- Hierarchical Pre-training for Sequence Labelling in Spoken Dialog Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a key component of spoken dialog systems. In this work, we propose a new approach to learn generic representations adapted to spoken dialog, which we evaluate on a new benchmark we call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE). SILICONE is model-agnostic and contains 10 different datasets of various sizes. We obtain our representations with a hierarchical encoder based on transformer architectures, for which we extend two well-known pre-training objectives. Pre-training is performed on OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We demonstrate how hierarchical encoders achieve competitive results with consistently fewer parameters compared to state-of-the-art models and we show their importance for both pre-training and fine-tuning. 5 authors · Sep 23, 2020
- End-to-end Conversation Modeling Track in DSTC6 End-to-end training of neural networks is a promising approach to automatic construction of dialog systems using a human-to-human dialog corpus. Recently, Vinyals et al. tested neural conversation models using OpenSubtitles. Lowe et al. released the Ubuntu Dialogue Corpus for researching unstructured multi-turn dialogue systems. Furthermore, the approach has been extended to accomplish task oriented dialogs to provide information properly with natural conversation. For example, Ghazvininejad et al. proposed a knowledge grounded neural conversation model [3], where the research is aiming at combining conversational dialogs with task-oriented knowledge using unstructured data such as Twitter data for conversation and Foursquare data for external knowledge.However, the task is still limited to a restaurant information service, and has not yet been tested with a wide variety of dialog tasks. In addition, it is still unclear how to create intelligent dialog systems that can respond like a human agent. In consideration of these problems, we proposed a challenge track to the 6th dialog system technology challenges (DSTC6) using human-to-human dialog data to mimic human dialog behaviors. The focus of the challenge track is to train end-to-end conversation models from human-to-human conversation and accomplish end-to-end dialog tasks in various situations assuming a customer service, in which a system plays a role of human agent and generates natural and informative sentences in response to user's questions or comments given dialog context. 2 authors · Jun 22, 2017
- Modeling Context With Linear Attention for Scalable Document-Level Translation Document-level machine translation leverages inter-sentence dependencies to produce more coherent and consistent translations. However, these models, predominantly based on transformers, are difficult to scale to long documents as their attention layers have quadratic complexity in the sequence length. Recent efforts on efficient attention improve scalability, but their effect on document translation remains unexplored. In this work, we investigate the efficacy of a recent linear attention model by Peng et al. (2021) on document translation and augment it with a sentential gate to promote a recency inductive bias. We evaluate the model on IWSLT 2015 and OpenSubtitles 2018 against the transformer, demonstrating substantially increased decoding speed on long sequences with similar or better BLEU scores. We show that sentential gating further improves translation quality on IWSLT. 4 authors · Oct 15, 2022