- Duplex Conversation: Towards Human-like Interaction in Spoken Dialogue Systems In this paper, we present Duplex Conversation, a multi-turn, multimodal spoken dialogue system that enables telephone-based agents to interact with customers like a human. We use the concept of full-duplex in telecommunication to demonstrate what a human-like interactive experience should be and how to achieve smooth turn-taking through three subtasks: user state detection, backchannel selection, and barge-in detection. Besides, we propose semi-supervised learning with multimodal data augmentation to leverage unlabeled data to increase model generalization. Experimental results on three sub-tasks show that the proposed method achieves consistent improvements compared with baselines. We deploy the Duplex Conversation to Alibaba intelligent customer service and share lessons learned in production. Online A/B experiments show that the proposed system can significantly reduce response latency by 50%. 6 authors · May 30, 2022
- Channel-Attention Dense U-Net for Multichannel Speech Enhancement Supervised deep learning has gained significant attention for speech enhancement recently. The state-of-the-art deep learning methods perform the task by learning a ratio/binary mask that is applied to the mixture in the time-frequency domain to produce the clean speech. Despite the great performance in the single-channel setting, these frameworks lag in performance in the multichannel setting as the majority of these methods a) fail to exploit the available spatial information fully, and b) still treat the deep architecture as a black box which may not be well-suited for multichannel audio processing. This paper addresses these drawbacks, a) by utilizing complex ratio masking instead of masking on the magnitude of the spectrogram, and more importantly, b) by introducing a channel-attention mechanism inside the deep architecture to mimic beamforming. We propose Channel-Attention Dense U-Net, in which we apply the channel-attention unit recursively on feature maps at every layer of the network, enabling the network to perform non-linear beamforming. We demonstrate the superior performance of the network against the state-of-the-art approaches on the CHiME-3 dataset. 5 authors · Jan 30, 2020
- Experimental Design for Multi-Channel Imaging via Task-Driven Feature Selection This paper presents a data-driven, task-specific paradigm for experimental design, to shorten acquisition time, reduce costs, and accelerate the deployment of imaging devices. Current approaches in experimental design focus on model-parameter estimation and require specification of a particular model, whereas in imaging, other tasks may drive the design. Furthermore, such approaches often lead to intractable optimization problems in real-world imaging applications. Here we present a new paradigm for experimental design that simultaneously optimizes the design (set of image channels) and trains a machine-learning model to execute a user-specified image-analysis task. The approach obtains data densely-sampled over the measurement space (many image channels) for a small number of acquisitions, then identifies a subset of channels of prespecified size that best supports the task. We propose a method: TADRED for TAsk-DRiven Experimental Design in imaging, to identify the most informative channel-subset whilst simultaneously training a network to execute the task given the subset. Experiments demonstrate the potential of TADRED in diverse imaging applications: several clinically-relevant tasks in magnetic resonance imaging; and remote sensing and physiological applications of hyperspectral imaging. Results show substantial improvement over classical experimental design, two recent application-specific methods within the new paradigm, and state-of-the-art approaches in supervised feature selection. We anticipate further applications of our approach. Code is available: https://github.com/sbb-gh/experimental-design-multichannel 3 authors · Oct 13, 2022
- PCM Selector: Penalized Covariate-Mediator Selection Operator for Evaluating Linear Causal Effects For a data-generating process for random variables that can be described with a linear structural equation model, we consider a situation in which (i) a set of covariates satisfying the back-door criterion cannot be observed or (ii) such a set can be observed, but standard statistical estimation methods cannot be applied to estimate causal effects because of multicollinearity/high-dimensional data problems. We propose a novel two-stage penalized regression approach, the penalized covariate-mediator selection operator (PCM Selector), to estimate the causal effects in such scenarios. Unlike existing penalized regression analyses, when a set of intermediate variables is available, PCM Selector provides a consistent or less biased estimator of the causal effect. In addition, PCM Selector provides a variable selection procedure for intermediate variables to obtain better estimation accuracy of the causal effects than does the back-door criterion. 2 authors · Dec 24, 2024
- Beating Backdoor Attack at Its Own Game Deep neural networks (DNNs) are vulnerable to backdoor attack, which does not affect the network's performance on clean data but would manipulate the network behavior once a trigger pattern is added. Existing defense methods have greatly reduced attack success rate, but their prediction accuracy on clean data still lags behind a clean model by a large margin. Inspired by the stealthiness and effectiveness of backdoor attack, we propose a simple but highly effective defense framework which injects non-adversarial backdoors targeting poisoned samples. Following the general steps in backdoor attack, we detect a small set of suspected samples and then apply a poisoning strategy to them. The non-adversarial backdoor, once triggered, suppresses the attacker's backdoor on poisoned data, but has limited influence on clean data. The defense can be carried out during data preprocessing, without any modification to the standard end-to-end training pipeline. We conduct extensive experiments on multiple benchmarks with different architectures and representative attacks. Results demonstrate that our method achieves state-of-the-art defense effectiveness with by far the lowest performance drop on clean data. Considering the surprising defense ability displayed by our framework, we call for more attention to utilizing backdoor for backdoor defense. Code is available at https://github.com/damianliumin/non-adversarial_backdoor. 3 authors · Jul 28, 2023
1 Generating Potent Poisons and Backdoors from Scratch with Guided Diffusion Modern neural networks are often trained on massive datasets that are web scraped with minimal human inspection. As a result of this insecure curation pipeline, an adversary can poison or backdoor the resulting model by uploading malicious data to the internet and waiting for a victim to scrape and train on it. Existing approaches for creating poisons and backdoors start with randomly sampled clean data, called base samples, and then modify those samples to craft poisons. However, some base samples may be significantly more amenable to poisoning than others. As a result, we may be able to craft more potent poisons by carefully choosing the base samples. In this work, we use guided diffusion to synthesize base samples from scratch that lead to significantly more potent poisons and backdoors than previous state-of-the-art attacks. Our Guided Diffusion Poisoning (GDP) base samples can be combined with any downstream poisoning or backdoor attack to boost its effectiveness. Our implementation code is publicly available at: https://github.com/hsouri/GDP . 10 authors · Mar 24, 2024
1 BATT: Backdoor Attack with Transformation-based Triggers Deep neural networks (DNNs) are vulnerable to backdoor attacks. The backdoor adversaries intend to maliciously control the predictions of attacked DNNs by injecting hidden backdoors that can be activated by adversary-specified trigger patterns during the training process. One recent research revealed that most of the existing attacks failed in the real physical world since the trigger contained in the digitized test samples may be different from that of the one used for training. Accordingly, users can adopt spatial transformations as the image pre-processing to deactivate hidden backdoors. In this paper, we explore the previous findings from another side. We exploit classical spatial transformations (i.e. rotation and translation) with the specific parameter as trigger patterns to design a simple yet effective poisoning-based backdoor attack. For example, only images rotated to a particular angle can activate the embedded backdoor of attacked DNNs. Extensive experiments are conducted, verifying the effectiveness of our attack under both digital and physical settings and its resistance to existing backdoor defenses. 4 authors · Nov 2, 2022
- Influencer Backdoor Attack on Semantic Segmentation When a small number of poisoned samples are injected into the training dataset of a deep neural network, the network can be induced to exhibit malicious behavior during inferences, which poses potential threats to real-world applications. While they have been intensively studied in classification, backdoor attacks on semantic segmentation have been largely overlooked. Unlike classification, semantic segmentation aims to classify every pixel within a given image. In this work, we explore backdoor attacks on segmentation models to misclassify all pixels of a victim class by injecting a specific trigger on non-victim pixels during inferences, which is dubbed Influencer Backdoor Attack (IBA). IBA is expected to maintain the classification accuracy of non-victim pixels and mislead classifications of all victim pixels in every single inference and could be easily applied to real-world scenes. Based on the context aggregation ability of segmentation models, we proposed a simple, yet effective, Nearest-Neighbor trigger injection strategy. We also introduce an innovative Pixel Random Labeling strategy which maintains optimal performance even when the trigger is placed far from the victim pixels. Our extensive experiments reveal that current segmentation models do suffer from backdoor attacks, demonstrate IBA real-world applicability, and show that our proposed techniques can further increase attack performance. 4 authors · Mar 21, 2023