Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLookingGlass: Generative Anamorphoses via Laplacian Pyramid Warping
Anamorphosis refers to a category of images that are intentionally distorted, making them unrecognizable when viewed directly. Their true form only reveals itself when seen from a specific viewpoint, which can be through some catadioptric device like a mirror or a lens. While the construction of these mathematical devices can be traced back to as early as the 17th century, they are only interpretable when viewed from a specific vantage point and tend to lose meaning when seen normally. In this paper, we revisit these famous optical illusions with a generative twist. With the help of latent rectified flow models, we propose a method to create anamorphic images that still retain a valid interpretation when viewed directly. To this end, we introduce Laplacian Pyramid Warping, a frequency-aware image warping technique key to generating high-quality visuals. Our work extends Visual Anagrams (arXiv:2311.17919) to latent space models and to a wider range of spatial transforms, enabling the creation of novel generative perceptual illusions.
Logic.py: Bridging the Gap between LLMs and Constraint Solvers
We present a novel approach to formalise and solve search-based problems using large language models, which significantly improves upon previous state-of-the-art results. We demonstrate the efficacy of this approach on the logic puzzles benchmark ZebraLogicBench. Instead of letting the LLM attempt to directly solve the puzzles, our method prompts the model to formalise the problem in a logic-focused domain-specific language (DSL) called Logic.py. This formalised representation is then solved using a constraint solver, leveraging the strengths of both the language model and the solver. Our approach achieves a remarkable 65% absolute improvement over the baseline performance of Llama 3.1 70B on ZebraLogicBench, setting a new state-of-the-art with an accuracy of over 90%. This significant advancement demonstrates the potential of combining language models with domain-specific languages and auxiliary tools on traditionally challenging tasks for LLMs.
A Spatio-Temporal Machine Learning Model for Mortgage Credit Risk: Default Probabilities and Loan Portfolios
We introduce a novel machine learning model for credit risk by combining tree-boosting with a latent spatio-temporal Gaussian process model accounting for frailty correlation. This allows for modeling non-linearities and interactions among predictor variables in a flexible data-driven manner and for accounting for spatio-temporal variation that is not explained by observable predictor variables. We also show how estimation and prediction can be done in a computationally efficient manner. In an application to a large U.S. mortgage credit risk data set, we find that both predictive default probabilities for individual loans and predictive loan portfolio loss distributions obtained with our novel approach are more accurate compared to conventional independent linear hazard models and also linear spatio-temporal models. Using interpretability tools for machine learning models, we find that the likely reasons for this outperformance are strong interaction and non-linear effects in the predictor variables and the presence of large spatio-temporal frailty effects.
Expectation-Complete Graph Representations with Homomorphisms
We investigate novel random graph embeddings that can be computed in expected polynomial time and that are able to distinguish all non-isomorphic graphs in expectation. Previous graph embeddings have limited expressiveness and either cannot distinguish all graphs or cannot be computed efficiently for every graph. To be able to approximate arbitrary functions on graphs, we are interested in efficient alternatives that become arbitrarily expressive with increasing resources. Our approach is based on Lov\'asz' characterisation of graph isomorphism through an infinite dimensional vector of homomorphism counts. Our empirical evaluation shows competitive results on several benchmark graph learning tasks.
Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval
The ability to accurately model the fitness landscape of protein sequences is critical to a wide range of applications, from quantifying the effects of human variants on disease likelihood, to predicting immune-escape mutations in viruses and designing novel biotherapeutic proteins. Deep generative models of protein sequences trained on multiple sequence alignments have been the most successful approaches so far to address these tasks. The performance of these methods is however contingent on the availability of sufficiently deep and diverse alignments for reliable training. Their potential scope is thus limited by the fact many protein families are hard, if not impossible, to align. Large language models trained on massive quantities of non-aligned protein sequences from diverse families address these problems and show potential to eventually bridge the performance gap. We introduce Tranception, a novel transformer architecture leveraging autoregressive predictions and retrieval of homologous sequences at inference to achieve state-of-the-art fitness prediction performance. Given its markedly higher performance on multiple mutants, robustness to shallow alignments and ability to score indels, our approach offers significant gain of scope over existing approaches. To enable more rigorous model testing across a broader range of protein families, we develop ProteinGym -- an extensive set of multiplexed assays of variant effects, substantially increasing both the number and diversity of assays compared to existing benchmarks.
HUI-Audio-Corpus-German: A high quality TTS dataset
The increasing availability of audio data on the internet lead to a multitude of datasets for development and training of text to speech applications, based on neural networks. Highly differing quality of voice, low sampling rates, lack of text normalization and disadvantageous alignment of audio samples to corresponding transcript sentences still limit the performance of deep neural networks trained on this task. Additionally, data resources in languages like German are still very limited. We introduce the "HUI-Audio-Corpus-German", a large, open-source dataset for TTS engines, created with a processing pipeline, which produces high quality audio to transcription alignments and decreases manual effort needed for creation.
H2O-Danube-1.8B Technical Report
We present H2O-Danube-1.8B, a 1.8B language model trained on 1T tokens following the core principles of LLama 2 and Mistral. We leverage and refine various techniques for pre-training large language models. Although our model is trained on significantly fewer total tokens compared to reference models of similar size, it exhibits highly competitive metrics across a multitude of benchmarks. We additionally release a chat model trained with supervised fine-tuning followed by direct preference optimization. We make H2O-Danube-1.8B openly available under Apache 2.0 license further democratizing LLMs to a wider audience economically.
Evaluation of Deep Audio Representations for Hearables
Effectively steering hearable devices requires understanding the acoustic environment around the user. In the computational analysis of sound scenes, foundation models have emerged as the state of the art to produce high-performance, robust, multi-purpose audio representations. We introduce and release Deep Evaluation of Audio Representations (DEAR), the first dataset and benchmark to evaluate the efficacy of foundation models in capturing essential acoustic properties for hearables. The dataset includes 1,158 audio tracks, each 30 seconds long, created by spatially mixing proprietary monologues with commercial, high-quality recordings of everyday acoustic scenes. Our benchmark encompasses eight tasks that assess the general context, speech sources, and technical acoustic properties of the audio scenes. Through our evaluation of four general-purpose audio representation models, we demonstrate that the BEATs model significantly surpasses its counterparts. This superiority underscores the advantage of models trained on diverse audio collections, confirming their applicability to a wide array of auditory tasks, including encoding the environment properties necessary for hearable steering. The DEAR dataset and associated code are available at https://dear-dataset.github.io.
Explaining Caption-Image Interactions in CLIP models with Second-Order Attributions
Dual encoder architectures like CLIP models map two types of inputs into a shared embedding space and predict similarities between them. Despite their success, it is, however, not understood how these models compare their two inputs. Common first-order feature-attribution methods can only provide limited insights into dual-encoders since their predictions depend on feature-interactions rather than on individual features. In this paper, we first derive a second-order method enabling the attribution of predictions by any differentiable dual encoder onto feature-interactions between its inputs. Second, we apply our method to CLIP models and show that they learn fine-grained correspondences between parts of captions and regions in images. They match objects across input modes also account for mismatches. This visual-linguistic grounding ability, however, varies heavily between object classes and exhibits pronounced out-of-domain effects. We can identify individual errors as well as systematic failure categories including object coverage, unusual scenes and correlated contexts.
Towards Better Evaluation for Generated Patent Claims
Patent claims define the scope of protection and establish the legal boundaries of an invention. Drafting these claims is a complex and time-consuming process that usually requires the expertise of skilled patent attorneys, which can form a large access barrier for many small enterprises. To solve these challenges, researchers have investigated the use of large language models (LLMs) for automating patent claim generation. However, existing studies highlight inconsistencies between automated evaluation metrics and human expert assessments. To bridge this gap, we introduce Patent-CE, the first comprehensive benchmark for evaluating patent claims. Patent-CE includes comparative claim evaluations annotated by patent experts, focusing on five key criteria: feature completeness, conceptual clarity, terminology consistency, logical linkage, and overall quality. Additionally, we propose PatClaimEval, a novel multi-dimensional evaluation method specifically designed for patent claims. Our experiments demonstrate that PatClaimEval achieves the highest correlation with human expert evaluations across all assessment criteria among all tested metrics. This research provides the groundwork for more accurate evaluations of automated patent claim generation systems.
Patent-CR: A Dataset for Patent Claim Revision
This paper presents Patent-CR, the first dataset created for the patent claim revision task in English. It includes both initial patent applications rejected by patent examiners and the final granted versions. Unlike normal text revision tasks that predominantly focus on enhancing sentence quality, such as grammar correction and coherence improvement, patent claim revision aims at ensuring the claims meet stringent legal criteria. These criteria are beyond novelty and inventiveness, including clarity of scope, technical accuracy, language precision, and legal robustness. We assess various large language models (LLMs) through professional human evaluation, including general LLMs with different sizes and architectures, text revision models, and domain-specific models. Our results indicate that LLMs often bring ineffective edits that deviate from the target revisions. In addition, domain-specific models and the method of fine-tuning show promising results. Notably, GPT-4 outperforms other tested LLMs, but further revisions are still necessary to reach the examination standard. Furthermore, we demonstrate the inconsistency between automated and human evaluation results, suggesting that GPT-4-based automated evaluation has the highest correlation with human judgment. This dataset, along with our preliminary empirical research, offers invaluable insights for further exploration in patent claim revision.
Pareto Low-Rank Adapters: Efficient Multi-Task Learning with Preferences
Dealing with multi-task trade-offs during inference can be addressed via Pareto Front Learning (PFL) methods that parameterize the Pareto Front with a single model, contrary to traditional Multi-Task Learning (MTL) approaches that optimize for a single trade-off which has to be decided prior to training. However, recent PFL methodologies suffer from limited scalability, slow convergence and excessive memory requirements compared to MTL approaches while exhibiting inconsistent mappings from preference space to objective space. In this paper, we introduce PaLoRA, a novel parameter-efficient method that augments the original model with task-specific low-rank adapters and continuously parameterizes the Pareto Front in their convex hull. Our approach dedicates the original model and the adapters towards learning general and task-specific features, respectively. Additionally, we propose a deterministic sampling schedule of preference vectors that reinforces this division of labor, enabling faster convergence and scalability to real world networks. Our experimental results show that PaLoRA outperforms MTL and PFL baselines across various datasets, scales to large networks and provides a continuous parameterization of the Pareto Front, reducing the memory overhead 23.8-31.7 times compared with competing PFL baselines in scene understanding benchmarks.
On gauge freedom, conservativity and intrinsic dimensionality estimation in diffusion models
Diffusion models are generative models that have recently demonstrated impressive performances in terms of sampling quality and density estimation in high dimensions. They rely on a forward continuous diffusion process and a backward continuous denoising process, which can be described by a time-dependent vector field and is used as a generative model. In the original formulation of the diffusion model, this vector field is assumed to be the score function (i.e. it is the gradient of the log-probability at a given time in the diffusion process). Curiously, on the practical side, most studies on diffusion models implement this vector field as a neural network function and do not constrain it be the gradient of some energy function (that is, most studies do not constrain the vector field to be conservative). Even though some studies investigated empirically whether such a constraint will lead to a performance gain, they lead to contradicting results and failed to provide analytical results. Here, we provide three analytical results regarding the extent of the modeling freedom of this vector field. {Firstly, we propose a novel decomposition of vector fields into a conservative component and an orthogonal component which satisfies a given (gauge) freedom. Secondly, from this orthogonal decomposition, we show that exact density estimation and exact sampling is achieved when the conservative component is exactly equals to the true score and therefore conservativity is neither necessary nor sufficient to obtain exact density estimation and exact sampling. Finally, we show that when it comes to inferring local information of the data manifold, constraining the vector field to be conservative is desirable.
Dual Lagrangian Learning for Conic Optimization
This paper presents Dual Lagrangian Learning (DLL), a principled learning methodology for dual conic optimization proxies. DLL leverages conic duality and the representation power of ML models to provide high-duality, dual-feasible solutions, and therefore valid Lagrangian dual bounds, for linear and nonlinear conic optimization problems. The paper introduces a systematic dual completion procedure, differentiable conic projection layers, and a self-supervised learning framework based on Lagrangian duality. It also provides closed-form dual completion formulae for broad classes of conic problems, which eliminate the need for costly implicit layers. The effectiveness of DLL is demonstrated on linear and nonlinear conic optimization problems. The proposed methodology significantly outperforms a state-of-the-art learning-based method, and achieves 1000x speedups over commercial interior-point solvers with optimality gaps under 0.5\% on average.
On the Relationship Between Interpretability and Explainability in Machine Learning
Interpretability and explainability have gained more and more attention in the field of machine learning as they are crucial when it comes to high-stakes decisions and troubleshooting. Since both provide information about predictors and their decision process, they are often seen as two independent means for one single end. This view has led to a dichotomous literature: explainability techniques designed for complex black-box models, or interpretable approaches ignoring the many explainability tools. In this position paper, we challenge the common idea that interpretability and explainability are substitutes for one another by listing their principal shortcomings and discussing how both of them mitigate the drawbacks of the other. In doing so, we call for a new perspective on interpretability and explainability, and works targeting both topics simultaneously, leveraging each of their respective assets.
Domain Randomization via Entropy Maximization
Varying dynamics parameters in simulation is a popular Domain Randomization (DR) approach for overcoming the reality gap in Reinforcement Learning (RL). Nevertheless, DR heavily hinges on the choice of the sampling distribution of the dynamics parameters, since high variability is crucial to regularize the agent's behavior but notoriously leads to overly conservative policies when randomizing excessively. In this paper, we propose a novel approach to address sim-to-real transfer, which automatically shapes dynamics distributions during training in simulation without requiring real-world data. We introduce DOmain RAndomization via Entropy MaximizatiON (DORAEMON), a constrained optimization problem that directly maximizes the entropy of the training distribution while retaining generalization capabilities. In achieving this, DORAEMON gradually increases the diversity of sampled dynamics parameters as long as the probability of success of the current policy is sufficiently high. We empirically validate the consistent benefits of DORAEMON in obtaining highly adaptive and generalizable policies, i.e. solving the task at hand across the widest range of dynamics parameters, as opposed to representative baselines from the DR literature. Notably, we also demonstrate the Sim2Real applicability of DORAEMON through its successful zero-shot transfer in a robotic manipulation setup under unknown real-world parameters.
Perceptual Scales Predicted by Fisher Information Metrics
Perception is often viewed as a process that transforms physical variables, external to an observer, into internal psychological variables. Such a process can be modeled by a function coined perceptual scale. The perceptual scale can be deduced from psychophysical measurements that consist in comparing the relative differences between stimuli (i.e. difference scaling experiments). However, this approach is often overlooked by the modeling and experimentation communities. Here, we demonstrate the value of measuring the perceptual scale of classical (spatial frequency, orientation) and less classical physical variables (interpolation between textures) by embedding it in recent probabilistic modeling of perception. First, we show that the assumption that an observer has an internal representation of univariate parameters such as spatial frequency or orientation while stimuli are high-dimensional does not lead to contradictory predictions when following the theoretical framework. Second, we show that the measured perceptual scale corresponds to the transduction function hypothesized in this framework. In particular, we demonstrate that it is related to the Fisher information of the generative model that underlies perception and we test the predictions given by the generative model of different stimuli in a set a of difference scaling experiments. Our main conclusion is that the perceptual scale is mostly driven by the stimulus power spectrum. Finally, we propose that this measure of perceptual scale is a way to push further the notion of perceptual distances by estimating the perceptual geometry of images i.e. the path between images instead of simply the distance between those.
On Computing Optimal Tree Ensembles
Random forests and, more generally, (decision\nobreakdash-)tree ensembles are widely used methods for classification and regression. Recent algorithmic advances allow to compute decision trees that are optimal for various measures such as their size or depth. We are not aware of such research for tree ensembles and aim to contribute to this area. Mainly, we provide two novel algorithms and corresponding lower bounds. First, we are able to carry over and substantially improve on tractability results for decision trees, obtaining a (6delta D S)^S cdot poly-time algorithm, where S is the number of cuts in the tree ensemble, D the largest domain size, and delta is the largest number of features in which two examples differ. To achieve this, we introduce the witness-tree technique which also seems promising for practice. Second, we show that dynamic programming, which has been successful for decision trees, may also be viable for tree ensembles, providing an ell^n cdot poly-time algorithm, where ell is the number of trees and n the number of examples. Finally, we compare the number of cuts necessary to classify training data sets for decision trees and tree ensembles, showing that ensembles may need exponentially fewer cuts for increasing number of trees.
Pareto Manifold Learning: Tackling multiple tasks via ensembles of single-task models
In Multi-Task Learning (MTL), tasks may compete and limit the performance achieved on each other, rather than guiding the optimization to a solution, superior to all its single-task trained counterparts. Since there is often not a unique solution optimal for all tasks, practitioners have to balance tradeoffs between tasks' performance, and resort to optimality in the Pareto sense. Most MTL methodologies either completely neglect this aspect, and instead of aiming at learning a Pareto Front, produce one solution predefined by their optimization schemes, or produce diverse but discrete solutions. Recent approaches parameterize the Pareto Front via neural networks, leading to complex mappings from tradeoff to objective space. In this paper, we conjecture that the Pareto Front admits a linear parameterization in parameter space, which leads us to propose Pareto Manifold Learning, an ensembling method in weight space. Our approach produces a continuous Pareto Front in a single training run, that allows to modulate the performance on each task during inference. Experiments on multi-task learning benchmarks, ranging from image classification to tabular datasets and scene understanding, show that Pareto Manifold Learning outperforms state-of-the-art single-point algorithms, while learning a better Pareto parameterization than multi-point baselines.
Anonymizing Speech with Generative Adversarial Networks to Preserve Speaker Privacy
In order to protect the privacy of speech data, speaker anonymization aims for hiding the identity of a speaker by changing the voice in speech recordings. This typically comes with a privacy-utility trade-off between protection of individuals and usability of the data for downstream applications. One of the challenges in this context is to create non-existent voices that sound as natural as possible. In this work, we propose to tackle this issue by generating speaker embeddings using a generative adversarial network with Wasserstein distance as cost function. By incorporating these artificial embeddings into a speech-to-text-to-speech pipeline, we outperform previous approaches in terms of privacy and utility. According to standard objective metrics and human evaluation, our approach generates intelligible and content-preserving yet privacy-protecting versions of the original recordings.
SCONE: Surface Coverage Optimization in Unknown Environments by Volumetric Integration
Next Best View computation (NBV) is a long-standing problem in robotics, and consists in identifying the next most informative sensor position(s) for reconstructing a 3D object or scene efficiently and accurately. Like most current methods, we consider NBV prediction from a depth sensor like Lidar systems. Learning-based methods relying on a volumetric representation of the scene are suitable for path planning, but have lower accuracy than methods using a surface-based representation. However, the latter do not scale well with the size of the scene and constrain the camera to a small number of poses. To obtain the advantages of both representations, we show that we can maximize surface metrics by Monte Carlo integration over a volumetric representation. In particular, we propose an approach, SCONE, that relies on two neural modules: The first module predicts occupancy probability in the entire volume of the scene. Given any new camera pose, the second module samples points in the scene based on their occupancy probability and leverages a self-attention mechanism to predict the visibility of the samples. Finally, we integrate the visibility to evaluate the gain in surface coverage for the new camera pose. NBV is selected as the pose that maximizes the gain in total surface coverage. Our method scales to large scenes and handles free camera motion: It takes as input an arbitrarily large point cloud gathered by a depth sensor as well as camera poses to predict NBV. We demonstrate our approach on a novel dataset made of large and complex 3D scenes.
Self-Contained Entity Discovery from Captioned Videos
This paper introduces the task of visual named entity discovery in videos without the need for task-specific supervision or task-specific external knowledge sources. Assigning specific names to entities (e.g. faces, scenes, or objects) in video frames is a long-standing challenge. Commonly, this problem is addressed as a supervised learning objective by manually annotating faces with entity labels. To bypass the annotation burden of this setup, several works have investigated the problem by utilizing external knowledge sources such as movie databases. While effective, such approaches do not work when task-specific knowledge sources are not provided and can only be applied to movies and TV series. In this work, we take the problem a step further and propose to discover entities in videos from videos and corresponding captions or subtitles. We introduce a three-stage method where we (i) create bipartite entity-name graphs from frame-caption pairs, (ii) find visual entity agreements, and (iii) refine the entity assignment through entity-level prototype construction. To tackle this new problem, we outline two new benchmarks SC-Friends and SC-BBT based on the Friends and Big Bang Theory TV series. Experiments on the benchmarks demonstrate the ability of our approach to discover which named entity belongs to which face or scene, with an accuracy close to a supervised oracle, just from the multimodal information present in videos. Additionally, our qualitative examples show the potential challenges of self-contained discovery of any visual entity for future work. The code and the data are available on GitHub.
Graph-Based Classification of Omnidirectional Images
Omnidirectional cameras are widely used in such areas as robotics and virtual reality as they provide a wide field of view. Their images are often processed with classical methods, which might unfortunately lead to non-optimal solutions as these methods are designed for planar images that have different geometrical properties than omnidirectional ones. In this paper we study image classification task by taking into account the specific geometry of omnidirectional cameras with graph-based representations. In particular, we extend deep learning architectures to data on graphs; we propose a principled way of graph construction such that convolutional filters respond similarly for the same pattern on different positions of the image regardless of lens distortions. Our experiments show that the proposed method outperforms current techniques for the omnidirectional image classification problem.
The Z-loss: a shift and scale invariant classification loss belonging to the Spherical Family
Despite being the standard loss function to train multi-class neural networks, the log-softmax has two potential limitations. First, it involves computations that scale linearly with the number of output classes, which can restrict the size of problems we are able to tackle with current hardware. Second, it remains unclear how close it matches the task loss such as the top-k error rate or other non-differentiable evaluation metrics which we aim to optimize ultimately. In this paper, we introduce an alternative classification loss function, the Z-loss, which is designed to address these two issues. Unlike the log-softmax, it has the desirable property of belonging to the spherical loss family (Vincent et al., 2015), a class of loss functions for which training can be performed very efficiently with a complexity independent of the number of output classes. We show experimentally that it significantly outperforms the other spherical loss functions previously investigated. Furthermore, we show on a word language modeling task that it also outperforms the log-softmax with respect to certain ranking scores, such as top-k scores, suggesting that the Z-loss has the flexibility to better match the task loss. These qualities thus makes the Z-loss an appealing candidate to train very efficiently large output networks such as word-language models or other extreme classification problems. On the One Billion Word (Chelba et al., 2014) dataset, we are able to train a model with the Z-loss 40 times faster than the log-softmax and more than 4 times faster than the hierarchical softmax.
Joint multiband deconvolution for Euclid and Vera C. Rubin images
With the advent of surveys like Euclid and Vera C. Rubin, astrophysicists will have access to both deep, high-resolution images and multiband images. However, these two types are not simultaneously available in any single dataset. It is therefore vital to devise image deconvolution algorithms that exploit the best of both worlds and that can jointly analyze datasets spanning a range of resolutions and wavelengths. In this work we introduce a novel multiband deconvolution technique aimed at improving the resolution of ground-based astronomical images by leveraging higher-resolution space-based observations. The method capitalizes on the fortunate fact that the Rubin r, i, and z bands lie within the Euclid VIS band. The algorithm jointly de-convolves all the data to convert the r-, i-, and z-band Rubin images to the resolution of Euclid by leveraging the correlations between the different bands. We also investigate the performance of deep-learning-based denoising with DRUNet to further improve the results. We illustrate the effectiveness of our method in terms of resolution and morphology recovery, flux preservation, and generalization to different noise levels. This approach extends beyond the specific Euclid-Rubin combination, offering a versatile solution to improving the resolution of ground-based images in multiple photometric bands by jointly using any space-based images with overlapping filters.
WikiContradict: A Benchmark for Evaluating LLMs on Real-World Knowledge Conflicts from Wikipedia
Retrieval-augmented generation (RAG) has emerged as a promising solution to mitigate the limitations of large language models (LLMs), such as hallucinations and outdated information. However, it remains unclear how LLMs handle knowledge conflicts arising from different augmented retrieved passages, especially when these passages originate from the same source and have equal trustworthiness. In this work, we conduct a comprehensive evaluation of LLM-generated answers to questions that have varying answers based on contradictory passages from Wikipedia, a dataset widely regarded as a high-quality pre-training resource for most LLMs. Specifically, we introduce WikiContradict, a benchmark consisting of 253 high-quality, human-annotated instances designed to assess LLM performance when augmented with retrieved passages containing real-world knowledge conflicts. We benchmark a diverse range of both closed and open-source LLMs under different QA scenarios, including RAG with a single passage, and RAG with 2 contradictory passages. Through rigorous human evaluations on a subset of WikiContradict instances involving 5 LLMs and over 3,500 judgements, we shed light on the behaviour and limitations of these models. For instance, when provided with two passages containing contradictory facts, all models struggle to generate answers that accurately reflect the conflicting nature of the context, especially for implicit conflicts requiring reasoning. Since human evaluation is costly, we also introduce an automated model that estimates LLM performance using a strong open-source language model, achieving an F-score of 0.8. Using this automated metric, we evaluate more than 1,500 answers from seven LLMs across all WikiContradict instances. To facilitate future work, we release WikiContradict on: https://ibm.biz/wikicontradict.
Ground-based image deconvolution with Swin Transformer UNet
As ground-based all-sky astronomical surveys will gather millions of images in the coming years, a critical requirement emerges for the development of fast deconvolution algorithms capable of efficiently improving the spatial resolution of these images. By successfully recovering clean and high-resolution images from these surveys, the objective is to deepen the understanding of galaxy formation and evolution through accurate photometric measurements. We introduce a two-step deconvolution framework using a Swin Transformer architecture. Our study reveals that the deep learning-based solution introduces a bias, constraining the scope of scientific analysis. To address this limitation, we propose a novel third step relying on the active coefficients in the sparsity wavelet framework. We conducted a performance comparison between our deep learning-based method and Firedec, a classical deconvolution algorithm, based on an analysis of a subset of the EDisCS cluster samples. We demonstrate the advantage of our method in terms of resolution recovery, generalisation to different noise properties, and computational efficiency. The analysis of this cluster sample not only allowed us to assess the efficiency of our method, but it also enabled us to quantify the number of clumps within these galaxies in relation to their disc colour. This robust technique that we propose holds promise for identifying structures in the distant universe through ground-based images.
Characterizing virulence differences in a parasitoid wasp through comparative transcriptomic and proteomic
Background: Two strains of the endoparasitoid Cotesia typhae present a differential parasitism success on the host, Sesamia nonagrioides. One is virulent on both permissive and resistant host populations, and the other only on the permissive host. This interaction provides a very interesting frame for studying virulence factors. Here, we used a combination of comparative transcriptomic and proteomic analyses to unravel the molecular basis underlying virulence differences between the strains.Results: First, we report that virulence genes are mostly expressed during the nymphal stage of the parasitoid. Especially, proviral genes are broadly up-regulated at this stage, while their expression is only expected in the host. Parasitoid gene expression in the host increases with time, indicating the production of more virulence factors. Secondly, comparison between strains reveals differences in venom composition, with 12 proteins showing differential abundance. Proviral expression in the host displays a strong temporal variability, along with differential patterns between strains. Notably, a subset of proviral genes including protein-tyrosine phosphatases is specifically over-expressed in the resistant host parasitized by the less virulent strain, 24 hours after parasitism. This result particularly hints at host modulation of proviral expression.Conclusions: This study sheds light on the temporal expression of virulence factors of Cotesia typhae, both in the host and in the parasitoid. It also identifies potential molecular candidates driving differences in parasitism success between two strains. Together, those findings provide a path for further exploration of virulence mechanisms in parasitoid wasps, and offer insights into host-parasitoid coevolution.
SRT-H: A Hierarchical Framework for Autonomous Surgery via Language Conditioned Imitation Learning
Research on autonomous surgery has largely focused on simple task automation in controlled environments. However, real-world surgical applications demand dexterous manipulation over extended durations and generalization to the inherent variability of human tissue. These challenges remain difficult to address using existing logic-based or conventional end-to-end learning approaches. To address this gap, we propose a hierarchical framework for performing dexterous, long-horizon surgical steps. Our approach utilizes a high-level policy for task planning and a low-level policy for generating robot trajectories. The high-level planner plans in language space, generating task-level or corrective instructions that guide the robot through the long-horizon steps and correct for the low-level policy's errors. We validate our framework through ex vivo experiments on cholecystectomy, a commonly-practiced minimally invasive procedure, and conduct ablation studies to evaluate key components of the system. Our method achieves a 100\% success rate across eight unseen ex vivo gallbladders, operating fully autonomously without human intervention. This work demonstrates step-level autonomy in a surgical procedure, marking a milestone toward clinical deployment of autonomous surgical systems.
Hyperbolic Safety-Aware Vision-Language Models
Addressing the retrieval of unsafe content from vision-language models such as CLIP is an important step towards real-world integration. Current efforts have relied on unlearning techniques that try to erase the model's knowledge of unsafe concepts. While effective in reducing unwanted outputs, unlearning limits the model's capacity to discern between safe and unsafe content. In this work, we introduce a novel approach that shifts from unlearning to an awareness paradigm by leveraging the inherent hierarchical properties of the hyperbolic space. We propose to encode safe and unsafe content as an entailment hierarchy, where both are placed in different regions of hyperbolic space. Our HySAC, Hyperbolic Safety-Aware CLIP, employs entailment loss functions to model the hierarchical and asymmetrical relations between safe and unsafe image-text pairs. This modelling, ineffective in standard vision-language models due to their reliance on Euclidean embeddings, endows the model with awareness of unsafe content, enabling it to serve as both a multimodal unsafe classifier and a flexible content retriever, with the option to dynamically redirect unsafe queries toward safer alternatives or retain the original output. Extensive experiments show that our approach not only enhances safety recognition but also establishes a more adaptable and interpretable framework for content moderation in vision-language models. Our source code is available at https://github.com/aimagelab/HySAC.
MACARONS: Mapping And Coverage Anticipation with RGB Online Self-Supervision
We introduce a method that simultaneously learns to explore new large environments and to reconstruct them in 3D from color images only. This is closely related to the Next Best View problem (NBV), where one has to identify where to move the camera next to improve the coverage of an unknown scene. However, most of the current NBV methods rely on depth sensors, need 3D supervision and/or do not scale to large scenes. Our method requires only a color camera and no 3D supervision. It simultaneously learns in a self-supervised fashion to predict a "volume occupancy field" from color images and, from this field, to predict the NBV. Thanks to this approach, our method performs well on new scenes as it is not biased towards any training 3D data. We demonstrate this on a recent dataset made of various 3D scenes and show it performs even better than recent methods requiring a depth sensor, which is not a realistic assumption for outdoor scenes captured with a flying drone.
SequeL: A Continual Learning Library in PyTorch and JAX
Continual Learning is an important and challenging problem in machine learning, where models must adapt to a continuous stream of new data without forgetting previously acquired knowledge. While existing frameworks are built on PyTorch, the rising popularity of JAX might lead to divergent codebases, ultimately hindering reproducibility and progress. To address this problem, we introduce SequeL, a flexible and extensible library for Continual Learning that supports both PyTorch and JAX frameworks. SequeL provides a unified interface for a wide range of Continual Learning algorithms, including regularization-based approaches, replay-based approaches, and hybrid approaches. The library is designed towards modularity and simplicity, making the API suitable for both researchers and practitioners. We release SequeL\url{https://github.com/nik-dim/sequel} as an open-source library, enabling researchers and developers to easily experiment and extend the library for their own purposes.
Poincaré ResNet
This paper introduces an end-to-end residual network that operates entirely on the Poincar\'e ball model of hyperbolic space. Hyperbolic learning has recently shown great potential for visual understanding, but is currently only performed in the penultimate layer(s) of deep networks. All visual representations are still learned through standard Euclidean networks. In this paper we investigate how to learn hyperbolic representations of visual data directly from the pixel-level. We propose Poincar\'e ResNet, a hyperbolic counterpart of the celebrated residual network, starting from Poincar\'e 2D convolutions up to Poincar\'e residual connections. We identify three roadblocks for training convolutional networks entirely in hyperbolic space and propose a solution for each: (i) Current hyperbolic network initializations collapse to the origin, limiting their applicability in deeper networks. We provide an identity-based initialization that preserves norms over many layers. (ii) Residual networks rely heavily on batch normalization, which comes with expensive Fr\'echet mean calculations in hyperbolic space. We introduce Poincar\'e midpoint batch normalization as a faster and equally effective alternative. (iii) Due to the many intermediate operations in Poincar\'e layers, we lastly find that the computation graphs of deep learning libraries blow up, limiting our ability to train on deep hyperbolic networks. We provide manual backward derivations of core hyperbolic operations to maintain manageable computation graphs.
PAC-Bayesian Generalization Bounds for Adversarial Generative Models
We extend PAC-Bayesian theory to generative models and develop generalization bounds for models based on the Wasserstein distance and the total variation distance. Our first result on the Wasserstein distance assumes the instance space is bounded, while our second result takes advantage of dimensionality reduction. Our results naturally apply to Wasserstein GANs and Energy-Based GANs, and our bounds provide new training objectives for these two. Although our work is mainly theoretical, we perform numerical experiments showing non-vacuous generalization bounds for Wasserstein GANs on synthetic datasets.
D3DR: Lighting-Aware Object Insertion in Gaussian Splatting
Gaussian Splatting has become a popular technique for various 3D Computer Vision tasks, including novel view synthesis, scene reconstruction, and dynamic scene rendering. However, the challenge of natural-looking object insertion, where the object's appearance seamlessly matches the scene, remains unsolved. In this work, we propose a method, dubbed D3DR, for inserting a 3DGS-parametrized object into 3DGS scenes while correcting its lighting, shadows, and other visual artifacts to ensure consistency, a problem that has not been successfully addressed before. We leverage advances in diffusion models, which, trained on real-world data, implicitly understand correct scene lighting. After inserting the object, we optimize a diffusion-based Delta Denoising Score (DDS)-inspired objective to adjust its 3D Gaussian parameters for proper lighting correction. Utilizing diffusion model personalization techniques to improve optimization quality, our approach ensures seamless object insertion and natural appearance. Finally, we demonstrate the method's effectiveness by comparing it to existing approaches, achieving 0.5 PSNR and 0.15 SSIM improvements in relighting quality.
Knowledge in Triples for LLMs: Enhancing Table QA Accuracy with Semantic Extraction
Integrating structured knowledge from tabular formats poses significant challenges within natural language processing (NLP), mainly when dealing with complex, semi-structured tables like those found in the FeTaQA dataset. These tables require advanced methods to interpret and generate meaningful responses accurately. Traditional approaches, such as SQL and SPARQL, often fail to fully capture the semantics of such data, especially in the presence of irregular table structures like web tables. This paper addresses these challenges by proposing a novel approach that extracts triples straightforward from tabular data and integrates it with a retrieval-augmented generation (RAG) model to enhance the accuracy, coherence, and contextual richness of responses generated by a fine-tuned GPT-3.5-turbo-0125 model. Our approach significantly outperforms existing baselines on the FeTaQA dataset, particularly excelling in Sacre-BLEU and ROUGE metrics. It effectively generates contextually accurate and detailed long-form answers from tables, showcasing its strength in complex data interpretation.
Can Large Language Models Generate High-quality Patent Claims?
Large language models (LLMs) have shown exceptional performance across various text generation tasks but remain under-explored in the patent domain, which offers highly structured and precise language. This paper constructs a dataset to investigate the performance of current LLMs in patent claim generation. Our results demonstrate that generating claims based on patent descriptions outperforms previous research relying on abstracts. Interestingly, current patent-specific LLMs perform much worse than state-of-the-art general LLMs, highlighting the necessity for future research on in-domain LLMs. We also find that LLMs can produce high-quality first independent claims, but their performances markedly decrease for subsequent dependent claims. Moreover, fine-tuning can enhance the completeness of inventions' features, conceptual clarity, and feature linkage. Among the tested LLMs, GPT-4 demonstrates the best performance in comprehensive human evaluations by patent experts, with better feature coverage, conceptual clarity, and technical coherence. Despite these capabilities, comprehensive revision and modification are still necessary to pass rigorous patent scrutiny and ensure legal robustness.
Optimizing Sales Forecasts through Automated Integration of Market Indicators
Recognizing that traditional forecasting models often rely solely on historical demand, this work investigates the potential of data-driven techniques to automatically select and integrate market indicators for improving customer demand predictions. By adopting an exploratory methodology, we integrate macroeconomic time series, such as national GDP growth, from the Eurostat database into Neural Prophet and SARIMAX forecasting models. Suitable time series are automatically identified through different state-of-the-art feature selection methods and applied to sales data from our industrial partner. It could be shown that forecasts can be significantly enhanced by incorporating external information. Notably, the potential of feature selection methods stands out, especially due to their capability for automation without expert knowledge and manual selection effort. In particular, the Forward Feature Selection technique consistently yielded superior forecasting accuracy for both SARIMAX and Neural Prophet across different company sales datasets. In the comparative analysis of the errors of the selected forecasting models, namely Neural Prophet and SARIMAX, it is observed that neither model demonstrates a significant superiority over the other.
MetaCap: Meta-learning Priors from Multi-View Imagery for Sparse-view Human Performance Capture and Rendering
Faithful human performance capture and free-view rendering from sparse RGB observations is a long-standing problem in Vision and Graphics. The main challenges are the lack of observations and the inherent ambiguities of the setting, e.g. occlusions and depth ambiguity. As a result, radiance fields, which have shown great promise in capturing high-frequency appearance and geometry details in dense setups, perform poorly when naively supervising them on sparse camera views, as the field simply overfits to the sparse-view inputs. To address this, we propose MetaCap, a method for efficient and high-quality geometry recovery and novel view synthesis given very sparse or even a single view of the human. Our key idea is to meta-learn the radiance field weights solely from potentially sparse multi-view videos, which can serve as a prior when fine-tuning them on sparse imagery depicting the human. This prior provides a good network weight initialization, thereby effectively addressing ambiguities in sparse-view capture. Due to the articulated structure of the human body and motion-induced surface deformations, learning such a prior is non-trivial. Therefore, we propose to meta-learn the field weights in a pose-canonicalized space, which reduces the spatial feature range and makes feature learning more effective. Consequently, one can fine-tune our field parameters to quickly generalize to unseen poses, novel illumination conditions as well as novel and sparse (even monocular) camera views. For evaluating our method under different scenarios, we collect a new dataset, WildDynaCap, which contains subjects captured in, both, a dense camera dome and in-the-wild sparse camera rigs, and demonstrate superior results compared to recent state-of-the-art methods on, both, public and WildDynaCap dataset.
Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained Models
Task arithmetic has recently emerged as a cost-effective and scalable approach to edit pre-trained models directly in weight space: By adding the fine-tuned weights of different tasks, the model's performance can be improved on these tasks, while negating them leads to task forgetting. Yet, our understanding of the effectiveness of task arithmetic and its underlying principles remains limited. We present a comprehensive study of task arithmetic in vision-language models and show that weight disentanglement is the crucial factor that makes it effective. This property arises during pre-training and manifests when distinct directions in weight space govern separate, localized regions in function space associated with the tasks. Notably, we show that fine-tuning models in their tangent space by linearizing them amplifies weight disentanglement. This leads to substantial performance improvements across multiple task arithmetic benchmarks and diverse models. Building on these findings, we provide theoretical and empirical analyses of the neural tangent kernel (NTK) of these models and establish a compelling link between task arithmetic and the spatial localization of the NTK eigenfunctions. Overall, our work uncovers novel insights into the fundamental mechanisms of task arithmetic and offers a more reliable and effective approach to edit pre-trained models through the NTK linearization.
GECCO: Geometrically-Conditioned Point Diffusion Models
Diffusion models generating images conditionally on text, such as Dall-E 2 and Stable Diffusion, have recently made a splash far beyond the computer vision community. Here, we tackle the related problem of generating point clouds, both unconditionally, and conditionally with images. For the latter, we introduce a novel geometrically-motivated conditioning scheme based on projecting sparse image features into the point cloud and attaching them to each individual point, at every step in the denoising process. This approach improves geometric consistency and yields greater fidelity than current methods relying on unstructured, global latent codes. Additionally, we show how to apply recent continuous-time diffusion schemes. Our method performs on par or above the state of art on conditional and unconditional experiments on synthetic data, while being faster, lighter, and delivering tractable likelihoods. We show it can also scale to diverse indoors scenes.
Fine-Tuning Is All You Need to Mitigate Backdoor Attacks
Backdoor attacks represent one of the major threats to machine learning models. Various efforts have been made to mitigate backdoors. However, existing defenses have become increasingly complex and often require high computational resources or may also jeopardize models' utility. In this work, we show that fine-tuning, one of the most common and easy-to-adopt machine learning training operations, can effectively remove backdoors from machine learning models while maintaining high model utility. Extensive experiments over three machine learning paradigms show that fine-tuning and our newly proposed super-fine-tuning achieve strong defense performance. Furthermore, we coin a new term, namely backdoor sequela, to measure the changes in model vulnerabilities to other attacks before and after the backdoor has been removed. Empirical evaluation shows that, compared to other defense methods, super-fine-tuning leaves limited backdoor sequela. We hope our results can help machine learning model owners better protect their models from backdoor threats. Also, it calls for the design of more advanced attacks in order to comprehensively assess machine learning models' backdoor vulnerabilities.
RITA: a Study on Scaling Up Generative Protein Sequence Models
In this work we introduce RITA: a suite of autoregressive generative models for protein sequences, with up to 1.2 billion parameters, trained on over 280 million protein sequences belonging to the UniRef-100 database. Such generative models hold the promise of greatly accelerating protein design. We conduct the first systematic study of how capabilities evolve with model size for autoregressive transformers in the protein domain: we evaluate RITA models in next amino acid prediction, zero-shot fitness, and enzyme function prediction, showing benefits from increased scale. We release the RITA models openly, to the benefit of the research community.
Data-Driven Time Series Reconstruction for Modern Power Systems Research
A critical aspect of power systems research is the availability of suitable data, access to which is limited by privacy concerns and the sensitive nature of energy infrastructure. This lack of data, in turn, hinders the development of modern research avenues such as machine learning approaches or stochastic formulations. To overcome this challenge, this paper proposes a systematic, data-driven framework for reconstructing high-fidelity time series, using publicly-available grid snapshots and historical data published by transmission system operators. The proposed approach, from geo-spatial data and generation capacity reconstruction, to time series disaggregation, is applied to the French transmission grid. Thereby, synthetic but highly realistic time series data, spanning multiple years with a 5-minute granularity, is generated at the individual component level.
Natural Language-Guided Programming
In today's software world with its cornucopia of reusable software libraries, when a programmer is faced with a programming task that they suspect can be completed through the use of a library, they often look for code examples using a search engine and then manually adapt found examples to their specific context of use. We put forward a vision based on a new breed of developer tools that have the potential to largely automate this process. The key idea is to adapt code autocompletion tools such that they take into account not only the developer's already-written code but also the intent of the task the developer is trying to achieve next, formulated in plain natural language. We call this practice of enriching the code with natural language intent to facilitate its completion natural language-guided programming. To show that this idea is feasible we design, implement and benchmark a tool that solves this problem in the context of a specific domain (data science) and a specific programming language (Python). Central to the tool is the use of language models trained on a large corpus of documented code. Our initial experiments confirm the feasibility of the idea but also make it clear that we have only scratched the surface of what may become possible in the future. We end the paper with a comprehensive research agenda to stimulate additional research in the budding area of natural language-guided programming.
Decision Making with Differential Privacy under a Fairness Lens
Agencies, such as the U.S. Census Bureau, release data sets and statistics about groups of individuals that are used as input to a number of critical decision processes. To conform to privacy and confidentiality requirements, these agencies are often required to release privacy-preserving versions of the data. This paper studies the release of differentially private data sets and analyzes their impact on some critical resource allocation tasks under a fairness perspective. {The paper shows that, when the decisions take as input differentially private data}, the noise added to achieve privacy disproportionately impacts some groups over others. The paper analyzes the reasons for these disproportionate impacts and proposes guidelines to mitigate these effects. The proposed approaches are evaluated on critical decision problems that use differentially private census data.
DISK: Learning local features with policy gradient
Local feature frameworks are difficult to learn in an end-to-end fashion, due to the discreteness inherent to the selection and matching of sparse keypoints. We introduce DISK (DIScrete Keypoints), a novel method that overcomes these obstacles by leveraging principles from Reinforcement Learning (RL), optimizing end-to-end for a high number of correct feature matches. Our simple yet expressive probabilistic model lets us keep the training and inference regimes close, while maintaining good enough convergence properties to reliably train from scratch. Our features can be extracted very densely while remaining discriminative, challenging commonly held assumptions about what constitutes a good keypoint, as showcased in Fig. 1, and deliver state-of-the-art results on three public benchmarks.
DeepFool: a simple and accurate method to fool deep neural networks
State-of-the-art deep neural networks have achieved impressive results on many image classification tasks. However, these same architectures have been shown to be unstable to small, well sought, perturbations of the images. Despite the importance of this phenomenon, no effective methods have been proposed to accurately compute the robustness of state-of-the-art deep classifiers to such perturbations on large-scale datasets. In this paper, we fill this gap and propose the DeepFool algorithm to efficiently compute perturbations that fool deep networks, and thus reliably quantify the robustness of these classifiers. Extensive experimental results show that our approach outperforms recent methods in the task of computing adversarial perturbations and making classifiers more robust.
Representation Learning: A Review and New Perspectives
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
Which One Are You Referring To? Multimodal Object Identification in Situated Dialogue
The demand for multimodal dialogue systems has been rising in various domains, emphasizing the importance of interpreting multimodal inputs from conversational and situational contexts. We explore three methods to tackle this problem and evaluate them on the largest situated dialogue dataset, SIMMC 2.1. Our best method, scene-dialogue alignment, improves the performance by ~20% F1-score compared to the SIMMC 2.1 baselines. We provide analysis and discussion regarding the limitation of our methods and the potential directions for future works. Our code is publicly available at https://github.com/holylovenia/multimodal-object-identification.
Deep Learning-based galaxy image deconvolution
With the onset of large-scale astronomical surveys capturing millions of images, there is an increasing need to develop fast and accurate deconvolution algorithms that generalize well to different images. A powerful and accessible deconvolution method would allow for the reconstruction of a cleaner estimation of the sky. The deconvolved images would be helpful to perform photometric measurements to help make progress in the fields of galaxy formation and evolution. We propose a new deconvolution method based on the Learnlet transform. Eventually, we investigate and compare the performance of different Unet architectures and Learnlet for image deconvolution in the astrophysical domain by following a two-step approach: a Tikhonov deconvolution with a closed-form solution, followed by post-processing with a neural network. To generate our training dataset, we extract HST cutouts from the CANDELS survey in the F606W filter (V-band) and corrupt these images to simulate their blurred-noisy versions. Our numerical results based on these simulations show a detailed comparison between the considered methods for different noise levels.
Reducing Gender Bias in Abusive Language Detection
Abusive language detection models tend to have a problem of being biased toward identity words of a certain group of people because of imbalanced training datasets. For example, "You are a good woman" was considered "sexist" when trained on an existing dataset. Such model bias is an obstacle for models to be robust enough for practical use. In this work, we measure gender biases on models trained with different abusive language datasets, while analyzing the effect of different pre-trained word embeddings and model architectures. We also experiment with three bias mitigation methods: (1) debiased word embeddings, (2) gender swap data augmentation, and (3) fine-tuning with a larger corpus. These methods can effectively reduce gender bias by 90-98% and can be extended to correct model bias in other scenarios.
Attention-Based LSTM for Psychological Stress Detection from Spoken Language Using Distant Supervision
We propose a Long Short-Term Memory (LSTM) with attention mechanism to classify psychological stress from self-conducted interview transcriptions. We apply distant supervision by automatically labeling tweets based on their hashtag content, which complements and expands the size of our corpus. This additional data is used to initialize the model parameters, and which it is fine-tuned using the interview data. This improves the model's robustness, especially by expanding the vocabulary size. The bidirectional LSTM model with attention is found to be the best model in terms of accuracy (74.1%) and f-score (74.3%). Furthermore, we show that distant supervision fine-tuning enhances the model's performance by 1.6% accuracy and 2.1% f-score. The attention mechanism helps the model to select informative words.
h2oGPT: Democratizing Large Language Models
Foundation Large Language Models (LLMs) such as GPT-4 represent a revolution in AI due to their real-world applications though natural language processing. However, they also pose many significant risks such as the presence of biased, private, or harmful text, and the unauthorized inclusion of copyrighted material. We introduce h2oGPT, a suite of open-source code repositories for the creation and use of Large Language Models (LLMs) based on Generative Pretrained Transformers (GPTs). The goal of this project is to create the world's best truly open-source alternative to closed-source GPTs. In collaboration with and as part of the incredible and unstoppable open-source community, we open-source several fine-tuned h2oGPT models from 7 to 40 Billion parameters, ready for commercial use under fully permissive Apache 2.0 licenses. Included in our release is 100% private document search using natural language. Open-source language models help boost AI development and make it more accessible and trustworthy. They lower entry hurdles, allowing people and groups to tailor these models to their needs. This openness increases innovation, transparency, and fairness. An open-source strategy is needed to share AI benefits fairly, and H2O.ai will continue to democratize AI and LLMs.
Predicting masked tokens in stochastic locations improves masked image modeling
Self-supervised learning is a promising paradigm in deep learning that enables learning from unlabeled data by constructing pretext tasks that require learning useful representations. In natural language processing, the dominant pretext task has been masked language modeling (MLM), while in computer vision there exists an equivalent called Masked Image Modeling (MIM). However, MIM is challenging because it requires predicting semantic content in accurate locations. E.g, given an incomplete picture of a dog, we can guess that there is a tail, but we cannot determine its exact location. In this work, we propose FlexPredict, a stochastic model that addresses this challenge by incorporating location uncertainty into the model. Specifically, we condition the model on stochastic masked token positions to guide the model toward learning features that are more robust to location uncertainties. Our approach improves downstream performance on a range of tasks, e.g, compared to MIM baselines, FlexPredict boosts ImageNet linear probing by 1.6% with ViT-B and by 2.5% for semi-supervised video segmentation using ViT-L.
Fully-fused Multi-Layer Perceptrons on Intel Data Center GPUs
This paper presents a SYCL implementation of Multi-Layer Perceptrons (MLPs), which targets and is optimized for the Intel Data Center GPU Max 1550. To increase the performance, our implementation minimizes the slow global memory accesses by maximizing the data reuse within the general register file and the shared local memory by fusing the operations in each layer of the MLP. We show with a simple roofline model that this results in a significant increase in the arithmetic intensity, leading to improved performance, especially for inference. We compare our approach to a similar CUDA implementation for MLPs and show that our implementation on the Intel Data Center GPU outperforms the CUDA implementation on Nvidia's H100 GPU by a factor up to 2.84 in inference and 1.75 in training. The paper also showcases the efficiency of our SYCL implementation in three significant areas: Image Compression, Neural Radiance Fields, and Physics-Informed Machine Learning. In all cases, our implementation outperforms the off-the-shelf Intel Extension for PyTorch (IPEX) implementation on the same Intel GPU by up to a factor of 30 and the CUDA PyTorch version on Nvidia's H100 GPU by up to a factor 19. The code can be found at https://github.com/intel/tiny-dpcpp-nn.
H2O Open Ecosystem for State-of-the-art Large Language Models
Large Language Models (LLMs) represent a revolution in AI. However, they also pose many significant risks, such as the presence of biased, private, copyrighted or harmful text. For this reason we need open, transparent and safe solutions. We introduce a complete open-source ecosystem for developing and testing LLMs. The goal of this project is to boost open alternatives to closed-source approaches. We release h2oGPT, a family of fine-tuned LLMs from 7 to 70 Billion parameters. We also introduce H2O LLM Studio, a framework and no-code GUI designed for efficient fine-tuning, evaluation, and deployment of LLMs using the most recent state-of-the-art techniques. Our code and models are licensed under fully permissive Apache 2.0 licenses. We believe open-source language models help to boost AI development and make it more accessible and trustworthy. The demo is available at: https://gpt.h2o.ai/
Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture
This paper demonstrates an approach for learning highly semantic image representations without relying on hand-crafted data-augmentations. We introduce the Image-based Joint-Embedding Predictive Architecture (I-JEPA), a non-generative approach for self-supervised learning from images. The idea behind I-JEPA is simple: from a single context block, predict the representations of various target blocks in the same image. A core design choice to guide I-JEPA towards producing semantic representations is the masking strategy; specifically, it is crucial to (a) sample target blocks with sufficiently large scale (semantic), and to (b) use a sufficiently informative (spatially distributed) context block. Empirically, when combined with Vision Transformers, we find I-JEPA to be highly scalable. For instance, we train a ViT-Huge/14 on ImageNet using 16 A100 GPUs in under 72 hours to achieve strong downstream performance across a wide range of tasks, from linear classification to object counting and depth prediction.
DiGress: Discrete Denoising diffusion for graph generation
This work introduces DiGress, a discrete denoising diffusion model for generating graphs with categorical node and edge attributes. Our model utilizes a discrete diffusion process that progressively edits graphs with noise, through the process of adding or removing edges and changing the categories. A graph transformer network is trained to revert this process, simplifying the problem of distribution learning over graphs into a sequence of node and edge classification tasks. We further improve sample quality by introducing a Markovian noise model that preserves the marginal distribution of node and edge types during diffusion, and by incorporating auxiliary graph-theoretic features. A procedure for conditioning the generation on graph-level features is also proposed. DiGress achieves state-of-the-art performance on molecular and non-molecular datasets, with up to 3x validity improvement on a planar graph dataset. It is also the first model to scale to the large GuacaMol dataset containing 1.3M drug-like molecules without the use of molecule-specific representations.
Mo2Cap2: Real-time Mobile 3D Motion Capture with a Cap-mounted Fisheye Camera
We propose the first real-time approach for the egocentric estimation of 3D human body pose in a wide range of unconstrained everyday activities. This setting has a unique set of challenges, such as mobility of the hardware setup, and robustness to long capture sessions with fast recovery from tracking failures. We tackle these challenges based on a novel lightweight setup that converts a standard baseball cap to a device for high-quality pose estimation based on a single cap-mounted fisheye camera. From the captured egocentric live stream, our CNN based 3D pose estimation approach runs at 60Hz on a consumer-level GPU. In addition to the novel hardware setup, our other main contributions are: 1) a large ground truth training corpus of top-down fisheye images and 2) a novel disentangled 3D pose estimation approach that takes the unique properties of the egocentric viewpoint into account. As shown by our evaluation, we achieve lower 3D joint error as well as better 2D overlay than the existing baselines.
Motif: Intrinsic Motivation from Artificial Intelligence Feedback
Exploring rich environments and evaluating one's actions without prior knowledge is immensely challenging. In this paper, we propose Motif, a general method to interface such prior knowledge from a Large Language Model (LLM) with an agent. Motif is based on the idea of grounding LLMs for decision-making without requiring them to interact with the environment: it elicits preferences from an LLM over pairs of captions to construct an intrinsic reward, which is then used to train agents with reinforcement learning. We evaluate Motif's performance and behavior on the challenging, open-ended and procedurally-generated NetHack game. Surprisingly, by only learning to maximize its intrinsic reward, Motif achieves a higher game score than an algorithm directly trained to maximize the score itself. When combining Motif's intrinsic reward with the environment reward, our method significantly outperforms existing approaches and makes progress on tasks where no advancements have ever been made without demonstrations. Finally, we show that Motif mostly generates intuitive human-aligned behaviors which can be steered easily through prompt modifications, while scaling well with the LLM size and the amount of information given in the prompt.
PUG: Photorealistic and Semantically Controllable Synthetic Data for Representation Learning
Synthetic image datasets offer unmatched advantages for designing and evaluating deep neural networks: they make it possible to (i) render as many data samples as needed, (ii) precisely control each scene and yield granular ground truth labels (and captions), (iii) precisely control distribution shifts between training and testing to isolate variables of interest for sound experimentation. Despite such promise, the use of synthetic image data is still limited -- and often played down -- mainly due to their lack of realism. Most works therefore rely on datasets of real images, which have often been scraped from public images on the internet, and may have issues with regards to privacy, bias, and copyright, while offering little control over how objects precisely appear. In this work, we present a path to democratize the use of photorealistic synthetic data: we develop a new generation of interactive environments for representation learning research, that offer both controllability and realism. We use the Unreal Engine, a powerful game engine well known in the entertainment industry, to produce PUG (Photorealistic Unreal Graphics) environments and datasets for representation learning. In this paper, we demonstrate the potential of PUG to enable more rigorous evaluations of vision models.
Retention Is All You Need
Skilled employees are the most important pillars of an organization. Despite this, most organizations face high attrition and turnover rates. While several machine learning models have been developed to analyze attrition and its causal factors, the interpretations of those models remain opaque. In this paper, we propose the HR-DSS approach, which stands for Human Resource (HR) Decision Support System, and uses explainable AI for employee attrition problems. The system is designed to assist HR departments in interpreting the predictions provided by machine learning models. In our experiments, we employ eight machine learning models to provide predictions. We further process the results achieved by the best-performing model by the SHAP explainability process and use the SHAP values to generate natural language explanations which can be valuable for HR. Furthermore, using "What-if-analysis", we aim to observe plausible causes for attrition of an individual employee. The results show that by adjusting the specific dominant features of each individual, employee attrition can turn into employee retention through informative business decisions.
Data Poisoning Attacks Against Multimodal Encoders
Recently, the newly emerged multimodal models, which leverage both visual and linguistic modalities to train powerful encoders, have gained increasing attention. However, learning from a large-scale unlabeled dataset also exposes the model to the risk of potential poisoning attacks, whereby the adversary aims to perturb the model's training data to trigger malicious behaviors in it. In contrast to previous work, only poisoning visual modality, in this work, we take the first step to studying poisoning attacks against multimodal models in both visual and linguistic modalities. Specially, we focus on answering two questions: (1) Is the linguistic modality also vulnerable to poisoning attacks? and (2) Which modality is most vulnerable? To answer the two questions, we propose three types of poisoning attacks against multimodal models. Extensive evaluations on different datasets and model architectures show that all three attacks can achieve significant attack performance while maintaining model utility in both visual and linguistic modalities. Furthermore, we observe that the poisoning effect differs between different modalities. To mitigate the attacks, we propose both pre-training and post-training defenses. We empirically show that both defenses can significantly reduce the attack performance while preserving the model's utility.
Masked Siamese Networks for Label-Efficient Learning
We propose Masked Siamese Networks (MSN), a self-supervised learning framework for learning image representations. Our approach matches the representation of an image view containing randomly masked patches to the representation of the original unmasked image. This self-supervised pre-training strategy is particularly scalable when applied to Vision Transformers since only the unmasked patches are processed by the network. As a result, MSNs improve the scalability of joint-embedding architectures, while producing representations of a high semantic level that perform competitively on low-shot image classification. For instance, on ImageNet-1K, with only 5,000 annotated images, our base MSN model achieves 72.4% top-1 accuracy, and with 1% of ImageNet-1K labels, we achieve 75.7% top-1 accuracy, setting a new state-of-the-art for self-supervised learning on this benchmark. Our code is publicly available.
Online Adversarial Attacks
Adversarial attacks expose important vulnerabilities of deep learning models, yet little attention has been paid to settings where data arrives as a stream. In this paper, we formalize the online adversarial attack problem, emphasizing two key elements found in real-world use-cases: attackers must operate under partial knowledge of the target model, and the decisions made by the attacker are irrevocable since they operate on a transient data stream. We first rigorously analyze a deterministic variant of the online threat model by drawing parallels to the well-studied k-secretary problem in theoretical computer science and propose Virtual+, a simple yet practical online algorithm. Our main theoretical result shows Virtual+ yields provably the best competitive ratio over all single-threshold algorithms for k<5 -- extending the previous analysis of the k-secretary problem. We also introduce the stochastic k-secretary -- effectively reducing online blackbox transfer attacks to a k-secretary problem under noise -- and prove theoretical bounds on the performance of Virtual+ adapted to this setting. Finally, we complement our theoretical results by conducting experiments on MNIST, CIFAR-10, and Imagenet classifiers, revealing the necessity of online algorithms in achieving near-optimal performance and also the rich interplay between attack strategies and online attack selection, enabling simple strategies like FGSM to outperform stronger adversaries.
Pre-training Is (Almost) All You Need: An Application to Commonsense Reasoning
Fine-tuning of pre-trained transformer models has become the standard approach for solving common NLP tasks. Most of the existing approaches rely on a randomly initialized classifier on top of such networks. We argue that this fine-tuning procedure is sub-optimal as the pre-trained model has no prior on the specific classifier labels, while it might have already learned an intrinsic textual representation of the task. In this paper, we introduce a new scoring method that casts a plausibility ranking task in a full-text format and leverages the masked language modeling head tuned during the pre-training phase. We study commonsense reasoning tasks where the model must rank a set of hypotheses given a premise, focusing on the COPA, Swag, HellaSwag and CommonsenseQA datasets. By exploiting our scoring method without fine-tuning, we are able to produce strong baselines (e.g. 80% test accuracy on COPA) that are comparable to supervised approaches. Moreover, when fine-tuning directly on the proposed scoring function, we show that our method provides a much more stable training phase across random restarts (e.g times 10 standard deviation reduction on COPA test accuracy) and requires less annotated data than the standard classifier approach to reach equivalent performances.
Unsupervised Multilingual Alignment using Wasserstein Barycenter
We study unsupervised multilingual alignment, the problem of finding word-to-word translations between multiple languages without using any parallel data. One popular strategy is to reduce multilingual alignment to the much simplified bilingual setting, by picking one of the input languages as the pivot language that we transit through. However, it is well-known that transiting through a poorly chosen pivot language (such as English) may severely degrade the translation quality, since the assumed transitive relations among all pairs of languages may not be enforced in the training process. Instead of going through a rather arbitrarily chosen pivot language, we propose to use the Wasserstein barycenter as a more informative "mean" language: it encapsulates information from all languages and minimizes all pairwise transportation costs. We evaluate our method on standard benchmarks and demonstrate state-of-the-art performances.
XNect: Real-time Multi-Person 3D Motion Capture with a Single RGB Camera
We present a real-time approach for multi-person 3D motion capture at over 30 fps using a single RGB camera. It operates successfully in generic scenes which may contain occlusions by objects and by other people. Our method operates in subsequent stages. The first stage is a convolutional neural network (CNN) that estimates 2D and 3D pose features along with identity assignments for all visible joints of all individuals.We contribute a new architecture for this CNN, called SelecSLS Net, that uses novel selective long and short range skip connections to improve the information flow allowing for a drastically faster network without compromising accuracy. In the second stage, a fully connected neural network turns the possibly partial (on account of occlusion) 2Dpose and 3Dpose features for each subject into a complete 3Dpose estimate per individual. The third stage applies space-time skeletal model fitting to the predicted 2D and 3D pose per subject to further reconcile the 2D and 3D pose, and enforce temporal coherence. Our method returns the full skeletal pose in joint angles for each subject. This is a further key distinction from previous work that do not produce joint angle results of a coherent skeleton in real time for multi-person scenes. The proposed system runs on consumer hardware at a previously unseen speed of more than 30 fps given 512x320 images as input while achieving state-of-the-art accuracy, which we will demonstrate on a range of challenging real-world scenes.
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
Recent research has demonstrated that feature attribution methods for deep networks can themselves be incorporated into training; these attribution priors optimize for a model whose attributions have certain desirable properties -- most frequently, that particular features are important or unimportant. These attribution priors are often based on attribution methods that are not guaranteed to satisfy desirable interpretability axioms, such as completeness and implementation invariance. Here, we introduce attribution priors to optimize for higher-level properties of explanations, such as smoothness and sparsity, enabled by a fast new attribution method formulation called expected gradients that satisfies many important interpretability axioms. This improves model performance on many real-world tasks where previous attribution priors fail. Our experiments show that the gains from combining higher-level attribution priors with expected gradients attributions are consistent across image, gene expression, and health care data sets. We believe this work motivates and provides the necessary tools to support the widespread adoption of axiomatic attribution priors in many areas of applied machine learning. The implementations and our results have been made freely available to academic communities.
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular string representation
The discovery of novel materials and functional molecules can help to solve some of society's most urgent challenges, ranging from efficient energy harvesting and storage to uncovering novel pharmaceutical drug candidates. Traditionally matter engineering -- generally denoted as inverse design -- was based massively on human intuition and high-throughput virtual screening. The last few years have seen the emergence of significant interest in computer-inspired designs based on evolutionary or deep learning methods. The major challenge here is that the standard strings molecular representation SMILES shows substantial weaknesses in that task because large fractions of strings do not correspond to valid molecules. Here, we solve this problem at a fundamental level and introduce SELFIES (SELF-referencIng Embedded Strings), a string-based representation of molecules which is 100\% robust. Every SELFIES string corresponds to a valid molecule, and SELFIES can represent every molecule. SELFIES can be directly applied in arbitrary machine learning models without the adaptation of the models; each of the generated molecule candidates is valid. In our experiments, the model's internal memory stores two orders of magnitude more diverse molecules than a similar test with SMILES. Furthermore, as all molecules are valid, it allows for explanation and interpretation of the internal working of the generative models.