- Person Recognition in Personal Photo Collections Recognising persons in everyday photos presents major challenges (occluded faces, different clothing, locations, etc.) for machine vision. We propose a convnet based person recognition system on which we provide an in-depth analysis of informativeness of different body cues, impact of training data, and the common failure modes of the system. In addition, we discuss the limitations of existing benchmarks and propose more challenging ones. Our method is simple and is built on open source and open data, yet it improves the state of the art results on a large dataset of social media photos (PIPA). 4 authors · Sep 11, 2015
- BQA: Body Language Question Answering Dataset for Video Large Language Models A large part of human communication relies on nonverbal cues such as facial expressions, eye contact, and body language. Unlike language or sign language, such nonverbal communication lacks formal rules, requiring complex reasoning based on commonsense understanding. Enabling current Video Large Language Models (VideoLLMs) to accurately interpret body language is a crucial challenge, as human unconscious actions can easily cause the model to misinterpret their intent. To address this, we propose a dataset, BQA, a body language question answering dataset, to validate whether the model can correctly interpret emotions from short clips of body language comprising 26 emotion labels of videos of body language. We evaluated various VideoLLMs on BQA and revealed that understanding body language is challenging, and our analyses of the wrong answers by VideoLLMs show that certain VideoLLMs made significantly biased answers depending on the age group and ethnicity of the individuals in the video. The dataset is available. 6 authors · Oct 17, 2024
1 GRIP: Generating Interaction Poses Using Latent Consistency and Spatial Cues Hands are dexterous and highly versatile manipulators that are central to how humans interact with objects and their environment. Consequently, modeling realistic hand-object interactions, including the subtle motion of individual fingers, is critical for applications in computer graphics, computer vision, and mixed reality. Prior work on capturing and modeling humans interacting with objects in 3D focuses on the body and object motion, often ignoring hand pose. In contrast, we introduce GRIP, a learning-based method that takes, as input, the 3D motion of the body and the object, and synthesizes realistic motion for both hands before, during, and after object interaction. As a preliminary step before synthesizing the hand motion, we first use a network, ANet, to denoise the arm motion. Then, we leverage the spatio-temporal relationship between the body and the object to extract two types of novel temporal interaction cues, and use them in a two-stage inference pipeline to generate the hand motion. In the first stage, we introduce a new approach to enforce motion temporal consistency in the latent space (LTC), and generate consistent interaction motions. In the second stage, GRIP generates refined hand poses to avoid hand-object penetrations. Given sequences of noisy body and object motion, GRIP upgrades them to include hand-object interaction. Quantitative experiments and perceptual studies demonstrate that GRIP outperforms baseline methods and generalizes to unseen objects and motions from different motion-capture datasets. 7 authors · Aug 22, 2023
1 SemanticBoost: Elevating Motion Generation with Augmented Textual Cues Current techniques face difficulties in generating motions from intricate semantic descriptions, primarily due to insufficient semantic annotations in datasets and weak contextual understanding. To address these issues, we present SemanticBoost, a novel framework that tackles both challenges simultaneously. Our framework comprises a Semantic Enhancement module and a Context-Attuned Motion Denoiser (CAMD). The Semantic Enhancement module extracts supplementary semantics from motion data, enriching the dataset's textual description and ensuring precise alignment between text and motion data without depending on large language models. On the other hand, the CAMD approach provides an all-encompassing solution for generating high-quality, semantically consistent motion sequences by effectively capturing context information and aligning the generated motion with the given textual descriptions. Distinct from existing methods, our approach can synthesize accurate orientational movements, combined motions based on specific body part descriptions, and motions generated from complex, extended sentences. Our experimental results demonstrate that SemanticBoost, as a diffusion-based method, outperforms auto-regressive-based techniques, achieving cutting-edge performance on the Humanml3D dataset while maintaining realistic and smooth motion generation quality. 5 authors · Oct 31, 2023
- Shape-Erased Feature Learning for Visible-Infrared Person Re-Identification Due to the modality gap between visible and infrared images with high visual ambiguity, learning diverse modality-shared semantic concepts for visible-infrared person re-identification (VI-ReID) remains a challenging problem. Body shape is one of the significant modality-shared cues for VI-ReID. To dig more diverse modality-shared cues, we expect that erasing body-shape-related semantic concepts in the learned features can force the ReID model to extract more and other modality-shared features for identification. To this end, we propose shape-erased feature learning paradigm that decorrelates modality-shared features in two orthogonal subspaces. Jointly learning shape-related feature in one subspace and shape-erased features in the orthogonal complement achieves a conditional mutual information maximization between shape-erased feature and identity discarding body shape information, thus enhancing the diversity of the learned representation explicitly. Extensive experiments on SYSU-MM01, RegDB, and HITSZ-VCM datasets demonstrate the effectiveness of our method. 3 authors · Apr 9, 2023
- The Language of Motion: Unifying Verbal and Non-verbal Language of 3D Human Motion Human communication is inherently multimodal, involving a combination of verbal and non-verbal cues such as speech, facial expressions, and body gestures. Modeling these behaviors is essential for understanding human interaction and for creating virtual characters that can communicate naturally in applications like games, films, and virtual reality. However, existing motion generation models are typically limited to specific input modalities -- either speech, text, or motion data -- and cannot fully leverage the diversity of available data. In this paper, we propose a novel framework that unifies verbal and non-verbal language using multimodal language models for human motion understanding and generation. This model is flexible in taking text, speech, and motion or any combination of them as input. Coupled with our novel pre-training strategy, our model not only achieves state-of-the-art performance on co-speech gesture generation but also requires much less data for training. Our model also unlocks an array of novel tasks such as editable gesture generation and emotion prediction from motion. We believe unifying the verbal and non-verbal language of human motion is essential for real-world applications, and language models offer a powerful approach to achieving this goal. Project page: languageofmotion.github.io. 8 authors · Dec 13, 2024
- MedSumm: A Multimodal Approach to Summarizing Code-Mixed Hindi-English Clinical Queries In the healthcare domain, summarizing medical questions posed by patients is critical for improving doctor-patient interactions and medical decision-making. Although medical data has grown in complexity and quantity, the current body of research in this domain has primarily concentrated on text-based methods, overlooking the integration of visual cues. Also prior works in the area of medical question summarisation have been limited to the English language. This work introduces the task of multimodal medical question summarization for codemixed input in a low-resource setting. To address this gap, we introduce the Multimodal Medical Codemixed Question Summarization MMCQS dataset, which combines Hindi-English codemixed medical queries with visual aids. This integration enriches the representation of a patient's medical condition, providing a more comprehensive perspective. We also propose a framework named MedSumm that leverages the power of LLMs and VLMs for this task. By utilizing our MMCQS dataset, we demonstrate the value of integrating visual information from images to improve the creation of medically detailed summaries. This multimodal strategy not only improves healthcare decision-making but also promotes a deeper comprehension of patient queries, paving the way for future exploration in personalized and responsive medical care. Our dataset, code, and pre-trained models will be made publicly available. 10 authors · Jan 3, 2024