- Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense prediction tasks have been proposed and they show that the design of spatial attention is critical to their success in these tasks. In this work, we revisit the design of the spatial attention and demonstrate that a carefully-devised yet simple spatial attention mechanism performs favourably against the state-of-the-art schemes. As a result, we propose two vision transformer architectures, namely, Twins-PCPVT and Twins-SVT. Our proposed architectures are highly-efficient and easy to implement, only involving matrix multiplications that are highly optimized in modern deep learning frameworks. More importantly, the proposed architectures achieve excellent performance on a wide range of visual tasks, including image level classification as well as dense detection and segmentation. The simplicity and strong performance suggest that our proposed architectures may serve as stronger backbones for many vision tasks. Our code is released at https://github.com/Meituan-AutoML/Twins . 8 authors · Apr 28, 2021
- Non-Invasive Medical Digital Twins using Physics-Informed Self-Supervised Learning A digital twin is a virtual replica of a real-world physical phenomena that uses mathematical modeling to characterize and simulate its defining features. By constructing digital twins for disease processes, we can perform in-silico simulations that mimic patients' health conditions and counterfactual outcomes under hypothetical interventions in a virtual setting. This eliminates the need for invasive procedures or uncertain treatment decisions. In this paper, we propose a method to identify digital twin model parameters using only noninvasive patient health data. We approach the digital twin modeling as a composite inverse problem, and observe that its structure resembles pretraining and finetuning in self-supervised learning (SSL). Leveraging this, we introduce a physics-informed SSL algorithm that initially pretrains a neural network on the pretext task of solving the physical model equations. Subsequently, the model is trained to reconstruct low-dimensional health measurements from noninvasive modalities while being constrained by the physical equations learned in pretraining. We apply our method to identify digital twins of cardiac hemodynamics using noninvasive echocardiogram videos, and demonstrate its utility in unsupervised disease detection and in-silico clinical trials. 7 authors · Feb 29, 2024
- Digital Twins for Patient Care via Knowledge Graphs and Closed-Form Continuous-Time Liquid Neural Networks Digital twin technology has is anticipated to transform healthcare, enabling personalized medicines and support, earlier diagnoses, simulated treatment outcomes, and optimized surgical plans. Digital twins are readily gaining traction in industries like manufacturing, supply chain logistics, and civil infrastructure. Not in patient care, however. The challenge of modeling complex diseases with multimodal patient data and the computational complexities of analyzing it have stifled digital twin adoption in the biomedical vertical. Yet, these major obstacles can potentially be handled by approaching these models in a different way. This paper proposes a novel framework for addressing the barriers to clinical twin modeling created by computational costs and modeling complexities. We propose structuring patient health data as a knowledge graph and using closed-form continuous-time liquid neural networks, for real-time analytics. By synthesizing multimodal patient data and leveraging the flexibility and efficiency of closed form continuous time networks and knowledge graph ontologies, our approach enables real time insights, personalized medicine, early diagnosis and intervention, and optimal surgical planning. This novel approach provides a comprehensive and adaptable view of patient health along with real-time analytics, paving the way for digital twin simulations and other anticipated benefits in healthcare. 1 authors · Jul 8, 2023