new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 11

Rise and Fall of Anderson Localization by Lattice Vibrations: A Time-Dependent Machine Learning Approach

The intricate relationship between electrons and the crystal lattice is a linchpin in condensed matter, traditionally described by the Fr\"ohlich model encompassing the lowest-order lattice-electron coupling. Recently developed quantum acoustics, emphasizing the wave nature of lattice vibrations, has enabled the exploration of previously uncharted territories of electron-lattice interaction not accessible with conventional tools such as perturbation theory. In this context, our agenda here is two-fold. First, we showcase the application of machine learning methods to categorize various interaction regimes within the subtle interplay of electrons and the dynamical lattice landscape. Second, we shed light on a nebulous region of electron dynamics identified by the machine learning approach and then attribute it to transient localization, where strong lattice vibrations result in a momentary Anderson prison for electronic wavepackets, which are later released by the evolution of the lattice. Overall, our research illuminates the spectrum of dynamics within the Fr\"ohlich model, such as transient localization, which has been suggested as a pivotal factor contributing to the mysteries surrounding strange metals. Furthermore, this paves the way for utilizing time-dependent perspectives in machine learning techniques for designing materials with tailored electron-lattice properties.

Efficient Neural Music Generation

Recent progress in music generation has been remarkably advanced by the state-of-the-art MusicLM, which comprises a hierarchy of three LMs, respectively, for semantic, coarse acoustic, and fine acoustic modelings. Yet, sampling with the MusicLM requires processing through these LMs one by one to obtain the fine-grained acoustic tokens, making it computationally expensive and prohibitive for a real-time generation. Efficient music generation with a quality on par with MusicLM remains a significant challenge. In this paper, we present MeLoDy (M for music; L for LM; D for diffusion), an LM-guided diffusion model that generates music audios of state-of-the-art quality meanwhile reducing 95.7% or 99.6% forward passes in MusicLM, respectively, for sampling 10s or 30s music. MeLoDy inherits the highest-level LM from MusicLM for semantic modeling, and applies a novel dual-path diffusion (DPD) model and an audio VAE-GAN to efficiently decode the conditioning semantic tokens into waveform. DPD is proposed to simultaneously model the coarse and fine acoustics by incorporating the semantic information into segments of latents effectively via cross-attention at each denoising step. Our experimental results suggest the superiority of MeLoDy, not only in its practical advantages on sampling speed and infinitely continuable generation, but also in its state-of-the-art musicality, audio quality, and text correlation. Our samples are available at https://Efficient-MeLoDy.github.io/.

DDSP: Differentiable Digital Signal Processing

Most generative models of audio directly generate samples in one of two domains: time or frequency. While sufficient to express any signal, these representations are inefficient, as they do not utilize existing knowledge of how sound is generated and perceived. A third approach (vocoders/synthesizers) successfully incorporates strong domain knowledge of signal processing and perception, but has been less actively researched due to limited expressivity and difficulty integrating with modern auto-differentiation-based machine learning methods. In this paper, we introduce the Differentiable Digital Signal Processing (DDSP) library, which enables direct integration of classic signal processing elements with deep learning methods. Focusing on audio synthesis, we achieve high-fidelity generation without the need for large autoregressive models or adversarial losses, demonstrating that DDSP enables utilizing strong inductive biases without losing the expressive power of neural networks. Further, we show that combining interpretable modules permits manipulation of each separate model component, with applications such as independent control of pitch and loudness, realistic extrapolation to pitches not seen during training, blind dereverberation of room acoustics, transfer of extracted room acoustics to new environments, and transformation of timbre between disparate sources. In short, DDSP enables an interpretable and modular approach to generative modeling, without sacrificing the benefits of deep learning. The library is publicly available at https://github.com/magenta/ddsp and we welcome further contributions from the community and domain experts.

Acoustic Prompt Tuning: Empowering Large Language Models with Audition Capabilities

The auditory system plays a substantial role in shaping the overall human perceptual experience. While prevailing large language models (LLMs) and visual language models (VLMs) have shown their promise in solving a wide variety of vision and language understanding tasks, only a few of them can be generalised to the audio domain without compromising their domain-specific capacity. In this work, we introduce Acoustic Prompt Turning (APT), a new adapter extending LLMs and VLMs to the audio domain by soft prompting only. Specifically, APT applies an instruction-aware audio aligner to generate soft prompts, conditioned on both input text and sounds, as language model inputs. To mitigate the data scarcity in the audio domain, a multi-task learning strategy is proposed by formulating diverse audio tasks in a sequence-to-sequence manner. Moreover, we improve the framework of audio language model by using interleaved audio-text embeddings as the input sequence. This improved framework imposes zero constraints on the input format and thus is capable of tackling more understanding tasks, such as few-shot audio classification and audio reasoning. To further evaluate the reasoning ability of audio networks, we propose natural language audio reasoning (NLAR), a new task that analyses across two audio clips by comparison and summarization. Experiments show that APT-enhanced LLMs (namely APT-LLMs) achieve competitive results compared to the expert models (i.e., the networks trained on the targeted datasets) across various tasks. We finally demonstrate the APT's ability in extending frozen VLMs to the audio domain without finetuning, achieving promising results in the audio-visual question and answering task. Our code and model weights are released at https://github.com/JinhuaLiang/APT.

MERT: Acoustic Music Understanding Model with Large-Scale Self-supervised Training

Self-supervised learning (SSL) has recently emerged as a promising paradigm for training generalisable models on large-scale data in the fields of vision, text, and speech. Although SSL has been proven effective in speech and audio, its application to music audio has yet to be thoroughly explored. This is primarily due to the distinctive challenges associated with modelling musical knowledge, particularly its tonal and pitched characteristics of music. To address this research gap, we propose an acoustic Music undERstanding model with large-scale self-supervised Training (MERT), which incorporates teacher models to provide pseudo labels in the masked language modelling (MLM) style acoustic pre-training. In our exploration, we identified a superior combination of teacher models, which outperforms conventional speech and audio approaches in terms of performance. This combination includes an acoustic teacher based on Residual Vector Quantization - Variational AutoEncoder (RVQ-VAE) and a musical teacher based on the Constant-Q Transform (CQT). These teachers effectively guide our student model, a BERT-style transformer encoder, to better model music audio. In addition, we introduce an in-batch noise mixture augmentation to enhance the representation robustness. Furthermore, we explore a wide range of settings to overcome the instability in acoustic language model pre-training, which allows our designed paradigm to scale from 95M to 330M parameters. Experimental results indicate that our model can generalise and perform well on 14 music understanding tasks and attains state-of-the-art (SOTA) overall scores. The code and models are online: https://github.com/yizhilll/MERT.

Unraveling Complex Data Diversity in Underwater Acoustic Target Recognition through Convolution-based Mixture of Experts

Underwater acoustic target recognition is a difficult task owing to the intricate nature of underwater acoustic signals. The complex underwater environments, unpredictable transmission channels, and dynamic motion states greatly impact the real-world underwater acoustic signals, and may even obscure the intrinsic characteristics related to targets. Consequently, the data distribution of underwater acoustic signals exhibits high intra-class diversity, thereby compromising the accuracy and robustness of recognition systems.To address these issues, this work proposes a convolution-based mixture of experts (CMoE) that recognizes underwater targets in a fine-grained manner. The proposed technique introduces multiple expert layers as independent learners, along with a routing layer that determines the assignment of experts according to the characteristics of inputs. This design allows the model to utilize independent parameter spaces, facilitating the learning of complex underwater signals with high intra-class diversity. Furthermore, this work optimizes the CMoE structure by balancing regularization and an optional residual module. To validate the efficacy of our proposed techniques, we conducted detailed experiments and visualization analyses on three underwater acoustic databases across several acoustic features. The experimental results demonstrate that our CMoE consistently achieves significant performance improvements, delivering superior recognition accuracy when compared to existing advanced methods.

Edge Computing in Distributed Acoustic Sensing: An Application in Traffic Monitoring

Distributed acoustic sensing (DAS) technology leverages fiber optic cables to detect vibrations and acoustic events, which is a promising solution for real-time traffic monitoring. In this paper, we introduce a novel methodology for detecting and tracking vehicles using DAS data, focusing on real-time processing through edge computing. Our approach applies the Hough transform to detect straight-line segments in the spatiotemporal DAS data, corresponding to vehicles crossing the Astfjord bridge in Norway. These segments are further clustered using the Density-based spatial clustering of applications with noise (DBSCAN) algorithm to consolidate multiple detections of the same vehicle, reducing noise and improving accuracy. The proposed workflow effectively counts vehicles and estimates their speed with only tens of seconds latency, enabling real-time traffic monitoring on the edge. To validate the system, we compare DAS data with simultaneous video footage, achieving high accuracy in vehicle detection, including the distinction between cars and trucks based on signal strength and frequency content. Results show that the system is capable of processing large volumes of data efficiently. We also analyze vehicle speeds and traffic patterns, identifying temporal trends and variations in traffic flow. Real-time deployment on edge devices allows immediate analysis and visualization via cloud-based platforms. In addition to traffic monitoring, the method successfully detected structural responses in the bridge, highlighting its potential use in structural health monitoring.

Seismic Arrival-time Picking on Distributed Acoustic Sensing Data using Semi-supervised Learning

Distributed Acoustic Sensing (DAS) is an emerging technology for earthquake monitoring and subsurface imaging. The recorded seismic signals by DAS have several distinct characteristics, such as unknown coupling effects, strong anthropogenic noise, and ultra-dense spatial sampling. These aspects differ from conventional seismic data recorded by seismic networks, making it challenging to utilize DAS at present for seismic monitoring. New data analysis algorithms are needed to extract useful information from DAS data. Previous studies on conventional seismic data demonstrated that deep learning models could achieve performance close to human analysts in picking seismic phases. However, phase picking on DAS data is still a difficult problem due to the lack of manual labels. Further, the differences in mathematical structure between these two data formats, i.e., ultra-dense DAS arrays and sparse seismic networks, make model fine-tuning or transfer learning difficult to implement on DAS data. In this work, we design a new approach using semi-supervised learning to solve the phase-picking task on DAS arrays. We use a pre-trained PhaseNet model as a teacher network to generate noisy labels of P and S arrivals on DAS data and apply the Gaussian mixture model phase association (GaMMA) method to refine these noisy labels to build training datasets. We develop a new deep learning model, PhaseNet-DAS, to process the 2D spatial-temporal data of DAS arrays and train the model on DAS data. The new deep learning model achieves high picking accuracy and good earthquake detection performance. We then apply the model to process continuous data and build earthquake catalogs directly from DAS recording. Our approach using semi-supervised learning provides a way to build effective deep learning models for DAS, which have the potential to improve earthquake monitoring using large-scale fiber networks.

WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling

Language models have been effectively applied to modeling natural signals, such as images, video, speech, and audio. A crucial component of these models is the codec tokenizer, which compresses high-dimensional natural signals into lower-dimensional discrete tokens. In this paper, we introduce WavTokenizer, which offers several advantages over previous SOTA acoustic codec models in the audio domain: 1)extreme compression. By compressing the layers of quantizers and the temporal dimension of the discrete codec, one-second audio of 24kHz sampling rate requires only a single quantizer with 40 or 75 tokens. 2)improved subjective quality. Despite the reduced number of tokens, WavTokenizer achieves state-of-the-art reconstruction quality with outstanding UTMOS scores and inherently contains richer semantic information. Specifically, we achieve these results by designing a broader VQ space, extended contextual windows, and improved attention networks, as well as introducing a powerful multi-scale discriminator and an inverse Fourier transform structure. We conducted extensive reconstruction experiments in the domains of speech, audio, and music. WavTokenizer exhibited strong performance across various objective and subjective metrics compared to state-of-the-art models. We also tested semantic information, VQ utilization, and adaptability to generative models. Comprehensive ablation studies confirm the necessity of each module in WavTokenizer. The related code, demos, and pre-trained models are available at https://github.com/jishengpeng/WavTokenizer.

Towards Open Respiratory Acoustic Foundation Models: Pretraining and Benchmarking

Respiratory audio, such as coughing and breathing sounds, has predictive power for a wide range of healthcare applications, yet is currently under-explored. The main problem for those applications arises from the difficulty in collecting large labeled task-specific data for model development. Generalizable respiratory acoustic foundation models pretrained with unlabeled data would offer appealing advantages and possibly unlock this impasse. However, given the safety-critical nature of healthcare applications, it is pivotal to also ensure openness and replicability for any proposed foundation model solution. To this end, we introduce OPERA, an OPEn Respiratory Acoustic foundation model pretraining and benchmarking system, as the first approach answering this need. We curate large-scale respiratory audio datasets (~136K samples, 440 hours), pretrain three pioneering foundation models, and build a benchmark consisting of 19 downstream respiratory health tasks for evaluation. Our pretrained models demonstrate superior performance (against existing acoustic models pretrained with general audio on 16 out of 19 tasks) and generalizability (to unseen datasets and new respiratory audio modalities). This highlights the great promise of respiratory acoustic foundation models and encourages more studies using OPERA as an open resource to accelerate research on respiratory audio for health. The system is accessible from https://github.com/evelyn0414/OPERA.

HAM-TTS: Hierarchical Acoustic Modeling for Token-Based Zero-Shot Text-to-Speech with Model and Data Scaling

Token-based text-to-speech (TTS) models have emerged as a promising avenue for generating natural and realistic speech, yet they grapple with low pronunciation accuracy, speaking style and timbre inconsistency, and a substantial need for diverse training data. In response, we introduce a novel hierarchical acoustic modeling approach complemented by a tailored data augmentation strategy and train it on the combination of real and synthetic data, scaling the data size up to 650k hours, leading to the zero-shot TTS model with 0.8B parameters. Specifically, our method incorporates a latent variable sequence containing supplementary acoustic information based on refined self-supervised learning (SSL) discrete units into the TTS model by a predictor. This significantly mitigates pronunciation errors and style mutations in synthesized speech. During training, we strategically replace and duplicate segments of the data to enhance timbre uniformity. Moreover, a pretrained few-shot voice conversion model is utilized to generate a plethora of voices with identical content yet varied timbres. This facilitates the explicit learning of utterance-level one-to-many mappings, enriching speech diversity and also ensuring consistency in timbre. Comparative experiments (Demo page: https://anonymous.4open.science/w/ham-tts/)demonstrate our model's superiority over VALL-E in pronunciation precision and maintaining speaking style, as well as timbre continuity.

When LLMs Meets Acoustic Landmarks: An Efficient Approach to Integrate Speech into Large Language Models for Depression Detection

Depression is a critical concern in global mental health, prompting extensive research into AI-based detection methods. Among various AI technologies, Large Language Models (LLMs) stand out for their versatility in mental healthcare applications. However, their primary limitation arises from their exclusive dependence on textual input, which constrains their overall capabilities. Furthermore, the utilization of LLMs in identifying and analyzing depressive states is still relatively untapped. In this paper, we present an innovative approach to integrating acoustic speech information into the LLMs framework for multimodal depression detection. We investigate an efficient method for depression detection by integrating speech signals into LLMs utilizing Acoustic Landmarks. By incorporating acoustic landmarks, which are specific to the pronunciation of spoken words, our method adds critical dimensions to text transcripts. This integration also provides insights into the unique speech patterns of individuals, revealing the potential mental states of individuals. Evaluations of the proposed approach on the DAIC-WOZ dataset reveal state-of-the-art results when compared with existing Audio-Text baselines. In addition, this approach is not only valuable for the detection of depression but also represents a new perspective in enhancing the ability of LLMs to comprehend and process speech signals.

End-to-End Complex-Valued Multidilated Convolutional Neural Network for Joint Acoustic Echo Cancellation and Noise Suppression

Echo and noise suppression is an integral part of a full-duplex communication system. Many recent acoustic echo cancellation (AEC) systems rely on a separate adaptive filtering module for linear echo suppression and a neural module for residual echo suppression. However, not only do adaptive filtering modules require convergence and remain susceptible to changes in acoustic environments, but this two-stage framework also often introduces unnecessary delays to the AEC system when neural modules are already capable of both linear and nonlinear echo suppression. In this paper, we exploit the offset-compensating ability of complex time-frequency masks and propose an end-to-end complex-valued neural network architecture. The building block of the proposed model is a pseudocomplex extension based on the densely-connected multidilated DenseNet (D3Net) building block, resulting in a very small network of only 354K parameters. The architecture utilized the multi-resolution nature of the D3Net building blocks to eliminate the need for pooling, allowing the network to extract features using large receptive fields without any loss of output resolution. We also propose a dual-mask technique for joint echo and noise suppression with simultaneous speech enhancement. Evaluation on both synthetic and real test sets demonstrated promising results across multiple energy-based metrics and perceptual proxies.

NAAQA: A Neural Architecture for Acoustic Question Answering

The goal of the Acoustic Question Answering (AQA) task is to answer a free-form text question about the content of an acoustic scene. It was inspired by the Visual Question Answering (VQA) task. In this paper, based on the previously introduced CLEAR dataset, we propose a new benchmark for AQA, namely CLEAR2, that emphasizes the specific challenges of acoustic inputs. These include handling of variable duration scenes, and scenes built with elementary sounds that differ between training and test set. We also introduce NAAQA, a neural architecture that leverages specific properties of acoustic inputs. The use of 1D convolutions in time and frequency to process 2D spectro-temporal representations of acoustic content shows promising results and enables reductions in model complexity. We show that time coordinate maps augment temporal localization capabilities which enhance performance of the network by ~17 percentage points. On the other hand, frequency coordinate maps have little influence on this task. NAAQA achieves 79.5% of accuracy on the AQA task with ~4 times fewer parameters than the previously explored VQA model. We evaluate the perfomance of NAAQA on an independent data set reconstructed from DAQA. We also test the addition of a MALiMo module in our model on both CLEAR2 and DAQA. We provide a detailed analysis of the results for the different question types. We release the code to produce CLEAR2 as well as NAAQA to foster research in this newly emerging machine learning task.

HierSpeech++: Bridging the Gap between Semantic and Acoustic Representation of Speech by Hierarchical Variational Inference for Zero-shot Speech Synthesis

Large language models (LLM)-based speech synthesis has been widely adopted in zero-shot speech synthesis. However, they require a large-scale data and possess the same limitations as previous autoregressive speech models, including slow inference speed and lack of robustness. This paper proposes HierSpeech++, a fast and strong zero-shot speech synthesizer for text-to-speech (TTS) and voice conversion (VC). We verified that hierarchical speech synthesis frameworks could significantly improve the robustness and expressiveness of the synthetic speech. Furthermore, we significantly improve the naturalness and speaker similarity of synthetic speech even in zero-shot speech synthesis scenarios. For text-to-speech, we adopt the text-to-vec framework, which generates a self-supervised speech representation and an F0 representation based on text representations and prosody prompts. Then, HierSpeech++ generates speech from the generated vector, F0, and voice prompt. We further introduce a high-efficient speech super-resolution framework from 16 kHz to 48 kHz. The experimental results demonstrated that the hierarchical variational autoencoder could be a strong zero-shot speech synthesizer given that it outperforms LLM-based and diffusion-based models. Moreover, we achieved the first human-level quality zero-shot speech synthesis. Audio samples and source code are available at https://github.com/sh-lee-prml/HierSpeechpp.

It's Never Too Late: Fusing Acoustic Information into Large Language Models for Automatic Speech Recognition

Recent studies have successfully shown that large language models (LLMs) can be successfully used for generative error correction (GER) on top of the automatic speech recognition (ASR) output. Specifically, an LLM is utilized to carry out a direct mapping from the N-best hypotheses list generated by an ASR system to the predicted output transcription. However, despite its effectiveness, GER introduces extra data uncertainty since the LLM is trained without taking into account acoustic information available in the speech signal. In this work, we aim to overcome such a limitation by infusing acoustic information before generating the predicted transcription through a novel late fusion solution termed Uncertainty-Aware Dynamic Fusion (UADF). UADF is a multimodal fusion approach implemented into an auto-regressive decoding process and works in two stages: (i) It first analyzes and calibrates the token-level LLM decision, and (ii) it then dynamically assimilates the information from the acoustic modality. Experimental evidence collected from various ASR tasks shows that UADF surpasses existing fusion mechanisms in several ways. It yields significant improvements in word error rate (WER) while mitigating data uncertainty issues in LLM and addressing the poor generalization relied with sole modality during fusion. We also demonstrate that UADF seamlessly adapts to audio-visual speech recognition.

BEATs: Audio Pre-Training with Acoustic Tokenizers

The massive growth of self-supervised learning (SSL) has been witnessed in language, vision, speech, and audio domains over the past few years. While discrete label prediction is widely adopted for other modalities, the state-of-the-art audio SSL models still employ reconstruction loss for pre-training. Compared with reconstruction loss, semantic-rich discrete label prediction encourages the SSL model to abstract the high-level audio semantics and discard the redundant details as in human perception. However, a semantic-rich acoustic tokenizer for general audio pre-training is usually not straightforward to obtain, due to the continuous property of audio and unavailable phoneme sequences like speech. To tackle this challenge, we propose BEATs, an iterative audio pre-training framework to learn Bidirectional Encoder representation from Audio Transformers, where an acoustic tokenizer and an audio SSL model are optimized by iterations. In the first iteration, we use random projection as the acoustic tokenizer to train an audio SSL model in a mask and label prediction manner. Then, we train an acoustic tokenizer for the next iteration by distilling the semantic knowledge from the pre-trained or fine-tuned audio SSL model. The iteration is repeated with the hope of mutual promotion of the acoustic tokenizer and audio SSL model. The experimental results demonstrate our acoustic tokenizers can generate discrete labels with rich audio semantics and our audio SSL models achieve state-of-the-art results across various audio classification benchmarks, even outperforming previous models that use more training data and model parameters significantly. Specifically, we set a new state-of-the-art mAP 50.6% on AudioSet-2M for audio-only models without using any external data, and 98.1% accuracy on ESC-50. The code and pre-trained models are available at https://aka.ms/beats.

Iterative pseudo-forced alignment by acoustic CTC loss for self-supervised ASR domain adaptation

High-quality data labeling from specific domains is costly and human time-consuming. In this work, we propose a self-supervised domain adaptation method, based upon an iterative pseudo-forced alignment algorithm. The produced alignments are employed to customize an end-to-end Automatic Speech Recognition (ASR) and iteratively refined. The algorithm is fed with frame-wise character posteriors produced by a seed ASR, trained with out-of-domain data, and optimized throughout a Connectionist Temporal Classification (CTC) loss. The alignments are computed iteratively upon a corpus of broadcast TV. The process is repeated by reducing the quantity of text to be aligned or expanding the alignment window until finding the best possible audio-text alignment. The starting timestamps, or temporal anchors, are produced uniquely based on the confidence score of the last aligned utterance. This score is computed with the paths of the CTC-alignment matrix. With this methodology, no human-revised text references are required. Alignments from long audio files with low-quality transcriptions, like TV captions, are filtered out by confidence score and ready for further ASR adaptation. The obtained results, on both the Spanish RTVE2022 and CommonVoice databases, underpin the feasibility of using CTC-based systems to perform: highly accurate audio-text alignments, domain adaptation and semi-supervised training of end-to-end ASR.

Self-Supervised Visual Terrain Classification from Unsupervised Acoustic Feature Learning

Mobile robots operating in unknown urban environments encounter a wide range of complex terrains to which they must adapt their planned trajectory for safe and efficient navigation. Most existing approaches utilize supervised learning to classify terrains from either an exteroceptive or a proprioceptive sensor modality. However, this requires a tremendous amount of manual labeling effort for each newly encountered terrain as well as for variations of terrains caused by changing environmental conditions. In this work, we propose a novel terrain classification framework leveraging an unsupervised proprioceptive classifier that learns from vehicle-terrain interaction sounds to self-supervise an exteroceptive classifier for pixel-wise semantic segmentation of images. To this end, we first learn a discriminative embedding space for vehicle-terrain interaction sounds from triplets of audio clips formed using visual features of the corresponding terrain patches and cluster the resulting embeddings. We subsequently use these clusters to label the visual terrain patches by projecting the traversed tracks of the robot into the camera images. Finally, we use the sparsely labeled images to train our semantic segmentation network in a weakly supervised manner. We present extensive quantitative and qualitative results that demonstrate that our proprioceptive terrain classifier exceeds the state-of-the-art among unsupervised methods and our self-supervised exteroceptive semantic segmentation model achieves a comparable performance to supervised learning with manually labeled data.

Validation of artificial neural networks to model the acoustic behaviour of induction motors

In the last decade, the sound quality of electric induction motors is a hot topic in the research field. Specially, due to its high number of applications, the population is exposed to physical and psychological discomfort caused by the noise emission. Therefore, it is necessary to minimise its psychological impact on the population. In this way, the main goal of this work is to evaluate the use of multitask artificial neural networks as a modelling technique for simultaneously predicting psychoacoustic parameters of induction motors. Several inputs are used, such as, the electrical magnitudes of the motor power signal and the number of poles, instead of separating the noise of the electric motor from the environmental noise. Two different kind of artificial neural networks are proposed to evaluate the acoustic quality of induction motors, by using the equivalent sound pressure, the loudness, the roughness and the sharpness as outputs. Concretely, two different topologies have been considered: simple models and more complex models. The former are more interpretable, while the later lead to higher accuracy at the cost of hiding the cause-effect relationship. Focusing on the simple interpretable models, product unit neural networks achieved the best results: for MSE and for SEP. The main benefit of this product unit model is its simplicity, since only 10 inputs variables are used, outlining the effective transfer mechanism of multitask artificial neural networks to extract common features of multiple tasks. Finally, a deep analysis of the acoustic quality of induction motors in done using the best product unit neural networks.

BeamLearning: an end-to-end Deep Learning approach for the angular localization of sound sources using raw multichannel acoustic pressure data

Sound sources localization using multichannel signal processing has been a subject of active research for decades. In recent years, the use of deep learning in audio signal processing has allowed to drastically improve performances for machine hearing. This has motivated the scientific community to also develop machine learning strategies for source localization applications. In this paper, we present BeamLearning, a multi-resolution deep learning approach that allows to encode relevant information contained in unprocessed time domain acoustic signals captured by microphone arrays. The use of raw data aims at avoiding simplifying hypothesis that most traditional model-based localization methods rely on. Benefits of its use are shown for realtime sound source 2D-localization tasks in reverberating and noisy environments. Since supervised machine learning approaches require large-sized, physically realistic, precisely labelled datasets, we also developed a fast GPU-based computation of room impulse responses using fractional delays for image source models. A thorough analysis of the network representation and extensive performance tests are carried out using the BeamLearning network with synthetic and experimental datasets. Obtained results demonstrate that the BeamLearning approach significantly outperforms the wideband MUSIC and SRP-PHAT methods in terms of localization accuracy and computational efficiency in presence of heavy measurement noise and reverberation.