1 Good things come in small packages: Should we adopt Lite-GPUs in AI infrastructure? To match the blooming demand of generative AI workloads, GPU designers have so far been trying to pack more and more compute and memory into single complex and expensive packages. However, there is growing uncertainty about the scalability of individual GPUs and thus AI clusters, as state-of-the-art GPUs are already displaying packaging, yield, and cooling limitations. We propose to rethink the design and scaling of AI clusters through efficiently-connected large clusters of Lite-GPUs, GPUs with single, small dies and a fraction of the capabilities of larger GPUs. We think recent advances in co-packaged optics can be key in overcoming the communication challenges of distributing AI workloads onto more Lite-GPUs. In this paper, we present the key benefits of Lite-GPUs on manufacturing cost, blast radius, yield, and power efficiency; and discuss systems opportunities and challenges around resource, workload, memory, and network management. 8 authors · Jan 17
- Space-time tradeoffs of lenses and optics via higher category theory Optics and lenses are abstract categorical gadgets that model systems with bidirectional data flow. In this paper we observe that the denotational definition of optics - identifying two optics as equivalent by observing their behaviour from the outside - is not suitable for operational, software oriented approaches where optics are not merely observed, but built with their internal setups in mind. We identify operational differences between denotationally isomorphic categories of cartesian optics and lenses: their different composition rule and corresponding space-time tradeoffs, positioning them at two opposite ends of a spectrum. With these motivations we lift the existing categorical constructions and their relationships to the 2-categorical level, showing that the relevant operational concerns become visible. We define the 2-category 2-Optic(C) whose 2-cells explicitly track optics' internal configuration. We show that the 1-category Optic(C) arises by locally quotienting out the connected components of this 2-category. We show that the embedding of lenses into cartesian optics gets weakened from a functor to an oplax functor whose oplaxator now detects the different composition rule. We determine the difficulties in showing this functor forms a part of an adjunction in any of the standard 2-categories. We establish a conjecture that the well-known isomorphism between cartesian lenses and optics arises out of the lax 2-adjunction between their double-categorical counterparts. In addition to presenting new research, this paper is also meant to be an accessible introduction to the topic. 1 authors · Sep 19, 2022