- Fullness of the Kuznetsov-Polishchuk exceptional collection for the spinor tenfold Kuznetsov and Polishchuk provided a general algorithm to construct exceptional collections of maximal length for homogeneous varieties of type A,B,C,D. We consider the case of the spinor tenfold and we prove that the corresponding collection is full, i.e. it generates the whole derived category of coherent sheaves. As a step of the proof, we construct some resolutions of homogeneous vector bundles which might be of independent interest. 2 authors · Jun 19, 2023
2 Understanding networks and their behaviors using sheaf theory Many complicated network problems can be easily understood on small networks. Difficulties arise when small networks are combined into larger ones. Fortunately, the mathematical theory of sheaves was constructed to address just this kind of situation; it extends locally-defined structures to globally valid inferences by way of consistency relations. This paper exhibits examples in network monitoring and filter hardware where sheaves have useful descriptive power. 1 authors · Aug 21, 2013
- Specialization maps for Scholze's category of diamonds We introduce the specialization map in Scholzes theory of diamonds. We consider v-sheaves that behave like formal schemes and call them kimberlites. We attach to them: a reduced special fiber, an analytic locus, a specialization map, a Zariski site, and an etale site. When the kimberlite comes from a formal scheme, our sites recover the classical ones. We prove that unramified p-adic Beilinson--Drinfeld Grassmannians are kimberlites with finiteness and normality properties. 1 authors · Dec 10, 2020
2 A Very Elementary Introduction to Sheaves This paper is a very non-rigorous, loose, and extremely basic introduction to sheaves. This is meant to be a a guide to gaining intuition about sheaves, what they look like, and how they work, so that after reading this paper, someone can jump into the extremely abstract definitions and examples seen in textbooks with at least some idea of what is going on. Most of this material is inspired and built from the work of Dr. Michael Robinson, and that of Dr. Robert Ghrist and Dr. Jakob Hansen, as well as Dr. Justin Curry's PhD thesis, who are some of the only applied sheaf theorists out there and they do an amazing job of explaining sheaves in a concrete way through their research. The rest of this paper is populated by mathematical definitions found in textbooks that I have stretched from two lines into multiple pages, as well as some analogies for thinking of sheaves I have thought of myself. This paper only assumes knowledge of basic linear algebra, basic group theory, and the very fundamentals of topology. If there is anything in the setup that you do not understand it is probably a quick Wikipedia search away. I hope this paper provides insight, intuition, and helpful examples of why sheaves are such powerful tools in both math and science. 1 authors · Feb 2, 2022
2 Sheaf Theory through Examples (Abridged Version) This book provides an inviting tour through sheaf theory, from the perspective of applied category theory and pitched at a less specialized audience than is typical with introductions to sheaves. The book makes it as easy as possible for the reader new to sheaves, by motivating and developing the theory via a broad range of concrete examples and explicit constructions, including applications to n-colorings of graphs, satellite data, chess problems, Bayes nets, musical performance, complexes, and more. Included is an extended first chapter introducing and motivating all the necessary category-theoretical background, again with a strong emphasis on concrete examples. A new and unabridged version (including a fifth chapter on more advanced topics and a conclusion) will be available with MIT Press. 1 authors · Dec 15, 2020
- Information structures and their cohomology We introduce the category of information structures, whose objects are suitable diagrams of measurable sets that encode the possible outputs of a given family of observables and their mutual relationships of refinement; they serve as mathematical models of contextuality in classical and quantum settings. Each information structure can be regarded as a ringed site with trivial topology; the structure ring is generated by the observables themselves and its multiplication corresponds to joint measurement. We extend Baudot and Bennequin's definition of information cohomology to this setting, as a derived functor in the category of modules over the structure ring, and show explicitly that the bar construction gives a projective resolution in that category, recovering in this way the cochain complexes previously considered in the literature. Finally, we study the particular case of a one-parameter family of coefficients made of functions of probability distributions. The only 1-cocycles are Shannon entropy or Tsallis alpha-entropy, depending on the value of the parameter. 1 authors · Sep 22, 2017
- Calabi-Yau fibrations, simple K-equivalence and mutations A homogeneous roof is a rational homogeneous variety of Picard rank 2 and index r equipped with two different mathbb P^{r-1}-bundle structures. We consider bundles of homogeneous roofs over a smooth projective variety, formulating a relative version of the duality of Calabi--Yau pairs associated to roofs of projective bundles. We discuss how derived equivalence of such pairs can lift to Calabi--Yau fibrations, extending a result of Bridgeland and Maciocia to higher-dimensional cases. We formulate an approach to prove that the DK-conjecture holds for a class of simple K-equivalent maps arising from bundles of roofs. As an example, we propose a pair of eight-dimensional Calabi--Yau varieties fibered in dual Calabi--Yau threefolds, related by a GLSM phase transition, and we prove derived equivalence with the methods above. 1 authors · Jun 11, 2020
- Derived categories of families of Fano threefolds We construct S-linear semiorthogonal decompositions of derived categories of smooth Fano threefold fibrations X/S with relative Picard rank 1 and rational geometric fibers and discuss how the structure of components of these decompositions is related to rationality properties of X/S. 1 authors · Feb 24, 2022
- Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs Cellular sheaves equip graphs with a "geometrical" structure by assigning vector spaces and linear maps to nodes and edges. Graph Neural Networks (GNNs) implicitly assume a graph with a trivial underlying sheaf. This choice is reflected in the structure of the graph Laplacian operator, the properties of the associated diffusion equation, and the characteristics of the convolutional models that discretise this equation. In this paper, we use cellular sheaf theory to show that the underlying geometry of the graph is deeply linked with the performance of GNNs in heterophilic settings and their oversmoothing behaviour. By considering a hierarchy of increasingly general sheaves, we study how the ability of the sheaf diffusion process to achieve linear separation of the classes in the infinite time limit expands. At the same time, we prove that when the sheaf is non-trivial, discretised parametric diffusion processes have greater control than GNNs over their asymptotic behaviour. On the practical side, we study how sheaves can be learned from data. The resulting sheaf diffusion models have many desirable properties that address the limitations of classical graph diffusion equations (and corresponding GNN models) and obtain competitive results in heterophilic settings. Overall, our work provides new connections between GNNs and algebraic topology and would be of interest to both fields. 5 authors · Feb 9, 2022
- The algebra of higher homotopy operations We explain how the simplicial higher-order unstable homotopy operations defined in [BBS2] may be composed and inserted one in another, thus forming a coherent if complicated algebraic structure. 3 authors · Jul 22, 2023
- Sheaf Neural Networks with Connection Laplacians A Sheaf Neural Network (SNN) is a type of Graph Neural Network (GNN) that operates on a sheaf, an object that equips a graph with vector spaces over its nodes and edges and linear maps between these spaces. SNNs have been shown to have useful theoretical properties that help tackle issues arising from heterophily and over-smoothing. One complication intrinsic to these models is finding a good sheaf for the task to be solved. Previous works proposed two diametrically opposed approaches: manually constructing the sheaf based on domain knowledge and learning the sheaf end-to-end using gradient-based methods. However, domain knowledge is often insufficient, while learning a sheaf could lead to overfitting and significant computational overhead. In this work, we propose a novel way of computing sheaves drawing inspiration from Riemannian geometry: we leverage the manifold assumption to compute manifold-and-graph-aware orthogonal maps, which optimally align the tangent spaces of neighbouring data points. We show that this approach achieves promising results with less computational overhead when compared to previous SNN models. Overall, this work provides an interesting connection between algebraic topology and differential geometry, and we hope that it will spark future research in this direction. 6 authors · Jun 17, 2022
- A Heegaard-Floer TQFT for link cobordisms We introduce a Heegaard-Floer homology functor from the category of oriented links in closed 3-manifolds and oriented surface cobordisms in 4-manifolds connecting them to the category of F[v]-modules and F[v]-homomorphisms between them, where F is the field with two elements. In comparison with previously defined TQFTs for decorated links and link cobordisms, the construction of this paper has the advantage of being independent from the decoration. Some of the basic properties of this functor are also explored. 1 authors · Jun 20, 2024
- The generalized roof F(1,2,n): Hodge structures and derived categories We consider generalized homogeneous roofs, i.e. quotients of simply connected, semisimple Lie groups by a parabolic subgroup, which admit two projective bundle structures. Given a general hyperplane section on such a variety, we consider the zero loci of its pushforwards along the projective bundle structures and we discuss their properties at the level of Hodge structures. In the case of the flag variety F(1,2,n) with its projections to P^{n-1} and G(2, n), we construct a derived embedding of the relevant zero loci by methods based on the study of B-brane categories in the context of a gauged linear sigma model. 4 authors · Oct 20, 2021
- De Finetti's construction as a categorical limit This paper reformulates a classical result in probability theory from the 1930s in modern categorical terms: de Finetti's representation theorem is redescribed as limit statement for a chain of finite spaces in the Kleisli category of the Giry monad. This new limit is used to identify among exchangeable coalgebras the final one. 2 authors · Mar 4, 2020
- Probability, valuations, hyperspace: Three monads on Top and the support as a morphism We consider three monads on Top, the category of topological spaces, which formalize topological aspects of probability and possibility in categorical terms. The first one is the Hoare hyperspace monad H, which assigns to every space its space of closed subsets equipped with the lower Vietoris topology. The second is the monad V of continuous valuations, also known as the extended probabilistic powerdomain. We construct both monads in a unified way in terms of double dualization. This reveals a close analogy between them, and allows us to prove that the operation of taking the support of a continuous valuation is a morphism of monads from V to H. In particular, this implies that every H-algebra (topological complete semilattice) is also a V-algebra. Third, we show that V can be restricted to a submonad of tau-smooth probability measures on Top. By composing these two morphisms of monads, we obtain that taking the support of a tau-smooth probability measure is also a morphism of monads. 3 authors · Oct 8, 2019
- New counterexamples to the birational Torelli theorem for Calabi--Yau manifolds We produce counterexamples to the birational Torelli theorem for Calabi-Yau manifolds in arbitrarily high dimension: this is done by exhibiting a series of non birational pairs of Calabi-Yau (n^2-1)-folds which, for n geq 2 even, admit an isometry between their middle cohomologies. These varieties also satisfy an mathbb L-equivalence relation in the Grothendieck ring of varieties, i.e. the difference of their classes annihilates a power of the class of the affine line. We state this last property for a broader class of Calabi-Yau pairs, namely all those which are realized as pushforwards of a general (1,1)-section on a homogeneous roof in the sense of Kanemitsu, along its two extremal contractions. 1 authors · Nov 7, 2022
- Homoclinic Floer homology via direct limits Let (M omega) be a two dimensional symplectic manifold, phi: M to M a symplectomorphism with hyperbolic fixed point x and transversely intersecting stable and unstable manifolds W^s(phi, x) cap W^u(phi, x)=:H(phi, x). The intersection points are called homoclinic points, and the stable and unstable manifold are in this situation Lagrangian submanifolds. For this Lagrangian intersection problem with its infinite number of intersection points and wild oscillation behavior, we first define a Floer homology generated by finite sets of so-called contractible homoclinic points. This generalizes very significantly the Floer homologies generated by (semi)primary points defined by us in earlier works. Nevertheless these Floer homologies only consider quite `local' aspects of W^s(phi, x) cap W^u(phi, x) since their generator sets are finite, but the number of all contractible homoclinic points is infinite. To overcome this issue, we construct a direct limit of these `local' homoclinic Floer homologies over suitable index sets. These direct limits thus accumulate the information gathered by the finitely generated local' homoclinic Floer homologies. 1 authors · Feb 19, 2024
- Mukai duality via roofs of projective bundles We investigate a construction providing pairs of Calabi-Yau varieties described as zero loci of pushforwards of a hyperplane section on a roof as described by Kanemitsu. We discuss the implications of such construction at the level of Hodge equivalence, derived equivalence and mathbb L-equivalence. For the case of K3 surfaces, we provide alternative interpretations for the Fourier-Mukai duality in the family of K3 surfaces of degree 12 of Mukai. In all these constructions the derived equivalence lifts to an equivalence of matrix factorizations categories. 2 authors · Jan 17, 2020
2 All Weight Systems for Calabi-Yau Fourfolds from Reflexive Polyhedra For any given dimension d, all reflexive d-polytopes can be found (in principle) as subpolytopes of a number of maximal polyhedra that are defined in terms of (d+1)-tuples of integers (weights), or combinations of k-tuples of weights with k<d+1. We present the results of a complete classification of sextuples of weights pertaining to the construction of all reflexive polytopes in five dimensions. We find 322 383 760 930 such weight systems. 185 269 499 015 of them give rise directly to reflexive polytopes and thereby to mirror pairs of Calabi-Yau fourfolds. These lead to 532 600 483 distinct sets of Hodge numbers. 2 authors · Aug 7, 2018
- Infinite products and zero-one laws in categorical probability Markov categories are a recent category-theoretic approach to the foundations of probability and statistics. Here we develop this approach further by treating infinite products and the Kolmogorov extension theorem. This is relevant for all aspects of probability theory in which infinitely many random variables appear at a time. These infinite tensor products bigotimes_{i in J} X_i come in two versions: a weaker but more general one for families of objects (X_i)_{i in J} in semicartesian symmetric monoidal categories, and a stronger but more specific one for families of objects in Markov categories. As a first application, we state and prove versions of the zero-one laws of Kolmogorov and Hewitt-Savage for Markov categories. This gives general versions of these results which can be instantiated not only in measure-theoretic probability, where they specialize to the standard ones in the setting of standard Borel spaces, but also in other contexts. 2 authors · Dec 5, 2019
- Space-time tradeoffs of lenses and optics via higher category theory Optics and lenses are abstract categorical gadgets that model systems with bidirectional data flow. In this paper we observe that the denotational definition of optics - identifying two optics as equivalent by observing their behaviour from the outside - is not suitable for operational, software oriented approaches where optics are not merely observed, but built with their internal setups in mind. We identify operational differences between denotationally isomorphic categories of cartesian optics and lenses: their different composition rule and corresponding space-time tradeoffs, positioning them at two opposite ends of a spectrum. With these motivations we lift the existing categorical constructions and their relationships to the 2-categorical level, showing that the relevant operational concerns become visible. We define the 2-category 2-Optic(C) whose 2-cells explicitly track optics' internal configuration. We show that the 1-category Optic(C) arises by locally quotienting out the connected components of this 2-category. We show that the embedding of lenses into cartesian optics gets weakened from a functor to an oplax functor whose oplaxator now detects the different composition rule. We determine the difficulties in showing this functor forms a part of an adjunction in any of the standard 2-categories. We establish a conjecture that the well-known isomorphism between cartesian lenses and optics arises out of the lax 2-adjunction between their double-categorical counterparts. In addition to presenting new research, this paper is also meant to be an accessible introduction to the topic. 1 authors · Sep 19, 2022
- Bimonoidal Structure of Probability Monads We give a conceptual treatment of the notion of joints, marginals, and independence in the setting of categorical probability. This is achieved by endowing the usual probability monads (like the Giry monad) with a monoidal and an opmonoidal structure, mutually compatible (i.e. a bimonoidal structure). If the underlying monoidal category is cartesian monoidal, a bimonoidal structure is given uniquely by a commutative strength. However, if the underlying monoidal category is not cartesian monoidal, a strength is not enough to guarantee all the desired properties of joints and marginals. A bimonoidal structure is then the correct requirement for the more general case. We explain the theory and the operational interpretation, with the help of the graphical calculus for monoidal categories. We give a definition of stochastic independence based on the bimonoidal structure, compatible with the intuition and with other approaches in the literature for cartesian monoidal categories. We then show as an example that the Kantorovich monad on the category of complete metric spaces is a bimonoidal monad for a non-cartesian monoidal structure. 2 authors · Apr 10, 2018
- Reverse derivative categories The reverse derivative is a fundamental operation in machine learning and automatic differentiation. This paper gives a direct axiomatization of a category with a reverse derivative operation, in a similar style to that given by Cartesian differential categories for a forward derivative. Intriguingly, a category with a reverse derivative also has a forward derivative, but the converse is not true. In fact, we show explicitly what a forward derivative is missing: a reverse derivative is equivalent to a forward derivative with a dagger structure on its subcategory of linear maps. Furthermore, we show that these linear maps form an additively enriched category with dagger biproducts. 7 authors · Oct 15, 2019
- Categorification of Group Equivariant Neural Networks We present a novel application of category theory for deep learning. We show how category theory can be used to understand and work with the linear layer functions of group equivariant neural networks whose layers are some tensor power space of R^{n} for the groups S_n, O(n), Sp(n), and SO(n). By using category theoretic constructions, we build a richer structure that is not seen in the original formulation of these neural networks, leading to new insights. In particular, we outline the development of an algorithm for quickly computing the result of a vector that is passed through an equivariant, linear layer for each group in question. The success of our approach suggests that category theory could be beneficial for other areas of deep learning. 1 authors · Apr 27, 2023
- Adiabatic Solutions of the Haydys-Witten Equations and Symplectic Khovanov Homology An influential conjecture by Witten states that there is an instanton Floer homology of four-manifolds with corners that in certain situations is isomorphic to Khovanov homology of a given knot K. The Floer chain complex is generated by Nahm pole solutions of the Kapustin-Witten equations on R^3 times R^+_y with an additional monopole-like singular behaviour along the knot K inside the three-dimensional boundary at y=0. The Floer differential is given by counting solutions of the Haydys-Witten equations that interpolate between Kapustin-Witten solutions along an additional flow direction R_s. This article investigates solutions of a decoupled version of the Kapustin-Witten and Haydys-Witten equations on R_s times R^3 times R^+_y, which in contrast to the full equations exhibit a Hermitian Yang-Mills structure and can be viewed as a lift of the extended Bogomolny equations (EBE) from three to five dimensions. Inspired by Gaiotto-Witten's approach of adiabatically braiding EBE-solutions to obtain generators of the Floer homology, we propose that there is an equivalence between adiabatic solutions of the decoupled Haydys-Witten equations and non-vertical paths in the moduli space of EBE-solutions fibered over the space of monopole positions. Moreover, we argue that the Grothendieck-Springer resolution of the Lie algebra of the gauge group provides a finite-dimensional model of this moduli space of monopole solutions. These considerations suggest an intriguing similarity between Haydys-Witten instanton Floer homology and symplectic Khovanov homology and provide a novel approach towards a proof of Witten's gauge-theoretic interpretations of Khovanov homology. 1 authors · Jan 2
- A Convenient Category for Higher-Order Probability Theory Higher-order probabilistic programming languages allow programmers to write sophisticated models in machine learning and statistics in a succinct and structured way, but step outside the standard measure-theoretic formalization of probability theory. Programs may use both higher-order functions and continuous distributions, or even define a probability distribution on functions. But standard probability theory does not handle higher-order functions well: the category of measurable spaces is not cartesian closed. Here we introduce quasi-Borel spaces. We show that these spaces: form a new formalization of probability theory replacing measurable spaces; form a cartesian closed category and so support higher-order functions; form a well-pointed category and so support good proof principles for equational reasoning; and support continuous probability distributions. We demonstrate the use of quasi-Borel spaces for higher-order functions and probability by: showing that a well-known construction of probability theory involving random functions gains a cleaner expression; and generalizing de Finetti's theorem, that is a crucial theorem in probability theory, to quasi-Borel spaces. 4 authors · Jan 10, 2017
- Open Gromov-Witten theory on Calabi-Yau three-folds I We propose a general theory of the Open Gromov-Witten invariant on Calabi-Yau three-folds. We introduce the moduli space of multi-curves and show how it leads to invariants. Our construction is based on an idea of Witten. In the special case that each connected component of the Lagrangian submanifold has the rational homology of a sphere we define rational numbers F_{g,h} for each genus g and h boundary components. 1 authors · Jul 29, 2009
- Preservation of Loewy Diagrams Under Exact Functors We derive sufficient conditions for exact functors on locally finite abelian categories to preserve Loewy diagrams of objects. We apply our results to determine sufficient conditions for induction functors associated to simple current extensions of vertex algebras to preserve Loewy diagrams. 1 authors · May 1, 2023
- Learners' Languages In "Backprop as functor", the authors show that the fundamental elements of deep learning -- gradient descent and backpropagation -- can be conceptualized as a strong monoidal functor Para(Euc)toLearn from the category of parameterized Euclidean spaces to that of learners, a category developed explicitly to capture parameter update and backpropagation. It was soon realized that there is an isomorphism LearncongPara(Slens), where Slens is the symmetric monoidal category of simple lenses as used in functional programming. In this note, we observe that Slens is a full subcategory of Poly, the category of polynomial functors in one variable, via the functor Amapsto Ay^A. Using the fact that (Poly,otimes) is monoidal closed, we show that a map Ato B in Para(Slens) has a natural interpretation in terms of dynamical systems (more precisely, generalized Moore machines) whose interface is the internal-hom type [Ay^A,By^B]. Finally, we review the fact that the category p-Coalg of dynamical systems on any p in Poly forms a topos, and consider the logical propositions that can be stated in its internal language. We give gradient descent as an example, and we conclude by discussing some directions for future work. 1 authors · Mar 1, 2021
- Homotopy Limits and Homotopy Colimits of Chain Complexes We prove that the homotopy limits and homotopy colimits of chain complexes can be computed by the cobar and bar constructions. We also show that the totalizations of double complexes compute the homotopy limits and homotopy colimits of simplicial and cosimplicial chain complexes. 1 authors · Sep 29, 2023
- An elementary and unified proof of Grothendieck's inequality We present an elementary, self-contained proof of Grothendieck's inequality that unifies the real and complex cases and yields both the Krivine and Haagerup bounds, the current best-known explicit bounds for the real and complex Grothendieck constants respectively. This article is intended to be pedagogical, combining and streamlining known ideas of Lindenstrauss--Pe{\l}czy\'nski, Krivine, and Haagerup into a proof that need only univariate calculus, basic complex variables, and a modicum of linear algebra as prerequisites. 3 authors · Nov 28, 2017
- Brauer's Group Equivariant Neural Networks We provide a full characterisation of all of the possible group equivariant neural networks whose layers are some tensor power of R^{n} for three symmetry groups that are missing from the machine learning literature: O(n), the orthogonal group; SO(n), the special orthogonal group; and Sp(n), the symplectic group. In particular, we find a spanning set of matrices for the learnable, linear, equivariant layer functions between such tensor power spaces in the standard basis of R^{n} when the group is O(n) or SO(n), and in the symplectic basis of R^{n} when the group is Sp(n). 1 authors · Dec 16, 2022