- Towards Lossless Implicit Neural Representation via Bit Plane Decomposition We quantify the upper bound on the size of the implicit neural representation (INR) model from a digital perspective. The upper bound of the model size increases exponentially as the required bit-precision increases. To this end, we present a bit-plane decomposition method that makes INR predict bit-planes, producing the same effect as reducing the upper bound of the model size. We validate our hypothesis that reducing the upper bound leads to faster convergence with constant model size. Our method achieves lossless representation in 2D image and audio fitting, even for high bit-depth signals, such as 16-bit, which was previously unachievable. We pioneered the presence of bit bias, which INR prioritizes as the most significant bit (MSB). We expand the application of the INR task to bit depth expansion, lossless image compression, and extreme network quantization. Our source code is available at https://github.com/WooKyoungHan/LosslessINR 5 authors · Feb 28
39 The Geometry of LLM Quantization: GPTQ as Babai's Nearest Plane Algorithm Quantizing the weights of large language models (LLMs) from 16-bit to lower bitwidth is the de facto approach to deploy massive transformers onto more affordable accelerators. GPTQ emerged as one of the standard methods for one-shot post-training quantization at LLM scale. Yet, its inner workings are described as a sequence of ad-hoc algebraic updates that obscure any geometric meaning or worst-case guarantees. In this work, we show that, when executed back-to-front (from the last to first dimension) for a linear layer, GPTQ is mathematically identical to Babai's nearest plane algorithm for the classical closest vector problem (CVP) on a lattice defined by the Hessian matrix of the layer's inputs. This equivalence is based on a sophisticated mathematical argument, and has two analytical consequences: (i) the GPTQ error propagation step gains an intuitive geometric interpretation; (ii) GPTQ inherits the error upper bound of Babai's algorithm under the no-clipping condition. Taken together, these results place GPTQ on firm theoretical footing and open the door to importing decades of progress in lattice algorithms towards the design of future quantization algorithms for billion-parameter models. 3 authors · Jul 24 3