new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 5

Balancing Computational Efficiency and Forecast Error in Machine Learning-based Time-Series Forecasting: Insights from Live Experiments on Meteorological Nowcasting

Machine learning for time-series forecasting remains a key area of research. Despite successful application of many machine learning techniques, relating computational efficiency to forecast error remains an under-explored domain. This paper addresses this topic through a series of real-time experiments to quantify the relationship between computational cost and forecast error using meteorological nowcasting as an example use-case. We employ a variety of popular regression techniques (XGBoost, FC-MLP, Transformer, and LSTM) for multi-horizon, short-term forecasting of three variables (temperature, wind speed, and cloud cover) for multiple locations. During a 5-day live experiment, 4000 data sources were streamed for training and inferencing 144 models per hour. These models were parameterized to explore forecast error for two computational cost minimization methods: a novel auto-adaptive data reduction technique (Variance Horizon) and a performance-based concept drift-detection mechanism. Forecast error of all model variations were benchmarked in real-time against a state-of-the-art numerical weather prediction model. Performance was assessed using classical and novel evaluation metrics. Results indicate that using the Variance Horizon reduced computational usage by more than 50\%, while increasing between 0-15\% in error. Meanwhile, performance-based retraining reduced computational usage by up to 90\% while also improving forecast error by up to 10\%. Finally, the combination of both the Variance Horizon and performance-based retraining outperformed other model configurations by up to 99.7\% when considering error normalized to computational usage.

Aardvark weather: end-to-end data-driven weather forecasting

Weather forecasting is critical for a range of human activities including transportation, agriculture, industry, as well as the safety of the general public. Machine learning models have the potential to transform the complex weather prediction pipeline, but current approaches still rely on numerical weather prediction (NWP) systems, limiting forecast speed and accuracy. Here we demonstrate that a machine learning model can replace the entire operational NWP pipeline. Aardvark Weather, an end-to-end data-driven weather prediction system, ingests raw observations and outputs global gridded forecasts and local station forecasts. Further, it can be optimised end-to-end to maximise performance over quantities of interest. Global forecasts outperform an operational NWP baseline for multiple variables and lead times. Local station forecasts are skillful up to ten days lead time and achieve comparable and often lower errors than a post-processed global NWP baseline and a state-of-the-art end-to-end forecasting system with input from human forecasters. These forecasts are produced with a remarkably simple neural process model using just 8% of the input data and three orders of magnitude less compute than existing NWP and hybrid AI-NWP methods. We anticipate that Aardvark Weather will be the starting point for a new generation of end-to-end machine learning models for medium-range forecasting that will reduce computational costs by orders of magnitude and enable the rapid and cheap creation of bespoke models for users in a variety of fields, including for the developing world where state-of-the-art local models are not currently available.

Scaling transformer neural networks for skillful and reliable medium-range weather forecasting

Weather forecasting is a fundamental problem for anticipating and mitigating the impacts of climate change. Recently, data-driven approaches for weather forecasting based on deep learning have shown great promise, achieving accuracies that are competitive with operational systems. However, those methods often employ complex, customized architectures without sufficient ablation analysis, making it difficult to understand what truly contributes to their success. Here we introduce Stormer, a simple transformer model that achieves state-of-the-art performance on weather forecasting with minimal changes to the standard transformer backbone. We identify the key components of Stormer through careful empirical analyses, including weather-specific embedding, randomized dynamics forecast, and pressure-weighted loss. At the core of Stormer is a randomized forecasting objective that trains the model to forecast the weather dynamics over varying time intervals. During inference, this allows us to produce multiple forecasts for a target lead time and combine them to obtain better forecast accuracy. On WeatherBench 2, Stormer performs competitively at short to medium-range forecasts and outperforms current methods beyond 7 days, while requiring orders-of-magnitude less training data and compute. Additionally, we demonstrate Stormer's favorable scaling properties, showing consistent improvements in forecast accuracy with increases in model size and training tokens. Code and checkpoints are available at https://github.com/tung-nd/stormer.

Generative Pretrained Hierarchical Transformer for Time Series Forecasting

Recent efforts have been dedicated to enhancing time series forecasting accuracy by introducing advanced network architectures and self-supervised pretraining strategies. Nevertheless, existing approaches still exhibit two critical drawbacks. Firstly, these methods often rely on a single dataset for training, limiting the model's generalizability due to the restricted scale of the training data. Secondly, the one-step generation schema is widely followed, which necessitates a customized forecasting head and overlooks the temporal dependencies in the output series, and also leads to increased training costs under different horizon length settings. To address these issues, we propose a novel generative pretrained hierarchical transformer architecture for forecasting, named GPHT. There are two aspects of key designs in GPHT. On the one hand, we advocate for constructing a mixed dataset for pretraining our model, comprising various datasets from diverse data scenarios. This approach significantly expands the scale of training data, allowing our model to uncover commonalities in time series data and facilitating improved transfer to specific datasets. On the other hand, GPHT employs an auto-regressive forecasting approach under the channel-independent assumption, effectively modeling temporal dependencies in the output series. Importantly, no customized forecasting head is required, enabling a single model to forecast at arbitrary horizon settings. We conduct sufficient experiments on eight datasets with mainstream self-supervised pretraining models and supervised models. The results demonstrated that GPHT surpasses the baseline models across various fine-tuning and zero/few-shot learning settings in the traditional long-term forecasting task, providing support for verifying the feasibility of pretrained time series large models.

CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding

Predictive Coding (PC) is a theoretical framework in cognitive science suggesting that the human brain processes cognition through spatiotemporal prediction of the visual world. Existing studies have developed spatiotemporal prediction neural networks based on the PC theory, emulating its two core mechanisms: Correcting predictions from residuals and hierarchical learning. However, these models do not show the enhancement of prediction skills on real-world forecasting tasks and ignore the Precision Weighting mechanism of PC theory. The precision weighting mechanism posits that the brain allocates more attention to signals with lower precision, contributing to the cognitive ability of human brains. This work introduces the Cognitive Diffusion Probabilistic Models (CogDPM), which demonstrate the connection between diffusion probabilistic models and PC theory. CogDPM features a precision estimation method based on the hierarchical sampling capabilities of diffusion models and weight the guidance with precision weights estimated by the inherent property of diffusion models. We experimentally show that the precision weights effectively estimate the data predictability. We apply CogDPM to real-world prediction tasks using the United Kindom precipitation and ERA surface wind datasets. Our results demonstrate that CogDPM outperforms both existing domain-specific operational models and general deep prediction models by providing more proficient forecasting.

The rise of data-driven weather forecasting

Data-driven modeling based on machine learning (ML) is showing enormous potential for weather forecasting. Rapid progress has been made with impressive results for some applications. The uptake of ML methods could be a game-changer for the incremental progress in traditional numerical weather prediction (NWP) known as the 'quiet revolution' of weather forecasting. The computational cost of running a forecast with standard NWP systems greatly hinders the improvements that can be made from increasing model resolution and ensemble sizes. An emerging new generation of ML models, developed using high-quality reanalysis datasets like ERA5 for training, allow forecasts that require much lower computational costs and that are highly-competitive in terms of accuracy. Here, we compare for the first time ML-generated forecasts with standard NWP-based forecasts in an operational-like context, initialized from the same initial conditions. Focusing on deterministic forecasts, we apply common forecast verification tools to assess to what extent a data-driven forecast produced with one of the recently developed ML models (PanguWeather) matches the quality and attributes of a forecast from one of the leading global NWP systems (the ECMWF IFS). The results are very promising, with comparable skill for both global metrics and extreme events, when verified against both the operational analysis and synoptic observations. Increasing forecast smoothness and bias drift with forecast lead time are identified as current drawbacks of ML-based forecasts. A new NWP paradigm is emerging relying on inference from ML models and state-of-the-art analysis and reanalysis datasets for forecast initialization and model training.

Weather2K: A Multivariate Spatio-Temporal Benchmark Dataset for Meteorological Forecasting Based on Real-Time Observation Data from Ground Weather Stations

Weather forecasting is one of the cornerstones of meteorological work. In this paper, we present a new benchmark dataset named Weather2K, which aims to make up for the deficiencies of existing weather forecasting datasets in terms of real-time, reliability, and diversity, as well as the key bottleneck of data quality. To be specific, our Weather2K is featured from the following aspects: 1) Reliable and real-time data. The data is hourly collected from 2,130 ground weather stations covering an area of 6 million square kilometers. 2) Multivariate meteorological variables. 20 meteorological factors and 3 constants for position information are provided with a length of 40,896 time steps. 3) Applicable to diverse tasks. We conduct a set of baseline tests on time series forecasting and spatio-temporal forecasting. To the best of our knowledge, our Weather2K is the first attempt to tackle weather forecasting task by taking full advantage of the strengths of observation data from ground weather stations. Based on Weather2K, we further propose Meteorological Factors based Multi-Graph Convolution Network (MFMGCN), which can effectively construct the intrinsic correlation among geographic locations based on meteorological factors. Sufficient experiments show that MFMGCN improves both the forecasting performance and temporal robustness. We hope our Weather2K can significantly motivate researchers to develop efficient and accurate algorithms to advance the task of weather forecasting. The dataset can be available at https://github.com/bycnfz/weather2k/.

Prithvi WxC: Foundation Model for Weather and Climate

Triggered by the realization that AI emulators can rival the performance of traditional numerical weather prediction models running on HPC systems, there is now an increasing number of large AI models that address use cases such as forecasting, downscaling, or nowcasting. While the parallel developments in the AI literature focus on foundation models -- models that can be effectively tuned to address multiple, different use cases -- the developments on the weather and climate side largely focus on single-use cases with particular emphasis on mid-range forecasting. We close this gap by introducing Prithvi WxC, a 2.3 billion parameter foundation model developed using 160 variables from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Prithvi WxC employs an encoder-decoder-based architecture, incorporating concepts from various recent transformer models to effectively capture both regional and global dependencies in the input data. The model has been designed to accommodate large token counts to model weather phenomena in different topologies at fine resolutions. Furthermore, it is trained with a mixed objective that combines the paradigms of masked reconstruction with forecasting. We test the model on a set of challenging downstream tasks namely: Autoregressive rollout forecasting, Downscaling, Gravity wave flux parameterization, and Extreme events estimation. The pretrained model with 2.3 billion parameters, along with the associated fine-tuning workflows, has been publicly released as an open-source contribution via Hugging Face.

Towards an end-to-end artificial intelligence driven global weather forecasting system

The weather forecasting system is important for science and society, and significant achievements have been made in applying artificial intelligence (AI) to medium-range weather forecasting. However, existing AI-based weather forecasting models rely on analysis or reanalysis products from traditional numerical weather prediction (NWP) systems as initial conditions for making predictions. Initial states are typically generated by traditional data assimilation components, which are computational expensive and time-consuming. Here we present an AI-based data assimilation model, i.e., Adas, for global weather variables. By introducing the confidence matrix, Adas employs gated convolution to handle sparse observations and gated cross-attention for capturing the interactions between the background and observations. Further, we combine Adas with the advanced AI-based forecasting model (i.e., FengWu) to construct the first end-to-end AI-based global weather forecasting system: FengWu-Adas. We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term. Moreover, we are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential. We have also achieved the forecasts based on the analyses generated by AI with a skillful forecast lead time exceeding that of the IFS for the first time.

SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models

Probabilistic forecasting is crucial to decision-making under uncertainty about future weather. The dominant approach is to use an ensemble of forecasts to represent and quantify uncertainty in operational numerical weather prediction. However, generating ensembles is computationally costly. In this paper, we propose to generate ensemble forecasts at scale by leveraging recent advances in generative artificial intelligence. Our approach learns a data-driven probabilistic diffusion model from the 5-member ensemble GEFS reforecast dataset. The model can then be sampled efficiently to produce realistic weather forecasts, conditioned on a few members of the operational GEFS forecasting system. The generated ensembles have similar predictive skill as the full GEFS 31-member ensemble, evaluated against ERA5 reanalysis, and emulate well the statistics of large physics-based ensembles. We also apply the same methodology to developing a diffusion model for generative post-processing: the model directly learns to correct biases present in the emulated forecasting system by leveraging reanalysis data as labels during training. Ensembles from this generative post-processing model show greater reliability and accuracy, particularly in extreme event classification. In general, they are more reliable and forecast the probability of extreme weather more accurately than the GEFS operational ensemble. Our models achieve these results at less than 1/10th of the computational cost incurred by the operational GEFS system.

Community Research Earth Digital Intelligence Twin (CREDIT)

Recent advancements in artificial intelligence (AI) for numerical weather prediction (NWP) have significantly transformed atmospheric modeling. AI NWP models outperform traditional physics-based systems, such as the Integrated Forecast System (IFS), across several global metrics while requiring fewer computational resources. However, existing AI NWP models face limitations related to training datasets and timestep choices, often resulting in artifacts that reduce model performance. To address these challenges, we introduce the Community Research Earth Digital Intelligence Twin (CREDIT) framework, developed at NSF NCAR. CREDIT provides a flexible, scalable, and user-friendly platform for training and deploying AI-based atmospheric models on high-performance computing systems. It offers an end-to-end pipeline for data preprocessing, model training, and evaluation, democratizing access to advanced AI NWP capabilities. We demonstrate CREDIT's potential through WXFormer, a novel deterministic vision transformer designed to predict atmospheric states autoregressively, addressing common AI NWP issues like compounding error growth with techniques such as spectral normalization, padding, and multi-step training. Additionally, to illustrate CREDIT's flexibility and state-of-the-art model comparisons, we train the FUXI architecture within this framework. Our findings show that both FUXI and WXFormer, trained on six-hourly ERA5 hybrid sigma-pressure levels, generally outperform IFS HRES in 10-day forecasts, offering potential improvements in efficiency and forecast accuracy. CREDIT's modular design enables researchers to explore various models, datasets, and training configurations, fostering innovation within the scientific community.

OneForecast: A Universal Framework for Global and Regional Weather Forecasting

Accurate weather forecasts are important for disaster prevention, agricultural planning, etc. Traditional numerical weather prediction (NWP) methods offer physically interpretable high-accuracy predictions but are computationally expensive and fail to fully leverage rapidly growing historical data. In recent years, deep learning models have made significant progress in weather forecasting, but challenges remain, such as balancing global and regional high-resolution forecasts, excessive smoothing in extreme event predictions, and insufficient dynamic system modeling. To address these issues, this paper proposes a global-regional nested weather forecasting framework (OneForecast) based on graph neural networks. By combining a dynamic system perspective with multi-grid theory, we construct a multi-scale graph structure and densify the target region to capture local high-frequency features. We introduce an adaptive messaging mechanism, using dynamic gating units to deeply integrate node and edge features for more accurate extreme event forecasting. For high-resolution regional forecasts, we propose a neural nested grid method to mitigate boundary information loss. Experimental results show that OneForecast performs excellently across global to regional scales and short-term to long-term forecasts, especially in extreme event predictions. Codes link https://github.com/YuanGao-YG/OneForecast.

Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast

In this paper, we present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast. For this purpose, we establish a data-driven environment by downloading 43 years of hourly global weather data from the 5th generation of ECMWF reanalysis (ERA5) data and train a few deep neural networks with about 256 million parameters in total. The spatial resolution of forecast is 0.25^circtimes0.25^circ, comparable to the ECMWF Integrated Forecast Systems (IFS). More importantly, for the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy (latitude-weighted RMSE and ACC) of all factors (e.g., geopotential, specific humidity, wind speed, temperature, etc.) and in all time ranges (from one hour to one week). There are two key strategies to improve the prediction accuracy: (i) designing a 3D Earth Specific Transformer (3DEST) architecture that formulates the height (pressure level) information into cubic data, and (ii) applying a hierarchical temporal aggregation algorithm to alleviate cumulative forecast errors. In deterministic forecast, Pangu-Weather shows great advantages for short to medium-range forecast (i.e., forecast time ranges from one hour to one week). Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast (e.g., tropical cyclone tracking) and large-member ensemble forecast in real-time. Pangu-Weather not only ends the debate on whether AI-based methods can surpass conventional NWP methods, but also reveals novel directions for improving deep learning weather forecast systems.

Large Language Model Prediction Capabilities: Evidence from a Real-World Forecasting Tournament

Accurately predicting the future would be an important milestone in the capabilities of artificial intelligence. However, research on the ability of large language models to provide probabilistic predictions about future events remains nascent. To empirically test this ability, we enrolled OpenAI's state-of-the-art large language model, GPT-4, in a three-month forecasting tournament hosted on the Metaculus platform. The tournament, running from July to October 2023, attracted 843 participants and covered diverse topics including Big Tech, U.S. politics, viral outbreaks, and the Ukraine conflict. Focusing on binary forecasts, we show that GPT-4's probabilistic forecasts are significantly less accurate than the median human-crowd forecasts. We find that GPT-4's forecasts did not significantly differ from the no-information forecasting strategy of assigning a 50% probability to every question. We explore a potential explanation, that GPT-4 might be predisposed to predict probabilities close to the midpoint of the scale, but our data do not support this hypothesis. Overall, we find that GPT-4 significantly underperforms in real-world predictive tasks compared to median human-crowd forecasts. A potential explanation for this underperformance is that in real-world forecasting tournaments, the true answers are genuinely unknown at the time of prediction; unlike in other benchmark tasks like professional exams or time series forecasting, where strong performance may at least partly be due to the answers being memorized from the training data. This makes real-world forecasting tournaments an ideal environment for testing the generalized reasoning and prediction capabilities of artificial intelligence going forward.

FuXi Weather: A data-to-forecast machine learning system for global weather

Weather forecasting traditionally relies on numerical weather prediction (NWP) systems that integrates global observational systems, data assimilation (DA), and forecasting models. Despite steady improvements in forecast accuracy over recent decades, further advances are increasingly constrained by high computational costs, the underutilization of vast observational datasets, and the challenges of obtaining finer resolution. These limitations, alongside the uneven distribution of observational networks, result in global disparities in forecast accuracy, leaving some regions vulnerable to extreme weather. Recent advances in machine learning present a promising alternative, providing more efficient and accurate forecasts using the same initial conditions as NWP. However, current machine learning models still depend on the initial conditions generated by NWP systems, which require extensive computational resources and expertise. Here we introduce FuXi Weather, a machine learning weather forecasting system that assimilates data from multiple satellites. Operating on a 6-hourly DA and forecast cycle, FuXi Weather generates reliable and accurate 10-day global weather forecasts at a spatial resolution of 0.25^circ. FuXi Weather is the first system to achieve all-grid, all-surface, all-channel, and all-sky DA and forecasting, extending skillful forecast lead times beyond those of the European Centre for Medium-range Weather Forecasts (ECMWF) high-resolution forecasts (HRES) while using significantly fewer observations. FuXi Weather consistently outperforms ECMWF HRES in observation-sparse regions, such as central Africa, demonstrating its potential to improve forecasts where observational infrastructure is limited.

CARE to Compare: A real-world dataset for anomaly detection in wind turbine data

Anomaly detection plays a crucial role in the field of predictive maintenance for wind turbines, yet the comparison of different algorithms poses a difficult task because domain specific public datasets are scarce. Many comparisons of different approaches either use benchmarks composed of data from many different domains, inaccessible data or one of the few publicly available datasets which lack detailed information about the faults. Moreover, many publications highlight a couple of case studies where fault detection was successful. With this paper we publish a high quality dataset that contains data from 36 wind turbines across 3 different wind farms as well as the most detailed fault information of any public wind turbine dataset as far as we know. The new dataset contains 89 years worth of real-world operating data of wind turbines, distributed across 44 labeled time frames for anomalies that led up to faults, as well as 51 time series representing normal behavior. Additionally, the quality of training data is ensured by turbine-status-based labels for each data point. Furthermore, we propose a new scoring method, called CARE (Coverage, Accuracy, Reliability and Earliness), which takes advantage of the information depth that is present in the dataset to identify a good all-around anomaly detection model. This score considers the anomaly detection performance, the ability to recognize normal behavior properly and the capability to raise as few false alarms as possible while simultaneously detecting anomalies early.

AIFS-CRPS: Ensemble forecasting using a model trained with a loss function based on the Continuous Ranked Probability Score

Over the last three decades, ensemble forecasts have become an integral part of forecasting the weather. They provide users with more complete information than single forecasts as they permit to estimate the probability of weather events by representing the sources of uncertainties and accounting for the day-to-day variability of error growth in the atmosphere. This paper presents a novel approach to obtain a weather forecast model for ensemble forecasting with machine-learning. AIFS-CRPS is a variant of the Artificial Intelligence Forecasting System (AIFS) developed at ECMWF. Its loss function is based on a proper score, the Continuous Ranked Probability Score (CRPS). For the loss, the almost fair CRPS is introduced because it approximately removes the bias in the score due to finite ensemble size yet avoids a degeneracy of the fair CRPS. The trained model is stochastic and can generate as many exchangeable members as desired and computationally feasible in inference. For medium-range forecasts AIFS-CRPS outperforms the physics-based Integrated Forecasting System (IFS) ensemble for the majority of variables and lead times. For subseasonal forecasts, AIFS-CRPS outperforms the IFS ensemble before calibration and is competitive with the IFS ensemble when forecasts are evaluated as anomalies to remove the influence of model biases.

Cognitively Inspired Energy-Based World Models

One of the predominant methods for training world models is autoregressive prediction in the output space of the next element of a sequence. In Natural Language Processing (NLP), this takes the form of Large Language Models (LLMs) predicting the next token; in Computer Vision (CV), this takes the form of autoregressive models predicting the next frame/token/pixel. However, this approach differs from human cognition in several respects. First, human predictions about the future actively influence internal cognitive processes. Second, humans naturally evaluate the plausibility of predictions regarding future states. Based on this capability, and third, by assessing when predictions are sufficient, humans allocate a dynamic amount of time to make a prediction. This adaptive process is analogous to System 2 thinking in psychology. All these capabilities are fundamental to the success of humans at high-level reasoning and planning. Therefore, to address the limitations of traditional autoregressive models lacking these human-like capabilities, we introduce Energy-Based World Models (EBWM). EBWM involves training an Energy-Based Model (EBM) to predict the compatibility of a given context and a predicted future state. In doing so, EBWM enables models to achieve all three facets of human cognition described. Moreover, we developed a variant of the traditional autoregressive transformer tailored for Energy-Based models, termed the Energy-Based Transformer (EBT). Our results demonstrate that EBWM scales better with data and GPU Hours than traditional autoregressive transformers in CV, and that EBWM offers promising early scaling in NLP. Consequently, this approach offers an exciting path toward training future models capable of System 2 thinking and intelligently searching across state spaces.

Graph Deep Learning for Time Series Forecasting

Graph-based deep learning methods have become popular tools to process collections of correlated time series. Differently from traditional multivariate forecasting methods, neural graph-based predictors take advantage of pairwise relationships by conditioning forecasts on a (possibly dynamic) graph spanning the time series collection. The conditioning can take the form of an architectural inductive bias on the neural forecasting architecture, resulting in a family of deep learning models called spatiotemporal graph neural networks. Such relational inductive biases enable the training of global forecasting models on large time-series collections, while at the same time localizing predictions w.r.t. each element in the set (i.e., graph nodes) by accounting for local correlations among them (i.e., graph edges). Indeed, recent theoretical and practical advances in graph neural networks and deep learning for time series forecasting make the adoption of such processing frameworks appealing and timely. However, most of the studies in the literature focus on proposing variations of existing neural architectures by taking advantage of modern deep learning practices, while foundational and methodological aspects have not been subject to systematic investigation. To fill the gap, this paper aims to introduce a comprehensive methodological framework that formalizes the forecasting problem and provides design principles for graph-based predictive models and methods to assess their performance. At the same time, together with an overview of the field, we provide design guidelines, recommendations, and best practices, as well as an in-depth discussion of open challenges and future research directions.

FuXi-ENS: A machine learning model for medium-range ensemble weather forecasting

Ensemble forecasting is crucial for improving weather predictions, especially for forecasts of extreme events. Constructing an ensemble prediction system (EPS) based on conventional NWP models is highly computationally expensive. ML models have emerged as valuable tools for deterministic weather forecasts, providing forecasts with significantly reduced computational requirements and even surpassing the forecast performance of traditional NWP models. However, challenges arise when applying ML models to ensemble forecasting. Recent ML models, such as GenCast and SEEDS model, rely on the ERA5 EDA or operational NWP ensemble members for forecast generation. Their spatial resolution is also considered too coarse for many applications. To overcome these limitations, we introduce FuXi-ENS, an advanced ML model designed to deliver 6-hourly global ensemble weather forecasts up to 15 days. This model runs at a significantly increased spatial resolution of 0.25\textdegree, incorporating 5 atmospheric variables at 13 pressure levels, along with 13 surface variables. By leveraging the inherent probabilistic nature of Variational AutoEncoder (VAE), FuXi-ENS optimizes a loss function that combines the CRPS and the KL divergence between the predicted and target distribution, facilitating the incorporation of flow-dependent perturbations in both initial conditions and forecast. This innovative approach makes FuXi-ENS an advancement over the traditional ones that use L1 loss combined with the KL loss in standard VAE models for ensemble weather forecasting. Results demonstrate that FuXi-ENS outperforms ensemble forecasts from the ECMWF, a world leading NWP model, in the CRPS of 98.1% of 360 variable and forecast lead time combinations. This achievement underscores the potential of the FuXi-ENS model to enhance ensemble weather forecasts, offering a promising direction for further development in this field.

Pay Attention to Evolution: Time Series Forecasting with Deep Graph-Evolution Learning

Time-series forecasting is one of the most active research topics in artificial intelligence. Applications in real-world time series should consider two factors for achieving reliable predictions: modeling dynamic dependencies among multiple variables and adjusting the model's intrinsic hyperparameters. A still open gap in that literature is that statistical and ensemble learning approaches systematically present lower predictive performance than deep learning methods. They generally disregard the data sequence aspect entangled with multivariate data represented in more than one time series. Conversely, this work presents a novel neural network architecture for time-series forecasting that combines the power of graph evolution with deep recurrent learning on distinct data distributions; we named our method Recurrent Graph Evolution Neural Network (ReGENN). The idea is to infer multiple multivariate relationships between co-occurring time-series by assuming that the temporal data depends not only on inner variables and intra-temporal relationships (i.e., observations from itself) but also on outer variables and inter-temporal relationships (i.e., observations from other-selves). An extensive set of experiments was conducted comparing ReGENN with dozens of ensemble methods and classical statistical ones, showing sound improvement of up to 64.87% over the competing algorithms. Furthermore, we present an analysis of the intermediate weights arising from ReGENN, showing that by looking at inter and intra-temporal relationships simultaneously, time-series forecasting is majorly improved if paying attention to how multiple multivariate data synchronously evolve.

ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction

Accurate prediction of climate in the subseasonal-to-seasonal scale is crucial for disaster readiness, reduced economic risk, and improved policy-making amidst climate change. Yet, S2S prediction remains challenging due to the chaotic nature of the system. At present, existing benchmarks for weather and climate applications, tend to (1) have shorter forecasting range of up-to 14 days, (2) do not include a wide range of operational baseline forecasts, and (3) lack physics-based constraints for explainability. Thus, we propose ChaosBench, a large-scale, multi-channel, physics-based benchmark for S2S prediction. ChaosBench has over 460K frames of real-world observations and simulations, each with 60 variable-channels and spanning for up-to 45 years. We also propose several physics-based, in addition to vision-based metrics, that enables for a more physically-consistent model. Furthermore, we include a diverse set of physics-based forecasts from 4 national weather agencies as baselines to our data-driven counterpart. We establish two tasks that vary in complexity: full and sparse dynamics prediction. Our benchmark is one of the first to perform large-scale evaluation on existing models including PanguWeather, FourCastNetV2, GraphCast, and ClimaX, and finds methods originally developed for weather-scale applications fails on S2S task. We release our benchmark code and datasets at https://leap-stc.github.io/ChaosBench.

Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Extending the forecasting time is a critical demand for real applications, such as extreme weather early warning and long-term energy consumption planning. This paper studies the long-term forecasting problem of time series. Prior Transformer-based models adopt various self-attention mechanisms to discover the long-range dependencies. However, intricate temporal patterns of the long-term future prohibit the model from finding reliable dependencies. Also, Transformers have to adopt the sparse versions of point-wise self-attentions for long series efficiency, resulting in the information utilization bottleneck. Going beyond Transformers, we design Autoformer as a novel decomposition architecture with an Auto-Correlation mechanism. We break with the pre-processing convention of series decomposition and renovate it as a basic inner block of deep models. This design empowers Autoformer with progressive decomposition capacities for complex time series. Further, inspired by the stochastic process theory, we design the Auto-Correlation mechanism based on the series periodicity, which conducts the dependencies discovery and representation aggregation at the sub-series level. Auto-Correlation outperforms self-attention in both efficiency and accuracy. In long-term forecasting, Autoformer yields state-of-the-art accuracy, with a 38% relative improvement on six benchmarks, covering five practical applications: energy, traffic, economics, weather and disease. Code is available at this repository: https://github.com/thuml/Autoformer.

FuXi-S2S: A machine learning model that outperforms conventional global subseasonal forecast models

Skillful subseasonal forecasts are crucial for various sectors of society but pose a grand scientific challenge. Recently, machine learning based weather forecasting models outperform the most successful numerical weather predictions generated by the European Centre for Medium-Range Weather Forecasts (ECMWF), but have not yet surpassed conventional models at subseasonal timescales. This paper introduces FuXi Subseasonal-to-Seasonal (FuXi-S2S), a machine learning model that provides global daily mean forecasts up to 42 days, encompassing five upper-air atmospheric variables at 13 pressure levels and 11 surface variables. FuXi-S2S, trained on 72 years of daily statistics from ECMWF ERA5 reanalysis data, outperforms the ECMWF's state-of-the-art Subseasonal-to-Seasonal model in ensemble mean and ensemble forecasts for total precipitation and outgoing longwave radiation, notably enhancing global precipitation forecast. The improved performance of FuXi-S2S can be primarily attributed to its superior capability to capture forecast uncertainty and accurately predict the Madden-Julian Oscillation (MJO), extending the skillful MJO prediction from 30 days to 36 days. Moreover, FuXi-S2S not only captures realistic teleconnections associated with the MJO, but also emerges as a valuable tool for discovering precursor signals, offering researchers insights and potentially establishing a new paradigm in Earth system science research.

Time-LLM: Time Series Forecasting by Reprogramming Large Language Models

Time series forecasting holds significant importance in many real-world dynamic systems and has been extensively studied. Unlike natural language process (NLP) and computer vision (CV), where a single large model can tackle multiple tasks, models for time series forecasting are often specialized, necessitating distinct designs for different tasks and applications. While pre-trained foundation models have made impressive strides in NLP and CV, their development in time series domains has been constrained by data sparsity. Recent studies have revealed that large language models (LLMs) possess robust pattern recognition and reasoning abilities over complex sequences of tokens. However, the challenge remains in effectively aligning the modalities of time series data and natural language to leverage these capabilities. In this work, we present Time-LLM, a reprogramming framework to repurpose LLMs for general time series forecasting with the backbone language models kept intact. We begin by reprogramming the input time series with text prototypes before feeding it into the frozen LLM to align the two modalities. To augment the LLM's ability to reason with time series data, we propose Prompt-as-Prefix (PaP), which enriches the input context and directs the transformation of reprogrammed input patches. The transformed time series patches from the LLM are finally projected to obtain the forecasts. Our comprehensive evaluations demonstrate that Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models. Moreover, Time-LLM excels in both few-shot and zero-shot learning scenarios.

Generative Nowcasting of Marine Fog Visibility in the Grand Banks area and Sable Island in Canada

This study presents the application of generative deep learning techniques to evaluate marine fog visibility nowcasting using the FATIMA (Fog and turbulence interactions in the marine atmosphere) campaign observations collected during July 2022 in the North Atlantic in the Grand Banks area and vicinity of Sable Island (SI), northeast of Canada. The measurements were collected using the Vaisala Forward Scatter Sensor model FD70 and Weather Transmitter model WXT50, and Gill R3A ultrasonic anemometer mounted on the Research Vessel Atlantic Condor. To perform nowcasting, the time series of fog visibility (Vis), wind speed, dew point depression, and relative humidity with respect to water were preprocessed to have lagged time step features. Generative nowcasting of Vis time series for lead times of 30 and 60 minutes were performed using conditional generative adversarial networks (cGAN) regression at visibility thresholds of Vis < 1 km and < 10 km. Extreme gradient boosting (XGBoost) was used as a baseline method for comparison against cGAN. At the 30 min lead time, Vis was best predicted with cGAN at Vis < 1 km (RMSE = 0.151 km) and with XGBoost at Vis < 10 km (RMSE = 2.821 km). At the 60 min lead time, Vis was best predicted with XGBoost at Vis < 1 km (RMSE = 0.167 km) and Vis < 10 km (RMSE = 3.508 km), but the cGAN RMSE was similar to XGBoost. Despite nowcasting Vis at 30 min being quite difficult, the ability of the cGAN model to track the variation in Vis at 1 km suggests that there is potential for generative analysis of marine fog visibility using observational meteorological parameters.

Rating Multi-Modal Time-Series Forecasting Models (MM-TSFM) for Robustness Through a Causal Lens

AI systems are notorious for their fragility; minor input changes can potentially cause major output swings. When such systems are deployed in critical areas like finance, the consequences of their uncertain behavior could be severe. In this paper, we focus on multi-modal time-series forecasting, where imprecision due to noisy or incorrect data can lead to erroneous predictions, impacting stakeholders such as analysts, investors, and traders. Recently, it has been shown that beyond numeric data, graphical transformations can be used with advanced visual models to achieve better performance. In this context, we introduce a rating methodology to assess the robustness of Multi-Modal Time-Series Forecasting Models (MM-TSFM) through causal analysis, which helps us understand and quantify the isolated impact of various attributes on the forecasting accuracy of MM-TSFM. We apply our novel rating method on a variety of numeric and multi-modal forecasting models in a large experimental setup (six input settings of control and perturbations, ten data distributions, time series from six leading stocks in three industries over a year of data, and five time-series forecasters) to draw insights on robust forecasting models and the context of their strengths. Within the scope of our study, our main result is that multi-modal (numeric + visual) forecasting, which was found to be more accurate than numeric forecasting in previous studies, can also be more robust in diverse settings. Our work will help different stakeholders of time-series forecasting understand the models` behaviors along trust (robustness) and accuracy dimensions to select an appropriate model for forecasting using our rating method, leading to improved decision-making.

ClimateLearn: Benchmarking Machine Learning for Weather and Climate Modeling

Modeling weather and climate is an essential endeavor to understand the near- and long-term impacts of climate change, as well as inform technology and policymaking for adaptation and mitigation efforts. In recent years, there has been a surging interest in applying data-driven methods based on machine learning for solving core problems such as weather forecasting and climate downscaling. Despite promising results, much of this progress has been impaired due to the lack of large-scale, open-source efforts for reproducibility, resulting in the use of inconsistent or underspecified datasets, training setups, and evaluations by both domain scientists and artificial intelligence researchers. We introduce ClimateLearn, an open-source PyTorch library that vastly simplifies the training and evaluation of machine learning models for data-driven climate science. ClimateLearn consists of holistic pipelines for dataset processing (e.g., ERA5, CMIP6, PRISM), implementation of state-of-the-art deep learning models (e.g., Transformers, ResNets), and quantitative and qualitative evaluation for standard weather and climate modeling tasks. We supplement these functionalities with extensive documentation, contribution guides, and quickstart tutorials to expand access and promote community growth. We have also performed comprehensive forecasting and downscaling experiments to showcase the capabilities and key features of our library. To our knowledge, ClimateLearn is the first large-scale, open-source effort for bridging research in weather and climate modeling with modern machine learning systems. Our library is available publicly at https://github.com/aditya-grover/climate-learn.

OLinear: A Linear Model for Time Series Forecasting in Orthogonally Transformed Domain

This paper presents OLinear, a linear-based multivariate time series forecasting model that operates in an orthogonally transformed domain. Recent forecasting models typically adopt the temporal forecast (TF) paradigm, which directly encode and decode time series in the time domain. However, the entangled step-wise dependencies in series data can hinder the performance of TF. To address this, some forecasters conduct encoding and decoding in the transformed domain using fixed, dataset-independent bases (e.g., sine and cosine signals in the Fourier transform). In contrast, we utilize OrthoTrans, a data-adaptive transformation based on an orthogonal matrix that diagonalizes the series' temporal Pearson correlation matrix. This approach enables more effective encoding and decoding in the decorrelated feature domain and can serve as a plug-in module to enhance existing forecasters. To enhance the representation learning for multivariate time series, we introduce a customized linear layer, NormLin, which employs a normalized weight matrix to capture multivariate dependencies. Empirically, the NormLin module shows a surprising performance advantage over multi-head self-attention, while requiring nearly half the FLOPs. Extensive experiments on 24 benchmarks and 140 forecasting tasks demonstrate that OLinear consistently achieves state-of-the-art performance with high efficiency. Notably, as a plug-in replacement for self-attention, the NormLin module consistently enhances Transformer-based forecasters. The code and datasets are available at https://anonymous.4open.science/r/OLinear

Context is Key: A Benchmark for Forecasting with Essential Textual Information

Forecasting is a critical task in decision-making across numerous domains. While historical numerical data provide a start, they fail to convey the complete context for reliable and accurate predictions. Human forecasters frequently rely on additional information, such as background knowledge and constraints, which can efficiently be communicated through natural language. However, in spite of recent progress with LLM-based forecasters, their ability to effectively integrate this textual information remains an open question. To address this, we introduce "Context is Key" (CiK), a time-series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context, requiring models to integrate both modalities; crucially, every task in CiK requires understanding textual context to be solved successfully. We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters, and propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark. Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings. This benchmark aims to advance multimodal forecasting by promoting models that are both accurate and accessible to decision-makers with varied technical expertise. The benchmark can be visualized at https://servicenow.github.io/context-is-key-forecasting/v0/.

Machine Learning Parameterization of the Multi-scale Kain-Fritsch (MSKF) Convection Scheme

Warm-sector heavy rainfall often occurs along the coast of South China, and it is usually localized and long-lasting, making it challenging to predict. High-resolution numerical weather prediction (NWP) models are increasingly used to better resolve topographic features and forecast such high-impact weather events. However, when the grid spacing becomes comparable to the length scales of convection, known as the gray zone, the turbulent eddies in the atmospheric boundary layer are only partially resolved and parameterized to some extent. Whether using a convection parameterization (CP) scheme in the gray zone remains controversial. Scale-aware CP schemes are developed to enhance the representation of convective transport within the gray zone. The multi-scale Kain-Fritsch (MSKF) scheme includes modifications that allow for its effective implementation at a grid resolution as high as 2 km. In recent years, there has been an increasing application of machine learning (ML) models to various domains of atmospheric sciences, including the replacement of physical parameterizations with ML models. This work proposes a multi-output bidirectional long short-term memory (Bi-LSTM) model as a replace the scale-aware MSKF CP scheme. The Weather Research and Forecast (WRF) model is used to generate training and testing data over South China at a horizontal resolution of 5 km. Furthermore, the WRF model is coupled with the ML based CP scheme and compared with WRF simulations with original MSKF scheme. The results demonstrate that the Bi-LSTM model can achieve high accuracy, indicating the potential use of ML models to substitute the MSKF scheme in the gray zone.

From Similarity to Superiority: Channel Clustering for Time Series Forecasting

Time series forecasting has attracted significant attention in recent decades. Previous studies have demonstrated that the Channel-Independent (CI) strategy improves forecasting performance by treating different channels individually, while it leads to poor generalization on unseen instances and ignores potentially necessary interactions between channels. Conversely, the Channel-Dependent (CD) strategy mixes all channels with even irrelevant and indiscriminate information, which, however, results in oversmoothing issues and limits forecasting accuracy. There is a lack of channel strategy that effectively balances individual channel treatment for improved forecasting performance without overlooking essential interactions between channels. Motivated by our observation of a correlation between the time series model's performance boost against channel mixing and the intrinsic similarity on a pair of channels, we developed a novel and adaptable Channel Clustering Module (CCM). CCM dynamically groups channels characterized by intrinsic similarities and leverages cluster information instead of individual channel identities, combining the best of CD and CI worlds. Extensive experiments on real-world datasets demonstrate that CCM can (1) boost the performance of CI and CD models by an average margin of 2.4% and 7.2% on long-term and short-term forecasting, respectively; (2) enable zero-shot forecasting with mainstream time series forecasting models; (3) uncover intrinsic time series patterns among channels and improve interpretability of complex time series models.

Model scale versus domain knowledge in statistical forecasting of chaotic systems

Chaos and unpredictability are traditionally synonymous, yet large-scale machine learning methods recently have demonstrated a surprising ability to forecast chaotic systems well beyond typical predictability horizons. However, recent works disagree on whether specialized methods grounded in dynamical systems theory, such as reservoir computers or neural ordinary differential equations, outperform general-purpose large-scale learning methods such as transformers or recurrent neural networks. These prior studies perform comparisons on few individually-chosen chaotic systems, thereby precluding robust quantification of how statistical modeling choices and dynamical invariants of different chaotic systems jointly determine empirical predictability. Here, we perform the largest to-date comparative study of forecasting methods on the classical problem of forecasting chaos: we benchmark 24 state-of-the-art forecasting methods on a crowdsourced database of 135 low-dimensional systems with 17 forecast metrics. We find that large-scale, domain-agnostic forecasting methods consistently produce predictions that remain accurate up to two dozen Lyapunov times, thereby accessing a new long-horizon forecasting regime well beyond classical methods. We find that, in this regime, accuracy decorrelates with classical invariant measures of predictability like the Lyapunov exponent. However, in data-limited settings outside the long-horizon regime, we find that physics-based hybrid methods retain a comparative advantage due to their strong inductive biases.

Deep Learning and Foundation Models for Weather Prediction: A Survey

Physics-based numerical models have been the bedrock of atmospheric sciences for decades, offering robust solutions but often at the cost of significant computational resources. Deep learning (DL) models have emerged as powerful tools in meteorology, capable of analyzing complex weather and climate data by learning intricate dependencies and providing rapid predictions once trained. While these models demonstrate promising performance in weather prediction, often surpassing traditional physics-based methods, they still face critical challenges. This paper presents a comprehensive survey of recent deep learning and foundation models for weather prediction. We propose a taxonomy to classify existing models based on their training paradigms: deterministic predictive learning, probabilistic generative learning, and pre-training and fine-tuning. For each paradigm, we delve into the underlying model architectures, address major challenges, offer key insights, and propose targeted directions for future research. Furthermore, we explore real-world applications of these methods and provide a curated summary of open-source code repositories and widely used datasets, aiming to bridge research advancements with practical implementations while fostering open and trustworthy scientific practices in adopting cutting-edge artificial intelligence for weather prediction. The related sources are available at https://github.com/JimengShi/ DL-Foundation-Models-Weather.

LaDCast: A Latent Diffusion Model for Medium-Range Ensemble Weather Forecasting

Accurate probabilistic weather forecasting demands both high accuracy and efficient uncertainty quantification, challenges that overburden both ensemble numerical weather prediction (NWP) and recent machine-learning methods. We introduce LaDCast, the first global latent-diffusion framework for medium-range ensemble forecasting, which generates hourly ensemble forecasts entirely in a learned latent space. An autoencoder compresses high-dimensional ERA5 reanalysis fields into a compact representation, and a transformer-based diffusion model produces sequential latent updates with arbitrary hour initialization. The model incorporates Geometric Rotary Position Embedding (GeoRoPE) to account for the Earth's spherical geometry, a dual-stream attention mechanism for efficient conditioning, and sinusoidal temporal embeddings to capture seasonal patterns. LaDCast achieves deterministic and probabilistic skill close to that of the European Centre for Medium-Range Forecast IFS-ENS, without any explicit perturbations. Notably, LaDCast demonstrates superior performance in tracking rare extreme events such as cyclones, capturing their trajectories more accurately than established models. By operating in latent space, LaDCast reduces storage and compute by orders of magnitude, demonstrating a practical path toward forecasting at kilometer-scale resolution in real time. We open-source our code and models and provide the training and evaluation pipelines at: https://github.com/tonyzyl/ladcast.

iTransformer: Inverted Transformers Are Effective for Time Series Forecasting

The recent boom of linear forecasting models questions the ongoing passion for architectural modifications of Transformer-based forecasters. These forecasters leverage Transformers to model the global dependencies over temporal tokens of time series, with each token formed by multiple variates of the same timestamp. However, Transformers are challenged in forecasting series with larger lookback windows due to performance degradation and computation explosion. Besides, the embedding for each temporal token fuses multiple variates that represent potential delayed events and distinct physical measurements, which may fail in learning variate-centric representations and result in meaningless attention maps. In this work, we reflect on the competent duties of Transformer components and repurpose the Transformer architecture without any modification to the basic components. We propose iTransformer that simply applies the attention and feed-forward network on the inverted dimensions. Specifically, the time points of individual series are embedded into variate tokens which are utilized by the attention mechanism to capture multivariate correlations; meanwhile, the feed-forward network is applied for each variate token to learn nonlinear representations. The iTransformer model achieves state-of-the-art on challenging real-world datasets, which further empowers the Transformer family with promoted performance, generalization ability across different variates, and better utilization of arbitrary lookback windows, making it a nice alternative as the fundamental backbone of time series forecasting. Code is available at this repository: https://github.com/thuml/iTransformer.

Stock Price Prediction Using Machine Learning and LSTM-Based Deep Learning Models

Prediction of stock prices has been an important area of research for a long time. While supporters of the efficient market hypothesis believe that it is impossible to predict stock prices accurately, there are formal propositions demonstrating that accurate modeling and designing of appropriate variables may lead to models using which stock prices and stock price movement patterns can be very accurately predicted. In this work, we propose an approach of hybrid modeling for stock price prediction building different machine learning and deep learning-based models. For the purpose of our study, we have used NIFTY 50 index values of the National Stock Exchange (NSE) of India, during the period December 29, 2014 till July 31, 2020. We have built eight regression models using the training data that consisted of NIFTY 50 index records during December 29, 2014 till December 28, 2018. Using these regression models, we predicted the open values of NIFTY 50 for the period December 31, 2018 till July 31, 2020. We, then, augment the predictive power of our forecasting framework by building four deep learning-based regression models using long-and short-term memory (LSTM) networks with a novel approach of walk-forward validation. We exploit the power of LSTM regression models in forecasting the future NIFTY 50 open values using four different models that differ in their architecture and in the structure of their input data. Extensive results are presented on various metrics for the all the regression models. The results clearly indicate that the LSTM-based univariate model that uses one-week prior data as input for predicting the next week open value of the NIFTY 50 time series is the most accurate model.

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, including quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a ProbSparse self-attention mechanism, which achieves O(L log L) in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.

Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts

Deep learning for time series forecasting has seen significant advancements over the past decades. However, despite the success of large-scale pre-training in language and vision domains, pre-trained time series models remain limited in scale and operate at a high cost, hindering the development of larger capable forecasting models in real-world applications. In response, we introduce Time-MoE, a scalable and unified architecture designed to pre-train larger, more capable forecasting foundation models while reducing inference costs. By leveraging a sparse mixture-of-experts (MoE) design, Time-MoE enhances computational efficiency by activating only a subset of networks for each prediction, reducing computational load while maintaining high model capacity. This allows Time-MoE to scale effectively without a corresponding increase in inference costs. Time-MoE comprises a family of decoder-only transformer models that operate in an auto-regressive manner and support flexible forecasting horizons with varying input context lengths. We pre-trained these models on our newly introduced large-scale data Time-300B, which spans over 9 domains and encompassing over 300 billion time points. For the first time, we scaled a time series foundation model up to 2.4 billion parameters, achieving significantly improved forecasting precision. Our results validate the applicability of scaling laws for training tokens and model size in the context of time series forecasting. Compared to dense models with the same number of activated parameters or equivalent computation budgets, our models consistently outperform them by large margin. These advancements position Time-MoE as a state-of-the-art solution for tackling real-world time series forecasting challenges with superior capability, efficiency, and flexibility.

Generative Pre-Trained Diffusion Paradigm for Zero-Shot Time Series Forecasting

In recent years, generative pre-trained paradigms such as Large Language Models (LLMs) and Large Vision Models (LVMs) have achieved revolutionary advancements and widespread real-world applications. Particularly, the emergence of pre-trained LLMs-based temporal works, compared to previous deep model approaches, has demonstrated superior generalization and robustness, showcasing the potential of generative pre-trained paradigms as foundation models for time series. However, those LLMs-based works mainly focus on cross-modal research, i.e., leveraging the language capabilities of LLMs in time series contexts. Although they have achieved impressive performance, there still exist the issues of concept drift caused by differences in data distribution and inflexibility caused by misalignment of dimensions. To this end, inspired by recent work on LVMs, we reconsider the paradigm of time series modeling. In this paper, we comprehensively explore, for the first time, the effectiveness and superiority of the Generative Pre-trained Diffusion (GPD) paradigm in real-world multivariate time series forecasting (TSF). Specifically, to mitigate performance bias introduced by sophisticated networks, we propose a straightforward MLP diffusion network for unconditional modeling of time series. Then we employ a zero-shot and tuning-free method to predict (generate) future data using historical data as prompts. The GPD paradigm is established on the time series modality, effectively preventing the phenomenon of concept drift, and enabling flexible forecasting of arbitrary lengths. We demonstrate that the GPD paradigm achieves comprehensive performance and generalization comparable to current SOTA LLM-based and deep model paradigms on mainstream benchmarks and various TSF tasks. Extensive experiments validate the potential of the GPD paradigm and its assistance in future related research.

The EpiBench Platform to Propel AI/ML-based Epidemic Forecasting: A Prototype Demonstration Reaching Human Expert-level Performance

During the COVID-19 pandemic, a significant effort has gone into developing ML-driven epidemic forecasting techniques. However, benchmarks do not exist to claim if a new AI/ML technique is better than the existing ones. The "covid-forecast-hub" is a collection of more than 30 teams, including us, that submit their forecasts weekly to the CDC. It is not possible to declare whether one method is better than the other using those forecasts because each team's submission may correspond to different techniques over the period and involve human interventions as the teams are continuously changing/tuning their approach. Such forecasts may be considered "human-expert" forecasts and do not qualify as AI/ML approaches, although they can be used as an indicator of human expert performance. We are interested in supporting AI/ML research in epidemic forecasting which can lead to scalable forecasting without human intervention. Which modeling technique, learning strategy, and data pre-processing technique work well for epidemic forecasting is still an open problem. To help advance the state-of-the-art AI/ML applied to epidemiology, a benchmark with a collection of performance points is needed and the current "state-of-the-art" techniques need to be identified. We propose EpiBench a platform consisting of community-driven benchmarks for AI/ML applied to epidemic forecasting to standardize the challenge with a uniform evaluation protocol. In this paper, we introduce a prototype of EpiBench which is currently running and accepting submissions for the task of forecasting COVID-19 cases and deaths in the US states and We demonstrate that we can utilize the prototype to develop an ensemble relying on fully automated epidemic forecasts (no human intervention) that reaches human-expert level ensemble currently being used by the CDC.

WeatherQA: Can Multimodal Language Models Reason about Severe Weather?

Severe convective weather events, such as hail, tornadoes, and thunderstorms, often occur quickly yet cause significant damage, costing billions of dollars every year. This highlights the importance of forecasting severe weather threats hours in advance to better prepare meteorologists and residents in at-risk areas. Can modern large foundation models perform such forecasting? Existing weather benchmarks typically focus only on predicting time-series changes in certain weather parameters (e.g., temperature, moisture) with text-only features. In this work, we introduce WeatherQA, the first multimodal dataset designed for machines to reason about complex combinations of weather parameters (a.k.a., ingredients) and predict severe weather in real-world scenarios. The dataset includes over 8,000 (multi-images, text) pairs for diverse severe weather events. Each pair contains rich information crucial for forecasting -- the images describe the ingredients capturing environmental instability, surface observations, and radar reflectivity, and the text contains forecast analyses written by human experts. With WeatherQA, we evaluate state-of-the-art vision language models, including GPT4, Claude3.5, Gemini-1.5, and a fine-tuned Llama3-based VLM, by designing two challenging tasks: (1) multi-choice QA for predicting affected area and (2) classification of the development potential of severe convection. These tasks require deep understanding of domain knowledge (e.g., atmospheric dynamics) and complex reasoning over multimodal data (e.g., interactions between weather parameters). We show a substantial gap between the strongest VLM, GPT4o, and human reasoning. Our comprehensive case study with meteorologists further reveals the weaknesses of the models, suggesting that better training and data integration are necessary to bridge this gap. WeatherQA link: https://github.com/chengqianma/WeatherQA.

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting

Diffusion models have achieved state-of-the-art performance in generative modeling tasks across various domains. Prior works on time series diffusion models have primarily focused on developing conditional models tailored to specific forecasting or imputation tasks. In this work, we explore the potential of task-agnostic, unconditional diffusion models for several time series applications. We propose TSDiff, an unconditionally trained diffusion model for time series. Our proposed self-guidance mechanism enables conditioning TSDiff for downstream tasks during inference, without requiring auxiliary networks or altering the training procedure. We demonstrate the effectiveness of our method on three different time series tasks: forecasting, refinement, and synthetic data generation. First, we show that TSDiff is competitive with several task-specific conditional forecasting methods (predict). Second, we leverage the learned implicit probability density of TSDiff to iteratively refine the predictions of base forecasters with reduced computational overhead over reverse diffusion (refine). Notably, the generative performance of the model remains intact -- downstream forecasters trained on synthetic samples from TSDiff outperform forecasters that are trained on samples from other state-of-the-art generative time series models, occasionally even outperforming models trained on real data (synthesize).

TimeCMA: Towards LLM-Empowered Time Series Forecasting via Cross-Modality Alignment

The widespread adoption of scalable mobile sensing has led to large amounts of time series data for real-world applications. A fundamental application is multivariate time series forecasting (MTSF), which aims to predict future time series values based on historical observations. Existing MTSF methods suffer from limited parameterization and small-scale training data. Recently, Large language models (LLMs) have been introduced in time series, which achieve promising forecasting performance but incur heavy computational costs. To solve these challenges, we propose TimeCMA, an LLM-empowered framework for time series forecasting with cross-modality alignment. We design a dual-modality encoding module with two branches, where the time series encoding branch extracts relatively low-quality yet pure embeddings of time series through an inverted Transformer. In addition, the LLM-empowered encoding branch wraps the same time series as prompts to obtain high-quality yet entangled prompt embeddings via a Pre-trained LLM. Then, we design a cross-modality alignment module to retrieve high-quality and pure time series embeddings from the prompt embeddings. Moreover, we develop a time series forecasting module to decode the aligned embeddings while capturing dependencies among multiple variables for forecasting. Notably, we tailor the prompt to encode sufficient temporal information into a last token and design the last token embedding storage to reduce computational costs. Extensive experiments on real data offer insight into the accuracy and efficiency of the proposed framework.

TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting

Time series forecasting is widely used in extensive applications, such as traffic planning and weather forecasting. However, real-world time series usually present intricate temporal variations, making forecasting extremely challenging. Going beyond the mainstream paradigms of plain decomposition and multiperiodicity analysis, we analyze temporal variations in a novel view of multiscale-mixing, which is based on an intuitive but important observation that time series present distinct patterns in different sampling scales. The microscopic and the macroscopic information are reflected in fine and coarse scales respectively, and thereby complex variations can be inherently disentangled. Based on this observation, we propose TimeMixer as a fully MLP-based architecture with Past-Decomposable-Mixing (PDM) and Future-Multipredictor-Mixing (FMM) blocks to take full advantage of disentangled multiscale series in both past extraction and future prediction phases. Concretely, PDM applies the decomposition to multiscale series and further mixes the decomposed seasonal and trend components in fine-to-coarse and coarse-to-fine directions separately, which successively aggregates the microscopic seasonal and macroscopic trend information. FMM further ensembles multiple predictors to utilize complementary forecasting capabilities in multiscale observations. Consequently, TimeMixer is able to achieve consistent state-of-the-art performances in both long-term and short-term forecasting tasks with favorable run-time efficiency.

WxC-Bench: A Novel Dataset for Weather and Climate Downstream Tasks

High-quality machine learning (ML)-ready datasets play a foundational role in developing new artificial intelligence (AI) models or fine-tuning existing models for scientific applications such as weather and climate analysis. Unfortunately, despite the growing development of new deep learning models for weather and climate, there is a scarcity of curated, pre-processed machine learning (ML)-ready datasets. Curating such high-quality datasets for developing new models is challenging particularly because the modality of the input data varies significantly for different downstream tasks addressing different atmospheric scales (spatial and temporal). Here we introduce WxC-Bench (Weather and Climate Bench), a multi-modal dataset designed to support the development of generalizable AI models for downstream use-cases in weather and climate research. WxC-Bench is designed as a dataset of datasets for developing ML-models for a complex weather and climate system, addressing selected downstream tasks as machine learning phenomenon. WxC-Bench encompasses several atmospheric processes from meso-beta (20 - 200 km) scale to synoptic scales (2500 km), such as aviation turbulence, hurricane intensity and track monitoring, weather analog search, gravity wave parameterization, and natural language report generation. We provide a comprehensive description of the dataset and also present a technical validation for baseline analysis. The dataset and code to prepare the ML-ready data have been made publicly available on Hugging Face -- https://huggingface.co/datasets/nasa-impact/WxC-Bench

TiRex: Zero-Shot Forecasting Across Long and Short Horizons with Enhanced In-Context Learning

In-context learning, the ability of large language models to perform tasks using only examples provided in the prompt, has recently been adapted for time series forecasting. This paradigm enables zero-shot prediction, where past values serve as context for forecasting future values, making powerful forecasting tools accessible to non-experts and increasing the performance when training data are scarce. Most existing zero-shot forecasting approaches rely on transformer architectures, which, despite their success in language, often fall short of expectations in time series forecasting, where recurrent models like LSTMs frequently have the edge. Conversely, while LSTMs are well-suited for time series modeling due to their state-tracking capabilities, they lack strong in-context learning abilities. We introduce TiRex that closes this gap by leveraging xLSTM, an enhanced LSTM with competitive in-context learning skills. Unlike transformers, state-space models, or parallelizable RNNs such as RWKV, TiRex retains state-tracking, a critical property for long-horizon forecasting. To further facilitate its state-tracking ability, we propose a training-time masking strategy called CPM. TiRex sets a new state of the art in zero-shot time series forecasting on the HuggingFace benchmarks GiftEval and Chronos-ZS, outperforming significantly larger models including TabPFN-TS (Prior Labs), Chronos Bolt (Amazon), TimesFM (Google), and Moirai (Salesforce) across both short- and long-term forecasts.