- Attention-Based Neural Networks for Sentiment Attitude Extraction using Distant Supervision In the sentiment attitude extraction task, the aim is to identify <<attitudes>> -- sentiment relations between entities mentioned in text. In this paper, we provide a study on attention-based context encoders in the sentiment attitude extraction task. For this task, we adapt attentive context encoders of two types: (1) feature-based; (2) self-based. In our study, we utilize the corpus of Russian analytical texts RuSentRel and automatically constructed news collection RuAttitudes for enriching the training set. We consider the problem of attitude extraction as two-class (positive, negative) and three-class (positive, negative, neutral) classification tasks for whole documents. Our experiments with the RuSentRel corpus show that the three-class classification models, which employ the RuAttitudes corpus for training, result in 10% increase and extra 3% by F1, when model architectures include the attention mechanism. We also provide the analysis of attention weight distributions in dependence on the term type. 2 authors · Jun 23, 2020
- Extracting Sentiment Attitudes From Analytical Texts In this paper we present the RuSentRel corpus including analytical texts in the sphere of international relations. For each document we annotated sentiments from the author to mentioned named entities, and sentiments of relations between mentioned entities. In the current experiments, we considered the problem of extracting sentiment relations between entities for the whole documents as a three-class machine learning task. We experimented with conventional machine-learning methods (Naive Bayes, SVM, Random Forest). 2 authors · Aug 27, 2018
- Studying Attention Models in Sentiment Attitude Extraction Task In the sentiment attitude extraction task, the aim is to identify <<attitudes>> -- sentiment relations between entities mentioned in text. In this paper, we provide a study on attention-based context encoders in the sentiment attitude extraction task. For this task, we adapt attentive context encoders of two types: (i) feature-based; (ii) self-based. Our experiments with a corpus of Russian analytical texts RuSentRel illustrate that the models trained with attentive encoders outperform ones that were trained without them and achieve 1.5-5.9% increase by F1. We also provide the analysis of attention weight distributions in dependence on the term type. 2 authors · Jun 20, 2020