- There is No Big Brother or Small Brother: Knowledge Infusion in Language Models for Link Prediction and Question Answering The integration of knowledge graphs with deep learning is thriving in improving the performance of various natural language processing (NLP) tasks. In this paper, we focus on knowledge-infused link prediction and question answering using language models, T5, and BLOOM across three domains: Aviation, Movie, and Web. In this context, we infuse knowledge in large and small language models and study their performance, and find the performance to be similar. For the link prediction task on the Aviation Knowledge Graph, we obtain a 0.2 hits@1 score using T5-small, T5-base, T5-large, and BLOOM. Using template-based scripts, we create a set of 1 million synthetic factoid QA pairs in the aviation domain from National Transportation Safety Board (NTSB) reports. On our curated QA pairs, the three models of T5 achieve a 0.7 hits@1 score. We validate out findings with the paired student t-test and Cohen's kappa scores. For link prediction on Aviation Knowledge Graph using T5-small and T5-large, we obtain a Cohen's kappa score of 0.76, showing substantial agreement between the models. Thus, we infer that small language models perform similar to large language models with the infusion of knowledge. 4 authors · Jan 10, 2023
- A Countrywide Traffic Accident Dataset Reducing traffic accidents is an important public safety challenge. However, the majority of studies on traffic accident analysis and prediction have used small-scale datasets with limited coverage, which limits their impact and applicability; and existing large-scale datasets are either private, old, or do not include important contextual information such as environmental stimuli (weather, points-of-interest, etc.). In order to help the research community address these shortcomings we have - through a comprehensive process of data collection, integration, and augmentation - created a large-scale publicly available database of accident information named US-Accidents. US-Accidents currently contains data about 2.25 million instances of traffic accidents that took place within the contiguous United States, and over the last three years. Each accident record consists of a variety of intrinsic and contextual attributes such as location, time, natural language description, weather, period-of-day, and points-of-interest. We present this dataset in this paper, along with a wide range of insights gleaned from this dataset with respect to the spatiotemporal characteristics of accidents. The dataset is publicly available at https://smoosavi.org/datasets/us_accidents. 4 authors · Jun 12, 2019
1 LabSafety Bench: Benchmarking LLMs on Safety Issues in Scientific Labs Laboratory accidents pose significant risks to human life and property, underscoring the importance of robust safety protocols. Despite advancements in safety training, laboratory personnel may still unknowingly engage in unsafe practices. With the increasing reliance on large language models (LLMs) for guidance in various fields, including laboratory settings, there is a growing concern about their reliability in critical safety-related decision-making. Unlike trained human researchers, LLMs lack formal lab safety education, raising questions about their ability to provide safe and accurate guidance. Existing research on LLM trustworthiness primarily focuses on issues such as ethical compliance, truthfulness, and fairness but fails to fully cover safety-critical real-world applications, like lab safety. To address this gap, we propose the Laboratory Safety Benchmark (LabSafety Bench), a comprehensive evaluation framework based on a new taxonomy aligned with Occupational Safety and Health Administration (OSHA) protocols. This benchmark includes 765 multiple-choice questions verified by human experts, assessing LLMs and vision language models (VLMs) performance in lab safety contexts. Our evaluations demonstrate that while GPT-4o outperforms human participants, it is still prone to critical errors, highlighting the risks of relying on LLMs in safety-critical environments. Our findings emphasize the need for specialized benchmarks to accurately assess the trustworthiness of LLMs in real-world safety applications. 9 authors · Oct 18, 2024 1
- Exploring Factors Affecting Pedestrian Crash Severity Using TabNet: A Deep Learning Approach This study presents the first investigation of pedestrian crash severity using the TabNet model, a novel tabular deep learning method exceptionally suited for analyzing the tabular data inherent in transportation safety research. Through the application of TabNet to a comprehensive dataset from Utah covering the years 2010 to 2022, we uncover intricate factors contributing to pedestrian crash severity. The TabNet model, capitalizing on its compatibility with structured data, demonstrates remarkable predictive accuracy, eclipsing that of traditional models. It identifies critical variables, such as pedestrian age, involvement in left or right turns, lighting conditions, and alcohol consumption, which significantly influence crash outcomes. The utilization of SHapley Additive exPlanations (SHAP) enhances our ability to interpret the TabNet model's predictions, ensuring transparency and understandability in our deep learning approach. The insights derived from our analysis provide a valuable compass for transportation safety engineers and policymakers, enabling the identification of pivotal factors that affect pedestrian crash severity. Such knowledge is instrumental in formulating precise, data-driven interventions aimed at bolstering pedestrian safety across diverse urban and rural settings. 2 authors · Nov 29, 2023