Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeVisual Instruction Tuning towards General-Purpose Multimodal Model: A Survey
Traditional computer vision generally solves each single task independently by a dedicated model with the task instruction implicitly designed in the model architecture, arising two limitations: (1) it leads to task-specific models, which require multiple models for different tasks and restrict the potential synergies from diverse tasks; (2) it leads to a pre-defined and fixed model interface that has limited interactivity and adaptability in following user' task instructions. To address them, Visual Instruction Tuning (VIT) has been intensively studied recently, which finetunes a large vision model with language as task instructions, aiming to learn from a wide range of vision tasks described by language instructions a general-purpose multimodal model that can follow arbitrary instructions and thus solve arbitrary tasks specified by the user. This work aims to provide a systematic review of visual instruction tuning, covering (1) the background that presents computer vision task paradigms and the development of VIT; (2) the foundations of VIT that introduce commonly used network architectures, visual instruction tuning frameworks and objectives, and evaluation setups and tasks; (3) the commonly used datasets in visual instruction tuning and evaluation; (4) the review of existing VIT methods that categorizes them with a taxonomy according to both the studied vision task and the method design and highlights the major contributions, strengths, and shortcomings of them; (5) the comparison and discussion of VIT methods over various instruction-following benchmarks; (6) several challenges, open directions and possible future works in visual instruction tuning research.
Towards Unifying Medical Vision-and-Language Pre-training via Soft Prompts
Medical vision-and-language pre-training (Med-VLP) has shown promising improvements on many downstream medical tasks owing to its applicability to extracting generic representations from medical images and texts. Practically, there exist two typical types, i.e., the fusion-encoder type and the dual-encoder type, depending on whether a heavy fusion module is used. The former is superior at multi-modal tasks owing to the sufficient interaction between modalities; the latter is good at uni-modal and cross-modal tasks due to the single-modality encoding ability. To take advantage of these two types, we propose an effective yet straightforward scheme named PTUnifier to unify the two types. We first unify the input format by introducing visual and textual prompts, which serve as a feature bank that stores the most representative images/texts. By doing so, a single model could serve as a foundation model that processes various tasks adopting different input formats (i.e., image-only, text-only, and image-text-pair). Furthermore, we construct a prompt pool (instead of static ones) to improve diversity and scalability. Experimental results show that our approach achieves state-of-the-art results on a broad range of tasks, spanning uni-modal tasks (i.e., image/text classification and text summarization), cross-modal tasks (i.e., image-to-text generation and image-text/text-image retrieval), and multi-modal tasks (i.e., visual question answering), demonstrating the effectiveness of our approach. Note that the adoption of prompts is orthogonal to most existing Med-VLP approaches and could be a beneficial and complementary extension to these approaches.
Examining Cooperation in Visual Dialog Models
In this work we propose a blackbox intervention method for visual dialog models, with the aim of assessing the contribution of individual linguistic or visual components. Concretely, we conduct structured or randomized interventions that aim to impair an individual component of the model, and observe changes in task performance. We reproduce a state-of-the-art visual dialog model and demonstrate that our methodology yields surprising insights, namely that both dialog and image information have minimal contributions to task performance. The intervention method presented here can be applied as a sanity check for the strength and robustness of each component in visual dialog systems.
AltCanvas: A Tile-Based Image Editor with Generative AI for Blind or Visually Impaired People
People with visual impairments often struggle to create content that relies heavily on visual elements, particularly when conveying spatial and structural information. Existing accessible drawing tools, which construct images line by line, are suitable for simple tasks like math but not for more expressive artwork. On the other hand, emerging generative AI-based text-to-image tools can produce expressive illustrations from descriptions in natural language, but they lack precise control over image composition and properties. To address this gap, our work integrates generative AI with a constructive approach that provides users with enhanced control and editing capabilities. Our system, AltCanvas, features a tile-based interface enabling users to construct visual scenes incrementally, with each tile representing an object within the scene. Users can add, edit, move, and arrange objects while receiving speech and audio feedback. Once completed, the scene can be rendered as a color illustration or as a vector for tactile graphic generation. Involving 14 blind or low-vision users in design and evaluation, we found that participants effectively used the AltCanvas workflow to create illustrations.
ORES: Open-vocabulary Responsible Visual Synthesis
Avoiding synthesizing specific visual concepts is an essential challenge in responsible visual synthesis. However, the visual concept that needs to be avoided for responsible visual synthesis tends to be diverse, depending on the region, context, and usage scenarios. In this work, we formalize a new task, Open-vocabulary Responsible Visual Synthesis (ORES), where the synthesis model is able to avoid forbidden visual concepts while allowing users to input any desired content. To address this problem, we present a Two-stage Intervention (TIN) framework. By introducing 1) rewriting with learnable instruction through a large-scale language model (LLM) and 2) synthesizing with prompt intervention on a diffusion synthesis model, it can effectively synthesize images avoiding any concepts but following the user's query as much as possible. To evaluate on ORES, we provide a publicly available dataset, baseline models, and benchmark. Experimental results demonstrate the effectiveness of our method in reducing risks of image generation. Our work highlights the potential of LLMs in responsible visual synthesis. Our code and dataset is public available.
Cartoon Hallucinations Detection: Pose-aware In Context Visual Learning
Large-scale Text-to-Image (TTI) models have become a common approach for generating training data in various generative fields. However, visual hallucinations, which contain perceptually critical defects, remain a concern, especially in non-photorealistic styles like cartoon characters. We propose a novel visual hallucination detection system for cartoon character images generated by TTI models. Our approach leverages pose-aware in-context visual learning (PA-ICVL) with Vision-Language Models (VLMs), utilizing both RGB images and pose information. By incorporating pose guidance from a fine-tuned pose estimator, we enable VLMs to make more accurate decisions. Experimental results demonstrate significant improvements in identifying visual hallucinations compared to baseline methods relying solely on RGB images. This research advances TTI models by mitigating visual hallucinations, expanding their potential in non-photorealistic domains.
Visual Programming for Text-to-Image Generation and Evaluation
As large language models have demonstrated impressive performance in many domains, recent works have adopted language models (LMs) as controllers of visual modules for vision-and-language tasks. While existing work focuses on equipping LMs with visual understanding, we propose two novel interpretable/explainable visual programming frameworks for text-to-image (T2I) generation and evaluation. First, we introduce VPGen, an interpretable step-by-step T2I generation framework that decomposes T2I generation into three steps: object/count generation, layout generation, and image generation. We employ an LM to handle the first two steps (object/count generation and layout generation), by finetuning it on text-layout pairs. Our step-by-step T2I generation framework provides stronger spatial control than end-to-end models, the dominant approach for this task. Furthermore, we leverage the world knowledge of pretrained LMs, overcoming the limitation of previous layout-guided T2I works that can only handle predefined object classes. We demonstrate that our VPGen has improved control in counts/spatial relations/scales of objects than state-of-the-art T2I generation models. Second, we introduce VPEval, an interpretable and explainable evaluation framework for T2I generation based on visual programming. Unlike previous T2I evaluations with a single scoring model that is accurate in some skills but unreliable in others, VPEval produces evaluation programs that invoke a set of visual modules that are experts in different skills, and also provides visual+textual explanations of the evaluation results. Our analysis shows VPEval provides a more human-correlated evaluation for skill-specific and open-ended prompts than widely used single model-based evaluation. We hope our work encourages future progress on interpretable/explainable generation and evaluation for T2I models. Website: https://vp-t2i.github.io
Multimodal ChatGPT for Medical Applications: an Experimental Study of GPT-4V
In this paper, we critically evaluate the capabilities of the state-of-the-art multimodal large language model, i.e., GPT-4 with Vision (GPT-4V), on Visual Question Answering (VQA) task. Our experiments thoroughly assess GPT-4V's proficiency in answering questions paired with images using both pathology and radiology datasets from 11 modalities (e.g. Microscopy, Dermoscopy, X-ray, CT, etc.) and fifteen objects of interests (brain, liver, lung, etc.). Our datasets encompass a comprehensive range of medical inquiries, including sixteen distinct question types. Throughout our evaluations, we devised textual prompts for GPT-4V, directing it to synergize visual and textual information. The experiments with accuracy score conclude that the current version of GPT-4V is not recommended for real-world diagnostics due to its unreliable and suboptimal accuracy in responding to diagnostic medical questions. In addition, we delineate seven unique facets of GPT-4V's behavior in medical VQA, highlighting its constraints within this complex arena. The complete details of our evaluation cases are accessible at https://github.com/ZhilingYan/GPT4V-Medical-Report.
Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models
Recent text-to-image generative models have demonstrated an unparalleled ability to generate diverse and creative imagery guided by a target text prompt. While revolutionary, current state-of-the-art diffusion models may still fail in generating images that fully convey the semantics in the given text prompt. We analyze the publicly available Stable Diffusion model and assess the existence of catastrophic neglect, where the model fails to generate one or more of the subjects from the input prompt. Moreover, we find that in some cases the model also fails to correctly bind attributes (e.g., colors) to their corresponding subjects. To help mitigate these failure cases, we introduce the concept of Generative Semantic Nursing (GSN), where we seek to intervene in the generative process on the fly during inference time to improve the faithfulness of the generated images. Using an attention-based formulation of GSN, dubbed Attend-and-Excite, we guide the model to refine the cross-attention units to attend to all subject tokens in the text prompt and strengthen - or excite - their activations, encouraging the model to generate all subjects described in the text prompt. We compare our approach to alternative approaches and demonstrate that it conveys the desired concepts more faithfully across a range of text prompts.
Prompt-Free Diffusion: Taking "Text" out of Text-to-Image Diffusion Models
Text-to-image (T2I) research has grown explosively in the past year, owing to the large-scale pre-trained diffusion models and many emerging personalization and editing approaches. Yet, one pain point persists: the text prompt engineering, and searching high-quality text prompts for customized results is more art than science. Moreover, as commonly argued: "an image is worth a thousand words" - the attempt to describe a desired image with texts often ends up being ambiguous and cannot comprehensively cover delicate visual details, hence necessitating more additional controls from the visual domain. In this paper, we take a bold step forward: taking "Text" out of a pre-trained T2I diffusion model, to reduce the burdensome prompt engineering efforts for users. Our proposed framework, Prompt-Free Diffusion, relies on only visual inputs to generate new images: it takes a reference image as "context", an optional image structural conditioning, and an initial noise, with absolutely no text prompt. The core architecture behind the scene is Semantic Context Encoder (SeeCoder), substituting the commonly used CLIP-based or LLM-based text encoder. The reusability of SeeCoder also makes it a convenient drop-in component: one can also pre-train a SeeCoder in one T2I model and reuse it for another. Through extensive experiments, Prompt-Free Diffusion is experimentally found to (i) outperform prior exemplar-based image synthesis approaches; (ii) perform on par with state-of-the-art T2I models using prompts following the best practice; and (iii) be naturally extensible to other downstream applications such as anime figure generation and virtual try-on, with promising quality. Our code and models are open-sourced at https://github.com/SHI-Labs/Prompt-Free-Diffusion.
Multimodal Procedural Planning via Dual Text-Image Prompting
Embodied agents have achieved prominent performance in following human instructions to complete tasks. However, the potential of providing instructions informed by texts and images to assist humans in completing tasks remains underexplored. To uncover this capability, we present the multimodal procedural planning (MPP) task, in which models are given a high-level goal and generate plans of paired text-image steps, providing more complementary and informative guidance than unimodal plans. The key challenges of MPP are to ensure the informativeness, temporal coherence,and accuracy of plans across modalities. To tackle this, we propose Text-Image Prompting (TIP), a dual-modality prompting method that jointly leverages zero-shot reasoning ability in large language models (LLMs) and compelling text-to-image generation ability from diffusion-based models. TIP improves the interaction in the dual modalities using Text-to-Image Bridge and Image-to-Text Bridge, allowing LLMs to guide the textual-grounded image plan generation and leveraging the descriptions of image plans to ground the textual plan reversely. To address the lack of relevant datasets, we collect WIKIPLAN and RECIPEPLAN as a testbed for MPP. Our results show compelling human preferences and automatic scores against unimodal and multimodal baselines on WIKIPLAN and RECIPEPLAN in terms of informativeness, temporal coherence, and plan accuracy. Our code and data: https://github.com/YujieLu10/MPP.
Visual Text Generation in the Wild
Recently, with the rapid advancements of generative models, the field of visual text generation has witnessed significant progress. However, it is still challenging to render high-quality text images in real-world scenarios, as three critical criteria should be satisfied: (1) Fidelity: the generated text images should be photo-realistic and the contents are expected to be the same as specified in the given conditions; (2) Reasonability: the regions and contents of the generated text should cohere with the scene; (3) Utility: the generated text images can facilitate related tasks (e.g., text detection and recognition). Upon investigation, we find that existing methods, either rendering-based or diffusion-based, can hardly meet all these aspects simultaneously, limiting their application range. Therefore, we propose in this paper a visual text generator (termed SceneVTG), which can produce high-quality text images in the wild. Following a two-stage paradigm, SceneVTG leverages a Multimodal Large Language Model to recommend reasonable text regions and contents across multiple scales and levels, which are used by a conditional diffusion model as conditions to generate text images. Extensive experiments demonstrate that the proposed SceneVTG significantly outperforms traditional rendering-based methods and recent diffusion-based methods in terms of fidelity and reasonability. Besides, the generated images provide superior utility for tasks involving text detection and text recognition. Code and datasets are available at AdvancedLiterateMachinery.
VSTAR: Generative Temporal Nursing for Longer Dynamic Video Synthesis
Despite tremendous progress in the field of text-to-video (T2V) synthesis, open-sourced T2V diffusion models struggle to generate longer videos with dynamically varying and evolving content. They tend to synthesize quasi-static videos, ignoring the necessary visual change-over-time implied in the text prompt. At the same time, scaling these models to enable longer, more dynamic video synthesis often remains computationally intractable. To address this challenge, we introduce the concept of Generative Temporal Nursing (GTN), where we aim to alter the generative process on the fly during inference to improve control over the temporal dynamics and enable generation of longer videos. We propose a method for GTN, dubbed VSTAR, which consists of two key ingredients: 1) Video Synopsis Prompting (VSP) - automatic generation of a video synopsis based on the original single prompt leveraging LLMs, which gives accurate textual guidance to different visual states of longer videos, and 2) Temporal Attention Regularization (TAR) - a regularization technique to refine the temporal attention units of the pre-trained T2V diffusion models, which enables control over the video dynamics. We experimentally showcase the superiority of the proposed approach in generating longer, visually appealing videos over existing open-sourced T2V models. We additionally analyze the temporal attention maps realized with and without VSTAR, demonstrating the importance of applying our method to mitigate neglect of the desired visual change over time.
Improving Visual Prompt Tuning for Self-supervised Vision Transformers
Visual Prompt Tuning (VPT) is an effective tuning method for adapting pretrained Vision Transformers (ViTs) to downstream tasks. It leverages extra learnable tokens, known as prompts, which steer the frozen pretrained ViTs. Although VPT has demonstrated its applicability with supervised vision transformers, it often underperforms with self-supervised ones. Through empirical observations, we deduce that the effectiveness of VPT hinges largely on the ViT blocks with which the prompt tokens interact. Specifically, VPT shows improved performance on image classification tasks for MAE and MoCo v3 when the prompt tokens are inserted into later blocks rather than the first block. These observations suggest that there exists an optimal location of blocks for the insertion of prompt tokens. Unfortunately, identifying the optimal blocks for prompts within each self-supervised ViT for diverse future scenarios is a costly process. To mitigate this problem, we propose a simple yet effective method that learns a gate for each ViT block to adjust its intervention into the prompt tokens. With our method, prompt tokens are selectively influenced by blocks that require steering for task adaptation. Our method outperforms VPT variants in FGVC and VTAB image classification and ADE20K semantic segmentation. The code is available at https://github.com/ryongithub/GatedPromptTuning.
The (R)Evolution of Multimodal Large Language Models: A Survey
Connecting text and visual modalities plays an essential role in generative intelligence. For this reason, inspired by the success of large language models, significant research efforts are being devoted to the development of Multimodal Large Language Models (MLLMs). These models can seamlessly integrate visual and textual modalities, both as input and output, while providing a dialogue-based interface and instruction-following capabilities. In this paper, we provide a comprehensive review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques. We also conduct a detailed analysis of these models across a wide range of tasks, including visual grounding, image generation and editing, visual understanding, and domain-specific applications. Additionally, we compile and describe training datasets and evaluation benchmarks, conducting comparisons among existing models in terms of performance and computational requirements. Overall, this survey offers a comprehensive overview of the current state of the art, laying the groundwork for future MLLMs.
MLLMs Know Where to Look: Training-free Perception of Small Visual Details with Multimodal LLMs
Multimodal Large Language Models (MLLMs) have experienced rapid progress in visual recognition tasks in recent years. Given their potential integration into many critical applications, it is important to understand the limitations of their visual perception. In this work, we study whether MLLMs can perceive small visual details as effectively as large ones when answering questions about images. We observe that their performance is very sensitive to the size of the visual subject of the question, and further show that this effect is in fact causal by conducting an intervention study. Next, we study the attention patterns of MLLMs when answering visual questions, and intriguingly find that they consistently know where to look, even when they provide the wrong answer. Based on these findings, we then propose training-free visual intervention methods that leverage the internal knowledge of any MLLM itself, in the form of attention and gradient maps, to enhance its perception of small visual details. We evaluate our proposed methods on two widely-used MLLMs and seven visual question answering benchmarks and show that they can significantly improve MLLMs' accuracy without requiring any training. Our results elucidate the risk of applying MLLMs to visual recognition tasks concerning small details and indicate that visual intervention using the model's internal state is a promising direction to mitigate this risk.
Bridging Different Language Models and Generative Vision Models for Text-to-Image Generation
Text-to-image generation has made significant advancements with the introduction of text-to-image diffusion models. These models typically consist of a language model that interprets user prompts and a vision model that generates corresponding images. As language and vision models continue to progress in their respective domains, there is a great potential in exploring the replacement of components in text-to-image diffusion models with more advanced counterparts. A broader research objective would therefore be to investigate the integration of any two unrelated language and generative vision models for text-to-image generation. In this paper, we explore this objective and propose LaVi-Bridge, a pipeline that enables the integration of diverse pre-trained language models and generative vision models for text-to-image generation. By leveraging LoRA and adapters, LaVi-Bridge offers a flexible and plug-and-play approach without requiring modifications to the original weights of the language and vision models. Our pipeline is compatible with various language models and generative vision models, accommodating different structures. Within this framework, we demonstrate that incorporating superior modules, such as more advanced language models or generative vision models, results in notable improvements in capabilities like text alignment or image quality. Extensive evaluations have been conducted to verify the effectiveness of LaVi-Bridge. Code is available at https://github.com/ShihaoZhaoZSH/LaVi-Bridge.
Breaking Barriers to Creative Expression: Co-Designing and Implementing an Accessible Text-to-Image Interface
Text-to-image generation models have grown in popularity due to their ability to produce high-quality images from a text prompt. One use for this technology is to enable the creation of more accessible art creation software. In this paper, we document the development of an alternative user interface that reduces the typing effort needed to enter image prompts by providing suggestions from a large language model, developed through iterative design and testing within the project team. The results of this testing demonstrate how generative text models can support the accessibility of text-to-image models, enabling users with a range of abilities to create visual art.
InteractDiffusion: Interaction Control in Text-to-Image Diffusion Models
Large-scale text-to-image (T2I) diffusion models have showcased incredible capabilities in generating coherent images based on textual descriptions, enabling vast applications in content generation. While recent advancements have introduced control over factors such as object localization, posture, and image contours, a crucial gap remains in our ability to control the interactions between objects in the generated content. Well-controlling interactions in generated images could yield meaningful applications, such as creating realistic scenes with interacting characters. In this work, we study the problems of conditioning T2I diffusion models with Human-Object Interaction (HOI) information, consisting of a triplet label (person, action, object) and corresponding bounding boxes. We propose a pluggable interaction control model, called InteractDiffusion that extends existing pre-trained T2I diffusion models to enable them being better conditioned on interactions. Specifically, we tokenize the HOI information and learn their relationships via interaction embeddings. A conditioning self-attention layer is trained to map HOI tokens to visual tokens, thereby conditioning the visual tokens better in existing T2I diffusion models. Our model attains the ability to control the interaction and location on existing T2I diffusion models, which outperforms existing baselines by a large margin in HOI detection score, as well as fidelity in FID and KID. Project page: https://jiuntian.github.io/interactdiffusion.
Mitigating Hallucination in Visual-Language Models via Re-Balancing Contrastive Decoding
Although Visual-Language Models (VLMs) have shown impressive capabilities in tasks like visual question answering and image captioning, they still struggle with hallucinations. Analysis of attention distribution in these models shows that VLMs tend to processing textual tokens rather than visual tokens. This imbalance of attention distribution causes VLMs to favor textual knowledge in the case of multimodal knowledge conflicts, resulting in differences from the image information. In this paper, we propose Re-Balancing Contrastive Decoding (RBD) method, which employs textual and visual branches to recalibrate attention distribution in VLMs. Specifically, the textual branch injects image noise to stimulate the model's dependency on text, thereby reducing textual bias. Concurrently, the visual branch focuses on the selection of significant tokens, refining the attention mechanism to highlight the primary subject. This dual-branch strategy enables the RBD method to diminish textual bias while enhancing visual information. Experimental results demonstrate that our method, RBD, outperforms the existing methods by the CHAIR and POPE metrics, mitigate hallucinations without reducing the model's general capabilities.
TED-VITON: Transformer-Empowered Diffusion Models for Virtual Try-On
Recent advancements in Virtual Try-On (VTO) have demonstrated exceptional efficacy in generating realistic images and preserving garment details, largely attributed to the robust generative capabilities of text-to-image (T2I) diffusion backbones. However, the T2I models that underpin these methods have become outdated, thereby limiting the potential for further improvement in VTO. Additionally, current methods face notable challenges in accurately rendering text on garments without distortion and preserving fine-grained details, such as textures and material fidelity. The emergence of Diffusion Transformer (DiT) based T2I models has showcased impressive performance and offers a promising opportunity for advancing VTO. Directly applying existing VTO techniques to transformer-based T2I models is ineffective due to substantial architectural differences, which hinder their ability to fully leverage the models' advanced capabilities for improved text generation. To address these challenges and unlock the full potential of DiT-based T2I models for VTO, we propose TED-VITON, a novel framework that integrates a Garment Semantic (GS) Adapter for enhancing garment-specific features, a Text Preservation Loss to ensure accurate and distortion-free text rendering, and a constraint mechanism to generate prompts by optimizing Large Language Model (LLM). These innovations enable state-of-the-art (SOTA) performance in visual quality and text fidelity, establishing a new benchmark for VTO task.
Generative Visual Communication in the Era of Vision-Language Models
Visual communication, dating back to prehistoric cave paintings, is the use of visual elements to convey ideas and information. In today's visually saturated world, effective design demands an understanding of graphic design principles, visual storytelling, human psychology, and the ability to distill complex information into clear visuals. This dissertation explores how recent advancements in vision-language models (VLMs) can be leveraged to automate the creation of effective visual communication designs. Although generative models have made great progress in generating images from text, they still struggle to simplify complex ideas into clear, abstract visuals and are constrained by pixel-based outputs, which lack flexibility for many design tasks. To address these challenges, we constrain the models' operational space and introduce task-specific regularizations. We explore various aspects of visual communication, namely, sketches and visual abstraction, typography, animation, and visual inspiration.
Rethinking Human Evaluation Protocol for Text-to-Video Models: Enhancing Reliability,Reproducibility, and Practicality
Recent text-to-video (T2V) technology advancements, as demonstrated by models such as Gen2, Pika, and Sora, have significantly broadened its applicability and popularity. Despite these strides, evaluating these models poses substantial challenges. Primarily, due to the limitations inherent in automatic metrics, manual evaluation is often considered a superior method for assessing T2V generation. However, existing manual evaluation protocols face reproducibility, reliability, and practicality issues. To address these challenges, this paper introduces the Text-to-Video Human Evaluation (T2VHE) protocol, a comprehensive and standardized protocol for T2V models. The T2VHE protocol includes well-defined metrics, thorough annotator training, and an effective dynamic evaluation module. Experimental results demonstrate that this protocol not only ensures high-quality annotations but can also reduce evaluation costs by nearly 50%. We will open-source the entire setup of the T2VHE protocol, including the complete protocol workflow, the dynamic evaluation component details, and the annotation interface code. This will help communities establish more sophisticated human assessment protocols.
InteractiveVideo: User-Centric Controllable Video Generation with Synergistic Multimodal Instructions
We introduce InteractiveVideo, a user-centric framework for video generation. Different from traditional generative approaches that operate based on user-provided images or text, our framework is designed for dynamic interaction, allowing users to instruct the generative model through various intuitive mechanisms during the whole generation process, e.g. text and image prompts, painting, drag-and-drop, etc. We propose a Synergistic Multimodal Instruction mechanism, designed to seamlessly integrate users' multimodal instructions into generative models, thus facilitating a cooperative and responsive interaction between user inputs and the generative process. This approach enables iterative and fine-grained refinement of the generation result through precise and effective user instructions. With InteractiveVideo, users are given the flexibility to meticulously tailor key aspects of a video. They can paint the reference image, edit semantics, and adjust video motions until their requirements are fully met. Code, models, and demo are available at https://github.com/invictus717/InteractiveVideo
Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want
The interaction between humans and artificial intelligence (AI) is a crucial factor that reflects the effectiveness of multimodal large language models (MLLMs). However, current MLLMs primarily focus on image-level comprehension and limit interaction to textual instructions, thereby constraining their flexibility in usage and depth of response. In this paper, we introduce the Draw-and-Understand project: a new model, a multi-domain dataset, and a challenging benchmark for visual prompting. Specifically, we propose SPHINX-V, a new end-to-end trained Multimodal Large Language Model (MLLM) that connects a vision encoder, a visual prompt encoder and an LLM for various visual prompts (points, bounding boxes, and free-form shape) and language understanding. To advance visual prompting research for MLLMs, we introduce MDVP-Data and MDVP-Bench. MDVP-Data features a multi-domain dataset containing 1.6M unique image-visual prompt-text instruction-following samples, including natural images, document images, OCR images, mobile screenshots, web screenshots, and multi-panel images. Furthermore, we present MDVP-Bench, a comprehensive and challenging benchmark to assess a model's capability in understanding visual prompting instructions. Our experiments demonstrate SPHINX-V's impressive multimodal interaction capabilities through visual prompting, revealing significant improvements in detailed pixel-level description and question-answering abilities.
The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering
Large Vision-Language Models (LVLMs) can reason effectively over both textual and visual inputs, but they tend to hallucinate syntactically coherent yet visually ungrounded contents. In this paper, we investigate the internal dynamics of hallucination by examining the tokens logits rankings throughout the generation process, revealing three key patterns in how LVLMs process information: (1) gradual visual information loss -- visually grounded tokens gradually become less favored throughout generation, and (2) early excitation -- semantically meaningful tokens achieve peak activation in the layers earlier than the final layer. (3) hidden genuine information -- visually grounded tokens though not being eventually decided still retain relatively high rankings at inference. Based on these insights, we propose VISTA (Visual Information Steering with Token-logit Augmentation), a training-free inference-time intervention framework that reduces hallucination while promoting genuine information. VISTA works by combining two complementary approaches: reinforcing visual information in activation space and leveraging early layer activations to promote semantically meaningful decoding. Compared to existing methods, VISTA requires no external supervision and is applicable to various decoding strategies. Extensive experiments show that VISTA on average reduces hallucination by abount 40% on evaluated open-ended generation task, and it consistently outperforms existing methods on four benchmarks across four architectures under three decoding strategies.
DreamDistribution: Prompt Distribution Learning for Text-to-Image Diffusion Models
The popularization of Text-to-Image (T2I) diffusion models enables the generation of high-quality images from text descriptions. However, generating diverse customized images with reference visual attributes remains challenging. This work focuses on personalizing T2I diffusion models at a more abstract concept or category level, adapting commonalities from a set of reference images while creating new instances with sufficient variations. We introduce a solution that allows a pretrained T2I diffusion model to learn a set of soft prompts, enabling the generation of novel images by sampling prompts from the learned distribution. These prompts offer text-guided editing capabilities and additional flexibility in controlling variation and mixing between multiple distributions. We also show the adaptability of the learned prompt distribution to other tasks, such as text-to-3D. Finally we demonstrate effectiveness of our approach through quantitative analysis including automatic evaluation and human assessment. Project website: https://briannlongzhao.github.io/DreamDistribution
Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions to assist in diagnostic and treatment tasks. However, VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information. This challenge is particularly pronounced in the medical domain, where we do not only require VLM outputs to be accurate in single interactions but also to be consistent with clinical reasoning and diagnostic pathways throughout multi-turn conversations. For this purpose, we propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge. These representations are utilized to (i) generate GPT-4-guided visual instruction tuning data at scale, simulating clinician-VLM conversations with demonstrations of clinical reasoning, and (ii) create an automatic reward function that evaluates the clinical validity of VLM generations throughout clinician-VLM interactions. Our algorithm eliminates the need for human involvement in training data generation or reward model construction, reducing costs compared to standard reinforcement learning with human feedback (RLHF). We apply our alignment algorithm to develop Dr-LLaVA, a conversational VLM finetuned for analyzing bone marrow pathology slides, demonstrating strong performance in multi-turn medical conversations.
Visual Instruction Inversion: Image Editing via Visual Prompting
Text-conditioned image editing has emerged as a powerful tool for editing images. However, in many situations, language can be ambiguous and ineffective in describing specific image edits. When faced with such challenges, visual prompts can be a more informative and intuitive way to convey ideas. We present a method for image editing via visual prompting. Given pairs of example that represent the "before" and "after" images of an edit, our goal is to learn a text-based editing direction that can be used to perform the same edit on new images. We leverage the rich, pretrained editing capabilities of text-to-image diffusion models by inverting visual prompts into editing instructions. Our results show that with just one example pair, we can achieve competitive results compared to state-of-the-art text-conditioned image editing frameworks.
Position-Enhanced Visual Instruction Tuning for Multimodal Large Language Models
Recently, Multimodal Large Language Models (MLLMs) that enable Large Language Models (LLMs) to interpret images through visual instruction tuning have achieved significant success. However, existing visual instruction tuning methods only utilize image-language instruction data to align the language and image modalities, lacking a more fine-grained cross-modal alignment. In this paper, we propose Position-enhanced Visual Instruction Tuning (PVIT), which extends the functionality of MLLMs by integrating an additional region-level vision encoder. This integration promotes a more detailed comprehension of images for the MLLM. In addition, to efficiently achieve a fine-grained alignment between the vision modules and the LLM, we design multiple data generation strategies to construct an image-region-language instruction dataset. Finally, we present both quantitative experiments and qualitative analysis that demonstrate the superiority of the proposed model. Code and data will be released at https://github.com/THUNLP-MT/PVIT.
Enhancing Instruction-Following Capability of Visual-Language Models by Reducing Image Redundancy
Large Language Models (LLMs) have strong instruction-following capability to interpret and execute tasks as directed by human commands. Multimodal Large Language Models (MLLMs) have inferior instruction-following ability compared to LLMs. However, there is a significant gap in the instruction-following capabilities between the MLLMs and LLMs. In this study, we conduct a pilot experiment, which demonstrates that spatially down-sampling visual tokens significantly enhances the instruction-following capability of MLLMs. This is attributed to the substantial redundancy in visual modality. However, this intuitive method severely impairs the MLLM's multimodal understanding capability. In this paper, we propose Visual-Modality Token Compression (VMTC) and Cross-Modality Attention Inhibition (CMAI) strategies to alleviate this gap between MLLMs and LLMs by inhibiting the influence of irrelevant visual tokens during content generation, increasing the instruction-following ability of the MLLMs while retaining their multimodal understanding capacity. In VMTC module, the primary tokens are retained and the redundant tokens are condensed by token clustering and merging. In CMAI process, we aggregate text-to-image attentions by text-to-text attentions to obtain a text-to-image focus score. Attention inhibition is performed on the text-image token pairs with low scores. Our comprehensive experiments over instruction-following capabilities and VQA-V2, GQA, TextVQA, MME and MMBench five benchmarks, demonstrate that proposed strategy significantly enhances the instruction following capability of MLLMs while preserving the ability to understand and process multimodal inputs.
Direct Preference Optimization for Suppressing Hallucinated Prior Exams in Radiology Report Generation
Recent advances in generative vision-language models (VLMs) have exciting potential implications for AI in radiology, yet VLMs are also known to produce hallucinations, nonsensical text, and other unwanted behaviors that can waste clinicians' time and cause patient harm. Drawing on recent work on direct preference optimization (DPO), we propose a simple method for modifying the behavior of pretrained VLMs performing radiology report generation by suppressing unwanted types of generations. We apply our method to the prevention of hallucinations of prior exams, addressing a long-established problem behavior in models performing chest X-ray report generation. Across our experiments, we find that DPO fine-tuning achieves a 3.2-4.8x reduction in lines hallucinating prior exams while maintaining model performance on clinical accuracy metrics. Our work is, to the best of our knowledge, the first work to apply DPO to medical VLMs, providing a data- and compute- efficient way to suppress problem behaviors while maintaining overall clinical accuracy.
Beyond Captioning: Task-Specific Prompting for Improved VLM Performance in Mathematical Reasoning
Vision-Language Models (VLMs) have transformed tasks requiring visual and reasoning abilities, such as image retrieval and Visual Question Answering (VQA). Despite their success, VLMs face significant challenges with tasks involving geometric reasoning, algebraic problem-solving, and counting. These limitations stem from difficulties effectively integrating multiple modalities and accurately interpreting geometry-related tasks. Various works claim that introducing a captioning pipeline before VQA tasks enhances performance. We incorporated this pipeline for tasks involving geometry, algebra, and counting. We found that captioning results are not generalizable, specifically with larger VLMs primarily trained on downstream QnA tasks showing random performance on math-related challenges. However, we present a promising alternative: task-based prompting, enriching the prompt with task-specific guidance. This approach shows promise and proves more effective than direct captioning methods for math-heavy problems.
Image Regeneration: Evaluating Text-to-Image Model via Generating Identical Image with Multimodal Large Language Models
Diffusion models have revitalized the image generation domain, playing crucial roles in both academic research and artistic expression. With the emergence of new diffusion models, assessing the performance of text-to-image models has become increasingly important. Current metrics focus on directly matching the input text with the generated image, but due to cross-modal information asymmetry, this leads to unreliable or incomplete assessment results. Motivated by this, we introduce the Image Regeneration task in this study to assess text-to-image models by tasking the T2I model with generating an image according to the reference image. We use GPT4V to bridge the gap between the reference image and the text input for the T2I model, allowing T2I models to understand image content. This evaluation process is simplified as comparisons between the generated image and the reference image are straightforward. Two regeneration datasets spanning content-diverse and style-diverse evaluation dataset are introduced to evaluate the leading diffusion models currently available. Additionally, we present ImageRepainter framework to enhance the quality of generated images by improving content comprehension via MLLM guided iterative generation and revision. Our comprehensive experiments have showcased the effectiveness of this framework in assessing the generative capabilities of models. By leveraging MLLM, we have demonstrated that a robust T2M can produce images more closely resembling the reference image.
Review of Large Vision Models and Visual Prompt Engineering
Visual prompt engineering is a fundamental technology in the field of visual and image Artificial General Intelligence, serving as a key component for achieving zero-shot capabilities. As the development of large vision models progresses, the importance of prompt engineering becomes increasingly evident. Designing suitable prompts for specific visual tasks has emerged as a meaningful research direction. This review aims to summarize the methods employed in the computer vision domain for large vision models and visual prompt engineering, exploring the latest advancements in visual prompt engineering. We present influential large models in the visual domain and a range of prompt engineering methods employed on these models. It is our hope that this review provides a comprehensive and systematic description of prompt engineering methods based on large visual models, offering valuable insights for future researchers in their exploration of this field.
VDGD: Mitigating LVLM Hallucinations in Cognitive Prompts by Bridging the Visual Perception Gap
Recent interest in Large Vision-Language Models (LVLMs) for practical applications is moderated by the significant challenge of hallucination or the inconsistency between the factual information and the generated text. In this paper, we first perform an in-depth analysis of hallucinations and discover several novel insights about how and when LVLMs hallucinate. From our analysis, we show that: (1) The community's efforts have been primarily targeted towards reducing hallucinations related to visual recognition (VR) prompts (e.g., prompts that only require describing the image), thereby ignoring hallucinations for cognitive prompts (e.g., prompts that require additional skills like reasoning on contents of the image). (2) LVLMs lack visual perception, i.e., they can see but not necessarily understand or perceive the input image. We analyze responses to cognitive prompts and show that LVLMs hallucinate due to a perception gap: although LVLMs accurately recognize visual elements in the input image and possess sufficient cognitive skills, they struggle to respond accurately and hallucinate. To overcome this shortcoming, we propose Visual Description Grounded Decoding (VDGD), a simple, robust, and training-free method for alleviating hallucinations. Specifically, we first describe the image and add it as a prefix to the instruction. Next, during auto-regressive decoding, we sample from the plausible candidates according to their KL-Divergence (KLD) to the description, where lower KLD is given higher preference. Experimental results on several benchmarks and LVLMs show that VDGD improves significantly over other baselines in reducing hallucinations. We also propose VaLLu, a benchmark for the comprehensive evaluation of the cognitive capabilities of LVLMs.
Visual Goal-Step Inference using wikiHow
Understanding what sequence of steps are needed to complete a goal can help artificial intelligence systems reason about human activities. Past work in NLP has examined the task of goal-step inference for text. We introduce the visual analogue. We propose the Visual Goal-Step Inference (VGSI) task, where a model is given a textual goal and must choose which of four images represents a plausible step towards that goal. With a new dataset harvested from wikiHow consisting of 772,277 images representing human actions, we show that our task is challenging for state-of-the-art multimodal models. Moreover, the multimodal representation learned from our data can be effectively transferred to other datasets like HowTo100m, increasing the VGSI accuracy by 15 - 20%. Our task will facilitate multimodal reasoning about procedural events.
DiffusionPID: Interpreting Diffusion via Partial Information Decomposition
Text-to-image diffusion models have made significant progress in generating naturalistic images from textual inputs, and demonstrate the capacity to learn and represent complex visual-semantic relationships. While these diffusion models have achieved remarkable success, the underlying mechanisms driving their performance are not yet fully accounted for, with many unanswered questions surrounding what they learn, how they represent visual-semantic relationships, and why they sometimes fail to generalize. Our work presents Diffusion Partial Information Decomposition (DiffusionPID), a novel technique that applies information-theoretic principles to decompose the input text prompt into its elementary components, enabling a detailed examination of how individual tokens and their interactions shape the generated image. We introduce a formal approach to analyze the uniqueness, redundancy, and synergy terms by applying PID to the denoising model at both the image and pixel level. This approach enables us to characterize how individual tokens and their interactions affect the model output. We first present a fine-grained analysis of characteristics utilized by the model to uniquely localize specific concepts, we then apply our approach in bias analysis and show it can recover gender and ethnicity biases. Finally, we use our method to visually characterize word ambiguity and similarity from the model's perspective and illustrate the efficacy of our method for prompt intervention. Our results show that PID is a potent tool for evaluating and diagnosing text-to-image diffusion models.
Ranni: Taming Text-to-Image Diffusion for Accurate Instruction Following
Existing text-to-image (T2I) diffusion models usually struggle in interpreting complex prompts, especially those with quantity, object-attribute binding, and multi-subject descriptions. In this work, we introduce a semantic panel as the middleware in decoding texts to images, supporting the generator to better follow instructions. The panel is obtained through arranging the visual concepts parsed from the input text by the aid of large language models, and then injected into the denoising network as a detailed control signal to complement the text condition. To facilitate text-to-panel learning, we come up with a carefully designed semantic formatting protocol, accompanied by a fully-automatic data preparation pipeline. Thanks to such a design, our approach, which we call Ranni, manages to enhance a pre-trained T2I generator regarding its textual controllability. More importantly, the introduction of the generative middleware brings a more convenient form of interaction (i.e., directly adjusting the elements in the panel or using language instructions) and further allows users to finely customize their generation, based on which we develop a practical system and showcase its potential in continuous generation and chatting-based editing. Our project page is at https://ranni-t2i.github.io/Ranni.
Words or Vision: Do Vision-Language Models Have Blind Faith in Text?
Vision-Language Models (VLMs) excel in integrating visual and textual information for vision-centric tasks, but their handling of inconsistencies between modalities is underexplored. We investigate VLMs' modality preferences when faced with visual data and varied textual inputs in vision-centered settings. By introducing textual variations to four vision-centric tasks and evaluating ten Vision-Language Models (VLMs), we discover a ``blind faith in text'' phenomenon: VLMs disproportionately trust textual data over visual data when inconsistencies arise, leading to significant performance drops under corrupted text and raising safety concerns. We analyze factors influencing this text bias, including instruction prompts, language model size, text relevance, token order, and the interplay between visual and textual certainty. While certain factors, such as scaling up the language model size, slightly mitigate text bias, others like token order can exacerbate it due to positional biases inherited from language models. To address this issue, we explore supervised fine-tuning with text augmentation and demonstrate its effectiveness in reducing text bias. Additionally, we provide a theoretical analysis suggesting that the blind faith in text phenomenon may stem from an imbalance of pure text and multi-modal data during training. Our findings highlight the need for balanced training and careful consideration of modality interactions in VLMs to enhance their robustness and reliability in handling multi-modal data inconsistencies.
Improving Fine-grained Visual Understanding in VLMs through Text-Only Training
Visual-Language Models (VLMs) have become a powerful tool for bridging the gap between visual and linguistic understanding. However, the conventional learning approaches for VLMs often suffer from limitations, such as the high resource requirements of collecting and training image-text paired data. Recent research has suggested that language understanding plays a crucial role in the performance of VLMs, potentially indicating that text-only training could be a viable approach. In this work, we investigate the feasibility of enhancing fine-grained visual understanding in VLMs through text-only training. Inspired by how humans develop visual concept understanding, where rich textual descriptions can guide visual recognition, we hypothesize that VLMs can also benefit from leveraging text-based representations to improve their visual recognition abilities. We conduct comprehensive experiments on two distinct domains: fine-grained species classification and cultural visual understanding tasks. Our findings demonstrate that text-only training can be comparable to conventional image-text training while significantly reducing computational costs. This suggests a more efficient and cost-effective pathway for advancing VLM capabilities, particularly valuable in resource-constrained environments.
Scaling Inference-Time Search with Vision Value Model for Improved Visual Comprehension
Despite significant advancements in vision-language models (VLMs), there lacks effective approaches to enhance response quality by scaling inference-time computation. This capability is known to be a core step towards the self-improving models in recent large language model studies. In this paper, we present Vision Value Model (VisVM) that can guide VLM inference-time search to generate responses with better visual comprehension. Specifically, VisVM not only evaluates the generated sentence quality in the current search step, but also anticipates the quality of subsequent sentences that may result from the current step, thus providing a long-term value. In this way, VisVM steers VLMs away from generating sentences prone to hallucinations or insufficient detail, thereby producing higher quality responses. Experimental results demonstrate that VisVM-guided search significantly enhances VLMs' ability to generate descriptive captions with richer visual details and fewer hallucinations, compared with greedy decoding and search methods with other visual reward signals. Furthermore, we find that self-training the model with the VisVM-guided captions improve VLM's performance across a wide range of multimodal benchmarks, indicating the potential for developing self-improving VLMs. Our value model and code are available at https://github.com/si0wang/VisVM.
HMGIE: Hierarchical and Multi-Grained Inconsistency Evaluation for Vision-Language Data Cleansing
Visual-textual inconsistency (VTI) evaluation plays a crucial role in cleansing vision-language data. Its main challenges stem from the high variety of image captioning datasets, where differences in content can create a range of inconsistencies (\eg, inconsistencies in scene, entities, entity attributes, entity numbers, entity interactions). Moreover, variations in caption length can introduce inconsistencies at different levels of granularity as well. To tackle these challenges, we design an adaptive evaluation framework, called Hierarchical and Multi-Grained Inconsistency Evaluation (HMGIE), which can provide multi-grained evaluations covering both accuracy and completeness for various image-caption pairs. Specifically, the HMGIE framework is implemented by three consecutive modules. Firstly, the semantic graph generation module converts the image caption to a semantic graph for building a structural representation of all involved semantic items. Then, the hierarchical inconsistency evaluation module provides a progressive evaluation procedure with a dynamic question-answer generation and evaluation strategy guided by the semantic graph, producing a hierarchical inconsistency evaluation graph (HIEG). Finally, the quantitative evaluation module calculates the accuracy and completeness scores based on the HIEG, followed by a natural language explanation about the detection results. Moreover, to verify the efficacy and flexibility of the proposed framework on handling different image captioning datasets, we construct MVTID, an image-caption dataset with diverse types and granularities of inconsistencies. Extensive experiments on MVTID and other benchmark datasets demonstrate the superior performance of the proposed HMGIE to current state-of-the-art methods.
TIBET: Identifying and Evaluating Biases in Text-to-Image Generative Models
Text-to-Image (TTI) generative models have shown great progress in the past few years in terms of their ability to generate complex and high-quality imagery. At the same time, these models have been shown to suffer from harmful biases, including exaggerated societal biases (e.g., gender, ethnicity), as well as incidental correlations that limit such a model's ability to generate more diverse imagery. In this paper, we propose a general approach to study and quantify a broad spectrum of biases, for any TTI model and for any prompt, using counterfactual reasoning. Unlike other works that evaluate generated images on a predefined set of bias axes, our approach automatically identifies potential biases that might be relevant to the given prompt, and measures those biases. In addition, we complement quantitative scores with post-hoc explanations in terms of semantic concepts in the images generated. We show that our method is uniquely capable of explaining complex multi-dimensional biases through semantic concepts, as well as the intersectionality between different biases for any given prompt. We perform extensive user studies to illustrate that the results of our method and analysis are consistent with human judgements.
pyvene: A Library for Understanding and Improving PyTorch Models via Interventions
Interventions on model-internal states are fundamental operations in many areas of AI, including model editing, steering, robustness, and interpretability. To facilitate such research, we introduce pyvene, an open-source Python library that supports customizable interventions on a range of different PyTorch modules. pyvene supports complex intervention schemes with an intuitive configuration format, and its interventions can be static or include trainable parameters. We show how pyvene provides a unified and extensible framework for performing interventions on neural models and sharing the intervened upon models with others. We illustrate the power of the library via interpretability analyses using causal abstraction and knowledge localization. We publish our library through Python Package Index (PyPI) and provide code, documentation, and tutorials at https://github.com/stanfordnlp/pyvene.
Navigating Cultural Chasms: Exploring and Unlocking the Cultural POV of Text-To-Image Models
Text-To-Image (TTI) models, such as DALL-E and StableDiffusion, have demonstrated remarkable prompt-based image generation capabilities. Multilingual encoders may have a substantial impact on the cultural agency of these models, as language is a conduit of culture. In this study, we explore the cultural perception embedded in TTI models by characterizing culture across three hierarchical tiers: cultural dimensions, cultural domains, and cultural concepts. Based on this ontology, we derive prompt templates to unlock the cultural knowledge in TTI models, and propose a comprehensive suite of evaluation techniques, including intrinsic evaluations using the CLIP space, extrinsic evaluations with a Visual-Question-Answer (VQA) model and human assessments, to evaluate the cultural content of TTI-generated images. To bolster our research, we introduce the CulText2I dataset, derived from six diverse TTI models and spanning ten languages. Our experiments provide insights regarding Do, What, Which and How research questions about the nature of cultural encoding in TTI models, paving the way for cross-cultural applications of these models.
VR-GPT: Visual Language Model for Intelligent Virtual Reality Applications
The advent of immersive Virtual Reality applications has transformed various domains, yet their integration with advanced artificial intelligence technologies like Visual Language Models remains underexplored. This study introduces a pioneering approach utilizing VLMs within VR environments to enhance user interaction and task efficiency. Leveraging the Unity engine and a custom-developed VLM, our system facilitates real-time, intuitive user interactions through natural language processing, without relying on visual text instructions. The incorporation of speech-to-text and text-to-speech technologies allows for seamless communication between the user and the VLM, enabling the system to guide users through complex tasks effectively. Preliminary experimental results indicate that utilizing VLMs not only reduces task completion times but also improves user comfort and task engagement compared to traditional VR interaction methods.
Instruction-Guided Visual Masking
Instruction following is crucial in contemporary LLM. However, when extended to multimodal setting, it often suffers from misalignment between specific textual instruction and targeted local region of an image. To achieve more accurate and nuanced multimodal instruction following, we introduce Instruction-guided Visual Masking (IVM), a new versatile visual grounding model that is compatible with diverse multimodal models, such as LMM and robot model. By constructing visual masks for instruction-irrelevant regions, IVM-enhanced multimodal models can effectively focus on task-relevant image regions to better align with complex instructions. Specifically, we design a visual masking data generation pipeline and create an IVM-Mix-1M dataset with 1 million image-instruction pairs. We further introduce a new learning technique, Discriminator Weighted Supervised Learning (DWSL) for preferential IVM training that prioritizes high-quality data samples. Experimental results on generic multimodal tasks such as VQA and embodied robotic control demonstrate the versatility of IVM, which as a plug-and-play tool, significantly boosts the performance of diverse multimodal models, yielding new state-of-the-art results across challenging multimodal benchmarks. Code is available at https://github.com/2toinf/IVM.
BRAT: Bonus oRthogonAl Token for Architecture Agnostic Textual Inversion
Textual Inversion remains a popular method for personalizing diffusion models, in order to teach models new subjects and styles. We note that textual inversion has been underexplored using alternatives to the UNet, and experiment with textual inversion with a vision transformer. We also seek to optimize textual inversion using a strategy that does not require explicit use of the UNet and its idiosyncratic layers, so we add bonus tokens and enforce orthogonality. We find the use of the bonus token improves adherence to the source images and the use of the vision transformer improves adherence to the prompt. Code is available at https://github.com/jamesBaker361/tex_inv_plus.
MemeGuard: An LLM and VLM-based Framework for Advancing Content Moderation via Meme Intervention
In the digital world, memes present a unique challenge for content moderation due to their potential to spread harmful content. Although detection methods have improved, proactive solutions such as intervention are still limited, with current research focusing mostly on text-based content, neglecting the widespread influence of multimodal content like memes. Addressing this gap, we present MemeGuard, a comprehensive framework leveraging Large Language Models (LLMs) and Visual Language Models (VLMs) for meme intervention. MemeGuard harnesses a specially fine-tuned VLM, VLMeme, for meme interpretation, and a multimodal knowledge selection and ranking mechanism (MKS) for distilling relevant knowledge. This knowledge is then employed by a general-purpose LLM to generate contextually appropriate interventions. Another key contribution of this work is the \textbf{Intervening} \textbf{Cyberbullying in Multimodal Memes (ICMM)} dataset, a high-quality, labeled dataset featuring toxic memes and their corresponding human-annotated interventions. We leverage ICMM to test MemeGuard, demonstrating its proficiency in generating relevant and effective responses to toxic memes.
Investigating Prompt Engineering in Diffusion Models
With the spread of the use of Text2Img diffusion models such as DALL-E 2, Imagen, Mid Journey and Stable Diffusion, one challenge that artists face is selecting the right prompts to achieve the desired artistic output. We present techniques for measuring the effect that specific words and phrases in prompts have, and (in the Appendix) present guidance on the selection of prompts to produce desired effects.
GenAssist: Making Image Generation Accessible
Blind and low vision (BLV) creators use images to communicate with sighted audiences. However, creating or retrieving images is challenging for BLV creators as it is difficult to use authoring tools or assess image search results. Thus, creators limit the types of images they create or recruit sighted collaborators. While text-to-image generation models let creators generate high-fidelity images based on a text description (i.e. prompt), it is difficult to assess the content and quality of generated images. We present GenAssist, a system to make text-to-image generation accessible. Using our interface, creators can verify whether generated image candidates followed the prompt, access additional details in the image not specified in the prompt, and skim a summary of similarities and differences between image candidates. To power the interface, GenAssist uses a large language model to generate visual questions, vision-language models to extract answers, and a large language model to summarize the results. Our study with 12 BLV creators demonstrated that GenAssist enables and simplifies the process of image selection and generation, making visual authoring more accessible to all.
InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists
Recent advances in generative diffusion models have enabled text-controlled synthesis of realistic and diverse images with impressive quality. Despite these remarkable advances, the application of text-to-image generative models in computer vision for standard visual recognition tasks remains limited. The current de facto approach for these tasks is to design model architectures and loss functions that are tailored to the task at hand. In this paper, we develop a unified language interface for computer vision tasks that abstracts away task-specific design choices and enables task execution by following natural language instructions. Our approach involves casting multiple computer vision tasks as text-to-image generation problems. Here, the text represents an instruction describing the task, and the resulting image is a visually-encoded task output. To train our model, we pool commonly-used computer vision datasets covering a range of tasks, including segmentation, object detection, depth estimation, and classification. We then use a large language model to paraphrase prompt templates that convey the specific tasks to be conducted on each image, and through this process, we create a multi-modal and multi-task training dataset comprising input and output images along with annotated instructions. Following the InstructPix2Pix architecture, we apply instruction-tuning to a text-to-image diffusion model using our constructed dataset, steering its functionality from a generative model to an instruction-guided multi-task vision learner. Experiments demonstrate that our model, dubbed InstructCV, performs competitively compared to other generalist and task-specific vision models. Moreover, it exhibits compelling generalization capabilities to unseen data, categories, and user instructions.
An Introduction to Vision-Language Modeling
Following the recent popularity of Large Language Models (LLMs), several attempts have been made to extend them to the visual domain. From having a visual assistant that could guide us through unfamiliar environments to generative models that produce images using only a high-level text description, the vision-language model (VLM) applications will significantly impact our relationship with technology. However, there are many challenges that need to be addressed to improve the reliability of those models. While language is discrete, vision evolves in a much higher dimensional space in which concepts cannot always be easily discretized. To better understand the mechanics behind mapping vision to language, we present this introduction to VLMs which we hope will help anyone who would like to enter the field. First, we introduce what VLMs are, how they work, and how to train them. Then, we present and discuss approaches to evaluate VLMs. Although this work primarily focuses on mapping images to language, we also discuss extending VLMs to videos.
Improving Vision-and-Language Navigation with Image-Text Pairs from the Web
Following a navigation instruction such as 'Walk down the stairs and stop at the brown sofa' requires embodied AI agents to ground scene elements referenced via language (e.g. 'stairs') to visual content in the environment (pixels corresponding to 'stairs'). We ask the following question -- can we leverage abundant 'disembodied' web-scraped vision-and-language corpora (e.g. Conceptual Captions) to learn visual groundings (what do 'stairs' look like?) that improve performance on a relatively data-starved embodied perception task (Vision-and-Language Navigation)? Specifically, we develop VLN-BERT, a visiolinguistic transformer-based model for scoring the compatibility between an instruction ('...stop at the brown sofa') and a sequence of panoramic RGB images captured by the agent. We demonstrate that pretraining VLN-BERT on image-text pairs from the web before fine-tuning on embodied path-instruction data significantly improves performance on VLN -- outperforming the prior state-of-the-art in the fully-observed setting by 4 absolute percentage points on success rate. Ablations of our pretraining curriculum show each stage to be impactful -- with their combination resulting in further positive synergistic effects.
Learning the Visualness of Text Using Large Vision-Language Models
Visual text evokes an image in a person's mind, while non-visual text fails to do so. A method to automatically detect visualness in text will unlock the ability to augment text with relevant images, as neural text-to-image generation and retrieval models operate on the implicit assumption that the input text is visual in nature. We curate a dataset of 3,620 English sentences and their visualness scores provided by multiple human annotators. Additionally, we use documents that contain text and visual assets to create a distantly supervised corpus of document text and associated images. We also propose a fine-tuning strategy that adapts large vision-language models like CLIP that assume a one-to-one correspondence between text and image to the task of scoring text visualness from text input alone. Our strategy involves modifying the model's contrastive learning objective to map text identified as non-visual to a common NULL image while matching visual text to their corresponding images in the document. We evaluate the proposed approach on its ability to (i) classify visual and non-visual text accurately, and (ii) attend over words that are identified as visual in psycholinguistic studies. Empirical evaluation indicates that our approach performs better than several heuristics and baseline models for the proposed task. Furthermore, to highlight the importance of modeling the visualness of text, we conduct qualitative analyses of text-to-image generation systems like DALL-E.
Reason out Your Layout: Evoking the Layout Master from Large Language Models for Text-to-Image Synthesis
Recent advancements in text-to-image (T2I) generative models have shown remarkable capabilities in producing diverse and imaginative visuals based on text prompts. Despite the advancement, these diffusion models sometimes struggle to translate the semantic content from the text into images entirely. While conditioning on the layout has shown to be effective in improving the compositional ability of T2I diffusion models, they typically require manual layout input. In this work, we introduce a novel approach to improving T2I diffusion models using Large Language Models (LLMs) as layout generators. Our method leverages the Chain-of-Thought prompting of LLMs to interpret text and generate spatially reasonable object layouts. The generated layout is then used to enhance the generated images' composition and spatial accuracy. Moreover, we propose an efficient adapter based on a cross-attention mechanism, which explicitly integrates the layout information into the stable diffusion models. Our experiments demonstrate significant improvements in image quality and layout accuracy, showcasing the potential of LLMs in augmenting generative image models.
Do LLMs Work on Charts? Designing Few-Shot Prompts for Chart Question Answering and Summarization
A number of tasks have been proposed recently to facilitate easy access to charts such as chart QA and summarization. The dominant paradigm to solve these tasks has been to fine-tune a pretrained model on the task data. However, this approach is not only expensive but also not generalizable to unseen tasks. On the other hand, large language models (LLMs) have shown impressive generalization capabilities to unseen tasks with zero- or few-shot prompting. However, their application to chart-related tasks is not trivial as these tasks typically involve considering not only the underlying data but also the visual features in the chart image. We propose PromptChart, a multimodal few-shot prompting framework with LLMs for chart-related applications. By analyzing the tasks carefully, we have come up with a set of prompting guidelines for each task to elicit the best few-shot performance from LLMs. We further propose a strategy to inject visual information into the prompts. Our experiments on three different chart-related information consumption tasks show that with properly designed prompts LLMs can excel on the benchmarks, achieving state-of-the-art.
OpenVid-1M: A Large-Scale High-Quality Dataset for Text-to-video Generation
Text-to-video (T2V) generation has recently garnered significant attention thanks to the large multi-modality model Sora. However, T2V generation still faces two important challenges: 1) Lacking a precise open sourced high-quality dataset. The previous popular video datasets, e.g. WebVid-10M and Panda-70M, are either with low quality or too large for most research institutions. Therefore, it is challenging but crucial to collect a precise high-quality text-video pairs for T2V generation. 2) Ignoring to fully utilize textual information. Recent T2V methods have focused on vision transformers, using a simple cross attention module for video generation, which falls short of thoroughly extracting semantic information from text prompt. To address these issues, we introduce OpenVid-1M, a precise high-quality dataset with expressive captions. This open-scenario dataset contains over 1 million text-video pairs, facilitating research on T2V generation. Furthermore, we curate 433K 1080p videos from OpenVid-1M to create OpenVidHD-0.4M, advancing high-definition video generation. Additionally, we propose a novel Multi-modal Video Diffusion Transformer (MVDiT) capable of mining both structure information from visual tokens and semantic information from text tokens. Extensive experiments and ablation studies verify the superiority of OpenVid-1M over previous datasets and the effectiveness of our MVDiT.
VIALM: A Survey and Benchmark of Visually Impaired Assistance with Large Models
Visually Impaired Assistance (VIA) aims to automatically help the visually impaired (VI) handle daily activities. The advancement of VIA primarily depends on developments in Computer Vision (CV) and Natural Language Processing (NLP), both of which exhibit cutting-edge paradigms with large models (LMs). Furthermore, LMs have shown exceptional multimodal abilities to tackle challenging physically-grounded tasks such as embodied robots. To investigate the potential and limitations of state-of-the-art (SOTA) LMs' capabilities in VIA applications, we present an extensive study for the task of VIA with LMs (VIALM). In this task, given an image illustrating the physical environments and a linguistic request from a VI user, VIALM aims to output step-by-step guidance to assist the VI user in fulfilling the request grounded in the environment. The study consists of a survey reviewing recent LM research and benchmark experiments examining selected LMs' capabilities in VIA. The results indicate that while LMs can potentially benefit VIA, their output cannot be well environment-grounded (i.e., 25.7% GPT-4's responses) and lacks fine-grained guidance (i.e., 32.1% GPT-4's responses).
Making Large Multimodal Models Understand Arbitrary Visual Prompts
While existing large vision-language multimodal models focus on whole image understanding, there is a prominent gap in achieving region-specific comprehension. Current approaches that use textual coordinates or spatial encodings often fail to provide a user-friendly interface for visual prompting. To address this challenge, we introduce a novel multimodal model capable of decoding arbitrary visual prompts. This allows users to intuitively mark images and interact with the model using natural cues like a "red bounding box" or "pointed arrow". Our simple design directly overlays visual markers onto the RGB image, eliminating the need for complex region encodings, yet achieves state-of-the-art performance on region-understanding tasks like Visual7W, PointQA, and Visual Commonsense Reasoning benchmark. Furthermore, we present ViP-Bench, a comprehensive benchmark to assess the capability of models in understanding visual prompts across multiple dimensions, enabling future research in this domain. Code, data, and model are publicly available.
Multi-modal preference alignment remedies regression of visual instruction tuning on language model
In production, multi-modal large language models (MLLMs) are expected to support multi-turn queries of interchanging image and text modalities. However, the current MLLMs trained with visual-question-answering (VQA) datasets could suffer from degradation, as VQA datasets lack the diversity and complexity of the original text instruction datasets which the underlying language model had been trained with. To address this challenging degradation, we first collect a lightweight (6k entries) VQA preference dataset where answers were annotated by Gemini for 5 quality metrics in a granular fashion, and investigate standard Supervised Fine-tuning, rejection sampling, Direct Preference Optimization (DPO), and SteerLM. Our findings indicate that the with DPO we are able to surpass instruction-following capabilities of the language model, achieving a 6.73 score on MT-Bench, compared to Vicuna's 6.57 and LLaVA's 5.99 despite small data scale. This enhancement in textual instruction proficiency correlates with boosted visual instruction performance (+4.9\% on MM-Vet, +6\% on LLaVA-Bench), with minimal alignment tax on visual knowledge benchmarks compared to previous RLHF approach. In conclusion, we propose a distillation-based multi-modal alignment model with fine-grained annotations on a small dataset that reconciles the textual and visual performance of MLLMs, restoring and boosting language capability after visual instruction tuning.
Evaluating GPT-4's Vision Capabilities on Brazilian University Admission Exams
Recent advancements in language models have showcased human-comparable performance in academic entrance exams. However, existing studies often overlook questions that require the integration of visual comprehension, thus compromising the full spectrum and complexity inherent in real-world scenarios. To address this gap, we present a comprehensive framework to evaluate language models on entrance exams, which incorporates both textual and visual elements. We evaluate the two most recent editions of Exame Nacional do Ensino M\'edio (ENEM), the main standardized entrance examination adopted by Brazilian universities. Our study not only reaffirms the capabilities of GPT-4 as the state of the art for handling complex multidisciplinary questions, but also pioneers in offering a realistic assessment of multimodal language models on Portuguese examinations. One of the highlights is that text captions transcribing visual content outperform the direct use of images, suggesting that the vision model has room for improvement. Yet, despite improvements afforded by images or captions, mathematical questions remain a challenge for these state-of-the-art models. The code and data used on experiments are available at https://github.com/piresramon/gpt-4-enem.
Align, Reason and Learn: Enhancing Medical Vision-and-Language Pre-training with Knowledge
Medical vision-and-language pre-training (Med-VLP) has received considerable attention owing to its applicability to extracting generic vision-and-language representations from medical images and texts. Most existing methods mainly contain three elements: uni-modal encoders (i.e., a vision encoder and a language encoder), a multi-modal fusion module, and pretext tasks, with few studies considering the importance of medical domain expert knowledge and explicitly exploiting such knowledge to facilitate Med-VLP. Although there exist knowledge-enhanced vision-and-language pre-training (VLP) methods in the general domain, most require off-the-shelf toolkits (e.g., object detectors and scene graph parsers), which are unavailable in the medical domain. In this paper, we propose a systematic and effective approach to enhance Med-VLP by structured medical knowledge from three perspectives. First, considering knowledge can be regarded as the intermediate medium between vision and language, we align the representations of the vision encoder and the language encoder through knowledge. Second, we inject knowledge into the multi-modal fusion model to enable the model to perform reasoning using knowledge as the supplementation of the input image and text. Third, we guide the model to put emphasis on the most critical information in images and texts by designing knowledge-induced pretext tasks. To perform a comprehensive evaluation and facilitate further research, we construct a medical vision-and-language benchmark including three tasks. Experimental results illustrate the effectiveness of our approach, where state-of-the-art performance is achieved on all downstream tasks. Further analyses explore the effects of different components of our approach and various settings of pre-training.
A Taxonomy of Prompt Modifiers for Text-To-Image Generation
Text-to-image generation has seen an explosion of interest since 2021. Today, beautiful and intriguing digital images and artworks can be synthesized from textual inputs ("prompts") with deep generative models. Online communities around text-to-image generation and AI generated art have quickly emerged. This paper identifies six types of prompt modifiers used by practitioners in the online community based on a 3-month ethnographic study. The novel taxonomy of prompt modifiers provides researchers a conceptual starting point for investigating the practice of text-to-image generation, but may also help practitioners of AI generated art improve their images. We further outline how prompt modifiers are applied in the practice of "prompt engineering." We discuss research opportunities of this novel creative practice in the field of Human-Computer Interaction (HCI). The paper concludes with a discussion of broader implications of prompt engineering from the perspective of Human-AI Interaction (HAI) in future applications beyond the use case of text-to-image generation and AI generated art.
MM-REACT: Prompting ChatGPT for Multimodal Reasoning and Action
We propose MM-REACT, a system paradigm that integrates ChatGPT with a pool of vision experts to achieve multimodal reasoning and action. In this paper, we define and explore a comprehensive list of advanced vision tasks that are intriguing to solve, but may exceed the capabilities of existing vision and vision-language models. To achieve such advanced visual intelligence, MM-REACT introduces a textual prompt design that can represent text descriptions, textualized spatial coordinates, and aligned file names for dense visual signals such as images and videos. MM-REACT's prompt design allows language models to accept, associate, and process multimodal information, thereby facilitating the synergetic combination of ChatGPT and various vision experts. Zero-shot experiments demonstrate MM-REACT's effectiveness in addressing the specified capabilities of interests and its wide application in different scenarios that require advanced visual understanding. Furthermore, we discuss and compare MM-REACT's system paradigm with an alternative approach that extends language models for multimodal scenarios through joint finetuning. Code, demo, video, and visualization are available at https://multimodal-react.github.io/
Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
To reproduce the success of text-to-image (T2I) generation, recent works in text-to-video (T2V) generation employ large-scale text-video dataset for fine-tuning. However, such paradigm is computationally expensive. Humans have the amazing ability to learn new visual concepts from just one single exemplar. We hereby study a new T2V generation problemx2014One-Shot Video Generation, where only a single text-video pair is presented for training an open-domain T2V generator. Intuitively, we propose to adapt the T2I diffusion model pretrained on massive image data for T2V generation. We make two key observations: 1) T2I models are able to generate images that align well with the verb terms; 2) extending T2I models to generate multiple images concurrently exhibits surprisingly good content consistency. To further learn continuous motion, we propose Tune-A-Video with a tailored Sparse-Causal Attention, which generates videos from text prompts via an efficient one-shot tuning of pretrained T2I diffusion models. Tune-A-Video is capable of producing temporally-coherent videos over various applications such as change of subject or background, attribute editing, style transfer, demonstrating the versatility and effectiveness of our method.
The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision)
Large multimodal models (LMMs) extend large language models (LLMs) with multi-sensory skills, such as visual understanding, to achieve stronger generic intelligence. In this paper, we analyze the latest model, GPT-4V(ision), to deepen the understanding of LMMs. The analysis focuses on the intriguing tasks that GPT-4V can perform, containing test samples to probe the quality and genericity of GPT-4V's capabilities, its supported inputs and working modes, and the effective ways to prompt the model. In our approach to exploring GPT-4V, we curate and organize a collection of carefully designed qualitative samples spanning a variety of domains and tasks. Observations from these samples demonstrate that GPT-4V's unprecedented ability in processing arbitrarily interleaved multimodal inputs and the genericity of its capabilities together make GPT-4V a powerful multimodal generalist system. Furthermore, GPT-4V's unique capability of understanding visual markers drawn on input images can give rise to new human-computer interaction methods such as visual referring prompting. We conclude the report with in-depth discussions on the emerging application scenarios and the future research directions for GPT-4V-based systems. We hope that this preliminary exploration will inspire future research on the next-generation multimodal task formulation, new ways to exploit and enhance LMMs to solve real-world problems, and gaining better understanding of multimodal foundation models.
Attention Prompting on Image for Large Vision-Language Models
Compared with Large Language Models (LLMs), Large Vision-Language Models (LVLMs) can also accept images as input, thus showcasing more interesting emergent capabilities and demonstrating impressive performance on various vision-language tasks. Motivated by text prompting in LLMs, visual prompting has been explored to enhance LVLMs' capabilities of perceiving visual information. However, previous visual prompting techniques solely process visual inputs without considering text queries, limiting the models' ability to follow text instructions to complete tasks. To fill this gap, in this work, we propose a new prompting technique named Attention Prompting on Image, which just simply overlays a text-query-guided attention heatmap on the original input image and effectively enhances LVLM on various tasks. Specifically, we generate an attention heatmap for the input image dependent on the text query with an auxiliary model like CLIP. Then the heatmap simply multiplies the pixel values of the original image to obtain the actual input image for the LVLM. Extensive experiments on various vison-language benchmarks verify the effectiveness of our technique. For example, Attention Prompting on Image improves LLaVA-1.5 by 3.8% and 2.9% on MM-Vet and LLaVA-Wild benchmarks, respectively.
A Survey on Hallucination in Large Vision-Language Models
Recent development of Large Vision-Language Models (LVLMs) has attracted growing attention within the AI landscape for its practical implementation potential. However, ``hallucination'', or more specifically, the misalignment between factual visual content and corresponding textual generation, poses a significant challenge of utilizing LVLMs. In this comprehensive survey, we dissect LVLM-related hallucinations in an attempt to establish an overview and facilitate future mitigation. Our scrutiny starts with a clarification of the concept of hallucinations in LVLMs, presenting a variety of hallucination symptoms and highlighting the unique challenges inherent in LVLM hallucinations. Subsequently, we outline the benchmarks and methodologies tailored specifically for evaluating hallucinations unique to LVLMs. Additionally, we delve into an investigation of the root causes of these hallucinations, encompassing insights from the training data and model components. We also critically review existing methods for mitigating hallucinations. The open questions and future directions pertaining to hallucinations within LVLMs are discussed to conclude this survey.
LLM-Assisted Visual Analytics: Opportunities and Challenges
We explore the integration of large language models (LLMs) into visual analytics (VA) systems to transform their capabilities through intuitive natural language interactions. We survey current research directions in this emerging field, examining how LLMs are integrated into data management, language interaction, visualisation generation, and language generation processes. We highlight the new possibilities that LLMs bring to VA, especially how they can change VA processes beyond the usual use cases. We especially highlight building new visualisation-language models, allowing access of a breadth of domain knowledge, multimodal interaction, and opportunities with guidance. Finally, we carefully consider the prominent challenges of using current LLMs in VA tasks. Our discussions in this paper aim to guide future researchers working on LLM-assisted VA systems and help them navigate common obstacles when developing these systems.
VIM: Probing Multimodal Large Language Models for Visual Embedded Instruction Following
We introduce VISUAL EMBEDDED INSTRUCTION (VIM), a new framework designed to evaluate the visual instruction following capability of Multimodal Large Language Models (MLLMs). As illustrated in Figure 2, VIM challenges the MLLMs by embedding the instructions into the visual scenes, demanding strong visual interpretative skills for instruction following. We adapt VIM to various benchmarks, including VQAv2, MME, MM-Vet, and RefCOCO series, compose a VIM bench, and probe diverse MLLMs across three distinct in-context learning settings: Zero Shot, One Shot, and Pair Shot. We observe that there is a significant performance disparity between the open-source MLLMs and GPT-4V, implying that their proficiency in visual instruction comprehension is not up to par. Our results highlight a promising direction for the enhancement of MLLMs capabilities on instruction following. We aim VIM to serve as a useful norm for advancing the state of the art and driving further progress in the field.
MM-VID: Advancing Video Understanding with GPT-4V(ision)
We present MM-VID, an integrated system that harnesses the capabilities of GPT-4V, combined with specialized tools in vision, audio, and speech, to facilitate advanced video understanding. MM-VID is designed to address the challenges posed by long-form videos and intricate tasks such as reasoning within hour-long content and grasping storylines spanning multiple episodes. MM-VID uses a video-to-script generation with GPT-4V to transcribe multimodal elements into a long textual script. The generated script details character movements, actions, expressions, and dialogues, paving the way for large language models (LLMs) to achieve video understanding. This enables advanced capabilities, including audio description, character identification, and multimodal high-level comprehension. Experimental results demonstrate the effectiveness of MM-VID in handling distinct video genres with various video lengths. Additionally, we showcase its potential when applied to interactive environments, such as video games and graphic user interfaces.
Accuracy of a Vision-Language Model on Challenging Medical Cases
Background: General-purpose large language models that utilize both text and images have not been evaluated on a diverse array of challenging medical cases. Methods: Using 934 cases from the NEJM Image Challenge published between 2005 and 2023, we evaluated the accuracy of the recently released Generative Pre-trained Transformer 4 with Vision model (GPT-4V) compared to human respondents overall and stratified by question difficulty, image type, and skin tone. We further conducted a physician evaluation of GPT-4V on 69 NEJM clinicopathological conferences (CPCs). Analyses were conducted for models utilizing text alone, images alone, and both text and images. Results: GPT-4V achieved an overall accuracy of 61% (95% CI, 58 to 64%) compared to 49% (95% CI, 49 to 50%) for humans. GPT-4V outperformed humans at all levels of difficulty and disagreement, skin tones, and image types; the exception was radiographic images, where performance was equivalent between GPT-4V and human respondents. Longer, more informative captions were associated with improved performance for GPT-4V but similar performance for human respondents. GPT-4V included the correct diagnosis in its differential for 80% (95% CI, 68 to 88%) of CPCs when using text alone, compared to 58% (95% CI, 45 to 70%) of CPCs when using both images and text. Conclusions: GPT-4V outperformed human respondents on challenging medical cases and was able to synthesize information from both images and text, but performance deteriorated when images were added to highly informative text. Overall, our results suggest that multimodal AI models may be useful in medical diagnostic reasoning but that their accuracy may depend heavily on context.
InTraGen: Trajectory-controlled Video Generation for Object Interactions
Advances in video generation have significantly improved the realism and quality of created scenes. This has fueled interest in developing intuitive tools that let users leverage video generation as world simulators. Text-to-video (T2V) generation is one such approach, enabling video creation from text descriptions only. Yet, due to the inherent ambiguity in texts and the limited temporal information offered by text prompts, researchers have explored additional control signals like trajectory-guided systems, for more accurate T2V generation. Nonetheless, methods to evaluate whether T2V models can generate realistic interactions between multiple objects are lacking. We introduce InTraGen, a pipeline for improved trajectory-based generation of object interaction scenarios. We propose 4 new datasets and a novel trajectory quality metric to evaluate the performance of the proposed InTraGen. To achieve object interaction, we introduce a multi-modal interaction encoding pipeline with an object ID injection mechanism that enriches object-environment interactions. Our results demonstrate improvements in both visual fidelity and quantitative performance. Code and datasets are available at https://github.com/insait-institute/InTraGen
Is Your Text-to-Image Model Robust to Caption Noise?
In text-to-image (T2I) generation, a prevalent training technique involves utilizing Vision Language Models (VLMs) for image re-captioning. Even though VLMs are known to exhibit hallucination, generating descriptive content that deviates from the visual reality, the ramifications of such caption hallucinations on T2I generation performance remain under-explored. Through our empirical investigation, we first establish a comprehensive dataset comprising VLM-generated captions, and then systematically analyze how caption hallucination influences generation outcomes. Our findings reveal that (1) the disparities in caption quality persistently impact model outputs during fine-tuning. (2) VLMs confidence scores serve as reliable indicators for detecting and characterizing noise-related patterns in the data distribution. (3) even subtle variations in caption fidelity have significant effects on the quality of learned representations. These findings collectively emphasize the profound impact of caption quality on model performance and highlight the need for more sophisticated robust training algorithm in T2I. In response to these observations, we propose a approach leveraging VLM confidence score to mitigate caption noise, thereby enhancing the robustness of T2I models against hallucination in caption.
Constructive Apraxia: An Unexpected Limit of Instructible Vision-Language Models and Analog for Human Cognitive Disorders
This study reveals an unexpected parallel between instructible vision-language models (VLMs) and human cognitive disorders, specifically constructive apraxia. We tested 25 state-of-the-art VLMs, including GPT-4 Vision, DALL-E 3, and Midjourney v5, on their ability to generate images of the Ponzo illusion, a task that requires basic spatial reasoning and is often used in clinical assessments of constructive apraxia. Remarkably, 24 out of 25 models failed to correctly render two horizontal lines against a perspective background, mirroring the deficits seen in patients with parietal lobe damage. The models consistently misinterpreted spatial instructions, producing tilted or misaligned lines that followed the perspective of the background rather than remaining horizontal. This behavior is strikingly similar to how apraxia patients struggle to copy or construct simple figures despite intact visual perception and motor skills. Our findings suggest that current VLMs, despite their advanced capabilities in other domains, lack fundamental spatial reasoning abilities akin to those impaired in constructive apraxia. This limitation in AI systems provides a novel computational model for studying spatial cognition deficits and highlights a critical area for improvement in VLM architecture and training methodologies.
SmartControl: Enhancing ControlNet for Handling Rough Visual Conditions
Human visual imagination usually begins with analogies or rough sketches. For example, given an image with a girl playing guitar before a building, one may analogously imagine how it seems like if Iron Man playing guitar before Pyramid in Egypt. Nonetheless, visual condition may not be precisely aligned with the imaginary result indicated by text prompt, and existing layout-controllable text-to-image (T2I) generation models is prone to producing degraded generated results with obvious artifacts. To address this issue, we present a novel T2I generation method dubbed SmartControl, which is designed to modify the rough visual conditions for adapting to text prompt. The key idea of our SmartControl is to relax the visual condition on the areas that are conflicted with text prompts. In specific, a Control Scale Predictor (CSP) is designed to identify the conflict regions and predict the local control scales, while a dataset with text prompts and rough visual conditions is constructed for training CSP. It is worth noting that, even with a limited number (e.g., 1,000~2,000) of training samples, our SmartControl can generalize well to unseen objects. Extensive experiments on four typical visual condition types clearly show the efficacy of our SmartControl against state-of-the-arts. Source code, pre-trained models, and datasets are available at https://github.com/liuxiaoyu1104/SmartControl.
IMAGINE-E: Image Generation Intelligence Evaluation of State-of-the-art Text-to-Image Models
With the rapid development of diffusion models, text-to-image(T2I) models have made significant progress, showcasing impressive abilities in prompt following and image generation. Recently launched models such as FLUX.1 and Ideogram2.0, along with others like Dall-E3 and Stable Diffusion 3, have demonstrated exceptional performance across various complex tasks, raising questions about whether T2I models are moving towards general-purpose applicability. Beyond traditional image generation, these models exhibit capabilities across a range of fields, including controllable generation, image editing, video, audio, 3D, and motion generation, as well as computer vision tasks like semantic segmentation and depth estimation. However, current evaluation frameworks are insufficient to comprehensively assess these models' performance across expanding domains. To thoroughly evaluate these models, we developed the IMAGINE-E and tested six prominent models: FLUX.1, Ideogram2.0, Midjourney, Dall-E3, Stable Diffusion 3, and Jimeng. Our evaluation is divided into five key domains: structured output generation, realism, and physical consistency, specific domain generation, challenging scenario generation, and multi-style creation tasks. This comprehensive assessment highlights each model's strengths and limitations, particularly the outstanding performance of FLUX.1 and Ideogram2.0 in structured and specific domain tasks, underscoring the expanding applications and potential of T2I models as foundational AI tools. This study provides valuable insights into the current state and future trajectory of T2I models as they evolve towards general-purpose usability. Evaluation scripts will be released at https://github.com/jylei16/Imagine-e.
MSTS: A Multimodal Safety Test Suite for Vision-Language Models
Vision-language models (VLMs), which process image and text inputs, are increasingly integrated into chat assistants and other consumer AI applications. Without proper safeguards, however, VLMs may give harmful advice (e.g. how to self-harm) or encourage unsafe behaviours (e.g. to consume drugs). Despite these clear hazards, little work so far has evaluated VLM safety and the novel risks created by multimodal inputs. To address this gap, we introduce MSTS, a Multimodal Safety Test Suite for VLMs. MSTS comprises 400 test prompts across 40 fine-grained hazard categories. Each test prompt consists of a text and an image that only in combination reveal their full unsafe meaning. With MSTS, we find clear safety issues in several open VLMs. We also find some VLMs to be safe by accident, meaning that they are safe because they fail to understand even simple test prompts. We translate MSTS into ten languages, showing non-English prompts to increase the rate of unsafe model responses. We also show models to be safer when tested with text only rather than multimodal prompts. Finally, we explore the automation of VLM safety assessments, finding even the best safety classifiers to be lacking.
Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models
ChatGPT is attracting a cross-field interest as it provides a language interface with remarkable conversational competency and reasoning capabilities across many domains. However, since ChatGPT is trained with languages, it is currently not capable of processing or generating images from the visual world. At the same time, Visual Foundation Models, such as Visual Transformers or Stable Diffusion, although showing great visual understanding and generation capabilities, they are only experts on specific tasks with one-round fixed inputs and outputs. To this end, We build a system called Visual ChatGPT, incorporating different Visual Foundation Models, to enable the user to interact with ChatGPT by 1) sending and receiving not only languages but also images 2) providing complex visual questions or visual editing instructions that require the collaboration of multiple AI models with multi-steps. 3) providing feedback and asking for corrected results. We design a series of prompts to inject the visual model information into ChatGPT, considering models of multiple inputs/outputs and models that require visual feedback. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models. Our system is publicly available at https://github.com/microsoft/visual-chatgpt.
AnyControl: Create Your Artwork with Versatile Control on Text-to-Image Generation
The field of text-to-image (T2I) generation has made significant progress in recent years, largely driven by advancements in diffusion models. Linguistic control enables effective content creation, but struggles with fine-grained control over image generation. This challenge has been explored, to a great extent, by incorporating additional user-supplied spatial conditions, such as depth maps and edge maps, into pre-trained T2I models through extra encoding. However, multi-control image synthesis still faces several challenges. Specifically, current approaches are limited in handling free combinations of diverse input control signals, overlook the complex relationships among multiple spatial conditions, and often fail to maintain semantic alignment with provided textual prompts. This can lead to suboptimal user experiences. To address these challenges, we propose AnyControl, a multi-control image synthesis framework that supports arbitrary combinations of diverse control signals. AnyControl develops a novel Multi-Control Encoder that extracts a unified multi-modal embedding to guide the generation process. This approach enables a holistic understanding of user inputs, and produces high-quality, faithful results under versatile control signals, as demonstrated by extensive quantitative and qualitative evaluations. Our project page is available in https://any-control.github.io.
Visual Prompt Engineering for Medical Vision Language Models in Radiology
Medical image classification in radiology faces significant challenges, particularly in generalizing to unseen pathologies. In contrast, CLIP offers a promising solution by leveraging multimodal learning to improve zero-shot classification performance. However, in the medical domain, lesions can be small and might not be well represented in the embedding space. Therefore, in this paper, we explore the potential of visual prompt engineering to enhance the capabilities of Vision Language Models (VLMs) in radiology. Leveraging BiomedCLIP, trained on extensive biomedical image-text pairs, we investigate the impact of embedding visual markers directly within radiological images to guide the model's attention to critical regions. Our evaluation on the JSRT dataset, focusing on lung nodule malignancy classification, demonstrates that incorporating visual prompts x2013 such as arrows, circles, and contours x2013 significantly improves classification metrics including AUROC, AUPRC, F1 score, and accuracy. Moreover, the study provides attention maps, showcasing enhanced model interpretability and focus on clinically relevant areas. These findings underscore the efficacy of visual prompt engineering as a straightforward yet powerful approach to advance VLM performance in medical image analysis.
Unleashing Text-to-Image Diffusion Models for Visual Perception
Diffusion models (DMs) have become the new trend of generative models and have demonstrated a powerful ability of conditional synthesis. Among those, text-to-image diffusion models pre-trained on large-scale image-text pairs are highly controllable by customizable prompts. Unlike the unconditional generative models that focus on low-level attributes and details, text-to-image diffusion models contain more high-level knowledge thanks to the vision-language pre-training. In this paper, we propose VPD (Visual Perception with a pre-trained Diffusion model), a new framework that exploits the semantic information of a pre-trained text-to-image diffusion model in visual perception tasks. Instead of using the pre-trained denoising autoencoder in a diffusion-based pipeline, we simply use it as a backbone and aim to study how to take full advantage of the learned knowledge. Specifically, we prompt the denoising decoder with proper textual inputs and refine the text features with an adapter, leading to a better alignment to the pre-trained stage and making the visual contents interact with the text prompts. We also propose to utilize the cross-attention maps between the visual features and the text features to provide explicit guidance. Compared with other pre-training methods, we show that vision-language pre-trained diffusion models can be faster adapted to downstream visual perception tasks using the proposed VPD. Extensive experiments on semantic segmentation, referring image segmentation and depth estimation demonstrates the effectiveness of our method. Notably, VPD attains 0.254 RMSE on NYUv2 depth estimation and 73.3% oIoU on RefCOCO-val referring image segmentation, establishing new records on these two benchmarks. Code is available at https://github.com/wl-zhao/VPD
FancyVideo: Towards Dynamic and Consistent Video Generation via Cross-frame Textual Guidance
Synthesizing motion-rich and temporally consistent videos remains a challenge in artificial intelligence, especially when dealing with extended durations. Existing text-to-video (T2V) models commonly employ spatial cross-attention for text control, equivalently guiding different frame generations without frame-specific textual guidance. Thus, the model's capacity to comprehend the temporal logic conveyed in prompts and generate videos with coherent motion is restricted. To tackle this limitation, we introduce FancyVideo, an innovative video generator that improves the existing text-control mechanism with the well-designed Cross-frame Textual Guidance Module (CTGM). Specifically, CTGM incorporates the Temporal Information Injector (TII), Temporal Affinity Refiner (TAR), and Temporal Feature Booster (TFB) at the beginning, middle, and end of cross-attention, respectively, to achieve frame-specific textual guidance. Firstly, TII injects frame-specific information from latent features into text conditions, thereby obtaining cross-frame textual conditions. Then, TAR refines the correlation matrix between cross-frame textual conditions and latent features along the time dimension. Lastly, TFB boosts the temporal consistency of latent features. Extensive experiments comprising both quantitative and qualitative evaluations demonstrate the effectiveness of FancyVideo. Our approach achieves state-of-the-art T2V generation results on the EvalCrafter benchmark and facilitates the synthesis of dynamic and consistent videos. The video show results can be available at https://fancyvideo.github.io/, and we will make our code and model weights publicly available.
AnyTrans: Translate AnyText in the Image with Large Scale Models
This paper introduces AnyTrans, an all-encompassing framework for the task-Translate AnyText in the Image (TATI), which includes multilingual text translation and text fusion within images. Our framework leverages the strengths of large-scale models, such as Large Language Models (LLMs) and text-guided diffusion models, to incorporate contextual cues from both textual and visual elements during translation. The few-shot learning capability of LLMs allows for the translation of fragmented texts by considering the overall context. Meanwhile, the advanced inpainting and editing abilities of diffusion models make it possible to fuse translated text seamlessly into the original image while preserving its style and realism. Additionally, our framework can be constructed entirely using open-source models and requires no training, making it highly accessible and easily expandable. To encourage advancement in the TATI task, we have meticulously compiled a test dataset called MTIT6, which consists of multilingual text image translation data from six language pairs.
V*: Guided Visual Search as a Core Mechanism in Multimodal LLMs
When we look around and perform complex tasks, how we see and selectively process what we see is crucial. However, the lack of this visual search mechanism in current multimodal LLMs (MLLMs) hinders their ability to focus on important visual details, especially when handling high-resolution and visually crowded images. To address this, we introduce V*, an LLM-guided visual search mechanism that employs the world knowledge in LLMs for efficient visual querying. When combined with an MLLM, this mechanism enhances collaborative reasoning, contextual understanding, and precise targeting of specific visual elements. This integration results in a new MLLM meta-architecture, named Show, sEArch, and TelL (SEAL). We further create V*Bench, a benchmark specifically designed to evaluate MLLMs in their ability to process high-resolution images and focus on visual details. Our study highlights the necessity of incorporating visual search capabilities into multimodal systems. The code is available https://github.com/penghao-wu/vstar.
WebVLN: Vision-and-Language Navigation on Websites
Vision-and-Language Navigation (VLN) task aims to enable AI agents to accurately understand and follow natural language instructions to navigate through real-world environments, ultimately reaching specific target locations. We recognise a promising opportunity to extend VLN to a comparable navigation task that holds substantial significance in our daily lives, albeit within the virtual realm: navigating websites on the Internet. This paper proposes a new task named Vision-and-Language Navigation on Websites (WebVLN), where we use question-based instructions to train an agent, emulating how users naturally browse websites. Unlike the existing VLN task that only pays attention to vision and instruction (language), the WebVLN agent further considers underlying web-specific content like HTML, which could not be seen on the rendered web pages yet contains rich visual and textual information. Toward this goal, we contribute a dataset, WebVLN-v1, and introduce a novel approach called Website-aware VLN Network (WebVLN-Net), which is built upon the foundation of state-of-the-art VLN techniques. Experimental results show that WebVLN-Net outperforms current VLN and web-related navigation methods. We believe that the introduction of the new WebVLN task and its dataset will establish a new dimension within the VLN domain and contribute to the broader vision-and-language research community. The code is available at: https://github.com/WebVLN/WebVLN.
AutoVP: An Automated Visual Prompting Framework and Benchmark
Visual prompting (VP) is an emerging parameter-efficient fine-tuning approach to adapting pre-trained vision models to solve various downstream image-classification tasks. However, there has hitherto been little systematic study of the design space of VP and no clear benchmark for evaluating its performance. To bridge this gap, we propose AutoVP, an end-to-end expandable framework for automating VP design choices, along with 12 downstream image-classification tasks that can serve as a holistic VP-performance benchmark. Our design space covers 1) the joint optimization of the prompts; 2) the selection of pre-trained models, including image classifiers and text-image encoders; and 3) model output mapping strategies, including nonparametric and trainable label mapping. Our extensive experimental results show that AutoVP outperforms the best-known current VP methods by a substantial margin, having up to 6.7% improvement in accuracy; and attains a maximum performance increase of 27.5% compared to linear-probing (LP) baseline. AutoVP thus makes a two-fold contribution: serving both as an efficient tool for hyperparameter tuning on VP design choices, and as a comprehensive benchmark that can reasonably be expected to accelerate VP's development. The source code is available at https://github.com/IBM/AutoVP.
Visio-Linguistic Brain Encoding
Enabling effective brain-computer interfaces requires understanding how the human brain encodes stimuli across modalities such as visual, language (or text), etc. Brain encoding aims at constructing fMRI brain activity given a stimulus. There exists a plethora of neural encoding models which study brain encoding for single mode stimuli: visual (pretrained CNNs) or text (pretrained language models). Few recent papers have also obtained separate visual and text representation models and performed late-fusion using simple heuristics. However, previous work has failed to explore: (a) the effectiveness of image Transformer models for encoding visual stimuli, and (b) co-attentive multi-modal modeling for visual and text reasoning. In this paper, we systematically explore the efficacy of image Transformers (ViT, DEiT, and BEiT) and multi-modal Transformers (VisualBERT, LXMERT, and CLIP) for brain encoding. Extensive experiments on two popular datasets, BOLD5000 and Pereira, provide the following insights. (1) To the best of our knowledge, we are the first to investigate the effectiveness of image and multi-modal Transformers for brain encoding. (2) We find that VisualBERT, a multi-modal Transformer, significantly outperforms previously proposed single-mode CNNs, image Transformers as well as other previously proposed multi-modal models, thereby establishing new state-of-the-art. The supremacy of visio-linguistic models raises the question of whether the responses elicited in the visual regions are affected implicitly by linguistic processing even when passively viewing images. Future fMRI tasks can verify this computational insight in an appropriate experimental setting.
Specialist vision-language models for clinical ophthalmology
Clinicians spend a significant amount of time reviewing medical images and transcribing their findings regarding patient diagnosis, referral and treatment in text form. Vision-language models (VLMs), which automatically interpret images and summarize their findings as text, have enormous potential to alleviate clinical workloads and increase patient access to high-quality medical care. While foundational models have stirred considerable interest in the medical community, it is unclear whether their general capabilities translate to real-world clinical utility. In this work, we show that foundation VLMs markedly underperform compared to practicing ophthalmologists on specialist tasks crucial to the care of patients with age-related macular degeneration (AMD). To address this, we initially identified the essential capabilities required for image-based clinical decision-making, and then developed a curriculum to selectively train VLMs in these skills. The resulting model, RetinaVLM, can be instructed to write reports that significantly outperform those written by leading foundation medical VLMs in disease staging (F1 score of 0.63 vs. 0.11) and patient referral (0.67 vs. 0.39), and approaches the diagnostic performance of junior ophthalmologists (who achieve 0.77 and 0.78 on the respective tasks). Furthermore, in a reader study involving two senior ophthalmologists with up to 32 years of experience, RetinaVLM's reports were found to be similarly correct (78.6% vs. 82.1%) and complete (both 78.6%) as reports written by junior ophthalmologists with up to 10 years of experience. These results demonstrate that our curriculum-based approach provides a blueprint for specializing generalist foundation medical VLMs to handle real-world clinical tasks.
Joint Embeddings for Graph Instruction Tuning
Large Language Models (LLMs) have achieved impressive performance in text understanding and have become an essential tool for building smart assistants. Originally focusing on text, they have been enhanced with multimodal capabilities in recent works that successfully built visual instruction following assistants. As far as the graph modality goes, however, no such assistants have yet been developed. Graph structures are complex in that they represent relation between different features and are permutation invariant. Moreover, representing them in purely textual form does not always lead to good LLM performance even for finetuned models. As a result, there is a need to develop a new method to integrate graphs in LLMs for general graph understanding. This work explores the integration of the graph modality in LLM for general graph instruction following tasks. It aims at producing a deep learning model that enhances an underlying LLM with graph embeddings and trains it to understand them and to produce, given an instruction, an answer grounded in the graph representation. The approach performs significantly better than a graph to text approach and remains consistent even for larger graphs.
Symmetrical Visual Contrastive Optimization: Aligning Vision-Language Models with Minimal Contrastive Images
Recent studies have shown that Large Vision-Language Models (VLMs) tend to neglect image content and over-rely on language-model priors, resulting in errors in visually grounded tasks and hallucinations. We hypothesize that this issue arises because existing VLMs are not explicitly trained to generate texts that are accurately grounded in fine-grained image details. To enhance visual feedback during VLM training, we propose S-VCO (Symmetrical Visual Contrastive Optimization), a novel finetuning objective that steers the model toward capturing important visual details and aligning them with corresponding text tokens. To further facilitate this detailed alignment, we introduce MVC, a paired image-text dataset built by automatically filtering and augmenting visual counterfactual data to challenge the model with hard contrastive cases involving Minimal Visual Contrasts. Experiments show that our method consistently improves VLM performance across diverse benchmarks covering various abilities and domains, achieving up to a 22% reduction in hallucinations, and significant gains in vision-centric and general tasks. Notably, these improvements become increasingly pronounced in benchmarks with higher visual dependency. In short, S-VCO offers a significant enhancement of VLM's visually-dependent task performance while retaining or even improving the model's general abilities. We opensource our code at https://s-vco.github.io/
Custom-Edit: Text-Guided Image Editing with Customized Diffusion Models
Text-to-image diffusion models can generate diverse, high-fidelity images based on user-provided text prompts. Recent research has extended these models to support text-guided image editing. While text guidance is an intuitive editing interface for users, it often fails to ensure the precise concept conveyed by users. To address this issue, we propose Custom-Edit, in which we (i) customize a diffusion model with a few reference images and then (ii) perform text-guided editing. Our key discovery is that customizing only language-relevant parameters with augmented prompts improves reference similarity significantly while maintaining source similarity. Moreover, we provide our recipe for each customization and editing process. We compare popular customization methods and validate our findings on two editing methods using various datasets.
Visual Style Prompting with Swapping Self-Attention
In the evolving domain of text-to-image generation, diffusion models have emerged as powerful tools in content creation. Despite their remarkable capability, existing models still face challenges in achieving controlled generation with a consistent style, requiring costly fine-tuning or often inadequately transferring the visual elements due to content leakage. To address these challenges, we propose a novel approach, \ours, to produce a diverse range of images while maintaining specific style elements and nuances. During the denoising process, we keep the query from original features while swapping the key and value with those from reference features in the late self-attention layers. This approach allows for the visual style prompting without any fine-tuning, ensuring that generated images maintain a faithful style. Through extensive evaluation across various styles and text prompts, our method demonstrates superiority over existing approaches, best reflecting the style of the references and ensuring that resulting images match the text prompts most accurately. Our project page is available https://curryjung.github.io/VisualStylePrompt/.
Bringing Characters to New Stories: Training-Free Theme-Specific Image Generation via Dynamic Visual Prompting
The stories and characters that captivate us as we grow up shape unique fantasy worlds, with images serving as the primary medium for visually experiencing these realms. Personalizing generative models through fine-tuning with theme-specific data has become a prevalent approach in text-to-image generation. However, unlike object customization, which focuses on learning specific objects, theme-specific generation encompasses diverse elements such as characters, scenes, and objects. Such diversity also introduces a key challenge: how to adaptively generate multi-character, multi-concept, and continuous theme-specific images (TSI). Moreover, fine-tuning approaches often come with significant computational overhead, time costs, and risks of overfitting. This paper explores a fundamental question: Can image generation models directly leverage images as contextual input, similarly to how large language models use text as context? To address this, we present T-Prompter, a novel training-free TSI method for generation. T-Prompter introduces visual prompting, a mechanism that integrates reference images into generative models, allowing users to seamlessly specify the target theme without requiring additional training. To further enhance this process, we propose a Dynamic Visual Prompting (DVP) mechanism, which iteratively optimizes visual prompts to improve the accuracy and quality of generated images. Our approach enables diverse applications, including consistent story generation, character design, realistic character generation, and style-guided image generation. Comparative evaluations against state-of-the-art personalization methods demonstrate that T-Prompter achieves significantly better results and excels in maintaining character identity preserving, style consistency and text alignment, offering a robust and flexible solution for theme-specific image generation.
Position-guided Text Prompt for Vision-Language Pre-training
Vision-Language Pre-Training (VLP) has shown promising capabilities to align image and text pairs, facilitating a broad variety of cross-modal learning tasks. However, we observe that VLP models often lack the visual grounding/localization capability which is critical for many downstream tasks such as visual reasoning. In this work, we propose a novel Position-guided Text Prompt (PTP) paradigm to enhance the visual grounding ability of cross-modal models trained with VLP. Specifically, in the VLP phase, PTP divides the image into Ntimes N blocks, and identifies the objects in each block through the widely used object detector in VLP. It then reformulates the visual grounding task into a fill-in-the-blank problem given a PTP by encouraging the model to predict the objects in the given blocks or regress the blocks of a given object, e.g. filling `P" or ``O" in aPTP ``The block P has a O". This mechanism improves the visual grounding capability of VLP models and thus helps them better handle various downstream tasks. By introducing PTP into several state-of-the-art VLP frameworks, we observe consistently significant improvements across representative cross-modal learning model architectures and several benchmarks, e.g. zero-shot Flickr30K Retrieval (+4.8 in average recall@1) for ViLT vilt baseline, and COCO Captioning (+5.3 in CIDEr) for SOTA BLIP blip baseline. Moreover, PTP achieves comparable results with object-detector based methods, and much faster inference speed since PTP discards its object detector for inference while the later cannot. Our code and pre-trained weight will be released at https://github.com/sail-sg/ptp.
Mini-DALLE3: Interactive Text to Image by Prompting Large Language Models
The revolution of artificial intelligence content generation has been rapidly accelerated with the booming text-to-image (T2I) diffusion models. Within just two years of development, it was unprecedentedly of high-quality, diversity, and creativity that the state-of-the-art models could generate. However, a prevalent limitation persists in the effective communication with these popular T2I models, such as Stable Diffusion, using natural language descriptions. This typically makes an engaging image hard to obtain without expertise in prompt engineering with complex word compositions, magic tags, and annotations. Inspired by the recently released DALLE3 - a T2I model directly built-in ChatGPT that talks human language, we revisit the existing T2I systems endeavoring to align human intent and introduce a new task - interactive text to image (iT2I), where people can interact with LLM for interleaved high-quality image generation/edit/refinement and question answering with stronger images and text correspondences using natural language. In addressing the iT2I problem, we present a simple approach that augments LLMs for iT2I with prompting techniques and off-the-shelf T2I models. We evaluate our approach for iT2I in a variety of common-used scenarios under different LLMs, e.g., ChatGPT, LLAMA, Baichuan, and InternLM. We demonstrate that our approach could be a convenient and low-cost way to introduce the iT2I ability for any existing LLMs and any text-to-image models without any training while bringing little degradation on LLMs' inherent capabilities in, e.g., question answering and code generation. We hope this work could draw broader attention and provide inspiration for boosting user experience in human-machine interactions alongside the image quality of the next-generation T2I systems.
Pretrained Language Models as Visual Planners for Human Assistance
In our pursuit of advancing multi-modal AI assistants capable of guiding users to achieve complex multi-step goals, we propose the task of "Visual Planning for Assistance (VPA)". Given a succinct natural language goal, e.g., "make a shelf", and a video of the user's progress so far, the aim of VPA is to devise a plan, i.e., a sequence of actions such as "sand shelf", "paint shelf", etc. to realize the specified goal. This requires assessing the user's progress from the (untrimmed) video, and relating it to the requirements of natural language goal, i.e., which actions to select and in what order? Consequently, this requires handling long video history and arbitrarily complex action dependencies. To address these challenges, we decompose VPA into video action segmentation and forecasting. Importantly, we experiment by formulating the forecasting step as a multi-modal sequence modeling problem, allowing us to leverage the strength of pre-trained LMs (as the sequence model). This novel approach, which we call Visual Language Model based Planner (VLaMP), outperforms baselines across a suite of metrics that gauge the quality of the generated plans. Furthermore, through comprehensive ablations, we also isolate the value of each component--language pre-training, visual observations, and goal information. We have open-sourced all the data, model checkpoints, and training code.
LLaVAR: Enhanced Visual Instruction Tuning for Text-Rich Image Understanding
Instruction tuning unlocks the superior capability of Large Language Models (LLM) to interact with humans. Furthermore, recent instruction-following datasets include images as visual inputs, collecting responses for image-based instructions. However, visual instruction-tuned models cannot comprehend textual details within images well. This work enhances the current visual instruction tuning pipeline with text-rich images (e.g., movie posters, book covers, etc.). Specifically, we first use publicly available OCR tools to collect results on 422K text-rich images from the LAION dataset. Moreover, we prompt text-only GPT-4 with recognized texts and image captions to generate 16K conversations, each containing question-answer pairs for text-rich images. By combining our collected data with previous multi-modal instruction-following data, our model, LLaVAR, substantially improves the LLaVA model's capability on text-based VQA datasets (up to 20% accuracy improvement) while achieving an accuracy of 91.42% on ScienceQA. The GPT-4-based instruction-following evaluation also demonstrates the improvement of our model on both natural images and text-rich images. Through qualitative analysis, LLaVAR shows promising interaction (e.g., reasoning, writing, and elaboration) skills with humans based on the latest real-world online content that combines text and images. We make our code/data/models publicly available at https://llavar.github.io/.
Visual Prompt Tuning
The current modus operandi in adapting pre-trained models involves updating all the backbone parameters, ie, full fine-tuning. This paper introduces Visual Prompt Tuning (VPT) as an efficient and effective alternative to full fine-tuning for large-scale Transformer models in vision. Taking inspiration from recent advances in efficiently tuning large language models, VPT introduces only a small amount (less than 1% of model parameters) of trainable parameters in the input space while keeping the model backbone frozen. Via extensive experiments on a wide variety of downstream recognition tasks, we show that VPT achieves significant performance gains compared to other parameter efficient tuning protocols. Most importantly, VPT even outperforms full fine-tuning in many cases across model capacities and training data scales, while reducing per-task storage cost.
Exploring the Zero-Shot Capabilities of Vision-Language Models for Improving Gaze Following
Contextual cues related to a person's pose and interactions with objects and other people in the scene can provide valuable information for gaze following. While existing methods have focused on dedicated cue extraction methods, in this work we investigate the zero-shot capabilities of Vision-Language Models (VLMs) for extracting a wide array of contextual cues to improve gaze following performance. We first evaluate various VLMs, prompting strategies, and in-context learning (ICL) techniques for zero-shot cue recognition performance. We then use these insights to extract contextual cues for gaze following, and investigate their impact when incorporated into a state of the art model for the task. Our analysis indicates that BLIP-2 is the overall top performing VLM and that ICL can improve performance. We also observe that VLMs are sensitive to the choice of the text prompt although ensembling over multiple text prompts can provide more robust performance. Additionally, we discover that using the entire image along with an ellipse drawn around the target person is the most effective strategy for visual prompting. For gaze following, incorporating the extracted cues results in better generalization performance, especially when considering a larger set of cues, highlighting the potential of this approach.
Towards Full Authorship with AI: Supporting Revision with AI-Generated Views
Large language models (LLMs) are shaping a new user interface (UI) paradigm in writing tools by enabling users to generate text through prompts. This paradigm shifts some creative control from the user to the system, thereby diminishing the user's authorship and autonomy in the writing process. To restore autonomy, we introduce Textfocals, a UI prototype designed to investigate a human-centered approach that emphasizes the user's role in writing. Textfocals supports the writing process by providing LLM-generated summaries, questions, and advice (i.e., LLM views) in a sidebar of a text editor, encouraging reflection and self-driven revision in writing without direct text generation. Textfocals' UI affordances, including contextually adaptive views and scaffolding for prompt selection and customization, offer a novel way to interact with LLMs where users maintain full authorship of their writing. A formative user study with Textfocals showed promising evidence that this approach might help users develop underdeveloped ideas, cater to the rhetorical audience, and clarify their writing. However, the study also showed interaction design challenges related to document navigation and scoping, prompt engineering, and context management. Our work highlights the breadth of the design space of writing support interfaces powered by generative AI that maintain authorship integrity.
Plug-and-Play Diffusion Features for Text-Driven Image-to-Image Translation
Large-scale text-to-image generative models have been a revolutionary breakthrough in the evolution of generative AI, allowing us to synthesize diverse images that convey highly complex visual concepts. However, a pivotal challenge in leveraging such models for real-world content creation tasks is providing users with control over the generated content. In this paper, we present a new framework that takes text-to-image synthesis to the realm of image-to-image translation -- given a guidance image and a target text prompt, our method harnesses the power of a pre-trained text-to-image diffusion model to generate a new image that complies with the target text, while preserving the semantic layout of the source image. Specifically, we observe and empirically demonstrate that fine-grained control over the generated structure can be achieved by manipulating spatial features and their self-attention inside the model. This results in a simple and effective approach, where features extracted from the guidance image are directly injected into the generation process of the target image, requiring no training or fine-tuning and applicable for both real or generated guidance images. We demonstrate high-quality results on versatile text-guided image translation tasks, including translating sketches, rough drawings and animations into realistic images, changing of the class and appearance of objects in a given image, and modifications of global qualities such as lighting and color.
Prompt4Vis: Prompting Large Language Models with Example Mining and Schema Filtering for Tabular Data Visualization
Data visualization (DV) systems are increasingly recognized for their profound capability to uncover insights from vast datasets, gaining attention across both industry and academia. Crafting data queries is an essential process within certain declarative visualization languages (DVLs, e.g., Vega-Lite, EChart.). The evolution of natural language processing (NLP) technologies has streamlined the use of natural language interfaces to visualize tabular data, offering a more accessible and intuitive user experience. However, current methods for converting natural language questions into data visualization queries, such as Seq2Vis, ncNet, and RGVisNet, despite utilizing complex neural network architectures, still fall short of expectations and have great room for improvement. Large language models (LLMs) such as ChatGPT and GPT-4, have established new benchmarks in a variety of NLP tasks, fundamentally altering the landscape of the field. Inspired by these advancements, we introduce a novel framework, Prompt4Vis, leveraging LLMs and in-context learning to enhance the performance of generating data visualization from natural language. Prompt4Vis comprises two key components: (1) a multi-objective example mining module, designed to find out the truly effective examples that strengthen the LLM's in-context learning capabilities for text-to-vis; (2) a schema filtering module, which is proposed to simplify the schema of the database. Extensive experiments through 5-fold cross-validation on the NVBench dataset demonstrate the superiority of Prompt4Vis, which notably surpasses the state-of-the-art (SOTA) RGVisNet by approximately 35.9% and 71.3% on dev and test sets, respectively. To the best of our knowledge, Prompt4Vis is the first work that introduces in-context learning into the text-to-vis for generating data visualization queries.
LMEye: An Interactive Perception Network for Large Language Models
Training a Large Visual Language Model (LVLM) from scratch, like GPT-4, is resource-intensive. Our paper presents a play-and-plug module for Large Language Models (LLMs), namely Interactive Perception Network (IPN), aiming to achieve a LVLM by incorporating the image understanding capability into LLMs. Previous methods incorporate visual information into LLMs with a simple visual mapping network, where the image feature is projected into the embedding space of LLMs via a linear layer. Such mapping network projects the image feature once yet does not consider the interaction between the image and the human input query. Hence, the obtained visual information with no connections with human intention may be inadequate for LLMs to make intention-following responses, which we term as static visual information. IPN addresses this issue by allowing the LLM to request the desired visual information aligned with various human instructions, which we term as the dynamic interaction between the LLM and visual information. Specifically, IPN consists of a simple visual mapping network to provide the basic perception of an image for LLMs. It also contains additional modules responsible for acquiring requests from LLMs, performing request-based visual information interaction, and transmitting the resulting interacted visual information to LLMs, respectively. In this way, LLMs act to understand the human query, deliver the corresponding request to the request-based visual information interaction module, and generate the response based on the interleaved multimodal information. We evaluate IPN through extensive experiments on multimodal question answering, reasoning, and so on, demonstrating that it significantly improves the zero-shot performance of LVLMs on various multimodal tasks compared to previous methods.
Generative AI Beyond LLMs: System Implications of Multi-Modal Generation
As the development of large-scale Generative AI models evolve beyond text (1D) generation to include image (2D) and video (3D) generation, processing spatial and temporal information presents unique challenges to quality, performance, and efficiency. We present the first work towards understanding this new system design space for multi-modal text-to-image (TTI) and text-to-video (TTV) generation models. Current model architecture designs are bifurcated into 2 categories: Diffusion- and Transformer-based models. Our systematic performance characterization on a suite of eight representative TTI/TTV models shows that after state-of-the-art optimization techniques such as Flash Attention are applied, Convolution accounts for up to 44% of execution time for Diffusion-based TTI models, while Linear layers consume up to 49% of execution time for Transformer-based models. We additionally observe that Diffusion-based TTI models resemble the Prefill stage of LLM inference, and benefit from 1.1-2.5x greater speedup from Flash Attention than Transformer-based TTI models that resemble the Decode phase. Since optimizations designed for LLMs do not map directly onto TTI/TTV models, we must conduct a thorough characterization of these workloads to gain insights for new optimization opportunities. In doing so, we define sequence length in the context of TTI/TTV models and observe sequence length can vary up to 4x in Diffusion model inference. We additionally observe temporal aspects of TTV workloads pose unique system bottlenecks, with Temporal Attention accounting for over 60% of total Attention time. Overall, our in-depth system performance characterization is a critical first step towards designing efficient and deployable systems for emerging TTI/TTV workloads.
MotiF: Making Text Count in Image Animation with Motion Focal Loss
Text-Image-to-Video (TI2V) generation aims to generate a video from an image following a text description, which is also referred to as text-guided image animation. Most existing methods struggle to generate videos that align well with the text prompts, particularly when motion is specified. To overcome this limitation, we introduce MotiF, a simple yet effective approach that directs the model's learning to the regions with more motion, thereby improving the text alignment and motion generation. We use optical flow to generate a motion heatmap and weight the loss according to the intensity of the motion. This modified objective leads to noticeable improvements and complements existing methods that utilize motion priors as model inputs. Additionally, due to the lack of a diverse benchmark for evaluating TI2V generation, we propose TI2V Bench, a dataset consists of 320 image-text pairs for robust evaluation. We present a human evaluation protocol that asks the annotators to select an overall preference between two videos followed by their justifications. Through a comprehensive evaluation on TI2V Bench, MotiF outperforms nine open-sourced models, achieving an average preference of 72%. The TI2V Bench is released in https://wang-sj16.github.io/motif/.
Anywhere: A Multi-Agent Framework for Reliable and Diverse Foreground-Conditioned Image Inpainting
Recent advancements in image inpainting, particularly through diffusion modeling, have yielded promising outcomes. However, when tested in scenarios involving the completion of images based on the foreground objects, current methods that aim to inpaint an image in an end-to-end manner encounter challenges such as "over-imagination", inconsistency between foreground and background, and limited diversity. In response, we introduce Anywhere, a pioneering multi-agent framework designed to address these issues. Anywhere utilizes a sophisticated pipeline framework comprising various agents such as Visual Language Model (VLM), Large Language Model (LLM), and image generation models. This framework consists of three principal components: the prompt generation module, the image generation module, and the outcome analyzer. The prompt generation module conducts a semantic analysis of the input foreground image, leveraging VLM to predict relevant language descriptions and LLM to recommend optimal language prompts. In the image generation module, we employ a text-guided canny-to-image generation model to create a template image based on the edge map of the foreground image and language prompts, and an image refiner to produce the outcome by blending the input foreground and the template image. The outcome analyzer employs VLM to evaluate image content rationality, aesthetic score, and foreground-background relevance, triggering prompt and image regeneration as needed. Extensive experiments demonstrate that our Anywhere framework excels in foreground-conditioned image inpainting, mitigating "over-imagination", resolving foreground-background discrepancies, and enhancing diversity. It successfully elevates foreground-conditioned image inpainting to produce more reliable and diverse results.
Text-Visual Prompting for Efficient 2D Temporal Video Grounding
In this paper, we study the problem of temporal video grounding (TVG), which aims to predict the starting/ending time points of moments described by a text sentence within a long untrimmed video. Benefiting from fine-grained 3D visual features, the TVG techniques have achieved remarkable progress in recent years. However, the high complexity of 3D convolutional neural networks (CNNs) makes extracting dense 3D visual features time-consuming, which calls for intensive memory and computing resources. Towards efficient TVG, we propose a novel text-visual prompting (TVP) framework, which incorporates optimized perturbation patterns (that we call 'prompts') into both visual inputs and textual features of a TVG model. In sharp contrast to 3D CNNs, we show that TVP allows us to effectively co-train vision encoder and language encoder in a 2D TVG model and improves the performance of crossmodal feature fusion using only low-complexity sparse 2D visual features. Further, we propose a Temporal-Distance IoU (TDIoU) loss for efficient learning of TVG. Experiments on two benchmark datasets, Charades-STA and ActivityNet Captions datasets, empirically show that the proposed TVP significantly boosts the performance of 2D TVG (e.g., 9.79% improvement on Charades-STA and 30.77% improvement on ActivityNet Captions) and achieves 5x inference acceleration over TVG using 3D visual features. Codes are available at Open.Intel.
Multi-event Video-Text Retrieval
Video-Text Retrieval (VTR) is a crucial multi-modal task in an era of massive video-text data on the Internet. A plethora of work characterized by using a two-stream Vision-Language model architecture that learns a joint representation of video-text pairs has become a prominent approach for the VTR task. However, these models operate under the assumption of bijective video-text correspondences and neglect a more practical scenario where video content usually encompasses multiple events, while texts like user queries or webpage metadata tend to be specific and correspond to single events. This establishes a gap between the previous training objective and real-world applications, leading to the potential performance degradation of earlier models during inference. In this study, we introduce the Multi-event Video-Text Retrieval (MeVTR) task, addressing scenarios in which each video contains multiple different events, as a niche scenario of the conventional Video-Text Retrieval Task. We present a simple model, Me-Retriever, which incorporates key event video representation and a new MeVTR loss for the MeVTR task. Comprehensive experiments show that this straightforward framework outperforms other models in the Video-to-Text and Text-to-Video tasks, effectively establishing a robust baseline for the MeVTR task. We believe this work serves as a strong foundation for future studies. Code is available at https://github.com/gengyuanmax/MeVTR.
SingleInsert: Inserting New Concepts from a Single Image into Text-to-Image Models for Flexible Editing
Recent progress in text-to-image (T2I) models enables high-quality image generation with flexible textual control. To utilize the abundant visual priors in the off-the-shelf T2I models, a series of methods try to invert an image to proper embedding that aligns with the semantic space of the T2I model. However, these image-to-text (I2T) inversion methods typically need multiple source images containing the same concept or struggle with the imbalance between editing flexibility and visual fidelity. In this work, we point out that the critical problem lies in the foreground-background entanglement when learning an intended concept, and propose a simple and effective baseline for single-image I2T inversion, named SingleInsert. SingleInsert adopts a two-stage scheme. In the first stage, we regulate the learned embedding to concentrate on the foreground area without being associated with the irrelevant background. In the second stage, we finetune the T2I model for better visual resemblance and devise a semantic loss to prevent the language drift problem. With the proposed techniques, SingleInsert excels in single concept generation with high visual fidelity while allowing flexible editing. Additionally, SingleInsert can perform single-image novel view synthesis and multiple concepts composition without requiring joint training. To facilitate evaluation, we design an editing prompt list and introduce a metric named Editing Success Rate (ESR) for quantitative assessment of editing flexibility. Our project page is: https://jarrentwu1031.github.io/SingleInsert-web/
VILA: On Pre-training for Visual Language Models
Visual language models (VLMs) rapidly progressed with the recent success of large language models. There have been growing efforts on visual instruction tuning to extend the LLM with visual inputs, but lacks an in-depth study of the visual language pre-training process, where the model learns to perform joint modeling on both modalities. In this work, we examine the design options for VLM pre-training by augmenting LLM towards VLM through step-by-step controllable comparisons. We introduce three main findings: (1) freezing LLMs during pre-training can achieve decent zero-shot performance, but lack in-context learning capability, which requires unfreezing the LLM; (2) interleaved pre-training data is beneficial whereas image-text pairs alone are not optimal; (3) re-blending text-only instruction data to image-text data during instruction fine-tuning not only remedies the degradation of text-only tasks, but also boosts VLM task accuracy. With an enhanced pre-training recipe we build VILA, a Visual Language model family that consistently outperforms the state-of-the-art models, e.g., LLaVA-1.5, across main benchmarks without bells and whistles. Multi-modal pre-training also helps unveil appealing properties of VILA, including multi-image reasoning, enhanced in-context learning, and better world knowledge.
Towards Visual Text Design Transfer Across Languages
Visual text design plays a critical role in conveying themes, emotions, and atmospheres in multimodal formats such as film posters and album covers. Translating these visual and textual elements across languages extends the concept of translation beyond mere text, requiring the adaptation of aesthetic and stylistic features. To address this, we introduce a novel task of Multimodal Style Translation (MuST-Bench), a benchmark designed to evaluate the ability of visual text generation models to perform translation across different writing systems while preserving design intent. Our initial experiments on MuST-Bench reveal that existing visual text generation models struggle with the proposed task due to the inadequacy of textual descriptions in conveying visual design. In response, we introduce SIGIL, a framework for multimodal style translation that eliminates the need for style descriptions. SIGIL enhances image generation models through three innovations: glyph latent for multilingual settings, pretrained VAEs for stable style guidance, and an OCR model with reinforcement learning feedback for optimizing readable character generation. SIGIL outperforms existing baselines by achieving superior style consistency and legibility while maintaining visual fidelity, setting itself apart from traditional description-based approaches. We release MuST-Bench publicly for broader use and exploration https://huggingface.co/datasets/yejinc/MuST-Bench.
ColorPeel: Color Prompt Learning with Diffusion Models via Color and Shape Disentanglement
Text-to-Image (T2I) generation has made significant advancements with the advent of diffusion models. These models exhibit remarkable abilities to produce images based on textual prompts. Current T2I models allow users to specify object colors using linguistic color names. However, these labels encompass broad color ranges, making it difficult to achieve precise color matching. To tackle this challenging task, named color prompt learning, we propose to learn specific color prompts tailored to user-selected colors. Existing T2I personalization methods tend to result in color-shape entanglement. To overcome this, we generate several basic geometric objects in the target color, allowing for color and shape disentanglement during the color prompt learning. Our method, denoted as ColorPeel, successfully assists the T2I models to peel off the novel color prompts from these colored shapes. In the experiments, we demonstrate the efficacy of ColorPeel in achieving precise color generation with T2I models. Furthermore, we generalize ColorPeel to effectively learn abstract attribute concepts, including textures, materials, etc. Our findings represent a significant step towards improving precision and versatility of T2I models, offering new opportunities for creative applications and design tasks. Our project is available at https://moatifbutt.github.io/colorpeel/.
Facing the Elephant in the Room: Visual Prompt Tuning or Full Finetuning?
As the scale of vision models continues to grow, the emergence of Visual Prompt Tuning (VPT) as a parameter-efficient transfer learning technique has gained attention due to its superior performance compared to traditional full-finetuning. However, the conditions favoring VPT (the ``when") and the underlying rationale (the ``why") remain unclear. In this paper, we conduct a comprehensive analysis across 19 distinct datasets and tasks. To understand the ``when" aspect, we identify the scenarios where VPT proves favorable by two dimensions: task objectives and data distributions. We find that VPT is preferrable when there is 1) a substantial disparity between the original and the downstream task objectives (e.g., transitioning from classification to counting), or 2) a similarity in data distributions between the two tasks (e.g., both involve natural images). In exploring the ``why" dimension, our results indicate VPT's success cannot be attributed solely to overfitting and optimization considerations. The unique way VPT preserves original features and adds parameters appears to be a pivotal factor. Our study provides insights into VPT's mechanisms, and offers guidance for its optimal utilization.
SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models
The development of text-to-video (T2V), i.e., generating videos with a given text prompt, has been significantly advanced in recent years. However, relying solely on text prompts often results in ambiguous frame composition due to spatial uncertainty. The research community thus leverages the dense structure signals, e.g., per-frame depth/edge sequences, to enhance controllability, whose collection accordingly increases the burden of inference. In this work, we present SparseCtrl to enable flexible structure control with temporally sparse signals, requiring only one or a few inputs, as shown in Figure 1. It incorporates an additional condition encoder to process these sparse signals while leaving the pre-trained T2V model untouched. The proposed approach is compatible with various modalities, including sketches, depth maps, and RGB images, providing more practical control for video generation and promoting applications such as storyboarding, depth rendering, keyframe animation, and interpolation. Extensive experiments demonstrate the generalization of SparseCtrl on both original and personalized T2V generators. Codes and models will be publicly available at https://guoyww.github.io/projects/SparseCtrl .
λ-ECLIPSE: Multi-Concept Personalized Text-to-Image Diffusion Models by Leveraging CLIP Latent Space
Despite the recent advances in personalized text-to-image (P-T2I) generative models, subject-driven T2I remains challenging. The primary bottlenecks include 1) Intensive training resource requirements, 2) Hyper-parameter sensitivity leading to inconsistent outputs, and 3) Balancing the intricacies of novel visual concept and composition alignment. We start by re-iterating the core philosophy of T2I diffusion models to address the above limitations. Predominantly, contemporary subject-driven T2I approaches hinge on Latent Diffusion Models (LDMs), which facilitate T2I mapping through cross-attention layers. While LDMs offer distinct advantages, P-T2I methods' reliance on the latent space of these diffusion models significantly escalates resource demands, leading to inconsistent results and necessitating numerous iterations for a single desired image. Recently, ECLIPSE has demonstrated a more resource-efficient pathway for training UnCLIP-based T2I models, circumventing the need for diffusion text-to-image priors. Building on this, we introduce lambda-ECLIPSE. Our method illustrates that effective P-T2I does not necessarily depend on the latent space of diffusion models. lambda-ECLIPSE achieves single, multi-subject, and edge-guided T2I personalization with just 34M parameters and is trained on a mere 74 GPU hours using 1.6M image-text interleaved data. Through extensive experiments, we also establish that lambda-ECLIPSE surpasses existing baselines in composition alignment while preserving concept alignment performance, even with significantly lower resource utilization.
Vision Language Models in Medicine
With the advent of Vision-Language Models (VLMs), medical artificial intelligence (AI) has experienced significant technological progress and paradigm shifts. This survey provides an extensive review of recent advancements in Medical Vision-Language Models (Med-VLMs), which integrate visual and textual data to enhance healthcare outcomes. We discuss the foundational technology behind Med-VLMs, illustrating how general models are adapted for complex medical tasks, and examine their applications in healthcare. The transformative impact of Med-VLMs on clinical practice, education, and patient care is highlighted, alongside challenges such as data scarcity, narrow task generalization, interpretability issues, and ethical concerns like fairness, accountability, and privacy. These limitations are exacerbated by uneven dataset distribution, computational demands, and regulatory hurdles. Rigorous evaluation methods and robust regulatory frameworks are essential for safe integration into healthcare workflows. Future directions include leveraging large-scale, diverse datasets, improving cross-modal generalization, and enhancing interpretability. Innovations like federated learning, lightweight architectures, and Electronic Health Record (EHR) integration are explored as pathways to democratize access and improve clinical relevance. This review aims to provide a comprehensive understanding of Med-VLMs' strengths and limitations, fostering their ethical and balanced adoption in healthcare.
ViBe: A Text-to-Video Benchmark for Evaluating Hallucination in Large Multimodal Models
Latest developments in Large Multimodal Models (LMMs) have broadened their capabilities to include video understanding. Specifically, Text-to-video (T2V) models have made significant progress in quality, comprehension, and duration, excelling at creating videos from simple textual prompts. Yet, they still frequently produce hallucinated content that clearly signals the video is AI-generated. We introduce ViBe: a large-scale Text-to-Video Benchmark of hallucinated videos from T2V models. We identify five major types of hallucination: Vanishing Subject, Numeric Variability, Temporal Dysmorphia, Omission Error, and Physical Incongruity. Using 10 open-source T2V models, we developed the first large-scale dataset of hallucinated videos, comprising 3,782 videos annotated by humans into these five categories. ViBe offers a unique resource for evaluating the reliability of T2V models and provides a foundation for improving hallucination detection and mitigation in video generation. We establish classification as a baseline and present various ensemble classifier configurations, with the TimeSFormer + CNN combination yielding the best performance, achieving 0.345 accuracy and 0.342 F1 score. This benchmark aims to drive the development of robust T2V models that produce videos more accurately aligned with input prompts.
Thinking Before Looking: Improving Multimodal LLM Reasoning via Mitigating Visual Hallucination
Multimodal large language models (MLLMs) have advanced the integration of visual and linguistic modalities, establishing themselves as the dominant paradigm for visual-language tasks. Current approaches like chain of thought (CoT) reasoning have augmented the cognitive capabilities of large language models (LLMs), yet their adaptation to MLLMs is hindered by heightened risks of hallucination in cross-modality comprehension. In this paper, we find that the thinking while looking paradigm in current multimodal CoT approaches--where reasoning chains are generated alongside visual input--fails to mitigate hallucinations caused by misleading images. To address these limitations, we propose the Visual Inference Chain (VIC) framework, a novel approach that constructs reasoning chains using textual context alone before introducing visual input, effectively reducing cross-modal biases and enhancing multimodal reasoning accuracy. Comprehensive evaluations demonstrate that VIC significantly improves zero-shot performance across various vision-related tasks, mitigating hallucinations while refining the reasoning capabilities of MLLMs. Our code repository can be found at https://github.com/Terry-Xu-666/visual_inference_chain.
Kinetic Typography Diffusion Model
This paper introduces a method for realistic kinetic typography that generates user-preferred animatable 'text content'. We draw on recent advances in guided video diffusion models to achieve visually-pleasing text appearances. To do this, we first construct a kinetic typography dataset, comprising about 600K videos. Our dataset is made from a variety of combinations in 584 templates designed by professional motion graphics designers and involves changing each letter's position, glyph, and size (i.e., flying, glitches, chromatic aberration, reflecting effects, etc.). Next, we propose a video diffusion model for kinetic typography. For this, there are three requirements: aesthetic appearances, motion effects, and readable letters. This paper identifies the requirements. For this, we present static and dynamic captions used as spatial and temporal guidance of a video diffusion model, respectively. The static caption describes the overall appearance of the video, such as colors, texture and glyph which represent a shape of each letter. The dynamic caption accounts for the movements of letters and backgrounds. We add one more guidance with zero convolution to determine which text content should be visible in the video. We apply the zero convolution to the text content, and impose it on the diffusion model. Lastly, our glyph loss, only minimizing a difference between the predicted word and its ground-truth, is proposed to make the prediction letters readable. Experiments show that our model generates kinetic typography videos with legible and artistic letter motions based on text prompts.
I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors
Visual metaphors are powerful rhetorical devices used to persuade or communicate creative ideas through images. Similar to linguistic metaphors, they convey meaning implicitly through symbolism and juxtaposition of the symbols. We propose a new task of generating visual metaphors from linguistic metaphors. This is a challenging task for diffusion-based text-to-image models, such as DALLcdotE 2, since it requires the ability to model implicit meaning and compositionality. We propose to solve the task through the collaboration between Large Language Models (LLMs) and Diffusion Models: Instruct GPT-3 (davinci-002) with Chain-of-Thought prompting generates text that represents a visual elaboration of the linguistic metaphor containing the implicit meaning and relevant objects, which is then used as input to the diffusion-based text-to-image models.Using a human-AI collaboration framework, where humans interact both with the LLM and the top-performing diffusion model, we create a high-quality dataset containing 6,476 visual metaphors for 1,540 linguistic metaphors and their associated visual elaborations. Evaluation by professional illustrators shows the promise of LLM-Diffusion Model collaboration for this task . To evaluate the utility of our Human-AI collaboration framework and the quality of our dataset, we perform both an intrinsic human-based evaluation and an extrinsic evaluation using visual entailment as a downstream task.
Instruct-Imagen: Image Generation with Multi-modal Instruction
This paper presents instruct-imagen, a model that tackles heterogeneous image generation tasks and generalizes across unseen tasks. We introduce *multi-modal instruction* for image generation, a task representation articulating a range of generation intents with precision. It uses natural language to amalgamate disparate modalities (e.g., text, edge, style, subject, etc.), such that abundant generation intents can be standardized in a uniform format. We then build instruct-imagen by fine-tuning a pre-trained text-to-image diffusion model with a two-stage framework. First, we adapt the model using the retrieval-augmented training, to enhance model's capabilities to ground its generation on external multimodal context. Subsequently, we fine-tune the adapted model on diverse image generation tasks that requires vision-language understanding (e.g., subject-driven generation, etc.), each paired with a multi-modal instruction encapsulating the task's essence. Human evaluation on various image generation datasets reveals that instruct-imagen matches or surpasses prior task-specific models in-domain and demonstrates promising generalization to unseen and more complex tasks.
LVLM-eHub: A Comprehensive Evaluation Benchmark for Large Vision-Language Models
Large Vision-Language Models (LVLMs) have recently played a dominant role in multimodal vision-language learning. Despite the great success, it lacks a holistic evaluation of their efficacy. This paper presents a comprehensive evaluation of publicly available large multimodal models by building a LVLM evaluation Hub (LVLM-eHub). Our LVLM-eHub consists of 8 representative LVLMs such as InstructBLIP and MiniGPT-4, which are thoroughly evaluated by a quantitative capability evaluation and an online arena platform. The former evaluates 6 categories of multimodal capabilities of LVLMs such as visual question answering and embodied artificial intelligence on 47 standard text-related visual benchmarks, while the latter provides the user-level evaluation of LVLMs in an open-world question-answering scenario. The study reveals several innovative findings. First, instruction-tuned LVLM with massive in-domain data such as InstructBLIP heavily overfits many existing tasks, generalizing poorly in the open-world scenario. Second, instruction-tuned LVLM with moderate instruction-following data may result in object hallucination issues (i.e., generate objects that are inconsistent with target images in the descriptions). It either makes the current evaluation metric such as CIDEr for image captioning ineffective or generates wrong answers. Third, employing a multi-turn reasoning evaluation framework can mitigate the issue of object hallucination, shedding light on developing an effective pipeline for LVLM evaluation. The findings provide a foundational framework for the conception and assessment of innovative strategies aimed at enhancing zero-shot multimodal techniques. Our LVLM-eHub will be available at https://github.com/OpenGVLab/Multi-Modality-Arena
OPEx: A Component-Wise Analysis of LLM-Centric Agents in Embodied Instruction Following
Embodied Instruction Following (EIF) is a crucial task in embodied learning, requiring agents to interact with their environment through egocentric observations to fulfill natural language instructions. Recent advancements have seen a surge in employing large language models (LLMs) within a framework-centric approach to enhance performance in embodied learning tasks, including EIF. Despite these efforts, there exists a lack of a unified understanding regarding the impact of various components-ranging from visual perception to action execution-on task performance. To address this gap, we introduce OPEx, a comprehensive framework that delineates the core components essential for solving embodied learning tasks: Observer, Planner, and Executor. Through extensive evaluations, we provide a deep analysis of how each component influences EIF task performance. Furthermore, we innovate within this space by deploying a multi-agent dialogue strategy on a TextWorld counterpart, further enhancing task performance. Our findings reveal that LLM-centric design markedly improves EIF outcomes, identify visual perception and low-level action execution as critical bottlenecks, and demonstrate that augmenting LLMs with a multi-agent framework further elevates performance.
Multimodality-guided Image Style Transfer using Cross-modal GAN Inversion
Image Style Transfer (IST) is an interdisciplinary topic of computer vision and art that continuously attracts researchers' interests. Different from traditional Image-guided Image Style Transfer (IIST) methods that require a style reference image as input to define the desired style, recent works start to tackle the problem in a text-guided manner, i.e., Text-guided Image Style Transfer (TIST). Compared to IIST, such approaches provide more flexibility with text-specified styles, which are useful in scenarios where the style is hard to define with reference images. Unfortunately, many TIST approaches produce undesirable artifacts in the transferred images. To address this issue, we present a novel method to achieve much improved style transfer based on text guidance. Meanwhile, to offer more flexibility than IIST and TIST, our method allows style inputs from multiple sources and modalities, enabling MultiModality-guided Image Style Transfer (MMIST). Specifically, we realize MMIST with a novel cross-modal GAN inversion method, which generates style representations consistent with specified styles. Such style representations facilitate style transfer and in principle generalize any IIST methods to MMIST. Large-scale experiments and user studies demonstrate that our method achieves state-of-the-art performance on TIST task. Furthermore, comprehensive qualitative results confirm the effectiveness of our method on MMIST task and cross-modal style interpolation.
A Systematic Survey of Prompt Engineering on Vision-Language Foundation Models
Prompt engineering is a technique that involves augmenting a large pre-trained model with task-specific hints, known as prompts, to adapt the model to new tasks. Prompts can be created manually as natural language instructions or generated automatically as either natural language instructions or vector representations. Prompt engineering enables the ability to perform predictions based solely on prompts without updating model parameters, and the easier application of large pre-trained models in real-world tasks. In past years, Prompt engineering has been well-studied in natural language processing. Recently, it has also been intensively studied in vision-language modeling. However, there is currently a lack of a systematic overview of prompt engineering on pre-trained vision-language models. This paper aims to provide a comprehensive survey of cutting-edge research in prompt engineering on three types of vision-language models: multimodal-to-text generation models (e.g. Flamingo), image-text matching models (e.g. CLIP), and text-to-image generation models (e.g. Stable Diffusion). For each type of model, a brief model summary, prompting methods, prompting-based applications, and the corresponding responsibility and integrity issues are summarized and discussed. Furthermore, the commonalities and differences between prompting on vision-language models, language models, and vision models are also discussed. The challenges, future directions, and research opportunities are summarized to foster future research on this topic.
TextCtrl: Diffusion-based Scene Text Editing with Prior Guidance Control
Centred on content modification and style preservation, Scene Text Editing (STE) remains a challenging task despite considerable progress in text-to-image synthesis and text-driven image manipulation recently. GAN-based STE methods generally encounter a common issue of model generalization, while Diffusion-based STE methods suffer from undesired style deviations. To address these problems, we propose TextCtrl, a diffusion-based method that edits text with prior guidance control. Our method consists of two key components: (i) By constructing fine-grained text style disentanglement and robust text glyph structure representation, TextCtrl explicitly incorporates Style-Structure guidance into model design and network training, significantly improving text style consistency and rendering accuracy. (ii) To further leverage the style prior, a Glyph-adaptive Mutual Self-attention mechanism is proposed which deconstructs the implicit fine-grained features of the source image to enhance style consistency and vision quality during inference. Furthermore, to fill the vacancy of the real-world STE evaluation benchmark, we create the first real-world image-pair dataset termed ScenePair for fair comparisons. Experiments demonstrate the effectiveness of TextCtrl compared with previous methods concerning both style fidelity and text accuracy.
A Comprehensive Evaluation of GPT-4V on Knowledge-Intensive Visual Question Answering
The emergence of multimodal large models (MLMs) has significantly advanced the field of visual understanding, offering remarkable capabilities in the realm of visual question answering (VQA). Yet, the true challenge lies in the domain of knowledge-intensive VQA tasks, which necessitate not just recognition of visual elements, but also a deep comprehension of the visual information in conjunction with a vast repository of learned knowledge. To uncover such capabilities of MLMs, particularly the newly introduced GPT-4V and Gemini, we provide an in-depth evaluation from three perspectives: 1) Commonsense Knowledge, which assesses how well models can understand visual cues and connect to general knowledge; 2) Fine-grained World Knowledge, which tests the model's skill in reasoning out specific knowledge from images, showcasing their proficiency across various specialized fields; 3) Comprehensive Knowledge with Decision-making Rationales, which examines model's capability to provide logical explanations for its inference, facilitating a deeper analysis from the interpretability perspective. Additionally, we utilize a visual knowledge-enhanced training strategy and multimodal retrieval-augmented generation approach to enhance MLMs, highlighting the future need for advancements in this research direction. Extensive experiments indicate that: a) GPT-4V demonstrates enhanced explanation generation when using composite images as few-shots; b) GPT-4V and other MLMs produce severe hallucinations when dealing with world knowledge; c) Visual knowledge enhanced training and prompting technicals present potential to improve performance. Codes: https://github.com/HITsz-TMG/Cognitive-Visual-Language-Mapper
Towards VQA Models That Can Read
Studies have shown that a dominant class of questions asked by visually impaired users on images of their surroundings involves reading text in the image. But today's VQA models can not read! Our paper takes a first step towards addressing this problem. First, we introduce a new "TextVQA" dataset to facilitate progress on this important problem. Existing datasets either have a small proportion of questions about text (e.g., the VQA dataset) or are too small (e.g., the VizWiz dataset). TextVQA contains 45,336 questions on 28,408 images that require reasoning about text to answer. Second, we introduce a novel model architecture that reads text in the image, reasons about it in the context of the image and the question, and predicts an answer which might be a deduction based on the text and the image or composed of the strings found in the image. Consequently, we call our approach Look, Read, Reason & Answer (LoRRA). We show that LoRRA outperforms existing state-of-the-art VQA models on our TextVQA dataset. We find that the gap between human performance and machine performance is significantly larger on TextVQA than on VQA 2.0, suggesting that TextVQA is well-suited to benchmark progress along directions complementary to VQA 2.0.
TaleCrafter: Interactive Story Visualization with Multiple Characters
Accurate Story visualization requires several necessary elements, such as identity consistency across frames, the alignment between plain text and visual content, and a reasonable layout of objects in images. Most previous works endeavor to meet these requirements by fitting a text-to-image (T2I) model on a set of videos in the same style and with the same characters, e.g., the FlintstonesSV dataset. However, the learned T2I models typically struggle to adapt to new characters, scenes, and styles, and often lack the flexibility to revise the layout of the synthesized images. This paper proposes a system for generic interactive story visualization, capable of handling multiple novel characters and supporting the editing of layout and local structure. It is developed by leveraging the prior knowledge of large language and T2I models, trained on massive corpora. The system comprises four interconnected components: story-to-prompt generation (S2P), text-to-layout generation (T2L), controllable text-to-image generation (C-T2I), and image-to-video animation (I2V). First, the S2P module converts concise story information into detailed prompts required for subsequent stages. Next, T2L generates diverse and reasonable layouts based on the prompts, offering users the ability to adjust and refine the layout to their preference. The core component, C-T2I, enables the creation of images guided by layouts, sketches, and actor-specific identifiers to maintain consistency and detail across visualizations. Finally, I2V enriches the visualization process by animating the generated images. Extensive experiments and a user study are conducted to validate the effectiveness and flexibility of interactive editing of the proposed system.
Evaluation and Mitigation of Agnosia in Multimodal Large Language Models
While Multimodal Large Language Models (MLLMs) are widely used for a variety of vision-language tasks, one observation is that they sometimes misinterpret visual inputs or fail to follow textual instructions even in straightforward cases, leading to irrelevant responses, mistakes, and ungrounded claims. This observation is analogous to a phenomenon in neuropsychology known as Agnosia, an inability to correctly process sensory modalities and recognize things (e.g., objects, colors, relations). In our study, we adapt this similar concept to define "agnosia in MLLMs", and our goal is to comprehensively evaluate and mitigate such agnosia in MLLMs. Inspired by the diagnosis and treatment process in neuropsychology, we propose a novel framework EMMA (Evaluation and Mitigation of Multimodal Agnosia). In EMMA, we develop an evaluation module that automatically creates fine-grained and diverse visual question answering examples to assess the extent of agnosia in MLLMs comprehensively. We also develop a mitigation module to reduce agnosia in MLLMs through multimodal instruction tuning on fine-grained conversations. To verify the effectiveness of our framework, we evaluate and analyze agnosia in seven state-of-the-art MLLMs using 9K test samples. The results reveal that most of them exhibit agnosia across various aspects and degrees. We further develop a fine-grained instruction set and tune MLLMs to mitigate agnosia, which led to notable improvement in accuracy.
How Good is Google Bard's Visual Understanding? An Empirical Study on Open Challenges
Google's Bard has emerged as a formidable competitor to OpenAI's ChatGPT in the field of conversational AI. Notably, Bard has recently been updated to handle visual inputs alongside text prompts during conversations. Given Bard's impressive track record in handling textual inputs, we explore its capabilities in understanding and interpreting visual data (images) conditioned by text questions. This exploration holds the potential to unveil new insights and challenges for Bard and other forthcoming multi-modal Generative models, especially in addressing complex computer vision problems that demand accurate visual and language understanding. Specifically, in this study, we focus on 15 diverse task scenarios encompassing regular, camouflaged, medical, under-water and remote sensing data to comprehensively evaluate Bard's performance. Our primary finding indicates that Bard still struggles in these vision scenarios, highlighting the significant gap in vision-based understanding that needs to be bridged in future developments. We expect that this empirical study will prove valuable in advancing future models, leading to enhanced capabilities in comprehending and interpreting fine-grained visual data. Our project is released on https://github.com/htqin/GoogleBard-VisUnderstand
LLM4VG: Large Language Models Evaluation for Video Grounding
Recently, researchers have attempted to investigate the capability of LLMs in handling videos and proposed several video LLM models. However, the ability of LLMs to handle video grounding (VG), which is an important time-related video task requiring the model to precisely locate the start and end timestamps of temporal moments in videos that match the given textual queries, still remains unclear and unexplored in literature. To fill the gap, in this paper, we propose the LLM4VG benchmark, which systematically evaluates the performance of different LLMs on video grounding tasks. Based on our proposed LLM4VG, we design extensive experiments to examine two groups of video LLM models on video grounding: (i) the video LLMs trained on the text-video pairs (denoted as VidLLM), and (ii) the LLMs combined with pretrained visual description models such as the video/image captioning model. We propose prompt methods to integrate the instruction of VG and description from different kinds of generators, including caption-based generators for direct visual description and VQA-based generators for information enhancement. We also provide comprehensive comparisons of various VidLLMs and explore the influence of different choices of visual models, LLMs, prompt designs, etc, as well. Our experimental evaluations lead to two conclusions: (i) the existing VidLLMs are still far away from achieving satisfactory video grounding performance, and more time-related video tasks should be included to further fine-tune these models, and (ii) the combination of LLMs and visual models shows preliminary abilities for video grounding with considerable potential for improvement by resorting to more reliable models and further guidance of prompt instructions.
InternChat: Solving Vision-Centric Tasks by Interacting with Chatbots Beyond Language
We present an interactive visual framework named InternChat, or iChat for short. The framework integrates chatbots that have planning and reasoning capabilities, such as ChatGPT, with non-verbal instructions like pointing movements that enable users to directly manipulate images or videos on the screen. Pointing (including gestures, cursors, etc.) movements can provide more flexibility and precision in performing vision-centric tasks that require fine-grained control, editing, and generation of visual content. The name InternChat stands for interaction, nonverbal, and chatbots. Different from existing interactive systems that rely on pure language, by incorporating pointing instructions, the proposed iChat significantly improves the efficiency of communication between users and chatbots, as well as the accuracy of chatbots in vision-centric tasks, especially in complicated visual scenarios where the number of objects is greater than 2. Additionally, in iChat, an auxiliary control mechanism is used to improve the control capability of LLM, and a large vision-language model termed Husky is fine-tuned for high-quality multi-modal dialogue (impressing ChatGPT-3.5-turbo with 93.89% GPT-4 Quality). We hope this work can spark new ideas and directions for future interactive visual systems. Welcome to watch the code at https://github.com/OpenGVLab/InternChat.
Visual Prompting in Multimodal Large Language Models: A Survey
Multimodal large language models (MLLMs) equip pre-trained large-language models (LLMs) with visual capabilities. While textual prompting in LLMs has been widely studied, visual prompting has emerged for more fine-grained and free-form visual instructions. This paper presents the first comprehensive survey on visual prompting methods in MLLMs, focusing on visual prompting, prompt generation, compositional reasoning, and prompt learning. We categorize existing visual prompts and discuss generative methods for automatic prompt annotations on the images. We also examine visual prompting methods that enable better alignment between visual encoders and backbone LLMs, concerning MLLM's visual grounding, object referring, and compositional reasoning abilities. In addition, we provide a summary of model training and in-context learning methods to improve MLLM's perception and understanding of visual prompts. This paper examines visual prompting methods developed in MLLMs and provides a vision of the future of these methods.
InternVid: A Large-scale Video-Text Dataset for Multimodal Understanding and Generation
This paper introduces InternVid, a large-scale video-centric multimodal dataset that enables learning powerful and transferable video-text representations for multimodal understanding and generation. The InternVid dataset contains over 7 million videos lasting nearly 760K hours, yielding 234M video clips accompanied by detailed descriptions of total 4.1B words. Our core contribution is to develop a scalable approach to autonomously build a high-quality video-text dataset with large language models (LLM), thereby showcasing its efficacy in learning video-language representation at scale. Specifically, we utilize a multi-scale approach to generate video-related descriptions. Furthermore, we introduce ViCLIP, a video-text representation learning model based on ViT-L. Learned on InternVid via contrastive learning, this model demonstrates leading zero-shot action recognition and competitive video retrieval performance. Beyond basic video understanding tasks like recognition and retrieval, our dataset and model have broad applications. They are particularly beneficial for generating interleaved video-text data for learning a video-centric dialogue system, advancing video-to-text and text-to-video generation research. These proposed resources provide a tool for researchers and practitioners interested in multimodal video understanding and generation.
Seeing is Understanding: Unlocking Causal Attention into Modality-Mutual Attention for Multimodal LLMs
Recent Multimodal Large Language Models (MLLMs) have demonstrated significant progress in perceiving and reasoning over multimodal inquiries, ushering in a new research era for foundation models. However, vision-language misalignment in MLLMs has emerged as a critical challenge, where the textual responses generated by these models are not factually aligned with the given text-image inputs. Existing efforts to address vision-language misalignment have focused on developing specialized vision-language connectors or leveraging visual instruction tuning from diverse domains. In this paper, we tackle this issue from a fundamental yet unexplored perspective by revisiting the core architecture of MLLMs. Most MLLMs are typically built on decoder-only LLMs consisting of a causal attention mechanism, which limits the ability of earlier modalities (e.g., images) to incorporate information from later modalities (e.g., text). To address this problem, we propose AKI, a novel MLLM that unlocks causal attention into modality-mutual attention (MMA) to enable image tokens to attend to text tokens. This simple yet effective design allows AKI to achieve superior performance in 12 multimodal understanding benchmarks (+7.2% on average) without introducing additional parameters and increasing training time. Our MMA design is intended to be generic, allowing for application across various modalities, and scalable to accommodate diverse multimodal scenarios. The code is publicly available at https://github.com/sony/aki, and we will release our AKI-4B model to encourage further advancements in MLLMs across various directions.
Generating Illustrated Instructions
We introduce the new task of generating Illustrated Instructions, i.e., visual instructions customized to a user's needs. We identify desiderata unique to this task, and formalize it through a suite of automatic and human evaluation metrics, designed to measure the validity, consistency, and efficacy of the generations. We combine the power of large language models (LLMs) together with strong text-to-image generation diffusion models to propose a simple approach called StackedDiffusion, which generates such illustrated instructions given text as input. The resulting model strongly outperforms baseline approaches and state-of-the-art multimodal LLMs; and in 30% of cases, users even prefer it to human-generated articles. Most notably, it enables various new and exciting applications far beyond what static articles on the web can provide, such as personalized instructions complete with intermediate steps and pictures in response to a user's individual situation.
Bootstrapping Vision-Language Learning with Decoupled Language Pre-training
We present a novel methodology aimed at optimizing the application of frozen large language models (LLMs) for resource-intensive vision-language (VL) pre-training. The current paradigm uses visual features as prompts to guide language models, with a focus on determining the most relevant visual features for corresponding text. Our approach diverges by concentrating on the language component, specifically identifying the optimal prompts to align with visual features. We introduce the Prompt-Transformer (P-Former), a model that predicts these ideal prompts, which is trained exclusively on linguistic data, bypassing the need for image-text pairings. This strategy subtly bifurcates the end-to-end VL training process into an additional, separate stage. Our experiments reveal that our framework significantly enhances the performance of a robust image-to-text baseline (BLIP-2), and effectively narrows the performance gap between models trained with either 4M or 129M image-text pairs. Importantly, our framework is modality-agnostic and flexible in terms of architectural design, as validated by its successful application in a video learning task using varied base modules. The code is available at https://github.com/yiren-jian/BLIText
Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings
The excessive use of visual tokens in existing Multimoal Large Language Models (MLLMs) often exhibits obvious redundancy and brings in prohibitively expensive computation. To gain insights into this problem, we first conduct extensive empirical studies on the attention behaviors of MLLMs, and summarize three main inference stages in MLLMs: (i) Early fusion between tokens is first accomplished quickly. (ii) Intra-modality modeling then comes to play. (iii) Multimodal reasoning} resumes and lasts until the end of inference. In particular, we reveal that visual tokens will stop contributing to reasoning when the text tokens receive enough image information, yielding obvious visual redundancy. Based on these generalized observations, we propose a simple yet effective method to improve the efficiency of MLLMs, termed dynamic visual-token exit (DyVTE). DyVTE uses lightweight hyper-networks to perceive the text token status and decide the removal of all visual tokens after a certain layer, thereby addressing the observed visual redundancy. To validate VTE, we apply it to a set of MLLMs, including LLaVA, VILA, Eagle and InternVL, and conduct extensive experiments on a bunch of benchmarks. The experiment results not only show the effectiveness of our VTE in improving MLLMs' efficiency, but also yield the general modeling patterns of MLLMs, well facilitating the in-depth understanding of MLLMs. Our code is anonymously released at https://github.com/DoubtedSteam/DyVTE.
BroadWay: Boost Your Text-to-Video Generation Model in a Training-free Way
The text-to-video (T2V) generation models, offering convenient visual creation, have recently garnered increasing attention. Despite their substantial potential, the generated videos may present artifacts, including structural implausibility, temporal inconsistency, and a lack of motion, often resulting in near-static video. In this work, we have identified a correlation between the disparity of temporal attention maps across different blocks and the occurrence of temporal inconsistencies. Additionally, we have observed that the energy contained within the temporal attention maps is directly related to the magnitude of motion amplitude in the generated videos. Based on these observations, we present BroadWay, a training-free method to improve the quality of text-to-video generation without introducing additional parameters, augmenting memory or sampling time. Specifically, BroadWay is composed of two principal components: 1) Temporal Self-Guidance improves the structural plausibility and temporal consistency of generated videos by reducing the disparity between the temporal attention maps across various decoder blocks. 2) Fourier-based Motion Enhancement enhances the magnitude and richness of motion by amplifying the energy of the map. Extensive experiments demonstrate that BroadWay significantly improves the quality of text-to-video generation with negligible additional cost.
LLM-CXR: Instruction-Finetuned LLM for CXR Image Understanding and Generation
Following the impressive development of LLMs, vision-language alignment in LLMs is actively being researched to enable multimodal reasoning and visual IO. This direction of research is particularly relevant to medical imaging because medical image analysis and generation consist of reasoning based on a combination of visual features and prior knowledge. Many recent works have focused on training adapter networks that serve as an information bridge between image processing networks and LLMs; but presumably, in order to achieve maximum reasoning potential of LLMs on visual information as well, visual and language features should be allowed to interact more freely. This is especially important in the medical domain because understanding and generating medical images such as chest X-rays (CXR) require not only accurate visual and language-based reasoning but also a more intimate mapping between the two modalities. Thus, taking inspiration from previous work on the transformer and VQ-GAN combination for bidirectional image and text generation, we build upon this approach and develop a method for instruction-tuning an LLM pre-trained only on text to gain vision-language capabilities for medical images. Specifically, we leverage a pretrained LLM's existing question-answering and instruction-following abilities to teach it to understand visual inputs by instructing it to answer questions about image inputs and, symmetrically, output both text and image responses appropriate to a given query by tuning the LLM with diverse tasks that encompass image-based text-generation and text-based image-generation. We show that our model, LLM-CXR, trained in this approach shows better image-text alignment in both CXR understanding and generation tasks while being smaller in size compared to previously developed models that perform a narrower range of tasks. The code is at https://github.com/hyn2028/llm-cxr.
Learning Visual Generative Priors without Text
Although text-to-image (T2I) models have recently thrived as visual generative priors, their reliance on high-quality text-image pairs makes scaling up expensive. We argue that grasping the cross-modality alignment is not a necessity for a sound visual generative prior, whose focus should be on texture modeling. Such a philosophy inspires us to study image-to-image (I2I) generation, where models can learn from in-the-wild images in a self-supervised manner. We first develop a pure vision-based training framework, Lumos, and confirm the feasibility and the scalability of learning I2I models. We then find that, as an upstream task of T2I, our I2I model serves as a more foundational visual prior and achieves on-par or better performance than existing T2I models using only 1/10 text-image pairs for fine-tuning. We further demonstrate the superiority of I2I priors over T2I priors on some text-irrelevant visual generative tasks, like image-to-3D and image-to-video.
Intensive Vision-guided Network for Radiology Report Generation
Automatic radiology report generation is booming due to its huge application potential for the healthcare industry. However, existing computer vision and natural language processing approaches to tackle this problem are limited in two aspects. First, when extracting image features, most of them neglect multi-view reasoning in vision and model single-view structure of medical images, such as space-view or channel-view. However, clinicians rely on multi-view imaging information for comprehensive judgment in daily clinical diagnosis. Second, when generating reports, they overlook context reasoning with multi-modal information and focus on pure textual optimization utilizing retrieval-based methods. We aim to address these two issues by proposing a model that better simulates clinicians' perspectives and generates more accurate reports. Given the above limitation in feature extraction, we propose a Globally-intensive Attention (GIA) module in the medical image encoder to simulate and integrate multi-view vision perception. GIA aims to learn three types of vision perception: depth view, space view, and pixel view. On the other hand, to address the above problem in report generation, we explore how to involve multi-modal signals to generate precisely matched reports, i.e., how to integrate previously predicted words with region-aware visual content in next word prediction. Specifically, we design a Visual Knowledge-guided Decoder (VKGD), which can adaptively consider how much the model needs to rely on visual information and previously predicted text to assist next word prediction. Hence, our final Intensive Vision-guided Network (IVGN) framework includes a GIA-guided Visual Encoder and the VKGD. Experiments on two commonly-used datasets IU X-Ray and MIMIC-CXR demonstrate the superior ability of our method compared with other state-of-the-art approaches.
Seeing Through Their Eyes: Evaluating Visual Perspective Taking in Vision Language Models
Visual perspective-taking (VPT), the ability to understand the viewpoint of another person, enables individuals to anticipate the actions of other people. For instance, a driver can avoid accidents by assessing what pedestrians see. Humans typically develop this skill in early childhood, but it remains unclear whether the recently emerging Vision Language Models (VLMs) possess such capability. Furthermore, as these models are increasingly deployed in the real world, understanding how they perform nuanced tasks like VPT becomes essential. In this paper, we introduce two manually curated datasets, Isle-Bricks and Isle-Dots for testing VPT skills, and we use it to evaluate 12 commonly used VLMs. Across all models, we observe a significant performance drop when perspective-taking is required. Additionally, we find performance in object detection tasks is poorly correlated with performance on VPT tasks, suggesting that the existing benchmarks might not be sufficient to understand this problem. The code and the dataset will be available at https://sites.google.com/view/perspective-taking
Exploring Recommendation Capabilities of GPT-4V(ision): A Preliminary Case Study
Large Multimodal Models (LMMs) have demonstrated impressive performance across various vision and language tasks, yet their potential applications in recommendation tasks with visual assistance remain unexplored. To bridge this gap, we present a preliminary case study investigating the recommendation capabilities of GPT-4V(ison), a recently released LMM by OpenAI. We construct a series of qualitative test samples spanning multiple domains and employ these samples to assess the quality of GPT-4V's responses within recommendation scenarios. Evaluation results on these test samples prove that GPT-4V has remarkable zero-shot recommendation abilities across diverse domains, thanks to its robust visual-text comprehension capabilities and extensive general knowledge. However, we have also identified some limitations in using GPT-4V for recommendations, including a tendency to provide similar responses when given similar inputs. This report concludes with an in-depth discussion of the challenges and research opportunities associated with utilizing GPT-4V in recommendation scenarios. Our objective is to explore the potential of extending LMMs from vision and language tasks to recommendation tasks. We hope to inspire further research into next-generation multimodal generative recommendation models, which can enhance user experiences by offering greater diversity and interactivity. All images and prompts used in this report will be accessible at https://github.com/PALIN2018/Evaluate_GPT-4V_Rec.
Hierarchical Vision-Language Alignment for Text-to-Image Generation via Diffusion Models
Text-to-image generation has witnessed significant advancements with the integration of Large Vision-Language Models (LVLMs), yet challenges remain in aligning complex textual descriptions with high-quality, visually coherent images. This paper introduces the Vision-Language Aligned Diffusion (VLAD) model, a generative framework that addresses these challenges through a dual-stream strategy combining semantic alignment and hierarchical diffusion. VLAD utilizes a Contextual Composition Module (CCM) to decompose textual prompts into global and local representations, ensuring precise alignment with visual features. Furthermore, it incorporates a multi-stage diffusion process with hierarchical guidance to generate high-fidelity images. Experiments conducted on MARIO-Eval and INNOVATOR-Eval benchmarks demonstrate that VLAD significantly outperforms state-of-the-art methods in terms of image quality, semantic alignment, and text rendering accuracy. Human evaluations further validate the superior performance of VLAD, making it a promising approach for text-to-image generation in complex scenarios.
Empowering Vision-Language Models to Follow Interleaved Vision-Language Instructions
Multimodal Large Language Models (MLLMs) have recently sparked significant interest, which demonstrates emergent capabilities to serve as a general-purpose model for various vision-language tasks. However, existing methods mainly focus on limited types of instructions with a single image as visual context, which hinders the widespread availability of MLLMs. In this paper, we introduce the I4 benchmark to comprehensively evaluate the instruction following ability on complicated interleaved vision-language instructions, which involve intricate image-text sequential context, covering a diverse range of scenarios (e.g., visually-rich webpages/textbooks, lecture slides, embodied dialogue). Systematic evaluation on our I4 benchmark reveals a common defect of existing methods: the Visual Prompt Generator (VPG) trained on image-captioning alignment objective tends to attend to common foreground information for captioning but struggles to extract specific information required by particular tasks. To address this issue, we propose a generic and lightweight controllable knowledge re-injection module, which utilizes the sophisticated reasoning ability of LLMs to control the VPG to conditionally extract instruction-specific visual information and re-inject it into the LLM. Further, we introduce an annotation-free cross-attention guided counterfactual image training strategy to methodically learn the proposed module by collaborating a cascade of foundation models. Enhanced by the proposed module and training strategy, we present Cheetor, a Transformer-based MLLM that can effectively handle a wide variety of interleaved vision-language instructions and achieves state-of-the-art zero-shot performance across all tasks of I4, without high-quality multimodal instruction tuning data. Cheetor also exhibits competitive performance compared with state-of-the-art instruction tuned models on MME benchmark.
Unleashing In-context Learning of Autoregressive Models for Few-shot Image Manipulation
Text-guided image manipulation has experienced notable advancement in recent years. In order to mitigate linguistic ambiguity, few-shot learning with visual examples has been applied for instructions that are underrepresented in the training set, or difficult to describe purely in language. However, learning from visual prompts requires strong reasoning capability, which diffusion models are struggling with. To address this issue, we introduce a novel multi-modal autoregressive model, dubbed InstaManip, that can instantly learn a new image manipulation operation from textual and visual guidance via in-context learning, and apply it to new query images. Specifically, we propose an innovative group self-attention mechanism to break down the in-context learning process into two separate stages -- learning and applying, which simplifies the complex problem into two easier tasks. We also introduce a relation regularization method to further disentangle image transformation features from irrelevant contents in exemplar images. Extensive experiments suggest that our method surpasses previous few-shot image manipulation models by a notable margin (geq19% in human evaluation). We also find our model can be further boosted by increasing the number or diversity of exemplar images.
MLLMs-Augmented Visual-Language Representation Learning
Visual-language pre-training (VLP) has achieved remarkable success in multi-modal tasks, largely attributed to the availability of large-scale image-text datasets. In this work, we demonstrate that multi-modal large language models (MLLMs) can enhance visual-language representation learning by improving data quality. Our approach is simple, utilizing MLLMs to extend multiple captions for each image. To prevent the bias introduced by MLLMs' hallucinations and intrinsic caption styles, we propose "text shearing" to maintain the same length for extended captions as that of the original captions. In image-text retrieval, our method consistently obtains 5.6 ~ 35.0% and 16.8 ~ 46.1% improvement on R@1 under the fine-tuning and zero-shot settings, respectively. Notably, we obtain zero-shot results that are comparable to fine-tuning on target datasets, which encourages more exploration of the versatile use of MLLMs.
An Early Evaluation of GPT-4V(ision)
In this paper, we evaluate different abilities of GPT-4V including visual understanding, language understanding, visual puzzle solving, and understanding of other modalities such as depth, thermal, video, and audio. To estimate GPT-4V's performance, we manually construct 656 test instances and carefully evaluate the results of GPT-4V. The highlights of our findings are as follows: (1) GPT-4V exhibits impressive performance on English visual-centric benchmarks but fails to recognize simple Chinese texts in the images; (2) GPT-4V shows inconsistent refusal behavior when answering questions related to sensitive traits such as gender, race, and age; (3) GPT-4V obtains worse results than GPT-4 (API) on language understanding tasks including general language understanding benchmarks and visual commonsense knowledge evaluation benchmarks; (4) Few-shot prompting can improve GPT-4V's performance on both visual understanding and language understanding; (5) GPT-4V struggles to find the nuances between two similar images and solve the easy math picture puzzles; (6) GPT-4V shows non-trivial performance on the tasks of similar modalities to image, such as video and thermal. Our experimental results reveal the ability and limitations of GPT-4V and we hope our paper can provide some insights into the application and research of GPT-4V.
VideoElevator: Elevating Video Generation Quality with Versatile Text-to-Image Diffusion Models
Text-to-image diffusion models (T2I) have demonstrated unprecedented capabilities in creating realistic and aesthetic images. On the contrary, text-to-video diffusion models (T2V) still lag far behind in frame quality and text alignment, owing to insufficient quality and quantity of training videos. In this paper, we introduce VideoElevator, a training-free and plug-and-play method, which elevates the performance of T2V using superior capabilities of T2I. Different from conventional T2V sampling (i.e., temporal and spatial modeling), VideoElevator explicitly decomposes each sampling step into temporal motion refining and spatial quality elevating. Specifically, temporal motion refining uses encapsulated T2V to enhance temporal consistency, followed by inverting to the noise distribution required by T2I. Then, spatial quality elevating harnesses inflated T2I to directly predict less noisy latent, adding more photo-realistic details. We have conducted experiments in extensive prompts under the combination of various T2V and T2I. The results show that VideoElevator not only improves the performance of T2V baselines with foundational T2I, but also facilitates stylistic video synthesis with personalized T2I. Our code is available at https://github.com/YBYBZhang/VideoElevator.
Conditional Text-to-Image Generation with Reference Guidance
Text-to-image diffusion models have demonstrated tremendous success in synthesizing visually stunning images given textual instructions. Despite remarkable progress in creating high-fidelity visuals, text-to-image models can still struggle with precisely rendering subjects, such as text spelling. To address this challenge, this paper explores using additional conditions of an image that provides visual guidance of the particular subjects for diffusion models to generate. In addition, this reference condition empowers the model to be conditioned in ways that the vocabularies of the text tokenizer cannot adequately represent, and further extends the model's generalization to novel capabilities such as generating non-English text spellings. We develop several small-scale expert plugins that efficiently endow a Stable Diffusion model with the capability to take different references. Each plugin is trained with auxiliary networks and loss functions customized for applications such as English scene-text generation, multi-lingual scene-text generation, and logo-image generation. Our expert plugins demonstrate superior results than the existing methods on all tasks, each containing only 28.55M trainable parameters.
Dual Modality Prompt Tuning for Vision-Language Pre-Trained Model
With the emergence of large pre-trained vison-language model like CLIP, transferable representations can be adapted to a wide range of downstream tasks via prompt tuning. Prompt tuning tries to probe the beneficial information for downstream tasks from the general knowledge stored in the pre-trained model. A recently proposed method named Context Optimization (CoOp) introduces a set of learnable vectors as text prompt from the language side. However, tuning the text prompt alone can only adjust the synthesized "classifier", while the computed visual features of the image encoder can not be affected , thus leading to sub-optimal solutions. In this paper, we propose a novel Dual-modality Prompt Tuning (DPT) paradigm through learning text and visual prompts simultaneously. To make the final image feature concentrate more on the target visual concept, a Class-Aware Visual Prompt Tuning (CAVPT) scheme is further proposed in our DPT, where the class-aware visual prompt is generated dynamically by performing the cross attention between text prompts features and image patch token embeddings to encode both the downstream task-related information and visual instance information. Extensive experimental results on 11 datasets demonstrate the effectiveness and generalization ability of the proposed method. Our code is available in https://github.com/fanrena/DPT.
ImageBrush: Learning Visual In-Context Instructions for Exemplar-Based Image Manipulation
While language-guided image manipulation has made remarkable progress, the challenge of how to instruct the manipulation process faithfully reflecting human intentions persists. An accurate and comprehensive description of a manipulation task using natural language is laborious and sometimes even impossible, primarily due to the inherent uncertainty and ambiguity present in linguistic expressions. Is it feasible to accomplish image manipulation without resorting to external cross-modal language information? If this possibility exists, the inherent modality gap would be effortlessly eliminated. In this paper, we propose a novel manipulation methodology, dubbed ImageBrush, that learns visual instructions for more accurate image editing. Our key idea is to employ a pair of transformation images as visual instructions, which not only precisely captures human intention but also facilitates accessibility in real-world scenarios. Capturing visual instructions is particularly challenging because it involves extracting the underlying intentions solely from visual demonstrations and then applying this operation to a new image. To address this challenge, we formulate visual instruction learning as a diffusion-based inpainting problem, where the contextual information is fully exploited through an iterative process of generation. A visual prompting encoder is carefully devised to enhance the model's capacity in uncovering human intent behind the visual instructions. Extensive experiments show that our method generates engaging manipulation results conforming to the transformations entailed in demonstrations. Moreover, our model exhibits robust generalization capabilities on various downstream tasks such as pose transfer, image translation and video inpainting.
Multi-Modal Hallucination Control by Visual Information Grounding
Generative Vision-Language Models (VLMs) are prone to generate plausible-sounding textual answers that, however, are not always grounded in the input image. We investigate this phenomenon, usually referred to as "hallucination" and show that it stems from an excessive reliance on the language prior. In particular, we show that as more tokens are generated, the reliance on the visual prompt decreases, and this behavior strongly correlates with the emergence of hallucinations. To reduce hallucinations, we introduce Multi-Modal Mutual-Information Decoding (M3ID), a new sampling method for prompt amplification. M3ID amplifies the influence of the reference image over the language prior, hence favoring the generation of tokens with higher mutual information with the visual prompt. M3ID can be applied to any pre-trained autoregressive VLM at inference time without necessitating further training and with minimal computational overhead. If training is an option, we show that M3ID can be paired with Direct Preference Optimization (DPO) to improve the model's reliance on the prompt image without requiring any labels. Our empirical findings show that our algorithms maintain the fluency and linguistic capabilities of pre-trained VLMs while reducing hallucinations by mitigating visually ungrounded answers. Specifically, for the LLaVA 13B model, M3ID and M3ID+DPO reduce the percentage of hallucinated objects in captioning tasks by 25% and 28%, respectively, and improve the accuracy on VQA benchmarks such as POPE by 21% and 24%.
Directed Diffusion: Direct Control of Object Placement through Attention Guidance
Text-guided diffusion models such as DALLE-2, IMAGEN, and Stable Diffusion are able to generate an effectively endless variety of images given only a short text prompt describing the desired image content. In many cases the images are very high quality as well. However, these models often struggle to compose scenes containing several key objects such as characters in specified positional relationships. Unfortunately, this capability to ``direct'' the placement of characters and objects both within and across images is crucial in storytelling, as recognized in the literature on film and animation theory. In this work we take a particularly straightforward approach to providing the needed direction, by injecting ``activation'' at desired positions in the cross-attention maps corresponding to the objects under control, while attenuating the remainder of the map. The resulting approach is a step toward generalizing the applicability of text-guided diffusion models beyond single images to collections of related images, as in storybooks. To the best of our knowledge, our Directed Diffusion method is the first diffusion technique that provides positional control over multiple objects, while making use of an existing pre-trained model and maintaining a coherent blend between the positioned objects and the background. Moreover, it requires only a few lines to implement.
C3L: Content Correlated Vision-Language Instruction Tuning Data Generation via Contrastive Learning
Vision-Language Instruction Tuning (VLIT) is a critical training phase for Large Vision-Language Models (LVLMs). With the improving capabilities of open-source LVLMs, researchers have increasingly turned to generate VLIT data by using open-source LVLMs and achieved significant progress. However, such data generation approaches are bottlenecked by the following challenges: 1) Since multi-modal models tend to be influenced by prior language knowledge, directly using LVLMs to generate VLIT data would inevitably lead to low content relevance between generated data and images. 2) To improve the ability of the models to generate VLIT data, previous methods have incorporated an additional training phase to boost the generative capacity. This process hurts the generalization of the models to unseen inputs (i.e., "exposure bias" problem). In this paper, we propose a new Content Correlated VLIT data generation via Contrastive Learning (C3L). Specifically, we design a new content relevance module which enhances the content relevance between VLIT data and images by computing Image Instruction Correspondence Scores S(I2C). Moreover, a contrastive learning module is introduced to further boost the VLIT data generation capability of the LVLMs. A large number of automatic measures on four benchmarks show the effectiveness of our method.
Right this way: Can VLMs Guide Us to See More to Answer Questions?
In question-answering scenarios, humans can assess whether the available information is sufficient and seek additional information if necessary, rather than providing a forced answer. In contrast, Vision Language Models (VLMs) typically generate direct, one-shot responses without evaluating the sufficiency of the information. To investigate this gap, we identify a critical and challenging task in the Visual Question Answering (VQA) scenario: can VLMs indicate how to adjust an image when the visual information is insufficient to answer a question? This capability is especially valuable for assisting visually impaired individuals who often need guidance to capture images correctly. To evaluate this capability of current VLMs, we introduce a human-labeled dataset as a benchmark for this task. Additionally, we present an automated framework that generates synthetic training data by simulating ``where to know'' scenarios. Our empirical results show significant performance improvements in mainstream VLMs when fine-tuned with this synthetic data. This study demonstrates the potential to narrow the gap between information assessment and acquisition in VLMs, bringing their performance closer to humans.
Image Translation as Diffusion Visual Programmers
We introduce the novel Diffusion Visual Programmer (DVP), a neuro-symbolic image translation framework. Our proposed DVP seamlessly embeds a condition-flexible diffusion model within the GPT architecture, orchestrating a coherent sequence of visual programs (i.e., computer vision models) for various pro-symbolic steps, which span RoI identification, style transfer, and position manipulation, facilitating transparent and controllable image translation processes. Extensive experiments demonstrate DVP's remarkable performance, surpassing concurrent arts. This success can be attributed to several key features of DVP: First, DVP achieves condition-flexible translation via instance normalization, enabling the model to eliminate sensitivity caused by the manual guidance and optimally focus on textual descriptions for high-quality content generation. Second, the framework enhances in-context reasoning by deciphering intricate high-dimensional concepts in feature spaces into more accessible low-dimensional symbols (e.g., [Prompt], [RoI object]), allowing for localized, context-free editing while maintaining overall coherence. Last but not least, DVP improves systemic controllability and explainability by offering explicit symbolic representations at each programming stage, empowering users to intuitively interpret and modify results. Our research marks a substantial step towards harmonizing artificial image translation processes with cognitive intelligence, promising broader applications.
TIAM -- A Metric for Evaluating Alignment in Text-to-Image Generation
The progress in the generation of synthetic images has made it crucial to assess their quality. While several metrics have been proposed to assess the rendering of images, it is crucial for Text-to-Image (T2I) models, which generate images based on a prompt, to consider additional aspects such as to which extent the generated image matches the important content of the prompt. Moreover, although the generated images usually result from a random starting point, the influence of this one is generally not considered. In this article, we propose a new metric based on prompt templates to study the alignment between the content specified in the prompt and the corresponding generated images. It allows us to better characterize the alignment in terms of the type of the specified objects, their number, and their color. We conducted a study on several recent T2I models about various aspects. An additional interesting result we obtained with our approach is that image quality can vary drastically depending on the latent noise used as a seed for the images. We also quantify the influence of the number of concepts in the prompt, their order as well as their (color) attributes. Finally, our method allows us to identify some latent seeds that produce better images than others, opening novel directions of research on this understudied topic.
VIMI: Grounding Video Generation through Multi-modal Instruction
Existing text-to-video diffusion models rely solely on text-only encoders for their pretraining. This limitation stems from the absence of large-scale multimodal prompt video datasets, resulting in a lack of visual grounding and restricting their versatility and application in multimodal integration. To address this, we construct a large-scale multimodal prompt dataset by employing retrieval methods to pair in-context examples with the given text prompts and then utilize a two-stage training strategy to enable diverse video generation tasks within the same model. In the first stage, we propose a multimodal conditional video generation framework for pretraining on these augmented datasets, establishing a foundational model for grounded video generation. Secondly, we finetune the model from the first stage on three video generation tasks, incorporating multi-modal instructions. This process further refines the model's ability to handle diverse inputs and tasks, ensuring seamless integration of multi-modal information. After this two-stage train-ing process, VIMI demonstrates multimodal understanding capabilities, producing contextually rich and personalized videos grounded in the provided inputs, as shown in Figure 1. Compared to previous visual grounded video generation methods, VIMI can synthesize consistent and temporally coherent videos with large motion while retaining the semantic control. Lastly, VIMI also achieves state-of-the-art text-to-video generation results on UCF101 benchmark.
Exploring the Benefits of Visual Prompting in Differential Privacy
Visual Prompting (VP) is an emerging and powerful technique that allows sample-efficient adaptation to downstream tasks by engineering a well-trained frozen source model. In this work, we explore the benefits of VP in constructing compelling neural network classifiers with differential privacy (DP). We explore and integrate VP into canonical DP training methods and demonstrate its simplicity and efficiency. In particular, we discover that VP in tandem with PATE, a state-of-the-art DP training method that leverages the knowledge transfer from an ensemble of teachers, achieves the state-of-the-art privacy-utility trade-off with minimum expenditure of privacy budget. Moreover, we conduct additional experiments on cross-domain image classification with a sufficient domain gap to further unveil the advantage of VP in DP. Lastly, we also conduct extensive ablation studies to validate the effectiveness and contribution of VP under DP consideration. Our code is available at (https://github.com/EzzzLi/Prompt-PATE).
MM-Vet v2: A Challenging Benchmark to Evaluate Large Multimodal Models for Integrated Capabilities
MM-Vet, with open-ended vision-language questions targeting at evaluating integrated capabilities, has become one of the most popular benchmarks for large multimodal model evaluation. MM-Vet assesses six core vision-language (VL) capabilities: recognition, knowledge, spatial awareness, language generation, OCR, and math. However, its question format is restricted to single image-text pairs, lacking the interleaved image and text sequences prevalent in real-world scenarios. To address this limitation, we introduce MM-Vet v2, which includes a new VL capability called "image-text sequence understanding", evaluating models' ability to process VL sequences. Furthermore, we maintain the high quality of evaluation samples while further expanding the evaluation set size. Using MM-Vet v2 to benchmark large multimodal models, we found that Claude 3.5 Sonnet is the best model with a score of 71.8, slightly outperforming GPT-4o which scored 71.0. Among open-weight models, InternVL2-Llama3-76B leads with a score of 68.4.
SEED-Bench-2-Plus: Benchmarking Multimodal Large Language Models with Text-Rich Visual Comprehension
Comprehending text-rich visual content is paramount for the practical application of Multimodal Large Language Models (MLLMs), since text-rich scenarios are ubiquitous in the real world, which are characterized by the presence of extensive texts embedded within images. Recently, the advent of MLLMs with impressive versatility has raised the bar for what we can expect from MLLMs. However, their proficiency in text-rich scenarios has yet to be comprehensively and objectively assessed, since current MLLM benchmarks primarily focus on evaluating general visual comprehension. In this work, we introduce SEED-Bench-2-Plus, a benchmark specifically designed for evaluating text-rich visual comprehension of MLLMs. Our benchmark comprises 2.3K multiple-choice questions with precise human annotations, spanning three broad categories: Charts, Maps, and Webs, each of which covers a wide spectrum of text-rich scenarios in the real world. These categories, due to their inherent complexity and diversity, effectively simulate real-world text-rich environments. We further conduct a thorough evaluation involving 34 prominent MLLMs (including GPT-4V, Gemini-Pro-Vision and Claude-3-Opus) and emphasize the current limitations of MLLMs in text-rich visual comprehension. We hope that our work can serve as a valuable addition to existing MLLM benchmarks, providing insightful observations and inspiring further research in the area of text-rich visual comprehension with MLLMs. The dataset and evaluation code can be accessed at https://github.com/AILab-CVC/SEED-Bench.
AutoBench-V: Can Large Vision-Language Models Benchmark Themselves?
Large Vision-Language Models (LVLMs) have become essential for advancing the integration of visual and linguistic information. However, the evaluation of LVLMs presents significant challenges as the evaluation benchmark always demands lots of human cost for its construction, and remains static, lacking flexibility once constructed. Even though automatic evaluation has been explored in textual modality, the visual modality remains under-explored. As a result, in this work, we address a question: "Can LVLMs themselves be used to benchmark each other in the visual automatically domain?". We introduce AutoBench-V, an automated framework for serving evaluation on demand, i.e., benchmarking LVLMs based on specific aspects of model capability. AutoBench-V leverages text-to-image models to generate relevant image samples and then utilizes LVLMs to orchestrate visual question-answering (VQA) tasks, completing the evaluation process efficiently and flexibly. Through an extensive evaluation of nine popular LVLMs across five demanded user inputs (i.e., evaluation capabilities), the framework shows effectiveness and reliability.
InstructAny2Pix: Flexible Visual Editing via Multimodal Instruction Following
The ability to provide fine-grained control for generating and editing visual imagery has profound implications for computer vision and its applications. Previous works have explored extending controllability in two directions: instruction tuning with text-based prompts and multi-modal conditioning. However, these works make one or more unnatural assumptions on the number and/or type of modality inputs used to express controllability. We propose InstructAny2Pix, a flexible multi-modal instruction-following system that enables users to edit an input image using instructions involving audio, images, and text. InstructAny2Pix consists of three building blocks that facilitate this capability: a multi-modal encoder that encodes different modalities such as images and audio into a unified latent space, a diffusion model that learns to decode representations in this latent space into images, and a multi-modal LLM that can understand instructions involving multiple images and audio pieces and generate a conditional embedding of the desired output, which can be used by the diffusion decoder. Additionally, to facilitate training efficiency and improve generation quality, we include an additional refinement prior module that enhances the visual quality of LLM outputs. These designs are critical to the performance of our system. We demonstrate that our system can perform a series of novel instruction-guided editing tasks. The code is available at https://github.com/jacklishufan/InstructAny2Pix.git
Synthetic Patients: Simulating Difficult Conversations with Multimodal Generative AI for Medical Education
Problem: Effective patient-centered communication is a core competency for physicians. However, both seasoned providers and medical trainees report decreased confidence in leading conversations on sensitive topics such as goals of care or end-of-life discussions. The significant administrative burden and the resources required to provide dedicated training in leading difficult conversations has been a long-standing problem in medical education. Approach: In this work, we present a novel educational tool designed to facilitate interactive, real-time simulations of difficult conversations in a video-based format through the use of multimodal generative artificial intelligence (AI). Leveraging recent advances in language modeling, computer vision, and generative audio, this tool creates realistic, interactive scenarios with avatars, or "synthetic patients." These synthetic patients interact with users throughout various stages of medical care using a custom-built video chat application, offering learners the chance to practice conversations with patients from diverse belief systems, personalities, and ethnic backgrounds. Outcomes: While the development of this platform demanded substantial upfront investment in labor, it offers a highly-realistic simulation experience with minimal financial investment. For medical trainees, this educational tool can be implemented within programs to simulate patient-provider conversations and can be incorporated into existing palliative care curriculum to provide a scalable, high-fidelity simulation environment for mastering difficult conversations. Next Steps: Future developments will explore enhancing the authenticity of these encounters by working with patients to incorporate their histories and personalities, as well as employing the use of AI-generated evaluations to offer immediate, constructive feedback to learners post-simulation.
Target Prompting for Information Extraction with Vision Language Model
The recent trend in the Large Vision and Language model has brought a new change in how information extraction systems are built. VLMs have set a new benchmark with their State-of-the-art techniques in understanding documents and building question-answering systems across various industries. They are significantly better at generating text from document images and providing accurate answers to questions. However, there are still some challenges in effectively utilizing these models to build a precise conversational system. General prompting techniques used with large language models are often not suitable for these specially designed vision language models. The output generated by such generic input prompts is ordinary and may contain information gaps when compared with the actual content of the document. To obtain more accurate and specific answers, a well-targeted prompt is required by the vision language model, along with the document image. In this paper, a technique is discussed called Target prompting, which focuses on explicitly targeting parts of document images and generating related answers from those specific regions only. The paper also covers the evaluation of response for each prompting technique using different user queries and input prompts.
VPA: Fully Test-Time Visual Prompt Adaptation
Textual prompt tuning has demonstrated significant performance improvements in adapting natural language processing models to a variety of downstream tasks by treating hand-engineered prompts as trainable parameters. Inspired by the success of textual prompting, several studies have investigated the efficacy of visual prompt tuning. In this work, we present Visual Prompt Adaptation (VPA), the first framework that generalizes visual prompting with test-time adaptation. VPA introduces a small number of learnable tokens, enabling fully test-time and storage-efficient adaptation without necessitating source-domain information. We examine our VPA design under diverse adaptation settings, encompassing single-image, batched-image, and pseudo-label adaptation. We evaluate VPA on multiple tasks, including out-of-distribution (OOD) generalization, corruption robustness, and domain adaptation. Experimental results reveal that VPA effectively enhances OOD generalization by 3.3% across various models, surpassing previous test-time approaches. Furthermore, we show that VPA improves corruption robustness by 6.5% compared to strong baselines. Finally, we demonstrate that VPA also boosts domain adaptation performance by relatively 5.2%. Our VPA also exhibits marked effectiveness in improving the robustness of zero-shot recognition for vision-language models.
Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment
Current multimodal large language models (MLLMs) struggle with fine-grained or precise understanding of visuals though they give comprehensive perception and reasoning in a spectrum of vision applications. Recent studies either develop tool-using or unify specific visual tasks into the autoregressive framework, often at the expense of overall multimodal performance. To address this issue and enhance MLLMs with visual tasks in a scalable fashion, we propose Task Preference Optimization (TPO), a novel method that utilizes differentiable task preferences derived from typical fine-grained visual tasks. TPO introduces learnable task tokens that establish connections between multiple task-specific heads and the MLLM. By leveraging rich visual labels during training, TPO significantly enhances the MLLM's multimodal capabilities and task-specific performance. Through multi-task co-training within TPO, we observe synergistic benefits that elevate individual task performance beyond what is achievable through single-task training methodologies. Our instantiation of this approach with VideoChat and LLaVA demonstrates an overall 14.6% improvement in multimodal performance compared to baseline models. Additionally, MLLM-TPO demonstrates robust zero-shot capabilities across various tasks, performing comparably to state-of-the-art supervised models. The code will be released at https://github.com/OpenGVLab/TPO
Compositional Video Generation as Flow Equalization
Large-scale Text-to-Video (T2V) diffusion models have recently demonstrated unprecedented capability to transform natural language descriptions into stunning and photorealistic videos. Despite the promising results, a significant challenge remains: these models struggle to fully grasp complex compositional interactions between multiple concepts and actions. This issue arises when some words dominantly influence the final video, overshadowing other concepts.To tackle this problem, we introduce Vico, a generic framework for compositional video generation that explicitly ensures all concepts are represented properly. At its core, Vico analyzes how input tokens influence the generated video, and adjusts the model to prevent any single concept from dominating. Specifically, Vico extracts attention weights from all layers to build a spatial-temporal attention graph, and then estimates the influence as the max-flow from the source text token to the video target token. Although the direct computation of attention flow in diffusion models is typically infeasible, we devise an efficient approximation based on subgraph flows and employ a fast and vectorized implementation, which in turn makes the flow computation manageable and differentiable. By updating the noisy latent to balance these flows, Vico captures complex interactions and consequently produces videos that closely adhere to textual descriptions. We apply our method to multiple diffusion-based video models for compositional T2V and video editing. Empirical results demonstrate that our framework significantly enhances the compositional richness and accuracy of the generated videos. Visit our website at~https://adamdad.github.io/vico/{https://adamdad.github.io/vico/}.
Aligned with LLM: a new multi-modal training paradigm for encoding fMRI activity in visual cortex
Recently, there has been a surge in the popularity of pre trained large language models (LLMs) (such as GPT-4), sweeping across the entire Natural Language Processing (NLP) and Computer Vision (CV) communities. These LLMs have demonstrated advanced multi-modal understanding capabilities and showcased strong performance across various benchmarks. The LLM has started to embody traits of artificial general intelligence, which holds vital guidance for enhancing brain-like characteristics within visual encoding models. Hence, This paper proposes a new multi-modal training paradigm, aligning with LLM, for encoding fMRI activity in visual cortex. Based on this paradigm, we trained an encoding model in fMRI data named the LLM-Visual Encoding Model (LLM-VEM). Specifically, we utilize LLM (miniGPT4) to generate descriptive text for all stimulus images, forming a high-quality textual description set. Moreover, we use the pre-trained text encoder (CLIP) to process these detailed descriptions, obtaining the text embedding features. Next, we use the contrast loss function to minimize the distance between the image embedding features and the text embedding features to complete the alignment operation of the stimulus image and text information. With the assistance of the pre-trained LLM, this alignment process facilitates better learning of the visual encoding model, resulting in higher precision. The final experimental results indicate that our training paradigm has significantly aided in enhancing the performance of the visual encoding model.
VL-CheckList: Evaluating Pre-trained Vision-Language Models with Objects, Attributes and Relations
Vision-Language Pretraining (VLP) models have recently successfully facilitated many cross-modal downstream tasks. Most existing works evaluated their systems by comparing the fine-tuned downstream task performance. However, only average downstream task accuracy provides little information about the pros and cons of each VLP method, let alone provides insights on how the community can improve the systems in the future. Inspired by the CheckList for testing natural language processing, we exploit VL-CheckList, a novel framework to understand the capabilities of VLP models. The proposed method divides the image-texting ability of a VLP model into three categories: objects, attributes, and relations, and uses a novel taxonomy to further break down these three aspects. We conduct comprehensive studies to analyze seven recently popular VLP models via the proposed framework. Results confirm the effectiveness of the proposed method by revealing fine-grained differences among the compared models that were not visible from downstream task-only evaluation. Further results show promising research direction in building better VLP models. Our data and code are available at: https://github.com/om-ai-lab/VL-CheckList.
EVLM: An Efficient Vision-Language Model for Visual Understanding
In the field of multi-modal language models, the majority of methods are built on an architecture similar to LLaVA. These models use a single-layer ViT feature as a visual prompt, directly feeding it into the language models alongside textual tokens. However, when dealing with long sequences of visual signals or inputs such as videos, the self-attention mechanism of language models can lead to significant computational overhead. Additionally, using single-layer ViT features makes it challenging for large language models to perceive visual signals fully. This paper proposes an efficient multi-modal language model to minimize computational costs while enabling the model to perceive visual signals as comprehensively as possible. Our method primarily includes: (1) employing cross-attention to image-text interaction similar to Flamingo. (2) utilize hierarchical ViT features. (3) introduce the Mixture of Experts (MoE) mechanism to enhance model effectiveness. Our model achieves competitive scores on public multi-modal benchmarks and performs well in tasks such as image captioning and video captioning.
Investigating Prompting Techniques for Zero- and Few-Shot Visual Question Answering
Visual question answering (VQA) is a challenging task that requires the ability to comprehend and reason with visual information. While recent vision-language models have made strides, they continue to struggle with zero-shot VQA, particularly in handling complex compositional questions and adapting to new domains i.e. knowledge-based reasoning. This paper explores the use of various prompting strategies, focusing on the BLIP2 model, to enhance zero-shot VQA performance. We conduct a comprehensive investigation across several VQA datasets, examining the effectiveness of different question templates, the role of few-shot exemplars, the impact of chain-of-thought (CoT) reasoning, and the benefits of incorporating image captions as additional visual cues. Despite the varied outcomes, our findings demonstrate that carefully designed question templates and the integration of additional visual cues, like image captions, can contribute to improved VQA performance, especially when used in conjunction with few-shot examples. However, we also identify a limitation in the use of chain-of-thought rationalization, which negatively affects VQA accuracy. Our study thus provides critical insights into the potential of prompting for improving zero-shot VQA performance.
PromptFix: You Prompt and We Fix the Photo
Diffusion models equipped with language models demonstrate excellent controllability in image generation tasks, allowing image processing to adhere to human instructions. However, the lack of diverse instruction-following data hampers the development of models that effectively recognize and execute user-customized instructions, particularly in low-level tasks. Moreover, the stochastic nature of the diffusion process leads to deficiencies in image generation or editing tasks that require the detailed preservation of the generated images. To address these limitations, we propose PromptFix, a comprehensive framework that enables diffusion models to follow human instructions to perform a wide variety of image-processing tasks. First, we construct a large-scale instruction-following dataset that covers comprehensive image-processing tasks, including low-level tasks, image editing, and object creation. Next, we propose a high-frequency guidance sampling method to explicitly control the denoising process and preserve high-frequency details in unprocessed areas. Finally, we design an auxiliary prompting adapter, utilizing Vision-Language Models (VLMs) to enhance text prompts and improve the model's task generalization. Experimental results show that PromptFix outperforms previous methods in various image-processing tasks. Our proposed model also achieves comparable inference efficiency with these baseline models and exhibits superior zero-shot capabilities in blind restoration and combination tasks. The dataset and code are available at https://www.yongshengyu.com/PromptFix-Page.
NanoVLMs: How small can we go and still make coherent Vision Language Models?
Vision-Language Models (VLMs), such as GPT-4V and Llama 3.2 vision, have garnered significant research attention for their ability to leverage Large Language Models (LLMs) in multimodal tasks. However, their potential is constrained by inherent challenges, including proprietary restrictions, substantial computational demands, and limited accessibility. Smaller models, such as GIT and BLIP, exhibit marked limitations, often failing to generate coherent and consistent text beyond a few tokens, even with extensive training. This underscores a pivotal inquiry: how small can a VLM be and still produce fluent and consistent text? Drawing inspiration from the exceptional learning process of 3-4 year old children, who rely heavily on visual cues for understanding and communication, we introduce two novel datasets: ShortDesc (featuring concise image descriptions) and LongDesc (containing more detailed image descriptions). These datasets consist of image-text pairs where the text is restricted to the simple vocabulary and syntax typically used by young children, generated with a scaled- down model, GPT-4o. Using these datasets, we demonstrate that it is possible to train VLMs that are significantly smaller, up to 10 times smaller than state of the art(SOTA) small VLMs while maintaining architectural simplicity. To evaluate the outputs, we leverage GPT-4o to grade the text, as if stories written by students, on creativity, meaningfulness, and consistency, assigning scores out of 10. This method addresses limitations of standard benchmarks by accommodating unstructured outputs and providing a multidimensional evaluation of the model capabilities. Our findings contribute to the development of lightweight, accessible multimodal models for resource constrained environments.
To See is to Believe: Prompting GPT-4V for Better Visual Instruction Tuning
Existing visual instruction tuning methods typically prompt large language models with textual descriptions to generate instruction-following data. Despite the promising performance achieved, these descriptions are derived from image annotations, which are oftentimes coarse-grained. Furthermore, the instructions might even contradict the visual content without observing the entire visual context. To address this challenge, we introduce a fine-grained visual instruction dataset, LVIS-Instruct4V, which contains 220K visually aligned and context-aware instructions produced by prompting the powerful GPT-4V with images from LVIS. Through experimental validation and case studies, we demonstrate that high-quality visual instructional data could improve the performance of LLaVA-1.5, a state-of-the-art large multimodal model, across a wide spectrum of benchmarks by clear margins. Notably, by simply replacing the LLaVA-Instruct with our LVIS-Instruct4V, we achieve better results than LLaVA on most challenging LMM benchmarks, e.g., LLaVA^w (76.7 vs. 70.7) and MM-Vet (40.2 vs. 35.4). We release our data and model at https://github.com/X2FD/LVIS-INSTRUCT4V.
A Study on Multimodal and Interactive Explanations for Visual Question Answering
Explainability and interpretability of AI models is an essential factor affecting the safety of AI. While various explainable AI (XAI) approaches aim at mitigating the lack of transparency in deep networks, the evidence of the effectiveness of these approaches in improving usability, trust, and understanding of AI systems are still missing. We evaluate multimodal explanations in the setting of a Visual Question Answering (VQA) task, by asking users to predict the response accuracy of a VQA agent with and without explanations. We use between-subjects and within-subjects experiments to probe explanation effectiveness in terms of improving user prediction accuracy, confidence, and reliance, among other factors. The results indicate that the explanations help improve human prediction accuracy, especially in trials when the VQA system's answer is inaccurate. Furthermore, we introduce active attention, a novel method for evaluating causal attentional effects through intervention by editing attention maps. User explanation ratings are strongly correlated with human prediction accuracy and suggest the efficacy of these explanations in human-machine AI collaboration tasks.
Motion Control for Enhanced Complex Action Video Generation
Existing text-to-video (T2V) models often struggle with generating videos with sufficiently pronounced or complex actions. A key limitation lies in the text prompt's inability to precisely convey intricate motion details. To address this, we propose a novel framework, MVideo, designed to produce long-duration videos with precise, fluid actions. MVideo overcomes the limitations of text prompts by incorporating mask sequences as an additional motion condition input, providing a clearer, more accurate representation of intended actions. Leveraging foundational vision models such as GroundingDINO and SAM2, MVideo automatically generates mask sequences, enhancing both efficiency and robustness. Our results demonstrate that, after training, MVideo effectively aligns text prompts with motion conditions to produce videos that simultaneously meet both criteria. This dual control mechanism allows for more dynamic video generation by enabling alterations to either the text prompt or motion condition independently, or both in tandem. Furthermore, MVideo supports motion condition editing and composition, facilitating the generation of videos with more complex actions. MVideo thus advances T2V motion generation, setting a strong benchmark for improved action depiction in current video diffusion models. Our project page is available at https://mvideo-v1.github.io/.
Looking Beyond Text: Reducing Language bias in Large Vision-Language Models via Multimodal Dual-Attention and Soft-Image Guidance
Large vision-language models (LVLMs) have achieved impressive results in various vision-language tasks. However, despite showing promising performance, LVLMs suffer from hallucinations caused by language bias, leading to diminished focus on images and ineffective visual comprehension. We identify two primary reasons for this bias: 1. Different scales of training data between the pretraining stage of LLM and multimodal alignment stage. 2. The learned inference bias due to short-term dependency of text data. Therefore, we propose LACING, a systemic framework designed to address the language bias of LVLMs with muLtimodal duAl-attention meChanIsm (MDA) aNd soft-image Guidance (IFG). Specifically, MDA introduces a parallel dual-attention mechanism that enhances the integration of visual inputs across the model. IFG introduces a learnable soft visual prompt during training and inference to replace visual inputs, designed to compel LVLMs to prioritize text inputs. Then, IFG further proposes a novel decoding strategy using the soft visual prompt to mitigate the model's over-reliance on adjacent text inputs. Comprehensive experiments demonstrate that our method effectively debiases LVLMs from their language bias, enhancing visual comprehension and reducing hallucinations without requiring additional training resources or data. The code and model are available at [lacing-lvlm.github.io](https://lacing-lvlm.github.io).
Tackling Vision Language Tasks Through Learning Inner Monologues
Visual language tasks require AI models to comprehend and reason with both visual and textual content. Driven by the power of Large Language Models (LLMs), two prominent methods have emerged: (1) the hybrid integration between LLMs and Vision-Language Models (VLMs), where visual inputs are firstly converted into language descriptions by VLMs, serving as inputs for LLMs to generate final answer(s); (2) visual feature alignment in language space, where visual inputs are encoded as embeddings and projected to LLMs' language space via further supervised fine-tuning. The first approach provides light training costs and interpretability but is hard to be optimized in an end-to-end fashion. The second approach presents decent performance, but feature alignment usually requires large amounts of training data and lacks interpretability. To tackle this dilemma, we propose a novel approach, Inner Monologue Multi-Modal Optimization (IMMO), to solve complex vision language problems by simulating inner monologue processes, a cognitive process in which an individual engages in silent verbal communication with themselves. We enable LLMs and VLMs to interact through natural language conversation and propose to use a two-stage training process to learn how to do the inner monologue (self-asking questions and answering questions). IMMO is evaluated on two popular tasks and the results suggest by emulating the cognitive phenomenon of internal dialogue, our approach can enhance reasoning and explanation abilities, contributing to the more effective fusion of vision and language models. More importantly, instead of using predefined human-crafted monologues, IMMO learns this process within the deep learning models, promising wider applicability to many different AI problems beyond vision language tasks.
Versatile Diffusion: Text, Images and Variations All in One Diffusion Model
The recent advances in diffusion models have set an impressive milestone in many generation tasks. Trending works such as DALL-E2, Imagen, and Stable Diffusion have attracted great interest in academia and industry. Despite the rapid landscape changes, recent new approaches focus on extensions and performance rather than capacity, thus requiring separate models for separate tasks. In this work, we expand the existing single-flow diffusion pipeline into a multi-flow network, dubbed Versatile Diffusion (VD), that handles text-to-image, image-to-text, image-variation, and text-variation in one unified model. Moreover, we generalize VD to a unified multi-flow multimodal diffusion framework with grouped layers, swappable streams, and other propositions that can process modalities beyond images and text. Through our experiments, we demonstrate that VD and its underlying framework have the following merits: a) VD handles all subtasks with competitive quality; b) VD initiates novel extensions and applications such as disentanglement of style and semantic, image-text dual-guided generation, etc.; c) Through these experiments and applications, VD provides more semantic insights of the generated outputs. Our code and models are open-sourced at https://github.com/SHI-Labs/Versatile-Diffusion.
Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs
Is vision good enough for language? Recent advancements in multimodal models primarily stem from the powerful reasoning abilities of large language models (LLMs). However, the visual component typically depends only on the instance-level contrastive language-image pre-training (CLIP). Our research reveals that the visual capabilities in recent multimodal LLMs (MLLMs) still exhibit systematic shortcomings. To understand the roots of these errors, we explore the gap between the visual embedding space of CLIP and vision-only self-supervised learning. We identify ''CLIP-blind pairs'' - images that CLIP perceives as similar despite their clear visual differences. With these pairs, we construct the Multimodal Visual Patterns (MMVP) benchmark. MMVP exposes areas where state-of-the-art systems, including GPT-4V, struggle with straightforward questions across nine basic visual patterns, often providing incorrect answers and hallucinated explanations. We further evaluate various CLIP-based vision-and-language models and found a notable correlation between visual patterns that challenge CLIP models and those problematic for multimodal LLMs. As an initial effort to address these issues, we propose a Mixture of Features (MoF) approach, demonstrating that integrating vision self-supervised learning features with MLLMs can significantly enhance their visual grounding capabilities. Together, our research suggests visual representation learning remains an open challenge, and accurate visual grounding is crucial for future successful multimodal systems.
Dynamic Typography: Bringing Words to Life
Text animation serves as an expressive medium, transforming static communication into dynamic experiences by infusing words with motion to evoke emotions, emphasize meanings, and construct compelling narratives. Crafting animations that are semantically aware poses significant challenges, demanding expertise in graphic design and animation. We present an automated text animation scheme, termed "Dynamic Typography", which combines two challenging tasks. It deforms letters to convey semantic meaning and infuses them with vibrant movements based on user prompts. Our technique harnesses vector graphics representations and an end-to-end optimization-based framework. This framework employs neural displacement fields to convert letters into base shapes and applies per-frame motion, encouraging coherence with the intended textual concept. Shape preservation techniques and perceptual loss regularization are employed to maintain legibility and structural integrity throughout the animation process. We demonstrate the generalizability of our approach across various text-to-video models and highlight the superiority of our end-to-end methodology over baseline methods, which might comprise separate tasks. Through quantitative and qualitative evaluations, we demonstrate the effectiveness of our framework in generating coherent text animations that faithfully interpret user prompts while maintaining readability. Our code is available at: https://animate-your-word.github.io/demo/.
ComFusion: Personalized Subject Generation in Multiple Specific Scenes From Single Image
Recent advancements in personalizing text-to-image (T2I) diffusion models have shown the capability to generate images based on personalized visual concepts using a limited number of user-provided examples. However, these models often struggle with maintaining high visual fidelity, particularly in manipulating scenes as defined by textual inputs. Addressing this, we introduce ComFusion, a novel approach that leverages pretrained models generating composition of a few user-provided subject images and predefined-text scenes, effectively fusing visual-subject instances with textual-specific scenes, resulting in the generation of high-fidelity instances within diverse scenes. ComFusion integrates a class-scene prior preservation regularization, which leverages composites the subject class and scene-specific knowledge from pretrained models to enhance generation fidelity. Additionally, ComFusion uses coarse generated images, ensuring they align effectively with both the instance image and scene texts. Consequently, ComFusion maintains a delicate balance between capturing the essence of the subject and maintaining scene fidelity.Extensive evaluations of ComFusion against various baselines in T2I personalization have demonstrated its qualitative and quantitative superiority.
Tell What You Hear From What You See -- Video to Audio Generation Through Text
The content of visual and audio scenes is multi-faceted such that a video can be paired with various audio and vice-versa. Thereby, in video-to-audio generation task, it is imperative to introduce steering approaches for controlling the generated audio. While Video-to-Audio generation is a well-established generative task, existing methods lack such controllability. In this work, we propose VATT, a multi-modal generative framework that takes a video and an optional text prompt as input, and generates audio and optional textual description of the audio. Such a framework has two advantages: i) Video-to-Audio generation process can be refined and controlled via text which complements the context of visual information, and ii) The model can suggest what audio to generate for the video by generating audio captions. VATT consists of two key modules: VATT Converter, a LLM that is fine-tuned for instructions and includes a projection layer that maps video features to the LLM vector space; and VATT Audio, a transformer that generates audio tokens from visual frames and from optional text prompt using iterative parallel decoding. The audio tokens are converted to a waveform by pretrained neural codec. Experiments show that when VATT is compared to existing video-to-audio generation methods in objective metrics, it achieves competitive performance when the audio caption is not provided. When the audio caption is provided as a prompt, VATT achieves even more refined performance (lowest KLD score of 1.41). Furthermore, subjective studies show that VATT Audio has been chosen as preferred generated audio than audio generated by existing methods. VATT enables controllable video-to-audio generation through text as well as suggesting text prompts for videos through audio captions, unlocking novel applications such as text-guided video-to-audio generation and video-to-audio captioning.
EMMA: Your Text-to-Image Diffusion Model Can Secretly Accept Multi-Modal Prompts
Recent advancements in image generation have enabled the creation of high-quality images from text conditions. However, when facing multi-modal conditions, such as text combined with reference appearances, existing methods struggle to balance multiple conditions effectively, typically showing a preference for one modality over others. To address this challenge, we introduce EMMA, a novel image generation model accepting multi-modal prompts built upon the state-of-the-art text-to-image (T2I) diffusion model, ELLA. EMMA seamlessly incorporates additional modalities alongside text to guide image generation through an innovative Multi-modal Feature Connector design, which effectively integrates textual and supplementary modal information using a special attention mechanism. By freezing all parameters in the original T2I diffusion model and only adjusting some additional layers, we reveal an interesting finding that the pre-trained T2I diffusion model can secretly accept multi-modal prompts. This interesting property facilitates easy adaptation to different existing frameworks, making EMMA a flexible and effective tool for producing personalized and context-aware images and even videos. Additionally, we introduce a strategy to assemble learned EMMA modules to produce images conditioned on multiple modalities simultaneously, eliminating the need for additional training with mixed multi-modal prompts. Extensive experiments demonstrate the effectiveness of EMMA in maintaining high fidelity and detail in generated images, showcasing its potential as a robust solution for advanced multi-modal conditional image generation tasks.
Social Biases through the Text-to-Image Generation Lens
Text-to-Image (T2I) generation is enabling new applications that support creators, designers, and general end users of productivity software by generating illustrative content with high photorealism starting from a given descriptive text as a prompt. Such models are however trained on massive amounts of web data, which surfaces the peril of potential harmful biases that may leak in the generation process itself. In this paper, we take a multi-dimensional approach to studying and quantifying common social biases as reflected in the generated images, by focusing on how occupations, personality traits, and everyday situations are depicted across representations of (perceived) gender, age, race, and geographical location. Through an extensive set of both automated and human evaluation experiments we present findings for two popular T2I models: DALLE-v2 and Stable Diffusion. Our results reveal that there exist severe occupational biases of neutral prompts majorly excluding groups of people from results for both models. Such biases can get mitigated by increasing the amount of specification in the prompt itself, although the prompting mitigation will not address discrepancies in image quality or other usages of the model or its representations in other scenarios. Further, we observe personality traits being associated with only a limited set of people at the intersection of race, gender, and age. Finally, an analysis of geographical location representations on everyday situations (e.g., park, food, weddings) shows that for most situations, images generated through default location-neutral prompts are closer and more similar to images generated for locations of United States and Germany.
MetaMorph: Multimodal Understanding and Generation via Instruction Tuning
In this work, we propose Visual-Predictive Instruction Tuning (VPiT) - a simple and effective extension to visual instruction tuning that enables a pretrained LLM to quickly morph into an unified autoregressive model capable of generating both text and visual tokens. VPiT teaches an LLM to predict discrete text tokens and continuous visual tokens from any input sequence of image and text data curated in an instruction-following format. Our empirical investigation reveals several intriguing properties of VPiT: (1) visual generation ability emerges as a natural byproduct of improved visual understanding, and can be unlocked efficiently with a small amount of generation data; (2) while we find understanding and generation to be mutually beneficial, understanding data contributes to both capabilities more effectively than generation data. Building upon these findings, we train our MetaMorph model and achieve competitive performance on both visual understanding and generation. In visual generation, MetaMorph can leverage the world knowledge and reasoning abilities gained from LLM pretraining, and overcome common failure modes exhibited by other generation models. Our results suggest that LLMs may have strong "prior" vision capabilities that can be efficiently adapted to both visual understanding and generation with a relatively simple instruction tuning process.
HEMM: Holistic Evaluation of Multimodal Foundation Models
Multimodal foundation models that can holistically process text alongside images, video, audio, and other sensory modalities are increasingly used in a variety of real-world applications. However, it is challenging to characterize and study progress in multimodal foundation models, given the range of possible modeling decisions, tasks, and domains. In this paper, we introduce Holistic Evaluation of Multimodal Models (HEMM) to systematically evaluate the capabilities of multimodal foundation models across a set of 3 dimensions: basic skills, information flow, and real-world use cases. Basic multimodal skills are internal abilities required to solve problems, such as learning interactions across modalities, fine-grained alignment, multi-step reasoning, and the ability to handle external knowledge. Information flow studies how multimodal content changes during a task through querying, translation, editing, and fusion. Use cases span domain-specific challenges introduced in real-world multimedia, affective computing, natural sciences, healthcare, and human-computer interaction applications. Through comprehensive experiments across the 30 tasks in HEMM, we (1) identify key dataset dimensions (e.g., basic skills, information flows, and use cases) that pose challenges to today's models, and (2) distill performance trends regarding how different modeling dimensions (e.g., scale, pre-training data, multimodal alignment, pre-training, and instruction tuning objectives) influence performance. Our conclusions regarding challenging multimodal interactions, use cases, and tasks requiring reasoning and external knowledge, the benefits of data and model scale, and the impacts of instruction tuning yield actionable insights for future work in multimodal foundation models.
TextBind: Multi-turn Interleaved Multimodal Instruction-following
Large language models with instruction-following abilities have revolutionized the field of artificial intelligence. These models show exceptional generalizability to tackle various real-world tasks through their natural language interfaces. However, their performance heavily relies on high-quality exemplar data, which is often difficult to obtain. This challenge is further exacerbated when it comes to multimodal instruction following. We introduce TextBind, an almost annotation-free framework for empowering larger language models with the multi-turn interleaved multimodal instruction-following capabilities. Our approach requires only image-caption pairs and generates multi-turn multimodal instruction-response conversations from a language model. We release our dataset, model, and demo to foster future research in the area of multimodal instruction following.
Personalized Visual Instruction Tuning
Recent advancements in multimodal large language models (MLLMs) have demonstrated significant progress; however, these models exhibit a notable limitation, which we refer to as "face blindness". Specifically, they can engage in general conversations but fail to conduct personalized dialogues targeting at specific individuals. This deficiency hinders the application of MLLMs in personalized settings, such as tailored visual assistants on mobile devices, or domestic robots that need to recognize members of the family. In this paper, we introduce Personalized Visual Instruction Tuning (PVIT), a novel data curation and training framework designed to enable MLLMs to identify target individuals within an image and engage in personalized and coherent dialogues. Our approach involves the development of a sophisticated pipeline that autonomously generates training data containing personalized conversations. This pipeline leverages the capabilities of various visual experts, image generation models, and (multi-modal) large language models. To evaluate the personalized potential of MLLMs, we present a benchmark called P-Bench, which encompasses various question types with different levels of difficulty. The experiments demonstrate a substantial personalized performance enhancement after fine-tuning with our curated dataset.
BUS:Efficient and Effective Vision-language Pre-training with Bottom-Up Patch Summarization
Vision Transformer (ViT) based Vision-Language Pre-training (VLP) models have demonstrated impressive performance in various tasks. However, the lengthy visual token sequences fed into ViT can lead to training inefficiency and ineffectiveness. Existing efforts address the challenge by either bottom-level patch extraction in the ViT backbone or top-level patch abstraction outside, not balancing training efficiency and effectiveness well. Inspired by text summarization in natural language processing, we propose a Bottom-Up Patch Summarization approach named BUS, coordinating bottom-level extraction and top-level abstraction to learn a concise summary of lengthy visual token sequences efficiently. Specifically, We incorporate a Text-Semantics-Aware Patch Selector (TSPS) into the ViT backbone to perform a coarse-grained visual token extraction and then attach a flexible Transformer-based Patch Abstraction Decoder (PAD) upon the backbone for top-level visual abstraction. This bottom-up collaboration enables our BUS to yield high training efficiency while maintaining or even improving effectiveness. We evaluate our approach on various visual-language understanding and generation tasks and show competitive downstream task performance while boosting the training efficiency by 50\%. Additionally, our model achieves state-of-the-art performance on many downstream tasks by increasing input image resolution without increasing computational costs over baselines.
Revisiting Text-to-Image Evaluation with Gecko: On Metrics, Prompts, and Human Ratings
While text-to-image (T2I) generative models have become ubiquitous, they do not necessarily generate images that align with a given prompt. While previous work has evaluated T2I alignment by proposing metrics, benchmarks, and templates for collecting human judgements, the quality of these components is not systematically measured. Human-rated prompt sets are generally small and the reliability of the ratings -- and thereby the prompt set used to compare models -- is not evaluated. We address this gap by performing an extensive study evaluating auto-eval metrics and human templates. We provide three main contributions: (1) We introduce a comprehensive skills-based benchmark that can discriminate models across different human templates. This skills-based benchmark categorises prompts into sub-skills, allowing a practitioner to pinpoint not only which skills are challenging, but at what level of complexity a skill becomes challenging. (2) We gather human ratings across four templates and four T2I models for a total of >100K annotations. This allows us to understand where differences arise due to inherent ambiguity in the prompt and where they arise due to differences in metric and model quality. (3) Finally, we introduce a new QA-based auto-eval metric that is better correlated with human ratings than existing metrics for our new dataset, across different human templates, and on TIFA160.
Multitask Vision-Language Prompt Tuning
Prompt Tuning, conditioning on task-specific learned prompt vectors, has emerged as a data-efficient and parameter-efficient method for adapting large pretrained vision-language models to multiple downstream tasks. However, existing approaches usually consider learning prompt vectors for each task independently from scratch, thereby failing to exploit the rich shareable knowledge across different vision-language tasks. In this paper, we propose multitask vision-language prompt tuning (MVLPT), which incorporates cross-task knowledge into prompt tuning for vision-language models. Specifically, (i) we demonstrate the effectiveness of learning a single transferable prompt from multiple source tasks to initialize the prompt for each target task; (ii) we show many target tasks can benefit each other from sharing prompt vectors and thus can be jointly learned via multitask prompt tuning. We benchmark the proposed MVLPT using three representative prompt tuning methods, namely text prompt tuning, visual prompt tuning, and the unified vision-language prompt tuning. Results in 20 vision tasks demonstrate that the proposed approach outperforms all single-task baseline prompt tuning methods, setting the new state-of-the-art on the few-shot ELEVATER benchmarks and cross-task generalization benchmarks. To understand where the cross-task knowledge is most effective, we also conduct a large-scale study on task transferability with 20 vision tasks in 400 combinations for each prompt tuning method. It shows that the most performant MVLPT for each prompt tuning method prefers different task combinations and many tasks can benefit each other, depending on their visual similarity and label similarity. Code is available at https://github.com/sIncerass/MVLPT.
Visual Chain of Thought: Bridging Logical Gaps with Multimodal Infillings
Recent advances in large language models elicit reasoning in a chain of thought that allows models to decompose problems in a human-like fashion. Though this paradigm improves multi-step reasoning ability in language models, it is limited by being unimodal and applied mainly to question-answering tasks. We claim that incorporating visual augmentation into reasoning is essential, especially for complex, imaginative tasks. Consequently, we introduce VCoT, a novel method that leverages chain of thought prompting with vision-language grounding to recursively bridge the logical gaps within sequential data. Our method uses visual guidance to generate synthetic multimodal infillings that add consistent and novel information to reduce the logical gaps for downstream tasks that can benefit from temporal reasoning, as well as provide interpretability into models' multi-step reasoning. We apply VCoT to the Visual Storytelling and WikiHow summarization datasets and demonstrate through human evaluation that VCoT offers novel and consistent synthetic data augmentation beating chain of thought baselines, which can be used to enhance downstream performance.