Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeScam Detection for Ethereum Smart Contracts: Leveraging Graph Representation Learning for Secure Blockchain
Due to the increasing abuse of fraudulent activities that result in significant financial and reputational harm, Ethereum smart contracts face a significant problem in detecting fraud. Existing monitoring methods typically rely on lease code analysis or physically extracted features, which suffer from scalability and adaptability limitations. In this study, we use graph representation learning to observe purchase trends and find fraudulent deals. We can achieve powerful categorisation performance by using innovative machine learning versions and transforming Ethereum invoice data into graph structures. Our method addresses label imbalance through SMOTE-ENN techniques and evaluates models like Multi-Layer Perceptron ( MLP ) and Graph Convolutional Networks ( GCN). Experimental results show that the MLP type surpasses the GCN in this environment, with domain-specific assessments closely aligned with real-world assessments. This study provides a scalable and efficient way to improve Ethereum's ecosystem's confidence and security.
Data Storage in the Decentralized World: Blockchain and Derivatives
We have entered an era where the importance of decentralized solutions has become more obvious. Blockchain technology and its derivatives are distributed ledger technologies that keep the registry of data between peers of a network. This ledger is secured within a successive over looping cryptographic chain. The accomplishment of the Bitcoin cryptocurrency proved that blockchain technology and its derivatives could be used to eliminate intermediaries and provide security for cyberspace. However, there are some challenges in the implementation of blockchain technology. This chapter first explains the concept of blockchain technology and the data that we can store therein. The main advantage of blockchain is the security services that it provides. This section continues by describing these services.. The challenges of blockchain; blockchain anomalies, energy consumption, speed, scalability, interoperability, privacy and cryptology in the age of quantum computing are described. Selected solutions for these challenges are given. Remarkable derivatives of blockchain, which use different solutions (directed acyclic graph, distributed hash table, gossip consensus protocol) to solve some of these challenges are described. Then the data storage in blockchain and evolving data solutions are explained. The comparison of decentralized solutions with the lcentralized database systems is given. A multi-platform interoperable scalable architecture (MPISA) is proposed. In the conclusion we include the evolution assumptions of data storage in a decentralized world.
Decentralized Biometric Authentication based on Fuzzy Commitments and Blockchain
Blockchain technology, which was introduced for supporting cryptocurrencies, today provides a decentralized infrastructure for general information storage and execution of algorithms, thus enabling the conversion of many applications and services from a centralized and intermediated model to a decentralized and disintermediated one. In this paper we focus on biometric authentication, which is classically performed using centralized systems, and could hence benefit from decentralization. For such a purpose, however, an inherent contradiction between biometric applications and blockchain technology must be overcome, as the former require keeping biometric features private, while blockchain is a public infrastructure. We propose a blockchain-based biometric authentication protocol that enables decentralization and resilience while protecting the privacy, personal data, and, in particular, biometric features of users. The protocol we propose leverages fuzzy commitment schemes to allow biometric authentication to be performed without disclosing biometric data. We also analyze the security of the protocol we propose by considering some relevant attacks.
Bitcoin as an Interplanetary Monetary Standard with Proof-of-Transit Timestamping
We explore the feasibility of deploying Bitcoin as the shared monetary standard between Earth and Mars, accounting for physical constraints of interplanetary communication. We introduce a novel primitive, Proof-of-Transit Timestamping (PoTT), to provide cryptographic, tamper-evident audit trails for Bitcoin data across high-latency, intermittently-connected links. Leveraging Delay/Disruption-Tolerant Networking (DTN) and optical low-Earth-orbit (LEO) mesh constellations, we propose an architecture for header-first replication, long-horizon Lightning channels with planetary watchtowers, and secure settlement through federated sidechains or blind-merge-mined (BMM) commit chains. We formalize PoTT, analyze its security model, and show how it measurably improves reliability and accountability without altering Bitcoin consensus or its monetary base. Near-term deployments favor strong federations for local settlement; longer-term, blind-merge-mined commit chains (if adopted) provide an alternative. The Earth L1 monetary base remains unchanged, while Mars can operate a pegged commit chain or strong federation with 1:1 pegged assets for local block production. For transparency, if both time-beacon regimes are simultaneously compromised, PoTT-M2 (and PoTT generally) reduces to administrative assertions rather than cryptographic time-anchoring.
A Deployment-First Methodology to Mechanism Design and Refinement in Distributed Systems
Catalyzed by the popularity of blockchain technology, there has recently been a renewed interest in the design, implementation and evaluation of decentralized systems. Most of these systems are intended to be deployed at scale and in heterogeneous environments with real users and unpredictable workloads. Nevertheless, most research in this field evaluates such systems in controlled environments that poorly reflect the complex conditions of real-world environments. In this work, we argue that deployment is crucial to understanding decentralized mechanisms in a real-world environment and an enabler to building more robust and sustainable systems. We highlight the merits of deployment by comparing this approach with other experimental setups and show how our lab applied a deployment-first methodology. We then outline how we use Tribler, our peer-to-peer file-sharing application, to deploy and monitor decentralized mechanisms at scale. We illustrate the application of our methodology by describing a deployment trial in experimental tokenomics. Finally, we summarize four lessons learned from multiple deployment trials where we applied our methodology.
zkBridge: Trustless Cross-chain Bridges Made Practical
Blockchains have seen growing traction with cryptocurrencies reaching a market cap of over 1 trillion dollars, major institution investors taking interests, and global impacts on governments, businesses, and individuals. Also growing significantly is the heterogeneity of the ecosystem where a variety of blockchains co-exist. Cross-chain bridge is a necessary building block in this multi-chain ecosystem. Existing solutions, however, either suffer from performance issues or rely on trust assumptions of committees that significantly lower the security. Recurring attacks against bridges have cost users more than 1.5 billion USD. In this paper, we introduce zkBridge, an efficient cross-chain bridge that guarantees strong security without external trust assumptions. With succinct proofs, zkBridge not only guarantees correctness, but also significantly reduces on-chain verification cost. We propose novel succinct proof protocols that are orders-of-magnitude faster than existing solutions for workload in zkBridge. With a modular design, zkBridge enables a broad spectrum of use cases and capabilities, including message passing, token transferring, and other computational logic operating on state changes from different chains. To demonstrate the practicality of zkBridge, we implemented a prototype bridge from Cosmos to Ethereum, a particularly challenging direction that involves large proof circuits that existing systems cannot efficiently handle. Our evaluation shows that zkBridge achieves practical performance: proof generation takes less than 20 seconds, while verifying proofs on-chain costs less than 230K gas. For completeness, we also implemented and evaluated the direction from Ethereum to other EVM-compatible chains (such as BSC) which involves smaller circuits and incurs much less overhead.
Blockchain-empowered Federated Learning: Benefits, Challenges, and Solutions
Federated learning (FL) is a distributed machine learning approach that protects user data privacy by training models locally on clients and aggregating them on a parameter server. While effective at preserving privacy, FL systems face limitations such as single points of failure, lack of incentives, and inadequate security. To address these challenges, blockchain technology is integrated into FL systems to provide stronger security, fairness, and scalability. However, blockchain-empowered FL (BC-FL) systems introduce additional demands on network, computing, and storage resources. This survey provides a comprehensive review of recent research on BC-FL systems, analyzing the benefits and challenges associated with blockchain integration. We explore why blockchain is applicable to FL, how it can be implemented, and the challenges and existing solutions for its integration. Additionally, we offer insights on future research directions for the BC-FL system.
A Multi-Layer Blockchain Simulator and Performance Evaluation of Social Internet of Vehicles with Multi-Connectivity Management
The evolution of vehicle-to-everything (V2X) communication brings significant challenges, such as data integrity and vulnerabilities stemming from centralized management. This paper presents an innovative integration of decentralized blockchain technology with V2X communication through a multi-layered architecture that combines the Simulation of Urban Mobility (SUMO) traffic simulator and the BlockSim blockchain simulator. In addition, as the Social Internet of Vehicles (SIoV) emerges, efficient resource management becomes indispensable for ensuring seamless communication. We also propose a reference multi-connectivity management method named Enhanced MAX-SINR, designed to advance research in blockchain-specific approaches, taking into account retransmission successfull rates. We evaluate blockchain performance in diverse environments such as urban, suburban, and rural areas, demonstrating that enhancing the success rate of retransmitted blockchain-related messages significantly boosts blockchain transaction performance and provides a foundation for developing intelligent SIoV systems.
Blockchain-Based Federated Learning: Incentivizing Data Sharing and Penalizing Dishonest Behavior
With the increasing importance of data sharing for collaboration and innovation, it is becoming more important to ensure that data is managed and shared in a secure and trustworthy manner. Data governance is a common approach to managing data, but it faces many challenges such as data silos, data consistency, privacy, security, and access control. To address these challenges, this paper proposes a comprehensive framework that integrates data trust in federated learning with InterPlanetary File System, blockchain, and smart contracts to facilitate secure and mutually beneficial data sharing while providing incentives, access control mechanisms, and penalizing any dishonest behavior. The experimental results demonstrate that the proposed model is effective in improving the accuracy of federated learning models while ensuring the security and fairness of the data-sharing process. The research paper also presents a decentralized federated learning platform that successfully trained a CNN model on the MNIST dataset using blockchain technology. The platform enables multiple workers to train the model simultaneously while maintaining data privacy and security. The decentralized architecture and use of blockchain technology allow for efficient communication and coordination between workers. This platform has the potential to facilitate decentralized machine learning and support privacy-preserving collaboration in various domains.
Community Detection in Bipartite Networks with Stochastic Blockmodels
In bipartite networks, community structures are restricted to being disassortative, in that nodes of one type are grouped according to common patterns of connection with nodes of the other type. This makes the stochastic block model (SBM), a highly flexible generative model for networks with block structure, an intuitive choice for bipartite community detection. However, typical formulations of the SBM do not make use of the special structure of bipartite networks. Here we introduce a Bayesian nonparametric formulation of the SBM and a corresponding algorithm to efficiently find communities in bipartite networks which parsimoniously chooses the number of communities. The biSBM improves community detection results over general SBMs when data are noisy, improves the model resolution limit by a factor of 2, and expands our understanding of the complicated optimization landscape associated with community detection tasks. A direct comparison of certain terms of the prior distributions in the biSBM and a related high-resolution hierarchical SBM also reveals a counterintuitive regime of community detection problems, populated by smaller and sparser networks, where nonhierarchical models outperform their more flexible counterpart.
SybilQuorum: Open Distributed Ledgers Through Trust Networks
The Sybil attack plagues all peer-to-peer systems, and modern open distributed ledgers employ a number of tactics to prevent it from proof of work, or other resources such as space, stake or memory, to traditional admission control in permissioned settings. With SybilQuorum we propose an alternative approach to securing an open distributed ledger against Sybil attacks, and ensuring consensus amongst honest participants, leveraging social network based Sybil defences. We show how nodes expressing their trust relationships through the ledger can bootstrap and operate a value system, and general transaction system, and how Sybil attacks are thwarted. We empirically evaluate our system as a secure Federated Byzantine Agreement System, and extend the theory of those systems to do so.
Crowdsourcing Work as Mining: A Decentralized Computation and Storage Paradigm
Proof-of-Work (PoW) consensus mechanism is popular among current blockchain systems, which leads to an increasing concern about the tremendous waste of energy due to massive meaningless computation. To address this issue, we propose a novel and energy-efficient blockchain system, CrowdMine, which exploits useful crowdsourcing computation to achieve decentralized consensus. CrowdMine solves user-proposed computing tasks and utilizes the computation committed to the task solving process to secure decentralized on-chain storage. With our designed ``Proof of Crowdsourcing Work'' (PoCW) protocol, our system provides an efficient paradigm for computation and storage in a trustless and decentralized environment. We further show that the system can defend against potential attacks on blockchain, including the short-term 51\% attack, the problem-constructing attack, and the solution-stealing attack. We also implement the system with 40 distributed nodes to demonstrate its performance and robustness. To the best of our knowledge, this is the first system that enables decentralized Proof of Useful Work (PoUW) with general user-proposed tasks posted in a permissionless and trustless network.
Model Agnostic Hybrid Sharding For Heterogeneous Distributed Inference
The rapid growth of large-scale AI models, particularly large language models has brought significant challenges in data privacy, computational resources, and accessibility. Traditional centralized architectures often struggle to meet required data security and scalability needs which hinders the democratization of AI systems. Nesa introduces a model-agnostic sharding framework designed for decentralized AI inference. Our framework uses blockchain-based sequential deep neural network sharding to distribute computational tasks across a diverse network of nodes based on a personalised heuristic and routing mechanism. This enables efficient distributed training and inference for recent large-scale models even on consumer-grade hardware. We use compression techniques like dynamic blockwise quantization and mixed matrix decomposition to reduce data transfer and memory needs. We also integrate robust security measures, including hardware-based trusted execution environments to ensure data integrity and confidentiality. Evaluating our system across various natural language processing and vision tasks shows that these compression strategies do not compromise model accuracy. Our results highlight the potential to democratize access to cutting-edge AI technologies by enabling secure and efficient inference on a decentralized network.
Proof-of-Contribution-Based Design for Collaborative Machine Learning on Blockchain
We consider a project (model) owner that would like to train a model by utilizing the local private data and compute power of interested data owners, i.e., trainers. Our goal is to design a data marketplace for such decentralized collaborative/federated learning applications that simultaneously provides i) proof-of-contribution based reward allocation so that the trainers are compensated based on their contributions to the trained model; ii) privacy-preserving decentralized model training by avoiding any data movement from data owners; iii) robustness against malicious parties (e.g., trainers aiming to poison the model); iv) verifiability in the sense that the integrity, i.e., correctness, of all computations in the data market protocol including contribution assessment and outlier detection are verifiable through zero-knowledge proofs; and v) efficient and universal design. We propose a blockchain-based marketplace design to achieve all five objectives mentioned above. In our design, we utilize a distributed storage infrastructure and an aggregator aside from the project owner and the trainers. The aggregator is a processing node that performs certain computations, including assessing trainer contributions, removing outliers, and updating hyper-parameters. We execute the proposed data market through a blockchain smart contract. The deployed smart contract ensures that the project owner cannot evade payment, and honest trainers are rewarded based on their contributions at the end of training. Finally, we implement the building blocks of the proposed data market and demonstrate their applicability in practical scenarios through extensive experiments.
Blockchain and Artificial Intelligence: Synergies and Conflicts
Blockchain technology and Artificial Intelligence (AI) have emerged as transformative forces in their respective domains. This paper explores synergies and challenges between these two technologies. Our research analyses the biggest projects combining blockchain and AI, based on market capitalization, and derives a novel framework to categorize contemporary and future use cases. Despite the theoretical compatibility, current real-world applications combining blockchain and AI remain in their infancy.
A Survey of Distributed Ledger Technology for IoT Verticals
The Internet of Things (IoT) and Distributed ledger technology (DLT) have significantly changed our daily lives. Due to their distributed operational environment and naturally decentralized applications, the convergence of these two technologies indicates a more lavish arrangement for the future. This article develops a comprehensive survey to investigate and illustrate state-of-the-art DLT for various IoT use cases, from smart homes to autonomous vehicles and smart cities. We develop a novel framework for conducting a systematic and comprehensive review of DLT over IoT by extending the knowledge graph approach. With relevant insights from this review, we extract innovative and pragmatic techniques to DLT design that enable high-performance, sustainable, and highly scalable IoT systems. Our findings support designing an end-to-end IoT-native DLT architecture for the future that fully coordinates network-assisted functionalities.
Federated Learning using Smart Contracts on Blockchains, based on Reward Driven Approach
Over the recent years, Federated machine learning continues to gain interest and momentum where there is a need to draw insights from data while preserving the data provider's privacy. However, one among other existing challenges in the adoption of federated learning has been the lack of fair, transparent and universally agreed incentivization schemes for rewarding the federated learning contributors. Smart contracts on a blockchain network provide transparent, immutable and independently verifiable proofs by all participants of the network. We leverage this open and transparent nature of smart contracts on a blockchain to define incentivization rules for the contributors, which is based on a novel scalar quantity - federated contribution. Such a smart contract based reward-driven model has the potential to revolutionize the federated learning adoption in enterprises. Our contribution is two-fold: first is to show how smart contract based blockchain can be a very natural communication channel for federated learning. Second, leveraging this infrastructure, we can show how an intuitive measure of each agents' contribution can be built and integrated with the life cycle of the training and reward process.
Enhancing Scalability and Reliability in Semi-Decentralized Federated Learning With Blockchain: Trust Penalization and Asynchronous Functionality
The paper presents an innovative approach to address the challenges of scalability and reliability in Distributed Federated Learning by leveraging the integration of blockchain technology. The paper focuses on enhancing the trustworthiness of participating nodes through a trust penalization mechanism while also enabling asynchronous functionality for efficient and robust model updates. By combining Semi-Decentralized Federated Learning with Blockchain (SDFL-B), the proposed system aims to create a fair, secure and transparent environment for collaborative machine learning without compromising data privacy. The research presents a comprehensive system architecture, methodologies, experimental results, and discussions that demonstrate the advantages of this novel approach in fostering scalable and reliable SDFL-B systems.
Information structures and their cohomology
We introduce the category of information structures, whose objects are suitable diagrams of measurable sets that encode the possible outputs of a given family of observables and their mutual relationships of refinement; they serve as mathematical models of contextuality in classical and quantum settings. Each information structure can be regarded as a ringed site with trivial topology; the structure ring is generated by the observables themselves and its multiplication corresponds to joint measurement. We extend Baudot and Bennequin's definition of information cohomology to this setting, as a derived functor in the category of modules over the structure ring, and show explicitly that the bar construction gives a projective resolution in that category, recovering in this way the cochain complexes previously considered in the literature. Finally, we study the particular case of a one-parameter family of coefficients made of functions of probability distributions. The only 1-cocycles are Shannon entropy or Tsallis alpha-entropy, depending on the value of the parameter.
Simplicial Closure and higher-order link prediction
Networks provide a powerful formalism for modeling complex systems by using a model of pairwise interactions. But much of the structure within these systems involves interactions that take place among more than two nodes at once; for example, communication within a group rather than person-to person, collaboration among a team rather than a pair of coauthors, or biological interaction between a set of molecules rather than just two. Such higher-order interactions are ubiquitous, but their empirical study has received limited attention, and little is known about possible organizational principles of such structures. Here we study the temporal evolution of 19 datasets with explicit accounting for higher-order interactions. We show that there is a rich variety of structure in our datasets but datasets from the same system types have consistent patterns of higher-order structure. Furthermore, we find that tie strength and edge density are competing positive indicators of higher-order organization, and these trends are consistent across interactions involving differing numbers of nodes. To systematically further the study of theories for such higher-order structures, we propose higher-order link prediction as a benchmark problem to assess models and algorithms that predict higher-order structure. We find a fundamental differences from traditional pairwise link prediction, with a greater role for local rather than long-range information in predicting the appearance of new interactions.
Compute Better Spent: Replacing Dense Layers with Structured Matrices
Dense linear layers are the dominant computational bottleneck in foundation models. Identifying more efficient alternatives to dense matrices has enormous potential for building more compute-efficient models, as exemplified by the success of convolutional networks in the image domain. In this work, we systematically explore structured matrices as replacements for dense matrices. We show that different structures often require drastically different initialization scales and learning rates, which are crucial to performance, especially as models scale. Using insights from the Maximal Update Parameterization, we determine the optimal scaling for initialization and learning rates of these unconventional layers. Finally, we measure the scaling laws of different structures to compare how quickly their performance improves with compute. We propose a novel matrix family containing Monarch matrices, the Block Tensor-Train (BTT), which we show performs better than dense matrices for the same compute on multiple tasks. On CIFAR-10/100 with augmentation, BTT achieves exponentially lower training loss than dense when training MLPs and ViTs. BTT matches dense ViT-S/32 performance on ImageNet-1k with 3.8 times less compute and is more efficient than dense for training small GPT-2 language models.
Incentivizing Permissionless Distributed Learning of LLMs
We describe an incentive system for distributed deep learning of foundational models where peers are rewarded for contributions. The incentive system, Gauntlet, has been deployed on the bittensor blockchain and used to train a 1.2B LLM with completely permissionless contributions of pseudo-gradients: no control over the users that can register or their hardware. Gauntlet can be applied to any synchronous distributed training scheme that relies on aggregating updates or pseudo-gradients. We rely on a two-stage mechanism for fast filtering of peer uptime, reliability, and synchronization, combined with the core component that estimates the loss before and after individual pseudo-gradient contributions. We utilized an OpenSkill rating system to track competitiveness of pseudo-gradient scores across time. Finally, we introduce a novel mechanism to ensure peers on the network perform unique computations. Our live 1.2B run, which has paid out real-valued tokens to participants based on the value of their contributions, yielded a competitive (on a per-iteration basis) 1.2B model that demonstrates the utility of our incentive system.
NFT1000: A Visual Text Dataset For Non-Fungible Token Retrieval
With the rise of 'Metaverse' and 'Web3.0', NFT ( Non-Fungible Token ) has emerged as a kind of pivotal digital asset, garnering significant attention. By the end of November 2023, more than 1.4 billion NFT tokens have been minted across various blockchain platforms. To effectively locate a satisfactory NFT token, conducting searches within the extensive array of NFT data is essential. The challenge in NFT retrieval is heightened due to the high degree of similarity among different NFT tokens, in terms of regional and semantic aspects. Achieving accurate and efficient retrieval within the large-scale, highly similar NFT data presents a formidable challenge for both the academic and industrial communities. In this paper, we will introduce a dataset named 'NFT Top1000 Visual Text Dataset'(henceforth, NFT1000), containing 7.56 million image-text pairs, and being collected from 1000 most famous PFP NFT collections by sales volume on the Ethereum blockchain. Based on the dataset, we test the CLIP (Contrastive Language-Image Pretraining) models as a baseline. Additionally, we also propose a concept of Comprehensive Variance Index (CVI in short), which is a robust metric designed to assess the similarity and retrieval difficulty of visual-text pairs data.
Topological Components in a Community Currency Network
Transaction data from digital payment systems can be used to study economic processes at such a detail that was not possible previously. Here, we analyse the data from Sarafu token network, a community inclusion currency in Kenya. During the COVID-19 emergency, the Sarafu was disbursed as part of a humanitarian aid project. In this work, the transactions are analysed using network science. A topological categorisation is defined to identify cyclic and acyclic components. Furthermore, temporal aspects of circulation taking place within these components are considered. The significant presence of different types of strongly connected components as compared to randomized null models shows the importance of cycles in this economic network. Especially, indicating their key role in currency recirculation. In some acyclic components, the most significant triad suggests the presence of a group of users collecting currency from accounts active only once, hinting at a misuse of the system. In some other acyclic components, small isolated groups of users were active only once, suggesting the presence of users only interested in trying out the system. The methods used in this paper can answer specific questions related to user activities, currency design, and assessment of monetary interventions. Our methodology provides a general quantitative tool for analysing the behaviour of users in a currency network.
Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning
Leveraging generative Artificial Intelligence (AI), we have transformed a dataset comprising 1,000 scientific papers into an ontological knowledge graph. Through an in-depth structural analysis, we have calculated node degrees, identified communities and connectivities, and evaluated clustering coefficients and betweenness centrality of pivotal nodes, uncovering fascinating knowledge architectures. The graph has an inherently scale-free nature, is highly connected, and can be used for graph reasoning by taking advantage of transitive and isomorphic properties that reveal unprecedented interdisciplinary relationships that can be used to answer queries, identify gaps in knowledge, propose never-before-seen material designs, and predict material behaviors. We compute deep node embeddings for combinatorial node similarity ranking for use in a path sampling strategy links dissimilar concepts that have previously not been related. One comparison revealed structural parallels between biological materials and Beethoven's 9th Symphony, highlighting shared patterns of complexity through isomorphic mapping. In another example, the algorithm proposed a hierarchical mycelium-based composite based on integrating path sampling with principles extracted from Kandinsky's 'Composition VII' painting. The resulting material integrates an innovative set of concepts that include a balance of chaos/order, adjustable porosity, mechanical strength, and complex patterned chemical functionalization. We uncover other isomorphisms across science, technology and art, revealing a nuanced ontology of immanence that reveal a context-dependent heterarchical interplay of constituents. Graph-based generative AI achieves a far higher degree of novelty, explorative capacity, and technical detail, than conventional approaches and establishes a widely useful framework for innovation by revealing hidden connections.
DocXChain: A Powerful Open-Source Toolchain for Document Parsing and Beyond
In this report, we introduce DocXChain, a powerful open-source toolchain for document parsing, which is designed and developed to automatically convert the rich information embodied in unstructured documents, such as text, tables and charts, into structured representations that are readable and manipulable by machines. Specifically, basic capabilities, including text detection, text recognition, table structure recognition and layout analysis, are provided. Upon these basic capabilities, we also build a set of fully functional pipelines for document parsing, i.e., general text reading, table parsing, and document structurization, to drive various applications related to documents in real-world scenarios. Moreover, DocXChain is concise, modularized and flexible, such that it can be readily integrated with existing tools, libraries or models (such as LangChain and ChatGPT), to construct more powerful systems that can accomplish more complicated and challenging tasks. The code of DocXChain is publicly available at:~https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/Applications/DocXChain
LLM Multi-Agent Systems: Challenges and Open Problems
This paper explores existing works of multi-agent systems and identifies challenges that remain inadequately addressed. By leveraging the diverse capabilities and roles of individual agents within a multi-agent system, these systems can tackle complex tasks through collaboration. We discuss optimizing task allocation, fostering robust reasoning through iterative debates, managing complex and layered context information, and enhancing memory management to support the intricate interactions within multi-agent systems. We also explore the potential application of multi-agent systems in blockchain systems to shed light on their future development and application in real-world distributed systems.
Global Trends in Cryptocurrency Regulation: An Overview
Cryptocurrencies have evolved into an important asset class, providing a variety of benefits. However, they also present significant risks, such as market volatility and the potential for misuse in illegal activities. These risks underline the urgent need for a comprehensive regulatory framework to ensure consumer protection, market integrity, and financial stability. Yet, the global landscape of cryptocurrency regulation remains complex, marked by substantial variations in regulatory frameworks among different countries. This paper aims to study these differences by investigating the regulatory landscapes across various jurisdictions. We first discuss regulatory challenges and considerations, and then conduct a comparative analysis of international regulatory stances, approaches, and measures. We hope our study offers practical insights to enhance the understanding of global trends in cryptocurrency regulation.
The Rainbow Skip Graph: A Fault-Tolerant Constant-Degree P2P Relay Structure
We present a distributed data structure, which we call the rainbow skip graph. To our knowledge, this is the first peer-to-peer data structure that simultaneously achieves high fault tolerance, constant-sized nodes, and fast update and query times for ordered data. It is a non-trivial adaptation of the SkipNet/skip-graph structures of Harvey et al. and Aspnes and Shah, so as to provide fault-tolerance as these structures do, but to do so using constant-sized nodes, as in the family tree structure of Zatloukal and Harvey. It supports successor queries on a set of n items using O(log n) messages with high probability, an improvement over the expected O(log n) messages of the family tree.
Graphlets correct for the topological information missed by random walks
Random walks are widely used for mining networks due to the computational efficiency of computing them. For instance, graph representation learning learns a d-dimensional embedding space, so that the nodes that tend to co-occur on random walks (a proxy of being in the same network neighborhood) are close in the embedding space. Specific local network topology (i.e., structure) influences the co-occurrence of nodes on random walks, so random walks of limited length capture only partial topological information, hence diminishing the performance of downstream methods. We explicitly capture all topological neighborhood information and improve performance by introducing orbit adjacencies that quantify the adjacencies of two nodes as co-occurring on a given pair of graphlet orbits, which are symmetric positions on graphlets (small, connected, non-isomorphic, induced subgraphs of a large network). Importantly, we mathematically prove that random walks on up to k nodes capture only a subset of all the possible orbit adjacencies for up to k-node graphlets. Furthermore, we enable orbit adjacency-based analysis of networks by developing an efficient GRaphlet-orbit ADjacency COunter (GRADCO), which exhaustively computes all 28 orbit adjacency matrices for up to four-node graphlets. Note that four-node graphlets suffice, because real networks are usually small-world. In large networks on around 20,000 nodes, GRADCOcomputesthe28matricesinminutes. Onsixrealnetworksfromvarious domains, we compare the performance of node-label predictors obtained by using the network embeddings based on our orbit adjacencies to those based on random walks. We find that orbit adjacencies, which include those unseen by random walks, outperform random walk-based adjacencies, demonstrating the importance of the inclusion of the topological neighborhood information that is unseen by random walks.
Hunting the Ethereum Smart Contract: Color-inspired Inspection of Potential Attacks
Blockchain and Cryptocurrencies are gaining unprecedented popularity and understanding. Meanwhile, Ethereum is gaining a significant popularity in the blockchain community, mainly due to the fact that it is designed in a way that enables developers to write smart contract and decentralized applications (Dapps). This new paradigm of applications opens the door to many possibilities and opportunities. However, the security of Ethereum smart contracts has not received much attention; several Ethereum smart contracts malfunctioning have recently been reported. Unlike many previous works that have applied static and dynamic analyses to find bugs in smart contracts, we do not attempt to define and extract any features; instead we focus on reducing the expert's labor costs. We first present a new in-depth analysis of potential attacks methodology and then translate the bytecode of solidity into RGB color code. After that, we transform them to a fixed-sized encoded image. Finally, the encoded image is fed to convolutional neural network (CNN) for automatic feature extraction and learning, detecting compiler bugs of Ethereum smart contract.
A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem
Financial portfolio management is the process of constant redistribution of a fund into different financial products. This paper presents a financial-model-free Reinforcement Learning framework to provide a deep machine learning solution to the portfolio management problem. The framework consists of the Ensemble of Identical Independent Evaluators (EIIE) topology, a Portfolio-Vector Memory (PVM), an Online Stochastic Batch Learning (OSBL) scheme, and a fully exploiting and explicit reward function. This framework is realized in three instants in this work with a Convolutional Neural Network (CNN), a basic Recurrent Neural Network (RNN), and a Long Short-Term Memory (LSTM). They are, along with a number of recently reviewed or published portfolio-selection strategies, examined in three back-test experiments with a trading period of 30 minutes in a cryptocurrency market. Cryptocurrencies are electronic and decentralized alternatives to government-issued money, with Bitcoin as the best-known example of a cryptocurrency. All three instances of the framework monopolize the top three positions in all experiments, outdistancing other compared trading algorithms. Although with a high commission rate of 0.25% in the backtests, the framework is able to achieve at least 4-fold returns in 50 days.
Linguistic and Structural Basis of Engineering Design Knowledge
Artefact descriptions are the primary carriers of engineering design knowledge that is both an outcome and a driver of the design process. While an artefact could be described in different connotations, the design process requires a description to embody engineering design knowledge, which is expressed in the text through intricate placement of entities and relationships. As large-language models learn from all kinds of text merely as a sequence of characters/tokens, these are yet to generate text that embodies explicit engineering design facts. Existing ontological design theories are less likely to guide the large-language models whose applications are currently limited to ideation and learning purposes. In this article, we explicate engineering design knowledge as knowledge graphs from a large sample of 33,881 patent documents. We examine the constituents of these knowledge graphs to understand the linguistic and structural basis of engineering design knowledge. In terms of linguistic basis, we observe that entities and relationships could be generalised to 64 and 24 linguistic syntaxes. While relationships mainly capture attributes ('of'), structure ('in', 'with'), purpose ('to', 'for'), hierarchy ('include'), exemplification ('such as'), and behaviour ('to', 'from'), the hierarchical relationships could specifically be identified using 75 unique syntaxes. To understand the structural basis, we draw inspiration from various studies on biological/ecological networks and discover motifs from patent knowledge graphs. We identify four 3-node and four 4-node patterns that could further be converged and simplified into sequence [->...->], aggregation [->...<-], and hierarchy [<-...->]. Expected to guide large-language model based design tools, we propose few regulatory precepts for concretising abstract entities and relationships within subgraphs, while explicating hierarchical structures.
Robust Graph Structure Learning via Multiple Statistical Tests
Graph structure learning aims to learn connectivity in a graph from data. It is particularly important for many computer vision related tasks since no explicit graph structure is available for images for most cases. A natural way to construct a graph among images is to treat each image as a node and assign pairwise image similarities as weights to corresponding edges. It is well known that pairwise similarities between images are sensitive to the noise in feature representations, leading to unreliable graph structures. We address this problem from the viewpoint of statistical tests. By viewing the feature vector of each node as an independent sample, the decision of whether creating an edge between two nodes based on their similarity in feature representation can be thought as a {it single} statistical test. To improve the robustness in the decision of creating an edge, multiple samples are drawn and integrated by {it multiple} statistical tests to generate a more reliable similarity measure, consequentially more reliable graph structure. The corresponding elegant matrix form named B-Attention is designed for efficiency. The effectiveness of multiple tests for graph structure learning is verified both theoretically and empirically on multiple clustering and ReID benchmark datasets. Source codes are available at https://github.com/Thomas-wyh/B-Attention.
Predictive-CSM: Lightweight Fragment Security for 6LoWPAN IoT Networks
Fragmentation is a routine part of communication in 6LoWPAN-based IoT networks, designed to accommodate small frame sizes on constrained wireless links. However, this process introduces a critical vulnerability fragments are typically stored and processed before their legitimacy is confirmed, allowing attackers to exploit this gap with minimal effort. In this work, we explore a defense strategy that takes a more adaptive, behavior-aware approach to this problem. Our system, called Predictive-CSM, introduces a combination of two lightweight mechanisms. The first tracks how each node behaves over time, rewarding consistent and successful interactions while quickly penalizing suspicious or failing patterns. The second checks the integrity of packet fragments using a chained hash, allowing incomplete or manipulated sequences to be caught early, before they can occupy memory or waste processing time. We put this system to the test using a set of targeted attack simulations, including early fragment injection, replayed headers, and flooding with fake data. Across all scenarios, Predictive CSM preserved network delivery and maintained energy efficiency, even under pressure. Rather than relying on heavyweight cryptography or rigid filters, this approach allows constrained de vices to adapt their defenses in real time based on what they observe, not just what they're told. In that way, it offers a step forward for securing fragmented communication in real world IoT systems
Knowledge Migration Framework for Smart Contract Vulnerability Detection
As a cornerstone of blockchain technology in the 3.0 era, smart contracts play a pivotal role in the evolution of blockchain systems. In order to address the limitations of existing smart contract vulnerability detection models with regard to their generalisation capability, an AF-STip smart contract vulnerability detection framework incorporating efficient knowledge migration is proposed. AF-STip employs the teacher network as the main model and migrates the knowledge processed by the smart contract to the student model using a data-free knowledge distillation method. The student model utilises this knowledge to enhance its vulnerability detection capabilities. The approach markedly enhances the model's capacity for feature extraction and cross-class adaptation, while concurrently reducing computational overhead.In order to further enhance the extraction of vulnerability features, an adaptive fusion module is proposed in this paper, which aims to strengthen the interaction and fusion of feature information.The experimental results demonstrate that the STip model attains an average F1 value detection score of 91.16% for the four vulnerabilities without disclosing the original smart contract data. To validate the viability of the proposed lightweight migration approach, the student model is deployed in a migration learning task targeting a novel vulnerability type, resulting in an accuracy of 91.02% and an F1 score of 90.46%. To the best of our knowledge, AF-STip is the inaugural model to apply data-free knowledge migration to smart contract vulnerability detection. While markedly reducing the computational overhead, the method still demonstrates exceptional performance in detecting novel vulnerabilities.
Modular versus Hierarchical: A Structural Signature of Topic Popularity in Mathematical Research
Mathematical researchers, especially those in early-career positions, face critical decisions about topic specialization with limited information about the collaborative environments of different research areas. The aim of this paper is to study how the popularity of a research topic is associated with the structure of that topic's collaboration network, as observed by a suite of measures capturing organizational structure at several scales. We apply these measures to 1,938 algorithmically discovered topics across 121,391 papers sourced from arXiv metadata during the period 2020--2025. Our analysis, which controls for the confounding effects of network size, reveals a structural dichotomy--we find that popular topics organize into modular "schools of thought," while niche topics maintain hierarchical core-periphery structures centered around established experts. This divide is not an artifact of scale, but represents a size-independent structural pattern correlated with popularity. We also document a "constraint reversal": after controlling for size, researchers in popular fields face greater structural constraints on collaboration opportunities, contrary to conventional expectations. Our findings suggest that topic selection is an implicit choice between two fundamentally different collaborative environments, each with distinct implications for a researcher's career. To make these structural patterns transparent to the research community, we developed the Math Research Compass (https://mathresearchcompass.com), an interactive platform providing data on topic popularity and collaboration patterns across mathematical topics.
Efficient Algorithms for Exact Graph Matching on Correlated Stochastic Block Models with Constant Correlation
We consider the problem of graph matching, or learning vertex correspondence, between two correlated stochastic block models (SBMs). The graph matching problem arises in various fields, including computer vision, natural language processing and bioinformatics, and in particular, matching graphs with inherent community structure has significance related to de-anonymization of correlated social networks. Compared to the correlated Erdos-Renyi (ER) model, where various efficient algorithms have been developed, among which a few algorithms have been proven to achieve the exact matching with constant edge correlation, no low-order polynomial algorithm has been known to achieve exact matching for the correlated SBMs with constant correlation. In this work, we propose an efficient algorithm for matching graphs with community structure, based on the comparison between partition trees rooted from each vertex, by extending the idea of Mao et al. (2021) to graphs with communities. The partition tree divides the large neighborhoods of each vertex into disjoint subsets using their edge statistics to different communities. Our algorithm is the first low-order polynomial-time algorithm achieving exact matching between two correlated SBMs with high probability in dense graphs.
The BigCode Project Governance Card
This document serves as an overview of the different mechanisms and areas of governance in the BigCode project. It aims to support transparency by providing relevant information about choices that were made during the project to the broader public, and to serve as an example of intentional governance of an open research project that future endeavors can leverage to shape their own approach. The first section, Project Structure, covers the project organization, its stated goals and values, its internal decision processes, and its funding and resources. The second section, Data and Model Governance, covers decisions relating to the questions of data subject consent, privacy, and model release.
Fractal Generative Models
Modularization is a cornerstone of computer science, abstracting complex functions into atomic building blocks. In this paper, we introduce a new level of modularization by abstracting generative models into atomic generative modules. Analogous to fractals in mathematics, our method constructs a new type of generative model by recursively invoking atomic generative modules, resulting in self-similar fractal architectures that we call fractal generative models. As a running example, we instantiate our fractal framework using autoregressive models as the atomic generative modules and examine it on the challenging task of pixel-by-pixel image generation, demonstrating strong performance in both likelihood estimation and generation quality. We hope this work could open a new paradigm in generative modeling and provide a fertile ground for future research. Code is available at https://github.com/LTH14/fractalgen.
Visually Wired NFTs: Exploring the Role of Inspiration in Non-Fungible Tokens
The fervor for Non-Fungible Tokens (NFTs) attracted countless creators, leading to a Big Bang of digital assets driven by latent or explicit forms of inspiration, as in many creative processes. This work exploits Vision Transformers and graph-based modeling to delve into visual inspiration phenomena between NFTs over the years. Our goals include unveiling the main structural traits that shape visual inspiration networks, exploring the interrelation between visual inspiration and asset performances, investigating crypto influence on inspiration processes, and explaining the inspiration relationships among NFTs. Our findings unveil how the pervasiveness of inspiration led to a temporary saturation of the visual feature space, the impact of the dichotomy between inspiring and inspired NFTs on their financial performance, and an intrinsic self-regulatory mechanism between markets and inspiration waves. Our work can serve as a starting point for gaining a broader view of the evolution of Web3.
FAIR-BFL: Flexible and Incentive Redesign for Blockchain-based Federated Learning
Vanilla Federated learning (FL) relies on the centralized global aggregation mechanism and assumes that all clients are honest. This makes it a challenge for FL to alleviate the single point of failure and dishonest clients. These impending challenges in the design philosophy of FL call for blockchain-based federated learning (BFL) due to the benefits of coupling FL and blockchain (e.g., democracy, incentive, and immutability). However, one problem in vanilla BFL is that its capabilities do not follow adopters' needs in a dynamic fashion. Besides, vanilla BFL relies on unverifiable clients' self-reported contributions like data size because checking clients' raw data is not allowed in FL for privacy concerns. We design and evaluate a novel BFL framework, and resolve the identified challenges in vanilla BFL with greater flexibility and incentive mechanism called FAIR-BFL. In contrast to existing works, FAIR-BFL offers unprecedented flexibility via the modular design, allowing adopters to adjust its capabilities following business demands in a dynamic fashion. Our design accounts for BFL's ability to quantify each client's contribution to the global learning process. Such quantification provides a rational metric for distributing the rewards among federated clients and helps discover malicious participants that may poison the global model.
Post Quantum Secure Blockchain-based Federated Learning for Mobile Edge Computing
Mobile Edge Computing (MEC) has been a promising paradigm for communicating and edge processing of data on the move. We aim to employ Federated Learning (FL) and prominent features of blockchain into MEC architecture such as connected autonomous vehicles to enable complete decentralization, immutability, and rewarding mechanisms simultaneously. FL is advantageous for mobile devices with constrained connectivity since it requires model updates to be delivered to a central point instead of substantial amounts of data communication. For instance, FL in autonomous, connected vehicles can increase data diversity and allow model customization, and predictions are possible even when the vehicles are not connected (by exploiting their local models) for short times. However, existing synchronous FL and Blockchain incur extremely high communication costs due to mobility-induced impairments and do not apply directly to MEC networks. We propose a fully asynchronous Blockchained Federated Learning (BFL) framework referred to as BFL-MEC, in which the mobile clients and their models evolve independently yet guarantee stability in the global learning process. More importantly, we employ post-quantum secure features over BFL-MEC to verify the client's identity and defend against malicious attacks. All of our design assumptions and results are evaluated with extensive simulations.
Evolution of ESG-focused DLT Research: An NLP Analysis of the Literature
As Distributed Ledger Technologies (DLTs) rapidly evolve, their impacts extend beyond technology, influencing environmental and societal aspects. This evolution has increased publications, making manual literature analysis increasingly challenging. We address this with a Natural Language Processing (NLP)-based systematic literature review method to explore the intersection of Distributed Ledger Technology (DLT) with its Environmental, Social, and Governance (ESG) aspects. Our approach involves building and refining a directed citation network from 107 seed papers to a corpus of 24,539 publications and fine-tuning a transformer-based language model for Named Entity Recognition (NER) on DLT and ESG domains. Applying this model, we distilled the corpus to 505 key publications, enabling an inaugural literature review and temporal graph analysis of DLT's evolution in ESG contexts. Our contributions include an adaptable and scalable NLP-driven systematic literature review methodology and a unique NER dataset of 54,808 entities, tailored for DLT and ESG research. Our inaugural literature review demonstrates their applicability and effectiveness in analyzing DLT's evolution and impacts, proving invaluable for stakeholders in the DLT domain.
G-Rank: Unsupervised Continuous Learn-to-Rank for Edge Devices in a P2P Network
Ranking algorithms in traditional search engines are powered by enormous training data sets that are meticulously engineered and curated by a centralized entity. Decentralized peer-to-peer (p2p) networks such as torrenting applications and Web3 protocols deliberately eschew centralized databases and computational architectures when designing services and features. As such, robust search-and-rank algorithms designed for such domains must be engineered specifically for decentralized networks, and must be lightweight enough to operate on consumer-grade personal devices such as a smartphone or laptop computer. We introduce G-Rank, an unsupervised ranking algorithm designed exclusively for decentralized networks. We demonstrate that accurate, relevant ranking results can be achieved in fully decentralized networks without any centralized data aggregation, feature engineering, or model training. Furthermore, we show that such results are obtainable with minimal data preprocessing and computational overhead, and can still return highly relevant results even when a user's device is disconnected from the network. G-Rank is highly modular in design, is not limited to categorical data, and can be implemented in a variety of domains with minimal modification. The results herein show that unsupervised ranking models designed for decentralized p2p networks are not only viable, but worthy of further research.
Shiva: A Framework for Graph Based Ontology Matching
Since long, corporations are looking for knowledge sources which can provide structured description of data and can focus on meaning and shared understanding. Structures which can facilitate open world assumptions and can be flexible enough to incorporate and recognize more than one name for an entity. A source whose major purpose is to facilitate human communication and interoperability. Clearly, databases fail to provide these features and ontologies have emerged as an alternative choice, but corporations working on same domain tend to make different ontologies. The problem occurs when they want to share their data/knowledge. Thus we need tools to merge ontologies into one. This task is termed as ontology matching. This is an emerging area and still we have to go a long way in having an ideal matcher which can produce good results. In this paper we have shown a framework to matching ontologies using graphs.
Learning Adaptive Neighborhoods for Graph Neural Networks
Graph convolutional networks (GCNs) enable end-to-end learning on graph structured data. However, many works assume a given graph structure. When the input graph is noisy or unavailable, one approach is to construct or learn a latent graph structure. These methods typically fix the choice of node degree for the entire graph, which is suboptimal. Instead, we propose a novel end-to-end differentiable graph generator which builds graph topologies where each node selects both its neighborhood and its size. Our module can be readily integrated into existing pipelines involving graph convolution operations, replacing the predetermined or existing adjacency matrix with one that is learned, and optimized, as part of the general objective. As such it is applicable to any GCN. We integrate our module into trajectory prediction, point cloud classification and node classification pipelines resulting in improved accuracy over other structure-learning methods across a wide range of datasets and GCN backbones.
MOD-X: A Modular Open Decentralized eXchange Framework proposal for Heterogeneous Interoperable Artificial Agents
As Artificial Intelligence systems evolve from monolithic models to ecosystems of specialized agents, the need for standardized communication protocols becomes increasingly critical. This paper introduces MOD-X (Modular Open Decentralized eXchange), a novel architectural framework proposal for agent interoperability that addresses key limitations of existing protocols. Unlike current approaches, MOD-X proposes a layered architecture with a Universal Message Bus, thorough state management, translation capabilities, and blockchain-based security mechanisms. We present MOD-X's architecture, compare it with existing protocols, and demonstrate its application through a worked example how it enables integration between heterogeneous specialist agents (agents with different architectures, vendors, capabilities, and knowledge representations--including rule-based systems, neural networks, symbolic reasoning engines, and legacy software with agent wrappers). MOD-X's key innovations include a publish-subscribe communication model, semantic capability discovery, and dynamic workflow orchestration--providing a framework that bridges theoretical formalism with practical implementation. This architecture addresses the growing need for truly decentralized, interoperable agent ecosystems that can scale effectively without the need for central coordination.
The Universal Trust Machine: A survey on the Web3 path towards enabling long term digital cooperation through decentralised trust
Since the dawn of human civilization, trust has been the core challenge of social organization. Trust functions to reduce the effort spent in constantly monitoring others' actions in order to verify their assertions, thus facilitating cooperation by allowing groups to function with reduced complexity. To date, in modern societies, large scale trust is almost exclusively provided by large centralized institutions. Specifically in the case of the Internet, Big Tech companies maintain the largest Internet platforms where users can interact, transact and share information. Thus, they control who can interact and conduct transactions through their monopoly of online trust. However, as recent events have shown, allowing for-profit corporations to act as gatekeepers to the online world comes with a litany of problems. While so far ecosystems of trust on the Internet could only be feasibly created by large institutions, Web3 proponents have a vision of the Internet where trust is generated without centralised actors. They attempt to do so by creating an ecosystem of trust constructed using decentralised technology. This survey explores this elusive goal of Web3 to create a "Universal Trust Machine", which in a true decentralised paradigm would be owned by both nobody and everybody. In order to do so, we first motivate the decades-old problem of generating trust without an intermediary by discussing Robert Axelrod's research on the evolution of cooperation. Next, we present the challenges that would have to be overcome in order to enable long term cooperation. We proceed to present various reputation systems, all of which present promising techniques for encouraging trustworthy behaviour. Then, we discuss Distributed Ledger technologies whose secure transaction facilitating and privacy preserving techniques promise to be a good complement to the current limitations of vanilla reputation systems.
Backpropagation Path Search On Adversarial Transferability
Deep neural networks are vulnerable to adversarial examples, dictating the imperativeness to test the model's robustness before deployment. Transfer-based attackers craft adversarial examples against surrogate models and transfer them to victim models deployed in the black-box situation. To enhance the adversarial transferability, structure-based attackers adjust the backpropagation path to avoid the attack from overfitting the surrogate model. However, existing structure-based attackers fail to explore the convolution module in CNNs and modify the backpropagation graph heuristically, leading to limited effectiveness. In this paper, we propose backPropagation pAth Search (PAS), solving the aforementioned two problems. We first propose SkipConv to adjust the backpropagation path of convolution by structural reparameterization. To overcome the drawback of heuristically designed backpropagation paths, we further construct a DAG-based search space, utilize one-step approximation for path evaluation and employ Bayesian Optimization to search for the optimal path. We conduct comprehensive experiments in a wide range of transfer settings, showing that PAS improves the attack success rate by a huge margin for both normally trained and defense models.
Towards Secure and Private AI: A Framework for Decentralized Inference
The rapid advancement of ML models in critical sectors such as healthcare, finance, and security has intensified the need for robust data security, model integrity, and reliable outputs. Large multimodal foundational models, while crucial for complex tasks, present challenges in scalability, reliability, and potential misuse. Decentralized systems offer a solution by distributing workload and mitigating central points of failure, but they introduce risks of unauthorized access to sensitive data across nodes. We address these challenges with a comprehensive framework designed for responsible AI development. Our approach incorporates: 1) Zero-knowledge proofs for secure model verification, enhancing trust without compromising privacy. 2) Consensus-based verification checks to ensure consistent outputs across nodes, mitigating hallucinations and maintaining model integrity. 3) Split Learning techniques that segment models across different nodes, preserving data privacy by preventing full data access at any point. 4) Hardware-based security through trusted execution environments (TEEs) to protect data and computations. This framework aims to enhance security and privacy and improve the reliability and fairness of multimodal AI systems. Promoting efficient resource utilization contributes to more sustainable AI development. Our state-of-the-art proofs and principles demonstrate the framework's effectiveness in responsibly democratizing artificial intelligence, offering a promising approach for building secure and private foundational models.
Efficient Avoidance of Vulnerabilities in Auto-completed Smart Contract Code Using Vulnerability-constrained Decoding
Auto-completing code enables developers to speed up coding significantly. Recent advances in transformer-based large language model (LLM) technologies have been applied to code synthesis. However, studies show that many of such synthesized codes contain vulnerabilities. We propose a novel vulnerability-constrained decoding approach to reduce the amount of vulnerable code generated by such models. Using a small dataset of labeled vulnerable lines of code, we fine-tune an LLM to include vulnerability labels when generating code, acting as an embedded classifier. Then, during decoding, we deny the model to generate these labels to avoid generating vulnerable code. To evaluate the method, we chose to automatically complete Ethereum Blockchain smart contracts (SCs) as the case study due to the strict requirements of SC security. We first fine-tuned the 6-billion-parameter GPT-J model using 186,397 Ethereum SCs after removing the duplication from 2,217,692 SCs. The fine-tuning took more than one week using ten GPUs. The results showed that our fine-tuned model could synthesize SCs with an average BLEU (BiLingual Evaluation Understudy) score of 0.557. However, many codes in the auto-completed SCs were vulnerable. Using the code before the vulnerable line of 176 SCs containing different types of vulnerabilities to auto-complete the code, we found that more than 70% of the auto-completed codes were insecure. Thus, we further fine-tuned the model on other 941 vulnerable SCs containing the same types of vulnerabilities and applied vulnerability-constrained decoding. The fine-tuning took only one hour with four GPUs. We then auto-completed the 176 SCs again and found that our approach could identify 62% of the code to be generated as vulnerable and avoid generating 67% of them, indicating the approach could efficiently and effectively avoid vulnerabilities in the auto-completed code.
Quantum Internet Protocol Stack: a Comprehensive Survey
Classical Internet evolved exceptionally during the last five decades, from a network comprising a few static nodes in the early days to a leviathan interconnecting billions of devices. This has been possible by the separation of concern principle, for which the network functionalities are organized as a stack of layers, each providing some communication functionalities through specific network protocols. In this survey, we aim at highlighting the impossibility of adapting the classical Internet protocol stack to the Quantum Internet, due to the marvels of quantum mechanics. Indeed, the design of the Quantum Internet requires a major paradigm shift of the whole protocol stack for harnessing the peculiarities of quantum entanglement and quantum information. In this context, we first overview the relevant literature about Quantum Internet protocol stack. Then, stemming from this, we sheds the light on the open problems and required efforts toward the design of an effective and complete Quantum Internet protocol stack. To the best of authors' knowledge, a survey of this type is the first of its own. What emerges from this analysis is that the Quantum Internet, though still in its infancy, is a disruptive technology whose design requires an inter-disciplinary effort at the border between quantum physics, computer and telecommunications engineering.
Distill n' Explain: explaining graph neural networks using simple surrogates
Explaining node predictions in graph neural networks (GNNs) often boils down to finding graph substructures that preserve predictions. Finding these structures usually implies back-propagating through the GNN, bonding the complexity (e.g., number of layers) of the GNN to the cost of explaining it. This naturally begs the question: Can we break this bond by explaining a simpler surrogate GNN? To answer the question, we propose Distill n' Explain (DnX). First, DnX learns a surrogate GNN via knowledge distillation. Then, DnX extracts node or edge-level explanations by solving a simple convex program. We also propose FastDnX, a faster version of DnX that leverages the linear decomposition of our surrogate model. Experiments show that DnX and FastDnX often outperform state-of-the-art GNN explainers while being orders of magnitude faster. Additionally, we support our empirical findings with theoretical results linking the quality of the surrogate model (i.e., distillation error) to the faithfulness of explanations.
CSTS: A Benchmark for the Discovery of Correlation Structures in Time Series Clustering
Time series clustering promises to uncover hidden structural patterns in data with applications across healthcare, finance, industrial systems, and other critical domains. However, without validated ground truth information, researchers cannot objectively assess clustering quality or determine whether poor results stem from absent structures in the data, algorithmic limitations, or inappropriate validation methods, raising the question whether clustering is "more art than science" (Guyon et al., 2009). To address these challenges, we introduce CSTS (Correlation Structures in Time Series), a synthetic benchmark for evaluating the discovery of correlation structures in multivariate time series data. CSTS provides a clean benchmark that enables researchers to isolate and identify specific causes of clustering failures by differentiating between correlation structure deterioration and limitations of clustering algorithms and validation methods. Our contributions are: (1) a comprehensive benchmark for correlation structure discovery with distinct correlation structures, systematically varied data conditions, established performance thresholds, and recommended evaluation protocols; (2) empirical validation of correlation structure preservation showing moderate distortion from downsampling and minimal effects from distribution shifts and sparsification; and (3) an extensible data generation framework enabling structure-first clustering evaluation. A case study demonstrates CSTS's practical utility by identifying an algorithm's previously undocumented sensitivity to non-normal distributions, illustrating how the benchmark enables precise diagnosis of methodological limitations. CSTS advances rigorous evaluation standards for correlation-based time series clustering.
SOC: hunting the underground inside story of the ethereum Social-network Opinion and Comment
The cryptocurrency is attracting more and more attention because of the blockchain technology. Ethereum is gaining a significant popularity in blockchain community, mainly due to the fact that it is designed in a way that enables developers to write smart contracts and decentralized applications (Dapps). There are many kinds of cryptocurrency information on the social network. The risks and fraud problems behind it have pushed many countries including the United States, South Korea, and China to make warnings and set up corresponding regulations. However, the security of Ethereum smart contracts has not gained much attention. Through the Deep Learning approach, we propose a method of sentiment analysis for Ethereum's community comments. In this research, we first collected the users' cryptocurrency comments from the social network and then fed to our LSTM + CNN model for training. Then we made prediction through sentiment analysis. With our research result, we have demonstrated that both the precision and the recall of sentiment analysis can achieve 0.80+. More importantly, we deploy our sentiment analysis1 on RatingToken and Coin Master (mobile application of Cheetah Mobile Blockchain Security Center23). We can effectively provide detail information to resolve the risks of being fake and fraud problems.
Trustless Machine Learning Contracts; Evaluating and Exchanging Machine Learning Models on the Ethereum Blockchain
Using blockchain technology, it is possible to create contracts that offer a reward in exchange for a trained machine learning model for a particular data set. This would allow users to train machine learning models for a reward in a trustless manner. The smart contract will use the blockchain to automatically validate the solution, so there would be no debate about whether the solution was correct or not. Users who submit the solutions won't have counterparty risk that they won't get paid for their work. Contracts can be created easily by anyone with a dataset, even programmatically by software agents. This creates a market where parties who are good at solving machine learning problems can directly monetize their skillset, and where any organization or software agent that has a problem to solve with AI can solicit solutions from all over the world. This will incentivize the creation of better machine learning models, and make AI more accessible to companies and software agents.
GraphHash: Graph Clustering Enables Parameter Efficiency in Recommender Systems
Deep recommender systems rely heavily on large embedding tables to handle high-cardinality categorical features such as user/item identifiers, and face significant memory constraints at scale. To tackle this challenge, hashing techniques are often employed to map multiple entities to the same embedding and thus reduce the size of the embedding tables. Concurrently, graph-based collaborative signals have emerged as powerful tools in recommender systems, yet their potential for optimizing embedding table reduction remains unexplored. This paper introduces GraphHash, the first graph-based approach that leverages modularity-based bipartite graph clustering on user-item interaction graphs to reduce embedding table sizes. We demonstrate that the modularity objective has a theoretical connection to message-passing, which provides a foundation for our method. By employing fast clustering algorithms, GraphHash serves as a computationally efficient proxy for message-passing during preprocessing and a plug-and-play graph-based alternative to traditional ID hashing. Extensive experiments show that GraphHash substantially outperforms diverse hashing baselines on both retrieval and click-through-rate prediction tasks. In particular, GraphHash achieves on average a 101.52% improvement in recall when reducing the embedding table size by more than 75%, highlighting the value of graph-based collaborative information for model reduction. Our code is available at https://github.com/snap-research/GraphHash.
Struct-Bench: A Benchmark for Differentially Private Structured Text Generation
Differentially private (DP) synthetic data generation is a promising technique for utilizing private datasets that otherwise cannot be exposed for model training or other analytics. While much research literature has focused on generating private unstructured text and image data, in enterprise settings, structured data (e.g., tabular) is more common, often including natural language fields or components. Existing synthetic data evaluation techniques (e.g., FID) struggle to capture the structural properties and correlations of such datasets. In this work, we propose Struct-Bench, a framework and benchmark for evaluating synthetic datasets derived from structured datasets that contain natural language data. The Struct-Bench framework requires users to provide a representation of their dataset structure as a Context-Free Grammar (CFG). Our benchmark comprises 5 real-world and 2 synthetically generated datasets, each annotated with CFGs. We show that these datasets demonstrably present a great challenge even for state-of-the-art DP synthetic data generation methods. Struct-Bench also includes reference implementations of different metrics and a leaderboard, thereby providing researchers a standardized evaluation platform to benchmark and investigate privacy-preserving synthetic data generation methods. Further, we also present a case study showing how to use Struct-Bench to improve the synthetic data quality of Private Evolution (PE) on structured data. The benchmark and the leaderboard have been publicly made available at https://struct-bench.github.io.
Designing Network Design Spaces
In this work, we present a new network design paradigm. Our goal is to help advance the understanding of network design and discover design principles that generalize across settings. Instead of focusing on designing individual network instances, we design network design spaces that parametrize populations of networks. The overall process is analogous to classic manual design of networks, but elevated to the design space level. Using our methodology we explore the structure aspect of network design and arrive at a low-dimensional design space consisting of simple, regular networks that we call RegNet. The core insight of the RegNet parametrization is surprisingly simple: widths and depths of good networks can be explained by a quantized linear function. We analyze the RegNet design space and arrive at interesting findings that do not match the current practice of network design. The RegNet design space provides simple and fast networks that work well across a wide range of flop regimes. Under comparable training settings and flops, the RegNet models outperform the popular EfficientNet models while being up to 5x faster on GPUs.
Anti-Money Laundering in Bitcoin: Experimenting with Graph Convolutional Networks for Financial Forensics
Anti-money laundering (AML) regulations play a critical role in safeguarding financial systems, but bear high costs for institutions and drive financial exclusion for those on the socioeconomic and international margins. The advent of cryptocurrency has introduced an intriguing paradox: pseudonymity allows criminals to hide in plain sight, but open data gives more power to investigators and enables the crowdsourcing of forensic analysis. Meanwhile advances in learning algorithms show great promise for the AML toolkit. In this workshop tutorial, we motivate the opportunity to reconcile the cause of safety with that of financial inclusion. We contribute the Elliptic Data Set, a time series graph of over 200K Bitcoin transactions (nodes), 234K directed payment flows (edges), and 166 node features, including ones based on non-public data; to our knowledge, this is the largest labelled transaction data set publicly available in any cryptocurrency. We share results from a binary classification task predicting illicit transactions using variations of Logistic Regression (LR), Random Forest (RF), Multilayer Perceptrons (MLP), and Graph Convolutional Networks (GCN), with GCN being of special interest as an emergent new method for capturing relational information. The results show the superiority of Random Forest (RF), but also invite algorithmic work to combine the respective powers of RF and graph methods. Lastly, we consider visualization for analysis and explainability, which is difficult given the size and dynamism of real-world transaction graphs, and we offer a simple prototype capable of navigating the graph and observing model performance on illicit activity over time. With this tutorial and data set, we hope to a) invite feedback in support of our ongoing inquiry, and b) inspire others to work on this societally important challenge.
Secure and Privacy- Aware Searching in Peer-to-Peer Networks
The existing peer-to-peer networks have several problems such as fake content distribution, free riding, white-washing and poor search scalability, lack of a robust trust model and absence of user privacy protection mechanism. Although, several trust management and semantic community-based mechanisms for combating free riding and distribution of malicious contents have been proposed by some researchers, most of these schemes lack scalability due to their high computational, communication and storage overhead. This paper presents a robust trust management scheme for P2P networks that utilizes topology adaptation by constructing an overlay of trusted peers where the neighbors are selected based on their trust ratings and content similarities. While increasing the search efficiency by intelligently exploiting the formation of semantic community structures by topology adaptation among the trustworthy peers, the scheme provides the users a very high level of privacy protection of their usage and consumption patterns of network resources. Simulation results demonstrate that the proposed scheme provides efficient searching to good peers while penalizing the malicious peers by increasing their search times as the network topology stabilizes.
When Does Bottom-up Beat Top-down in Hierarchical Community Detection?
Hierarchical clustering of networks consists in finding a tree of communities, such that lower levels of the hierarchy reveal finer-grained community structures. There are two main classes of algorithms tackling this problem. Divisive (top-down) algorithms recursively partition the nodes into two communities, until a stopping rule indicates that no further split is needed. In contrast, agglomerative (bottom-up) algorithms first identify the smallest community structure and then repeatedly merge the communities using a linkage method. In this article, we establish theoretical guarantees for the recovery of the hierarchical tree and community structure of a Hierarchical Stochastic Block Model by a bottom-up algorithm. We also establish that this bottom-up algorithm attains the information-theoretic threshold for exact recovery at intermediate levels of the hierarchy. Notably, these recovery conditions are less restrictive compared to those existing for top-down algorithms. This shows that bottom-up algorithms extend the feasible region for achieving exact recovery at intermediate levels. Numerical experiments on both synthetic and real data sets confirm the superiority of bottom-up algorithms over top-down algorithms. We also observe that top-down algorithms can produce dendrograms with inversions. These findings contribute to a better understanding of hierarchical clustering techniques and their applications in network analysis.
On the generation of periodic discrete structures with identical two-point correlation
Strategies for the generation of periodic discrete structures with identical two-point correlation are developed. Starting from a pair of root structures, which are not related by translation, phase inversion or axis reflections, child structures of arbitrary resolution (i.e., pixel or voxel numbers) and number of phases (i.e., material phases/species) can be generated by means of trivial embedding based phase extension, application of kernels and/or phase coalescence, such that the generated structures inherit the two-point-correlation equivalence. Proofs of the inheritance property are provided by means of the Discrete Fourier Transform theory. A Python 3 implementation of the results is offered by the authors through the Github repository https://github.com/DataAnalyticsEngineering/EQ2PC in order to make the provided results reproducible and useful for all interested readers. Examples for the generation of structures are demonstrated, together with applications in the homogenization theory of periodic media.
PreBit -- A multimodal model with Twitter FinBERT embeddings for extreme price movement prediction of Bitcoin
Bitcoin, with its ever-growing popularity, has demonstrated extreme price volatility since its origin. This volatility, together with its decentralised nature, make Bitcoin highly subjective to speculative trading as compared to more traditional assets. In this paper, we propose a multimodal model for predicting extreme price fluctuations. This model takes as input a variety of correlated assets, technical indicators, as well as Twitter content. In an in-depth study, we explore whether social media discussions from the general public on Bitcoin have predictive power for extreme price movements. A dataset of 5,000 tweets per day containing the keyword `Bitcoin' was collected from 2015 to 2021. This dataset, called PreBit, is made available online. In our hybrid model, we use sentence-level FinBERT embeddings, pretrained on financial lexicons, so as to capture the full contents of the tweets and feed it to the model in an understandable way. By combining these embeddings with a Convolutional Neural Network, we built a predictive model for significant market movements. The final multimodal ensemble model includes this NLP model together with a model based on candlestick data, technical indicators and correlated asset prices. In an ablation study, we explore the contribution of the individual modalities. Finally, we propose and backtest a trading strategy based on the predictions of our models with varying prediction threshold and show that it can used to build a profitable trading strategy with a reduced risk over a `hold' or moving average strategy.
Sketching Meets Differential Privacy: Fast Algorithm for Dynamic Kronecker Projection Maintenance
Projection maintenance is one of the core data structure tasks. Efficient data structures for projection maintenance have led to recent breakthroughs in many convex programming algorithms. In this work, we further extend this framework to the Kronecker product structure. Given a constraint matrix {sf A} and a positive semi-definite matrix Win R^{ntimes n} with a sparse eigenbasis, we consider the task of maintaining the projection in the form of {sf B}^top({sf B}{sf B}^top)^{-1}{sf B}, where {sf B}={sf A}(Wotimes I) or {sf B}={sf A}(W^{1/2}otimes W^{1/2}). At each iteration, the weight matrix W receives a low rank change and we receive a new vector h. The goal is to maintain the projection matrix and answer the query {sf B}^top({sf B}{sf B}^top)^{-1}{sf B}h with good approximation guarantees. We design a fast dynamic data structure for this task and it is robust against an adaptive adversary. Following the beautiful and pioneering work of [Beimel, Kaplan, Mansour, Nissim, Saranurak and Stemmer, STOC'22], we use tools from differential privacy to reduce the randomness required by the data structure and further improve the running time.
Untangling Gaussian Mixtures
Tangles were originally introduced as a concept to formalize regions of high connectivity in graphs. In recent years, they have also been discovered as a link between structural graph theory and data science: when interpreting similarity in data sets as connectivity between points, finding clusters in the data essentially amounts to finding tangles in the underlying graphs. This paper further explores the potential of tangles in data sets as a means for a formal study of clusters. Real-world data often follow a normal distribution. Accounting for this, we develop a quantitative theory of tangles in data sets drawn from Gaussian mixtures. To this end, we equip the data with a graph structure that models similarity between the points and allows us to apply tangle theory to the data. We provide explicit conditions under which tangles associated with the marginal Gaussian distributions exist asymptotically almost surely. This can be considered as a sufficient formal criterion for the separabability of clusters in the data.
Node Proximity Is All You Need: Unified Structural and Positional Node and Graph Embedding
While most network embedding techniques model the relative positions of nodes in a network, recently there has been significant interest in structural embeddings that model node role equivalences, irrespective of their distances to any specific nodes. We present PhUSION, a proximity-based unified framework for computing structural and positional node embeddings, which leverages well-established methods for calculating node proximity scores. Clarifying a point of contention in the literature, we show which step of PhUSION produces the different kinds of embeddings and what steps can be used by both. Moreover, by aggregating the PhUSION node embeddings, we obtain graph-level features that model information lost by previous graph feature learning and kernel methods. In a comprehensive empirical study with over 10 datasets, 4 tasks, and 35 methods, we systematically reveal successful design choices for node and graph-level machine learning with embeddings.
Bipartite Mixed Membership Distribution-Free Model. A novel model for community detection in overlapping bipartite weighted networks
Modeling and estimating mixed memberships for overlapping unipartite un-weighted networks has been well studied in recent years. However, to our knowledge, there is no model for a more general case, the overlapping bipartite weighted networks. To close this gap, we introduce a novel model, the Bipartite Mixed Membership Distribution-Free (BiMMDF) model. Our model allows an adjacency matrix to follow any distribution as long as its expectation has a block structure related to node membership. In particular, BiMMDF can model overlapping bipartite signed networks and it is an extension of many previous models, including the popular mixed membership stochastic blcokmodels. An efficient algorithm with a theoretical guarantee of consistent estimation is applied to fit BiMMDF. We then obtain the separation conditions of BiMMDF for different distributions. Furthermore, we also consider missing edges for sparse networks. The advantage of BiMMDF is demonstrated in extensive synthetic networks and eight real-world networks.
MeritRank: Sybil Tolerant Reputation for Merit-based Tokenomics
Decentralized reputation schemes present a promising area of experimentation in blockchain applications. These solutions aim to overcome the shortcomings of simple monetary incentive mechanisms of naive tokenomics. However, there is a significant research gap regarding the limitations and benefits of such solutions. We formulate these trade-offs as a conjecture on the irreconcilability of three desirable properties of the reputation system in this context. Such a system can not be simultaneously generalizable, trustless, and Sybil resistant. To handle the limitations of this trilemma, we propose MeritRank: Sybil tolerant feedback aggregation mechanism for reputation. Instead of preventing Sybil attacks, our approach successfully bounds the benefits of these attacks. Using a dataset of participants' interactions in MakerDAO, we run experiments to demonstrate Sybil tolerance of MeritRank. Decay parameters of reputation in MeritRank: transitivity decay and connectivity decay, allow for a fine-tuning of desirable levels of reputation utility and Sybil tolerance in different use contexts.
Learning to Predict Short-Term Volatility with Order Flow Image Representation
Introduction: The paper addresses the challenging problem of predicting the short-term realized volatility of the Bitcoin price using order flow information. The inherent stochastic nature and anti-persistence of price pose difficulties in accurate prediction. Methods: To address this, we propose a method that transforms order flow data over a fixed time interval (snapshots) into images. The order flow includes trade sizes, trade directions, and limit order book, and is mapped into image colour channels. These images are then used to train both a simple 3-layer Convolutional Neural Network (CNN) and more advanced ResNet-18 and ConvMixer, with additionally supplementing them with hand-crafted features. The models are evaluated against classical GARCH, Multilayer Perceptron trained on raw data, and a naive guess method that considers current volatility as a prediction. Results: The experiments are conducted using price data from January 2021 and evaluate model performance in terms of root mean square error (RMSPE). The results show that our order flow representation with a CNN as a predictive model achieves the best performance, with an RMSPE of 0.85+/-1.1 for the model with aggregated features and 1.0+/-1.4 for the model without feature supplementation. ConvMixer with feature supplementation follows closely. In comparison, the RMSPE for the naive guess method was 1.4+/-3.0.
RePBubLik: Reducing the Polarized Bubble Radius with Link Insertions
The topology of the hyperlink graph among pages expressing different opinions may influence the exposure of readers to diverse content. Structural bias may trap a reader in a polarized bubble with no access to other opinions. We model readers' behavior as random walks. A node is in a polarized bubble if the expected length of a random walk from it to a page of different opinion is large. The structural bias of a graph is the sum of the radii of highly-polarized bubbles. We study the problem of decreasing the structural bias through edge insertions. Healing all nodes with high polarized bubble radius is hard to approximate within a logarithmic factor, so we focus on finding the best k edges to insert to maximally reduce the structural bias. We present RePBubLik, an algorithm that leverages a variant of the random walk closeness centrality to select the edges to insert. RePBubLik obtains, under mild conditions, a constant-factor approximation. It reduces the structural bias faster than existing edge-recommendation methods, including some designed to reduce the polarization of a graph.
The Geometry of Concepts: Sparse Autoencoder Feature Structure
Sparse autoencoders have recently produced dictionaries of high-dimensional vectors corresponding to the universe of concepts represented by large language models. We find that this concept universe has interesting structure at three levels: 1) The "atomic" small-scale structure contains "crystals" whose faces are parallelograms or trapezoids, generalizing well-known examples such as (man-woman-king-queen). We find that the quality of such parallelograms and associated function vectors improves greatly when projecting out global distractor directions such as word length, which is efficiently done with linear discriminant analysis. 2) The "brain" intermediate-scale structure has significant spatial modularity; for example, math and code features form a "lobe" akin to functional lobes seen in neural fMRI images. We quantify the spatial locality of these lobes with multiple metrics and find that clusters of co-occurring features, at coarse enough scale, also cluster together spatially far more than one would expect if feature geometry were random. 3) The "galaxy" scale large-scale structure of the feature point cloud is not isotropic, but instead has a power law of eigenvalues with steepest slope in middle layers. We also quantify how the clustering entropy depends on the layer.
On the Scalability of GNNs for Molecular Graphs
Scaling deep learning models has been at the heart of recent revolutions in language modelling and image generation. Practitioners have observed a strong relationship between model size, dataset size, and performance. However, structure-based architectures such as Graph Neural Networks (GNNs) are yet to show the benefits of scale mainly due to the lower efficiency of sparse operations, large data requirements, and lack of clarity about the effectiveness of various architectures. We address this drawback of GNNs by studying their scaling behavior. Specifically, we analyze message-passing networks, graph Transformers, and hybrid architectures on the largest public collection of 2D molecular graphs. For the first time, we observe that GNNs benefit tremendously from the increasing scale of depth, width, number of molecules, number of labels, and the diversity in the pretraining datasets, resulting in a 30.25% improvement when scaling to 1 billion parameters and 28.98% improvement when increasing size of dataset to eightfold. We further demonstrate strong finetuning scaling behavior on 38 tasks, outclassing previous large models. We hope that our work paves the way for an era where foundational GNNs drive pharmaceutical drug discovery.
Persistent homology of the cosmic web. I: Hierarchical topology in ΛCDM cosmologies
Using a set of LambdaCDM simulations of cosmic structure formation, we study the evolving connectivity and changing topological structure of the cosmic web using state-of-the-art tools of multiscale topological data analysis (TDA). We follow the development of the cosmic web topology in terms of the evolution of Betti number curves and feature persistence diagrams of the three (topological) classes of structural features: matter concentrations, filaments and tunnels, and voids. The Betti curves specify the prominence of features as a function of density level, and their evolution with cosmic epoch reflects the changing network connections between these structural features. The persistence diagrams quantify the longevity and stability of topological features. In this study we establish, for the first time, the link between persistence diagrams, the features they show, and the gravitationally driven cosmic structure formation process. By following the diagrams' development over cosmic time, the link between the multiscale topology of the cosmic web and the hierarchical buildup of cosmic structure is established. The sharp apexes in the diagrams are intimately related to key transitions in the structure formation process. The apex in the matter concentration diagrams coincides with the density level at which, typically, they detach from the Hubble expansion and begin to collapse. At that level many individual islands merge to form the network of the cosmic web and a large number of filaments and tunnels emerge to establish its connecting bridges. The location trends of the apex possess a self-similar character that can be related to the cosmic web's hierarchical buildup. We find that persistence diagrams provide a significantly higher and more profound level of information on the structure formation process than more global summary statistics like Euler characteristic or Betti numbers.
Paving the Way towards 800 Gbps Quantum-Secured Optical Channel Deployment in Mission-Critical Environments
This article describes experimental research studies conducted towards understanding the implementation aspects of high-capacity quantum-secured optical channels in mission-critical metro-scale operational environments using Quantum Key Distribution (QKD) technology. To the best of our knowledge, this is the first time that an 800 Gbps quantum-secured optical channel -- along with several other Dense Wavelength Division Multiplexed (DWDM) channels on the C-band and multiplexed with the QKD channel on the O-band -- was established at distances up to 100 km, with secret key-rates relevant for practical industry use cases. In addition, during the course of these trials, transporting a blockchain application over this established channel was utilized as a demonstration of securing a financial transaction in transit over a quantum-secured optical channel. The findings of this research pave the way towards the deployment of QKD-secured optical channels in high-capacity, metro-scale, mission-critical operational environments, such as Inter-Data Center Interconnects.
Neighborhood-aware Scalable Temporal Network Representation Learning
Temporal networks have been widely used to model real-world complex systems such as financial systems and e-commerce systems. In a temporal network, the joint neighborhood of a set of nodes often provides crucial structural information useful for predicting whether they may interact at a certain time. However, recent representation learning methods for temporal networks often fail to extract such information or depend on online construction of structural features, which is time-consuming. To address the issue, this work proposes Neighborhood-Aware Temporal network model (NAT). For each node in the network, NAT abandons the commonly-used one-single-vector-based representation while adopting a novel dictionary-type neighborhood representation. Such a dictionary representation records a downsampled set of the neighboring nodes as keys, and allows fast construction of structural features for a joint neighborhood of multiple nodes. We also design a dedicated data structure termed N-cache to support parallel access and update of those dictionary representations on GPUs. NAT gets evaluated over seven real-world large-scale temporal networks. NAT not only outperforms all cutting-edge baselines by averaged 1.2% and 4.2% in transductive and inductive link prediction accuracy, respectively, but also keeps scalable by achieving a speed-up of 4.1-76.7x against the baselines that adopt joint structural features and achieves a speed-up of 1.6-4.0x against the baselines that cannot adopt those features. The link to the code: https: //github.com/Graph-COM/Neighborhood-Aware-Temporal-Network.
SAKSHI: Decentralized AI Platforms
Large AI models (e.g., Dall-E, GPT4) have electrified the scientific, technological and societal landscape through their superhuman capabilities. These services are offered largely in a traditional web2.0 format (e.g., OpenAI's GPT4 service). As more large AI models proliferate (personalizing and specializing to a variety of domains), there is a tremendous need to have a neutral trust-free platform that allows the hosting of AI models, clients receiving AI services efficiently, yet in a trust-free, incentive compatible, Byzantine behavior resistant manner. In this paper we propose SAKSHI, a trust-free decentralized platform specifically suited for AI services. The key design principles of SAKSHI are the separation of the data path (where AI query and service is managed) and the control path (where routers and compute and storage hosts are managed) from the transaction path (where the metering and billing of services are managed over a blockchain). This separation is enabled by a "proof of inference" layer which provides cryptographic resistance against a variety of misbehaviors, including poor AI service, nonpayment for service, copying of AI models. This is joint work between multiple universities (Princeton University, University of Illinois at Urbana-Champaign, Tsinghua University, HKUST) and two startup companies (Witness Chain and Eigen Layer).
Differentiable and Transportable Structure Learning
Directed acyclic graphs (DAGs) encode a lot of information about a particular distribution in their structure. However, compute required to infer these structures is typically super-exponential in the number of variables, as inference requires a sweep of a combinatorially large space of potential structures. That is, until recent advances made it possible to search this space using a differentiable metric, drastically reducing search time. While this technique -- named NOTEARS -- is widely considered a seminal work in DAG-discovery, it concedes an important property in favour of differentiability: transportability. To be transportable, the structures discovered on one dataset must apply to another dataset from the same domain. We introduce D-Struct which recovers transportability in the discovered structures through a novel architecture and loss function while remaining fully differentiable. Because D-Struct remains differentiable, our method can be easily adopted in existing differentiable architectures, as was previously done with NOTEARS. In our experiments, we empirically validate D-Struct with respect to edge accuracy and structural Hamming distance in a variety of settings.
Scalable Diffusion for Materials Generation
Generative models trained on internet-scale data are capable of generating novel and realistic texts, images, and videos. A natural next question is whether these models can advance science, for example by generating novel stable materials. Traditionally, models with explicit structures (e.g., graphs) have been used in modeling structural relationships in scientific data (e.g., atoms and bonds in crystals), but generating structures can be difficult to scale to large and complex systems. Another challenge in generating materials is the mismatch between standard generative modeling metrics and downstream applications. For instance, common metrics such as the reconstruction error do not correlate well with the downstream goal of discovering stable materials. In this work, we tackle the scalability challenge by developing a unified crystal representation that can represent any crystal structure (UniMat), followed by training a diffusion probabilistic model on these UniMat representations. Our empirical results suggest that despite the lack of explicit structure modeling, UniMat can generate high fidelity crystal structures from larger and more complex chemical systems, outperforming previous graph-based approaches under various generative modeling metrics. To better connect the generation quality of materials to downstream applications, such as discovering novel stable materials, we propose additional metrics for evaluating generative models of materials, including per-composition formation energy and stability with respect to convex hulls through decomposition energy from Density Function Theory (DFT). Lastly, we show that conditional generation with UniMat can scale to previously established crystal datasets with up to millions of crystals structures, outperforming random structure search (the current leading method for structure discovery) in discovering new stable materials.
Amortized Inference for Causal Structure Learning
Inferring causal structure poses a combinatorial search problem that typically involves evaluating structures with a score or independence test. The resulting search is costly, and designing suitable scores or tests that capture prior knowledge is difficult. In this work, we propose to amortize causal structure learning. Rather than searching over structures, we train a variational inference model to directly predict the causal structure from observational or interventional data. This allows our inference model to acquire domain-specific inductive biases for causal discovery solely from data generated by a simulator, bypassing both the hand-engineering of suitable score functions and the search over graphs. The architecture of our inference model emulates permutation invariances that are crucial for statistical efficiency in structure learning, which facilitates generalization to significantly larger problem instances than seen during training. On synthetic data and semisynthetic gene expression data, our models exhibit robust generalization capabilities when subject to substantial distribution shifts and significantly outperform existing algorithms, especially in the challenging genomics domain. Our code and models are publicly available at: https://github.com/larslorch/avici.
OML: Open, Monetizable, and Loyal AI
Artificial Intelligence (AI) has steadily improved across a wide range of tasks. However, the development and deployment of AI are almost entirely controlled by a few powerful organizations that are racing to create Artificial General Intelligence (AGI). The centralized entities make decisions with little public oversight, shaping the future of humanity, often with unforeseen consequences. In this paper, we propose OML, which stands for Open, Monetizable, and Loyal AI, an approach designed to democratize AI development. OML is realized through an interdisciplinary framework spanning AI, blockchain, and cryptography. We present several ideas for constructing OML using technologies such as Trusted Execution Environments (TEE), traditional cryptographic primitives like fully homomorphic encryption and functional encryption, obfuscation, and AI-native solutions rooted in the sample complexity and intrinsic hardness of AI tasks. A key innovation of our work is introducing a new scientific field: AI-native cryptography. Unlike conventional cryptography, which focuses on discrete data and binary security guarantees, AI-native cryptography exploits the continuous nature of AI data representations and their low-dimensional manifolds, focusing on improving approximate performance. One core idea is to transform AI attack methods, such as data poisoning, into security tools. This novel approach serves as a foundation for OML 1.0 which uses model fingerprinting to protect the integrity and ownership of AI models. The spirit of OML is to establish a decentralized, open, and transparent platform for AI development, enabling the community to contribute, monetize, and take ownership of AI models. By decentralizing control and ensuring transparency through blockchain technology, OML prevents the concentration of power and provides accountability in AI development that has not been possible before.
d-SEAMS: Deferred Structural Elucidation Analysis for Molecular Simulations
Structural analyses are an integral part of computational research on nucleation and supercooled water, whose accuracy and efficiency can impact the validity and feasibility of such studies. The underlying molecular mechanisms of these often elusive and computationally expensive processes can be inferred from the evolution of ice-like structures, determined using appropriate structural analysis techniques. We present d-SEAMS, a free and open-source post-processing engine for the analysis of molecular dynamics trajectories, which is specifically able to qualitatively classify ice structures, in both strong confinement and bulk systems. For the first time, recent algorithms for confined ice structure determination have been implemented, along with topological network criteria for bulk ice structure determination. Recognizing the need for customization in structural analysis, d-SEAMS has a unique code architecture, built with `nix`, employing a `YAML`-`Lua` scripting pipeline. The software has been designed to be user-friendly and easy to extend. The engine outputs are compatible with popular graphics software suites, allowing for immediate visual insights into the systems studied. We demonstrate the features of d-SEAMS by using it to analyze nucleation in the bulk regime and for quasi-one and quasi-two-dimensional systems. Structural time evolution and quantitative metrics are determined for heterogenous ice nucleation on a silver-exposed beta-AgI surface, homogenous ice nucleation, flat monolayer square ice formation and freezing of an ice nanotube.
Reoccurring patterns in hierarchical protein materials and music: The power of analogies
Complex hierarchical structures composed of simple nanoscale building blocks form the basis of most biological materials. Here we demonstrate how analogies between seemingly different fields enable the understanding of general principles by which functional properties in hierarchical systems emerge, similar to an analogy learning process. Specifically, natural hierarchical materials like spider silk exhibit properties comparable to classical music in terms of their hierarchical structure and function. As a comparative tool here we apply hierarchical ontology logs (olog) that follow a rigorous mathematical formulation based on category theory to provide an insightful system representation by expressing knowledge in a conceptual map. We explain the process of analogy creation, draw connections at several levels of hierarchy and identify similar patterns that govern the structure of the hierarchical systems silk and music and discuss the impact of the derived analogy for nanotechnology.
Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
Heterophilic Graph Neural Networks (HGNNs) have shown promising results for semi-supervised learning tasks on graphs. Notably, most real-world heterophilic graphs are composed of a mixture of nodes with different neighbor patterns, exhibiting local node-level homophilic and heterophilic structures. However, existing works are only devoted to designing better HGNN backbones or architectures for node classification tasks on heterophilic and homophilic graph benchmarks simultaneously, and their analyses of HGNN performance with respect to nodes are only based on the determined data distribution without exploring the effect caused by this structural difference between training and testing nodes. How to learn invariant node representations on heterophilic graphs to handle this structure difference or distribution shifts remains unexplored. In this paper, we first discuss the limitations of previous graph-based invariant learning methods from the perspective of data augmentation. Then, we propose HEI, a framework capable of generating invariant node representations through incorporating heterophily information to infer latent environments without augmentation, which are then used for invariant prediction, under heterophilic graph structure distribution shifts. We theoretically show that our proposed method can achieve guaranteed performance under heterophilic graph structure distribution shifts. Extensive experiments on various benchmarks and backbones can also demonstrate the effectiveness of our method compared with existing state-of-the-art baselines.
MOFDiff: Coarse-grained Diffusion for Metal-Organic Framework Design
Metal-organic frameworks (MOFs) are of immense interest in applications such as gas storage and carbon capture due to their exceptional porosity and tunable chemistry. Their modular nature has enabled the use of template-based methods to generate hypothetical MOFs by combining molecular building blocks in accordance with known network topologies. However, the ability of these methods to identify top-performing MOFs is often hindered by the limited diversity of the resulting chemical space. In this work, we propose MOFDiff: a coarse-grained (CG) diffusion model that generates CG MOF structures through a denoising diffusion process over the coordinates and identities of the building blocks. The all-atom MOF structure is then determined through a novel assembly algorithm. Equivariant graph neural networks are used for the diffusion model to respect the permutational and roto-translational symmetries. We comprehensively evaluate our model's capability to generate valid and novel MOF structures and its effectiveness in designing outstanding MOF materials for carbon capture applications with molecular simulations.
A Periodic Bayesian Flow for Material Generation
Generative modeling of crystal data distribution is an important yet challenging task due to the unique periodic physical symmetry of crystals. Diffusion-based methods have shown early promise in modeling crystal distribution. More recently, Bayesian Flow Networks were introduced to aggregate noisy latent variables, resulting in a variance-reduced parameter space that has been shown to be advantageous for modeling Euclidean data distributions with structural constraints (Song et al., 2023). Inspired by this, we seek to unlock its potential for modeling variables located in non-Euclidean manifolds e.g. those within crystal structures, by overcoming challenging theoretical issues. We introduce CrysBFN, a novel crystal generation method by proposing a periodic Bayesian flow, which essentially differs from the original Gaussian-based BFN by exhibiting non-monotonic entropy dynamics. To successfully realize the concept of periodic Bayesian flow, CrysBFN integrates a new entropy conditioning mechanism and empirically demonstrates its significance compared to time-conditioning. Extensive experiments over both crystal ab initio generation and crystal structure prediction tasks demonstrate the superiority of CrysBFN, which consistently achieves new state-of-the-art on all benchmarks. Surprisingly, we found that CrysBFN enjoys a significant improvement in sampling efficiency, e.g., ~100x speedup 10 v.s. 2000 steps network forwards) compared with previous diffusion-based methods on MP-20 dataset. Code is available at https://github.com/wu-han-lin/CrysBFN.
Exploring the Impact of Disrupted Peer-to-Peer Communications on Fully Decentralized Learning in Disaster Scenarios
Fully decentralized learning enables the distribution of learning resources and decision-making capabilities across multiple user devices or nodes, and is rapidly gaining popularity due to its privacy-preserving and decentralized nature. Importantly, this crowdsourcing of the learning process allows the system to continue functioning even if some nodes are affected or disconnected. In a disaster scenario, communication infrastructure and centralized systems may be disrupted or completely unavailable, hindering the possibility of carrying out standard centralized learning tasks in these settings. Thus, fully decentralized learning can help in this case. However, transitioning from centralized to peer-to-peer communications introduces a dependency between the learning process and the topology of the communication graph among nodes. In a disaster scenario, even peer-to-peer communications are susceptible to abrupt changes, such as devices running out of battery or getting disconnected from others due to their position. In this study, we investigate the effects of various disruptions to peer-to-peer communications on decentralized learning in a disaster setting. We examine the resilience of a decentralized learning process when a subset of devices drop from the process abruptly. To this end, we analyze the difference between losing devices holding data, i.e., potential knowledge, vs. devices contributing only to the graph connectivity, i.e., with no data. Our findings on a Barabasi-Albert graph topology, where training data is distributed across nodes in an IID fashion, indicate that the accuracy of the learning process is more affected by a loss of connectivity than by a loss of data. Nevertheless, the network remains relatively robust, and the learning process can achieve a good level of accuracy.
Pard: Permutation-Invariant Autoregressive Diffusion for Graph Generation
Graph generation has been dominated by autoregressive models due to their simplicity and effectiveness, despite their sensitivity to ordering. Yet diffusion models have garnered increasing attention, as they offer comparable performance while being permutation-invariant. Current graph diffusion models generate graphs in a one-shot fashion, but they require extra features and thousands of denoising steps to achieve optimal performance. We introduce PARD, a Permutation-invariant Auto Regressive Diffusion model that integrates diffusion models with autoregressive methods. PARD harnesses the effectiveness and efficiency of the autoregressive model while maintaining permutation invariance without ordering sensitivity. Specifically, we show that contrary to sets, elements in a graph are not entirely unordered and there is a unique partial order for nodes and edges. With this partial order, PARD generates a graph in a block-by-block, autoregressive fashion, where each block's probability is conditionally modeled by a shared diffusion model with an equivariant network. To ensure efficiency while being expressive, we further propose a higher-order graph transformer, which integrates transformer with PPGN. Like GPT, we extend the higher-order graph transformer to support parallel training of all blocks. Without any extra features, PARD achieves state-of-the-art performance on molecular and non-molecular datasets, and scales to large datasets like MOSES containing 1.9M molecules.
SMASH: One-Shot Model Architecture Search through HyperNetworks
Designing architectures for deep neural networks requires expert knowledge and substantial computation time. We propose a technique to accelerate architecture selection by learning an auxiliary HyperNet that generates the weights of a main model conditioned on that model's architecture. By comparing the relative validation performance of networks with HyperNet-generated weights, we can effectively search over a wide range of architectures at the cost of a single training run. To facilitate this search, we develop a flexible mechanism based on memory read-writes that allows us to define a wide range of network connectivity patterns, with ResNet, DenseNet, and FractalNet blocks as special cases. We validate our method (SMASH) on CIFAR-10 and CIFAR-100, STL-10, ModelNet10, and Imagenet32x32, achieving competitive performance with similarly-sized hand-designed networks. Our code is available at https://github.com/ajbrock/SMASH
Uni-3DAR: Unified 3D Generation and Understanding via Autoregression on Compressed Spatial Tokens
Recent advancements in large language models and their multi-modal extensions have demonstrated the effectiveness of unifying generation and understanding through autoregressive next-token prediction. However, despite the critical role of 3D structural generation and understanding ({3D GU}) in AI for science, these tasks have largely evolved independently, with autoregressive methods remaining underexplored. To bridge this gap, we introduce Uni-3DAR, a unified framework that seamlessly integrates {3D GU} tasks via autoregressive prediction. At its core, Uni-3DAR employs a novel hierarchical tokenization that compresses 3D space using an octree, leveraging the inherent sparsity of 3D structures. It then applies an additional tokenization for fine-grained structural details, capturing key attributes such as atom types and precise spatial coordinates in microscopic 3D structures. We further propose two optimizations to enhance efficiency and effectiveness. The first is a two-level subtree compression strategy, which reduces the octree token sequence by up to 8x. The second is a masked next-token prediction mechanism tailored for dynamically varying token positions, significantly boosting model performance. By combining these strategies, Uni-3DAR successfully unifies diverse {3D GU} tasks within a single autoregressive framework. Extensive experiments across multiple microscopic {3D GU} tasks, including molecules, proteins, polymers, and crystals, validate its effectiveness and versatility. Notably, Uni-3DAR surpasses previous state-of-the-art diffusion models by a substantial margin, achieving up to 256\% relative improvement while delivering inference speeds up to 21.8x faster. The code is publicly available at https://github.com/dptech-corp/Uni-3DAR.
Tutela: An Open-Source Tool for Assessing User-Privacy on Ethereum and Tornado Cash
A common misconception among blockchain users is that pseudonymity guarantees privacy. The reality is almost the opposite. Every transaction one makes is recorded on a public ledger and reveals information about one's identity. Mixers, such as Tornado Cash, were developed to preserve privacy through "mixing" transactions with those of others in an anonymity pool, making it harder to link deposits and withdrawals from the pool. Unfortunately, it is still possible to reveal information about those in the anonymity pool if users are not careful. We introduce Tutela, an application built on expert heuristics to report the true anonymity of an Ethereum address. In particular, Tutela has three functionalities: first, it clusters together Ethereum addresses based on interaction history such that for an Ethereum address, we can identify other addresses likely owned by the same entity; second, it shows Ethereum users their potentially compromised transactions; third, Tutela computes the true size of the anonymity pool of each Tornado Cash mixer by excluding potentially compromised transactions. A public implementation of Tutela can be found at https://github.com/TutelaLabs/tutela-app. To use Tutela, visit https://www.tutela.xyz.
How connectivity structure shapes rich and lazy learning in neural circuits
In theoretical neuroscience, recent work leverages deep learning tools to explore how some network attributes critically influence its learning dynamics. Notably, initial weight distributions with small (resp. large) variance may yield a rich (resp. lazy) regime, where significant (resp. minor) changes to network states and representation are observed over the course of learning. However, in biology, neural circuit connectivity could exhibit a low-rank structure and therefore differs markedly from the random initializations generally used for these studies. As such, here we investigate how the structure of the initial weights -- in particular their effective rank -- influences the network learning regime. Through both empirical and theoretical analyses, we discover that high-rank initializations typically yield smaller network changes indicative of lazier learning, a finding we also confirm with experimentally-driven initial connectivity in recurrent neural networks. Conversely, low-rank initialization biases learning towards richer learning. Importantly, however, as an exception to this rule, we find lazier learning can still occur with a low-rank initialization that aligns with task and data statistics. Our research highlights the pivotal role of initial weight structures in shaping learning regimes, with implications for metabolic costs of plasticity and risks of catastrophic forgetting.
BitTensor: A Peer-to-Peer Intelligence Market
As with other commodities, markets could help us efficiently produce machine intelligence. We propose a market where intelligence is priced by other intelligence systems peer-to-peer across the internet. Peers rank each other by training neural networks which learn the value of their neighbors. Scores accumulate on a digital ledger where high ranking peers are monetarily rewarded with additional weight in the network. However, this form of peer-ranking is not resistant to collusion, which could disrupt the accuracy of the mechanism. The solution is a connectivity-based regularization which exponentially rewards trusted peers, making the system resistant to collusion of up to 50 percent of the network weight. The result is a collectively run intelligence market which continual produces newly trained models and pays contributors who create information theoretic value.
Bimonoidal Structure of Probability Monads
We give a conceptual treatment of the notion of joints, marginals, and independence in the setting of categorical probability. This is achieved by endowing the usual probability monads (like the Giry monad) with a monoidal and an opmonoidal structure, mutually compatible (i.e. a bimonoidal structure). If the underlying monoidal category is cartesian monoidal, a bimonoidal structure is given uniquely by a commutative strength. However, if the underlying monoidal category is not cartesian monoidal, a strength is not enough to guarantee all the desired properties of joints and marginals. A bimonoidal structure is then the correct requirement for the more general case. We explain the theory and the operational interpretation, with the help of the graphical calculus for monoidal categories. We give a definition of stochastic independence based on the bimonoidal structure, compatible with the intuition and with other approaches in the literature for cartesian monoidal categories. We then show as an example that the Kantorovich monad on the category of complete metric spaces is a bimonoidal monad for a non-cartesian monoidal structure.
LookAhead: Preventing DeFi Attacks via Unveiling Adversarial Contracts
Decentralized Finance (DeFi) incidents stemming from the exploitation of smart contract vulnerabilities have culminated in financial damages exceeding 3 billion US dollars. Existing defense mechanisms typically focus on detecting and reacting to malicious transactions executed by attackers that target victim contracts. However, with the emergence of private transaction pools where transactions are sent directly to miners without first appearing in public mempools, current detection tools face significant challenges in identifying attack activities effectively. Based on the fact that most attack logic rely on deploying one or more intermediate smart contracts as supporting components to the exploitation of victim contracts, in this paper, we propose a new direction for detecting DeFi attacks that focuses on identifying adversarial contracts instead of adversarial transactions. Our approach allows us to leverage common attack patterns, code semantics and intrinsic characteristics found in malicious smart contracts to build the LookAhead system based on Machine Learning (ML) classifiers and a transformer model that is able to effectively distinguish adversarial contracts from benign ones, and make just-in-time predictions of potential zero-day attacks. Our contributions are three-fold: First, we construct a comprehensive dataset consisting of features extracted and constructed from recent contracts deployed on the Ethereum and BSC blockchains. Secondly, we design a condensed representation of smart contract programs called Pruned Semantic-Control Flow Tokenization (PSCFT) and use it to train a combination of ML models that understand the behaviour of malicious codes based on function calls, control flows and other pattern-conforming features. Lastly, we provide the complete implementation of LookAhead and the evaluation of its performance metrics for detecting adversarial contracts.
IRWE: Inductive Random Walk for Joint Inference of Identity and Position Network Embedding
Network embedding, which maps graphs to distributed representations, is a unified framework for various graph inference tasks. According to the topology properties (e.g., structural roles and community memberships of nodes) to be preserved, it can be categorized into the identity and position embedding. However, existing methods can only capture one type of property. Some approaches can support the inductive inference that generalizes the embedding model to new nodes or graphs but relies on the availability of attributes. Due to the complicated correlations between topology and attributes, it is unclear for some inductive methods which type of property they can capture. In this study, we explore a unified framework for the joint inductive inference of identity and position embeddings without attributes. An inductive random walk embedding (IRWE) method is proposed, which combines multiple attention units to handle the random walk on graph topology and simultaneously derives identity and position embeddings that are jointly optimized. In particular, we demonstrate that some random walk statistics can be informative features to characterize node identities and positions while supporting the inductive embedding inference. Experiments validate the superior performance of IRWE beyond various baselines for the transductive and inductive inference of identity and position embeddings.
All You Need is DAG
We present DAG-Rider, the first asynchronous Byzantine Atomic Broadcast protocol that achieves optimal resilience, optimal amortized communication complexity, and optimal time complexity. DAG-Rider is post-quantum safe and ensures that all messages proposed by correct processes eventually get decided. We construct DAG-Rider in two layers: In the first layer, processes reliably broadcast their proposals and build a structured Directed Acyclic Graph (DAG) of the communication among them. In the second layer, processes locally observe their DAGs and totally order all proposals with no extra communication.
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Estimating the structure of directed acyclic graphs (DAGs, also known as Bayesian networks) is a challenging problem since the search space of DAGs is combinatorial and scales superexponentially with the number of nodes. Existing approaches rely on various local heuristics for enforcing the acyclicity constraint. In this paper, we introduce a fundamentally different strategy: We formulate the structure learning problem as a purely continuous optimization problem over real matrices that avoids this combinatorial constraint entirely. This is achieved by a novel characterization of acyclicity that is not only smooth but also exact. The resulting problem can be efficiently solved by standard numerical algorithms, which also makes implementation effortless. The proposed method outperforms existing ones, without imposing any structural assumptions on the graph such as bounded treewidth or in-degree. Code implementing the proposed algorithm is open-source and publicly available at https://github.com/xunzheng/notears.
Probabilistically Rewired Message-Passing Neural Networks
Message-passing graph neural networks (MPNNs) emerged as powerful tools for processing graph-structured input. However, they operate on a fixed input graph structure, ignoring potential noise and missing information. Furthermore, their local aggregation mechanism can lead to problems such as over-squashing and limited expressive power in capturing relevant graph structures. Existing solutions to these challenges have primarily relied on heuristic methods, often disregarding the underlying data distribution. Hence, devising principled approaches for learning to infer graph structures relevant to the given prediction task remains an open challenge. In this work, leveraging recent progress in exact and differentiable k-subset sampling, we devise probabilistically rewired MPNNs (PR-MPNNs), which learn to add relevant edges while omitting less beneficial ones. For the first time, our theoretical analysis explores how PR-MPNNs enhance expressive power, and we identify precise conditions under which they outperform purely randomized approaches. Empirically, we demonstrate that our approach effectively mitigates issues like over-squashing and under-reaching. In addition, on established real-world datasets, our method exhibits competitive or superior predictive performance compared to traditional MPNN models and recent graph transformer architectures.
HiGen: Hierarchical Graph Generative Networks
Most real-world graphs exhibit a hierarchical structure, which is often overlooked by existing graph generation methods. To address this limitation, we propose a novel graph generative network that captures the hierarchical nature of graphs and successively generates the graph sub-structures in a coarse-to-fine fashion. At each level of hierarchy, this model generates communities in parallel, followed by the prediction of cross-edges between communities using separate neural networks. This modular approach enables scalable graph generation for large and complex graphs. Moreover, we model the output distribution of edges in the hierarchical graph with a multinomial distribution and derive a recursive factorization for this distribution. This enables us to generate community graphs with integer-valued edge weights in an autoregressive manner. Empirical studies demonstrate the effectiveness and scalability of our proposed generative model, achieving state-of-the-art performance in terms of graph quality across various benchmark datasets. The code is available at https://github.com/Karami-m/HiGen_main.
A Chain Graph Interpretation of Real-World Neural Networks
The last decade has witnessed a boom of deep learning research and applications achieving state-of-the-art results in various domains. However, most advances have been established empirically, and their theoretical analysis remains lacking. One major issue is that our current interpretation of neural networks (NNs) as function approximators is too generic to support in-depth analysis. In this paper, we remedy this by proposing an alternative interpretation that identifies NNs as chain graphs (CGs) and feed-forward as an approximate inference procedure. The CG interpretation specifies the nature of each NN component within the rich theoretical framework of probabilistic graphical models, while at the same time remains general enough to cover real-world NNs with arbitrary depth, multi-branching and varied activations, as well as common structures including convolution / recurrent layers, residual block and dropout. We demonstrate with concrete examples that the CG interpretation can provide novel theoretical support and insights for various NN techniques, as well as derive new deep learning approaches such as the concept of partially collapsed feed-forward inference. It is thus a promising framework that deepens our understanding of neural networks and provides a coherent theoretical formulation for future deep learning research.
Measures of the Capital Network of the U.S. Economy
About two million U.S. corporations and partnerships are linked to each other and human investors by about 15 million owner-subsidiary links. Comparable social networks such as corporate board memberships and socially-built systems such as the network of Internet links are "small worlds," meaning a network with a small diameter and link densities with a power-law distribution, but these properties had not yet been measured for the business entity network. This article shows that both inbound links and outbound links display a power-law distribution with a coefficient of concentration estimable to within a generally narrow confidence interval, overall, for subnetworks including only business entities, only for the great connected component of the network, and in subnetworks with edges associated with certain industries, for all years 2009-2021. In contrast to other networks with power-law distributed link densities, the network is mostly a tree, and has a diameter an order of magnitude larger than a small-world network with the same link distribution. The regularity of the power-law distribution indicates that its coefficient can be used as a new, well-defined macroeconomic metric for the concentration of capital flows in an economy. Economists might use it as a new measure of market concentration which is more comprehensive than measures based only on the few biggest firms. Comparing capital link concentrations across countries would facilitate modeling the relationship between business network characteristics and other macroeconomic indicators.
Noisy dynamical systems evolve error correcting codes and modularity
Noise is a ubiquitous feature of the physical world. As a result, the first prerequisite of life is fault tolerance: maintaining integrity of state despite external bombardment. Recent experimental advances have revealed that biological systems achieve fault tolerance by implementing mathematically intricate error-correcting codes and by organizing in a modular fashion that physically separates functionally distinct subsystems. These elaborate structures represent a vanishing volume in the massive genetic configuration space. How is it possible that the primitive process of evolution, by which all biological systems evolved, achieved such unusual results? In this work, through experiments in Boolean networks, we show that the simultaneous presence of error correction and modularity in biological systems is no coincidence. Rather, it is a typical co-occurrence in noisy dynamic systems undergoing evolution. From this, we deduce the principle of error correction enhanced evolvability: systems possessing error-correcting codes are more effectively improved by evolution than those without.
Accurate Block Quantization in LLMs with Outliers
The demand for inference on extremely large scale LLMs has seen enormous growth in the recent months. It made evident the colossal shortage of dedicated hardware capable of efficient and fast processing of the involved compute and memory movement. The problem is aggravated by the exploding raise in the lengths of the sequences being processed, since those require efficient on-chip storage of the KV-cache of size proportional to the sequence length. To make the required compute feasible and fit the involved data into available memory, numerous quantization techniques have been proposed that allow accurate quantization for both weights and activations. One of the main recent breakthroughs in this direction was introduction of the family of Block Floating Point (BFP) formats characterized by a block of mantissas with a shared scale factor. These enable memory- power-, and compute- efficient hardware support of the tensor operations and provide extremely good quantization accuracy. The main issues preventing widespread application of block formats is caused by the presence of outliers in weights and activations since those affect the accuracy of the other values in the same block. In this paper, we focus on the most critical problem of limited KV-cache storage. We propose a novel approach enabling usage of low precision BFP formats without compromising the resulting model accuracy. We exploit the common channel-wise patterns exhibited by the outliers to rearrange them in such a way, that their quantization quality is significantly improved. The methodology yields 2x savings in the memory footprint without significant degradation of the model's accuracy. Importantly, the rearrangement of channels happens at the compile time and thus has no impact on the inference latency.
Detection Made Easy: Potentials of Large Language Models for Solidity Vulnerabilities
The large-scale deployment of Solidity smart contracts on the Ethereum mainnet has increasingly attracted financially-motivated attackers in recent years. A few now-infamous attacks in Ethereum's history includes DAO attack in 2016 (50 million dollars lost), Parity Wallet hack in 2017 (146 million dollars locked), Beautychain's token BEC in 2018 (900 million dollars market value fell to 0), and NFT gaming blockchain breach in 2022 ($600 million in Ether stolen). This paper presents a comprehensive investigation of the use of large language models (LLMs) and their capabilities in detecting OWASP Top Ten vulnerabilities in Solidity. We introduce a novel, class-balanced, structured, and labeled dataset named VulSmart, which we use to benchmark and compare the performance of open-source LLMs such as CodeLlama, Llama2, CodeT5 and Falcon, alongside closed-source models like GPT-3.5 Turbo and GPT-4o Mini. Our proposed SmartVD framework is rigorously tested against these models through extensive automated and manual evaluations, utilizing BLEU and ROUGE metrics to assess the effectiveness of vulnerability detection in smart contracts. We also explore three distinct prompting strategies-zero-shot, few-shot, and chain-of-thought-to evaluate the multi-class classification and generative capabilities of the SmartVD framework. Our findings reveal that SmartVD outperforms its open-source counterparts and even exceeds the performance of closed-source base models like GPT-3.5 and GPT-4 Mini. After fine-tuning, the closed-source models, GPT-3.5 Turbo and GPT-4o Mini, achieved remarkable performance with 99% accuracy in detecting vulnerabilities, 94% in identifying their types, and 98% in determining severity. Notably, SmartVD performs best with the `chain-of-thought' prompting technique, whereas the fine-tuned closed-source models excel with the `zero-shot' prompting approach.
Structured access: an emerging paradigm for safe AI deployment
Structured access is an emerging paradigm for the safe deployment of artificial intelligence (AI). Instead of openly disseminating AI systems, developers facilitate controlled, arm's length interactions with their AI systems. The aim is to prevent dangerous AI capabilities from being widely accessible, whilst preserving access to AI capabilities that can be used safely. The developer must both restrict how the AI system can be used, and prevent the user from circumventing these restrictions through modification or reverse engineering of the AI system. Structured access is most effective when implemented through cloud-based AI services, rather than disseminating AI software that runs locally on users' hardware. Cloud-based interfaces provide the AI developer greater scope for controlling how the AI system is used, and for protecting against unauthorized modifications to the system's design. This chapter expands the discussion of "publication norms" in the AI community, which to date has focused on the question of how the informational content of AI research projects should be disseminated (e.g., code and models). Although this is an important question, there are limits to what can be achieved through the control of information flows. Structured access views AI software not only as information that can be shared but also as a tool with which users can have arm's length interactions. There are early examples of structured access being practiced by AI developers, but there is much room for further development, both in the functionality of cloud-based interfaces and in the wider institutional framework.
Fast Inference and Update of Probabilistic Density Estimation on Trajectory Prediction
Safety-critical applications such as autonomous vehicles and social robots require fast computation and accurate probability density estimation on trajectory prediction. To address both requirements, this paper presents a new normalizing flow-based trajectory prediction model named FlowChain. FlowChain is a stack of conditional continuously-indexed flows (CIFs) that are expressive and allow analytical probability density computation. This analytical computation is faster than the generative models that need additional approximations such as kernel density estimation. Moreover, FlowChain is more accurate than the Gaussian mixture-based models due to fewer assumptions on the estimated density. FlowChain also allows a rapid update of estimated probability densities. This update is achieved by adopting the newest observed position and reusing the flow transformations and its log-det-jacobians that represent the motion trend. This update is completed in less than one millisecond because this reuse greatly omits the computational cost. Experimental results showed our FlowChain achieved state-of-the-art trajectory prediction accuracy compared to previous methods. Furthermore, our FlowChain demonstrated superiority in the accuracy and speed of density estimation. Our code is available at https://github.com/meaten/FlowChain-ICCV2023
Advances in Quantum Cryptography
Quantum cryptography is arguably the fastest growing area in quantum information science. Novel theoretical protocols are designed on a regular basis, security proofs are constantly improving, and experiments are gradually moving from proof-of-principle lab demonstrations to in-field implementations and technological prototypes. In this review, we provide both a general introduction and a state of the art description of the recent advances in the field, both theoretically and experimentally. We start by reviewing protocols of quantum key distribution based on discrete variable systems. Next we consider aspects of device independence, satellite challenges, and high rate protocols based on continuous variable systems. We will then discuss the ultimate limits of point-to-point private communications and how quantum repeaters and networks may overcome these restrictions. Finally, we will discuss some aspects of quantum cryptography beyond standard quantum key distribution, including quantum data locking and quantum digital signatures.
Neural Structure Learning with Stochastic Differential Equations
Discovering the underlying relationships among variables from temporal observations has been a longstanding challenge in numerous scientific disciplines, including biology, finance, and climate science. The dynamics of such systems are often best described using continuous-time stochastic processes. Unfortunately, most existing structure learning approaches assume that the underlying process evolves in discrete-time and/or observations occur at regular time intervals. These mismatched assumptions can often lead to incorrect learned structures and models. In this work, we introduce a novel structure learning method, SCOTCH, which combines neural stochastic differential equations (SDE) with variational inference to infer a posterior distribution over possible structures. This continuous-time approach can naturally handle both learning from and predicting observations at arbitrary time points. Theoretically, we establish sufficient conditions for an SDE and SCOTCH to be structurally identifiable, and prove its consistency under infinite data limits. Empirically, we demonstrate that our approach leads to improved structure learning performance on both synthetic and real-world datasets compared to relevant baselines under regular and irregular sampling intervals.
From Graphs to Hypergraphs: Hypergraph Projection and its Remediation
We study the implications of the modeling choice to use a graph, instead of a hypergraph, to represent real-world interconnected systems whose constituent relationships are of higher order by nature. Such a modeling choice typically involves an underlying projection process that maps the original hypergraph onto a graph, and is common in graph-based analysis. While hypergraph projection can potentially lead to loss of higher-order relations, there exists very limited studies on the consequences of doing so, as well as its remediation. This work fills this gap by doing two things: (1) we develop analysis based on graph and set theory, showing two ubiquitous patterns of hyperedges that are root to structural information loss in all hypergraph projections; we also quantify the combinatorial impossibility of recovering the lost higher-order structures if no extra help is provided; (2) we still seek to recover the lost higher-order structures in hypergraph projection, and in light of (1)'s findings we propose to relax the problem into a learning-based setting. Under this setting, we develop a learning-based hypergraph reconstruction method based on an important statistic of hyperedge distributions that we find. Our reconstruction method is evaluated on 8 real-world datasets under different settings, and exhibits consistently good performance. We also demonstrate benefits of the reconstructed hypergraphs via use cases of protein rankings and link predictions.
Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data
Learning causal structure from observational data often assumes that we observe independent and identically distributed (i.\,i.\,d) data. The traditional approach aims to find a graphical representation that encodes the same set of conditional independence relationships as those present in the observed distribution. It is known that under i.\,i.\,d assumption, even with infinite data, there is a limit to how fine-grained a causal structure we can identify. To overcome this limitation, recent work has explored using data originating from different, related environments to learn richer causal structure. These approaches implicitly rely on the independent causal mechanisms (ICM) principle, which postulates that the mechanism giving rise to an effect given its causes and the mechanism which generates the causes do not inform or influence each other. Thus, components of the causal model can independently change from environment to environment. Despite its wide application in machine learning and causal inference, there is a lack of statistical formalization of the ICM principle and how it enables identification of richer causal structures from grouped data. Here we present new causal de Finetti theorems which offer a first statistical formalization of ICM principle and show how causal structure identification is possible from exchangeable data. Our work provides theoretical justification for a broad range of techniques leveraging multi-environment data to learn causal structure.
Deep Multi-View Enhancement Hashing for Image Retrieval
Hashing is an efficient method for nearest neighbor search in large-scale data space by embedding high-dimensional feature descriptors into a similarity preserving Hamming space with a low dimension. However, large-scale high-speed retrieval through binary code has a certain degree of reduction in retrieval accuracy compared to traditional retrieval methods. We have noticed that multi-view methods can well preserve the diverse characteristics of data. Therefore, we try to introduce the multi-view deep neural network into the hash learning field, and design an efficient and innovative retrieval model, which has achieved a significant improvement in retrieval performance. In this paper, we propose a supervised multi-view hash model which can enhance the multi-view information through neural networks. This is a completely new hash learning method that combines multi-view and deep learning methods. The proposed method utilizes an effective view stability evaluation method to actively explore the relationship among views, which will affect the optimization direction of the entire network. We have also designed a variety of multi-data fusion methods in the Hamming space to preserve the advantages of both convolution and multi-view. In order to avoid excessive computing resources on the enhancement procedure during retrieval, we set up a separate structure called memory network which participates in training together. The proposed method is systematically evaluated on the CIFAR-10, NUS-WIDE and MS-COCO datasets, and the results show that our method significantly outperforms the state-of-the-art single-view and multi-view hashing methods.
Deep Layer Aggregation
Visual recognition requires rich representations that span levels from low to high, scales from small to large, and resolutions from fine to coarse. Even with the depth of features in a convolutional network, a layer in isolation is not enough: compounding and aggregating these representations improves inference of what and where. Architectural efforts are exploring many dimensions for network backbones, designing deeper or wider architectures, but how to best aggregate layers and blocks across a network deserves further attention. Although skip connections have been incorporated to combine layers, these connections have been "shallow" themselves, and only fuse by simple, one-step operations. We augment standard architectures with deeper aggregation to better fuse information across layers. Our deep layer aggregation structures iteratively and hierarchically merge the feature hierarchy to make networks with better accuracy and fewer parameters. Experiments across architectures and tasks show that deep layer aggregation improves recognition and resolution compared to existing branching and merging schemes. The code is at https://github.com/ucbdrive/dla.
4D Diffusion for Dynamic Protein Structure Prediction with Reference Guided Motion Alignment
Protein structure prediction is pivotal for understanding the structure-function relationship of proteins, advancing biological research, and facilitating pharmaceutical development and experimental design. While deep learning methods and the expanded availability of experimental 3D protein structures have accelerated structure prediction, the dynamic nature of protein structures has received limited attention. This study introduces an innovative 4D diffusion model incorporating molecular dynamics (MD) simulation data to learn dynamic protein structures. Our approach is distinguished by the following components: (1) a unified diffusion model capable of generating dynamic protein structures, including both the backbone and side chains, utilizing atomic grouping and side-chain dihedral angle predictions; (2) a reference network that enhances structural consistency by integrating the latent embeddings of the initial 3D protein structures; and (3) a motion alignment module aimed at improving temporal structural coherence across multiple time steps. To our knowledge, this is the first diffusion-based model aimed at predicting protein trajectories across multiple time steps simultaneously. Validation on benchmark datasets demonstrates that our model exhibits high accuracy in predicting dynamic 3D structures of proteins containing up to 256 amino acids over 32 time steps, effectively capturing both local flexibility in stable states and significant conformational changes.