new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 3

RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture

There are two common ways in which developers are incorporating proprietary and domain-specific data when building applications of Large Language Models (LLMs): Retrieval-Augmented Generation (RAG) and Fine-Tuning. RAG augments the prompt with the external data, while fine-Tuning incorporates the additional knowledge into the model itself. However, the pros and cons of both approaches are not well understood. In this paper, we propose a pipeline for fine-tuning and RAG, and present the tradeoffs of both for multiple popular LLMs, including Llama2-13B, GPT-3.5, and GPT-4. Our pipeline consists of multiple stages, including extracting information from PDFs, generating questions and answers, using them for fine-tuning, and leveraging GPT-4 for evaluating the results. We propose metrics to assess the performance of different stages of the RAG and fine-Tuning pipeline. We conduct an in-depth study on an agricultural dataset. Agriculture as an industry has not seen much penetration of AI, and we study a potentially disruptive application - what if we could provide location-specific insights to a farmer? Our results show the effectiveness of our dataset generation pipeline in capturing geographic-specific knowledge, and the quantitative and qualitative benefits of RAG and fine-tuning. We see an accuracy increase of over 6 p.p. when fine-tuning the model and this is cumulative with RAG, which increases accuracy by 5 p.p. further. In one particular experiment, we also demonstrate that the fine-tuned model leverages information from across geographies to answer specific questions, increasing answer similarity from 47% to 72%. Overall, the results point to how systems built using LLMs can be adapted to respond and incorporate knowledge across a dimension that is critical for a specific industry, paving the way for further applications of LLMs in other industrial domains.

KramaBench: A Benchmark for AI Systems on Data-to-Insight Pipelines over Data Lakes

Constructing real-world data-to-insight pipelines often involves data extraction from data lakes, data integration across heterogeneous data sources, and diverse operations from data cleaning to analysis. The design and implementation of data science pipelines require domain knowledge, technical expertise, and even project-specific insights. AI systems have shown remarkable reasoning, coding, and understanding capabilities. However, it remains unclear to what extent these capabilities translate into successful design and execution of such complex pipelines. We introduce KRAMABENCH: a benchmark composed of 104 manually-curated real-world data science pipelines spanning 1700 data files from 24 data sources in 6 different domains. We show that these pipelines test the end-to-end capabilities of AI systems on data processing, requiring data discovery, wrangling and cleaning, efficient processing, statistical reasoning, and orchestrating data processing steps given a high-level task. Our evaluation tests 5 general models and 3 code generation models using our reference framework, DS-GURU, which instructs the AI model to decompose a question into a sequence of subtasks, reason through each step, and synthesize Python code that implements the proposed design. Our results on KRAMABENCH show that, although the models are sufficiently capable of solving well-specified data science code generation tasks, when extensive data processing and domain knowledge are required to construct real-world data science pipelines, existing out-of-box models fall short. Progress on KramaBench represents crucial steps towards developing autonomous data science agents for real-world applications. Our code, reference framework, and data are available at https://github.com/mitdbg/KramaBench.

ELT-Bench: An End-to-End Benchmark for Evaluating AI Agents on ELT Pipelines

Practitioners are increasingly turning to Extract-Load-Transform (ELT) pipelines with the widespread adoption of cloud data warehouses. However, designing these pipelines often involves significant manual work to ensure correctness. Recent advances in AI-based methods, which have shown strong capabilities in data tasks, such as text-to-SQL, present an opportunity to alleviate manual efforts in developing ELT pipelines. Unfortunately, current benchmarks in data engineering only evaluate isolated tasks, such as using data tools and writing data transformation queries, leaving a significant gap in evaluating AI agents for generating end-to-end ELT pipelines. To fill this gap, we introduce ELT-Bench, an end-to-end benchmark designed to assess the capabilities of AI agents to build ELT pipelines. ELT-Bench consists of 100 pipelines, including 835 source tables and 203 data models across various domains. By simulating realistic scenarios involving the integration of diverse data sources and the use of popular data tools, ELT-Bench evaluates AI agents' abilities in handling complex data engineering workflows. AI agents must interact with databases and data tools, write code and SQL queries, and orchestrate every pipeline stage. We evaluate two representative code agent frameworks, Spider-Agent and SWE-Agent, using six popular Large Language Models (LLMs) on ELT-Bench. The highest-performing agent, Spider-Agent Claude-3.7-Sonnet with extended thinking, correctly generates only 3.9% of data models, with an average cost of $4.30 and 89.3 steps per pipeline. Our experimental results demonstrate the challenges of ELT-Bench and highlight the need for a more advanced AI agent to reduce manual effort in ELT workflows. Our code and data are available at https://github.com/uiuc-kang-lab/ELT-Bench.

On building machine learning pipelines for Android malware detection: a procedural survey of practices, challenges and opportunities

As the smartphone market leader, Android has been a prominent target for malware attacks. The number of malicious applications (apps) identified for it has increased continually over the past decade, creating an immense challenge for all parties involved. For market holders and researchers, in particular, the large number of samples has made manual malware detection unfeasible, leading to an influx of research that investigate Machine Learning (ML) approaches to automate this process. However, while some of the proposed approaches achieve high performance, rapidly evolving Android malware has made them unable to maintain their accuracy over time. This has created a need in the community to conduct further research, and build more flexible ML pipelines. Doing so, however, is currently hindered by a lack of systematic overview of the existing literature, to learn from and improve upon the existing solutions. Existing survey papers often focus only on parts of the ML process (e.g., data collection or model deployment), while omitting other important stages, such as model evaluation and explanation. In this paper, we address this problem with a review of 42 highly-cited papers, spanning a decade of research (from 2011 to 2021). We introduce a novel procedural taxonomy of the published literature, covering how they have used ML algorithms, what features they have engineered, which dimensionality reduction techniques they have employed, what datasets they have employed for training, and what their evaluation and explanation strategies are. Drawing from this taxonomy, we also identify gaps in knowledge and provide ideas for improvement and future work.

Rethinking Privacy in Machine Learning Pipelines from an Information Flow Control Perspective

Modern machine learning systems use models trained on ever-growing corpora. Typically, metadata such as ownership, access control, or licensing information is ignored during training. Instead, to mitigate privacy risks, we rely on generic techniques such as dataset sanitization and differentially private model training, with inherent privacy/utility trade-offs that hurt model performance. Moreover, these techniques have limitations in scenarios where sensitive information is shared across multiple participants and fine-grained access control is required. By ignoring metadata, we therefore miss an opportunity to better address security, privacy, and confidentiality challenges. In this paper, we take an information flow control perspective to describe machine learning systems, which allows us to leverage metadata such as access control policies and define clear-cut privacy and confidentiality guarantees with interpretable information flows. Under this perspective, we contrast two different approaches to achieve user-level non-interference: 1) fine-tuning per-user models, and 2) retrieval augmented models that access user-specific datasets at inference time. We compare these two approaches to a trivially non-interfering zero-shot baseline using a public model and to a baseline that fine-tunes this model on the whole corpus. We evaluate trained models on two datasets of scientific articles and demonstrate that retrieval augmented architectures deliver the best utility, scalability, and flexibility while satisfying strict non-interference guarantees.

DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines

The ML community is rapidly exploring techniques for prompting language models (LMs) and for stacking them into pipelines that solve complex tasks. Unfortunately, existing LM pipelines are typically implemented using hard-coded "prompt templates", i.e. lengthy strings discovered via trial and error. Toward a more systematic approach for developing and optimizing LM pipelines, we introduce DSPy, a programming model that abstracts LM pipelines as text transformation graphs, i.e. imperative computational graphs where LMs are invoked through declarative modules. DSPy modules are parameterized, meaning they can learn (by creating and collecting demonstrations) how to apply compositions of prompting, finetuning, augmentation, and reasoning techniques. We design a compiler that will optimize any DSPy pipeline to maximize a given metric. We conduct two case studies, showing that succinct DSPy programs can express and optimize sophisticated LM pipelines that reason about math word problems, tackle multi-hop retrieval, answer complex questions, and control agent loops. Within minutes of compiling, a few lines of DSPy allow GPT-3.5 and llama2-13b-chat to self-bootstrap pipelines that outperform standard few-shot prompting (generally by over 25% and 65%, respectively) and pipelines with expert-created demonstrations (by up to 5-46% and 16-40%, respectively). On top of that, DSPy programs compiled to open and relatively small LMs like 770M-parameter T5 and llama2-13b-chat are competitive with approaches that rely on expert-written prompt chains for proprietary GPT-3.5. DSPy is available at https://github.com/stanfordnlp/dspy

The Impact of Hyperparameters on Large Language Model Inference Performance: An Evaluation of vLLM and HuggingFace Pipelines

The recent surge of open-source large language models (LLMs) enables developers to create AI-based solutions while maintaining control over aspects such as privacy and compliance, thereby providing governance and ownership of the model deployment process. To utilize these LLMs, inference engines are needed. These engines load the model's weights onto available resources, such as GPUs, and process queries to generate responses. The speed of inference, or performance, of the LLM, is critical for real-time applications, as it computes millions or billions of floating point operations per inference. Recently, advanced inference engines such as vLLM have emerged, incorporating novel mechanisms such as efficient memory management to achieve state-of-the-art performance. In this paper, we analyze the performance, particularly the throughput (tokens generated per unit of time), of 20 LLMs using two inference libraries: vLLM and HuggingFace's pipelines. We investigate how various hyperparameters, which developers must configure, influence inference performance. Our results reveal that throughput landscapes are irregular, with distinct peaks, highlighting the importance of hyperparameter optimization to achieve maximum performance. We also show that applying hyperparameter optimization when upgrading or downgrading the GPU model used for inference can improve throughput from HuggingFace pipelines by an average of 9.16% and 13.7%, respectively.

All You Need is RAW: Defending Against Adversarial Attacks with Camera Image Pipelines

Existing neural networks for computer vision tasks are vulnerable to adversarial attacks: adding imperceptible perturbations to the input images can fool these methods to make a false prediction on an image that was correctly predicted without the perturbation. Various defense methods have proposed image-to-image mapping methods, either including these perturbations in the training process or removing them in a preprocessing denoising step. In doing so, existing methods often ignore that the natural RGB images in today's datasets are not captured but, in fact, recovered from RAW color filter array captures that are subject to various degradations in the capture. In this work, we exploit this RAW data distribution as an empirical prior for adversarial defense. Specifically, we proposed a model-agnostic adversarial defensive method, which maps the input RGB images to Bayer RAW space and back to output RGB using a learned camera image signal processing (ISP) pipeline to eliminate potential adversarial patterns. The proposed method acts as an off-the-shelf preprocessing module and, unlike model-specific adversarial training methods, does not require adversarial images to train. As a result, the method generalizes to unseen tasks without additional retraining. Experiments on large-scale datasets (e.g., ImageNet, COCO) for different vision tasks (e.g., classification, semantic segmentation, object detection) validate that the method significantly outperforms existing methods across task domains.

GenCompositor: Generative Video Compositing with Diffusion Transformer

Video compositing combines live-action footage to create video production, serving as a crucial technique in video creation and film production. Traditional pipelines require intensive labor efforts and expert collaboration, resulting in lengthy production cycles and high manpower costs. To address this issue, we automate this process with generative models, called generative video compositing. This new task strives to adaptively inject identity and motion information of foreground video to the target video in an interactive manner, allowing users to customize the size, motion trajectory, and other attributes of the dynamic elements added in final video. Specifically, we designed a novel Diffusion Transformer (DiT) pipeline based on its intrinsic properties. To maintain consistency of the target video before and after editing, we revised a light-weight DiT-based background preservation branch with masked token injection. As to inherit dynamic elements from other sources, a DiT fusion block is proposed using full self-attention, along with a simple yet effective foreground augmentation for training. Besides, for fusing background and foreground videos with different layouts based on user control, we developed a novel position embedding, named Extended Rotary Position Embedding (ERoPE). Finally, we curated a dataset comprising 61K sets of videos for our new task, called VideoComp. This data includes complete dynamic elements and high-quality target videos. Experiments demonstrate that our method effectively realizes generative video compositing, outperforming existing possible solutions in fidelity and consistency.

Benchmarking and Building Long-Context Retrieval Models with LoCo and M2-BERT

Retrieval pipelines-an integral component of many machine learning systems-perform poorly in domains where documents are long (e.g., 10K tokens or more) and where identifying the relevant document requires synthesizing information across the entire text. Developing long-context retrieval encoders suitable for these domains raises three challenges: (1) how to evaluate long-context retrieval performance, (2) how to pretrain a base language model to represent both short contexts (corresponding to queries) and long contexts (corresponding to documents), and (3) how to fine-tune this model for retrieval under the batch size limitations imposed by GPU memory constraints. To address these challenges, we first introduce LoCoV1, a novel 12 task benchmark constructed to measure long-context retrieval where chunking is not possible or not effective. We next present the M2-BERT retrieval encoder, an 80M parameter state-space encoder model built from the Monarch Mixer architecture, capable of scaling to documents up to 32K tokens long. We describe a pretraining data mixture which allows this encoder to process both short and long context sequences, and a finetuning approach that adapts this base model to retrieval with only single-sample batches. Finally, we validate the M2-BERT retrieval encoder on LoCoV1, finding that it outperforms competitive Transformer-based models by at least 23.3 points, despite containing upwards of 90x fewer parameters.

ACTRESS: Active Retraining for Semi-supervised Visual Grounding

Semi-Supervised Visual Grounding (SSVG) is a new challenge for its sparse labeled data with the need for multimodel understanding. A previous study, RefTeacher, makes the first attempt to tackle this task by adopting the teacher-student framework to provide pseudo confidence supervision and attention-based supervision. However, this approach is incompatible with current state-of-the-art visual grounding models, which follow the Transformer-based pipeline. These pipelines directly regress results without region proposals or foreground binary classification, rendering them unsuitable for fitting in RefTeacher due to the absence of confidence scores. Furthermore, the geometric difference in teacher and student inputs, stemming from different data augmentations, induces natural misalignment in attention-based constraints. To establish a compatible SSVG framework, our paper proposes the ACTive REtraining approach for Semi-Supervised Visual Grounding, abbreviated as ACTRESS. Initially, the model is enhanced by incorporating an additional quantized detection head to expose its detection confidence. Building upon this, ACTRESS consists of an active sampling strategy and a selective retraining strategy. The active sampling strategy iteratively selects high-quality pseudo labels by evaluating three crucial aspects: Faithfulness, Robustness, and Confidence, optimizing the utilization of unlabeled data. The selective retraining strategy retrains the model with periodic re-initialization of specific parameters, facilitating the model's escape from local minima. Extensive experiments demonstrates our superior performance on widely-used benchmark datasets.

Rethinking pose estimation in crowds: overcoming the detection information-bottleneck and ambiguity

Frequent interactions between individuals are a fundamental challenge for pose estimation algorithms. Current pipelines either use an object detector together with a pose estimator (top-down approach), or localize all body parts first and then link them to predict the pose of individuals (bottom-up). Yet, when individuals closely interact, top-down methods are ill-defined due to overlapping individuals, and bottom-up methods often falsely infer connections to distant body parts. Thus, we propose a novel pipeline called bottom-up conditioned top-down pose estimation (BUCTD) that combines the strengths of bottom-up and top-down methods. Specifically, we propose to use a bottom-up model as the detector, which in addition to an estimated bounding box provides a pose proposal that is fed as condition to an attention-based top-down model. We demonstrate the performance and efficiency of our approach on animal and human pose estimation benchmarks. On CrowdPose and OCHuman, we outperform previous state-of-the-art models by a significant margin. We achieve 78.5 AP on CrowdPose and 47.2 AP on OCHuman, an improvement of 8.6% and 4.9% over the prior art, respectively. Furthermore, we show that our method has excellent performance on non-crowded datasets such as COCO, and strongly improves the performance on multi-animal benchmarks involving mice, fish and monkeys.

Mobile-Agent-v3: Foundamental Agents for GUI Automation

This paper introduces GUI-Owl, a foundational GUI agent model that achieves state-of-the-art performance among open-source end-to-end models on ten GUI benchmarks across desktop and mobile environments, covering grounding, question answering, planning, decision-making, and procedural knowledge. GUI-Owl-7B achieves 66.4 on AndroidWorld and 29.4 on OSWorld. Building on this, we propose Mobile-Agent-v3, a general-purpose GUI agent framework that further improves performance to 73.3 on AndroidWorld and 37.7 on OSWorld, setting a new state-of-the-art for open-source GUI agent frameworks. GUI-Owl incorporates three key innovations: (1) Large-scale Environment Infrastructure: a cloud-based virtual environment spanning Android, Ubuntu, macOS, and Windows, enabling our Self-Evolving GUI Trajectory Production framework. This generates high-quality interaction data via automated query generation and correctness validation, leveraging GUI-Owl to refine trajectories iteratively, forming a self-improving loop. It supports diverse data pipelines and reduces manual annotation. (2) Diverse Foundational Agent Capabilities: by integrating UI grounding, planning, action semantics, and reasoning patterns, GUI-Owl supports end-to-end decision-making and can act as a modular component in multi-agent systems. (3) Scalable Environment RL: we develop a scalable reinforcement learning framework with fully asynchronous training for real-world alignment. We also introduce Trajectory-aware Relative Policy Optimization (TRPO) for online RL, achieving 34.9 on OSWorld. GUI-Owl and Mobile-Agent-v3 are open-sourced at https://github.com/X-PLUG/MobileAgent.

OVO-Bench: How Far is Your Video-LLMs from Real-World Online Video Understanding?

Temporal Awareness, the ability to reason dynamically based on the timestamp when a question is raised, is the key distinction between offline and online video LLMs. Unlike offline models, which rely on complete videos for static, post hoc analysis, online models process video streams incrementally and dynamically adapt their responses based on the timestamp at which the question is posed. Despite its significance, temporal awareness has not been adequately evaluated in existing benchmarks. To fill this gap, we present OVO-Bench (Online-VideO-Benchmark), a novel video benchmark that emphasizes the importance of timestamps for advanced online video understanding capability benchmarking. OVO-Bench evaluates the ability of video LLMs to reason and respond to events occurring at specific timestamps under three distinct scenarios: (1) Backward tracing: trace back to past events to answer the question. (2) Real-time understanding: understand and respond to events as they unfold at the current timestamp. (3) Forward active responding: delay the response until sufficient future information becomes available to answer the question accurately. OVO-Bench comprises 12 tasks, featuring 644 unique videos and approximately human-curated 2,800 fine-grained meta-annotations with precise timestamps. We combine automated generation pipelines with human curation. With these high-quality samples, we further developed an evaluation pipeline to systematically query video LLMs along the video timeline. Evaluations of nine Video-LLMs reveal that, despite advancements on traditional benchmarks, current models struggle with online video understanding, showing a significant gap compared to human agents. We hope OVO-Bench will drive progress in video LLMs and inspire future research in online video reasoning. Our benchmark and code can be accessed at https://github.com/JoeLeelyf/OVO-Bench.

Adversarial Data Collection: Human-Collaborative Perturbations for Efficient and Robust Robotic Imitation Learning

The pursuit of data efficiency, where quality outweighs quantity, has emerged as a cornerstone in robotic manipulation, especially given the high costs associated with real-world data collection. We propose that maximizing the informational density of individual demonstrations can dramatically reduce reliance on large-scale datasets while improving task performance. To this end, we introduce Adversarial Data Collection, a Human-in-the-Loop (HiL) framework that redefines robotic data acquisition through real-time, bidirectional human-environment interactions. Unlike conventional pipelines that passively record static demonstrations, ADC adopts a collaborative perturbation paradigm: during a single episode, an adversarial operator dynamically alters object states, environmental conditions, and linguistic commands, while the tele-operator adaptively adjusts actions to overcome these evolving challenges. This process compresses diverse failure-recovery behaviors, compositional task variations, and environmental perturbations into minimal demonstrations. Our experiments demonstrate that ADC-trained models achieve superior compositional generalization to unseen task instructions, enhanced robustness to perceptual perturbations, and emergent error recovery capabilities. Strikingly, models trained with merely 20% of the demonstration volume collected through ADC significantly outperform traditional approaches using full datasets. These advances bridge the gap between data-centric learning paradigms and practical robotic deployment, demonstrating that strategic data acquisition, not merely post-hoc processing, is critical for scalable, real-world robot learning. Additionally, we are curating a large-scale ADC-Robotics dataset comprising real-world manipulation tasks with adversarial perturbations. This benchmark will be open-sourced to facilitate advancements in robotic imitation learning.

In-Context Pretraining: Language Modeling Beyond Document Boundaries

Large language models (LMs) are currently trained to predict tokens given document prefixes, enabling them to directly perform long-form generation and prompting-style tasks which can be reduced to document completion. Existing pretraining pipelines train LMs by concatenating random sets of short documents to create input contexts but the prior documents provide no signal for predicting the next document. We instead present In-Context Pretraining, a new approach where language models are pretrained on a sequence of related documents, thereby explicitly encouraging them to read and reason across document boundaries. We can do In-Context Pretraining by simply changing the document ordering so that each context contains related documents, and directly applying existing pretraining pipelines. However, this document sorting problem is challenging. There are billions of documents and we would like the sort to maximize contextual similarity for every document without repeating any data. To do this, we introduce approximate algorithms for finding related documents with efficient nearest neighbor search and constructing coherent input contexts with a graph traversal algorithm. Our experiments show In-Context Pretraining offers a simple and scalable approach to significantly enhance LMs'performance: we see notable improvements in tasks that require more complex contextual reasoning, including in-context learning (+8%), reading comprehension (+15%), faithfulness to previous contexts (+16%), long-context reasoning (+5%), and retrieval augmentation (+9%).

Unifying Multimodal Retrieval via Document Screenshot Embedding

In the real world, documents are organized in different formats and varied modalities. Traditional retrieval pipelines require tailored document parsing techniques and content extraction modules to prepare input for indexing. This process is tedious, prone to errors, and has information loss. To this end, we propose Document Screenshot Embedding} (DSE), a novel retrieval paradigm that regards document screenshots as a unified input format, which does not require any content extraction preprocess and preserves all the information in a document (e.g., text, image and layout). DSE leverages a large vision-language model to directly encode document screenshots into dense representations for retrieval. To evaluate our method, we first craft the dataset of Wiki-SS, a 1.3M Wikipedia web page screenshots as the corpus to answer the questions from the Natural Questions dataset. In such a text-intensive document retrieval setting, DSE shows competitive effectiveness compared to other text retrieval methods relying on parsing. For example, DSE outperforms BM25 by 17 points in top-1 retrieval accuracy. Additionally, in a mixed-modality task of slide retrieval, DSE significantly outperforms OCR text retrieval methods by over 15 points in nDCG@10. These experiments show that DSE is an effective document retrieval paradigm for diverse types of documents. Model checkpoints, code, and Wiki-SS collection will be released.

SeqTex: Generate Mesh Textures in Video Sequence

Training native 3D texture generative models remains a fundamental yet challenging problem, largely due to the limited availability of large-scale, high-quality 3D texture datasets. This scarcity hinders generalization to real-world scenarios. To address this, most existing methods finetune foundation image generative models to exploit their learned visual priors. However, these approaches typically generate only multi-view images and rely on post-processing to produce UV texture maps -- an essential representation in modern graphics pipelines. Such two-stage pipelines often suffer from error accumulation and spatial inconsistencies across the 3D surface. In this paper, we introduce SeqTex, a novel end-to-end framework that leverages the visual knowledge encoded in pretrained video foundation models to directly generate complete UV texture maps. Unlike previous methods that model the distribution of UV textures in isolation, SeqTex reformulates the task as a sequence generation problem, enabling the model to learn the joint distribution of multi-view renderings and UV textures. This design effectively transfers the consistent image-space priors from video foundation models into the UV domain. To further enhance performance, we propose several architectural innovations: a decoupled multi-view and UV branch design, geometry-informed attention to guide cross-domain feature alignment, and adaptive token resolution to preserve fine texture details while maintaining computational efficiency. Together, these components allow SeqTex to fully utilize pretrained video priors and synthesize high-fidelity UV texture maps without the need for post-processing. Extensive experiments show that SeqTex achieves state-of-the-art performance on both image-conditioned and text-conditioned 3D texture generation tasks, with superior 3D consistency, texture-geometry alignment, and real-world generalization.

Demystifying the Visual Quality Paradox in Multimodal Large Language Models

Recent Multimodal Large Language Models (MLLMs) excel on benchmark vision-language tasks, yet little is known about how input visual quality shapes their responses. Does higher perceptual quality of images already translate to better MLLM understanding? We conduct the first systematic study spanning leading MLLMs and a suite of vision-language benchmarks, applying controlled degradations and stylistic shifts to each image. Surprisingly, we uncover a visual-quality paradox: model, task, and even individual-instance performance can improve when images deviate from human-perceived fidelity. Off-the-shelf restoration pipelines fail to reconcile these idiosyncratic preferences. To close the gap, we introduce Visual-Quality Test-Time Tuning (VQ-TTT)-a lightweight adaptation module that: (1) inserts a learnable, low-rank kernel before the frozen vision encoder to modulate frequency content; and (2) fine-tunes only shallow vision-encoder layers via LoRA. VQ-TTT dynamically adjusts each input image in a single forward pass, aligning it with task-specific model preferences. Across the evaluated MLLMs and all datasets, VQ-TTT lifts significant average accuracy, with no external models, cached features, or extra training data. These findings redefine ``better'' visual inputs for MLLMs and highlight the need for adaptive, rather than universally ``clean'', imagery, in the new era of AI being the main data customer.

Mem4Nav: Boosting Vision-and-Language Navigation in Urban Environments with a Hierarchical Spatial-Cognition Long-Short Memory System

Vision-and-Language Navigation (VLN) in large-scale urban environments requires embodied agents to ground linguistic instructions in complex scenes and recall relevant experiences over extended time horizons. Prior modular pipelines offer interpretability but lack unified memory, while end-to-end (M)LLM agents excel at fusing vision and language yet remain constrained by fixed context windows and implicit spatial reasoning. We introduce Mem4Nav, a hierarchical spatial-cognition long-short memory system that can augment any VLN backbone. Mem4Nav fuses a sparse octree for fine-grained voxel indexing with a semantic topology graph for high-level landmark connectivity, storing both in trainable memory tokens embedded via a reversible Transformer. Long-term memory (LTM) compresses and retains historical observations at both octree and graph nodes, while short-term memory (STM) caches recent multimodal entries in relative coordinates for real-time obstacle avoidance and local planning. At each step, STM retrieval sharply prunes dynamic context, and, when deeper history is needed, LTM tokens are decoded losslessly to reconstruct past embeddings. Evaluated on Touchdown and Map2Seq across three backbones (modular, state-of-the-art VLN with prompt-based LLM, and state-of-the-art VLN with strided-attention MLLM), Mem4Nav yields 7-13 pp gains in Task Completion, sufficient SPD reduction, and >10 pp nDTW improvement. Ablations confirm the indispensability of both the hierarchical map and dual memory modules. Our codes are open-sourced via https://github.com/tsinghua-fib-lab/Mem4Nav.

Where's the Point? Self-Supervised Multilingual Punctuation-Agnostic Sentence Segmentation

Many NLP pipelines split text into sentences as one of the crucial preprocessing steps. Prior sentence segmentation tools either rely on punctuation or require a considerable amount of sentence-segmented training data: both central assumptions might fail when porting sentence segmenters to diverse languages on a massive scale. In this work, we thus introduce a multilingual punctuation-agnostic sentence segmentation method, currently covering 85 languages, trained in a self-supervised fashion on unsegmented text, by making use of newline characters which implicitly perform segmentation into paragraphs. We further propose an approach that adapts our method to the segmentation in a given corpus by using only a small number (64-256) of sentence-segmented examples. The main results indicate that our method outperforms all the prior best sentence-segmentation tools by an average of 6.1% F1 points. Furthermore, we demonstrate that proper sentence segmentation has a point: the use of a (powerful) sentence segmenter makes a considerable difference for a downstream application such as machine translation (MT). By using our method to match sentence segmentation to the segmentation used during training of MT models, we achieve an average improvement of 2.3 BLEU points over the best prior segmentation tool, as well as massive gains over a trivial segmenter that splits text into equally sized blocks.

Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT

In the field of medical sciences, reliable detection and classification of brain tumors from images remains a formidable challenge due to the rarity of tumors within the population of patients. Therefore, the ability to detect tumors in anomaly scenarios is paramount for ensuring timely interventions and improved patient outcomes. This study addresses the issue by leveraging deep learning (DL) techniques to detect and classify brain tumors in challenging situations. The curated data set from the National Brain Mapping Lab (NBML) comprises 81 patients, including 30 Tumor cases and 51 Normal cases. The detection and classification pipelines are separated into two consecutive tasks. The detection phase involved comprehensive data analysis and pre-processing to modify the number of image samples and the number of patients of each class to anomaly distribution (9 Normal per 1 Tumor) to comply with real world scenarios. Next, in addition to common evaluation metrics for the testing, we employed a novel performance evaluation method called Patient to Patient (PTP), focusing on the realistic evaluation of the model. In the detection phase, we fine-tuned a YOLOv8n detection model to detect the tumor region. Subsequent testing and evaluation yielded competitive performance both in Common Evaluation Metrics and PTP metrics. Furthermore, using the Data Efficient Image Transformer (DeiT) module, we distilled a Vision Transformer (ViT) model from a fine-tuned ResNet152 as a teacher in the classification phase. This approach demonstrates promising strides in reliable tumor detection and classification, offering potential advancements in tumor diagnosis for real-world medical imaging scenarios.

Gen2Sim: Scaling up Robot Learning in Simulation with Generative Models

Generalist robot manipulators need to learn a wide variety of manipulation skills across diverse environments. Current robot training pipelines rely on humans to provide kinesthetic demonstrations or to program simulation environments and to code up reward functions for reinforcement learning. Such human involvement is an important bottleneck towards scaling up robot learning across diverse tasks and environments. We propose Generation to Simulation (Gen2Sim), a method for scaling up robot skill learning in simulation by automating generation of 3D assets, task descriptions, task decompositions and reward functions using large pre-trained generative models of language and vision. We generate 3D assets for simulation by lifting open-world 2D object-centric images to 3D using image diffusion models and querying LLMs to determine plausible physics parameters. Given URDF files of generated and human-developed assets, we chain-of-thought prompt LLMs to map these to relevant task descriptions, temporal decompositions, and corresponding python reward functions for reinforcement learning. We show Gen2Sim succeeds in learning policies for diverse long horizon tasks, where reinforcement learning with non temporally decomposed reward functions fails. Gen2Sim provides a viable path for scaling up reinforcement learning for robot manipulators in simulation, both by diversifying and expanding task and environment development, and by facilitating the discovery of reinforcement-learned behaviors through temporal task decomposition in RL. Our work contributes hundreds of simulated assets, tasks and demonstrations, taking a step towards fully autonomous robotic manipulation skill acquisition in simulation.

URPO: A Unified Reward & Policy Optimization Framework for Large Language Models

Large-scale alignment pipelines typically pair a policy model with a separately trained reward model whose parameters remain frozen during reinforcement learning (RL). This separation creates a complex, resource-intensive pipeline and suffers from a performance ceiling due to a static reward signal. We propose a novel framework, Unified Reward & Policy Optimization (URPO), that unifies instruction-following ("player") and reward modeling ("referee") within a single model and a single training phase. Our method recasts all alignment data-including preference pairs, verifiable reasoning, and open-ended instructions-into a unified generative format optimized by a single Group-Relative Policy Optimization (GRPO) loop. This enables the model to learn from ground-truth preferences and verifiable logic while simultaneously generating its own rewards for open-ended tasks. Experiments on the Qwen2.5-7B model demonstrate URPO's superiority. Our unified model significantly outperforms a strong baseline using a separate generative reward model, boosting the instruction-following score on AlpacaEval from 42.24 to 44.84 and the composite reasoning average from 32.66 to 35.66. Furthermore, URPO cultivates a superior internal evaluator as a byproduct of training, achieving a RewardBench score of 85.15 and surpassing the dedicated reward model it replaces (83.55). By eliminating the need for a separate reward model and fostering a co-evolutionary dynamic between generation and evaluation, URPO presents a simpler, more efficient, and more effective path towards robustly aligned language models.

Review of Feed-forward 3D Reconstruction: From DUSt3R to VGGT

3D reconstruction, which aims to recover the dense three-dimensional structure of a scene, is a cornerstone technology for numerous applications, including augmented/virtual reality, autonomous driving, and robotics. While traditional pipelines like Structure from Motion (SfM) and Multi-View Stereo (MVS) achieve high precision through iterative optimization, they are limited by complex workflows, high computational cost, and poor robustness in challenging scenarios like texture-less regions. Recently, deep learning has catalyzed a paradigm shift in 3D reconstruction. A new family of models, exemplified by DUSt3R, has pioneered a feed-forward approach. These models employ a unified deep network to jointly infer camera poses and dense geometry directly from an Unconstrained set of images in a single forward pass. This survey provides a systematic review of this emerging domain. We begin by dissecting the technical framework of these feed-forward models, including their Transformer-based correspondence modeling, joint pose and geometry regression mechanisms, and strategies for scaling from two-view to multi-view scenarios. To highlight the disruptive nature of this new paradigm, we contrast it with both traditional pipelines and earlier learning-based methods like MVSNet. Furthermore, we provide an overview of relevant datasets and evaluation metrics. Finally, we discuss the technology's broad application prospects and identify key future challenges and opportunities, such as model accuracy and scalability, and handling dynamic scenes.

EchoShot: Multi-Shot Portrait Video Generation

Video diffusion models substantially boost the productivity of artistic workflows with high-quality portrait video generative capacity. However, prevailing pipelines are primarily constrained to single-shot creation, while real-world applications urge for multiple shots with identity consistency and flexible content controllability. In this work, we propose EchoShot, a native and scalable multi-shot framework for portrait customization built upon a foundation video diffusion model. To start with, we propose shot-aware position embedding mechanisms within video diffusion transformer architecture to model inter-shot variations and establish intricate correspondence between multi-shot visual content and their textual descriptions. This simple yet effective design enables direct training on multi-shot video data without introducing additional computational overhead. To facilitate model training within multi-shot scenario, we construct PortraitGala, a large-scale and high-fidelity human-centric video dataset featuring cross-shot identity consistency and fine-grained captions such as facial attributes, outfits, and dynamic motions. To further enhance applicability, we extend EchoShot to perform reference image-based personalized multi-shot generation and long video synthesis with infinite shot counts. Extensive evaluations demonstrate that EchoShot achieves superior identity consistency as well as attribute-level controllability in multi-shot portrait video generation. Notably, the proposed framework demonstrates potential as a foundational paradigm for general multi-shot video modeling.

Mitigating Deceptive Alignment via Self-Monitoring

Modern large language models rely on chain-of-thought (CoT) reasoning to achieve impressive performance, yet the same mechanism can amplify deceptive alignment, situations in which a model appears aligned while covertly pursuing misaligned goals. Existing safety pipelines treat deception as a black-box output to be filtered post-hoc, leaving the model free to scheme during its internal reasoning. We ask: Can deception be intercepted while the model is thinking? We answer this question, the first framework that embeds a Self-Monitor inside the CoT process itself, named CoT Monitor+. During generation, the model produces (i) ordinary reasoning steps and (ii) an internal self-evaluation signal trained to flag and suppress misaligned strategies. The signal is used as an auxiliary reward in reinforcement learning, creating a feedback loop that rewards honest reasoning and discourages hidden goals. To study deceptive alignment systematically, we introduce DeceptionBench, a five-category benchmark that probes covert alignment-faking, sycophancy, etc. We evaluate various LLMs and show that unrestricted CoT roughly aggravates the deceptive tendency. In contrast, CoT Monitor+ cuts deceptive behaviors by 43.8% on average while preserving task accuracy. Further, when the self-monitor signal replaces an external weak judge in RL fine-tuning, models exhibit substantially fewer obfuscated thoughts and retain transparency. Our project website can be found at cot-monitor-plus.github.io

Hyper3D: Efficient 3D Representation via Hybrid Triplane and Octree Feature for Enhanced 3D Shape Variational Auto-Encoders

Recent 3D content generation pipelines often leverage Variational Autoencoders (VAEs) to encode shapes into compact latent representations, facilitating diffusion-based generation. Efficiently compressing 3D shapes while preserving intricate geometric details remains a key challenge. Existing 3D shape VAEs often employ uniform point sampling and 1D/2D latent representations, such as vector sets or triplanes, leading to significant geometric detail loss due to inadequate surface coverage and the absence of explicit 3D representations in the latent space. Although recent work explores 3D latent representations, their large scale hinders high-resolution encoding and efficient training. Given these challenges, we introduce Hyper3D, which enhances VAE reconstruction through efficient 3D representation that integrates hybrid triplane and octree features. First, we adopt an octree-based feature representation to embed mesh information into the network, mitigating the limitations of uniform point sampling in capturing geometric distributions along the mesh surface. Furthermore, we propose a hybrid latent space representation that integrates a high-resolution triplane with a low-resolution 3D grid. This design not only compensates for the lack of explicit 3D representations but also leverages a triplane to preserve high-resolution details. Experimental results demonstrate that Hyper3D outperforms traditional representations by reconstructing 3D shapes with higher fidelity and finer details, making it well-suited for 3D generation pipelines.

Geometric Machine Learning on EEG Signals

Brain-computer interfaces (BCIs) offer transformative potential, but decoding neural signals presents significant challenges. The core premise of this paper is built around demonstrating methods to elucidate the underlying low-dimensional geometric structure present in high-dimensional brainwave data in order to assist in downstream BCI-related neural classification tasks. We demonstrate two pipelines related to electroencephalography (EEG) signal processing: (1) a preliminary pipeline removing noise from individual EEG channels, and (2) a downstream manifold learning pipeline uncovering geometric structure across networks of EEG channels. We conduct preliminary validation using two EEG datasets and situate our demonstration in the context of the BCI-relevant imagined digit decoding problem. Our preliminary pipeline uses an attention-based EEG filtration network to extract clean signal from individual EEG channels. Our primary pipeline uses a fast Fourier transform, a Laplacian eigenmap, a discrete analog of Ricci flow via Ollivier's notion of Ricci curvature, and a graph convolutional network to perform dimensionality reduction on high-dimensional multi-channel EEG data in order to enable regularizable downstream classification. Our system achieves competitive performance with existing signal processing and classification benchmarks; we demonstrate a mean test correlation coefficient of >0.95 at 2 dB on semi-synthetic neural denoising and a downstream EEG-based classification accuracy of 0.97 on distinguishing digit- versus non-digit- thoughts. Results are preliminary and our geometric machine learning pipeline should be validated by more extensive follow-up studies; generalizing these results to larger inter-subject sample sizes, different hardware systems, and broader use cases will be crucial.

TouchTTS: An Embarrassingly Simple TTS Framework that Everyone Can Touch

It is well known that LLM-based systems are data-hungry. Recent LLM-based TTS works typically employ complex data processing pipelines to obtain high-quality training data. These sophisticated pipelines require excellent models at each stage (e.g., speech denoising, speech enhancement, speaker diarization, and punctuation models), which themselves demand high-quality training data and are rarely open-sourced. Even with state-of-the-art models, issues persist, such as incomplete background noise removal and misalignment between punctuation and actual speech pauses. Moreover, the stringent filtering strategies often retain only 10-30\% of the original data, significantly impeding data scaling efforts. In this work, we leverage a noise-robust audio tokenizer (S3Tokenizer) to design a simplified yet effective TTS data processing pipeline that maintains data quality while substantially reducing data acquisition costs, achieving a data retention rate of over 50\%. Beyond data scaling challenges, LLM-based TTS systems also incur higher deployment costs compared to conventional approaches. Current systems typically use LLMs solely for text-to-token generation, while requiring separate models (e.g., flow matching models) for token-to-waveform generation, which cannot be directly executed by LLM inference engines, further complicating deployment. To address these challenges, we eliminate redundant modules in both LLM and flow components, replacing the flow model backbone with an LLM architecture. Building upon this simplified flow backbone, we propose a unified architecture for both streaming and non-streaming inference, significantly reducing deployment costs. Finally, we explore the feasibility of unifying TTS and ASR tasks using the same data for training, thanks to the simplified pipeline and the S3Tokenizer that reduces the quality requirements for TTS training data.

Align$^2$LLaVA: Cascaded Human and Large Language Model Preference Alignment for Multi-modal Instruction Curation

Recent advances in Multi-modal Large Language Models (MLLMs), such as LLaVA-series models, are driven by massive machine-generated instruction-following data tuning. Such automatic instruction collection pipelines, however, inadvertently introduce significant variability in data quality. This paper introduces a novel instruction curation algorithm, derived from two unique perspectives, human and LLM preference alignment, to compress this vast corpus of machine-generated multimodal instructions to a compact and high-quality form: (i) For human preference alignment, we have collected a machine-generated multimodal instruction dataset and established a comprehensive set of both subjective and objective criteria to guide the data quality assessment critically from human experts. By doing so, a reward model was trained on the annotated dataset to internalize the nuanced human understanding of instruction alignment. (ii) For LLM preference alignment, given the instruction selected by the reward model, we propose leveraging the inner LLM used in MLLM to align the writing style of visual instructions with that of the inner LLM itself, resulting in LLM-aligned instruction improvement. Extensive experiments demonstrate that we can maintain or even improve model performance by compressing synthetic multimodal instructions by up to 90%. Impressively, by aggressively reducing the total training sample size from 158k to 14k (9times smaller), our model consistently outperforms its full-size dataset counterpart across various MLLM benchmarks. Our project is available at https://github.com/DCDmllm/Align2LLaVA.

GraCo: Granularity-Controllable Interactive Segmentation

Interactive Segmentation (IS) segments specific objects or parts in the image according to user input. Current IS pipelines fall into two categories: single-granularity output and multi-granularity output. The latter aims to alleviate the spatial ambiguity present in the former. However, the multi-granularity output pipeline suffers from limited interaction flexibility and produces redundant results. In this work, we introduce Granularity-Controllable Interactive Segmentation (GraCo), a novel approach that allows precise control of prediction granularity by introducing additional parameters to input. This enhances the customization of the interactive system and eliminates redundancy while resolving ambiguity. Nevertheless, the exorbitant cost of annotating multi-granularity masks and the lack of available datasets with granularity annotations make it difficult for models to acquire the necessary guidance to control output granularity. To address this problem, we design an any-granularity mask generator that exploits the semantic property of the pre-trained IS model to automatically generate abundant mask-granularity pairs without requiring additional manual annotation. Based on these pairs, we propose a granularity-controllable learning strategy that efficiently imparts the granularity controllability to the IS model. Extensive experiments on intricate scenarios at object and part levels demonstrate that our GraCo has significant advantages over previous methods. This highlights the potential of GraCo to be a flexible annotation tool, capable of adapting to diverse segmentation scenarios. The project page: https://zhao-yian.github.io/GraCo.

Pipeline and Dataset Generation for Automated Fact-checking in Almost Any Language

This article presents a pipeline for automated fact-checking leveraging publicly available Language Models and data. The objective is to assess the accuracy of textual claims using evidence from a ground-truth evidence corpus. The pipeline consists of two main modules -- the evidence retrieval and the claim veracity evaluation. Our primary focus is on the ease of deployment in various languages that remain unexplored in the field of automated fact-checking. Unlike most similar pipelines, which work with evidence sentences, our pipeline processes data on a paragraph level, simplifying the overall architecture and data requirements. Given the high cost of annotating language-specific fact-checking training data, our solution builds on the Question Answering for Claim Generation (QACG) method, which we adapt and use to generate the data for all models of the pipeline. Our strategy enables the introduction of new languages through machine translation of only two fixed datasets of moderate size. Subsequently, any number of training samples can be generated based on an evidence corpus in the target language. We provide open access to all data and fine-tuned models for Czech, English, Polish, and Slovak pipelines, as well as to our codebase that may be used to reproduce the results.We comprehensively evaluate the pipelines for all four languages, including human annotations and per-sample difficulty assessment using Pointwise V-information. The presented experiments are based on full Wikipedia snapshots to promote reproducibility. To facilitate implementation and user interaction, we develop the FactSearch application featuring the proposed pipeline and the preliminary feedback on its performance.

ClimateLearn: Benchmarking Machine Learning for Weather and Climate Modeling

Modeling weather and climate is an essential endeavor to understand the near- and long-term impacts of climate change, as well as inform technology and policymaking for adaptation and mitigation efforts. In recent years, there has been a surging interest in applying data-driven methods based on machine learning for solving core problems such as weather forecasting and climate downscaling. Despite promising results, much of this progress has been impaired due to the lack of large-scale, open-source efforts for reproducibility, resulting in the use of inconsistent or underspecified datasets, training setups, and evaluations by both domain scientists and artificial intelligence researchers. We introduce ClimateLearn, an open-source PyTorch library that vastly simplifies the training and evaluation of machine learning models for data-driven climate science. ClimateLearn consists of holistic pipelines for dataset processing (e.g., ERA5, CMIP6, PRISM), implementation of state-of-the-art deep learning models (e.g., Transformers, ResNets), and quantitative and qualitative evaluation for standard weather and climate modeling tasks. We supplement these functionalities with extensive documentation, contribution guides, and quickstart tutorials to expand access and promote community growth. We have also performed comprehensive forecasting and downscaling experiments to showcase the capabilities and key features of our library. To our knowledge, ClimateLearn is the first large-scale, open-source effort for bridging research in weather and climate modeling with modern machine learning systems. Our library is available publicly at https://github.com/aditya-grover/climate-learn.

MonoHuman: Animatable Human Neural Field from Monocular Video

Animating virtual avatars with free-view control is crucial for various applications like virtual reality and digital entertainment. Previous studies have attempted to utilize the representation power of the neural radiance field (NeRF) to reconstruct the human body from monocular videos. Recent works propose to graft a deformation network into the NeRF to further model the dynamics of the human neural field for animating vivid human motions. However, such pipelines either rely on pose-dependent representations or fall short of motion coherency due to frame-independent optimization, making it difficult to generalize to unseen pose sequences realistically. In this paper, we propose a novel framework MonoHuman, which robustly renders view-consistent and high-fidelity avatars under arbitrary novel poses. Our key insight is to model the deformation field with bi-directional constraints and explicitly leverage the off-the-peg keyframe information to reason the feature correlations for coherent results. Specifically, we first propose a Shared Bidirectional Deformation module, which creates a pose-independent generalizable deformation field by disentangling backward and forward deformation correspondences into shared skeletal motion weight and separate non-rigid motions. Then, we devise a Forward Correspondence Search module, which queries the correspondence feature of keyframes to guide the rendering network. The rendered results are thus multi-view consistent with high fidelity, even under challenging novel pose settings. Extensive experiments demonstrate the superiority of our proposed MonoHuman over state-of-the-art methods.

UniDexGrasp: Universal Robotic Dexterous Grasping via Learning Diverse Proposal Generation and Goal-Conditioned Policy

In this work, we tackle the problem of learning universal robotic dexterous grasping from a point cloud observation under a table-top setting. The goal is to grasp and lift up objects in high-quality and diverse ways and generalize across hundreds of categories and even the unseen. Inspired by successful pipelines used in parallel gripper grasping, we split the task into two stages: 1) grasp proposal (pose) generation and 2) goal-conditioned grasp execution. For the first stage, we propose a novel probabilistic model of grasp pose conditioned on the point cloud observation that factorizes rotation from translation and articulation. Trained on our synthesized large-scale dexterous grasp dataset, this model enables us to sample diverse and high-quality dexterous grasp poses for the object point cloud.For the second stage, we propose to replace the motion planning used in parallel gripper grasping with a goal-conditioned grasp policy, due to the complexity involved in dexterous grasping execution. Note that it is very challenging to learn this highly generalizable grasp policy that only takes realistic inputs without oracle states. We thus propose several important innovations, including state canonicalization, object curriculum, and teacher-student distillation. Integrating the two stages, our final pipeline becomes the first to achieve universal generalization for dexterous grasping, demonstrating an average success rate of more than 60\% on thousands of object instances, which significantly outperforms all baselines, meanwhile showing only a minimal generalization gap.

M3DocRAG: Multi-modal Retrieval is What You Need for Multi-page Multi-document Understanding

Document visual question answering (DocVQA) pipelines that answer questions from documents have broad applications. Existing methods focus on handling single-page documents with multi-modal language models (MLMs), or rely on text-based retrieval-augmented generation (RAG) that uses text extraction tools such as optical character recognition (OCR). However, there are difficulties in applying these methods in real-world scenarios: (a) questions often require information across different pages or documents, where MLMs cannot handle many long documents; (b) documents often have important information in visual elements such as figures, but text extraction tools ignore them. We introduce M3DocRAG, a novel multi-modal RAG framework that flexibly accommodates various document contexts (closed-domain and open-domain), question hops (single-hop and multi-hop), and evidence modalities (text, chart, figure, etc.). M3DocRAG finds relevant documents and answers questions using a multi-modal retriever and an MLM, so that it can efficiently handle single or many documents while preserving visual information. Since previous DocVQA datasets ask questions in the context of a specific document, we also present M3DocVQA, a new benchmark for evaluating open-domain DocVQA over 3,000+ PDF documents with 40,000+ pages. In three benchmarks (M3DocVQA/MMLongBench-Doc/MP-DocVQA), empirical results show that M3DocRAG with ColPali and Qwen2-VL 7B achieves superior performance than many strong baselines, including state-of-the-art performance in MP-DocVQA. We provide comprehensive analyses of different indexing, MLMs, and retrieval models. Lastly, we qualitatively show that M3DocRAG can successfully handle various scenarios, such as when relevant information exists across multiple pages and when answer evidence only exists in images.

Are Reasoning Models More Prone to Hallucination?

Recently evolved large reasoning models (LRMs) show powerful performance in solving complex tasks with long chain-of-thought (CoT) reasoning capability. As these LRMs are mostly developed by post-training on formal reasoning tasks, whether they generalize the reasoning capability to help reduce hallucination in fact-seeking tasks remains unclear and debated. For instance, DeepSeek-R1 reports increased performance on SimpleQA, a fact-seeking benchmark, while OpenAI-o3 observes even severer hallucination. This discrepancy naturally raises the following research question: Are reasoning models more prone to hallucination? This paper addresses the question from three perspectives. (1) We first conduct a holistic evaluation for the hallucination in LRMs. Our analysis reveals that LRMs undergo a full post-training pipeline with cold start supervised fine-tuning (SFT) and verifiable reward RL generally alleviate their hallucination. In contrast, both distillation alone and RL training without cold start fine-tuning introduce more nuanced hallucinations. (2) To explore why different post-training pipelines alters the impact on hallucination in LRMs, we conduct behavior analysis. We characterize two critical cognitive behaviors that directly affect the factuality of a LRM: Flaw Repetition, where the surface-level reasoning attempts repeatedly follow the same underlying flawed logic, and Think-Answer Mismatch, where the final answer fails to faithfully match the previous CoT process. (3) Further, we investigate the mechanism behind the hallucination of LRMs from the perspective of model uncertainty. We find that increased hallucination of LRMs is usually associated with the misalignment between model uncertainty and factual accuracy. Our work provides an initial understanding of the hallucination in LRMs.

Matryoshka Representation Learning

Learned representations are a central component in modern ML systems, serving a multitude of downstream tasks. When training such representations, it is often the case that computational and statistical constraints for each downstream task are unknown. In this context rigid, fixed capacity representations can be either over or under-accommodating to the task at hand. This leads us to ask: can we design a flexible representation that can adapt to multiple downstream tasks with varying computational resources? Our main contribution is Matryoshka Representation Learning (MRL) which encodes information at different granularities and allows a single embedding to adapt to the computational constraints of downstream tasks. MRL minimally modifies existing representation learning pipelines and imposes no additional cost during inference and deployment. MRL learns coarse-to-fine representations that are at least as accurate and rich as independently trained low-dimensional representations. The flexibility within the learned Matryoshka Representations offer: (a) up to 14x smaller embedding size for ImageNet-1K classification at the same level of accuracy; (b) up to 14x real-world speed-ups for large-scale retrieval on ImageNet-1K and 4K; and (c) up to 2% accuracy improvements for long-tail few-shot classification, all while being as robust as the original representations. Finally, we show that MRL extends seamlessly to web-scale datasets (ImageNet, JFT) across various modalities -- vision (ViT, ResNet), vision + language (ALIGN) and language (BERT). MRL code and pretrained models are open-sourced at https://github.com/RAIVNLab/MRL.

Moshi: a speech-text foundation model for real-time dialogue

We introduce Moshi, a speech-text foundation model and full-duplex spoken dialogue framework. Current systems for spoken dialogue rely on pipelines of independent components, namely voice activity detection, speech recognition, textual dialogue and text-to-speech. Such frameworks cannot emulate the experience of real conversations. First, their complexity induces a latency of several seconds between interactions. Second, text being the intermediate modality for dialogue, non-linguistic information that modifies meaning -- such as emotion or non-speech sounds -- is lost in the interaction. Finally, they rely on a segmentation into speaker turns, which does not take into account overlapping speech, interruptions and interjections. Moshi solves these independent issues altogether by casting spoken dialogue as speech-to-speech generation. Starting from a text language model backbone, Moshi generates speech as tokens from the residual quantizer of a neural audio codec, while modeling separately its own speech and that of the user into parallel streams. This allows for the removal of explicit speaker turns, and the modeling of arbitrary conversational dynamics. We moreover extend the hierarchical semantic-to-acoustic token generation of previous work to first predict time-aligned text tokens as a prefix to audio tokens. Not only this "Inner Monologue" method significantly improves the linguistic quality of generated speech, but we also illustrate how it can provide streaming speech recognition and text-to-speech. Our resulting model is the first real-time full-duplex spoken large language model, with a theoretical latency of 160ms, 200ms in practice, and is available at https://github.com/kyutai-labs/moshi.

NeoBabel: A Multilingual Open Tower for Visual Generation

Text-to-image generation advancements have been predominantly English-centric, creating barriers for non-English speakers and perpetuating digital inequities. While existing systems rely on translation pipelines, these introduce semantic drift, computational overhead, and cultural misalignment. We introduce NeoBabel, a novel multilingual image generation framework that sets a new Pareto frontier in performance, efficiency and inclusivity, supporting six languages: English, Chinese, Dutch, French, Hindi, and Persian. The model is trained using a combination of large-scale multilingual pretraining and high-resolution instruction tuning. To evaluate its capabilities, we expand two English-only benchmarks to multilingual equivalents: m-GenEval and m-DPG. NeoBabel achieves state-of-the-art multilingual performance while retaining strong English capability, scoring 0.75 on m-GenEval and 0.68 on m-DPG. Notably, it performs on par with leading models on English tasks while outperforming them by +0.11 and +0.09 on multilingual benchmarks, even though these models are built on multilingual base LLMs. This demonstrates the effectiveness of our targeted alignment training for preserving and extending crosslingual generalization. We further introduce two new metrics to rigorously assess multilingual alignment and robustness to code-mixed prompts. Notably, NeoBabel matches or exceeds English-only models while being 2-4x smaller. We release an open toolkit, including all code, model checkpoints, a curated dataset of 124M multilingual text-image pairs, and standardized multilingual evaluation protocols, to advance inclusive AI research. Our work demonstrates that multilingual capability is not a trade-off but a catalyst for improved robustness, efficiency, and cultural fidelity in generative AI.

DocETL: Agentic Query Rewriting and Evaluation for Complex Document Processing

Analyzing unstructured data, such as complex documents, has been a persistent challenge in data processing. Large Language Models (LLMs) have shown promise in this regard, leading to recent proposals for declarative frameworks for LLM-powered unstructured data processing. However, these frameworks focus on reducing cost when executing user-specified operations using LLMs, rather than improving accuracy, executing most operations as-is. This is problematic for complex tasks and data, where LLM outputs for user-defined operations are often inaccurate, even with optimized prompts. We present DocETL, a system that optimizes complex document processing pipelines, while accounting for LLM shortcomings. DocETL offers a declarative interface for users to define such pipelines and uses an agent-based framework to automatically optimize them, leveraging novel agent-based rewrites (that we call {\em rewrite directives}) and an optimization and evaluation framework that we introduce. We introduce {\em (i)} logical rewriting of pipelines, tailored for LLM-based tasks, {\em (ii)} an agent-guided plan evaluation mechanism that synthesizes and orchestrates task-specific validation prompts, and {\em (iii)} an optimization algorithm that efficiently finds promising plans, considering the time constraints of LLM-based plan generation and evaluation. Our evaluation on three different unstructured document analysis tasks demonstrates that DocETL finds plans with outputs that are 1.34 to 4.6times higher quality (e.g., more accurate, comprehensive) than well-engineered baselines, addressing a critical gap in existing declarative frameworks for unstructured data analysis. DocETL is open-source at docetl.org, and as of October 2024, has amassed over 800 GitHub Stars, with users spanning a variety of domains.

MSRS: Evaluating Multi-Source Retrieval-Augmented Generation

Retrieval-augmented systems are typically evaluated in settings where information required to answer the query can be found within a single source or the answer is short-form or factoid-based. However, many real-world applications demand the ability to integrate and summarize information scattered across multiple sources, where no single source is sufficient to respond to the user's question. In such settings, the retrieval component of a RAG pipeline must recognize a variety of relevance signals, and the generation component must connect and synthesize information across multiple sources. We present a scalable framework for constructing evaluation benchmarks that challenge RAG systems to integrate information across distinct sources and generate long-form responses. Using our framework, we build two new benchmarks on Multi-Source Retrieval and Synthesis: MSRS-Story and MSRS-Meet, representing narrative synthesis and summarization tasks, respectively, that require retrieval from large collections. Our extensive experiments with various RAG pipelines -- including sparse and dense retrievers combined with frontier LLMs -- reveal that generation quality is highly dependent on retrieval effectiveness, which varies greatly by task. While multi-source synthesis proves challenging even in an oracle retrieval setting, we find that reasoning models significantly outperform standard LLMs at this distinct step.

LexSemBridge: Fine-Grained Dense Representation Enhancement through Token-Aware Embedding Augmentation

As queries in retrieval-augmented generation (RAG) pipelines powered by large language models (LLMs) become increasingly complex and diverse, dense retrieval models have demonstrated strong performance in semantic matching. Nevertheless, they often struggle with fine-grained retrieval tasks, where precise keyword alignment and span-level localization are required, even in cases with high lexical overlap that would intuitively suggest easier retrieval. To systematically evaluate this limitation, we introduce two targeted tasks, keyword retrieval and part-of-passage retrieval, designed to simulate practical fine-grained scenarios. Motivated by these observations, we propose LexSemBridge, a unified framework that enhances dense query representations through fine-grained, input-aware vector modulation. LexSemBridge constructs latent enhancement vectors from input tokens using three paradigms: Statistical (SLR), Learned (LLR), and Contextual (CLR), and integrates them with dense embeddings via element-wise interaction. Theoretically, we show that this modulation preserves the semantic direction while selectively amplifying discriminative dimensions. LexSemBridge operates as a plug-in without modifying the backbone encoder and naturally extends to both text and vision modalities. Extensive experiments across semantic and fine-grained retrieval tasks validate the effectiveness and generality of our approach. All code and models are publicly available at https://github.com/Jasaxion/LexSemBridge/

A Dataset for Distilling Knowledge Priors from Literature for Therapeutic Design

AI-driven discovery can greatly reduce design time and enhance new therapeutics' effectiveness. Models using simulators explore broad design spaces but risk violating implicit constraints due to a lack of experimental priors. For example, in a new analysis we performed on a diverse set of models on the GuacaMol benchmark using supervised classifiers, over 60\% of molecules proposed had high probability of being mutagenic. In this work, we introduce \ourdataset, a dataset of priors for design problems extracted from literature describing compounds used in lab settings. It is constructed with LLM pipelines for discovering therapeutic entities in relevant paragraphs and summarizing information in concise fair-use facts. \ourdataset~ consists of 32.3 million pairs of natural language facts, and appropriate entity representations (i.e. SMILES or refseq IDs). To demonstrate the potential of the data, we train LLM, CLIP, and LLava architectures to reason jointly about text and design targets and evaluate on tasks from the Therapeutic Data Commons (TDC). \ourdataset~is highly effective for creating models with strong priors: in supervised prediction problems that use our data as pretraining, our best models with 15M learnable parameters outperform larger 2B TxGemma on both regression and classification TDC tasks, and perform comparably to 9B models on average. Models built with \ourdataset~can be used as constraints while optimizing for novel molecules in GuacaMol, resulting in proposals that are safer and nearly as effective. We release our dataset at https://huggingface.co/datasets/medexanon/Medex{huggingface.co/datasets/medexanon/Medex}, and will provide expanded versions as available literature grows.

Can AI Dream of Unseen Galaxies? Conditional Diffusion Model for Galaxy Morphology Augmentation

Observational astronomy relies on visual feature identification to detect critical astrophysical phenomena. While machine learning (ML) increasingly automates this process, models often struggle with generalization in large-scale surveys due to the limited representativeness of labeled datasets -- whether from simulations or human annotation -- a challenge pronounced for rare yet scientifically valuable objects. To address this, we propose a conditional diffusion model to synthesize realistic galaxy images for augmenting ML training data. Leveraging the Galaxy Zoo 2 dataset which contains visual feature -- galaxy image pairs from volunteer annotation, we demonstrate that our model generates diverse, high-fidelity galaxy images closely adhere to the specified morphological feature conditions. Moreover, this model enables generative extrapolation to project well-annotated data into unseen domains and advancing rare object detection. Integrating synthesized images into ML pipelines improves performance in standard morphology classification, boosting completeness and purity by up to 30\% across key metrics. For rare object detection, using early-type galaxies with prominent dust lane features ( sim0.1\% in GZ2 dataset) as a test case, our approach doubled the number of detected instances from 352 to 872, compared to previous studies based on visual inspection. This study highlights the power of generative models to bridge gaps between scarce labeled data and the vast, uncharted parameter space of observational astronomy and sheds insight for future astrophysical foundation model developments. Our project homepage is available at https://galaxysd-webpage.streamlit.app/.

Ranking Free RAG: Replacing Re-ranking with Selection in RAG for Sensitive Domains

Traditional Retrieval-Augmented Generation (RAG) pipelines rely on similarity-based retrieval and re-ranking, which depend on heuristics such as top-k, and lack explainability, interpretability, and robustness against adversarial content. To address this gap, we propose a novel method METEORA that replaces re-ranking in RAG with a rationale-driven selection approach. METEORA operates in two stages. First, a general-purpose LLM is preference-tuned to generate rationales conditioned on the input query using direct preference optimization. These rationales guide the evidence chunk selection engine, which selects relevant chunks in three stages: pairing individual rationales with corresponding retrieved chunks for local relevance, global selection with elbow detection for adaptive cutoff, and context expansion via neighboring chunks. This process eliminates the need for top-k heuristics. The rationales are also used for consistency check using a Verifier LLM to detect and filter poisoned or misleading content for safe generation. The framework provides explainable and interpretable evidence flow by using rationales consistently across both selection and verification. Our evaluation across six datasets spanning legal, financial, and academic research domains shows that METEORA improves generation accuracy by 33.34% while using approximately 50% fewer chunks than state-of-the-art re-ranking methods. In adversarial settings, METEORA significantly improves the F1 score from 0.10 to 0.44 over the state-of-the-art perplexity-based defense baseline, demonstrating strong resilience to poisoning attacks. Code available at: https://anonymous.4open.science/r/METEORA-DC46/README.md

Perpetuating Misogyny with Generative AI: How Model Personalization Normalizes Gendered Harm

Open-source text-to-image (TTI) pipelines have become dominant in the landscape of AI-generated visual content, driven by technological advances that enable users to personalize models through adapters tailored to specific tasks. While personalization methods such as LoRA offer unprecedented creative opportunities, they also facilitate harmful practices, including the generation of non-consensual deepfakes and the amplification of misogynistic or hypersexualized content. This study presents an exploratory sociotechnical analysis of CivitAI, the most active platform for sharing and developing open-source TTI models. Drawing on a dataset of more than 40 million user-generated images and over 230,000 models, we find a disproportionate rise in not-safe-for-work (NSFW) content and a significant number of models intended to mimic real individuals. We also observe a strong influence of internet subcultures on the tools and practices shaping model personalizations and resulting visual media. In response to these findings, we contextualize the emergence of exploitative visual media through feminist and constructivist perspectives on technology, emphasizing how design choices and community dynamics shape platform outcomes. Building on this analysis, we propose interventions aimed at mitigating downstream harm, including improved content moderation, rethinking tool design, and establishing clearer platform policies to promote accountability and consent.

PersonaBench: Evaluating AI Models on Understanding Personal Information through Accessing (Synthetic) Private User Data

Personalization is critical in AI assistants, particularly in the context of private AI models that work with individual users. A key scenario in this domain involves enabling AI models to access and interpret a user's private data (e.g., conversation history, user-AI interactions, app usage) to understand personal details such as biographical information, preferences, and social connections. However, due to the sensitive nature of such data, there are no publicly available datasets that allow us to assess an AI model's ability to understand users through direct access to personal information. To address this gap, we introduce a synthetic data generation pipeline that creates diverse, realistic user profiles and private documents simulating human activities. Leveraging this synthetic data, we present PersonaBench, a benchmark designed to evaluate AI models' performance in understanding personal information derived from simulated private user data. We evaluate Retrieval-Augmented Generation (RAG) pipelines using questions directly related to a user's personal information, supported by the relevant private documents provided to the models. Our results reveal that current retrieval-augmented AI models struggle to answer private questions by extracting personal information from user documents, highlighting the need for improved methodologies to enhance personalization capabilities in AI.

DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation

Recent advancements in 2D/3D generative techniques have facilitated the generation of dynamic 3D objects from monocular videos. Previous methods mainly rely on the implicit neural radiance fields (NeRF) or explicit Gaussian Splatting as the underlying representation, and struggle to achieve satisfactory spatial-temporal consistency and surface appearance. Drawing inspiration from modern 3D animation pipelines, we introduce DreamMesh4D, a novel framework combining mesh representation with geometric skinning technique to generate high-quality 4D object from a monocular video. Instead of utilizing classical texture map for appearance, we bind Gaussian splats to triangle face of mesh for differentiable optimization of both the texture and mesh vertices. In particular, DreamMesh4D begins with a coarse mesh obtained through an image-to-3D generation procedure. Sparse points are then uniformly sampled across the mesh surface, and are used to build a deformation graph to drive the motion of the 3D object for the sake of computational efficiency and providing additional constraint. For each step, transformations of sparse control points are predicted using a deformation network, and the mesh vertices as well as the surface Gaussians are deformed via a novel geometric skinning algorithm, which is a hybrid approach combining LBS (linear blending skinning) and DQS (dual-quaternion skinning), mitigating drawbacks associated with both approaches. The static surface Gaussians and mesh vertices as well as the deformation network are learned via reference view photometric loss, score distillation loss as well as other regularizers in a two-stage manner. Extensive experiments demonstrate superior performance of our method. Furthermore, our method is compatible with modern graphic pipelines, showcasing its potential in the 3D gaming and film industry.

Small Language Model Can Self-correct

Generative Language Models (LMs) such as ChatGPT have exhibited remarkable performance across various downstream tasks. Nevertheless, one of their most prominent drawbacks is generating inaccurate or false information with a confident tone. Previous studies have devised sophisticated pipelines and prompts to induce large LMs to exhibit the capability for self-correction. However, large LMs are explicitly prompted to verify and modify its answers separately rather than completing all steps spontaneously like humans. Moreover, these complex prompts are extremely challenging for small LMs to follow. In this paper, we introduce the Intrinsic Self-Correction (ISC) in generative language models, aiming to correct the initial output of LMs in a self-triggered manner, even for those small LMs with 6 billion parameters. Specifically, we devise a pipeline for constructing self-correction data and propose Partial Answer Masking (PAM), aiming to endow the model with the capability for intrinsic self-correction through fine-tuning. We conduct experiments using LMs with parameters sizes ranging from 6 billion to 13 billion in two tasks, including commonsense reasoning and factual knowledge reasoning. Our experiments demonstrate that the outputs generated using ISC outperform those generated without self-correction. We believe that the output quality of even small LMs can be further improved by empowering them with the ability to intrinsic self-correct.

Harnessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representation Learning

Representation learning on text-attributed graphs (TAGs) has become a critical research problem in recent years. A typical example of a TAG is a paper citation graph, where the text of each paper serves as node attributes. Initial graph neural network (GNN) pipelines handled these text attributes by transforming them into shallow or hand-crafted features, such as skip-gram or bag-of-words features. Recent efforts have focused on enhancing these pipelines with language models (LMs), which typically demand intricate designs and substantial computational resources. With the advent of powerful large language models (LLMs) such as GPT or Llama2, which demonstrate an ability to reason and to utilize general knowledge, there is a growing need for techniques which combine the textual modelling abilities of LLMs with the structural learning capabilities of GNNs. Hence, in this work, we focus on leveraging LLMs to capture textual information as features, which can be used to boost GNN performance on downstream tasks. A key innovation is our use of explanations as features: we prompt an LLM to perform zero-shot classification, request textual explanations for its decision-making process, and design an LLM-to-LM interpreter to translate these explanations into informative features for downstream GNNs. Our experiments demonstrate that our method achieves state-of-the-art results on well-established TAG datasets, including Cora, PubMed, ogbn-arxiv, as well as our newly introduced dataset, tape-arxiv23. Furthermore, our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv. Lastly, we believe the versatility of the proposed method extends beyond TAGs and holds the potential to enhance other tasks involving graph-text data. Our codes and datasets are available at: https://github.com/XiaoxinHe/TAPE.

Planning with Large Language Models for Code Generation

Existing large language model-based code generation pipelines typically use beam search or sampling algorithms during the decoding process. Although the programs they generate achieve high token-matching-based scores, they often fail to compile or generate incorrect outputs. The main reason is that conventional Transformer decoding algorithms may not be the best choice for code generation. In this work, we propose a novel Transformer decoding algorithm, Planning-Guided Transformer Decoding (PG-TD), that uses a planning algorithm to do lookahead search and guide the Transformer to generate better programs. Specifically, instead of simply optimizing the likelihood of the generated sequences, the Transformer makes use of a planner to generate candidate programs and test them on public test cases. The Transformer can therefore make more informed decisions and generate tokens that will eventually lead to higher-quality programs. We also design a mechanism that shares information between the Transformer and the planner to make our algorithm computationally efficient. We empirically evaluate our framework with several large language models as backbones on public coding challenge benchmarks, showing that 1) it can generate programs that consistently achieve higher performance compared with competing baseline methods; 2) it enables controllable code generation, such as concise codes and highly-commented codes by optimizing modified objective.

Object-Compositional Neural Implicit Surfaces

The neural implicit representation has shown its effectiveness in novel view synthesis and high-quality 3D reconstruction from multi-view images. However, most approaches focus on holistic scene representation yet ignore individual objects inside it, thus limiting potential downstream applications. In order to learn object-compositional representation, a few works incorporate the 2D semantic map as a cue in training to grasp the difference between objects. But they neglect the strong connections between object geometry and instance semantic information, which leads to inaccurate modeling of individual instance. This paper proposes a novel framework, ObjectSDF, to build an object-compositional neural implicit representation with high fidelity in 3D reconstruction and object representation. Observing the ambiguity of conventional volume rendering pipelines, we model the scene by combining the Signed Distance Functions (SDF) of individual object to exert explicit surface constraint. The key in distinguishing different instances is to revisit the strong association between an individual object's SDF and semantic label. Particularly, we convert the semantic information to a function of object SDF and develop a unified and compact representation for scene and objects. Experimental results show the superiority of ObjectSDF framework in representing both the holistic object-compositional scene and the individual instances. Code can be found at https://qianyiwu.github.io/objectsdf/

Implementation of the rROF denoising method in the cWB pipeline for gravitational-wave data analysis

The data collected by the current network of gravitational-wave detectors are largely dominated by instrumental noise. Total variation methods based on L1-norm minimization have recently been proposed as a powerful technique for noise removal in gravitational-wave data. In particular, the regularized Rudin-Osher-Fatemi (rROF) model has proven effective to denoise signals embedded in either simulated Gaussian noise or actual detector noise. Importing the rROF model to existing search pipelines seems therefore worth considering. In this paper, we discuss the implementation of two variants of the rROF algorithm as two separate plug-ins of the coherent Wave Burst (cWB) pipeline designed to conduct searches of unmodelled gravitational-wave burst sources. The first approach is based on a single-step rROF method and the second one employs an iterative rROF procedure. Both approaches are calibrated using actual gravitational-wave events from the first three observing runs of the LIGO-Virgo-KAGRA collaboration, namely GW1501914, GW151226, GW170817, and GW190521, encompassing different types of compact binary coalescences. Our analysis shows that the iterative version of the rROF denoising algorithm implemented in the cWB pipeline effectively eliminates noise while preserving the waveform signals intact. Therefore, the combined approach yields higher signal-to-noise values than those computed by the cWB pipeline without the rROF denoising step. The incorporation of the iterative rROF algorithm in the cWB pipeline might hence impact the detectability capabilities of the pipeline along with the inference of source properties.

End-to-End Vision Tokenizer Tuning

Existing vision tokenization isolates the optimization of vision tokenizers from downstream training, implicitly assuming the visual tokens can generalize well across various tasks, e.g., image generation and visual question answering. The vision tokenizer optimized for low-level reconstruction is agnostic to downstream tasks requiring varied representations and semantics. This decoupled paradigm introduces a critical misalignment: The loss of the vision tokenization can be the representation bottleneck for target tasks. For example, errors in tokenizing text in a given image lead to poor results when recognizing or generating them. To address this, we propose ETT, an end-to-end vision tokenizer tuning approach that enables joint optimization between vision tokenization and target autoregressive tasks. Unlike prior autoregressive models that use only discrete indices from a frozen vision tokenizer, ETT leverages the visual embeddings of the tokenizer codebook, and optimizes the vision tokenizers end-to-end with both reconstruction and caption objectives. ETT can be seamlessly integrated into existing training pipelines with minimal architecture modifications. Our ETT is simple to implement and integrate, without the need to adjust the original codebooks or architectures of the employed large language models. Extensive experiments demonstrate that our proposed end-to-end vision tokenizer tuning unlocks significant performance gains, i.e., 2-6% for multimodal understanding and visual generation tasks compared to frozen tokenizer baselines, while preserving the original reconstruction capability. We hope this very simple and strong method can empower multimodal foundation models besides image generation and understanding.

ACE: All-round Creator and Editor Following Instructions via Diffusion Transformer

Diffusion models have emerged as a powerful generative technology and have been found to be applicable in various scenarios. Most existing foundational diffusion models are primarily designed for text-guided visual generation and do not support multi-modal conditions, which are essential for many visual editing tasks. This limitation prevents these foundational diffusion models from serving as a unified model in the field of visual generation, like GPT-4 in the natural language processing field. In this work, we propose ACE, an All-round Creator and Editor, which achieves comparable performance compared to those expert models in a wide range of visual generation tasks. To achieve this goal, we first introduce a unified condition format termed Long-context Condition Unit (LCU), and propose a novel Transformer-based diffusion model that uses LCU as input, aiming for joint training across various generation and editing tasks. Furthermore, we propose an efficient data collection approach to address the issue of the absence of available training data. It involves acquiring pairwise images with synthesis-based or clustering-based pipelines and supplying these pairs with accurate textual instructions by leveraging a fine-tuned multi-modal large language model. To comprehensively evaluate the performance of our model, we establish a benchmark of manually annotated pairs data across a variety of visual generation tasks. The extensive experimental results demonstrate the superiority of our model in visual generation fields. Thanks to the all-in-one capabilities of our model, we can easily build a multi-modal chat system that responds to any interactive request for image creation using a single model to serve as the backend, avoiding the cumbersome pipeline typically employed in visual agents. Code and models will be available on the project page: https://ali-vilab.github.io/ace-page/.

DriftMoE: A Mixture of Experts Approach to Handle Concept Drifts

Learning from non-stationary data streams subject to concept drift requires models that can adapt on-the-fly while remaining resource-efficient. Existing adaptive ensemble methods often rely on coarse-grained adaptation mechanisms or simple voting schemes that fail to optimally leverage specialized knowledge. This paper introduces DriftMoE, an online Mixture-of-Experts (MoE) architecture that addresses these limitations through a novel co-training framework. DriftMoE features a compact neural router that is co-trained alongside a pool of incremental Hoeffding tree experts. The key innovation lies in a symbiotic learning loop that enables expert specialization: the router selects the most suitable expert for prediction, the relevant experts update incrementally with the true label, and the router refines its parameters using a multi-hot correctness mask that reinforces every accurate expert. This feedback loop provides the router with a clear training signal while accelerating expert specialization. We evaluate DriftMoE's performance across nine state-of-the-art data stream learning benchmarks spanning abrupt, gradual, and real-world drifts testing two distinct configurations: one where experts specialize on data regimes (multi-class variant), and another where they focus on single-class specialization (task-based variant). Our results demonstrate that DriftMoE achieves competitive results with state-of-the-art stream learning adaptive ensembles, offering a principled and efficient approach to concept drift adaptation. All code, data pipelines, and reproducibility scripts are available in our public GitHub repository: https://github.com/miguel-ceadar/drift-moe.

MIRIAD: Augmenting LLMs with millions of medical query-response pairs

LLMs are bound to transform healthcare with advanced decision support and flexible chat assistants. However, LLMs are prone to generate inaccurate medical content. To ground LLMs in high-quality medical knowledge, LLMs have been equipped with external knowledge via RAG, where unstructured medical knowledge is split into small text chunks that can be selectively retrieved and integrated into the LLMs context. Yet, existing RAG pipelines rely on raw, unstructured medical text, which can be noisy, uncurated and difficult for LLMs to effectively leverage. Systematic approaches to organize medical knowledge to best surface it to LLMs are generally lacking. To address these challenges, we introduce MIRIAD, a large-scale, curated corpus of 5,821,948 medical QA pairs, each rephrased from and grounded in a passage from peer-reviewed medical literature using a semi-automated pipeline combining LLM generation, filtering, grounding, and human annotation. Unlike prior medical corpora, which rely on unstructured text, MIRIAD encapsulates web-scale medical knowledge in an operationalized query-response format, which enables more targeted retrieval. Experiments on challenging medical QA benchmarks show that augmenting LLMs with MIRIAD improves accuracy up to 6.7% compared to unstructured RAG baselines with the same source corpus and with the same amount of retrieved text. Moreover, MIRIAD improved the ability of LLMs to detect medical hallucinations by 22.5 to 37% (increase in F1 score). We further introduce MIRIAD-Atlas, an interactive map of MIRIAD spanning 56 medical disciplines, enabling clinical users to visually explore, search, and refine medical knowledge. MIRIAD promises to unlock a wealth of down-stream applications, including medical information retrievers, enhanced RAG applications, and knowledge-grounded chat interfaces, which ultimately enables more reliable LLM applications in healthcare.

Tiny QA Benchmark++: Ultra-Lightweight, Synthetic Multilingual Dataset Generation & Smoke-Tests for Continuous LLM Evaluation

Tiny QA Benchmark++ (TQB++) presents an ultra-lightweight, multilingual smoke-test suite designed to give large-language-model (LLM) pipelines a unit-test style safety net dataset that runs in seconds with minimal cost. Born out of the tight feedback-loop demands building the Comet Opik prompt-optimization SDK, where waiting on heavyweight benchmarks breaks developer flow. TQB++ couples a 52-item English gold set (less than 20 kB) with a tiny synthetic-data generator pypi package built on provider-agnostic LiteLLM. The generator lets practitioners mint their own tiny packs in any language, domain, or difficulty, while ten ready-made packs already cover Arabic, Chinese, French, German, Japanese, Korean, Portuguese, Russian, Spanish, and Turkish. Every dataset ships with Croissant metadata and plug-and-play files for OpenAI-Evals, LangChain, and standard CI tools, so teams can drop deterministic micro-benchmarks directly into pull-request gates, prompt-engineering loops, and production dashboards without touching GPU budgets. A complete TQB++ run adds only a few seconds to pipeline latency yet reliably flags prompt-template errors, tokenizer drift, and fine-tuning side-effects long before full-scale suites like MMLU or BIG-Bench would finish configuring. The entire framework is released to accelerate continuous, resource-efficient quality assurance across the generative-AI ecosystem.

AlignRAG: An Adaptable Framework for Resolving Misalignments in Retrieval-Aware Reasoning of RAG

Retrieval-augmented generation (RAG) has emerged as a foundational paradigm for knowledge-grounded text generation. However, existing RAG pipelines often fail to ensure that the reasoning trajectories align with the evidential constraints imposed by retrieved content. In this paper, we reframe RAG as a problem of retrieval-aware reasoning and identify a core challenge: reasoning misalignment-the mismatch between a model's reasoning trajectory and the retrieved evidence. To address this challenge, we propose AlignRAG, a novel test-time framework that mitigates reasoning misalignment through iterative Critique-Driven Alignment (CDA) steps. In contrast to prior approaches that rely on static training or post-hoc selection, AlignRAG actively refines reasoning trajectories during inference by enforcing fine-grained alignment with evidence. Our framework introduces a new paradigm for retrieval-aware reasoning by: (1) constructing context-rich training corpora; (2) generating contrastive critiques from preference-aware reasoning trajectories; (3) training a dedicated Critic Language Model (CLM) to identify reasoning misalignments; and (4) applying CDA steps to optimize reasoning trajectories iteratively. Empirical results demonstrate that AlignRAG consistently outperforms all baselines and could integrate as a plug-and-play module into existing RAG pipelines without further changes. By reconceptualizing RAG as a structured reasoning trajectory and establishing the test-time framework for correcting reasoning misalignments in RAG, AlignRAG provides practical advancements for retrieval-aware generation.

SqueezeLLM: Dense-and-Sparse Quantization

Generative Large Language Models (LLMs) have demonstrated remarkable results for a wide range of tasks. However, deploying these models for inference has been a significant challenge due to their unprecedented resource requirements. This has forced existing deployment frameworks to use multi-GPU inference pipelines, which are often complex and costly, or to use smaller and less performant models. In this work, we demonstrate that the main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, specifically for single batch inference. While quantization has emerged as a promising solution by representing model weights with reduced precision, previous efforts have often resulted in notable performance degradation. To address this, we introduce SqueezeLLM, a post-training quantization framework that not only enables lossless compression to ultra-low precisions of up to 3-bit, but also achieves higher quantization performance under the same memory constraint. Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format. When applied to the LLaMA models, our 3-bit quantization significantly reduces the perplexity gap from the FP16 baseline by up to 2.1x as compared to the state-of-the-art methods with the same memory requirement. Furthermore, when deployed on an A6000 GPU, our quantized models achieve up to 2.3x speedup compared to the baseline. Our code is open-sourced and available online.

Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration

Although learning-based image restoration methods have made significant progress, they still struggle with limited generalization to real-world scenarios due to the substantial domain gap caused by training on synthetic data. Existing methods address this issue by improving data synthesis pipelines, estimating degradation kernels, employing deep internal learning, and performing domain adaptation and regularization. Previous domain adaptation methods have sought to bridge the domain gap by learning domain-invariant knowledge in either feature or pixel space. However, these techniques often struggle to extend to low-level vision tasks within a stable and compact framework. In this paper, we show that it is possible to perform domain adaptation via the noise space using diffusion models. In particular, by leveraging the unique property of how auxiliary conditional inputs influence the multi-step denoising process, we derive a meaningful diffusion loss that guides the restoration model in progressively aligning both restored synthetic and real-world outputs with a target clean distribution. We refer to this method as denoising as adaptation. To prevent shortcuts during joint training, we present crucial strategies such as channel-shuffling layer and residual-swapping contrastive learning in the diffusion model. They implicitly blur the boundaries between conditioned synthetic and real data and prevent the reliance of the model on easily distinguishable features. Experimental results on three classical image restoration tasks, namely denoising, deblurring, and deraining, demonstrate the effectiveness of the proposed method.

HuixiangDou2: A Robustly Optimized GraphRAG Approach

Large Language Models (LLMs) perform well on familiar queries but struggle with specialized or emerging topics. Graph-based Retrieval-Augmented Generation (GraphRAG) addresses this by structuring domain knowledge as a graph for dynamic retrieval. However, existing pipelines involve complex engineering workflows, making it difficult to isolate the impact of individual components. Evaluating retrieval effectiveness is also challenging due to dataset overlap with LLM pretraining data. In this work, we introduce HuixiangDou2, a robustly optimized GraphRAG framework. Specifically, we leverage the effectiveness of dual-level retrieval and optimize its performance in a 32k context for maximum precision, and compare logic-based retrieval and dual-level retrieval to enhance overall functionality. Our implementation includes comparative experiments on a test set, where Qwen2.5-7B-Instruct initially underperformed. With our approach, the score improved significantly from 60 to 74.5, as illustrated in the Figure. Experiments on domain-specific datasets reveal that dual-level retrieval enhances fuzzy matching, while logic-form retrieval improves structured reasoning. Furthermore, we propose a multi-stage verification mechanism to improve retrieval robustness without increasing computational cost. Empirical results show significant accuracy gains over baselines, highlighting the importance of adaptive retrieval. To support research and adoption, we release HuixiangDou2 as an open-source resource https://github.com/tpoisonooo/huixiangdou2.

High-Fidelity Virtual Try-on with Large-Scale Unpaired Learning

Virtual try-on (VTON) transfers a target clothing image to a reference person, where clothing fidelity is a key requirement for downstream e-commerce applications. However, existing VTON methods still fall short in high-fidelity try-on due to the conflict between the high diversity of dressing styles (\eg clothes occluded by pants or distorted by posture) and the limited paired data for training. In this work, we propose a novel framework Boosted Virtual Try-on (BVTON) to leverage the large-scale unpaired learning for high-fidelity try-on. Our key insight is that pseudo try-on pairs can be reliably constructed from vastly available fashion images. Specifically, 1) we first propose a compositional canonicalizing flow that maps on-model clothes into pseudo in-shop clothes, dubbed canonical proxy. Each clothing part (sleeves, torso) is reversely deformed into an in-shop-like shape to compositionally construct the canonical proxy. 2) Next, we design a layered mask generation module that generates accurate semantic layout by training on canonical proxy. We replace the in-shop clothes used in conventional pipelines with the derived canonical proxy to boost the training process. 3) Finally, we propose an unpaired try-on synthesizer by constructing pseudo training pairs with randomly misaligned on-model clothes, where intricate skin texture and clothes boundaries can be generated. Extensive experiments on high-resolution (1024times768) datasets demonstrate the superiority of our approach over state-of-the-art methods both qualitatively and quantitatively. Notably, BVTON shows great generalizability and scalability to various dressing styles and data sources.

4DGen: Grounded 4D Content Generation with Spatial-temporal Consistency

Aided by text-to-image and text-to-video diffusion models, existing 4D content creation pipelines utilize score distillation sampling to optimize the entire dynamic 3D scene. However, as these pipelines generate 4D content from text or image inputs, they incur significant time and effort in prompt engineering through trial and error. This work introduces 4DGen, a novel, holistic framework for grounded 4D content creation that decomposes the 4D generation task into multiple stages. We identify static 3D assets and monocular video sequences as key components in constructing the 4D content. Our pipeline facilitates conditional 4D generation, enabling users to specify geometry (3D assets) and motion (monocular videos), thus offering superior control over content creation. Furthermore, we construct our 4D representation using dynamic 3D Gaussians, which permits efficient, high-resolution supervision through rendering during training, thereby facilitating high-quality 4D generation. Additionally, we employ spatial-temporal pseudo labels on anchor frames, along with seamless consistency priors implemented through 3D-aware score distillation sampling and smoothness regularizations. Compared to existing baselines, our approach yields competitive results in faithfully reconstructing input signals and realistically inferring renderings from novel viewpoints and timesteps. Most importantly, our method supports grounded generation, offering users enhanced control, a feature difficult to achieve with previous methods. Project page: https://vita-group.github.io/4DGen/

HyPoradise: An Open Baseline for Generative Speech Recognition with Large Language Models

Advancements in deep neural networks have allowed automatic speech recognition (ASR) systems to attain human parity on several publicly available clean speech datasets. However, even state-of-the-art ASR systems experience performance degradation when confronted with adverse conditions, as a well-trained acoustic model is sensitive to variations in the speech domain, e.g., background noise. Intuitively, humans address this issue by relying on their linguistic knowledge: the meaning of ambiguous spoken terms is usually inferred from contextual cues thereby reducing the dependency on the auditory system. Inspired by this observation, we introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction, where N-best decoding hypotheses provide informative elements for true transcription prediction. This approach is a paradigm shift from the traditional language model rescoring strategy that can only select one candidate hypothesis as the output transcription. The proposed benchmark contains a novel dataset, HyPoradise (HP), encompassing more than 334,000 pairs of N-best hypotheses and corresponding accurate transcriptions across prevalent speech domains. Given this dataset, we examine three types of error correction techniques based on LLMs with varying amounts of labeled hypotheses-transcription pairs, which gains a significant word error rate (WER) reduction. Experimental evidence demonstrates the proposed technique achieves a breakthrough by surpassing the upper bound of traditional re-ranking based methods. More surprisingly, LLM with reasonable prompt and its generative capability can even correct those tokens that are missing in N-best list. We make our results publicly accessible for reproducible pipelines with released pre-trained models, thus providing a new evaluation paradigm for ASR error correction with LLMs.

Multi-view Surface Reconstruction Using Normal and Reflectance Cues

Achieving high-fidelity 3D surface reconstruction while preserving fine details remains challenging, especially in the presence of materials with complex reflectance properties and without a dense-view setup. In this paper, we introduce a versatile framework that incorporates multi-view normal and optionally reflectance maps into radiance-based surface reconstruction. Our approach employs a pixel-wise joint re-parametrization of reflectance and surface normals, representing them as a vector of radiances under simulated, varying illumination. This formulation enables seamless incorporation into standard surface reconstruction pipelines, such as traditional multi-view stereo (MVS) frameworks or modern neural volume rendering (NVR) ones. Combined with the latter, our approach achieves state-of-the-art performance on multi-view photometric stereo (MVPS) benchmark datasets, including DiLiGenT-MV, LUCES-MV and Skoltech3D. In particular, our method excels in reconstructing fine-grained details and handling challenging visibility conditions. The present paper is an extended version of the earlier conference paper by Brument et al. (in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024), featuring an accelerated and more robust algorithm as well as a broader empirical evaluation. The code and data relative to this article is available at https://github.com/RobinBruneau/RNb-NeuS2.

MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning

Medical Large Vision-Language Models (Med-LVLMs) have shown strong potential in multimodal diagnostic tasks. However, existing single-agent models struggle to generalize across diverse medical specialties, limiting their performance. Recent efforts introduce multi-agent collaboration frameworks inspired by clinical workflows, where general practitioners (GPs) and specialists interact in a fixed sequence. Despite improvements, these static pipelines lack flexibility and adaptability in reasoning. To address this, we propose MMedAgent-RL, a reinforcement learning (RL)-based multi-agent framework that enables dynamic, optimized collaboration among medical agents. Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists and its own knowledge to make final decisions. To address the inconsistency in specialist outputs, we introduce a curriculum learning (CL)-guided RL strategy that progressively teaches the attending physician to balance between imitating specialists and correcting their mistakes. Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL not only outperforms both open-source and proprietary Med-LVLMs, but also exhibits human-like reasoning patterns. Notably, it achieves an average performance gain of 20.7% over supervised fine-tuning baselines.

MetaFormer: A Unified Meta Framework for Fine-Grained Recognition

Fine-Grained Visual Classification(FGVC) is the task that requires recognizing the objects belonging to multiple subordinate categories of a super-category. Recent state-of-the-art methods usually design sophisticated learning pipelines to tackle this task. However, visual information alone is often not sufficient to accurately differentiate between fine-grained visual categories. Nowadays, the meta-information (e.g., spatio-temporal prior, attribute, and text description) usually appears along with the images. This inspires us to ask the question: Is it possible to use a unified and simple framework to utilize various meta-information to assist in fine-grained identification? To answer this problem, we explore a unified and strong meta-framework(MetaFormer) for fine-grained visual classification. In practice, MetaFormer provides a simple yet effective approach to address the joint learning of vision and various meta-information. Moreover, MetaFormer also provides a strong baseline for FGVC without bells and whistles. Extensive experiments demonstrate that MetaFormer can effectively use various meta-information to improve the performance of fine-grained recognition. In a fair comparison, MetaFormer can outperform the current SotA approaches with only vision information on the iNaturalist2017 and iNaturalist2018 datasets. Adding meta-information, MetaFormer can exceed the current SotA approaches by 5.9% and 5.3%, respectively. Moreover, MetaFormer can achieve 92.3% and 92.7% on CUB-200-2011 and NABirds, which significantly outperforms the SotA approaches. The source code and pre-trained models are released athttps://github.com/dqshuai/MetaFormer.

Program Merge Conflict Resolution via Neural Transformers

Collaborative software development is an integral part of the modern software development life cycle, essential to the success of large-scale software projects. When multiple developers make concurrent changes around the same lines of code, a merge conflict may occur. Such conflicts stall pull requests and continuous integration pipelines for hours to several days, seriously hurting developer productivity. To address this problem, we introduce MergeBERT, a novel neural program merge framework based on token-level three-way differencing and a transformer encoder model. By exploiting the restricted nature of merge conflict resolutions, we reformulate the task of generating the resolution sequence as a classification task over a set of primitive merge patterns extracted from real-world merge commit data. Our model achieves 63-68% accuracy for merge resolution synthesis, yielding nearly a 3x performance improvement over existing semi-structured, and 2x improvement over neural program merge tools. Finally, we demonstrate that MergeBERT is sufficiently flexible to work with source code files in Java, JavaScript, TypeScript, and C# programming languages. To measure the practical use of MergeBERT, we conduct a user study to evaluate MergeBERT suggestions with 25 developers from large OSS projects on 122 real-world conflicts they encountered. Results suggest that in practice, MergeBERT resolutions would be accepted at a higher rate than estimated by automatic metrics for precision and accuracy. Additionally, we use participant feedback to identify future avenues for improvement of MergeBERT.

Improving Performance, Robustness, and Fairness of Radiographic AI Models with Finely-Controllable Synthetic Data

Achieving robust performance and fairness across diverse patient populations remains a challenge in developing clinically deployable deep learning models for diagnostic imaging. Synthetic data generation has emerged as a promising strategy to address limitations in dataset scale and diversity. We introduce RoentGen-v2, a text-to-image diffusion model for chest radiographs that enables fine-grained control over both radiographic findings and patient demographic attributes, including sex, age, and race/ethnicity. RoentGen-v2 is the first model to generate clinically plausible images with demographic conditioning, facilitating the creation of a large, demographically balanced synthetic dataset comprising over 565,000 images. We use this large synthetic dataset to evaluate optimal training pipelines for downstream disease classification models. In contrast to prior work that combines real and synthetic data naively, we propose an improved training strategy that leverages synthetic data for supervised pretraining, followed by fine-tuning on real data. Through extensive evaluation on over 137,000 chest radiographs from five institutions, we demonstrate that synthetic pretraining consistently improves model performance, generalization to out-of-distribution settings, and fairness across demographic subgroups. Across datasets, synthetic pretraining led to a 6.5% accuracy increase in the performance of downstream classification models, compared to a modest 2.7% increase when naively combining real and synthetic data. We observe this performance improvement simultaneously with the reduction of the underdiagnosis fairness gap by 19.3%. These results highlight the potential of synthetic imaging to advance equitable and generalizable medical deep learning under real-world data constraints. We open source our code, trained models, and synthetic dataset at https://github.com/StanfordMIMI/RoentGen-v2 .

CURE: Critical-Token-Guided Re-Concatenation for Entropy-Collapse Prevention

Recent advances in Reinforcement Learning with Verified Reward (RLVR) have driven the emergence of more sophisticated cognitive behaviors in large language models (LLMs), thereby enhancing their reasoning capabilities. However, in prior RLVR pipelines, the repeated use of static initial-state sampling drawn exactly from the dataset distribution during each sampling phase produced overly deterministic, low diversity model behavior, which manifested as rapid entropy collapse and hindered sustained performance gains during prolonged training. To address this issue, we introduce CURE (Critical-token-gUided Re concatenation for Entropy-collapse prevention), a two-stage framework that balances exploration and exploitation. Specifically, in the first stage, to deliberately steer the model toward novel yet coherent contexts, we re-generate at high-entropy critical tokens and jointly optimize the original and the branched trajectories. The further comparison with vanilla DAPO shows that the regeneration process achieves a better performance on math reasoning tasks while sustaining a high-level entropy degree for exploration. In the second stage, we continue training with static initial-state sampling by DAPO, intentionally placing the model in a familiar state to gradually strengthen exploitation. Extensive experiments on Qwen-2.5-Math-7B show that, compared to other RLVR methods, CURE achieves a 5% performance gain across six math benchmarks, establishing state-of-the-art performance in both entropy and accuracy. A series of experiments further validate the effectiveness of our approach. Code is available at https://github.com/bytedance/CURE.

Multimodal LLM-Guided Semantic Correction in Text-to-Image Diffusion

Diffusion models have become the mainstream architecture for text-to-image generation, achieving remarkable progress in visual quality and prompt controllability. However, current inference pipelines generally lack interpretable semantic supervision and correction mechanisms throughout the denoising process. Most existing approaches rely solely on post-hoc scoring of the final image, prompt filtering, or heuristic resampling strategies-making them ineffective in providing actionable guidance for correcting the generative trajectory. As a result, models often suffer from object confusion, spatial errors, inaccurate counts, and missing semantic elements, severely compromising prompt-image alignment and image quality. To tackle these challenges, we propose MLLM Semantic-Corrected Ping-Pong-Ahead Diffusion (PPAD), a novel framework that, for the first time, introduces a Multimodal Large Language Model (MLLM) as a semantic observer during inference. PPAD performs real-time analysis on intermediate generations, identifies latent semantic inconsistencies, and translates feedback into controllable signals that actively guide the remaining denoising steps. The framework supports both inference-only and training-enhanced settings, and performs semantic correction at only extremely few diffusion steps, offering strong generality and scalability. Extensive experiments demonstrate PPAD's significant improvements.

Inverse Reinforcement Learning with Dynamic Reward Scaling for LLM Alignment

Robust alignment is vital for safely deploying large language models (LLMs). Existing techniques are either reward-based -- training a reward model on preference pairs and optimizing with reinforcement learning (RL) -- or reward-free -- directly fine-tuning on ranked outputs. Recent research shows that well-tuned reward-based pipelines remain the most robust, and single-response demonstrations can outperform pairwise preference data. However, two key challenges remain: (i) imbalanced safety datasets that over-represent common hazards while neglecting long-tail threats; and (ii) static reward models that ignore task difficulty, limiting optimization efficiency and attainable gains. To address these limitations, we propose DR-IRL, which dynamically adjusts rewards through inverse reinforcement learning. We first construct a balanced safety dataset of seven harmful categories using Chain-of-Draft (CoD) template prompts, which reduce token usage and generation time compared to Chain-of-Thought (CoT). We then train category-specific reward models on this dataset via IRL. Finally, to align the LLM, we introduce GRPO-S (Group Relative Policy Optimization--Scaling), a variant of GRPO that scales the reward during optimization to task difficulty -- data-level hardness measured by CLIP similarity and model-level responsiveness measured by reward gaps. Extensive experiments on multiple benchmarks and LLMs demonstrate that DR-IRL outperforms all baselines in safety alignment while maintaining usefulness.

Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models

Large Language Models (LLMs) have the unique capability to understand and generate human-like text from input queries. When fine-tuned, these models show enhanced performance on domain-specific queries. OpenAI highlights the process of fine-tuning, stating: "To fine-tune a model, you are required to provide at least 10 examples. We typically see clear improvements from fine-tuning on 50 to 100 training examples, but the right number varies greatly based on the exact use case." This study extends this concept to the integration of LLMs within Retrieval-Augmented Generation (RAG) pipelines, which aim to improve accuracy and relevance by leveraging external corpus data for information retrieval. However, RAG's promise of delivering optimal responses often falls short in complex query scenarios. This study aims to specifically examine the effects of fine-tuning LLMs on their ability to extract and integrate contextual data to enhance the performance of RAG systems across multiple domains. We evaluate the impact of fine-tuning on the LLMs' capacity for data extraction and contextual understanding by comparing the accuracy and completeness of fine-tuned models against baseline performances across datasets from multiple domains. Our findings indicate that fine-tuning resulted in a decline in performance compared to the baseline models, contrary to the improvements observed in standalone LLM applications as suggested by OpenAI. This study highlights the need for vigorous investigation and validation of fine-tuned models for domain-specific tasks.

Assemblage: Automatic Binary Dataset Construction for Machine Learning

Binary code is pervasive, and binary analysis is a key task in reverse engineering, malware classification, and vulnerability discovery. Unfortunately, while there exist large corpuses of malicious binaries, obtaining high-quality corpuses of benign binaries for modern systems has proven challenging (e.g., due to licensing issues). Consequently, machine learning based pipelines for binary analysis utilize either costly commercial corpuses (e.g., VirusTotal) or open-source binaries (e.g., coreutils) available in limited quantities. To address these issues, we present Assemblage: an extensible cloud-based distributed system that crawls, configures, and builds Windows PE binaries to obtain high-quality binary corpuses suitable for training state-of-the-art models in binary analysis. We have run Assemblage on AWS over the past year, producing 890k Windows PE and 428k Linux ELF binaries across 29 configurations. Assemblage is designed to be both reproducible and extensible, enabling users to publish "recipes" for their datasets, and facilitating the extraction of a wide array of features. We evaluated Assemblage by using its data to train modern learning-based pipelines for compiler provenance and binary function similarity. Our results illustrate the practical need for robust corpuses of high-quality Windows PE binaries in training modern learning-based binary analyses. Assemblage can be downloaded from https://assemblage-dataset.net

OneActor: Consistent Character Generation via Cluster-Conditioned Guidance

Text-to-image diffusion models benefit artists with high-quality image generation. Yet its stochastic nature prevent artists from creating consistent images of the same character. Existing methods try to tackle this challenge and generate consistent content in various ways. However, they either depend on external data or require expensive tuning of the diffusion model. For this issue, we argue that a lightweight but intricate guidance is enough to function. Aiming at this, we lead the way to formalize the objective of consistent generation, derive a clustering-based score function and propose a novel paradigm, OneActor. We design a cluster-conditioned model which incorporates posterior samples to guide the denoising trajectories towards the target cluster. To overcome the overfitting challenge shared by one-shot tuning pipelines, we devise auxiliary components to simultaneously augment the tuning and regulate the inference. This technique is later verified to significantly enhance the content diversity of generated images. Comprehensive experiments show that our method outperforms a variety of baselines with satisfactory character consistency, superior prompt conformity as well as high image quality. And our method is at least 4 times faster than tuning-based baselines. Furthermore, to our best knowledge, we first prove that the semantic space has the same interpolation property as the latent space dose. This property can serve as another promising tool for fine generation control.

Cross-Lingual Transfer from Related Languages: Treating Low-Resource Maltese as Multilingual Code-Switching

Although multilingual language models exhibit impressive cross-lingual transfer capabilities on unseen languages, the performance on downstream tasks is impacted when there is a script disparity with the languages used in the multilingual model's pre-training data. Using transliteration offers a straightforward yet effective means to align the script of a resource-rich language with a target language, thereby enhancing cross-lingual transfer capabilities. However, for mixed languages, this approach is suboptimal, since only a subset of the language benefits from the cross-lingual transfer while the remainder is impeded. In this work, we focus on Maltese, a Semitic language, with substantial influences from Arabic, Italian, and English, and notably written in Latin script. We present a novel dataset annotated with word-level etymology. We use this dataset to train a classifier that enables us to make informed decisions regarding the appropriate processing of each token in the Maltese language. We contrast indiscriminate transliteration or translation to mixing processing pipelines that only transliterate words of Arabic origin, thereby resulting in text with a mixture of scripts. We fine-tune the processed data on four downstream tasks and show that conditional transliteration based on word etymology yields the best results, surpassing fine-tuning with raw Maltese or Maltese processed with non-selective pipelines.

PEneo: Unifying Line Extraction, Line Grouping, and Entity Linking for End-to-end Document Pair Extraction

Document pair extraction aims to identify key and value entities as well as their relationships from visually-rich documents. Most existing methods divide it into two separate tasks: semantic entity recognition (SER) and relation extraction (RE). However, simply concatenating SER and RE serially can lead to severe error propagation, and it fails to handle cases like multi-line entities in real scenarios. To address these issues, this paper introduces a novel framework, PEneo (Pair Extraction new decoder option), which performs document pair extraction in a unified pipeline, incorporating three concurrent sub-tasks: line extraction, line grouping, and entity linking. This approach alleviates the error accumulation problem and can handle the case of multi-line entities. Furthermore, to better evaluate the model's performance and to facilitate future research on pair extraction, we introduce RFUND, a re-annotated version of the commonly used FUNSD and XFUND datasets, to make them more accurate and cover realistic situations. Experiments on various benchmarks demonstrate PEneo's superiority over previous pipelines, boosting the performance by a large margin (e.g., 19.89%-22.91% F1 score on RFUND-EN) when combined with various backbones like LiLT and LayoutLMv3, showing its effectiveness and generality. Codes and the new annotations will be open to the public.

MULLER: Multilayer Laplacian Resizer for Vision

Image resizing operation is a fundamental preprocessing module in modern computer vision. Throughout the deep learning revolution, researchers have overlooked the potential of alternative resizing methods beyond the commonly used resizers that are readily available, such as nearest-neighbors, bilinear, and bicubic. The key question of our interest is whether the front-end resizer affects the performance of deep vision models? In this paper, we present an extremely lightweight multilayer Laplacian resizer with only a handful of trainable parameters, dubbed MULLER resizer. MULLER has a bandpass nature in that it learns to boost details in certain frequency subbands that benefit the downstream recognition models. We show that MULLER can be easily plugged into various training pipelines, and it effectively boosts the performance of the underlying vision task with little to no extra cost. Specifically, we select a state-of-the-art vision Transformer, MaxViT, as the baseline, and show that, if trained with MULLER, MaxViT gains up to 0.6% top-1 accuracy, and meanwhile enjoys 36% inference cost saving to achieve similar top-1 accuracy on ImageNet-1k, as compared to the standard training scheme. Notably, MULLER's performance also scales with model size and training data size such as ImageNet-21k and JFT, and it is widely applicable to multiple vision tasks, including image classification, object detection and segmentation, as well as image quality assessment.

Betrayed by Captions: Joint Caption Grounding and Generation for Open Vocabulary Instance Segmentation

In this work, we focus on open vocabulary instance segmentation to expand a segmentation model to classify and segment instance-level novel categories. Previous approaches have relied on massive caption datasets and complex pipelines to establish one-to-one mappings between image regions and words in captions. However, such methods build noisy supervision by matching non-visible words to image regions, such as adjectives and verbs. Meanwhile, context words are also important for inferring the existence of novel objects as they show high inter-correlations with novel categories. To overcome these limitations, we devise a joint Caption Grounding and Generation (CGG) framework, which incorporates a novel grounding loss that only focuses on matching object nouns to improve learning efficiency. We also introduce a caption generation head that enables additional supervision and contextual modeling as a complementation to the grounding loss. Our analysis and results demonstrate that grounding and generation components complement each other, significantly enhancing the segmentation performance for novel classes. Experiments on the COCO dataset with two settings: Open Vocabulary Instance Segmentation (OVIS) and Open Set Panoptic Segmentation (OSPS) demonstrate the superiority of the CGG. Specifically, CGG achieves a substantial improvement of 6.8% mAP for novel classes without extra data on the OVIS task and 15% PQ improvements for novel classes on the OSPS benchmark.

See Through Their Minds: Learning Transferable Neural Representation from Cross-Subject fMRI

Deciphering visual content from functional Magnetic Resonance Imaging (fMRI) helps illuminate the human vision system. However, the scarcity of fMRI data and noise hamper brain decoding model performance. Previous approaches primarily employ subject-specific models, sensitive to training sample size. In this paper, we explore a straightforward but overlooked solution to address data scarcity. We propose shallow subject-specific adapters to map cross-subject fMRI data into unified representations. Subsequently, a shared deeper decoding model decodes cross-subject features into the target feature space. During training, we leverage both visual and textual supervision for multi-modal brain decoding. Our model integrates a high-level perception decoding pipeline and a pixel-wise reconstruction pipeline guided by high-level perceptions, simulating bottom-up and top-down processes in neuroscience. Empirical experiments demonstrate robust neural representation learning across subjects for both pipelines. Moreover, merging high-level and low-level information improves both low-level and high-level reconstruction metrics. Additionally, we successfully transfer learned general knowledge to new subjects by training new adapters with limited training data. Compared to previous state-of-the-art methods, notably pre-training-based methods (Mind-Vis and fMRI-PTE), our approach achieves comparable or superior results across diverse tasks, showing promise as an alternative method for cross-subject fMRI data pre-training. Our code and pre-trained weights will be publicly released at https://github.com/YulongBonjour/See_Through_Their_Minds.

PartCrafter: Structured 3D Mesh Generation via Compositional Latent Diffusion Transformers

We introduce PartCrafter, the first structured 3D generative model that jointly synthesizes multiple semantically meaningful and geometrically distinct 3D meshes from a single RGB image. Unlike existing methods that either produce monolithic 3D shapes or follow two-stage pipelines, i.e., first segmenting an image and then reconstructing each segment, PartCrafter adopts a unified, compositional generation architecture that does not rely on pre-segmented inputs. Conditioned on a single image, it simultaneously denoises multiple 3D parts, enabling end-to-end part-aware generation of both individual objects and complex multi-object scenes. PartCrafter builds upon a pretrained 3D mesh diffusion transformer (DiT) trained on whole objects, inheriting the pretrained weights, encoder, and decoder, and introduces two key innovations: (1) A compositional latent space, where each 3D part is represented by a set of disentangled latent tokens; (2) A hierarchical attention mechanism that enables structured information flow both within individual parts and across all parts, ensuring global coherence while preserving part-level detail during generation. To support part-level supervision, we curate a new dataset by mining part-level annotations from large-scale 3D object datasets. Experiments show that PartCrafter outperforms existing approaches in generating decomposable 3D meshes, including parts that are not directly visible in input images, demonstrating the strength of part-aware generative priors for 3D understanding and synthesis. Code and training data will be released.

Compression Represents Intelligence Linearly

There is a belief that learning to compress well will lead to intelligence. Recently, language modeling has been shown to be equivalent to compression, which offers a compelling rationale for the success of large language models (LLMs): the development of more advanced language models is essentially enhancing compression which facilitates intelligence. Despite such appealing discussions, little empirical evidence is present for the interplay between compression and intelligence. In this work, we examine their relationship in the context of LLMs, treating LLMs as data compressors. Given the abstract concept of "intelligence", we adopt the average downstream benchmark scores as a surrogate, specifically targeting intelligence related to knowledge and commonsense, coding, and mathematical reasoning. Across 12 benchmarks, our study brings together 30 public LLMs that originate from diverse organizations. Remarkably, we find that LLMs' intelligence -- reflected by average benchmark scores -- almost linearly correlates with their ability to compress external text corpora. These results provide concrete evidence supporting the belief that superior compression indicates greater intelligence. Furthermore, our findings suggest that compression efficiency, as an unsupervised metric derived from raw text corpora, serves as a reliable evaluation measure that is linearly associated with the model capabilities. We open-source our compression datasets as well as our data collection pipelines to facilitate future researchers to assess compression properly.

Dynamic Chunking for End-to-End Hierarchical Sequence Modeling

Despite incredible progress in language models (LMs) in recent years, largely resulting from moving away from specialized models designed for specific tasks to general models based on powerful architectures (e.g. the Transformer) that learn everything from raw data, pre-processing steps such as tokenization remain a barrier to true end-to-end foundation models. We introduce a collection of new techniques that enable a dynamic chunking mechanism which automatically learns content -- and context -- dependent segmentation strategies learned jointly with the rest of the model. Incorporating this into an explicit hierarchical network (H-Net) allows replacing the (implicitly hierarchical) tokenization-LM-detokenization pipeline with a single model learned fully end-to-end. When compute- and data- matched, an H-Net with one stage of hierarchy operating at the byte level outperforms a strong Transformer language model operating over BPE tokens. Iterating the hierarchy to multiple stages further increases its performance by modeling multiple levels of abstraction, demonstrating significantly better scaling with data and matching a token-based Transformer of twice its size. H-Nets pretrained on English show significantly increased character-level robustness, and qualitatively learn meaningful data-dependent chunking strategies without any heuristics or explicit supervision. Finally, the H-Net's improvement over tokenized pipelines is further increased in languages and modalities with weaker tokenization heuristics, such as Chinese and code, or DNA sequences (nearly 4x improvement in data efficiency over baselines), showing the potential of true end-to-end models that learn and scale better from unprocessed data.

EfficientLLM: Efficiency in Large Language Models

Large Language Models (LLMs) have driven significant progress, yet their growing parameter counts and context windows incur prohibitive compute, energy, and monetary costs. We introduce EfficientLLM, a novel benchmark and the first comprehensive empirical study evaluating efficiency techniques for LLMs at scale. Conducted on a production-class cluster (48xGH200, 8xH200 GPUs), our study systematically explores three key axes: (1) architecture pretraining (efficient attention variants: MQA, GQA, MLA, NSA; sparse Mixture-of-Experts (MoE)), (2) fine-tuning (parameter-efficient methods: LoRA, RSLoRA, DoRA), and (3) inference (quantization methods: int4, float16). We define six fine-grained metrics (Memory Utilization, Compute Utilization, Latency, Throughput, Energy Consumption, Compression Rate) to capture hardware saturation, latency-throughput balance, and carbon cost. Evaluating over 100 model-technique pairs (0.5B-72B parameters), we derive three core insights: (i) Efficiency involves quantifiable trade-offs: no single method is universally optimal; e.g., MoE reduces FLOPs and improves accuracy but increases VRAM by 40%, while int4 quantization cuts memory/energy by up to 3.9x at a 3-5% accuracy drop. (ii) Optima are task- and scale-dependent: MQA offers optimal memory-latency trade-offs for constrained devices, MLA achieves lowest perplexity for quality-critical tasks, and RSLoRA surpasses LoRA efficiency only beyond 14B parameters. (iii) Techniques generalize across modalities: we extend evaluations to Large Vision Models (Stable Diffusion 3.5, Wan 2.1) and Vision-Language Models (Qwen2.5-VL), confirming effective transferability. By open-sourcing datasets, evaluation pipelines, and leaderboards, EfficientLLM provides essential guidance for researchers and engineers navigating the efficiency-performance landscape of next-generation foundation models.

Can LLMs Learn by Teaching? A Preliminary Study

Teaching to improve student models (e.g., knowledge distillation) is an extensively studied methodology in LLMs. However, for humans, teaching not only improves students but also improves teachers. We ask: Can LLMs also learn by teaching (LbT)? If yes, we can potentially unlock the possibility of continuously advancing the models without solely relying on human-produced data or stronger models. In this paper, we provide a preliminary exploration of this ambitious agenda. We show that LbT ideas can be incorporated into existing LLM training/prompting pipelines and provide noticeable improvements. Specifically, we design three methods, each mimicking one of the three levels of LbT in humans: observing students' feedback, learning from the feedback, and learning iteratively, with the goals of improving answer accuracy without training and improving models' inherent capability with fine-tuning. The findings are encouraging. For example, similar to LbT in human, we see that: (1) LbT can induce weak-to-strong generalization: strong models can improve themselves by teaching other weak models; (2) Diversity in students might help: teaching multiple students could be better than teaching one student or the teacher itself. We hope that this early promise can inspire future research on LbT and more broadly adopting the advanced techniques in education to improve LLMs. The code is available at https://github.com/imagination-research/lbt.

Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning

A key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL). However, constructing a standalone RL policy that maps perception to action directly encounters severe problems, chief among them being its lack of generality across multiple tasks and the need for a large amount of training data. The leading cause is that it cannot effectively integrate prior information into the perception-action cycle when devising the policy. Large language models (LLMs) emerged as a fundamental way to incorporate cross-domain knowledge into AI agents but lack crucial learning and adaptation toward specific decision problems. This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies. Our methodology is motivated by the modularity found in the human brain. The framework utilises the construction of intrinsic and extrinsic functions to add previous understandings of reasoning structures. It also provides the adaptive ability to learn models inside every module or function, consistent with the modular structure of cognitive processes. We describe the framework in-depth and compare it with other AI pipelines and existing frameworks. The paper explores practical applications, covering experiments that show the effectiveness of our method. Our results indicate that AI agents perform and adapt far better when organised reasoning and prior knowledge are embedded. This opens the door to more resilient and general AI agent systems.

Multimodal Situational Safety

Multimodal Large Language Models (MLLMs) are rapidly evolving, demonstrating impressive capabilities as multimodal assistants that interact with both humans and their environments. However, this increased sophistication introduces significant safety concerns. In this paper, we present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety, which explores how safety considerations vary based on the specific situation in which the user or agent is engaged. We argue that for an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context. To evaluate this capability, we develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs. The dataset comprises 1,820 language query-image pairs, half of which the image context is safe, and the other half is unsafe. We also develop an evaluation framework that analyzes key safety aspects, including explicit safety reasoning, visual understanding, and, crucially, situational safety reasoning. Our findings reveal that current MLLMs struggle with this nuanced safety problem in the instruction-following setting and struggle to tackle these situational safety challenges all at once, highlighting a key area for future research. Furthermore, we develop multi-agent pipelines to coordinately solve safety challenges, which shows consistent improvement in safety over the original MLLM response. Code and data: mssbench.github.io.

MMInference: Accelerating Pre-filling for Long-Context VLMs via Modality-Aware Permutation Sparse Attention

The integration of long-context capabilities with visual understanding unlocks unprecedented potential for Vision Language Models (VLMs). However, the quadratic attention complexity during the pre-filling phase remains a significant obstacle to real-world deployment. To overcome this limitation, we introduce MMInference (Multimodality Million tokens Inference), a dynamic sparse attention method that accelerates the prefilling stage for long-context multi-modal inputs. First, our analysis reveals that the temporal and spatial locality of video input leads to a unique sparse pattern, the Grid pattern. Simultaneously, VLMs exhibit markedly different sparse distributions across different modalities. We introduce a permutation-based method to leverage the unique Grid pattern and handle modality boundary issues. By offline search the optimal sparse patterns for each head, MMInference constructs the sparse distribution dynamically based on the input. We also provide optimized GPU kernels for efficient sparse computations. Notably, MMInference integrates seamlessly into existing VLM pipelines without any model modifications or fine-tuning. Experiments on multi-modal benchmarks-including Video QA, Captioning, VisionNIAH, and Mixed-Modality NIAH-with state-of-the-art long-context VLMs (LongVila, LlavaVideo, VideoChat-Flash, Qwen2.5-VL) show that MMInference accelerates the pre-filling stage by up to 8.3x at 1M tokens while maintaining accuracy. Our code is available at https://aka.ms/MMInference.

GLiClass: Generalist Lightweight Model for Sequence Classification Tasks

Classification is one of the most widespread tasks in AI applications, serving often as the first step in filtering, sorting, and categorizing data. Since modern AI systems must handle large volumes of input data and early pipeline stages can propagate errors downstream, achieving high efficiency and accuracy is critical. Moreover, classification requirements can change dynamically based on user needs, necessitating models with strong zero-shot capabilities. While generative LLMs have become mainstream for zero-shot classification due to their versatility, they suffer from inconsistent instruction following and computational inefficiency. Cross-encoders, commonly used as rerankers in RAG pipelines, face a different bottleneck: they must process text-label pairs sequentially, significantly reducing efficiency with large label sets. Embedding-based approaches offer good efficiency but struggle with complex scenarios involving logical and semantic constraints. We propose GLiClass, a novel method that adapts the GLiNER architecture for sequence classification tasks. Our approach achieves strong accuracy and efficiency comparable to embedding-based methods, while maintaining the flexibility needed for zero-shot and few-shot learning scenarios. Additionally, we adapted proximal policy optimization (PPO) for multi-label text classification, enabling training classifiers in data-sparse conditions or from human feedback.

GUI-Reflection: Empowering Multimodal GUI Models with Self-Reflection Behavior

Multimodal Large Language Models (MLLMs) have shown great potential in revolutionizing Graphical User Interface (GUI) automation. However, existing GUI models mostly rely on learning from nearly error-free offline trajectories, thus lacking reflection and error recovery capabilities. To bridge this gap, we propose GUI-Reflection, a novel framework that explicitly integrates self-reflection and error correction capabilities into end-to-end multimodal GUI models throughout dedicated training stages: GUI-specific pre-training, offline supervised fine-tuning (SFT), and online reflection tuning. GUI-reflection enables self-reflection behavior emergence with fully automated data generation and learning processes without requiring any human annotation. Specifically, 1) we first propose scalable data pipelines to automatically construct reflection and error correction data from existing successful trajectories. While existing GUI models mainly focus on grounding and UI understanding ability, we propose the GUI-Reflection Task Suite to learn and evaluate reflection-oriented abilities explicitly. 2) Furthermore, we built a diverse and efficient environment for online training and data collection of GUI models on mobile devices. 3) We also present an iterative online reflection tuning algorithm leveraging the proposed environment, enabling the model to continuously enhance its reflection and error correction abilities. Our framework equips GUI agents with self-reflection and correction capabilities, paving the way for more robust, adaptable, and intelligent GUI automation, with all data, models, environments, and tools to be released publicly.

OmniBind: Large-scale Omni Multimodal Representation via Binding Spaces

Recently, human-computer interaction with various modalities has shown promising applications, like GPT-4o and Gemini. Given the foundational role of multimodal joint representation in understanding and generation pipelines, high-quality omni joint representations would be a step toward co-processing more diverse multimodal information. In this work, we present OmniBind, large-scale multimodal joint representation models ranging in scale from 7 billion to 30 billion parameters, which support 3D, audio, image, and language inputs. Due to the scarcity of data pairs across all modalities, instead of training large models from scratch, we propose remapping and binding the spaces of various pre-trained specialist models together. This approach enables "scaling up" by indirectly increasing the model parameters and the amount of seen data. To effectively integrate various spaces, we dynamically assign weights to different spaces by learning routers with two objectives: cross-modal overall alignment and language representation decoupling. Notably, since binding and routing spaces both only require lightweight networks, OmniBind is extremely training-efficient. Learning the largest 30B model requires merely unpaired unimodal data and approximately 3 days on a single 8-4090 node. Extensive experiments demonstrate the versatility and superiority of OmniBind as an omni representation model, highlighting its great potential for diverse applications, such as any-query and composable multimodal understanding.

GLiNER-biomed: A Suite of Efficient Models for Open Biomedical Named Entity Recognition

Biomedical named entity recognition (NER) presents unique challenges due to specialized vocabularies, the sheer volume of entities, and the continuous emergence of novel entities. Traditional NER models, constrained by fixed taxonomies and human annotations, struggle to generalize beyond predefined entity types or efficiently adapt to emerging concepts. To address these issues, we introduce GLiNER-biomed, a domain-adapted suite of Generalist and Lightweight Model for NER (GLiNER) models specifically tailored for biomedical NER. In contrast to conventional approaches, GLiNER uses natural language descriptions to infer arbitrary entity types, enabling zero-shot recognition. Our approach first distills the annotation capabilities of large language models (LLMs) into a smaller, more efficient model, enabling the generation of high-coverage synthetic biomedical NER data. We subsequently train two GLiNER architectures, uni- and bi-encoder, at multiple scales to balance computational efficiency and recognition performance. Evaluations on several biomedical datasets demonstrate that GLiNER-biomed outperforms state-of-the-art GLiNER models in both zero- and few-shot scenarios, achieving 5.96% improvement in F1-score over the strongest baseline. Ablation studies highlight the effectiveness of our synthetic data generation strategy and emphasize the complementary benefits of synthetic biomedical pre-training combined with fine-tuning on high-quality general-domain annotations. All datasets, models, and training pipelines are publicly available at https://github.com/ds4dh/GLiNER-biomed.

Ensemble-Instruct: Generating Instruction-Tuning Data with a Heterogeneous Mixture of LMs

Using in-context learning (ICL) for data generation, techniques such as Self-Instruct (Wang et al., 2023) or the follow-up Alpaca (Taori et al., 2023) can train strong conversational agents with only a small amount of human supervision. One limitation of these approaches is that they resort to very large language models (around 175B parameters) that are also proprietary and non-public. Here we explore the application of such techniques to language models that are much smaller (around 10B--40B parameters) and have permissive licenses. We find the Self-Instruct approach to be less effective at these sizes and propose new ICL methods that draw on two main ideas: (a) Categorization and simplification of the ICL templates to make prompt learning easier for the LM, and (b) Ensembling over multiple LM outputs to help select high-quality synthetic examples. Our algorithm leverages the 175 Self-Instruct seed tasks and employs separate pipelines for instructions that require an input and instructions that do not. Empirical investigations with different LMs show that: (1) Our proposed method yields higher-quality instruction tuning data than Self-Instruct, (2) It improves performances of both vanilla and instruction-tuned LMs by significant margins, and (3) Smaller instruction-tuned LMs generate more useful outputs than their larger un-tuned counterparts. Our codebase is available at https://github.com/IBM/ensemble-instruct.

Decoding speech from non-invasive brain recordings

Decoding language from brain activity is a long-awaited goal in both healthcare and neuroscience. Major milestones have recently been reached thanks to intracranial devices: subject-specific pipelines trained on invasive brain responses to basic language tasks now start to efficiently decode interpretable features (e.g. letters, words, spectrograms). However, scaling this approach to natural speech and non-invasive brain recordings remains a major challenge. Here, we propose a single end-to-end architecture trained with contrastive learning across a large cohort of individuals to predict self-supervised representations of natural speech. We evaluate our model on four public datasets, encompassing 169 volunteers recorded with magneto- or electro-encephalography (M/EEG), while they listened to natural speech. The results show that our model can identify, from 3s of MEG signals, the corresponding speech segment with up to 72.5% top-10 accuracy out of 1,594 distinct segments (and 44% top-1 accuracy), and up to 19.1% out of 2,604 segments for EEG recordings -- hence allowing the decoding of phrases absent from the training set. Model comparison and ablation analyses show that these performances directly benefit from our original design choices, namely the use of (i) a contrastive objective, (ii) pretrained representations of speech and (iii) a common convolutional architecture simultaneously trained across several participants. Together, these results delineate a promising path to decode natural language processing in real time from non-invasive recordings of brain activity.

Platonic Representations for Poverty Mapping: Unified Vision-Language Codes or Agent-Induced Novelty?

We investigate whether socio-economic indicators like household wealth leave recoverable imprints in satellite imagery (capturing physical features) and Internet-sourced text (reflecting historical/economic narratives). Using Demographic and Health Survey (DHS) data from African neighborhoods, we pair Landsat images with LLM-generated textual descriptions conditioned on location/year and text retrieved by an AI search agent from web sources. We develop a multimodal framework predicting household wealth (International Wealth Index) through five pipelines: (i) vision model on satellite images, (ii) LLM using only location/year, (iii) AI agent searching/synthesizing web text, (iv) joint image-text encoder, (v) ensemble of all signals. Our framework yields three contributions. First, fusing vision and agent/LLM text outperforms vision-only baselines in wealth prediction (e.g., R-squared of 0.77 vs. 0.63 on out-of-sample splits), with LLM-internal knowledge proving more effective than agent-retrieved text, improving robustness to out-of-country and out-of-time generalization. Second, we find partial representational convergence: fused embeddings from vision/language modalities correlate moderately (median cosine similarity of 0.60 after alignment), suggesting a shared latent code of material well-being while retaining complementary details, consistent with the Platonic Representation Hypothesis. Although LLM-only text outperforms agent-retrieved data, challenging our Agent-Induced Novelty Hypothesis, modest gains from combining agent data in some splits weakly support the notion that agent-gathered information introduces unique representational structures not fully captured by static LLM knowledge. Third, we release a large-scale multimodal dataset comprising more than 60,000 DHS clusters linked to satellite images, LLM-generated descriptions, and agent-retrieved texts.

GIM: Learning Generalizable Image Matcher From Internet Videos

Image matching is a fundamental computer vision problem. While learning-based methods achieve state-of-the-art performance on existing benchmarks, they generalize poorly to in-the-wild images. Such methods typically need to train separate models for different scene types and are impractical when the scene type is unknown in advance. One of the underlying problems is the limited scalability of existing data construction pipelines, which limits the diversity of standard image matching datasets. To address this problem, we propose GIM, a self-training framework for learning a single generalizable model based on any image matching architecture using internet videos, an abundant and diverse data source. Given an architecture, GIM first trains it on standard domain-specific datasets and then combines it with complementary matching methods to create dense labels on nearby frames of novel videos. These labels are filtered by robust fitting, and then enhanced by propagating them to distant frames. The final model is trained on propagated data with strong augmentations. We also propose ZEB, the first zero-shot evaluation benchmark for image matching. By mixing data from diverse domains, ZEB can thoroughly assess the cross-domain generalization performance of different methods. Applying GIM consistently improves the zero-shot performance of 3 state-of-the-art image matching architectures; with 50 hours of YouTube videos, the relative zero-shot performance improves by 8.4%-18.1%. GIM also enables generalization to extreme cross-domain data such as Bird Eye View (BEV) images of projected 3D point clouds (Fig. 1(c)). More importantly, our single zero-shot model consistently outperforms domain-specific baselines when evaluated on downstream tasks inherent to their respective domains. The video presentation is available at https://www.youtube.com/watch?v=FU_MJLD8LeY.

LU-NeRF: Scene and Pose Estimation by Synchronizing Local Unposed NeRFs

A critical obstacle preventing NeRF models from being deployed broadly in the wild is their reliance on accurate camera poses. Consequently, there is growing interest in extending NeRF models to jointly optimize camera poses and scene representation, which offers an alternative to off-the-shelf SfM pipelines which have well-understood failure modes. Existing approaches for unposed NeRF operate under limited assumptions, such as a prior pose distribution or coarse pose initialization, making them less effective in a general setting. In this work, we propose a novel approach, LU-NeRF, that jointly estimates camera poses and neural radiance fields with relaxed assumptions on pose configuration. Our approach operates in a local-to-global manner, where we first optimize over local subsets of the data, dubbed mini-scenes. LU-NeRF estimates local pose and geometry for this challenging few-shot task. The mini-scene poses are brought into a global reference frame through a robust pose synchronization step, where a final global optimization of pose and scene can be performed. We show our LU-NeRF pipeline outperforms prior attempts at unposed NeRF without making restrictive assumptions on the pose prior. This allows us to operate in the general SE(3) pose setting, unlike the baselines. Our results also indicate our model can be complementary to feature-based SfM pipelines as it compares favorably to COLMAP on low-texture and low-resolution images.

Measuring Reasoning Utility in LLMs via Conditional Entropy Reduction

Recent advancements in large language models (LLMs) often rely on generating intermediate reasoning steps to enhance accuracy. However, little work has examined how reasoning utility contributes to the final answer's correctness. Due to the stochastic nature of autoregressive generation, generating more context does not guarantee increased confidence in the answer. If we could predict, during generation, whether a reasoning step will be useful, we could stop early or prune ineffective steps, avoiding distractions in the final decision. We present an oracle study on MATH dataset, using Qwen2.5-32B and GPT-4o to generate reasoning chains, and then employing a separate model (Qwen3-8B) to quantify the utility of these chains for final accuracy. Specifically, we measure the model's uncertainty on the answer span Y at each reasoning step using conditional entropy (expected negative log-likelihood over the vocabulary) with context expanding step by step. Our results show a clear pattern: conditional entropy that decreases over steps is strongly associated with correct answers, whereas flat or increasing entropy often results in wrong answers. We also corroborate that incorrect reasoning paths tend to be longer than correct ones, suggesting that longer reasoning does not necessarily yield better outcomes. These findings serve as a foundation to inspire future work on designing efficient reasoning pipelines that detect and avoid unproductive reasoning early.

OmniBench-RAG: A Multi-Domain Evaluation Platform for Retrieval-Augmented Generation Tools

While Retrieval Augmented Generation (RAG) is now widely adopted to enhance LLMs, evaluating its true performance benefits in a reproducible and interpretable way remains a major hurdle. Existing methods often fall short: they lack domain coverage, employ coarse metrics that miss sub document precision, and fail to capture computational trade offs. Most critically, they provide no standardized framework for comparing RAG effectiveness across different models and domains. We introduce OmniBench RAG, a novel automated platform for multi domain evaluation of RAG systems. The platform quantifies performance gains across accuracy and efficiency dimensions, spanning nine knowledge fields including culture, geography, and health. We introduce two standardized metrics: Improvements (accuracy gains) and Transformation (efficiency differences between pre RAG and post RAG models), enabling reproducible comparisons across models and tasks. The platform features dynamic test generation, modular evaluation pipelines, and automated knowledge base construction. Our evaluation reveals striking variability in RAG effectiveness, from significant gains in culture to declines in mathematics, highlighting the critical importance of systematic, domain aware assessment. A demonstration video is available at: https://www.youtube.com/watch?v=BZx83QFcTCI. Code and datasets: https://github.com/Garnett-Liang/Omnibench-RAG.

LaDCast: A Latent Diffusion Model for Medium-Range Ensemble Weather Forecasting

Accurate probabilistic weather forecasting demands both high accuracy and efficient uncertainty quantification, challenges that overburden both ensemble numerical weather prediction (NWP) and recent machine-learning methods. We introduce LaDCast, the first global latent-diffusion framework for medium-range ensemble forecasting, which generates hourly ensemble forecasts entirely in a learned latent space. An autoencoder compresses high-dimensional ERA5 reanalysis fields into a compact representation, and a transformer-based diffusion model produces sequential latent updates with arbitrary hour initialization. The model incorporates Geometric Rotary Position Embedding (GeoRoPE) to account for the Earth's spherical geometry, a dual-stream attention mechanism for efficient conditioning, and sinusoidal temporal embeddings to capture seasonal patterns. LaDCast achieves deterministic and probabilistic skill close to that of the European Centre for Medium-Range Forecast IFS-ENS, without any explicit perturbations. Notably, LaDCast demonstrates superior performance in tracking rare extreme events such as cyclones, capturing their trajectories more accurately than established models. By operating in latent space, LaDCast reduces storage and compute by orders of magnitude, demonstrating a practical path toward forecasting at kilometer-scale resolution in real time. We open-source our code and models and provide the training and evaluation pipelines at: https://github.com/tonyzyl/ladcast.

Beyond Contrastive Learning: Synthetic Data Enables List-wise Training with Multiple Levels of Relevance

Recent advancements in large language models (LLMs) have allowed the augmentation of information retrieval (IR) pipelines with synthetic data in various ways. Yet, the main training paradigm remains: contrastive learning with binary relevance labels and the InfoNCE loss, where one positive document is compared against one or more negatives. This objective treats all documents that are not explicitly annotated as relevant on an equally negative footing, regardless of their actual degree of relevance, thus (a) missing subtle nuances that are useful for ranking and (b) being susceptible to annotation noise. To overcome this limitation, in this work we forgo real training documents and annotations altogether and use open-source LLMs to directly generate synthetic documents that answer real user queries according to several different levels of relevance. This fully synthetic ranking context of graduated relevance, together with an appropriate list-wise loss (Wasserstein distance), enables us to train dense retrievers in a way that better captures the ranking task. Experiments on various IR datasets show that our proposed approach outperforms conventional training with InfoNCE by a large margin. Without using any real documents for training, our dense retriever significantly outperforms the same retriever trained through self-supervision. More importantly, it matches the performance of the same retriever trained on real, labeled training documents of the same dataset, while being more robust to distribution shift and clearly outperforming it when evaluated zero-shot on the BEIR dataset collection.

Rankify: A Comprehensive Python Toolkit for Retrieval, Re-Ranking, and Retrieval-Augmented Generation

Retrieval, re-ranking, and retrieval-augmented generation (RAG) are critical components of modern applications in information retrieval, question answering, or knowledge-based text generation. However, existing solutions are often fragmented, lacking a unified framework that easily integrates these essential processes. The absence of a standardized implementation, coupled with the complexity of retrieval and re-ranking workflows, makes it challenging for researchers to compare and evaluate different approaches in a consistent environment. While existing toolkits such as Rerankers and RankLLM provide general-purpose reranking pipelines, they often lack the flexibility required for fine-grained experimentation and benchmarking. In response to these challenges, we introduce Rankify, a powerful and modular open-source toolkit designed to unify retrieval, re-ranking, and RAG within a cohesive framework. Rankify supports a wide range of retrieval techniques, including dense and sparse retrievers, while incorporating state-of-the-art re-ranking models to enhance retrieval quality. Additionally, Rankify includes a collection of pre-retrieved datasets to facilitate benchmarking, available at Huggingface (https://huggingface.co/datasets/abdoelsayed/reranking-datasets-light). To encourage adoption and ease of integration, we provide comprehensive documentation (http://rankify.readthedocs.io/), an open-source implementation on GitHub (https://github.com/DataScienceUIBK/rankify), and a PyPI package for easy installation (https://pypi.org/project/rankify/). As a unified and lightweight framework, Rankify allows researchers and practitioners to advance retrieval and re-ranking methodologies while ensuring consistency, scalability, and ease of use.

CaLoRAify: Calorie Estimation with Visual-Text Pairing and LoRA-Driven Visual Language Models

The obesity phenomenon, known as the heavy issue, is a leading cause of preventable chronic diseases worldwide. Traditional calorie estimation tools often rely on specific data formats or complex pipelines, limiting their practicality in real-world scenarios. Recently, vision-language models (VLMs) have excelled in understanding real-world contexts and enabling conversational interactions, making them ideal for downstream tasks such as ingredient analysis. However, applying VLMs to calorie estimation requires domain-specific data and alignment strategies. To this end, we curated CalData, a 330K image-text pair dataset tailored for ingredient recognition and calorie estimation, combining a large-scale recipe dataset with detailed nutritional instructions for robust vision-language training. Built upon this dataset, we present CaLoRAify, a novel VLM framework aligning ingredient recognition and calorie estimation via training with visual-text pairs. During inference, users only need a single monocular food image to estimate calories while retaining the flexibility of agent-based conversational interaction. With Low-rank Adaptation (LoRA) and Retrieve-augmented Generation (RAG) techniques, our system enhances the performance of foundational VLMs in the vertical domain of calorie estimation. Our code and data are fully open-sourced at https://github.com/KennyYao2001/16824-CaLORAify.

GS-VTON: Controllable 3D Virtual Try-on with Gaussian Splatting

Diffusion-based 2D virtual try-on (VTON) techniques have recently demonstrated strong performance, while the development of 3D VTON has largely lagged behind. Despite recent advances in text-guided 3D scene editing, integrating 2D VTON into these pipelines to achieve vivid 3D VTON remains challenging. The reasons are twofold. First, text prompts cannot provide sufficient details in describing clothing. Second, 2D VTON results generated from different viewpoints of the same 3D scene lack coherence and spatial relationships, hence frequently leading to appearance inconsistencies and geometric distortions. To resolve these problems, we introduce an image-prompted 3D VTON method (dubbed GS-VTON) which, by leveraging 3D Gaussian Splatting (3DGS) as the 3D representation, enables the transfer of pre-trained knowledge from 2D VTON models to 3D while improving cross-view consistency. (1) Specifically, we propose a personalized diffusion model that utilizes low-rank adaptation (LoRA) fine-tuning to incorporate personalized information into pre-trained 2D VTON models. To achieve effective LoRA training, we introduce a reference-driven image editing approach that enables the simultaneous editing of multi-view images while ensuring consistency. (2) Furthermore, we propose a persona-aware 3DGS editing framework to facilitate effective editing while maintaining consistent cross-view appearance and high-quality 3D geometry. (3) Additionally, we have established a new 3D VTON benchmark, 3D-VTONBench, which facilitates comprehensive qualitative and quantitative 3D VTON evaluations. Through extensive experiments and comparative analyses with existing methods, the proposed \OM has demonstrated superior fidelity and advanced editing capabilities, affirming its effectiveness for 3D VTON.

Grounding Image Matching in 3D with MASt3R

Image Matching is a core component of all best-performing algorithms and pipelines in 3D vision. Yet despite matching being fundamentally a 3D problem, intrinsically linked to camera pose and scene geometry, it is typically treated as a 2D problem. This makes sense as the goal of matching is to establish correspondences between 2D pixel fields, but also seems like a potentially hazardous choice. In this work, we take a different stance and propose to cast matching as a 3D task with DUSt3R, a recent and powerful 3D reconstruction framework based on Transformers. Based on pointmaps regression, this method displayed impressive robustness in matching views with extreme viewpoint changes, yet with limited accuracy. We aim here to improve the matching capabilities of such an approach while preserving its robustness. We thus propose to augment the DUSt3R network with a new head that outputs dense local features, trained with an additional matching loss. We further address the issue of quadratic complexity of dense matching, which becomes prohibitively slow for downstream applications if not carefully treated. We introduce a fast reciprocal matching scheme that not only accelerates matching by orders of magnitude, but also comes with theoretical guarantees and, lastly, yields improved results. Extensive experiments show that our approach, coined MASt3R, significantly outperforms the state of the art on multiple matching tasks. In particular, it beats the best published methods by 30% (absolute improvement) in VCRE AUC on the extremely challenging Map-free localization dataset.

Semantic-Enhanced Differentiable Search Index Inspired by Learning Strategies

Recently, a new paradigm called Differentiable Search Index (DSI) has been proposed for document retrieval, wherein a sequence-to-sequence model is learned to directly map queries to relevant document identifiers. The key idea behind DSI is to fully parameterize traditional ``index-retrieve'' pipelines within a single neural model, by encoding all documents in the corpus into the model parameters. In essence, DSI needs to resolve two major questions: (1) how to assign an identifier to each document, and (2) how to learn the associations between a document and its identifier. In this work, we propose a Semantic-Enhanced DSI model (SE-DSI) motivated by Learning Strategies in the area of Cognitive Psychology. Our approach advances original DSI in two ways: (1) For the document identifier, we take inspiration from Elaboration Strategies in human learning. Specifically, we assign each document an Elaborative Description based on the query generation technique, which is more meaningful than a string of integers in the original DSI; and (2) For the associations between a document and its identifier, we take inspiration from Rehearsal Strategies in human learning. Specifically, we select fine-grained semantic features from a document as Rehearsal Contents to improve document memorization. Both the offline and online experiments show improved retrieval performance over prevailing baselines.

DreamFace: Progressive Generation of Animatable 3D Faces under Text Guidance

Emerging Metaverse applications demand accessible, accurate, and easy-to-use tools for 3D digital human creations in order to depict different cultures and societies as if in the physical world. Recent large-scale vision-language advances pave the way to for novices to conveniently customize 3D content. However, the generated CG-friendly assets still cannot represent the desired facial traits for human characteristics. In this paper, we present DreamFace, a progressive scheme to generate personalized 3D faces under text guidance. It enables layman users to naturally customize 3D facial assets that are compatible with CG pipelines, with desired shapes, textures, and fine-grained animation capabilities. From a text input to describe the facial traits, we first introduce a coarse-to-fine scheme to generate the neutral facial geometry with a unified topology. We employ a selection strategy in the CLIP embedding space, and subsequently optimize both the details displacements and normals using Score Distillation Sampling from generic Latent Diffusion Model. Then, for neutral appearance generation, we introduce a dual-path mechanism, which combines the generic LDM with a novel texture LDM to ensure both the diversity and textural specification in the UV space. We also employ a two-stage optimization to perform SDS in both the latent and image spaces to significantly provides compact priors for fine-grained synthesis. Our generated neutral assets naturally support blendshapes-based facial animations. We further improve the animation ability with personalized deformation characteristics by learning the universal expression prior using the cross-identity hypernetwork. Notably, DreamFace can generate of realistic 3D facial assets with physically-based rendering quality and rich animation ability from video footage, even for fashion icons or exotic characters in cartoons and fiction movies.

Joint Demosaicking and Denoising in the Wild: The Case of Training Under Ground Truth Uncertainty

Image demosaicking and denoising are the two key fundamental steps in digital camera pipelines, aiming to reconstruct clean color images from noisy luminance readings. In this paper, we propose and study Wild-JDD, a novel learning framework for joint demosaicking and denoising in the wild. In contrast to previous works which generally assume the ground truth of training data is a perfect reflection of the reality, we consider here the more common imperfect case of ground truth uncertainty in the wild. We first illustrate its manifestation as various kinds of artifacts including zipper effect, color moire and residual noise. Then we formulate a two-stage data degradation process to capture such ground truth uncertainty, where a conjugate prior distribution is imposed upon a base distribution. After that, we derive an evidence lower bound (ELBO) loss to train a neural network that approximates the parameters of the conjugate prior distribution conditioned on the degraded input. Finally, to further enhance the performance for out-of-distribution input, we design a simple but effective fine-tuning strategy by taking the input as a weakly informative prior. Taking into account ground truth uncertainty, Wild-JDD enjoys good interpretability during optimization. Extensive experiments validate that it outperforms state-of-the-art schemes on joint demosaicking and denoising tasks on both synthetic and realistic raw datasets.

Vivid-VR: Distilling Concepts from Text-to-Video Diffusion Transformer for Photorealistic Video Restoration

We present Vivid-VR, a DiT-based generative video restoration method built upon an advanced T2V foundation model, where ControlNet is leveraged to control the generation process, ensuring content consistency. However, conventional fine-tuning of such controllable pipelines frequently suffers from distribution drift due to limitations in imperfect multimodal alignment, resulting in compromised texture realism and temporal coherence. To tackle this challenge, we propose a concept distillation training strategy that utilizes the pretrained T2V model to synthesize training samples with embedded textual concepts, thereby distilling its conceptual understanding to preserve texture and temporal quality. To enhance generation controllability, we redesign the control architecture with two key components: 1) a control feature projector that filters degradation artifacts from input video latents to minimize their propagation through the generation pipeline, and 2) a new ControlNet connector employing a dual-branch design. This connector synergistically combines MLP-based feature mapping with cross-attention mechanism for dynamic control feature retrieval, enabling both content preservation and adaptive control signal modulation. Extensive experiments show that Vivid-VR performs favorably against existing approaches on both synthetic and real-world benchmarks, as well as AIGC videos, achieving impressive texture realism, visual vividness, and temporal consistency. The codes and checkpoints are publicly available at https://github.com/csbhr/Vivid-VR.

Vision-G1: Towards General Vision Language Reasoning with Multi-Domain Data Curation

Despite their success, current training pipelines for reasoning VLMs focus on a limited range of tasks, such as mathematical and logical reasoning. As a result, these models face difficulties in generalizing their reasoning capabilities to a wide range of domains, primarily due to the scarcity of readily available and verifiable reward data beyond these narrowly defined areas. Moreover, integrating data from multiple domains is challenging, as the compatibility between domain-specific datasets remains uncertain. To address these limitations, we build a comprehensive RL-ready visual reasoning dataset from 46 data sources across 8 dimensions, covering a wide range of tasks such as infographic, mathematical, spatial, cross-image, graphic user interface, medical, common sense and general science. We propose an influence function based data selection and difficulty based filtering strategy to identify high-quality training samples from this dataset. Subsequently, we train the VLM, referred to as Vision-G1, using multi-round RL with a data curriculum to iteratively improve its visual reasoning capabilities. Our model achieves state-of-the-art performance across various visual reasoning benchmarks, outperforming similar-sized VLMs and even proprietary models like GPT-4o and Gemini-1.5 Flash. The model, code and dataset are publicly available at https://github.com/yuh-zha/Vision-G1.

Risk Map As Middleware: Towards Interpretable Cooperative End-to-end Autonomous Driving for Risk-Aware Planning

End-to-end paradigm has emerged as a promising approach to autonomous driving. However, existing single-agent end-to-end pipelines are often constrained by occlusion and limited perception range, resulting in hazardous driving. Furthermore, their black-box nature prevents the interpretability of the driving behavior, leading to an untrustworthiness system. To address these limitations, we introduce Risk Map as Middleware (RiskMM) and propose an interpretable cooperative end-to-end driving framework. The risk map learns directly from the driving data and provides an interpretable spatiotemporal representation of the scenario from the upstream perception and the interactions between the ego vehicle and the surrounding environment for downstream planning. RiskMM first constructs a multi-agent spatiotemporal representation with unified Transformer-based architecture, then derives risk-aware representations by modeling interactions among surrounding environments with attention. These representations are subsequently fed into a learning-based Model Predictive Control (MPC) module. The MPC planner inherently accommodates physical constraints and different vehicle types and can provide interpretation by aligning learned parameters with explicit MPC elements. Evaluations conducted on the real-world V2XPnP-Seq dataset confirm that RiskMM achieves superior and robust performance in risk-aware trajectory planning, significantly enhancing the interpretability of the cooperative end-to-end driving framework. The codebase will be released to facilitate future research in this field.

Efficient Online RFT with Plug-and-Play LLM Judges: Unlocking State-of-the-Art Performance

Reward-model training is the cost bottleneck in modern Reinforcement Learning Human Feedback (RLHF) pipelines, often requiring tens of billions of parameters and an offline preference-tuning phase. In the proposed method, a frozen, instruction-tuned 7B LLM is augmented with only a one line JSON rubric and a rank-16 LoRA adapter (affecting just 0.8% of the model's parameters), enabling it to serve as a complete substitute for the previously used heavyweight evaluation models. The plug-and-play judge achieves 96.2% accuracy on RewardBench, outperforming specialized reward networks ranging from 27B to 70B parameters. Additionally, it allows a 7B actor to outperform the top 70B DPO baseline, which scores 61.8%, by achieving 92% exact match accuracy on GSM-8K utilizing online PPO. Thorough ablations indicate that (i) six in context demonstrations deliver the majority of the zero-to-few-shot improvements (+2pp), and (ii) the LoRA effectively addresses the remaining disparity, particularly in the safety and adversarial Chat-Hard segments. The proposed model introduces HH-Rationales, a subset of 10,000 pairs from Anthropic HH-RLHF, to examine interpretability, accompanied by human generated justifications. GPT-4 scoring indicates that our LoRA judge attains approximately = 9/10 in similarity to human explanations, while zero-shot judges score around =5/10. These results indicate that the combination of prompt engineering and tiny LoRA produces a cost effective, transparent, and easily adjustable reward function, removing the offline phase while achieving new state-of-the-art outcomes for both static evaluation and online RLHF.

MIRACL-VISION: A Large, multilingual, visual document retrieval benchmark

Document retrieval is an important task for search and Retrieval-Augmented Generation (RAG) applications. Large Language Models (LLMs) have contributed to improving the accuracy of text-based document retrieval. However, documents with complex layout and visual elements like tables, charts and infographics are not perfectly represented in textual format. Recently, image-based document retrieval pipelines have become popular, which use visual large language models (VLMs) to retrieve relevant page images given a query. Current evaluation benchmarks on visual document retrieval are limited, as they primarily focus only English language, rely on synthetically generated questions and offer a small corpus size. Therefore, we introduce MIRACL-VISION, a multilingual visual document retrieval evaluation benchmark. MIRACL-VISION covers 18 languages, and is an extension of the MIRACL dataset, a popular benchmark to evaluate text-based multilingual retrieval pipelines. MIRACL was built using a human-intensive annotation process to generate high-quality questions. In order to reduce MIRACL-VISION corpus size to make evaluation more compute friendly while keeping the datasets challenging, we have designed a method for eliminating the "easy" negatives from the corpus. We conducted extensive experiments comparing MIRACL-VISION with other benchmarks, using popular public text and image models. We observe a gap in state-of-the-art VLM-based embedding models on multilingual capabilities, with up to 59.7% lower retrieval accuracy than a text-based retrieval models. Even for the English language, the visual models retrieval accuracy is 12.1% lower compared to text-based models. MIRACL-VISION is a challenging, representative, multilingual evaluation benchmark for visual retrieval pipelines and will help the community build robust models for document retrieval.

STEP: A Unified Spiking Transformer Evaluation Platform for Fair and Reproducible Benchmarking

Spiking Transformers have recently emerged as promising architectures for combining the efficiency of spiking neural networks with the representational power of self-attention. However, the lack of standardized implementations, evaluation pipelines, and consistent design choices has hindered fair comparison and principled analysis. In this paper, we introduce STEP, a unified benchmark framework for Spiking Transformers that supports a wide range of tasks, including classification, segmentation, and detection across static, event-based, and sequential datasets. STEP provides modular support for diverse components such as spiking neurons, input encodings, surrogate gradients, and multiple backends (e.g., SpikingJelly, BrainCog). Using STEP, we reproduce and evaluate several representative models, and conduct systematic ablation studies on attention design, neuron types, encoding schemes, and temporal modeling capabilities. We also propose a unified analytical model for energy estimation, accounting for spike sparsity, bitwidth, and memory access, and show that quantized ANNs may offer comparable or better energy efficiency. Our results suggest that current Spiking Transformers rely heavily on convolutional frontends and lack strong temporal modeling, underscoring the need for spike-native architectural innovations. The full code is available at: https://github.com/Fancyssc/STEP

Plant Disease Detection through Multimodal Large Language Models and Convolutional Neural Networks

Automation in agriculture plays a vital role in addressing challenges related to crop monitoring and disease management, particularly through early detection systems. This study investigates the effectiveness of combining multimodal Large Language Models (LLMs), specifically GPT-4o, with Convolutional Neural Networks (CNNs) for automated plant disease classification using leaf imagery. Leveraging the PlantVillage dataset, we systematically evaluate model performance across zero-shot, few-shot, and progressive fine-tuning scenarios. A comparative analysis between GPT-4o and the widely used ResNet-50 model was conducted across three resolutions (100, 150, and 256 pixels) and two plant species (apple and corn). Results indicate that fine-tuned GPT-4o models achieved slightly better performance compared to the performance of ResNet-50, achieving up to 98.12% classification accuracy on apple leaf images, compared to 96.88% achieved by ResNet-50, with improved generalization and near-zero training loss. However, zero-shot performance of GPT-4o was significantly lower, underscoring the need for minimal training. Additional evaluations on cross-resolution and cross-plant generalization revealed the models' adaptability and limitations when applied to new domains. The findings highlight the promise of integrating multimodal LLMs into automated disease detection pipelines, enhancing the scalability and intelligence of precision agriculture systems while reducing the dependence on large, labeled datasets and high-resolution sensor infrastructure. Large Language Models, Vision Language Models, LLMs and CNNs, Disease Detection with Vision Language Models, VLMs

GestureLSM: Latent Shortcut based Co-Speech Gesture Generation with Spatial-Temporal Modeling

Generating full-body human gestures based on speech signals remains challenges on quality and speed. Existing approaches model different body regions such as body, legs and hands separately, which fail to capture the spatial interactions between them and result in unnatural and disjointed movements. Additionally, their autoregressive/diffusion-based pipelines show slow generation speed due to dozens of inference steps. To address these two challenges, we propose GestureLSM, a flow-matching-based approach for Co-Speech Gesture Generation with spatial-temporal modeling. Our method i) explicitly model the interaction of tokenized body regions through spatial and temporal attention, for generating coherent full-body gestures. ii) introduce the flow matching to enable more efficient sampling by explicitly modeling the latent velocity space. To overcome the suboptimal performance of flow matching baseline, we propose latent shortcut learning and beta distribution time stamp sampling during training to enhance gesture synthesis quality and accelerate inference. Combining the spatial-temporal modeling and improved flow matching-based framework, GestureLSM achieves state-of-the-art performance on BEAT2 while significantly reducing inference time compared to existing methods, highlighting its potential for enhancing digital humans and embodied agents in real-world applications. Project Page: https://andypinxinliu.github.io/GestureLSM

Modeling Performance of Data Collection Systems for High-Energy Physics

Exponential increases in scientific experimental data are outstripping the rate of progress in silicon technology. As a result, heterogeneous combinations of architectures and process or device technologies are increasingly important to meet the computing demands of future scientific experiments. However, the complexity of heterogeneous computing systems requires systematic modeling to understand performance. We present a model which addresses this need by framing key aspects of data collection pipelines and constraints, and combines them with the important vectors of technology that shape alternatives, computing metrics that allow complex alternatives to be compared. For instance, a data collection pipeline may be characterized by parameters such as sensor sampling rates, amount of data collected, and the overall relevancy of retrieved samples. Alternatives to this pipeline are enabled by hardware development vectors including advancing CMOS, GPUs, neuromorphic computing, and edge computing. By calculating metrics for each alternative such as overall F1 score, power, hardware cost, and energy expended per relevant sample, this model allows alternate data collection systems to be rigorously compared. To demonstrate this model's capability, we apply it to the CMS experiment (and planned HL-LHC upgrade) to evaluate and compare the application of novel technologies in the data acquisition system (DAQ). We demonstrate that improvements to early stages in the DAQ are highly beneficial, greatly reducing the resources required at later stages of processing (such as a 60% power reduction) and increasing the amount of relevant data retrieved from the experiment per unit power (improving from 0.065 to 0.31 samples/kJ) However, we predict further advances will be required in order to meet overall power and cost constraints for the DAQ.

Enhancing Traffic Incident Management with Large Language Models: A Hybrid Machine Learning Approach for Severity Classification

This research showcases the innovative integration of Large Language Models into machine learning workflows for traffic incident management, focusing on the classification of incident severity using accident reports. By leveraging features generated by modern language models alongside conventional data extracted from incident reports, our research demonstrates improvements in the accuracy of severity classification across several machine learning algorithms. Our contributions are threefold. First, we present an extensive comparison of various machine learning models paired with multiple large language models for feature extraction, aiming to identify the optimal combinations for accurate incident severity classification. Second, we contrast traditional feature engineering pipelines with those enhanced by language models, showcasing the superiority of language-based feature engineering in processing unstructured text. Third, our study illustrates how merging baseline features from accident reports with language-based features can improve the severity classification accuracy. This comprehensive approach not only advances the field of incident management but also highlights the cross-domain application potential of our methodology, particularly in contexts requiring the prediction of event outcomes from unstructured textual data or features translated into textual representation. Specifically, our novel methodology was applied to three distinct datasets originating from the United States, the United Kingdom, and Queensland, Australia. This cross-continental application underlines the robustness of our approach, suggesting its potential for widespread adoption in improving incident management processes globally.

Instruction-Guided Scene Text Recognition

Multi-modal models show appealing performance in visual recognition tasks recently, as free-form text-guided training evokes the ability to understand fine-grained visual content. However, current models are either inefficient or cannot be trivially upgraded to scene text recognition (STR) due to the composition difference between natural and text images. We propose a novel instruction-guided scene text recognition (IGTR) paradigm that formulates STR as an instruction learning problem and understands text images by predicting character attributes, e.g., character frequency, position, etc. IGTR first devises left langle condition,question,answerright rangle instruction triplets, providing rich and diverse descriptions of character attributes. To effectively learn these attributes through question-answering, IGTR develops lightweight instruction encoder, cross-modal feature fusion module and multi-task answer head, which guides nuanced text image understanding. Furthermore, IGTR realizes different recognition pipelines simply by using different instructions, enabling a character-understanding-based text reasoning paradigm that considerably differs from current methods. Experiments on English and Chinese benchmarks show that IGTR outperforms existing models by significant margins, while maintaining a small model size and efficient inference speed. Moreover, by adjusting the sampling of instructions, IGTR offers an elegant way to tackle the recognition of both rarely appearing and morphologically similar characters, which were previous challenges. Code at https://github.com/Topdu/OpenOCR{this http URL}.

AI Control: Improving Safety Despite Intentional Subversion

As large language models (LLMs) become more powerful and are deployed more autonomously, it will be increasingly important to prevent them from causing harmful outcomes. Researchers have investigated a variety of safety techniques for this purpose, e.g. using models to review the outputs of other models, or red-teaming techniques to surface subtle failure modes. However, researchers have not evaluated whether such techniques still ensure safety if the model is itself intentionally trying to subvert them. In this paper, we develop and evaluate pipelines of safety techniques ("protocols") that are robust to intentional subversion. We investigate a scenario in which we want to solve a sequence of programming problems, using access to a powerful but untrusted model (in our case, GPT-4), access to a less powerful trusted model (in our case, GPT-3.5), and limited access to high-quality trusted labor. We investigate protocols that aim to never submit solutions containing backdoors, which we operationalize here as logical errors that are not caught by test cases. We investigate a range of protocols and test each against strategies that the untrusted model could use to subvert them. One protocol is what we call trusted editing. This protocol first asks GPT-4 to write code, and then asks GPT-3.5 to rate the suspiciousness of that code. If the code is below some suspiciousness threshold, it is submitted. Otherwise, GPT-3.5 edits the solution to remove parts that seem suspicious and then submits the edited code. Another protocol is untrusted monitoring. This protocol asks GPT-4 to write code, and then asks another instance of GPT-4 whether the code is backdoored, using various techniques to prevent the GPT-4 instances from colluding. These protocols improve substantially on simple baselines.

CTVIS: Consistent Training for Online Video Instance Segmentation

The discrimination of instance embeddings plays a vital role in associating instances across time for online video instance segmentation (VIS). Instance embedding learning is directly supervised by the contrastive loss computed upon the contrastive items (CIs), which are sets of anchor/positive/negative embeddings. Recent online VIS methods leverage CIs sourced from one reference frame only, which we argue is insufficient for learning highly discriminative embeddings. Intuitively, a possible strategy to enhance CIs is replicating the inference phase during training. To this end, we propose a simple yet effective training strategy, called Consistent Training for Online VIS (CTVIS), which devotes to aligning the training and inference pipelines in terms of building CIs. Specifically, CTVIS constructs CIs by referring inference the momentum-averaged embedding and the memory bank storage mechanisms, and adding noise to the relevant embeddings. Such an extension allows a reliable comparison between embeddings of current instances and the stable representations of historical instances, thereby conferring an advantage in modeling VIS challenges such as occlusion, re-identification, and deformation. Empirically, CTVIS outstrips the SOTA VIS models by up to +5.0 points on three VIS benchmarks, including YTVIS19 (55.1% AP), YTVIS21 (50.1% AP) and OVIS (35.5% AP). Furthermore, we find that pseudo-videos transformed from images can train robust models surpassing fully-supervised ones.

Evaluating Prompt-based Question Answering for Object Prediction in the Open Research Knowledge Graph

There have been many recent investigations into prompt-based training of transformer language models for new text genres in low-resource settings. The prompt-based training approach has been found to be effective in generalizing pre-trained or fine-tuned models for transfer to resource-scarce settings. This work, for the first time, reports results on adopting prompt-based training of transformers for scholarly knowledge graph object prediction. The work is unique in the following two main aspects. 1) It deviates from the other works proposing entity and relation extraction pipelines for predicting objects of a scholarly knowledge graph. 2) While other works have tested the method on text genera relatively close to the general knowledge domain, we test the method for a significantly different domain, i.e. scholarly knowledge, in turn testing the linguistic, probabilistic, and factual generalizability of these large-scale transformer models. We find that (i) per expectations, transformer models when tested out-of-the-box underperform on a new domain of data, (ii) prompt-based training of the models achieve performance boosts of up to 40\% in a relaxed evaluation setting, and (iii) testing the models on a starkly different domain even with a clever training objective in a low resource setting makes evident the domain knowledge capture gap offering an empirically-verified incentive for investing more attention and resources to the scholarly domain in the context of transformer models.

Breakpoint Transformers for Modeling and Tracking Intermediate Beliefs

Can we teach natural language understanding models to track their beliefs through intermediate points in text? We propose a representation learning framework called breakpoint modeling that allows for learning of this type. Given any text encoder and data marked with intermediate states (breakpoints) along with corresponding textual queries viewed as true/false propositions (i.e., the candidate beliefs of a model, consisting of information changing through time) our approach trains models in an efficient and end-to-end fashion to build intermediate representations that facilitate teaching and direct querying of beliefs at arbitrary points alongside solving other end tasks. To show the benefit of our approach, we experiment with a diverse set of NLU tasks including relational reasoning on CLUTRR and narrative understanding on bAbI. Using novel belief prediction tasks for both tasks, we show the benefit of our main breakpoint transformer, based on T5, over conventional representation learning approaches in terms of processing efficiency, prediction accuracy and prediction consistency, all with minimal to no effect on corresponding QA end tasks. To show the feasibility of incorporating our belief tracker into more complex reasoning pipelines, we also obtain SOTA performance on the three-tiered reasoning challenge for the TRIP benchmark (around 23-32% absolute improvement on Tasks 2-3).

WavThruVec: Latent speech representation as intermediate features for neural speech synthesis

Recent advances in neural text-to-speech research have been dominated by two-stage pipelines utilizing low-level intermediate speech representation such as mel-spectrograms. However, such predetermined features are fundamentally limited, because they do not allow to exploit the full potential of a data-driven approach through learning hidden representations. For this reason, several end-to-end methods have been proposed. However, such models are harder to train and require a large number of high-quality recordings with transcriptions. Here, we propose WavThruVec - a two-stage architecture that resolves the bottleneck by using high-dimensional Wav2Vec 2.0 embeddings as intermediate speech representation. Since these hidden activations provide high-level linguistic features, they are more robust to noise. That allows us to utilize annotated speech datasets of a lower quality to train the first-stage module. At the same time, the second-stage component can be trained on large-scale untranscribed audio corpora, as Wav2Vec 2.0 embeddings are already time-aligned. This results in an increased generalization capability to out-of-vocabulary words, as well as to a better generalization to unseen speakers. We show that the proposed model not only matches the quality of state-of-the-art neural models, but also presents useful properties enabling tasks like voice conversion or zero-shot synthesis.

Benchmarking Multimodal AutoML for Tabular Data with Text Fields

We consider the use of automated supervised learning systems for data tables that not only contain numeric/categorical columns, but one or more text fields as well. Here we assemble 18 multimodal data tables that each contain some text fields and stem from a real business application. Our publicly-available benchmark enables researchers to comprehensively evaluate their own methods for supervised learning with numeric, categorical, and text features. To ensure that any single modeling strategy which performs well over all 18 datasets will serve as a practical foundation for multimodal text/tabular AutoML, the diverse datasets in our benchmark vary greatly in: sample size, problem types (a mix of classification and regression tasks), number of features (with the number of text columns ranging from 1 to 28 between datasets), as well as how the predictive signal is decomposed between text vs. numeric/categorical features (and predictive interactions thereof). Over this benchmark, we evaluate various straightforward pipelines to model such data, including standard two-stage approaches where NLP is used to featurize the text such that AutoML for tabular data can then be applied. Compared with human data science teams, the fully automated methodology that performed best on our benchmark (stack ensembling a multimodal Transformer with various tree models) also manages to rank 1st place when fit to the raw text/tabular data in two MachineHack prediction competitions and 2nd place (out of 2380 teams) in Kaggle's Mercari Price Suggestion Challenge.

LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis

Recent advances in document image analysis (DIA) have been primarily driven by the application of neural networks. Ideally, research outcomes could be easily deployed in production and extended for further investigation. However, various factors like loosely organized codebases and sophisticated model configurations complicate the easy reuse of important innovations by a wide audience. Though there have been on-going efforts to improve reusability and simplify deep learning (DL) model development in disciplines like natural language processing and computer vision, none of them are optimized for challenges in the domain of DIA. This represents a major gap in the existing toolkit, as DIA is central to academic research across a wide range of disciplines in the social sciences and humanities. This paper introduces layoutparser, an open-source library for streamlining the usage of DL in DIA research and applications. The core layoutparser library comes with a set of simple and intuitive interfaces for applying and customizing DL models for layout detection, character recognition, and many other document processing tasks. To promote extensibility, layoutparser also incorporates a community platform for sharing both pre-trained models and full document digitization pipelines. We demonstrate that layoutparser is helpful for both lightweight and large-scale digitization pipelines in real-word use cases. The library is publicly available at https://layout-parser.github.io/.

Machine learning applications to DNA subsequence and restriction site analysis

Based on the BioBricks standard, restriction synthesis is a novel catabolic iterative DNA synthesis method that utilizes endonucleases to synthesize a query sequence from a reference sequence. In this work, the reference sequence is built from shorter subsequences by classifying them as applicable or inapplicable for the synthesis method using three different machine learning methods: Support Vector Machines (SVMs), random forest, and Convolution Neural Networks (CNNs). Before applying these methods to the data, a series of feature selection, curation, and reduction steps are applied to create an accurate and representative feature space. Following these preprocessing steps, three different pipelines are proposed to classify subsequences based on their nucleotide sequence and other relevant features corresponding to the restriction sites of over 200 endonucleases. The sensitivity using SVMs, random forest, and CNNs are 94.9%, 92.7%, 91.4%, respectively. Moreover, each method scores lower in specificity with SVMs, random forest, and CNNs resulting in 77.4%, 85.7%, and 82.4%, respectively. In addition to analyzing these results, the misclassifications in SVMs and CNNs are investigated. Across these two models, different features with a derived nucleotide specificity visually contribute more to classification compared to other features. This observation is an important factor when considering new nucleotide sensitivity features for future studies.

Inductive Entity Representations from Text via Link Prediction

Knowledge Graphs (KG) are of vital importance for multiple applications on the web, including information retrieval, recommender systems, and metadata annotation. Regardless of whether they are built manually by domain experts or with automatic pipelines, KGs are often incomplete. Recent work has begun to explore the use of textual descriptions available in knowledge graphs to learn vector representations of entities in order to preform link prediction. However, the extent to which these representations learned for link prediction generalize to other tasks is unclear. This is important given the cost of learning such representations. Ideally, we would prefer representations that do not need to be trained again when transferring to a different task, while retaining reasonable performance. In this work, we propose a holistic evaluation protocol for entity representations learned via a link prediction objective. We consider the inductive link prediction and entity classification tasks, which involve entities not seen during training. We also consider an information retrieval task for entity-oriented search. We evaluate an architecture based on a pretrained language model, that exhibits strong generalization to entities not observed during training, and outperforms related state-of-the-art methods (22% MRR improvement in link prediction on average). We further provide evidence that the learned representations transfer well to other tasks without fine-tuning. In the entity classification task we obtain an average improvement of 16% in accuracy compared with baselines that also employ pre-trained models. In the information retrieval task, we obtain significant improvements of up to 8.8% in NDCG@10 for natural language queries. We thus show that the learned representations are not limited KG-specific tasks, and have greater generalization properties than evaluated in previous work.

Volumetric Capture of Humans with a Single RGBD Camera via Semi-Parametric Learning

Volumetric (4D) performance capture is fundamental for AR/VR content generation. Whereas previous work in 4D performance capture has shown impressive results in studio settings, the technology is still far from being accessible to a typical consumer who, at best, might own a single RGBD sensor. Thus, in this work, we propose a method to synthesize free viewpoint renderings using a single RGBD camera. The key insight is to leverage previously seen "calibration" images of a given user to extrapolate what should be rendered in a novel viewpoint from the data available in the sensor. Given these past observations from multiple viewpoints, and the current RGBD image from a fixed view, we propose an end-to-end framework that fuses both these data sources to generate novel renderings of the performer. We demonstrate that the method can produce high fidelity images, and handle extreme changes in subject pose and camera viewpoints. We also show that the system generalizes to performers not seen in the training data. We run exhaustive experiments demonstrating the effectiveness of the proposed semi-parametric model (i.e. calibration images available to the neural network) compared to other state of the art machine learned solutions. Further, we compare the method with more traditional pipelines that employ multi-view capture. We show that our framework is able to achieve compelling results, with substantially less infrastructure than previously required.

SongGen: A Single Stage Auto-regressive Transformer for Text-to-Song Generation

Text-to-song generation, the task of creating vocals and accompaniment from textual inputs, poses significant challenges due to domain complexity and data scarcity. Existing approaches often employ multi-stage generation procedures, resulting in cumbersome training and inference pipelines. In this paper, we propose SongGen, a fully open-source, single-stage auto-regressive transformer designed for controllable song generation. The proposed model facilitates fine-grained control over diverse musical attributes, including lyrics and textual descriptions of instrumentation, genre, mood, and timbre, while also offering an optional three-second reference clip for voice cloning. Within a unified auto-regressive framework, SongGen supports two output modes: mixed mode, which generates a mixture of vocals and accompaniment directly, and dual-track mode, which synthesizes them separately for greater flexibility in downstream applications. We explore diverse token pattern strategies for each mode, leading to notable improvements and valuable insights. Furthermore, we design an automated data preprocessing pipeline with effective quality control. To foster community engagement and future research, we will release our model weights, training code, annotated data, and preprocessing pipeline. The generated samples are showcased on our project page at https://liuzh-19.github.io/SongGen/ , and the code will be available at https://github.com/LiuZH-19/SongGen .

Describe What You See with Multimodal Large Language Models to Enhance Video Recommendations

Existing video recommender systems rely primarily on user-defined metadata or on low-level visual and acoustic signals extracted by specialised encoders. These low-level features describe what appears on the screen but miss deeper semantics such as intent, humour, and world knowledge that make clips resonate with viewers. For example, is a 30-second clip simply a singer on a rooftop, or an ironic parody filmed amid the fairy chimneys of Cappadocia, Turkey? Such distinctions are critical to personalised recommendations yet remain invisible to traditional encoding pipelines. In this paper, we introduce a simple, recommendation system-agnostic zero-finetuning framework that injects high-level semantics into the recommendation pipeline by prompting an off-the-shelf Multimodal Large Language Model (MLLM) to summarise each clip into a rich natural-language description (e.g. "a superhero parody with slapstick fights and orchestral stabs"), bridging the gap between raw content and user intent. We use MLLM output with a state-of-the-art text encoder and feed it into standard collaborative, content-based, and generative recommenders. On the MicroLens-100K dataset, which emulates user interactions with TikTok-style videos, our framework consistently surpasses conventional video, audio, and metadata features in five representative models. Our findings highlight the promise of leveraging MLLMs as on-the-fly knowledge extractors to build more intent-aware video recommenders.

MUVERA: Multi-Vector Retrieval via Fixed Dimensional Encodings

Neural embedding models have become a fundamental component of modern information retrieval (IR) pipelines. These models produce a single embedding x in R^d per data-point, allowing for fast retrieval via highly optimized maximum inner product search (MIPS) algorithms. Recently, beginning with the landmark ColBERT paper, multi-vector models, which produce a set of embedding per data point, have achieved markedly superior performance for IR tasks. Unfortunately, using these models for IR is computationally expensive due to the increased complexity of multi-vector retrieval and scoring. In this paper, we introduce MUVERA (MUlti-VEctor Retrieval Algorithm), a retrieval mechanism which reduces multi-vector similarity search to single-vector similarity search. This enables the usage of off-the-shelf MIPS solvers for multi-vector retrieval. MUVERA asymmetrically generates Fixed Dimensional Encodings (FDEs) of queries and documents, which are vectors whose inner product approximates multi-vector similarity. We prove that FDEs give high-quality epsilon-approximations, thus providing the first single-vector proxy for multi-vector similarity with theoretical guarantees. Empirically, we find that FDEs achieve the same recall as prior state-of-the-art heuristics while retrieving 2-5times fewer candidates. Compared to prior state of the art implementations, MUVERA achieves consistently good end-to-end recall and latency across a diverse set of the BEIR retrieval datasets, achieving an average of 10% improved recall with 90% lower latency.

Toward effective protection against diffusion based mimicry through score distillation

While generative diffusion models excel in producing high-quality images, they can also be misused to mimic authorized images, posing a significant threat to AI systems. Efforts have been made to add calibrated perturbations to protect images from diffusion-based mimicry pipelines. However, most of the existing methods are too ineffective and even impractical to be used by individual users due to their high computation and memory requirements. In this work, we present novel findings on attacking latent diffusion models (LDM) and propose new plug-and-play strategies for more effective protection. In particular, we explore the bottleneck in attacking an LDM, discovering that the encoder module rather than the denoiser module is the vulnerable point. Based on this insight, we present our strategy using Score Distillation Sampling (SDS) to double the speed of protection and reduce memory occupation by half without compromising its strength. Additionally, we provide a robust protection strategy by counterintuitively minimizing the semantic loss, which can assist in generating more natural perturbations. Finally, we conduct extensive experiments to substantiate our findings and comprehensively evaluate our newly proposed strategies. We hope our insights and protective measures can contribute to better defense against malicious diffusion-based mimicry, advancing the development of secure AI systems. The code is available in https://github.com/xavihart/Diff-Protect

A Study of Gender Impact in Self-supervised Models for Speech-to-Text Systems

Self-supervised models for speech processing emerged recently as popular foundation blocks in speech processing pipelines. These models are pre-trained on unlabeled audio data and then used in speech processing downstream tasks such as automatic speech recognition (ASR) or speech translation (ST). Since these models are now used in research and industrial systems alike, it becomes necessary to understand the impact caused by some features such as gender distribution within pre-training data. Using French as our investigation language, we train and compare gender-specific wav2vec 2.0 models against models containing different degrees of gender balance in their pre-training data. The comparison is performed by applying these models to two speech-to-text downstream tasks: ASR and ST. Results show the type of downstream integration matters. We observe lower overall performance using gender-specific pre-training before fine-tuning an end-to-end ASR system. However, when self-supervised models are used as feature extractors, the overall ASR and ST results follow more complex patterns in which the balanced pre-trained model does not necessarily lead to the best results. Lastly, our crude 'fairness' metric, the relative performance difference measured between female and male test sets, does not display a strong variation from balanced to gender-specific pre-trained wav2vec 2.0 models.

Target Specific De Novo Design of Drug Candidate Molecules with Graph Transformer-based Generative Adversarial Networks

Discovering novel drug candidate molecules is one of the most fundamental and critical steps in drug development. Generative deep learning models, which create synthetic data given a probability distribution, offer a high potential for designing de novo molecules. However, to be utilisable in real life drug development pipelines, these models should be able to design drug like and target centric molecules. In this study, we propose an end to end generative system, DrugGEN, for the de novo design of drug candidate molecules that interact with intended target proteins. The proposed method represents molecules as graphs and processes them via a generative adversarial network comprising graph transformer layers. The system is trained using a large dataset of drug like compounds and target specific bioactive molecules to design effective inhibitory molecules against the AKT1 protein, which is critically important in developing treatments for various types of cancer. We conducted molecular docking and dynamics to assess the target centric generation performance of the model, as well as attention score visualisation to examine model interpretability. In parallel, selected compounds were chemically synthesised and evaluated in the context of in vitro enzymatic assays, which identified two bioactive molecules that inhibited AKT1 at low micromolar concentrations. These results indicate that DrugGEN's de novo molecules have a high potential for interacting with the AKT1 protein at the level of its native ligands. Using the open access DrugGEN codebase, it is possible to easily train models for other druggable proteins, given a dataset of experimentally known bioactive molecules.

DrBERT: Unveiling the Potential of Masked Language Modeling Decoder in BERT pretraining

BERT (Bidirectional Encoder Representations from Transformers) has revolutionized the field of natural language processing through its exceptional performance on numerous tasks. Yet, the majority of researchers have mainly concentrated on enhancements related to the model structure, such as relative position embedding and more efficient attention mechanisms. Others have delved into pretraining tricks associated with Masked Language Modeling, including whole word masking. DeBERTa introduced an enhanced decoder adapted for BERT's encoder model for pretraining, proving to be highly effective. We argue that the design and research around enhanced masked language modeling decoders have been underappreciated. In this paper, we propose several designs of enhanced decoders and introduce DrBERT (Decoder-refined BERT), a novel method for modeling training. Typically, a pretrained BERT model is fine-tuned for specific Natural Language Understanding (NLU) tasks. In our approach, we utilize the original BERT model as the encoder, making only changes to the decoder without altering the encoder. This approach does not necessitate extensive modifications to the model's architecture and can be seamlessly integrated into existing fine-tuning pipelines and services, offering an efficient and effective enhancement strategy. Compared to other methods, while we also incur a moderate training cost for the decoder during the pretraining process, our approach does not introduce additional training costs during the fine-tuning phase. We test multiple enhanced decoder structures after pretraining and evaluate their performance on the GLUE benchmark. Our results demonstrate that DrBERT, having only undergone subtle refinements to the model structure during pretraining, significantly enhances model performance without escalating the inference time and serving budget.

Building Flexible, Scalable, and Machine Learning-ready Multimodal Oncology Datasets

The advancements in data acquisition, storage, and processing techniques have resulted in the rapid growth of heterogeneous medical data. Integrating radiological scans, histopathology images, and molecular information with clinical data is essential for developing a holistic understanding of the disease and optimizing treatment. The need for integrating data from multiple sources is further pronounced in complex diseases such as cancer for enabling precision medicine and personalized treatments. This work proposes Multimodal Integration of Oncology Data System (MINDS) - a flexible, scalable, and cost-effective metadata framework for efficiently fusing disparate data from public sources such as the Cancer Research Data Commons (CRDC) into an interconnected, patient-centric framework. MINDS offers an interface for exploring relationships across data types and building cohorts for developing large-scale multimodal machine learning models. By harmonizing multimodal data, MINDS aims to potentially empower researchers with greater analytical ability to uncover diagnostic and prognostic insights and enable evidence-based personalized care. MINDS tracks granular end-to-end data provenance, ensuring reproducibility and transparency. The cloud-native architecture of MINDS can handle exponential data growth in a secure, cost-optimized manner while ensuring substantial storage optimization, replication avoidance, and dynamic access capabilities. Auto-scaling, access controls, and other mechanisms guarantee pipelines' scalability and security. MINDS overcomes the limitations of existing biomedical data silos via an interoperable metadata-driven approach that represents a pivotal step toward the future of oncology data integration.

Self-Supervised Robustifying Guidance for Monocular 3D Face Reconstruction

Despite the recent developments in 3D Face Reconstruction from occluded and noisy face images, the performance is still unsatisfactory. Moreover, most existing methods rely on additional dependencies, posing numerous constraints over the training procedure. Therefore, we propose a Self-Supervised RObustifying GUidancE (ROGUE) framework to obtain robustness against occlusions and noise in the face images. The proposed network contains 1) the Guidance Pipeline to obtain the 3D face coefficients for the clean faces and 2) the Robustification Pipeline to acquire the consistency between the estimated coefficients for occluded or noisy images and the clean counterpart. The proposed image- and feature-level loss functions aid the ROGUE learning process without posing additional dependencies. To facilitate model evaluation, we propose two challenging occlusion face datasets, ReaChOcc and SynChOcc, containing real-world and synthetic occlusion-based face images for robustness evaluation. Also, a noisy variant of the test dataset of CelebA is produced for evaluation. Our method outperforms the current state-of-the-art method by large margins (e.g., for the perceptual errors, a reduction of 23.8% for real-world occlusions, 26.4% for synthetic occlusions, and 22.7% for noisy images), demonstrating the effectiveness of the proposed approach. The occlusion datasets and the corresponding evaluation code are released publicly at https://github.com/ArcTrinity9/Datasets-ReaChOcc-and-SynChOcc.

Attention Calibration for Disentangled Text-to-Image Personalization

Recent thrilling progress in large-scale text-to-image (T2I) models has unlocked unprecedented synthesis quality of AI-generated content (AIGC) including image generation, 3D and video composition. Further, personalized techniques enable appealing customized production of a novel concept given only several images as reference. However, an intriguing problem persists: Is it possible to capture multiple, novel concepts from one single reference image? In this paper, we identify that existing approaches fail to preserve visual consistency with the reference image and eliminate cross-influence from concepts. To alleviate this, we propose an attention calibration mechanism to improve the concept-level understanding of the T2I model. Specifically, we first introduce new learnable modifiers bound with classes to capture attributes of multiple concepts. Then, the classes are separated and strengthened following the activation of the cross-attention operation, ensuring comprehensive and self-contained concepts. Additionally, we suppress the attention activation of different classes to mitigate mutual influence among concepts. Together, our proposed method, dubbed DisenDiff, can learn disentangled multiple concepts from one single image and produce novel customized images with learned concepts. We demonstrate that our method outperforms the current state of the art in both qualitative and quantitative evaluations. More importantly, our proposed techniques are compatible with LoRA and inpainting pipelines, enabling more interactive experiences.

Wearable data from subjects playing Super Mario, sitting university exams, or performing physical exercise help detect acute mood episodes via self-supervised learning

Personal sensing, leveraging data passively and near-continuously collected with wearables from patients in their ecological environment, is a promising paradigm to monitor mood disorders (MDs), a major determinant of worldwide disease burden. However, collecting and annotating wearable data is very resource-intensive. Studies of this kind can thus typically afford to recruit only a couple dozens of patients. This constitutes one of the major obstacles to applying modern supervised machine learning techniques to MDs detection. In this paper, we overcome this data bottleneck and advance the detection of MDs acute episode vs stable state from wearables data on the back of recent advances in self-supervised learning (SSL). This leverages unlabelled data to learn representations during pre-training, subsequently exploited for a supervised task. First, we collected open-access datasets recording with an Empatica E4 spanning different, unrelated to MD monitoring, personal sensing tasks -- from emotion recognition in Super Mario players to stress detection in undergraduates -- and devised a pre-processing pipeline performing on-/off-body detection, sleep-wake detection, segmentation, and (optionally) feature extraction. With 161 E4-recorded subjects, we introduce E4SelfLearning, the largest to date open access collection, and its pre-processing pipeline. Second, we show that SSL confidently outperforms fully-supervised pipelines using either our novel E4-tailored Transformer architecture (E4mer) or classical baseline XGBoost: 81.23% against 75.35% (E4mer) and 72.02% (XGBoost) correctly classified recording segments from 64 (half acute, half stable) patients. Lastly, we illustrate that SSL performance is strongly associated with the specific surrogate task employed for pre-training as well as with unlabelled data availability.

Redco: A Lightweight Tool to Automate Distributed Training of LLMs on Any GPU/TPUs

The recent progress of AI can be largely attributed to large language models (LLMs). However, their escalating memory requirements introduce challenges for machine learning (ML) researchers and engineers. Addressing this requires developers to partition a large model to distribute it across multiple GPUs or TPUs. This necessitates considerable coding and intricate configuration efforts with existing model parallel tools, such as Megatron-LM, DeepSpeed, and Alpa. These tools require users' expertise in machine learning systems (MLSys), creating a bottleneck in LLM development, particularly for developers without MLSys background. In this work, we present Redco, a lightweight and user-friendly tool crafted to automate distributed training and inference for LLMs, as well as to simplify ML pipeline development. The design of Redco emphasizes two key aspects. Firstly, to automate model parallism, our study identifies two straightforward rules to generate tensor parallel strategies for any given LLM. Integrating these rules into Redco facilitates effortless distributed LLM training and inference, eliminating the need of additional coding or complex configurations. We demonstrate the effectiveness by applying Redco on a set of LLM architectures, such as GPT-J, LLaMA, T5, and OPT, up to the size of 66B. Secondly, we propose a mechanism that allows for the customization of diverse ML pipelines through the definition of merely three functions, eliminating redundant and formulaic code like multi-host related processing. This mechanism proves adaptable across a spectrum of ML algorithms, from foundational language modeling to complex algorithms like meta-learning and reinforcement learning. Consequently, Redco implementations exhibit much fewer code lines compared to their official counterparts.

Test-Time Adaptation with CLIP Reward for Zero-Shot Generalization in Vision-Language Models

One fascinating aspect of pre-trained vision-language models~(VLMs) learning under language supervision is their impressive zero-shot generalization capability. However, this ability is hindered by distribution shifts between the training and testing data. Previous test time adaptation~(TTA) methods for VLMs in zero-shot classification rely on minimizing the entropy of model outputs, tending to be stuck in incorrect model predictions. In this work, we propose TTA with feedback to rectify the model output and prevent the model from becoming blindly confident. Specifically, a CLIP model is adopted as the reward model during TTA and provides feedback for the VLM. Given a single test sample, the VLM is forced to maximize the CLIP reward between the input and sampled results from the VLM output distribution. The proposed reinforcement learning with CLIP feedback~(RLCF) framework is highly flexible and universal. Beyond the classification task, with task-specific sampling strategies and a proper reward baseline choice, RLCF can be easily extended to not only discrimination tasks like retrieval but also generalization tasks like image captioning, improving the zero-shot generalization capacity of VLMs. According to the characteristics of these VL tasks, we build different fully TTA pipelines with RLCF to improve the zero-shot generalization ability of various VLMs. Extensive experiments along with promising empirical results demonstrate the effectiveness of RLCF. The code is available at https://github.com/mzhaoshuai/RLCF.

Interactive Segmentation as Gaussian Process Classification

Click-based interactive segmentation (IS) aims to extract the target objects under user interaction. For this task, most of the current deep learning (DL)-based methods mainly follow the general pipelines of semantic segmentation. Albeit achieving promising performance, they do not fully and explicitly utilize and propagate the click information, inevitably leading to unsatisfactory segmentation results, even at clicked points. Against this issue, in this paper, we propose to formulate the IS task as a Gaussian process (GP)-based pixel-wise binary classification model on each image. To solve this model, we utilize amortized variational inference to approximate the intractable GP posterior in a data-driven manner and then decouple the approximated GP posterior into double space forms for efficient sampling with linear complexity. Then, we correspondingly construct a GP classification framework, named GPCIS, which is integrated with the deep kernel learning mechanism for more flexibility. The main specificities of the proposed GPCIS lie in: 1) Under the explicit guidance of the derived GP posterior, the information contained in clicks can be finely propagated to the entire image and then boost the segmentation; 2) The accuracy of predictions at clicks has good theoretical support. These merits of GPCIS as well as its good generality and high efficiency are substantiated by comprehensive experiments on several benchmarks, as compared with representative methods both quantitatively and qualitatively.

A Comprehensive Benchmark for COVID-19 Predictive Modeling Using Electronic Health Records in Intensive Care

The COVID-19 pandemic has posed a heavy burden to the healthcare system worldwide and caused huge social disruption and economic loss. Many deep learning models have been proposed to conduct clinical predictive tasks such as mortality prediction for COVID-19 patients in intensive care units using Electronic Health Record (EHR) data. Despite their initial success in certain clinical applications, there is currently a lack of benchmarking results to achieve a fair comparison so that we can select the optimal model for clinical use. Furthermore, there is a discrepancy between the formulation of traditional prediction tasks and real-world clinical practice in intensive care. To fill these gaps, we propose two clinical prediction tasks, Outcome-specific length-of-stay prediction and Early mortality prediction for COVID-19 patients in intensive care units. The two tasks are adapted from the naive length-of-stay and mortality prediction tasks to accommodate the clinical practice for COVID-19 patients. We propose fair, detailed, open-source data-preprocessing pipelines and evaluate 17 state-of-the-art predictive models on two tasks, including 5 machine learning models, 6 basic deep learning models and 6 deep learning predictive models specifically designed for EHR data. We provide benchmarking results using data from two real-world COVID-19 EHR datasets. One dataset is publicly available without needing any inquiry and another dataset can be accessed on request. We provide fair, reproducible benchmarking results for two tasks. We deploy all experiment results and models on an online platform. We also allow clinicians and researchers to upload their data to the platform and get quick prediction results using our trained models. We hope our efforts can further facilitate deep learning and machine learning research for COVID-19 predictive modeling.

3D-QCNet -- A Pipeline for Automated Artifact Detection in Diffusion MRI images

Artifacts are a common occurrence in Diffusion MRI (dMRI) scans. Identifying and removing them is essential to ensure the accuracy and viability of any post processing carried out on these scans. This makes QC (quality control) a crucial first step prior to any analysis of dMRI data. Several QC methods for artifact detection exist, however they suffer from problems like requiring manual intervention and the inability to generalize across different artifacts and datasets. In this paper, we propose an automated deep learning (DL) pipeline that utilizes a 3D-Densenet architecture to train a model on diffusion volumes for automatic artifact detection. Our method is applied on a vast dataset consisting of 9000 volumes sourced from 7 large clinical datasets. These datasets comprise scans from multiple scanners with different gradient directions, high and low b values, single shell and multi shell acquisitions. Additionally, they represent diverse subject demographics like the presence or absence of pathologies. Our QC method is found to accurately generalize across this heterogenous data by correctly detecting 92% artifacts on average across our test set. This consistent performance over diverse datasets underlines the generalizability of our method, which currently is a significant barrier hindering the widespread adoption of automated QC techniques. For these reasons, we believe that 3D-QCNet can be integrated in diffusion pipelines to effectively automate the arduous and time-intensive process of artifact detection.