to 15% with 27% lower forgetting while only incurring a minimal computation and communication cost.

Synatra: Turning Indirect Knowledge into Direct Demonstrations for Digital Agents at Scale

LLMs can now act as autonomous agents that interact with digital environments and complete specific objectives (e.g., arranging an online meeting). However, accuracy is still far from satisfactory, partly due to a lack of large-scale, direct demonstrations for digital tasks. Obtaining supervised data from humans is costly, and automatic data collection through exploration or reinforcement learning relies on complex environmental and content setup, resulting in datasets that lack comprehensive coverage of various scenarios. On the other hand, there is abundant knowledge that may indirectly assist task completion, such as online tutorials that were created for human consumption. In this work, we present Synatra, an approach that effectively transforms this indirect knowledge into direct supervision at scale. We define different types of indirect knowledge, and carefully study the available sources to obtain it, methods to encode the structure of direct demonstrations, and finally methods to transform indirect knowledge into direct demonstrations. We use 100k such synthetically-created demonstrations to finetune a 7B CodeLlama, and demonstrate that the resulting agent surpasses all comparably sized models on three web-based task benchmarks Mind2Web, MiniWoB++ and WebArena, as well as surpassing GPT-3.5 on WebArena and Mind2Web. In addition, while synthetic demonstrations prove to be only 3% the cost of human demonstrations (at $0.031 each), we show that the synthetic demonstrations can be more effective than an identical number of human demonstrations collected from limited domains.

TAID: Temporally Adaptive Interpolated Distillation for Efficient Knowledge Transfer in Language Models

Causal language models have demonstrated remarkable capabilities, but their size poses significant challenges for deployment in resource-constrained environments. Knowledge distillation, a widely-used technique for transferring knowledge from a large teacher model to a small student model, presents a promising approach for model compression. A significant remaining issue lies in the major differences between teacher and student models, namely the substantial capacity gap, mode averaging, and mode collapse, which pose barriers during distillation. To address these issues, we introduce Temporally Adaptive Interpolated Distillation (TAID), a novel knowledge distillation approach that dynamically interpolates student and teacher distributions through an adaptive intermediate distribution, gradually shifting from the student's initial distribution towards the teacher's distribution. We provide a theoretical analysis demonstrating TAID's ability to prevent mode collapse and empirically show its effectiveness in addressing the capacity gap while balancing mode averaging and mode collapse. Our comprehensive experiments demonstrate TAID's superior performance across various model sizes and architectures in both instruction tuning and pre-training scenarios. Furthermore, we showcase TAID's practical impact by developing two state-of-the-art compact foundation models: TAID-LLM-1.5B for language tasks and TAID-VLM-2B for vision-language tasks. These results demonstrate TAID's effectiveness in creating high-performing and efficient models, advancing the development of more accessible AI technologies.