Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGraCo: Granularity-Controllable Interactive Segmentation
Interactive Segmentation (IS) segments specific objects or parts in the image according to user input. Current IS pipelines fall into two categories: single-granularity output and multi-granularity output. The latter aims to alleviate the spatial ambiguity present in the former. However, the multi-granularity output pipeline suffers from limited interaction flexibility and produces redundant results. In this work, we introduce Granularity-Controllable Interactive Segmentation (GraCo), a novel approach that allows precise control of prediction granularity by introducing additional parameters to input. This enhances the customization of the interactive system and eliminates redundancy while resolving ambiguity. Nevertheless, the exorbitant cost of annotating multi-granularity masks and the lack of available datasets with granularity annotations make it difficult for models to acquire the necessary guidance to control output granularity. To address this problem, we design an any-granularity mask generator that exploits the semantic property of the pre-trained IS model to automatically generate abundant mask-granularity pairs without requiring additional manual annotation. Based on these pairs, we propose a granularity-controllable learning strategy that efficiently imparts the granularity controllability to the IS model. Extensive experiments on intricate scenarios at object and part levels demonstrate that our GraCo has significant advantages over previous methods. This highlights the potential of GraCo to be a flexible annotation tool, capable of adapting to diverse segmentation scenarios. The project page: https://zhao-yian.github.io/GraCo.
Hierarchical Memory Learning for Fine-Grained Scene Graph Generation
As far as Scene Graph Generation (SGG), coarse and fine predicates mix in the dataset due to the crowd-sourced labeling, and the long-tail problem is also pronounced. Given this tricky situation, many existing SGG methods treat the predicates equally and learn the model under the supervision of mixed-granularity predicates in one stage, leading to relatively coarse predictions. In order to alleviate the negative impact of the suboptimum mixed-granularity annotation and long-tail effect problems, this paper proposes a novel Hierarchical Memory Learning (HML) framework to learn the model from simple to complex, which is similar to the human beings' hierarchical memory learning process. After the autonomous partition of coarse and fine predicates, the model is first trained on the coarse predicates and then learns the fine predicates. In order to realize this hierarchical learning pattern, this paper, for the first time, formulates the HML framework using the new Concept Reconstruction (CR) and Model Reconstruction (MR) constraints. It is worth noticing that the HML framework can be taken as one general optimization strategy to improve various SGG models, and significant improvement can be achieved on the SGG benchmark (i.e., Visual Genome).
Mugs: A Multi-Granular Self-Supervised Learning Framework
In self-supervised learning, multi-granular features are heavily desired though rarely investigated, as different downstream tasks (e.g., general and fine-grained classification) often require different or multi-granular features, e.g.~fine- or coarse-grained one or their mixture. In this work, for the first time, we propose an effective MUlti-Granular Self-supervised learning (Mugs) framework to explicitly learn multi-granular visual features. Mugs has three complementary granular supervisions: 1) an instance discrimination supervision (IDS), 2) a novel local-group discrimination supervision (LGDS), and 3) a group discrimination supervision (GDS). IDS distinguishes different instances to learn instance-level fine-grained features. LGDS aggregates features of an image and its neighbors into a local-group feature, and pulls local-group features from different crops of the same image together and push them away for others. It provides complementary instance supervision to IDS via an extra alignment on local neighbors, and scatters different local-groups separately to increase discriminability. Accordingly, it helps learn high-level fine-grained features at a local-group level. Finally, to prevent similar local-groups from being scattered randomly or far away, GDS brings similar samples close and thus pulls similar local-groups together, capturing coarse-grained features at a (semantic) group level. Consequently, Mugs can capture three granular features that often enjoy higher generality on diverse downstream tasks over single-granular features, e.g.~instance-level fine-grained features in contrastive learning. By only pretraining on ImageNet-1K, Mugs sets new SoTA linear probing accuracy 82.1% on ImageNet-1K and improves previous SoTA by 1.1%. It also surpasses SoTAs on other tasks, e.g. transfer learning, detection and segmentation.
Boundary Graph Neural Networks for 3D Simulations
The abundance of data has given machine learning considerable momentum in natural sciences and engineering, though modeling of physical processes is often difficult. A particularly tough problem is the efficient representation of geometric boundaries. Triangularized geometric boundaries are well understood and ubiquitous in engineering applications. However, it is notoriously difficult to integrate them into machine learning approaches due to their heterogeneity with respect to size and orientation. In this work, we introduce an effective theory to model particle-boundary interactions, which leads to our new Boundary Graph Neural Networks (BGNNs) that dynamically modify graph structures to obey boundary conditions. The new BGNNs are tested on complex 3D granular flow processes of hoppers, rotating drums and mixers, which are all standard components of modern industrial machinery but still have complicated geometry. BGNNs are evaluated in terms of computational efficiency as well as prediction accuracy of particle flows and mixing entropies. BGNNs are able to accurately reproduce 3D granular flows within simulation uncertainties over hundreds of thousands of simulation timesteps. Most notably, in our experiments, particles stay within the geometric objects without using handcrafted conditions or restrictions.
Multi-Objective GFlowNets
In many applications of machine learning, like drug discovery and material design, the goal is to generate candidates that simultaneously maximize a set of objectives. As these objectives are often conflicting, there is no single candidate that simultaneously maximizes all objectives, but rather a set of Pareto-optimal candidates where one objective cannot be improved without worsening another. Moreover, in practice, these objectives are often under-specified, making the diversity of candidates a key consideration. The existing multi-objective optimization methods focus predominantly on covering the Pareto front, failing to capture diversity in the space of candidates. Motivated by the success of GFlowNets for generation of diverse candidates in a single objective setting, in this paper we consider Multi-Objective GFlowNets (MOGFNs). MOGFNs consist of a novel Conditional GFlowNet which models a family of single-objective sub-problems derived by decomposing the multi-objective optimization problem. Our work is the first to empirically demonstrate conditional GFlowNets. Through a series of experiments on synthetic and benchmark tasks, we empirically demonstrate that MOGFNs outperform existing methods in terms of Hypervolume, R2-distance and candidate diversity. We also demonstrate the effectiveness of MOGFNs over existing methods in active learning settings. Finally, we supplement our empirical results with a careful analysis of each component of MOGFNs.
AGG: Amortized Generative 3D Gaussians for Single Image to 3D
Given the growing need for automatic 3D content creation pipelines, various 3D representations have been studied to generate 3D objects from a single image. Due to its superior rendering efficiency, 3D Gaussian splatting-based models have recently excelled in both 3D reconstruction and generation. 3D Gaussian splatting approaches for image to 3D generation are often optimization-based, requiring many computationally expensive score-distillation steps. To overcome these challenges, we introduce an Amortized Generative 3D Gaussian framework (AGG) that instantly produces 3D Gaussians from a single image, eliminating the need for per-instance optimization. Utilizing an intermediate hybrid representation, AGG decomposes the generation of 3D Gaussian locations and other appearance attributes for joint optimization. Moreover, we propose a cascaded pipeline that first generates a coarse representation of the 3D data and later upsamples it with a 3D Gaussian super-resolution module. Our method is evaluated against existing optimization-based 3D Gaussian frameworks and sampling-based pipelines utilizing other 3D representations, where AGG showcases competitive generation abilities both qualitatively and quantitatively while being several orders of magnitude faster. Project page: https://ir1d.github.io/AGG/
GTP-4o: Modality-prompted Heterogeneous Graph Learning for Omni-modal Biomedical Representation
Recent advances in learning multi-modal representation have witnessed the success in biomedical domains. While established techniques enable handling multi-modal information, the challenges are posed when extended to various clinical modalities and practical modalitymissing setting due to the inherent modality gaps. To tackle these, we propose an innovative Modality-prompted Heterogeneous Graph for Omnimodal Learning (GTP-4o), which embeds the numerous disparate clinical modalities into a unified representation, completes the deficient embedding of missing modality and reformulates the cross-modal learning with a graph-based aggregation. Specially, we establish a heterogeneous graph embedding to explicitly capture the diverse semantic properties on both the modality-specific features (nodes) and the cross-modal relations (edges). Then, we design a modality-prompted completion that enables completing the inadequate graph representation of missing modality through a graph prompting mechanism, which generates hallucination graphic topologies to steer the missing embedding towards the intact representation. Through the completed graph, we meticulously develop a knowledge-guided hierarchical cross-modal aggregation consisting of a global meta-path neighbouring to uncover the potential heterogeneous neighbors along the pathways driven by domain knowledge, and a local multi-relation aggregation module for the comprehensive cross-modal interaction across various heterogeneous relations. We assess the efficacy of our methodology on rigorous benchmarking experiments against prior state-of-the-arts. In a nutshell, GTP-4o presents an initial foray into the intriguing realm of embedding, relating and perceiving the heterogeneous patterns from various clinical modalities holistically via a graph theory. Project page: https://gtp-4-o.github.io/.
Mixture of Weak & Strong Experts on Graphs
Realistic graphs contain both (1) rich self-features of nodes and (2) informative structures of neighborhoods, jointly handled by a Graph Neural Network (GNN) in the typical setup. We propose to decouple the two modalities by Mixture of weak and strong experts (Mowst), where the weak expert is a light-weight Multi-layer Perceptron (MLP), and the strong expert is an off-the-shelf GNN. To adapt the experts' collaboration to different target nodes, we propose a "confidence" mechanism based on the dispersion of the weak expert's prediction logits. The strong expert is conditionally activated in the low-confidence region when either the node's classification relies on neighborhood information, or the weak expert has low model quality. We reveal interesting training dynamics by analyzing the influence of the confidence function on loss: our training algorithm encourages the specialization of each expert by effectively generating soft splitting of the graph. In addition, our "confidence" design imposes a desirable bias toward the strong expert to benefit from GNN's better generalization capability. Mowst is easy to optimize and achieves strong expressive power, with a computation cost comparable to a single GNN. Empirically, Mowst on 4 backbone GNN architectures show significant accuracy improvement on 6 standard node classification benchmarks, including both homophilous and heterophilous graphs (https://github.com/facebookresearch/mowst-gnn).
Deep Combinatorial Aggregation
Neural networks are known to produce poor uncertainty estimations, and a variety of approaches have been proposed to remedy this issue. This includes deep ensemble, a simple and effective method that achieves state-of-the-art results for uncertainty-aware learning tasks. In this work, we explore a combinatorial generalization of deep ensemble called deep combinatorial aggregation (DCA). DCA creates multiple instances of network components and aggregates their combinations to produce diversified model proposals and predictions. DCA components can be defined at different levels of granularity. And we discovered that coarse-grain DCAs can outperform deep ensemble for uncertainty-aware learning both in terms of predictive performance and uncertainty estimation. For fine-grain DCAs, we discover that an average parameterization approach named deep combinatorial weight averaging (DCWA) can improve the baseline training. It is on par with stochastic weight averaging (SWA) but does not require any custom training schedule or adaptation of BatchNorm layers. Furthermore, we propose a consistency enforcing loss that helps the training of DCWA and modelwise DCA. We experiment on in-domain, distributional shift, and out-of-distribution image classification tasks, and empirically confirm the effectiveness of DCWA and DCA approaches.
Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning
Leveraging generative Artificial Intelligence (AI), we have transformed a dataset comprising 1,000 scientific papers into an ontological knowledge graph. Through an in-depth structural analysis, we have calculated node degrees, identified communities and connectivities, and evaluated clustering coefficients and betweenness centrality of pivotal nodes, uncovering fascinating knowledge architectures. The graph has an inherently scale-free nature, is highly connected, and can be used for graph reasoning by taking advantage of transitive and isomorphic properties that reveal unprecedented interdisciplinary relationships that can be used to answer queries, identify gaps in knowledge, propose never-before-seen material designs, and predict material behaviors. We compute deep node embeddings for combinatorial node similarity ranking for use in a path sampling strategy links dissimilar concepts that have previously not been related. One comparison revealed structural parallels between biological materials and Beethoven's 9th Symphony, highlighting shared patterns of complexity through isomorphic mapping. In another example, the algorithm proposed a hierarchical mycelium-based composite based on integrating path sampling with principles extracted from Kandinsky's 'Composition VII' painting. The resulting material integrates an innovative set of concepts that include a balance of chaos/order, adjustable porosity, mechanical strength, and complex patterned chemical functionalization. We uncover other isomorphisms across science, technology and art, revealing a nuanced ontology of immanence that reveal a context-dependent heterarchical interplay of constituents. Graph-based generative AI achieves a far higher degree of novelty, explorative capacity, and technical detail, than conventional approaches and establishes a widely useful framework for innovation by revealing hidden connections.
DeeperGCN: All You Need to Train Deeper GCNs
Graph Convolutional Networks (GCNs) have been drawing significant attention with the power of representation learning on graphs. Unlike Convolutional Neural Networks (CNNs), which are able to take advantage of stacking very deep layers, GCNs suffer from vanishing gradient, over-smoothing and over-fitting issues when going deeper. These challenges limit the representation power of GCNs on large-scale graphs. This paper proposes DeeperGCN that is capable of successfully and reliably training very deep GCNs. We define differentiable generalized aggregation functions to unify different message aggregation operations (e.g. mean, max). We also propose a novel normalization layer namely MsgNorm and a pre-activation version of residual connections for GCNs. Extensive experiments on Open Graph Benchmark (OGB) show DeeperGCN significantly boosts performance over the state-of-the-art on the large scale graph learning tasks of node property prediction and graph property prediction. Please visit https://www.deepgcns.org for more information.
GSLB: The Graph Structure Learning Benchmark
Graph Structure Learning (GSL) has recently garnered considerable attention due to its ability to optimize both the parameters of Graph Neural Networks (GNNs) and the computation graph structure simultaneously. Despite the proliferation of GSL methods developed in recent years, there is no standard experimental setting or fair comparison for performance evaluation, which creates a great obstacle to understanding the progress in this field. To fill this gap, we systematically analyze the performance of GSL in different scenarios and develop a comprehensive Graph Structure Learning Benchmark (GSLB) curated from 20 diverse graph datasets and 16 distinct GSL algorithms. Specifically, GSLB systematically investigates the characteristics of GSL in terms of three dimensions: effectiveness, robustness, and complexity. We comprehensively evaluate state-of-the-art GSL algorithms in node- and graph-level tasks, and analyze their performance in robust learning and model complexity. Further, to facilitate reproducible research, we have developed an easy-to-use library for training, evaluating, and visualizing different GSL methods. Empirical results of our extensive experiments demonstrate the ability of GSL and reveal its potential benefits on various downstream tasks, offering insights and opportunities for future research. The code of GSLB is available at: https://github.com/GSL-Benchmark/GSLB.
Temporal Graph Benchmark for Machine Learning on Temporal Graphs
We present the Temporal Graph Benchmark (TGB), a collection of challenging and diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine learning models on temporal graphs. TGB datasets are of large scale, spanning years in duration, incorporate both node and edge-level prediction tasks and cover a diverse set of domains including social, trade, transaction, and transportation networks. For both tasks, we design evaluation protocols based on realistic use-cases. We extensively benchmark each dataset and find that the performance of common models can vary drastically across datasets. In addition, on dynamic node property prediction tasks, we show that simple methods often achieve superior performance compared to existing temporal graph models. We believe that these findings open up opportunities for future research on temporal graphs. Finally, TGB provides an automated machine learning pipeline for reproducible and accessible temporal graph research, including data loading, experiment setup and performance evaluation. TGB will be maintained and updated on a regular basis and welcomes community feedback. TGB datasets, data loaders, example codes, evaluation setup, and leaderboards are publicly available at https://tgb.complexdatalab.com/.
Learnable Commutative Monoids for Graph Neural Networks
Graph neural networks (GNNs) have been shown to be highly sensitive to the choice of aggregation function. While summing over a node's neighbours can approximate any permutation-invariant function over discrete inputs, Cohen-Karlik et al. [2020] proved there are set-aggregation problems for which summing cannot generalise to unbounded inputs, proposing recurrent neural networks regularised towards permutation-invariance as a more expressive aggregator. We show that these results carry over to the graph domain: GNNs equipped with recurrent aggregators are competitive with state-of-the-art permutation-invariant aggregators, on both synthetic benchmarks and real-world problems. However, despite the benefits of recurrent aggregators, their O(V) depth makes them both difficult to parallelise and harder to train on large graphs. Inspired by the observation that a well-behaved aggregator for a GNN is a commutative monoid over its latent space, we propose a framework for constructing learnable, commutative, associative binary operators. And with this, we construct an aggregator of O(log V) depth, yielding exponential improvements for both parallelism and dependency length while achieving performance competitive with recurrent aggregators. Based on our empirical observations, our proposed learnable commutative monoid (LCM) aggregator represents a favourable tradeoff between efficient and expressive aggregators.
Knowledge Graph Embedding with 3D Compound Geometric Transformations
The cascade of 2D geometric transformations were exploited to model relations between entities in a knowledge graph (KG), leading to an effective KG embedding (KGE) model, CompoundE. Furthermore, the rotation in the 3D space was proposed as a new KGE model, Rotate3D, by leveraging its non-commutative property. Inspired by CompoundE and Rotate3D, we leverage 3D compound geometric transformations, including translation, rotation, scaling, reflection, and shear and propose a family of KGE models, named CompoundE3D, in this work. CompoundE3D allows multiple design variants to match rich underlying characteristics of a KG. Since each variant has its own advantages on a subset of relations, an ensemble of multiple variants can yield superior performance. The effectiveness and flexibility of CompoundE3D are experimentally verified on four popular link prediction datasets.
Rethinking Knowledge Graph Propagation for Zero-Shot Learning
Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.
Graph Mixup with Soft Alignments
We study graph data augmentation by mixup, which has been used successfully on images. A key operation of mixup is to compute a convex combination of a pair of inputs. This operation is straightforward for grid-like data, such as images, but challenging for graph data. The key difficulty lies in the fact that different graphs typically have different numbers of nodes, and thus there lacks a node-level correspondence between graphs. In this work, we propose S-Mixup, a simple yet effective mixup method for graph classification by soft alignments. Specifically, given a pair of graphs, we explicitly obtain node-level correspondence via computing a soft assignment matrix to match the nodes between two graphs. Based on the soft assignments, we transform the adjacency and node feature matrices of one graph, so that the transformed graph is aligned with the other graph. In this way, any pair of graphs can be mixed directly to generate an augmented graph. We conduct systematic experiments to show that S-Mixup can improve the performance and generalization of graph neural networks (GNNs) on various graph classification tasks. In addition, we show that S-Mixup can increase the robustness of GNNs against noisy labels.
HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers
Many graph representation learning (GRL) problems are dynamic, with millions of edges added or removed per second. A fundamental workload in this setting is dynamic link prediction: using a history of graph updates to predict whether a given pair of vertices will become connected. Recent schemes for link prediction in such dynamic settings employ Transformers, modeling individual graph updates as single tokens. In this work, we propose HOT: a model that enhances this line of works by harnessing higher-order (HO) graph structures; specifically, k-hop neighbors and more general subgraphs containing a given pair of vertices. Harnessing such HO structures by encoding them into the attention matrix of the underlying Transformer results in higher accuracy of link prediction outcomes, but at the expense of increased memory pressure. To alleviate this, we resort to a recent class of schemes that impose hierarchy on the attention matrix, significantly reducing memory footprint. The final design offers a sweetspot between high accuracy and low memory utilization. HOT outperforms other dynamic GRL schemes, for example achieving 9%, 7%, and 15% higher accuracy than - respectively - DyGFormer, TGN, and GraphMixer, for the MOOC dataset. Our design can be seamlessly extended towards other dynamic GRL workloads.
Improving Graph Generation by Restricting Graph Bandwidth
Deep graph generative modeling has proven capable of learning the distribution of complex, multi-scale structures characterizing real-world graphs. However, one of the main limitations of existing methods is their large output space, which limits generation scalability and hinders accurate modeling of the underlying distribution. To overcome these limitations, we propose a novel approach that significantly reduces the output space of existing graph generative models. Specifically, starting from the observation that many real-world graphs have low graph bandwidth, we restrict graph bandwidth during training and generation. Our strategy improves both generation scalability and quality without increasing architectural complexity or reducing expressiveness. Our approach is compatible with existing graph generative methods, and we describe its application to both autoregressive and one-shot models. We extensively validate our strategy on synthetic and real datasets, including molecular graphs. Our experiments show that, in addition to improving generation efficiency, our approach consistently improves generation quality and reconstruction accuracy. The implementation is made available.
Multi-granularity Interaction Simulation for Unsupervised Interactive Segmentation
Interactive segmentation enables users to segment as needed by providing cues of objects, which introduces human-computer interaction for many fields, such as image editing and medical image analysis. Typically, massive and expansive pixel-level annotations are spent to train deep models by object-oriented interactions with manually labeled object masks. In this work, we reveal that informative interactions can be made by simulation with semantic-consistent yet diverse region exploration in an unsupervised paradigm. Concretely, we introduce a Multi-granularity Interaction Simulation (MIS) approach to open up a promising direction for unsupervised interactive segmentation. Drawing on the high-quality dense features produced by recent self-supervised models, we propose to gradually merge patches or regions with similar features to form more extensive regions and thus, every merged region serves as a semantic-meaningful multi-granularity proposal. By randomly sampling these proposals and simulating possible interactions based on them, we provide meaningful interaction at multiple granularities to teach the model to understand interactions. Our MIS significantly outperforms non-deep learning unsupervised methods and is even comparable with some previous deep-supervised methods without any annotation.
MOFDiff: Coarse-grained Diffusion for Metal-Organic Framework Design
Metal-organic frameworks (MOFs) are of immense interest in applications such as gas storage and carbon capture due to their exceptional porosity and tunable chemistry. Their modular nature has enabled the use of template-based methods to generate hypothetical MOFs by combining molecular building blocks in accordance with known network topologies. However, the ability of these methods to identify top-performing MOFs is often hindered by the limited diversity of the resulting chemical space. In this work, we propose MOFDiff: a coarse-grained (CG) diffusion model that generates CG MOF structures through a denoising diffusion process over the coordinates and identities of the building blocks. The all-atom MOF structure is then determined through a novel assembly algorithm. Equivariant graph neural networks are used for the diffusion model to respect the permutational and roto-translational symmetries. We comprehensively evaluate our model's capability to generate valid and novel MOF structures and its effectiveness in designing outstanding MOF materials for carbon capture applications with molecular simulations.
Adaptive Hierarchical Certification for Segmentation using Randomized Smoothing
Certification for machine learning is proving that no adversarial sample can evade a model within a range under certain conditions, a necessity for safety-critical domains. Common certification methods for segmentation use a flat set of fine-grained classes, leading to high abstain rates due to model uncertainty across many classes. We propose a novel, more practical setting, which certifies pixels within a multi-level hierarchy, and adaptively relaxes the certification to a coarser level for unstable components classic methods would abstain from, effectively lowering the abstain rate whilst providing more certified semantically meaningful information. We mathematically formulate the problem setup, introduce an adaptive hierarchical certification algorithm and prove the correctness of its guarantees. Since certified accuracy does not take the loss of information into account for coarser classes, we introduce the Certified Information Gain (CIG) metric, which is proportional to the class granularity level. Our extensive experiments on the datasets Cityscapes, PASCAL-Context, ACDC and COCO-Stuff demonstrate that our adaptive algorithm achieves a higher CIG and lower abstain rate compared to the current state-of-the-art certification method. Our code can be found here: https://github.com/AlaaAnani/adaptive-certify.
PIGEON: Optimizing CUDA Code Generator for End-to-End Training and Inference of Relational Graph Neural Networks
Relational graph neural networks (RGNNs) are graph neural networks (GNNs) with dedicated structures for modeling the different types of nodes and/or edges in heterogeneous graphs. While RGNNs have been increasingly adopted in many real-world applications due to their versatility and accuracy, they pose performance and system design challenges due to their inherent computation patterns, gap between the programming interface and kernel APIs, and heavy programming efforts in optimizing kernels caused by their coupling with data layout and heterogeneity. To systematically address these challenges, we propose Pigeon, a novel two-level intermediate representation (IR) and its code generator framework, that (a) represents the key properties of the RGNN models to bridge the gap between the programming interface and kernel APIs, (b) decouples model semantics, data layout, and operators-specific optimization from each other to reduce programming efforts, (c) expresses and leverages optimization opportunities in inter-operator transforms, data layout, and operator-specific schedules. By building on one general matrix multiply (GEMM) template and a node/edge traversal template, Pigeon achieves up to 7.8x speed-up in inference and 5.6x speed-up in training compared with the state-of-the-art public systems in select models, i.e., RGCN, RGAT, HGT, when running heterogeneous graphs provided by Deep Graph Library (DGL) and Open Graph Benchmark (OGB). Pigeon also triggers fewer out-of-memory (OOM) errors. In addition, we propose linear operator fusion and compact materialization to further accelerate the system by up to 2.2x.
MHG-GNN: Combination of Molecular Hypergraph Grammar with Graph Neural Network
Property prediction plays an important role in material discovery. As an initial step to eventually develop a foundation model for material science, we introduce a new autoencoder called the MHG-GNN, which combines graph neural network (GNN) with Molecular Hypergraph Grammar (MHG). Results on a variety of property prediction tasks with diverse materials show that MHG-GNN is promising.
Harnessing Scale and Physics: A Multi-Graph Neural Operator Framework for PDEs on Arbitrary Geometries
Partial Differential Equations (PDEs) underpin many scientific phenomena, yet traditional computational approaches often struggle with complex, nonlinear systems and irregular geometries. This paper introduces the AMG method, a Multi-Graph neural operator approach designed for efficiently solving PDEs on Arbitrary geometries. AMG leverages advanced graph-based techniques and dynamic attention mechanisms within a novel GraphFormer architecture, enabling precise management of diverse spatial domains and complex data interdependencies. By constructing multi-scale graphs to handle variable feature frequencies and a physics graph to encapsulate inherent physical properties, AMG significantly outperforms previous methods, which are typically limited to uniform grids. We present a comprehensive evaluation of AMG across six benchmarks, demonstrating its consistent superiority over existing state-of-the-art models. Our findings highlight the transformative potential of tailored graph neural operators in surmounting the challenges faced by conventional PDE solvers. Our code and datasets are available on https://github.com/lizhihao2022/AMG.
A Robust Stacking Framework for Training Deep Graph Models with Multifaceted Node Features
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data. However the numerical node features utilized by GNNs are commonly extracted from raw data which is of text or tabular (numeric/categorical) type in most real-world applications. The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not simple neural network layers and thus are not easily incorporated into a GNN. Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data, which are ensembled and stacked in multiple layers. Our layer-wise framework leverages bagging and stacking strategies to enjoy strong generalization, in a manner which effectively mitigates label leakage and overfitting. Across a variety of graph datasets with tabular/text node features, our method achieves comparable or superior performance relative to both tabular/text and graph neural network models, as well as existing state-of-the-art hybrid strategies that combine the two.
EDoG: Adversarial Edge Detection For Graph Neural Networks
Graph Neural Networks (GNNs) have been widely applied to different tasks such as bioinformatics, drug design, and social networks. However, recent studies have shown that GNNs are vulnerable to adversarial attacks which aim to mislead the node or subgraph classification prediction by adding subtle perturbations. Detecting these attacks is challenging due to the small magnitude of perturbation and the discrete nature of graph data. In this paper, we propose a general adversarial edge detection pipeline EDoG without requiring knowledge of the attack strategies based on graph generation. Specifically, we propose a novel graph generation approach combined with link prediction to detect suspicious adversarial edges. To effectively train the graph generative model, we sample several sub-graphs from the given graph data. We show that since the number of adversarial edges is usually low in practice, with low probability the sampled sub-graphs will contain adversarial edges based on the union bound. In addition, considering the strong attacks which perturb a large number of edges, we propose a set of novel features to perform outlier detection as the preprocessing for our detection. Extensive experimental results on three real-world graph datasets including a private transaction rule dataset from a major company and two types of synthetic graphs with controlled properties show that EDoG can achieve above 0.8 AUC against four state-of-the-art unseen attack strategies without requiring any knowledge about the attack type; and around 0.85 with knowledge of the attack type. EDoG significantly outperforms traditional malicious edge detection baselines. We also show that an adaptive attack with full knowledge of our detection pipeline is difficult to bypass it.
Topological Graph Neural Networks
Graph neural networks (GNNs) are a powerful architecture for tackling graph learning tasks, yet have been shown to be oblivious to eminent substructures such as cycles. We present TOGL, a novel layer that incorporates global topological information of a graph using persistent homology. TOGL can be easily integrated into any type of GNN and is strictly more expressive (in terms the Weisfeiler--Lehman graph isomorphism test) than message-passing GNNs. Augmenting GNNs with TOGL leads to improved predictive performance for graph and node classification tasks, both on synthetic data sets, which can be classified by humans using their topology but not by ordinary GNNs, and on real-world data.
Distributed Learning of Mixtures of Experts
In modern machine learning problems we deal with datasets that are either distributed by nature or potentially large for which distributing the computations is usually a standard way to proceed, since centralized algorithms are in general ineffective. We propose a distributed learning approach for mixtures of experts (MoE) models with an aggregation strategy to construct a reduction estimator from local estimators fitted parallelly to distributed subsets of the data. The aggregation is based on an optimal minimization of an expected transportation divergence between the large MoE composed of local estimators and the unknown desired MoE model. We show that the provided reduction estimator is consistent as soon as the local estimators to be aggregated are consistent, and its construction is performed by a proposed majorization-minimization (MM) algorithm that is computationally effective. We study the statistical and numerical properties for the proposed reduction estimator on experiments that demonstrate its performance compared to namely the global estimator constructed in a centralized way from the full dataset. For some situations, the computation time is more than ten times faster, for a comparable performance. Our source codes are publicly available on Github.
Leveraging Hyperbolic Embeddings for Coarse-to-Fine Robot Design
Multi-cellular robot design aims to create robots comprised of numerous cells that can be efficiently controlled to perform diverse tasks. Previous research has demonstrated the ability to generate robots for various tasks, but these approaches often optimize robots directly in the vast design space, resulting in robots with complicated morphologies that are hard to control. In response, this paper presents a novel coarse-to-fine method for designing multi-cellular robots. Initially, this strategy seeks optimal coarse-grained robots and progressively refines them. To mitigate the challenge of determining the precise refinement juncture during the coarse-to-fine transition, we introduce the Hyperbolic Embeddings for Robot Design (HERD) framework. HERD unifies robots of various granularity within a shared hyperbolic space and leverages a refined Cross-Entropy Method for optimization. This framework enables our method to autonomously identify areas of exploration in hyperbolic space and concentrate on regions demonstrating promise. Finally, the extensive empirical studies on various challenging tasks sourced from EvoGym show our approach's superior efficiency and generalization capability.
SCGC : Self-Supervised Contrastive Graph Clustering
Graph clustering discovers groups or communities within networks. Deep learning methods such as autoencoders (AE) extract effective clustering and downstream representations but cannot incorporate rich structural information. While Graph Neural Networks (GNN) have shown great success in encoding graph structure, typical GNNs based on convolution or attention variants suffer from over-smoothing, noise, heterophily, are computationally expensive and typically require the complete graph being present. Instead, we propose Self-Supervised Contrastive Graph Clustering (SCGC), which imposes graph-structure via contrastive loss signals to learn discriminative node representations and iteratively refined soft cluster labels. We also propose SCGC*, with a more effective, novel, Influence Augmented Contrastive (IAC) loss to fuse richer structural information, and half the original model parameters. SCGC(*) is faster with simple linear units, completely eliminate convolutions and attention of traditional GNNs, yet efficiently incorporates structure. It is impervious to layer depth and robust to over-smoothing, incorrect edges and heterophily. It is scalable by batching, a limitation in many prior GNN models, and trivially parallelizable. We obtain significant improvements over state-of-the-art on a wide range of benchmark graph datasets, including images, sensor data, text, and citation networks efficiently. Specifically, 20% on ARI and 18% on NMI for DBLP; overall 55% reduction in training time and overall, 81% reduction on inference time. Our code is available at : https://github.com/gayanku/SCGC
A Generalization of ViT/MLP-Mixer to Graphs
Graph Neural Networks (GNNs) have shown great potential in the field of graph representation learning. Standard GNNs define a local message-passing mechanism which propagates information over the whole graph domain by stacking multiple layers. This paradigm suffers from two major limitations, over-squashing and poor long-range dependencies, that can be solved using global attention but significantly increases the computational cost to quadratic complexity. In this work, we propose an alternative approach to overcome these structural limitations by leveraging the ViT/MLP-Mixer architectures introduced in computer vision. We introduce a new class of GNNs, called Graph ViT/MLP-Mixer, that holds three key properties. First, they capture long-range dependency and mitigate the issue of over-squashing as demonstrated on Long Range Graph Benchmark and TreeNeighbourMatch datasets. Second, they offer better speed and memory efficiency with a complexity linear to the number of nodes and edges, surpassing the related Graph Transformer and expressive GNN models. Third, they show high expressivity in terms of graph isomorphism as they can distinguish at least 3-WL non-isomorphic graphs. We test our architecture on 4 simulated datasets and 7 real-world benchmarks, and show highly competitive results on all of them. The source code is available for reproducibility at: https://github.com/XiaoxinHe/Graph-ViT-MLPMixer.
View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields
Large-scale vision foundation models such as Segment Anything (SAM) demonstrate impressive performance in zero-shot image segmentation at multiple levels of granularity. However, these zero-shot predictions are rarely 3D-consistent. As the camera viewpoint changes in a scene, so do the segmentation predictions, as well as the characterizations of "coarse" or "fine" granularity. In this work, we address the challenging task of lifting multi-granular and view-inconsistent image segmentations into a hierarchical and 3D-consistent representation. We learn a novel feature field within a Neural Radiance Field (NeRF) representing a 3D scene, whose segmentation structure can be revealed at different scales by simply using different thresholds on feature distance. Our key idea is to learn an ultrametric feature space, which unlike a Euclidean space, exhibits transitivity in distance-based grouping, naturally leading to a hierarchical clustering. Put together, our method takes view-inconsistent multi-granularity 2D segmentations as input and produces a hierarchy of 3D-consistent segmentations as output. We evaluate our method and several baselines on synthetic datasets with multi-view images and multi-granular segmentation, showcasing improved accuracy and viewpoint-consistency. We additionally provide qualitative examples of our model's 3D hierarchical segmentations in real world scenes. The code and dataset are available at https://github.com/hardyho/ultrametric_feature_fields
Sampling random graph homomorphisms and applications to network data analysis
A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph into a large network. We propose two complementary MCMC algorithms for sampling random graph homomorphisms and establish bounds on their mixing times and the concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neighborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut distance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also demonstrate the performance of our framework on the tasks of network clustering and subgraph classification on the Facebook100 dataset and on Word Adjacency Networks of a set of classic novels.
M3C: A Framework towards Convergent, Flexible, and Unsupervised Learning of Mixture Graph Matching and Clustering
Existing graph matching methods typically assume that there are similar structures between graphs and they are matchable. However, these assumptions do not align with real-world applications. This work addresses a more realistic scenario where graphs exhibit diverse modes, requiring graph grouping before or along with matching, a task termed mixture graph matching and clustering. We introduce Minorize-Maximization Matching and Clustering (M3C), a learning-free algorithm that guarantees theoretical convergence through the Minorize-Maximization framework and offers enhanced flexibility via relaxed clustering. Building on M3C, we develop UM3C, an unsupervised model that incorporates novel edge-wise affinity learning and pseudo label selection. Extensive experimental results on public benchmarks demonstrate that our method outperforms state-of-the-art graph matching and mixture graph matching and clustering approaches in both accuracy and efficiency. Source code will be made publicly available.
Graph Generation with Diffusion Mixture
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures. Although diffusion models have achieved notable success in graph generation recently, they are ill-suited for modeling the topological properties of graphs since learning to denoise the noisy samples does not explicitly learn the graph structures to be generated. To tackle this limitation, we propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process. Specifically, we design the generative process as a mixture of endpoint-conditioned diffusion processes which is driven toward the predicted graph that results in rapid convergence. We further introduce a simple parameterization of the mixture process and develop an objective for learning the final graph structure, which enables maximum likelihood training. Through extensive experimental validation on general graph and 2D/3D molecule generation tasks, we show that our method outperforms previous generative models, generating graphs with correct topology with both continuous (e.g. 3D coordinates) and discrete (e.g. atom types) features. Our code is available at https://github.com/harryjo97/GruM.
Graph Generative Model for Benchmarking Graph Neural Networks
As the field of Graph Neural Networks (GNN) continues to grow, it experiences a corresponding increase in the need for large, real-world datasets to train and test new GNN models on challenging, realistic problems. Unfortunately, such graph datasets are often generated from online, highly privacy-restricted ecosystems, which makes research and development on these datasets hard, if not impossible. This greatly reduces the amount of benchmark graphs available to researchers, causing the field to rely only on a handful of publicly-available datasets. To address this problem, we introduce a novel graph generative model, Computation Graph Transformer (CGT) that learns and reproduces the distribution of real-world graphs in a privacy-controlled way. More specifically, CGT (1) generates effective benchmark graphs on which GNNs show similar task performance as on the source graphs, (2) scales to process large-scale graphs, (3) incorporates off-the-shelf privacy modules to guarantee end-user privacy of the generated graph. Extensive experiments across a vast body of graph generative models show that only our model can successfully generate privacy-controlled, synthetic substitutes of large-scale real-world graphs that can be effectively used to benchmark GNN models.
HiGen: Hierarchical Graph Generative Networks
Most real-world graphs exhibit a hierarchical structure, which is often overlooked by existing graph generation methods. To address this limitation, we propose a novel graph generative network that captures the hierarchical nature of graphs and successively generates the graph sub-structures in a coarse-to-fine fashion. At each level of hierarchy, this model generates communities in parallel, followed by the prediction of cross-edges between communities using separate neural networks. This modular approach enables scalable graph generation for large and complex graphs. Moreover, we model the output distribution of edges in the hierarchical graph with a multinomial distribution and derive a recursive factorization for this distribution. This enables us to generate community graphs with integer-valued edge weights in an autoregressive manner. Empirical studies demonstrate the effectiveness and scalability of our proposed generative model, achieving state-of-the-art performance in terms of graph quality across various benchmark datasets. The code is available at https://github.com/Karami-m/HiGen_main.
Fast Combinatorial Algorithms for Min Max Correlation Clustering
We introduce fast algorithms for correlation clustering with respect to the Min Max objective that provide constant factor approximations on complete graphs. Our algorithms are the first purely combinatorial approximation algorithms for this problem. We construct a novel semi-metric on the set of vertices, which we call the correlation metric, that indicates to our clustering algorithms whether pairs of nodes should be in the same cluster. The paper demonstrates empirically that, compared to prior work, our algorithms sacrifice little in the objective quality to obtain significantly better run-time. Moreover, our algorithms scale to larger networks that are effectively intractable for known algorithms.
Beyond Homophily: Reconstructing Structure for Graph-agnostic Clustering
Graph neural networks (GNNs) based methods have achieved impressive performance on node clustering task. However, they are designed on the homophilic assumption of graph and clustering on heterophilic graph is overlooked. Due to the lack of labels, it is impossible to first identify a graph as homophilic or heterophilic before a suitable GNN model can be found. Hence, clustering on real-world graph with various levels of homophily poses a new challenge to the graph research community. To fill this gap, we propose a novel graph clustering method, which contains three key components: graph reconstruction, a mixed filter, and dual graph clustering network. To be graph-agnostic, we empirically construct two graphs which are high homophily and heterophily from each data. The mixed filter based on the new graphs extracts both low-frequency and high-frequency information. To reduce the adverse coupling between node attribute and topological structure, we separately map them into two subspaces in dual graph clustering network. Extensive experiments on 11 benchmark graphs demonstrate our promising performance. In particular, our method dominates others on heterophilic graphs.
Some Might Say All You Need Is Sum
The expressivity of Graph Neural Networks (GNNs) is dependent on the aggregation functions they employ. Theoretical works have pointed towards Sum aggregation GNNs subsuming every other GNNs, while certain practical works have observed a clear advantage to using Mean and Max. An examination of the theoretical guarantee identifies two caveats. First, it is size-restricted, that is, the power of every specific GNN is limited to graphs of a specific size. Successfully processing larger graphs may require an other GNN, and so on. Second, it concerns the power to distinguish non-isomorphic graphs, not the power to approximate general functions on graphs, and the former does not necessarily imply the latter. It is desired that a GNN's usability will not be limited to graphs of any specific size. Therefore, we explore the realm of unrestricted-size expressivity. We prove that basic functions, which can be computed exactly by Mean or Max GNNs, are inapproximable by any Sum GNN. We prove that under certain restrictions, every Mean or Max GNN can be approximated by a Sum GNN, but even there, a combination of (Sum, [Mean/Max]) is more expressive than Sum alone. Lastly, we prove further expressivity limitations for GNNs with a broad class of aggregations.
Improving Protein Optimization with Smoothed Fitness Landscapes
The ability to engineer novel proteins with higher fitness for a desired property would be revolutionary for biotechnology and medicine. Modeling the combinatorially large space of sequences is infeasible; prior methods often constrain optimization to a small mutational radius, but this drastically limits the design space. Instead of heuristics, we propose smoothing the fitness landscape to facilitate protein optimization. First, we formulate protein fitness as a graph signal then use Tikunov regularization to smooth the fitness landscape. We find optimizing in this smoothed landscape leads to improved performance across multiple methods in the GFP and AAV benchmarks. Second, we achieve state-of-the-art results utilizing discrete energy-based models and MCMC in the smoothed landscape. Our method, called Gibbs sampling with Graph-based Smoothing (GGS), demonstrates a unique ability to achieve 2.5 fold fitness improvement (with in-silico evaluation) over its training set. GGS demonstrates potential to optimize proteins in the limited data regime. Code: https://github.com/kirjner/GGS
Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements
Graphs are essential data structures for modeling complex interactions in domains such as social networks, molecular structures, and biological systems. Graph-level tasks, which predict properties or classes for the entire graph, are critical for applications, such as molecular property prediction and subgraph counting. Graph Neural Networks (GNNs) have shown promise in these tasks, but their evaluations are often limited to narrow datasets, tasks, and inconsistent experimental setups, restricting their generalizability. To address these limitations, we propose a unified evaluation framework for graph-level GNNs. This framework provides a standardized setting to evaluate GNNs across diverse datasets, various graph tasks (e.g., graph classification and regression), and challenging scenarios, including noisy, imbalanced, and few-shot graphs. Additionally, we propose a novel GNN model with enhanced expressivity and generalization capabilities. Specifically, we enhance the expressivity of GNNs through a k-path rooted subgraph approach, enabling the model to effectively count subgraphs (e.g., paths and cycles). Moreover, we introduce a unified graph contrastive learning algorithm for graphs across diverse domains, which adaptively removes unimportant edges to augment graphs, thereby significantly improving generalization performance. Extensive experiments demonstrate that our model achieves superior performance against fourteen effective baselines across twenty-seven graph datasets, establishing it as a robust and generalizable model for graph-level tasks.
One-Line-of-Code Data Mollification Improves Optimization of Likelihood-based Generative Models
Generative Models (GMs) have attracted considerable attention due to their tremendous success in various domains, such as computer vision where they are capable to generate impressive realistic-looking images. Likelihood-based GMs are attractive due to the possibility to generate new data by a single model evaluation. However, they typically achieve lower sample quality compared to state-of-the-art score-based diffusion models (DMs). This paper provides a significant step in the direction of addressing this limitation. The idea is to borrow one of the strengths of score-based DMs, which is the ability to perform accurate density estimation in low-density regions and to address manifold overfitting by means of data mollification. We connect data mollification through the addition of Gaussian noise to Gaussian homotopy, which is a well-known technique to improve optimization. Data mollification can be implemented by adding one line of code in the optimization loop, and we demonstrate that this provides a boost in generation quality of likelihood-based GMs, without computational overheads. We report results on image data sets with popular likelihood-based GMs, including variants of variational autoencoders and normalizing flows, showing large improvements in FID score.
Moccasin: Efficient Tensor Rematerialization for Neural Networks
The deployment and training of neural networks on edge computing devices pose many challenges. The low memory nature of edge devices is often one of the biggest limiting factors encountered in the deployment of large neural network models. Tensor rematerialization or recompute is a way to address high memory requirements for neural network training and inference. In this paper we consider the problem of execution time minimization of compute graphs subject to a memory budget. In particular, we develop a new constraint programming formulation called Moccasin with only O(n) integer variables, where n is the number of nodes in the compute graph. This is a significant improvement over the works in the recent literature that propose formulations with O(n^2) Boolean variables. We present numerical studies that show that our approach is up to an order of magnitude faster than recent work especially for large-scale graphs.
Graph Density-Aware Losses for Novel Compositions in Scene Graph Generation
Scene graph generation (SGG) aims to predict graph-structured descriptions of input images, in the form of objects and relationships between them. This task is becoming increasingly useful for progress at the interface of vision and language. Here, it is important - yet challenging - to perform well on novel (zero-shot) or rare (few-shot) compositions of objects and relationships. In this paper, we identify two key issues that limit such generalization. Firstly, we show that the standard loss used in this task is unintentionally a function of scene graph density. This leads to the neglect of individual edges in large sparse graphs during training, even though these contain diverse few-shot examples that are important for generalization. Secondly, the frequency of relationships can create a strong bias in this task, such that a blind model predicting the most frequent relationship achieves good performance. Consequently, some state-of-the-art models exploit this bias to improve results. We show that such models can suffer the most in their ability to generalize to rare compositions, evaluating two different models on the Visual Genome dataset and its more recent, improved version, GQA. To address these issues, we introduce a density-normalized edge loss, which provides more than a two-fold improvement in certain generalization metrics. Compared to other works in this direction, our enhancements require only a few lines of code and no added computational cost. We also highlight the difficulty of accurately evaluating models using existing metrics, especially on zero/few shots, and introduce a novel weighted metric.
MIGA: Mixture-of-Experts with Group Aggregation for Stock Market Prediction
Stock market prediction has remained an extremely challenging problem for many decades owing to its inherent high volatility and low information noisy ratio. Existing solutions based on machine learning or deep learning demonstrate superior performance by employing a single model trained on the entire stock dataset to generate predictions across all types of stocks. However, due to the significant variations in stock styles and market trends, a single end-to-end model struggles to fully capture the differences in these stylized stock features, leading to relatively inaccurate predictions for all types of stocks. In this paper, we present MIGA, a novel Mixture of Expert with Group Aggregation framework designed to generate specialized predictions for stocks with different styles by dynamically switching between distinct style experts. To promote collaboration among different experts in MIGA, we propose a novel inner group attention architecture, enabling experts within the same group to share information and thereby enhancing the overall performance of all experts. As a result, MIGA significantly outperforms other end-to-end models on three Chinese Stock Index benchmarks including CSI300, CSI500, and CSI1000. Notably, MIGA-Conv reaches 24 % excess annual return on CSI300 benchmark, surpassing the previous state-of-the-art model by 8% absolute. Furthermore, we conduct a comprehensive analysis of mixture of experts for stock market prediction, providing valuable insights for future research.
Agentic Deep Graph Reasoning Yields Self-Organizing Knowledge Networks
We present an agentic, autonomous graph expansion framework that iteratively structures and refines knowledge in situ. Unlike conventional knowledge graph construction methods relying on static extraction or single-pass learning, our approach couples a reasoning-native large language model with a continually updated graph representation. At each step, the system actively generates new concepts and relationships, merges them into a global graph, and formulates subsequent prompts based on its evolving structure. Through this feedback-driven loop, the model organizes information into a scale-free network characterized by hub formation, stable modularity, and bridging nodes that link disparate knowledge clusters. Over hundreds of iterations, new nodes and edges continue to appear without saturating, while centrality measures and shortest path distributions evolve to yield increasingly distributed connectivity. Our analysis reveals emergent patterns, such as the rise of highly connected 'hub' concepts and the shifting influence of 'bridge' nodes, indicating that agentic, self-reinforcing graph construction can yield open-ended, coherent knowledge structures. Applied to materials design problems, we present compositional reasoning experiments by extracting node-specific and synergy-level principles to foster genuinely novel knowledge synthesis, yielding cross-domain ideas that transcend rote summarization and strengthen the framework's potential for open-ended scientific discovery. We discuss other applications in scientific discovery and outline future directions for enhancing scalability and interpretability.
Geometric Knowledge-Guided Localized Global Distribution Alignment for Federated Learning
Data heterogeneity in federated learning, characterized by a significant misalignment between local and global distributions, leads to divergent local optimization directions and hinders global model training. Existing studies mainly focus on optimizing local updates or global aggregation, but these indirect approaches demonstrate instability when handling highly heterogeneous data distributions, especially in scenarios where label skew and domain skew coexist. To address this, we propose a geometry-guided data generation method that centers on simulating the global embedding distribution locally. We first introduce the concept of the geometric shape of an embedding distribution and then address the challenge of obtaining global geometric shapes under privacy constraints. Subsequently, we propose GGEUR, which leverages global geometric shapes to guide the generation of new samples, enabling a closer approximation to the ideal global distribution. In single-domain scenarios, we augment samples based on global geometric shapes to enhance model generalization; in multi-domain scenarios, we further employ class prototypes to simulate the global distribution across domains. Extensive experimental results demonstrate that our method significantly enhances the performance of existing approaches in handling highly heterogeneous data, including scenarios with label skew, domain skew, and their coexistence. Code published at: https://github.com/WeiDai-David/2025CVPR_GGEUR
Retrieval-Augmented Generation with Graphs (GraphRAG)
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information, such as knowledge, skills, and tools from external sources. Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information, making it a golden resource for RAG in tremendous real-world applications. As a result, we have recently witnessed increasing attention on equipping RAG with Graph, i.e., GraphRAG. However, unlike conventional RAG, where the retriever, generator, and external data sources can be uniformly designed in the neural-embedding space, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains. Given the broad applicability, the associated design challenges, and the recent surge in GraphRAG, a systematic and up-to-date survey of its key concepts and techniques is urgently desired. Following this motivation, we present a comprehensive and up-to-date survey on GraphRAG. Our survey first proposes a holistic GraphRAG framework by defining its key components, including query processor, retriever, organizer, generator, and data source. Furthermore, recognizing that graphs in different domains exhibit distinct relational patterns and require dedicated designs, we review GraphRAG techniques uniquely tailored to each domain. Finally, we discuss research challenges and brainstorm directions to inspire cross-disciplinary opportunities. Our survey repository is publicly maintained at https://github.com/Graph-RAG/GraphRAG/.
A Gromov--Wasserstein Geometric View of Spectrum-Preserving Graph Coarsening
Graph coarsening is a technique for solving large-scale graph problems by working on a smaller version of the original graph, and possibly interpolating the results back to the original graph. It has a long history in scientific computing and has recently gained popularity in machine learning, particularly in methods that preserve the graph spectrum. This work studies graph coarsening from a different perspective, developing a theory for preserving graph distances and proposing a method to achieve this. The geometric approach is useful when working with a collection of graphs, such as in graph classification and regression. In this study, we consider a graph as an element on a metric space equipped with the Gromov--Wasserstein (GW) distance, and bound the difference between the distance of two graphs and their coarsened versions. Minimizing this difference can be done using the popular weighted kernel K-means method, which improves existing spectrum-preserving methods with the proper choice of the kernel. The study includes a set of experiments to support the theory and method, including approximating the GW distance, preserving the graph spectrum, classifying graphs using spectral information, and performing regression using graph convolutional networks. Code is available at https://github.com/ychen-stat-ml/GW-Graph-Coarsening .
GraphHash: Graph Clustering Enables Parameter Efficiency in Recommender Systems
Deep recommender systems rely heavily on large embedding tables to handle high-cardinality categorical features such as user/item identifiers, and face significant memory constraints at scale. To tackle this challenge, hashing techniques are often employed to map multiple entities to the same embedding and thus reduce the size of the embedding tables. Concurrently, graph-based collaborative signals have emerged as powerful tools in recommender systems, yet their potential for optimizing embedding table reduction remains unexplored. This paper introduces GraphHash, the first graph-based approach that leverages modularity-based bipartite graph clustering on user-item interaction graphs to reduce embedding table sizes. We demonstrate that the modularity objective has a theoretical connection to message-passing, which provides a foundation for our method. By employing fast clustering algorithms, GraphHash serves as a computationally efficient proxy for message-passing during preprocessing and a plug-and-play graph-based alternative to traditional ID hashing. Extensive experiments show that GraphHash substantially outperforms diverse hashing baselines on both retrieval and click-through-rate prediction tasks. In particular, GraphHash achieves on average a 101.52% improvement in recall when reducing the embedding table size by more than 75%, highlighting the value of graph-based collaborative information for model reduction. Our code is available at https://github.com/snap-research/GraphHash.
Differentiable and Transportable Structure Learning
Directed acyclic graphs (DAGs) encode a lot of information about a particular distribution in their structure. However, compute required to infer these structures is typically super-exponential in the number of variables, as inference requires a sweep of a combinatorially large space of potential structures. That is, until recent advances made it possible to search this space using a differentiable metric, drastically reducing search time. While this technique -- named NOTEARS -- is widely considered a seminal work in DAG-discovery, it concedes an important property in favour of differentiability: transportability. To be transportable, the structures discovered on one dataset must apply to another dataset from the same domain. We introduce D-Struct which recovers transportability in the discovered structures through a novel architecture and loss function while remaining fully differentiable. Because D-Struct remains differentiable, our method can be easily adopted in existing differentiable architectures, as was previously done with NOTEARS. In our experiments, we empirically validate D-Struct with respect to edge accuracy and structural Hamming distance in a variety of settings.
A Binary Classification Social Network Dataset for Graph Machine Learning
Social networks have a vast range of applications with graphs. The available benchmark datasets are citation, co-occurrence, e-commerce networks, etc, with classes ranging from 3 to 15. However, there is no benchmark classification social network dataset for graph machine learning. This paper fills the gap and presents the Binary Classification Social Network Dataset (BiSND), designed for graph machine learning applications to predict binary classes. We present the BiSND in tabular and graph formats to verify its robustness across classical and advanced machine learning. We employ a diverse set of classifiers, including four traditional machine learning algorithms (Decision Trees, K-Nearest Neighbour, Random Forest, XGBoost), one Deep Neural Network (multi-layer perceptrons), one Graph Neural Network (Graph Convolutional Network), and three state-of-the-art Graph Contrastive Learning methods (BGRL, GRACE, DAENS). Our findings reveal that BiSND is suitable for classification tasks, with F1-scores ranging from 67.66 to 70.15, indicating promising avenues for future enhancements.
A Simple and Scalable Representation for Graph Generation
Recently, there has been a surge of interest in employing neural networks for graph generation, a fundamental statistical learning problem with critical applications like molecule design and community analysis. However, most approaches encounter significant limitations when generating large-scale graphs. This is due to their requirement to output the full adjacency matrices whose size grows quadratically with the number of nodes. In response to this challenge, we introduce a new, simple, and scalable graph representation named gap encoded edge list (GEEL) that has a small representation size that aligns with the number of edges. In addition, GEEL significantly reduces the vocabulary size by incorporating the gap encoding and bandwidth restriction schemes. GEEL can be autoregressively generated with the incorporation of node positional encoding, and we further extend GEEL to deal with attributed graphs by designing a new grammar. Our findings reveal that the adoption of this compact representation not only enhances scalability but also bolsters performance by simplifying the graph generation process. We conduct a comprehensive evaluation across ten non-attributed and two molecular graph generation tasks, demonstrating the effectiveness of GEEL.
Fractal Generative Models
Modularization is a cornerstone of computer science, abstracting complex functions into atomic building blocks. In this paper, we introduce a new level of modularization by abstracting generative models into atomic generative modules. Analogous to fractals in mathematics, our method constructs a new type of generative model by recursively invoking atomic generative modules, resulting in self-similar fractal architectures that we call fractal generative models. As a running example, we instantiate our fractal framework using autoregressive models as the atomic generative modules and examine it on the challenging task of pixel-by-pixel image generation, demonstrating strong performance in both likelihood estimation and generation quality. We hope this work could open a new paradigm in generative modeling and provide a fertile ground for future research. Code is available at https://github.com/LTH14/fractalgen.
Improving Graph Neural Networks with Learnable Propagation Operators
Graph Neural Networks (GNNs) are limited in their propagation operators. In many cases, these operators often contain non-negative elements only and are shared across channels, limiting the expressiveness of GNNs. Moreover, some GNNs suffer from over-smoothing, limiting their depth. On the other hand, Convolutional Neural Networks (CNNs) can learn diverse propagation filters, and phenomena like over-smoothing are typically not apparent in CNNs. In this paper, we bridge these gaps by incorporating trainable channel-wise weighting factors omega to learn and mix multiple smoothing and sharpening propagation operators at each layer. Our generic method is called omegaGNN, and is easy to implement. We study two variants: omegaGCN and omegaGAT. For omegaGCN, we theoretically analyse its behaviour and the impact of omega on the obtained node features. Our experiments confirm these findings, demonstrating and explaining how both variants do not over-smooth. Additionally, we experiment with 15 real-world datasets on node- and graph-classification tasks, where our omegaGCN and omegaGAT perform on par with state-of-the-art methods.
Evaluating Deep Graph Neural Networks
Graph Neural Networks (GNNs) have already been widely applied in various graph mining tasks. However, they suffer from the shallow architecture issue, which is the key impediment that hinders the model performance improvement. Although several relevant approaches have been proposed, none of the existing studies provides an in-depth understanding of the root causes of performance degradation in deep GNNs. In this paper, we conduct the first systematic experimental evaluation to present the fundamental limitations of shallow architectures. Based on the experimental results, we answer the following two essential questions: (1) what actually leads to the compromised performance of deep GNNs; (2) when we need and how to build deep GNNs. The answers to the above questions provide empirical insights and guidelines for researchers to design deep and well-performed GNNs. To show the effectiveness of our proposed guidelines, we present Deep Graph Multi-Layer Perceptron (DGMLP), a powerful approach (a paradigm in its own right) that helps guide deep GNN designs. Experimental results demonstrate three advantages of DGMLP: 1) high accuracy -- it achieves state-of-the-art node classification performance on various datasets; 2) high flexibility -- it can flexibly choose different propagation and transformation depths according to graph size and sparsity; 3) high scalability and efficiency -- it supports fast training on large-scale graphs. Our code is available in https://github.com/zwt233/DGMLP.
CoLiDE: Concomitant Linear DAG Estimation
We deal with the combinatorial problem of learning directed acyclic graph (DAG) structure from observational data adhering to a linear structural equation model (SEM). Leveraging advances in differentiable, nonconvex characterizations of acyclicity, recent efforts have advocated a continuous constrained optimization paradigm to efficiently explore the space of DAGs. Most existing methods employ lasso-type score functions to guide this search, which (i) require expensive penalty parameter retuning when the unknown SEM noise variances change across problem instances; and (ii) implicitly rely on limiting homoscedasticity assumptions. In this work, we propose a new convex score function for sparsity-aware learning of linear DAGs, which incorporates concomitant estimation of scale and thus effectively decouples the sparsity parameter from the exogenous noise levels. Regularization via a smooth, nonconvex acyclicity penalty term yields CoLiDE (Concomitant Linear DAG Estimation), a regression-based criterion amenable to efficient gradient computation and closed-form estimation of noise variances in heteroscedastic scenarios. Our algorithm outperforms state-of-the-art methods without incurring added complexity, especially when the DAGs are larger and the noise level profile is heterogeneous. We also find CoLiDE exhibits enhanced stability manifested via reduced standard deviations in several domain-specific metrics, underscoring the robustness of our novel linear DAG estimator.
Provable Training for Graph Contrastive Learning
Graph Contrastive Learning (GCL) has emerged as a popular training approach for learning node embeddings from augmented graphs without labels. Despite the key principle that maximizing the similarity between positive node pairs while minimizing it between negative node pairs is well established, some fundamental problems are still unclear. Considering the complex graph structure, are some nodes consistently well-trained and following this principle even with different graph augmentations? Or are there some nodes more likely to be untrained across graph augmentations and violate the principle? How to distinguish these nodes and further guide the training of GCL? To answer these questions, we first present experimental evidence showing that the training of GCL is indeed imbalanced across all nodes. To address this problem, we propose the metric "node compactness", which is the lower bound of how a node follows the GCL principle related to the range of augmentations. We further derive the form of node compactness theoretically through bound propagation, which can be integrated into binary cross-entropy as a regularization. To this end, we propose the PrOvable Training (POT) for GCL, which regularizes the training of GCL to encode node embeddings that follows the GCL principle better. Through extensive experiments on various benchmarks, POT consistently improves the existing GCL approaches, serving as a friendly plugin.
Local Augmentation for Graph Neural Networks
Graph Neural Networks (GNNs) have achieved remarkable performance on graph-based tasks. The key idea for GNNs is to obtain informative representation through aggregating information from local neighborhoods. However, it remains an open question whether the neighborhood information is adequately aggregated for learning representations of nodes with few neighbors. To address this, we propose a simple and efficient data augmentation strategy, local augmentation, to learn the distribution of the node features of the neighbors conditioned on the central node's feature and enhance GNN's expressive power with generated features. Local augmentation is a general framework that can be applied to any GNN model in a plug-and-play manner. It samples feature vectors associated with each node from the learned conditional distribution as additional input for the backbone model at each training iteration. Extensive experiments and analyses show that local augmentation consistently yields performance improvement when applied to various GNN architectures across a diverse set of benchmarks. For example, experiments show that plugging in local augmentation to GCN and GAT improves by an average of 3.4\% and 1.6\% in terms of test accuracy on Cora, Citeseer, and Pubmed. Besides, our experimental results on large graphs (OGB) show that our model consistently improves performance over backbones. Code is available at https://github.com/SongtaoLiu0823/LAGNN.
How Realistic Is Your Synthetic Data? Constraining Deep Generative Models for Tabular Data
Deep Generative Models (DGMs) have been shown to be powerful tools for generating tabular data, as they have been increasingly able to capture the complex distributions that characterize them. However, to generate realistic synthetic data, it is often not enough to have a good approximation of their distribution, as it also requires compliance with constraints that encode essential background knowledge on the problem at hand. In this paper, we address this limitation and show how DGMs for tabular data can be transformed into Constrained Deep Generative Models (C-DGMs), whose generated samples are guaranteed to be compliant with the given constraints. This is achieved by automatically parsing the constraints and transforming them into a Constraint Layer (CL) seamlessly integrated with the DGM. Our extensive experimental analysis with various DGMs and tasks reveals that standard DGMs often violate constraints, some exceeding 95% non-compliance, while their corresponding C-DGMs are never non-compliant. Then, we quantitatively demonstrate that, at training time, C-DGMs are able to exploit the background knowledge expressed by the constraints to outperform their standard counterparts with up to 6.5% improvement in utility and detection. Further, we show how our CL does not necessarily need to be integrated at training time, as it can be also used as a guardrail at inference time, still producing some improvements in the overall performance of the models. Finally, we show that our CL does not hinder the sample generation time of the models.
Generated Graph Detection
Graph generative models become increasingly effective for data distribution approximation and data augmentation. While they have aroused public concerns about their malicious misuses or misinformation broadcasts, just as what Deepfake visual and auditory media has been delivering to society. Hence it is essential to regulate the prevalence of generated graphs. To tackle this problem, we pioneer the formulation of the generated graph detection problem to distinguish generated graphs from real ones. We propose the first framework to systematically investigate a set of sophisticated models and their performance in four classification scenarios. Each scenario switches between seen and unseen datasets/generators during testing to get closer to real-world settings and progressively challenge the classifiers. Extensive experiments evidence that all the models are qualified for generated graph detection, with specific models having advantages in specific scenarios. Resulting from the validated generality and oblivion of the classifiers to unseen datasets/generators, we draw a safe conclusion that our solution can sustain for a decent while to curb generated graph misuses.
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
We present a neural operator architecture to simulate Lagrangian dynamics, such as fluid flow, granular flows, and elastoplasticity. Traditional numerical methods, such as the finite element method (FEM), suffer from long run times and large memory consumption. On the other hand, approaches based on graph neural networks are faster but still suffer from long computation times on dense graphs, which are often required for high-fidelity simulations. Our model, GIOROM or Graph Interaction Operator for Reduced-Order Modeling, learns temporal dynamics within a reduced-order setting, capturing spatial features from a highly sparse graph representation of the input and generalizing to arbitrary spatial locations during inference. The model is geometry-aware and discretization-agnostic and can generalize to different initial conditions, velocities, and geometries after training. We show that point clouds of the order of 100,000 points can be inferred from sparse graphs with sim1000 points, with negligible change in computation time. We empirically evaluate our model on elastic solids, Newtonian fluids, Non-Newtonian fluids, Drucker-Prager granular flows, and von Mises elastoplasticity. On these benchmarks, our approach results in a 25times speedup compared to other neural network-based physics simulators while delivering high-fidelity predictions of complex physical systems and showing better performance on most benchmarks. The code and the demos are provided at https://github.com/HrishikeshVish/GIOROM.
Learned Low Precision Graph Neural Networks
Deep Graph Neural Networks (GNNs) show promising performance on a range of graph tasks, yet at present are costly to run and lack many of the optimisations applied to DNNs. We show, for the first time, how to systematically quantise GNNs with minimal or no loss in performance using Network Architecture Search (NAS). We define the possible quantisation search space of GNNs. The proposed novel NAS mechanism, named Low Precision Graph NAS (LPGNAS), constrains both architecture and quantisation choices to be differentiable. LPGNAS learns the optimal architecture coupled with the best quantisation strategy for different components in the GNN automatically using back-propagation in a single search round. On eight different datasets, solving the task of classifying unseen nodes in a graph, LPGNAS generates quantised models with significant reductions in both model and buffer sizes but with similar accuracy to manually designed networks and other NAS results. In particular, on the Pubmed dataset, LPGNAS shows a better size-accuracy Pareto frontier compared to seven other manual and searched baselines, offering a 2.3 times reduction in model size but a 0.4% increase in accuracy when compared to the best NAS competitor. Finally, from our collected quantisation statistics on a wide range of datasets, we suggest a W4A8 (4-bit weights, 8-bit activations) quantisation strategy might be the bottleneck for naive GNN quantisations.
SEED-X: Multimodal Models with Unified Multi-granularity Comprehension and Generation
The rapid evolution of multimodal foundation model has demonstrated significant progresses in vision-language understanding and generation, e.g., our previous work SEED-LLaMA. However, there remains a gap between its capability and the real-world applicability, primarily due to the model's limited capacity to effectively respond to various user instructions and interact with diverse visual data. In this work, we focus on bridging this gap through integrating two enhanced features: (1) comprehending images of arbitrary sizes and ratios, and (2) enabling multi-granularity image generation. We present a unified and versatile foundation model, namely, SEED-X, which is able to model multi-granularity visual semantics for comprehension and generation tasks. Besides the competitive results on public benchmarks, SEED-X demonstrates its effectiveness in handling real-world applications across various domains after instruction tuning. We hope that our work will inspire future research into what can be achieved by versatile multimodal foundation models in real-world applications. The models, codes, and datasets will be released in https://github.com/AILab-CVC/SEED-X.
TEDDY: Trimming Edges with Degree-based Discrimination strategY
Since the pioneering work on the lottery ticket hypothesis for graph neural networks (GNNs) was proposed in Chen et al. (2021), the study on finding graph lottery tickets (GLT) has become one of the pivotal focus in the GNN community, inspiring researchers to discover sparser GLT while achieving comparable performance to original dense networks. In parallel, the graph structure has gained substantial attention as a crucial factor in GNN training dynamics, also elucidated by several recent studies. Despite this, contemporary studies on GLT, in general, have not fully exploited inherent pathways in the graph structure and identified tickets in an iterative manner, which is time-consuming and inefficient. To address these limitations, we introduce TEDDY, a one-shot edge sparsification framework that leverages structural information by incorporating edge-degree information. Following edge sparsification, we encourage the parameter sparsity during training via simple projected gradient descent on the ell_0 ball. Given the target sparsity levels for both the graph structure and the model parameters, our TEDDY facilitates efficient and rapid realization of GLT within a single training. Remarkably, our experimental results demonstrate that TEDDY significantly surpasses conventional iterative approaches in generalization, even when conducting one-shot sparsification that solely utilizes graph structures, without taking feature information into account.
HiLo: Exploiting High Low Frequency Relations for Unbiased Panoptic Scene Graph Generation
Panoptic Scene Graph generation (PSG) is a recently proposed task in image scene understanding that aims to segment the image and extract triplets of subjects, objects and their relations to build a scene graph. This task is particularly challenging for two reasons. First, it suffers from a long-tail problem in its relation categories, making naive biased methods more inclined to high-frequency relations. Existing unbiased methods tackle the long-tail problem by data/loss rebalancing to favor low-frequency relations. Second, a subject-object pair can have two or more semantically overlapping relations. While existing methods favor one over the other, our proposed HiLo framework lets different network branches specialize on low and high frequency relations, enforce their consistency and fuse the results. To the best of our knowledge we are the first to propose an explicitly unbiased PSG method. In extensive experiments we show that our HiLo framework achieves state-of-the-art results on the PSG task. We also apply our method to the Scene Graph Generation task that predicts boxes instead of masks and see improvements over all baseline methods. Code is available at https://github.com/franciszzj/HiLo.
How Expressive are Graph Neural Networks in Recommendation?
Graph Neural Networks (GNNs) have demonstrated superior performance on various graph learning tasks, including recommendation, where they leverage user-item collaborative filtering signals in graphs. However, theoretical formulations of their capability are scarce, despite their empirical effectiveness in state-of-the-art recommender models. Recently, research has explored the expressiveness of GNNs in general, demonstrating that message passing GNNs are at most as powerful as the Weisfeiler-Lehman test, and that GNNs combined with random node initialization are universal. Nevertheless, the concept of "expressiveness" for GNNs remains vaguely defined. Most existing works adopt the graph isomorphism test as the metric of expressiveness, but this graph-level task may not effectively assess a model's ability in recommendation, where the objective is to distinguish nodes of different closeness. In this paper, we provide a comprehensive theoretical analysis of the expressiveness of GNNs in recommendation, considering three levels of expressiveness metrics: graph isomorphism (graph-level), node automorphism (node-level), and topological closeness (link-level). We propose the topological closeness metric to evaluate GNNs' ability to capture the structural distance between nodes, which aligns closely with the objective of recommendation. To validate the effectiveness of this new metric in evaluating recommendation performance, we introduce a learning-less GNN algorithm that is optimal on the new metric and can be optimal on the node-level metric with suitable modification. We conduct extensive experiments comparing the proposed algorithm against various types of state-of-the-art GNN models to explore the explainability of the new metric in the recommendation task. For reproducibility, implementation codes are available at https://github.com/HKUDS/GTE.
PyTorch-BigGraph: A Large-scale Graph Embedding System
Graph embedding methods produce unsupervised node features from graphs that can then be used for a variety of machine learning tasks. Modern graphs, particularly in industrial applications, contain billions of nodes and trillions of edges, which exceeds the capability of existing embedding systems. We present PyTorch-BigGraph (PBG), an embedding system that incorporates several modifications to traditional multi-relation embedding systems that allow it to scale to graphs with billions of nodes and trillions of edges. PBG uses graph partitioning to train arbitrarily large embeddings on either a single machine or in a distributed environment. We demonstrate comparable performance with existing embedding systems on common benchmarks, while allowing for scaling to arbitrarily large graphs and parallelization on multiple machines. We train and evaluate embeddings on several large social network graphs as well as the full Freebase dataset, which contains over 100 million nodes and 2 billion edges.
Deep Temporal Graph Clustering
Deep graph clustering has recently received significant attention due to its ability to enhance the representation learning capabilities of models in unsupervised scenarios. Nevertheless, deep clustering for temporal graphs, which could capture crucial dynamic interaction information, has not been fully explored. It means that in many clustering-oriented real-world scenarios, temporal graphs can only be processed as static graphs. This not only causes the loss of dynamic information but also triggers huge computational consumption. To solve the problem, we propose a general framework for deep Temporal Graph Clustering called TGC, which introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs. In addition, we discuss differences between temporal graph clustering and static graph clustering from several levels. To verify the superiority of the proposed framework TGC, we conduct extensive experiments. The experimental results show that temporal graph clustering enables more flexibility in finding a balance between time and space requirements, and our framework can effectively improve the performance of existing temporal graph learning methods. The code is released: https://github.com/MGitHubL/Deep-Temporal-Graph-Clustering.
Towards Deeper Graph Neural Networks
Graph neural networks have shown significant success in the field of graph representation learning. Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations. Nevertheless, one layer of these neighborhood aggregation methods only consider immediate neighbors, and the performance decreases when going deeper to enable larger receptive fields. Several recent studies attribute this performance deterioration to the over-smoothing issue, which states that repeated propagation makes node representations of different classes indistinguishable. In this work, we study this observation systematically and develop new insights towards deeper graph neural networks. First, we provide a systematical analysis on this issue and argue that the key factor compromising the performance significantly is the entanglement of representation transformation and propagation in current graph convolution operations. After decoupling these two operations, deeper graph neural networks can be used to learn graph node representations from larger receptive fields. We further provide a theoretical analysis of the above observation when building very deep models, which can serve as a rigorous and gentle description of the over-smoothing issue. Based on our theoretical and empirical analysis, we propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields. A set of experiments on citation, co-authorship, and co-purchase datasets have confirmed our analysis and insights and demonstrated the superiority of our proposed methods.
Mixture Outlier Exposure: Towards Out-of-Distribution Detection in Fine-grained Environments
Many real-world scenarios in which DNN-based recognition systems are deployed have inherently fine-grained attributes (e.g., bird-species recognition, medical image classification). In addition to achieving reliable accuracy, a critical subtask for these models is to detect Out-of-distribution (OOD) inputs. Given the nature of the deployment environment, one may expect such OOD inputs to also be fine-grained w.r.t. the known classes (e.g., a novel bird species), which are thus extremely difficult to identify. Unfortunately, OOD detection in fine-grained scenarios remains largely underexplored. In this work, we aim to fill this gap by first carefully constructing four large-scale fine-grained test environments, in which existing methods are shown to have difficulties. Particularly, we find that even explicitly incorporating a diverse set of auxiliary outlier data during training does not provide sufficient coverage over the broad region where fine-grained OOD samples locate. We then propose Mixture Outlier Exposure (MixOE), which mixes ID data and training outliers to expand the coverage of different OOD granularities, and trains the model such that the prediction confidence linearly decays as the input transitions from ID to OOD. Extensive experiments and analyses demonstrate the effectiveness of MixOE for building up OOD detector in fine-grained environments. The code is available at https://github.com/zjysteven/MixOE.
Taming graph kernels with random features
We introduce in this paper the mechanism of graph random features (GRFs). GRFs can be used to construct unbiased randomized estimators of several important kernels defined on graphs' nodes, in particular the regularized Laplacian kernel. As regular RFs for non-graph kernels, they provide means to scale up kernel methods defined on graphs to larger networks. Importantly, they give substantial computational gains also for smaller graphs, while applied in downstream applications. Consequently, GRFs address the notoriously difficult problem of cubic (in the number of the nodes of the graph) time complexity of graph kernels algorithms. We provide a detailed theoretical analysis of GRFs and an extensive empirical evaluation: from speed tests, through Frobenius relative error analysis to kmeans graph-clustering with graph kernels. We show that the computation of GRFs admits an embarrassingly simple distributed algorithm that can be applied if the graph under consideration needs to be split across several machines. We also introduce a (still unbiased) quasi Monte Carlo variant of GRFs, q-GRFs, relying on the so-called reinforced random walks, that might be used to optimize the variance of GRFs. As a byproduct, we obtain a novel approach to solve certain classes of linear equations with positive and symmetric matrices.
Scalify: scale propagation for efficient low-precision LLM training
Low-precision formats such as float8 have been introduced in machine learning accelerated hardware to improve computational efficiency for large language models training and inference. Nevertheless, adoption by the ML community has been slowed down by the complex, and sometimes brittle, techniques required to match higher precision training accuracy. In this work, we present Scalify, a end-to-end scale propagation paradigm for computational graphs, generalizing and formalizing existing tensor scaling methods. Experiment results show that Scalify supports out-of-the-box float8 matrix multiplication and gradients representation, as well as float16 optimizer state storage. Our JAX implementation of Scalify is open-sourced at https://github.com/graphcore-research/jax-scalify
Towards Realistic Example-based Modeling via 3D Gaussian Stitching
Using parts of existing models to rebuild new models, commonly termed as example-based modeling, is a classical methodology in the realm of computer graphics. Previous works mostly focus on shape composition, making them very hard to use for realistic composition of 3D objects captured from real-world scenes. This leads to combining multiple NeRFs into a single 3D scene to achieve seamless appearance blending. However, the current SeamlessNeRF method struggles to achieve interactive editing and harmonious stitching for real-world scenes due to its gradient-based strategy and grid-based representation. To this end, we present an example-based modeling method that combines multiple Gaussian fields in a point-based representation using sample-guided synthesis. Specifically, as for composition, we create a GUI to segment and transform multiple fields in real time, easily obtaining a semantically meaningful composition of models represented by 3D Gaussian Splatting (3DGS). For texture blending, due to the discrete and irregular nature of 3DGS, straightforwardly applying gradient propagation as SeamlssNeRF is not supported. Thus, a novel sampling-based cloning method is proposed to harmonize the blending while preserving the original rich texture and content. Our workflow consists of three steps: 1) real-time segmentation and transformation of a Gaussian model using a well-tailored GUI, 2) KNN analysis to identify boundary points in the intersecting area between the source and target models, and 3) two-phase optimization of the target model using sampling-based cloning and gradient constraints. Extensive experimental results validate that our approach significantly outperforms previous works in terms of realistic synthesis, demonstrating its practicality. More demos are available at https://ingra14m.github.io/gs_stitching_website.
Beyond Redundancy: Information-aware Unsupervised Multiplex Graph Structure Learning
Unsupervised Multiplex Graph Learning (UMGL) aims to learn node representations on various edge types without manual labeling. However, existing research overlooks a key factor: the reliability of the graph structure. Real-world data often exhibit a complex nature and contain abundant task-irrelevant noise, severely compromising UMGL's performance. Moreover, existing methods primarily rely on contrastive learning to maximize mutual information across different graphs, limiting them to multiplex graph redundant scenarios and failing to capture view-unique task-relevant information. In this paper, we focus on a more realistic and challenging task: to unsupervisedly learn a fused graph from multiple graphs that preserve sufficient task-relevant information while removing task-irrelevant noise. Specifically, our proposed Information-aware Unsupervised Multiplex Graph Fusion framework (InfoMGF) uses graph structure refinement to eliminate irrelevant noise and simultaneously maximizes view-shared and view-unique task-relevant information, thereby tackling the frontier of non-redundant multiplex graph. Theoretical analyses further guarantee the effectiveness of InfoMGF. Comprehensive experiments against various baselines on different downstream tasks demonstrate its superior performance and robustness. Surprisingly, our unsupervised method even beats the sophisticated supervised approaches. The source code and datasets are available at https://github.com/zxlearningdeep/InfoMGF.
Theoretical bounds on the network community profile from low-rank semi-definite programming
We study a new connection between a technical measure called mu-conductance that arises in the study of Markov chains for sampling convex bodies and the network community profile that characterizes size-resolved properties of clusters and communities in social and information networks. The idea of mu-conductance is similar to the traditional graph conductance, but disregards sets with small volume. We derive a sequence of optimization problems including a low-rank semi-definite program from which we can derive a lower bound on the optimal mu-conductance value. These ideas give the first theoretically sound bound on the behavior of the network community profile for a wide range of cluster sizes. The algorithm scales up to graphs with hundreds of thousands of nodes and we demonstrate how our framework validates the predicted structures of real-world graphs.
Grams: Gradient Descent with Adaptive Momentum Scaling
We introduce Gradient Descent with Adaptive Momentum Scaling (Grams), a novel optimization algorithm that decouples the direction and magnitude of parameter updates in deep learning. Unlike traditional optimizers that directly integrate momentum into updates, Grams separates the update direction, derived from current gradients, from momentum, which is used solely for adaptive magnitude scaling. This approach enables Grams to achieve improved loss descent compared to state-of-the-art cautious and momentum-based optimizers. We establish a global convergence guarantee for Grams and validate its effectiveness through extensive empirical evaluations. The results demonstrate Grams' superior performance, including faster convergence and better generalization, compared to widely-used optimizers such as Adam, Lion, and their cautious variants. Our results highlight Grams' potential as a transformative approach for efficient optimization in large-scale machine learning.
Learning Mean Field Games on Sparse Graphs: A Hybrid Graphex Approach
Learning the behavior of large agent populations is an important task for numerous research areas. Although the field of multi-agent reinforcement learning (MARL) has made significant progress towards solving these systems, solutions for many agents often remain computationally infeasible and lack theoretical guarantees. Mean Field Games (MFGs) address both of these issues and can be extended to Graphon MFGs (GMFGs) to include network structures between agents. Despite their merits, the real world applicability of GMFGs is limited by the fact that graphons only capture dense graphs. Since most empirically observed networks show some degree of sparsity, such as power law graphs, the GMFG framework is insufficient for capturing these network topologies. Thus, we introduce the novel concept of Graphex MFGs (GXMFGs) which builds on the graph theoretical concept of graphexes. Graphexes are the limiting objects to sparse graph sequences that also have other desirable features such as the small world property. Learning equilibria in these games is challenging due to the rich and sparse structure of the underlying graphs. To tackle these challenges, we design a new learning algorithm tailored to the GXMFG setup. This hybrid graphex learning approach leverages that the system mainly consists of a highly connected core and a sparse periphery. After defining the system and providing a theoretical analysis, we state our learning approach and demonstrate its learning capabilities on both synthetic graphs and real-world networks. This comparison shows that our GXMFG learning algorithm successfully extends MFGs to a highly relevant class of hard, realistic learning problems that are not accurately addressed by current MARL and MFG methods.
Towards Robust Fidelity for Evaluating Explainability of Graph Neural Networks
Graph Neural Networks (GNNs) are neural models that leverage the dependency structure in graphical data via message passing among the graph nodes. GNNs have emerged as pivotal architectures in analyzing graph-structured data, and their expansive application in sensitive domains requires a comprehensive understanding of their decision-making processes -- necessitating a framework for GNN explainability. An explanation function for GNNs takes a pre-trained GNN along with a graph as input, to produce a `sufficient statistic' subgraph with respect to the graph label. A main challenge in studying GNN explainability is to provide fidelity measures that evaluate the performance of these explanation functions. This paper studies this foundational challenge, spotlighting the inherent limitations of prevailing fidelity metrics, including Fid_+, Fid_-, and Fid_Delta. Specifically, a formal, information-theoretic definition of explainability is introduced and it is shown that existing metrics often fail to align with this definition across various statistical scenarios. The reason is due to potential distribution shifts when subgraphs are removed in computing these fidelity measures. Subsequently, a robust class of fidelity measures are introduced, and it is shown analytically that they are resilient to distribution shift issues and are applicable in a wide range of scenarios. Extensive empirical analysis on both synthetic and real datasets are provided to illustrate that the proposed metrics are more coherent with gold standard metrics. The source code is available at https://trustai4s-lab.github.io/fidelity.
Disentangled Structural and Featural Representation for Task-Agnostic Graph Valuation
With the emergence of data marketplaces, the demand for methods to assess the value of data has increased significantly. While numerous techniques have been proposed for this purpose, none have specifically addressed graphs as the main data modality. Graphs are widely used across various fields, ranging from chemical molecules to social networks. In this study, we break down graphs into two main components: structural and featural, and we focus on evaluating data without relying on specific task-related metrics, making it applicable in practical scenarios where validation requirements may be lacking. We introduce a novel framework called blind message passing, which aligns the seller's and buyer's graphs using a shared node permutation based on graph matching. This allows us to utilize the graph Wasserstein distance to quantify the differences in the structural distribution of graph datasets, called the structural disparities. We then consider featural aspects of buyers' and sellers' graphs for data valuation and capture their statistical similarities and differences, referred to as relevance and diversity, respectively. Our approach ensures that buyers and sellers remain unaware of each other's datasets. Our experiments on real datasets demonstrate the effectiveness of our approach in capturing the relevance, diversity, and structural disparities of seller data for buyers, particularly in graph-based data valuation scenarios.
PGB: A PubMed Graph Benchmark for Heterogeneous Network Representation Learning
There has been rapid growth in biomedical literature, yet capturing the heterogeneity of the bibliographic information of these articles remains relatively understudied. Although graph mining research via heterogeneous graph neural networks has taken center stage, it remains unclear whether these approaches capture the heterogeneity of the PubMed database, a vast digital repository containing over 33 million articles. We introduce PubMed Graph Benchmark (PGB), a new benchmark dataset for evaluating heterogeneous graph embeddings for biomedical literature. The benchmark contains rich metadata including abstract, authors, citations, MeSH terms, MeSH hierarchy, and some other information. The benchmark contains three different evaluation tasks encompassing systematic reviews, node classification, and node clustering. In PGB, we aggregate the metadata associated with the biomedical articles from PubMed into a unified source and make the benchmark publicly available for any future works.
Chemically Transferable Generative Backmapping of Coarse-Grained Proteins
Coarse-graining (CG) accelerates molecular simulations of protein dynamics by simulating sets of atoms as singular beads. Backmapping is the opposite operation of bringing lost atomistic details back from the CG representation. While machine learning (ML) has produced accurate and efficient CG simulations of proteins, fast and reliable backmapping remains a challenge. Rule-based methods produce poor all-atom geometries, needing computationally costly refinement through additional simulations. Recently proposed ML approaches outperform traditional baselines but are not transferable between proteins and sometimes generate unphysical atom placements with steric clashes and implausible torsion angles. This work addresses both issues to build a fast, transferable, and reliable generative backmapping tool for CG protein representations. We achieve generalization and reliability through a combined set of innovations: representation based on internal coordinates; an equivariant encoder/prior; a custom loss function that helps ensure local structure, global structure, and physical constraints; and expert curation of high-quality out-of-equilibrium protein data for training. Our results pave the way for out-of-the-box backmapping of coarse-grained simulations for arbitrary proteins.
Layer-stacked Attention for Heterogeneous Network Embedding
The heterogeneous network is a robust data abstraction that can model entities of different types interacting in various ways. Such heterogeneity brings rich semantic information but presents nontrivial challenges in aggregating the heterogeneous relationships between objects - especially those of higher-order indirect relations. Recent graph neural network approaches for representation learning on heterogeneous networks typically employ the attention mechanism, which is often only optimized for predictions based on direct links. Furthermore, even though most deep learning methods can aggregate higher-order information by building deeper models, such a scheme can diminish the degree of interpretability. To overcome these challenges, we explore an architecture - Layer-stacked ATTention Embedding (LATTE) - that automatically decomposes higher-order meta relations at each layer to extract the relevant heterogeneous neighborhood structures for each node. Additionally, by successively stacking layer representations, the learned node embedding offers a more interpretable aggregation scheme for nodes of different types at different neighborhood ranges. We conducted experiments on several benchmark heterogeneous network datasets. In both transductive and inductive node classification tasks, LATTE can achieve state-of-the-art performance compared to existing approaches, all while offering a lightweight model. With extensive experimental analyses and visualizations, the framework can demonstrate the ability to extract informative insights on heterogeneous networks.
Decoupling the Depth and Scope of Graph Neural Networks
State-of-the-art Graph Neural Networks (GNNs) have limited scalability with respect to the graph and model sizes. On large graphs, increasing the model depth often means exponential expansion of the scope (i.e., receptive field). Beyond just a few layers, two fundamental challenges emerge: 1. degraded expressivity due to oversmoothing, and 2. expensive computation due to neighborhood explosion. We propose a design principle to decouple the depth and scope of GNNs -- to generate representation of a target entity (i.e., a node or an edge), we first extract a localized subgraph as the bounded-size scope, and then apply a GNN of arbitrary depth on top of the subgraph. A properly extracted subgraph consists of a small number of critical neighbors, while excluding irrelevant ones. The GNN, no matter how deep it is, smooths the local neighborhood into informative representation rather than oversmoothing the global graph into "white noise". Theoretically, decoupling improves the GNN expressive power from the perspectives of graph signal processing (GCN), function approximation (GraphSAGE) and topological learning (GIN). Empirically, on seven graphs (with up to 110M nodes) and six backbone GNN architectures, our design achieves significant accuracy improvement with orders of magnitude reduction in computation and hardware cost.
Sparse Mixture-of-Experts are Domain Generalizable Learners
Human visual perception can easily generalize to out-of-distributed visual data, which is far beyond the capability of modern machine learning models. Domain generalization (DG) aims to close this gap, with existing DG methods mainly focusing on the loss function design. In this paper, we propose to explore an orthogonal direction, i.e., the design of the backbone architecture. It is motivated by an empirical finding that transformer-based models trained with empirical risk minimization (ERM) outperform CNN-based models employing state-of-the-art (SOTA) DG algorithms on multiple DG datasets. We develop a formal framework to characterize a network's robustness to distribution shifts by studying its architecture's alignment with the correlations in the dataset. This analysis guides us to propose a novel DG model built upon vision transformers, namely Generalizable Mixture-of-Experts (GMoE). Extensive experiments on DomainBed demonstrate that GMoE trained with ERM outperforms SOTA DG baselines by a large margin. Moreover, GMoE is complementary to existing DG methods and its performance is substantially improved when trained with DG algorithms.
Peregrine: A Pattern-Aware Graph Mining System
Graph mining workloads aim to extract structural properties of a graph by exploring its subgraph structures. General purpose graph mining systems provide a generic runtime to explore subgraph structures of interest with the help of user-defined functions that guide the overall exploration process. However, the state-of-the-art graph mining systems remain largely oblivious to the shape (or pattern) of the subgraphs that they mine. This causes them to: (a) explore unnecessary subgraphs; (b) perform expensive computations on the explored subgraphs; and, (c) hold intermediate partial subgraphs in memory; all of which affect their overall performance. Furthermore, their programming models are often tied to their underlying exploration strategies, which makes it difficult for domain users to express complex mining tasks. In this paper, we develop Peregrine, a pattern-aware graph mining system that directly explores the subgraphs of interest while avoiding exploration of unnecessary subgraphs, and simultaneously bypassing expensive computations throughout the mining process. We design a pattern-based programming model that treats "graph patterns" as first class constructs and enables Peregrine to extract the semantics of patterns, which it uses to guide its exploration. Our evaluation shows that Peregrine outperforms state-of-the-art distributed and single machine graph mining systems, and scales to complex mining tasks on larger graphs, while retaining simplicity and expressivity with its "pattern-first" programming approach.
AIGIQA-20K: A Large Database for AI-Generated Image Quality Assessment
With the rapid advancements in AI-Generated Content (AIGC), AI-Generated Images (AIGIs) have been widely applied in entertainment, education, and social media. However, due to the significant variance in quality among different AIGIs, there is an urgent need for models that consistently match human subjective ratings. To address this issue, we organized a challenge towards AIGC quality assessment on NTIRE 2024 that extensively considers 15 popular generative models, utilizing dynamic hyper-parameters (including classifier-free guidance, iteration epochs, and output image resolution), and gather subjective scores that consider perceptual quality and text-to-image alignment altogether comprehensively involving 21 subjects. This approach culminates in the creation of the largest fine-grained AIGI subjective quality database to date with 20,000 AIGIs and 420,000 subjective ratings, known as AIGIQA-20K. Furthermore, we conduct benchmark experiments on this database to assess the correspondence between 16 mainstream AIGI quality models and human perception. We anticipate that this large-scale quality database will inspire robust quality indicators for AIGIs and propel the evolution of AIGC for vision. The database is released on https://www.modelscope.cn/datasets/lcysyzxdxc/AIGCQA-30K-Image.
Reliable Representations Make A Stronger Defender: Unsupervised Structure Refinement for Robust GNN
Benefiting from the message passing mechanism, Graph Neural Networks (GNNs) have been successful on flourish tasks over graph data. However, recent studies have shown that attackers can catastrophically degrade the performance of GNNs by maliciously modifying the graph structure. A straightforward solution to remedy this issue is to model the edge weights by learning a metric function between pairwise representations of two end nodes, which attempts to assign low weights to adversarial edges. The existing methods use either raw features or representations learned by supervised GNNs to model the edge weights. However, both strategies are faced with some immediate problems: raw features cannot represent various properties of nodes (e.g., structure information), and representations learned by supervised GNN may suffer from the poor performance of the classifier on the poisoned graph. We need representations that carry both feature information and as mush correct structure information as possible and are insensitive to structural perturbations. To this end, we propose an unsupervised pipeline, named STABLE, to optimize the graph structure. Finally, we input the well-refined graph into a downstream classifier. For this part, we design an advanced GCN that significantly enhances the robustness of vanilla GCN without increasing the time complexity. Extensive experiments on four real-world graph benchmarks demonstrate that STABLE outperforms the state-of-the-art methods and successfully defends against various attacks.
On the Expressive Power of Geometric Graph Neural Networks
The expressive power of Graph Neural Networks (GNNs) has been studied extensively through the Weisfeiler-Leman (WL) graph isomorphism test. However, standard GNNs and the WL framework are inapplicable for geometric graphs embedded in Euclidean space, such as biomolecules, materials, and other physical systems. In this work, we propose a geometric version of the WL test (GWL) for discriminating geometric graphs while respecting the underlying physical symmetries: permutations, rotation, reflection, and translation. We use GWL to characterise the expressive power of geometric GNNs that are invariant or equivariant to physical symmetries in terms of distinguishing geometric graphs. GWL unpacks how key design choices influence geometric GNN expressivity: (1) Invariant layers have limited expressivity as they cannot distinguish one-hop identical geometric graphs; (2) Equivariant layers distinguish a larger class of graphs by propagating geometric information beyond local neighbourhoods; (3) Higher order tensors and scalarisation enable maximally powerful geometric GNNs; and (4) GWL's discrimination-based perspective is equivalent to universal approximation. Synthetic experiments supplementing our results are available at https://github.com/chaitjo/geometric-gnn-dojo
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Estimating the structure of directed acyclic graphs (DAGs, also known as Bayesian networks) is a challenging problem since the search space of DAGs is combinatorial and scales superexponentially with the number of nodes. Existing approaches rely on various local heuristics for enforcing the acyclicity constraint. In this paper, we introduce a fundamentally different strategy: We formulate the structure learning problem as a purely continuous optimization problem over real matrices that avoids this combinatorial constraint entirely. This is achieved by a novel characterization of acyclicity that is not only smooth but also exact. The resulting problem can be efficiently solved by standard numerical algorithms, which also makes implementation effortless. The proposed method outperforms existing ones, without imposing any structural assumptions on the graph such as bounded treewidth or in-degree. Code implementing the proposed algorithm is open-source and publicly available at https://github.com/xunzheng/notears.
Multitask Gaussian Process with Hierarchical Latent Interactions
Multitask Gaussian process (MTGP) is powerful for joint learning of multiple tasks with complicated correlation patterns. However, due to the assembling of additive independent latent functions, all current MTGPs including the salient linear model of coregionalization (LMC) and convolution frameworks cannot effectively represent and learn the hierarchical latent interactions between its latent functions. In this paper, we further investigate the interactions in LMC of MTGP and then propose a novel kernel representation of the hierarchical interactions, which ameliorates both the expressiveness and the interpretability of MTGP. Specifically, we express the interaction as a product of function interaction and coefficient interaction. The function interaction is modeled by using cross convolution of latent functions. The coefficient interaction between the LMCs is described as a cross coregionalization term. We validate that considering the interactions can promote knowledge transferring in MTGP and compare our approach with some state-of-the-art MTGPs on both synthetic- and real-world datasets.
Path Neural Networks: Expressive and Accurate Graph Neural Networks
Graph neural networks (GNNs) have recently become the standard approach for learning with graph-structured data. Prior work has shed light into their potential, but also their limitations. Unfortunately, it was shown that standard GNNs are limited in their expressive power. These models are no more powerful than the 1-dimensional Weisfeiler-Leman (1-WL) algorithm in terms of distinguishing non-isomorphic graphs. In this paper, we propose Path Neural Networks (PathNNs), a model that updates node representations by aggregating paths emanating from nodes. We derive three different variants of the PathNN model that aggregate single shortest paths, all shortest paths and all simple paths of length up to K. We prove that two of these variants are strictly more powerful than the 1-WL algorithm, and we experimentally validate our theoretical results. We find that PathNNs can distinguish pairs of non-isomorphic graphs that are indistinguishable by 1-WL, while our most expressive PathNN variant can even distinguish between 3-WL indistinguishable graphs. The different PathNN variants are also evaluated on graph classification and graph regression datasets, where in most cases, they outperform the baseline methods.
Knowledge Graph Embedding by Normalizing Flows
A key to knowledge graph embedding (KGE) is to choose a proper representation space, e.g., point-wise Euclidean space and complex vector space. In this paper, we propose a unified perspective of embedding and introduce uncertainty into KGE from the view of group theory. Our model can incorporate existing models (i.e., generality), ensure the computation is tractable (i.e., efficiency) and enjoy the expressive power of complex random variables (i.e., expressiveness). The core idea is that we embed entities/relations as elements of a symmetric group, i.e., permutations of a set. Permutations of different sets can reflect different properties of embedding. And the group operation of symmetric groups is easy to compute. In specific, we show that the embedding of many existing models, point vectors, can be seen as elements of a symmetric group. To reflect uncertainty, we first embed entities/relations as permutations of a set of random variables. A permutation can transform a simple random variable into a complex random variable for greater expressiveness, called a normalizing flow. We then define scoring functions by measuring the similarity of two normalizing flows, namely NFE. We construct several instantiating models and prove that they are able to learn logical rules. Experimental results demonstrate the effectiveness of introducing uncertainty and our model. The code is available at https://github.com/changyi7231/NFE.
Bounding the Expected Robustness of Graph Neural Networks Subject to Node Feature Attacks
Graph Neural Networks (GNNs) have demonstrated state-of-the-art performance in various graph representation learning tasks. Recently, studies revealed their vulnerability to adversarial attacks. In this work, we theoretically define the concept of expected robustness in the context of attributed graphs and relate it to the classical definition of adversarial robustness in the graph representation learning literature. Our definition allows us to derive an upper bound of the expected robustness of Graph Convolutional Networks (GCNs) and Graph Isomorphism Networks subject to node feature attacks. Building on these findings, we connect the expected robustness of GNNs to the orthonormality of their weight matrices and consequently propose an attack-independent, more robust variant of the GCN, called the Graph Convolutional Orthonormal Robust Networks (GCORNs). We further introduce a probabilistic method to estimate the expected robustness, which allows us to evaluate the effectiveness of GCORN on several real-world datasets. Experimental experiments showed that GCORN outperforms available defense methods. Our code is publicly available at: https://github.com/Sennadir/GCORN{https://github.com/Sennadir/GCORN}.
Harnessing Hard Mixed Samples with Decoupled Regularizer
Mixup is an efficient data augmentation approach that improves the generalization of neural networks by smoothing the decision boundary with mixed data. Recently, dynamic mixup methods have improved previous static policies effectively (e.g., linear interpolation) by maximizing target-related salient regions in mixed samples, but excessive additional time costs are not acceptable. These additional computational overheads mainly come from optimizing the mixed samples according to the mixed labels. However, we found that the extra optimizing step may be redundant because label-mismatched mixed samples are informative hard mixed samples for deep models to localize discriminative features. In this paper, we thus are not trying to propose a more complicated dynamic mixup policy but rather an efficient mixup objective function with a decoupled regularizer named Decoupled Mixup (DM). The primary effect is that DM can adaptively utilize those hard mixed samples to mine discriminative features without losing the original smoothness of mixup. As a result, DM enables static mixup methods to achieve comparable or even exceed the performance of dynamic methods without any extra computation. This also leads to an interesting objective design problem for mixup training that we need to focus on both smoothing the decision boundaries and identifying discriminative features. Extensive experiments on supervised and semi-supervised learning benchmarks across seven datasets validate the effectiveness of DM as a plug-and-play module. Source code and models are available at https://github.com/Westlake-AI/openmixup
Unsupervised Discovery of Steerable Factors When Graph Deep Generative Models Are Entangled
Deep generative models (DGMs) have been widely developed for graph data. However, much less investigation has been carried out on understanding the latent space of such pretrained graph DGMs. These understandings possess the potential to provide constructive guidelines for crucial tasks, such as graph controllable generation. Thus in this work, we are interested in studying this problem and propose GraphCG, a method for the unsupervised discovery of steerable factors in the latent space of pretrained graph DGMs. We first examine the representation space of three pretrained graph DGMs with six disentanglement metrics, and we observe that the pretrained representation space is entangled. Motivated by this observation, GraphCG learns the steerable factors via maximizing the mutual information between semantic-rich directions, where the controlled graph moving along the same direction will share the same steerable factors. We quantitatively verify that GraphCG outperforms four competitive baselines on two graph DGMs pretrained on two molecule datasets. Additionally, we qualitatively illustrate seven steerable factors learned by GraphCG on five pretrained DGMs over five graph datasets, including two for molecules and three for point clouds.
Efficient and Scalable Graph Generation through Iterative Local Expansion
In the realm of generative models for graphs, extensive research has been conducted. However, most existing methods struggle with large graphs due to the complexity of representing the entire joint distribution across all node pairs and capturing both global and local graph structures simultaneously. To overcome these issues, we introduce a method that generates a graph by progressively expanding a single node to a target graph. In each step, nodes and edges are added in a localized manner through denoising diffusion, building first the global structure, and then refining the local details. The local generation avoids modeling the entire joint distribution over all node pairs, achieving substantial computational savings with subquadratic runtime relative to node count while maintaining high expressivity through multiscale generation. Our experiments show that our model achieves state-of-the-art performance on well-established benchmark datasets while successfully scaling to graphs with at least 5000 nodes. Our method is also the first to successfully extrapolate to graphs outside of the training distribution, showcasing a much better generalization capability over existing methods.
Personalized Subgraph Federated Learning
Subgraphs of a larger global graph may be distributed across multiple devices, and only locally accessible due to privacy restrictions, although there may be links between subgraphs. Recently proposed subgraph Federated Learning (FL) methods deal with those missing links across local subgraphs while distributively training Graph Neural Networks (GNNs) on them. However, they have overlooked the inevitable heterogeneity between subgraphs comprising different communities of a global graph, consequently collapsing the incompatible knowledge from local GNN models. To this end, we introduce a new subgraph FL problem, personalized subgraph FL, which focuses on the joint improvement of the interrelated local GNNs rather than learning a single global model, and propose a novel framework, FEDerated Personalized sUBgraph learning (FED-PUB), to tackle it. Since the server cannot access the subgraph in each client, FED-PUB utilizes functional embeddings of the local GNNs using random graphs as inputs to compute similarities between them, and use the similarities to perform weighted averaging for server-side aggregation. Further, it learns a personalized sparse mask at each client to select and update only the subgraph-relevant subset of the aggregated parameters. We validate our FED-PUB for its subgraph FL performance on six datasets, considering both non-overlapping and overlapping subgraphs, on which it significantly outperforms relevant baselines. Our code is available at https://github.com/JinheonBaek/FED-PUB.
MOFA: Discovering Materials for Carbon Capture with a GenAI- and Simulation-Based Workflow
We present MOFA, an open-source generative AI (GenAI) plus simulation workflow for high-throughput generation of metal-organic frameworks (MOFs) on large-scale high-performance computing (HPC) systems. MOFA addresses key challenges in integrating GPU-accelerated computing for GPU-intensive GenAI tasks, including distributed training and inference, alongside CPU- and GPU-optimized tasks for screening and filtering AI-generated MOFs using molecular dynamics, density functional theory, and Monte Carlo simulations. These heterogeneous tasks are unified within an online learning framework that optimizes the utilization of available CPU and GPU resources across HPC systems. Performance metrics from a 450-node (14,400 AMD Zen 3 CPUs + 1800 NVIDIA A100 GPUs) supercomputer run demonstrate that MOFA achieves high-throughput generation of novel MOF structures, with CO_2 adsorption capacities ranking among the top 10 in the hypothetical MOF (hMOF) dataset. Furthermore, the production of high-quality MOFs exhibits a linear relationship with the number of nodes utilized. The modular architecture of MOFA will facilitate its integration into other scientific applications that dynamically combine GenAI with large-scale simulations.
DiGress: Discrete Denoising diffusion for graph generation
This work introduces DiGress, a discrete denoising diffusion model for generating graphs with categorical node and edge attributes. Our model utilizes a discrete diffusion process that progressively edits graphs with noise, through the process of adding or removing edges and changing the categories. A graph transformer network is trained to revert this process, simplifying the problem of distribution learning over graphs into a sequence of node and edge classification tasks. We further improve sample quality by introducing a Markovian noise model that preserves the marginal distribution of node and edge types during diffusion, and by incorporating auxiliary graph-theoretic features. A procedure for conditioning the generation on graph-level features is also proposed. DiGress achieves state-of-the-art performance on molecular and non-molecular datasets, with up to 3x validity improvement on a planar graph dataset. It is also the first model to scale to the large GuacaMol dataset containing 1.3M drug-like molecules without the use of molecule-specific representations.
Tackling Prevalent Conditions in Unsupervised Combinatorial Optimization: Cardinality, Minimum, Covering, and More
Combinatorial optimization (CO) is naturally discrete, making machine learning based on differentiable optimization inapplicable. Karalias & Loukas (2020) adapted the probabilistic method to incorporate CO into differentiable optimization. Their work ignited the research on unsupervised learning for CO, composed of two main components: probabilistic objectives and derandomization. However, each component confronts unique challenges. First, deriving objectives under various conditions (e.g., cardinality constraints and minimum) is nontrivial. Second, the derandomization process is underexplored, and the existing derandomization methods are either random sampling or naive rounding. In this work, we aim to tackle prevalent (i.e., commonly involved) conditions in unsupervised CO. First, we concretize the targets for objective construction and derandomization with theoretical justification. Then, for various conditions commonly involved in different CO problems, we derive nontrivial objectives and derandomization to meet the targets. Finally, we apply the derivations to various CO problems. Via extensive experiments on synthetic and real-world graphs, we validate the correctness of our derivations and show our empirical superiority w.r.t. both optimization quality and speed.
OpenGraph: Towards Open Graph Foundation Models
Graph learning has become indispensable for interpreting and harnessing relational data in diverse fields, ranging from recommendation systems to social network analysis. In this context, a variety of GNNs have emerged as promising methodologies for encoding the structural information of graphs. By effectively capturing the graph's underlying structure, these GNNs have shown great potential in enhancing performance in graph learning tasks, such as link prediction and node classification. However, despite their successes, a significant challenge persists: these advanced methods often face difficulties in generalizing to unseen graph data that significantly differs from the training instances. In this work, our aim is to advance the graph learning paradigm by developing a general graph foundation model. This model is designed to understand the complex topological patterns present in diverse graph data, enabling it to excel in zero-shot graph learning tasks across different downstream datasets. To achieve this goal, we address several key technical challenges in our OpenGraph model. Firstly, we propose a unified graph tokenizer to adapt our graph model to generalize well on unseen graph data, even when the underlying graph properties differ significantly from those encountered during training. Secondly, we develop a scalable graph transformer as the foundational encoder, which effectively captures node-wise dependencies within the global topological context. Thirdly, we introduce a data augmentation mechanism enhanced by a LLM to alleviate the limitations of data scarcity in real-world scenarios. Extensive experiments validate the effectiveness of our framework. By adapting our OpenGraph to new graph characteristics and comprehending the nuances of diverse graphs, our approach achieves remarkable zero-shot graph learning performance across various settings and domains.
Expectation-Complete Graph Representations with Homomorphisms
We investigate novel random graph embeddings that can be computed in expected polynomial time and that are able to distinguish all non-isomorphic graphs in expectation. Previous graph embeddings have limited expressiveness and either cannot distinguish all graphs or cannot be computed efficiently for every graph. To be able to approximate arbitrary functions on graphs, we are interested in efficient alternatives that become arbitrarily expressive with increasing resources. Our approach is based on Lov\'asz' characterisation of graph isomorphism through an infinite dimensional vector of homomorphism counts. Our empirical evaluation shows competitive results on several benchmark graph learning tasks.
Total Variation Graph Neural Networks
Recently proposed Graph Neural Networks (GNNs) for vertex clustering are trained with an unsupervised minimum cut objective, approximated by a Spectral Clustering (SC) relaxation. However, the SC relaxation is loose and, while it offers a closed-form solution, it also yields overly smooth cluster assignments that poorly separate the vertices. In this paper, we propose a GNN model that computes cluster assignments by optimizing a tighter relaxation of the minimum cut based on graph total variation (GTV). The cluster assignments can be used directly to perform vertex clustering or to implement graph pooling in a graph classification framework. Our model consists of two core components: i) a message-passing layer that minimizes the ell_1 distance in the features of adjacent vertices, which is key to achieving sharp transitions between clusters; ii) an unsupervised loss function that minimizes the GTV of the cluster assignments while ensuring balanced partitions. Experimental results show that our model outperforms other GNNs for vertex clustering and graph classification.
Omni-Mol: Exploring Universal Convergent Space for Omni-Molecular Tasks
Building generalist models has recently demonstrated remarkable capabilities in diverse scientific domains. Within the realm of molecular learning, several studies have explored unifying diverse tasks across diverse domains. However, negative conflicts and interference between molecules and knowledge from different domain may have a worse impact in threefold. First, conflicting molecular representations can lead to optimization difficulties for the models. Second, mixing and scaling up training data across diverse tasks is inherently challenging. Third, the computational cost of refined pretraining is prohibitively high. To address these limitations, this paper presents Omni-Mol, a scalable and unified LLM-based framework for direct instruction tuning. Omni-Mol builds on three key components to tackles conflicts: (1) a unified encoding mechanism for any task input; (2) an active-learning-driven data selection strategy that significantly reduces dataset size; (3) a novel design of the adaptive gradient stabilization module and anchor-and-reconcile MoE framework that ensures stable convergence. Experimentally, Omni-Mol achieves state-of-the-art performance across 15 molecular tasks, demonstrates the presence of scaling laws in the molecular domain, and is supported by extensive ablation studies and analyses validating the effectiveness of its design. The code and weights of the powerful AI-driven chemistry generalist are open-sourced at: https://anonymous.4open.science/r/Omni-Mol-8EDB.
Quantifying Network Similarity using Graph Cumulants
How might one test the hypothesis that networks were sampled from the same distribution? Here, we compare two statistical tests that use subgraph counts to address this question. The first uses the empirical subgraph densities themselves as estimates of those of the underlying distribution. The second test uses a new approach that converts these subgraph densities into estimates of the graph cumulants of the distribution (without any increase in computational complexity). We demonstrate -- via theory, simulation, and application to real data -- the superior statistical power of using graph cumulants. In summary, when analyzing data using subgraph/motif densities, we suggest using the corresponding graph cumulants instead.
About Graph Degeneracy, Representation Learning and Scalability
Graphs or networks are a very convenient way to represent data with lots of interaction. Recently, Machine Learning on Graph data has gained a lot of traction. In particular, vertex classification and missing edge detection have very interesting applications, ranging from drug discovery to recommender systems. To achieve such tasks, tremendous work has been accomplished to learn embedding of nodes and edges into finite-dimension vector spaces. This task is called Graph Representation Learning. However, Graph Representation Learning techniques often display prohibitive time and memory complexities, preventing their use in real-time with business size graphs. In this paper, we address this issue by leveraging a degeneracy property of Graphs - the K-Core Decomposition. We present two techniques taking advantage of this decomposition to reduce the time and memory consumption of walk-based Graph Representation Learning algorithms. We evaluate the performances, expressed in terms of quality of embedding and computational resources, of the proposed techniques on several academic datasets. Our code is available at https://github.com/SBrandeis/kcore-embedding
Natural Graph Networks
A key requirement for graph neural networks is that they must process a graph in a way that does not depend on how the graph is described. Traditionally this has been taken to mean that a graph network must be equivariant to node permutations. Here we show that instead of equivariance, the more general concept of naturality is sufficient for a graph network to be well-defined, opening up a larger class of graph networks. We define global and local natural graph networks, the latter of which are as scalable as conventional message passing graph neural networks while being more flexible. We give one practical instantiation of a natural network on graphs which uses an equivariant message network parameterization, yielding good performance on several benchmarks.
MMGDreamer: Mixed-Modality Graph for Geometry-Controllable 3D Indoor Scene Generation
Controllable 3D scene generation has extensive applications in virtual reality and interior design, where the generated scenes should exhibit high levels of realism and controllability in terms of geometry. Scene graphs provide a suitable data representation that facilitates these applications. However, current graph-based methods for scene generation are constrained to text-based inputs and exhibit insufficient adaptability to flexible user inputs, hindering the ability to precisely control object geometry. To address this issue, we propose MMGDreamer, a dual-branch diffusion model for scene generation that incorporates a novel Mixed-Modality Graph, visual enhancement module, and relation predictor. The mixed-modality graph allows object nodes to integrate textual and visual modalities, with optional relationships between nodes. It enhances adaptability to flexible user inputs and enables meticulous control over the geometry of objects in the generated scenes. The visual enhancement module enriches the visual fidelity of text-only nodes by constructing visual representations using text embeddings. Furthermore, our relation predictor leverages node representations to infer absent relationships between nodes, resulting in more coherent scene layouts. Extensive experimental results demonstrate that MMGDreamer exhibits superior control of object geometry, achieving state-of-the-art scene generation performance. Project page: https://yangzhifeio.github.io/project/MMGDreamer.
Reducing Training Time in Cross-Silo Federated Learning using Multigraph Topology
Federated learning is an active research topic since it enables several participants to jointly train a model without sharing local data. Currently, cross-silo federated learning is a popular training setting that utilizes a few hundred reliable data silos with high-speed access links to training a model. While this approach has been widely applied in real-world scenarios, designing a robust topology to reduce the training time remains an open problem. In this paper, we present a new multigraph topology for cross-silo federated learning. We first construct the multigraph using the overlay graph. We then parse this multigraph into different simple graphs with isolated nodes. The existence of isolated nodes allows us to perform model aggregation without waiting for other nodes, hence effectively reducing the training time. Intensive experiments on three public datasets show that our proposed method significantly reduces the training time compared with recent state-of-the-art topologies while maintaining the accuracy of the learned model. Our code can be found at https://github.com/aioz-ai/MultigraphFL
Change is Hard: A Closer Look at Subpopulation Shift
Machine learning models often perform poorly on subgroups that are underrepresented in the training data. Yet, little is understood on the variation in mechanisms that cause subpopulation shifts, and how algorithms generalize across such diverse shifts at scale. In this work, we provide a fine-grained analysis of subpopulation shift. We first propose a unified framework that dissects and explains common shifts in subgroups. We then establish a comprehensive benchmark of 20 state-of-the-art algorithms evaluated on 12 real-world datasets in vision, language, and healthcare domains. With results obtained from training over 10,000 models, we reveal intriguing observations for future progress in this space. First, existing algorithms only improve subgroup robustness over certain types of shifts but not others. Moreover, while current algorithms rely on group-annotated validation data for model selection, we find that a simple selection criterion based on worst-class accuracy is surprisingly effective even without any group information. Finally, unlike existing works that solely aim to improve worst-group accuracy (WGA), we demonstrate the fundamental tradeoff between WGA and other important metrics, highlighting the need to carefully choose testing metrics. Code and data are available at: https://github.com/YyzHarry/SubpopBench.
OpenMixup: Open Mixup Toolbox and Benchmark for Visual Representation Learning
Mixup augmentation has emerged as a widely used technique for improving the generalization ability of deep neural networks (DNNs). However, the lack of standardized implementations and benchmarks has impeded recent progress, resulting in poor reproducibility, unfair comparisons, and conflicting insights. In this paper, we introduce OpenMixup, the first mixup augmentation codebase, and benchmark for visual representation learning. Specifically, we train 18 representative mixup baselines from scratch and rigorously evaluate them across 11 image datasets of varying scales and granularity, ranging from fine-grained scenarios to complex non-iconic scenes. We also open-source our modular codebase, including a collection of popular vision backbones, optimization strategies, and analysis toolkits, which not only supports the benchmarking but enables broader mixup applications beyond classification, such as self-supervised learning and regression tasks. Through experiments and empirical analysis, we gain observations and insights on mixup performance-efficiency trade-offs, generalization, and optimization behaviors, and thereby identify preferred choices for different needs. To the best of our knowledge, OpenMixup has facilitated several recent studies. We believe this work can further advance reproducible mixup augmentation research and thereby lay a solid ground for future progress in the community. The source code and user documents are available at https://github.com/Westlake-AI/openmixup.
Towards Graph Foundation Models: A Survey and Beyond
Foundation models have emerged as critical components in a variety of artificial intelligence applications, and showcase significant success in natural language processing and several other domains. Meanwhile, the field of graph machine learning is witnessing a paradigm transition from shallow methods to more sophisticated deep learning approaches. The capabilities of foundation models to generalize and adapt motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm. This paradigm envisions models that are pre-trained on extensive graph data and can be adapted for various graph tasks. Despite this burgeoning interest, there is a noticeable lack of clear definitions and systematic analyses pertaining to this new domain. To this end, this article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies. We proceed to classify the existing work related to GFMs into three distinct categories, based on their dependence on graph neural networks and large language models. In addition to providing a thorough review of the current state of GFMs, this article also outlooks potential avenues for future research in this rapidly evolving domain.
OpenPSG: Open-set Panoptic Scene Graph Generation via Large Multimodal Models
Panoptic Scene Graph Generation (PSG) aims to segment objects and recognize their relations, enabling the structured understanding of an image. Previous methods focus on predicting predefined object and relation categories, hence limiting their applications in the open world scenarios. With the rapid development of large multimodal models (LMMs), significant progress has been made in open-set object detection and segmentation, yet open-set relation prediction in PSG remains unexplored. In this paper, we focus on the task of open-set relation prediction integrated with a pretrained open-set panoptic segmentation model to achieve true open-set panoptic scene graph generation (OpenPSG). Our OpenPSG leverages LMMs to achieve open-set relation prediction in an autoregressive manner. We introduce a relation query transformer to efficiently extract visual features of object pairs and estimate the existence of relations between them. The latter can enhance the prediction efficiency by filtering irrelevant pairs. Finally, we design the generation and judgement instructions to perform open-set relation prediction in PSG autoregressively. To our knowledge, we are the first to propose the open-set PSG task. Extensive experiments demonstrate that our method achieves state-of-the-art performance in open-set relation prediction and panoptic scene graph generation. Code is available at https://github.com/franciszzj/OpenPSG.
Isomorphic-Consistent Variational Graph Auto-Encoders for Multi-Level Graph Representation Learning
Graph representation learning is a fundamental research theme and can be generalized to benefit multiple downstream tasks from the node and link levels to the higher graph level. In practice, it is desirable to develop task-agnostic general graph representation learning methods that are typically trained in an unsupervised manner. Related research reveals that the power of graph representation learning methods depends on whether they can differentiate distinct graph structures as different embeddings and map isomorphic graphs to consistent embeddings (i.e., the isomorphic consistency of graph models). However, for task-agnostic general graph representation learning, existing unsupervised graph models, represented by the variational graph auto-encoders (VGAEs), can only keep the isomorphic consistency within the subgraphs of 1-hop neighborhoods and thus usually manifest inferior performance on the more difficult higher-level tasks. To overcome the limitations of existing unsupervised methods, in this paper, we propose the Isomorphic-Consistent VGAE (IsoC-VGAE) for multi-level task-agnostic graph representation learning. We first devise a decoding scheme to provide a theoretical guarantee of keeping the isomorphic consistency under the settings of unsupervised learning. We then propose the Inverse Graph Neural Network (Inv-GNN) decoder as its intuitive realization, which trains the model via reconstructing the GNN node embeddings with multi-hop neighborhood information, so as to maintain the high-order isomorphic consistency within the VGAE framework. We conduct extensive experiments on the representative graph learning tasks at different levels, including node classification, link prediction and graph classification, and the results verify that our proposed model generally outperforms both the state-of-the-art unsupervised methods and representative supervised methods.
HiGPT: Heterogeneous Graph Language Model
Heterogeneous graph learning aims to capture complex relationships and diverse relational semantics among entities in a heterogeneous graph to obtain meaningful representations for nodes and edges. Recent advancements in heterogeneous graph neural networks (HGNNs) have achieved state-of-the-art performance by considering relation heterogeneity and using specialized message functions and aggregation rules. However, existing frameworks for heterogeneous graph learning have limitations in generalizing across diverse heterogeneous graph datasets. Most of these frameworks follow the "pre-train" and "fine-tune" paradigm on the same dataset, which restricts their capacity to adapt to new and unseen data. This raises the question: "Can we generalize heterogeneous graph models to be well-adapted to diverse downstream learning tasks with distribution shifts in both node token sets and relation type heterogeneity?'' To tackle those challenges, we propose HiGPT, a general large graph model with Heterogeneous graph instruction-tuning paradigm. Our framework enables learning from arbitrary heterogeneous graphs without the need for any fine-tuning process from downstream datasets. To handle distribution shifts in heterogeneity, we introduce an in-context heterogeneous graph tokenizer that captures semantic relationships in different heterogeneous graphs, facilitating model adaptation. We incorporate a large corpus of heterogeneity-aware graph instructions into our HiGPT, enabling the model to effectively comprehend complex relation heterogeneity and distinguish between various types of graph tokens. Furthermore, we introduce the Mixture-of-Thought (MoT) instruction augmentation paradigm to mitigate data scarcity by generating diverse and informative instructions. Through comprehensive evaluations, our proposed framework demonstrates exceptional performance in terms of generalization performance.
Hologram Reasoning for Solving Algebra Problems with Geometry Diagrams
Solving Algebra Problems with Geometry Diagrams (APGDs) is still a challenging problem because diagram processing is not studied as intensively as language processing. To work against this challenge, this paper proposes a hologram reasoning scheme and develops a high-performance method for solving APGDs by using this scheme. To reach this goal, it first defines a hologram, being a kind of graph, and proposes a hologram generator to convert a given APGD into a hologram, which represents the entire information of APGD and the relations for solving the problem can be acquired from it by a uniform way. Then HGR, a hologram reasoning method employs a pool of prepared graph models to derive algebraic equations, which is consistent with the geometric theorems. This method is able to be updated by adding new graph models into the pool. Lastly, it employs deep reinforcement learning to enhance the efficiency of model selection from the pool. The entire HGR not only ensures high solution accuracy with fewer reasoning steps but also significantly enhances the interpretability of the solution process by providing descriptions of all reasoning steps. Experimental results demonstrate the effectiveness of HGR in improving both accuracy and interpretability in solving APGDs.
Generalized Sum Pooling for Metric Learning
A common architectural choice for deep metric learning is a convolutional neural network followed by global average pooling (GAP). Albeit simple, GAP is a highly effective way to aggregate information. One possible explanation for the effectiveness of GAP is considering each feature vector as representing a different semantic entity and GAP as a convex combination of them. Following this perspective, we generalize GAP and propose a learnable generalized sum pooling method (GSP). GSP improves GAP with two distinct abilities: i) the ability to choose a subset of semantic entities, effectively learning to ignore nuisance information, and ii) learning the weights corresponding to the importance of each entity. Formally, we propose an entropy-smoothed optimal transport problem and show that it is a strict generalization of GAP, i.e., a specific realization of the problem gives back GAP. We show that this optimization problem enjoys analytical gradients enabling us to use it as a direct learnable replacement for GAP. We further propose a zero-shot loss to ease the learning of GSP. We show the effectiveness of our method with extensive evaluations on 4 popular metric learning benchmarks. Code is available at: GSP-DML Framework
Dissecting graph measure performance for node clustering in LFR parameter space
Graph measures that express closeness or distance between nodes can be employed for graph nodes clustering using metric clustering algorithms. There are numerous measures applicable to this task, and which one performs better is an open question. We study the performance of 25 graph measures on generated graphs with different parameters. While usually measure comparisons are limited to general measure ranking on a particular dataset, we aim to explore the performance of various measures depending on graph features. Using an LFR graph generator, we create a dataset of 11780 graphs covering the whole LFR parameter space. For each graph, we assess the quality of clustering with k-means algorithm for each considered measure. Based on this, we determine the best measure for each area of the parameter space. We find that the parameter space consists of distinct zones where one particular measure is the best. We analyze the geometry of the resulting zones and describe it with simple criteria. Given particular graph parameters, this allows us to recommend a particular measure to use for clustering.
GraphFM: A Comprehensive Benchmark for Graph Foundation Model
Foundation Models (FMs) serve as a general class for the development of artificial intelligence systems, offering broad potential for generalization across a spectrum of downstream tasks. Despite extensive research into self-supervised learning as the cornerstone of FMs, several outstanding issues persist in Graph Foundation Models that rely on graph self-supervised learning, namely: 1) Homogenization. The extent of generalization capability on downstream tasks remains unclear. 2) Scalability. It is unknown how effectively these models can scale to large datasets. 3) Efficiency. The training time and memory usage of these models require evaluation. 4) Training Stop Criteria. Determining the optimal stopping strategy for pre-training across multiple tasks to maximize performance on downstream tasks. To address these questions, we have constructed a rigorous benchmark that thoroughly analyzes and studies the generalization and scalability of self-supervised Graph Neural Network (GNN) models. Regarding generalization, we have implemented and compared the performance of various self-supervised GNN models, trained to generate node representations, across tasks such as node classification, link prediction, and node clustering. For scalability, we have compared the performance of various models after training using full-batch and mini-batch strategies. Additionally, we have assessed the training efficiency of these models by conducting experiments to test their GPU memory usage and throughput. Through these experiments, we aim to provide insights to motivate future research. The code for this benchmark is publicly available at https://github.com/NYUSHCS/GraphFM.
RankMixup: Ranking-Based Mixup Training for Network Calibration
Network calibration aims to accurately estimate the level of confidences, which is particularly important for employing deep neural networks in real-world systems. Recent approaches leverage mixup to calibrate the network's predictions during training. However, they do not consider the problem that mixtures of labels in mixup may not accurately represent the actual distribution of augmented samples. In this paper, we present RankMixup, a novel mixup-based framework alleviating the problem of the mixture of labels for network calibration. To this end, we propose to use an ordinal ranking relationship between raw and mixup-augmented samples as an alternative supervisory signal to the label mixtures for network calibration. We hypothesize that the network should estimate a higher level of confidence for the raw samples than the augmented ones (Fig.1). To implement this idea, we introduce a mixup-based ranking loss (MRL) that encourages lower confidences for augmented samples compared to raw ones, maintaining the ranking relationship. We also propose to leverage the ranking relationship among multiple mixup-augmented samples to further improve the calibration capability. Augmented samples with larger mixing coefficients are expected to have higher confidences and vice versa (Fig.1). That is, the order of confidences should be aligned with that of mixing coefficients. To this end, we introduce a novel loss, M-NDCG, in order to reduce the number of misaligned pairs of the coefficients and confidences. Extensive experimental results on standard benchmarks for network calibration demonstrate the effectiveness of RankMixup.
Tackling the Challenges in Scene Graph Generation with Local-to-Global Interactions
In this work, we seek new insights into the underlying challenges of the Scene Graph Generation (SGG) task. Quantitative and qualitative analysis of the Visual Genome dataset implies -- 1) Ambiguity: even if inter-object relationship contains the same object (or predicate), they may not be visually or semantically similar, 2) Asymmetry: despite the nature of the relationship that embodied the direction, it was not well addressed in previous studies, and 3) Higher-order contexts: leveraging the identities of certain graph elements can help to generate accurate scene graphs. Motivated by the analysis, we design a novel SGG framework, Local-to-Global Interaction Networks (LOGIN). Locally, interactions extract the essence between three instances of subject, object, and background, while baking direction awareness into the network by explicitly constraining the input order of subject and object. Globally, interactions encode the contexts between every graph component (i.e., nodes and edges). Finally, Attract & Repel loss is utilized to fine-tune the distribution of predicate embeddings. By design, our framework enables predicting the scene graph in a bottom-up manner, leveraging the possible complementariness. To quantify how much LOGIN is aware of relational direction, a new diagnostic task called Bidirectional Relationship Classification (BRC) is also proposed. Experimental results demonstrate that LOGIN can successfully distinguish relational direction than existing methods (in BRC task), while showing state-of-the-art results on the Visual Genome benchmark (in SGG task).
Boosting Discriminative Visual Representation Learning with Scenario-Agnostic Mixup
Mixup is a well-known data-dependent augmentation technique for DNNs, consisting of two sub-tasks: mixup generation and classification. However, the recent dominant online training method confines mixup to supervised learning (SL), and the objective of the generation sub-task is limited to selected sample pairs instead of the whole data manifold, which might cause trivial solutions. To overcome such limitations, we comprehensively study the objective of mixup generation and propose Scenario-Agnostic Mixup (SAMix) for both SL and Self-supervised Learning (SSL) scenarios. Specifically, we hypothesize and verify the objective function of mixup generation as optimizing local smoothness between two mixed classes subject to global discrimination from other classes. Accordingly, we propose eta-balanced mixup loss for complementary learning of the two sub-objectives. Meanwhile, a label-free generation sub-network is designed, which effectively provides non-trivial mixup samples and improves transferable abilities. Moreover, to reduce the computational cost of online training, we further introduce a pre-trained version, SAMix^P, achieving more favorable efficiency and generalizability. Extensive experiments on nine SL and SSL benchmarks demonstrate the consistent superiority and versatility of SAMix compared with existing methods.
Discrete Latent Graph Generative Modeling with Diffusion Bridges
Learning graph generative models over latent spaces has received less attention compared to models that operate on the original data space and has so far demonstrated lacklustre performance. We present GLAD a latent space graph generative model. Unlike most previous latent space graph generative models, GLAD operates on a discrete latent space that preserves to a significant extent the discrete nature of the graph structures making no unnatural assumptions such as latent space continuity. We learn the prior of our discrete latent space by adapting diffusion bridges to its structure. By operating over an appropriately constructed latent space we avoid relying on decompositions that are often used in models that operate in the original data space. We present experiments on a series of graph benchmark datasets which clearly show the superiority of the discrete latent space and obtain state of the art graph generative performance, making GLAD the first latent space graph generative model with competitive performance. Our source code is published at: https://github.com/v18nguye/GLAD.
GraphEdit: Large Language Models for Graph Structure Learning
Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data by generating novel graph structures. Graph Neural Networks (GNNs) have emerged as promising GSL solutions, utilizing recursive message passing to encode node-wise inter-dependencies. However, many existing GSL methods heavily depend on explicit graph structural information as supervision signals, leaving them susceptible to challenges such as data noise and sparsity. In this work, we propose GraphEdit, an approach that leverages large language models (LLMs) to learn complex node relationships in graph-structured data. By enhancing the reasoning capabilities of LLMs through instruction-tuning over graph structures, we aim to overcome the limitations associated with explicit graph structural information and enhance the reliability of graph structure learning. Our approach not only effectively denoises noisy connections but also identifies node-wise dependencies from a global perspective, providing a comprehensive understanding of the graph structure. We conduct extensive experiments on multiple benchmark datasets to demonstrate the effectiveness and robustness of GraphEdit across various settings. We have made our model implementation available at: https://github.com/HKUDS/GraphEdit.
Theoretical Guarantees of Learning Ensembling Strategies with Applications to Time Series Forecasting
Ensembling is among the most popular tools in machine learning (ML) due to its effectiveness in minimizing variance and thus improving generalization. Most ensembling methods for black-box base learners fall under the umbrella of "stacked generalization," namely training an ML algorithm that takes the inferences from the base learners as input. While stacking has been widely applied in practice, its theoretical properties are poorly understood. In this paper, we prove a novel result, showing that choosing the best stacked generalization from a (finite or finite-dimensional) family of stacked generalizations based on cross-validated performance does not perform "much worse" than the oracle best. Our result strengthens and significantly extends the results in Van der Laan et al. (2007). Inspired by the theoretical analysis, we further propose a particular family of stacked generalizations in the context of probabilistic forecasting, each one with a different sensitivity for how much the ensemble weights are allowed to vary across items, timestamps in the forecast horizon, and quantiles. Experimental results demonstrate the performance gain of the proposed method.
Higher-order Graph Convolutional Network with Flower-Petals Laplacians on Simplicial Complexes
Despite the recent successes of vanilla Graph Neural Networks (GNNs) on many tasks, their foundation on pairwise interaction networks inherently limits their capacity to discern latent higher-order interactions in complex systems. To bridge this capability gap, we propose a novel approach exploiting the rich mathematical theory of simplicial complexes (SCs) - a robust tool for modeling higher-order interactions. Current SC-based GNNs are burdened by high complexity and rigidity, and quantifying higher-order interaction strengths remains challenging. Innovatively, we present a higher-order Flower-Petals (FP) model, incorporating FP Laplacians into SCs. Further, we introduce a Higher-order Graph Convolutional Network (HiGCN) grounded in FP Laplacians, capable of discerning intrinsic features across varying topological scales. By employing learnable graph filters, a parameter group within each FP Laplacian domain, we can identify diverse patterns where the filters' weights serve as a quantifiable measure of higher-order interaction strengths. The theoretical underpinnings of HiGCN's advanced expressiveness are rigorously demonstrated. Additionally, our empirical investigations reveal that the proposed model accomplishes state-of-the-art (SOTA) performance on a range of graph tasks and provides a scalable and flexible solution to explore higher-order interactions in graphs.
Flag Aggregator: Scalable Distributed Training under Failures and Augmented Losses using Convex Optimization
Modern ML applications increasingly rely on complex deep learning models and large datasets. There has been an exponential growth in the amount of computation needed to train the largest models. Therefore, to scale computation and data, these models are inevitably trained in a distributed manner in clusters of nodes, and their updates are aggregated before being applied to the model. However, a distributed setup is prone to Byzantine failures of individual nodes, components, and software. With data augmentation added to these settings, there is a critical need for robust and efficient aggregation systems. We define the quality of workers as reconstruction ratios in (0,1], and formulate aggregation as a Maximum Likelihood Estimation procedure using Beta densities. We show that the Regularized form of log-likelihood wrt subspace can be approximately solved using iterative least squares solver, and provide convergence guarantees using recent Convex Optimization landscape results. Our empirical findings demonstrate that our approach significantly enhances the robustness of state-of-the-art Byzantine resilient aggregators. We evaluate our method in a distributed setup with a parameter server, and show simultaneous improvements in communication efficiency and accuracy across various tasks. The code is publicly available at https://github.com/hamidralmasi/FlagAggregator
Weighted Flow Diffusion for Local Graph Clustering with Node Attributes: an Algorithm and Statistical Guarantees
Local graph clustering methods aim to detect small clusters in very large graphs without the need to process the whole graph. They are fundamental and scalable tools for a wide range of tasks such as local community detection, node ranking and node embedding. While prior work on local graph clustering mainly focuses on graphs without node attributes, modern real-world graph datasets typically come with node attributes that provide valuable additional information. We present a simple local graph clustering algorithm for graphs with node attributes, based on the idea of diffusing mass locally in the graph while accounting for both structural and attribute proximities. Using high-dimensional concentration results, we provide statistical guarantees on the performance of the algorithm for the recovery of a target cluster with a single seed node. We give conditions under which a target cluster generated from a fairly general contextual random graph model, which includes both the stochastic block model and the planted cluster model as special cases, can be fully recovered with bounded false positives. Empirically, we validate all theoretical claims using synthetic data, and we show that incorporating node attributes leads to superior local clustering performances using real-world graph datasets.
Scalable Diffusion for Materials Generation
Generative models trained on internet-scale data are capable of generating novel and realistic texts, images, and videos. A natural next question is whether these models can advance science, for example by generating novel stable materials. Traditionally, models with explicit structures (e.g., graphs) have been used in modeling structural relationships in scientific data (e.g., atoms and bonds in crystals), but generating structures can be difficult to scale to large and complex systems. Another challenge in generating materials is the mismatch between standard generative modeling metrics and downstream applications. For instance, common metrics such as the reconstruction error do not correlate well with the downstream goal of discovering stable materials. In this work, we tackle the scalability challenge by developing a unified crystal representation that can represent any crystal structure (UniMat), followed by training a diffusion probabilistic model on these UniMat representations. Our empirical results suggest that despite the lack of explicit structure modeling, UniMat can generate high fidelity crystal structures from larger and more complex chemical systems, outperforming previous graph-based approaches under various generative modeling metrics. To better connect the generation quality of materials to downstream applications, such as discovering novel stable materials, we propose additional metrics for evaluating generative models of materials, including per-composition formation energy and stability with respect to convex hulls through decomposition energy from Density Function Theory (DFT). Lastly, we show that conditional generation with UniMat can scale to previously established crystal datasets with up to millions of crystals structures, outperforming random structure search (the current leading method for structure discovery) in discovering new stable materials.
Heterogeneous Graph Contrastive Learning with Meta-path Contexts and Adaptively Weighted Negative Samples
Heterogeneous graph contrastive learning has received wide attention recently. Some existing methods use meta-paths, which are sequences of object types that capture semantic relationships between objects, to construct contrastive views. However, most of them ignore the rich meta-path context information that describes how two objects are connected by meta-paths. Further, they fail to distinguish negative samples, which could adversely affect the model performance. To address the problems, we propose MEOW, which considers both meta-path contexts and weighted negative samples. Specifically, MEOW constructs a coarse view and a fine-grained view for contrast. The former reflects which objects are connected by meta-paths, while the latter uses meta-path contexts and characterizes details on how the objects are connected. Then, we theoretically analyze the InfoNCE loss and recognize its limitations for computing gradients of negative samples. To better distinguish negative samples, we learn hard-valued weights for them based on node clustering and use prototypical contrastive learning to pull close embeddings of nodes in the same cluster. In addition, we propose a variant model AdaMEOW that adaptively learns soft-valued weights of negative samples to further improve node representation. Finally, we conduct extensive experiments to show the superiority of MEOW and AdaMEOW against other state-of-the-art methods.
DomainGAN: Generating Adversarial Examples to Attack Domain Generation Algorithm Classifiers
Domain Generation Algorithms (DGAs) are frequently used to generate numerous domains for use by botnets. These domains are often utilized as rendezvous points for servers that malware has command and control over. There are many algorithms that are used to generate domains, however many of these algorithms are simplistic and easily detected by traditional machine learning techniques. In this paper, three variants of Generative Adversarial Networks (GANs) are optimized to generate domains which have similar characteristics of benign domains, resulting in domains which greatly evade several state-of-the-art deep learning based DGA classifiers. We additionally provide a detailed analysis into offensive usability for each variant with respect to repeated and existing domain collisions. Finally, we fine-tune the state-of-the-art DGA classifiers by adding GAN generated samples to their original training datasets and analyze the changes in performance. Our results conclude that GAN based DGAs are superior in evading DGA classifiers in comparison to traditional DGAs, and of the variants, the Wasserstein GAN with Gradient Penalty (WGANGP) is the highest performing DGA for uses both offensively and defensively.
Temporal Graph Analysis with TGX
Real-world networks, with their evolving relations, are best captured as temporal graphs. However, existing software libraries are largely designed for static graphs where the dynamic nature of temporal graphs is ignored. Bridging this gap, we introduce TGX, a Python package specially designed for analysis of temporal networks that encompasses an automated pipeline for data loading, data processing, and analysis of evolving graphs. TGX provides access to eleven built-in datasets and eight external Temporal Graph Benchmark (TGB) datasets as well as any novel datasets in the .csv format. Beyond data loading, TGX facilitates data processing functionalities such as discretization of temporal graphs and node subsampling to accelerate working with larger datasets. For comprehensive investigation, TGX offers network analysis by providing a diverse set of measures, including average node degree and the evolving number of nodes and edges per timestamp. Additionally, the package consolidates meaningful visualization plots indicating the evolution of temporal patterns, such as Temporal Edge Appearance (TEA) and Temporal Edge Trafficc (TET) plots. The TGX package is a robust tool for examining the features of temporal graphs and can be used in various areas like studying social networks, citation networks, and tracking user interactions. We plan to continuously support and update TGX based on community feedback. TGX is publicly available on: https://github.com/ComplexData-MILA/TGX.
LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation
Graph Convolution Network (GCN) has become new state-of-the-art for collaborative filtering. Nevertheless, the reasons of its effectiveness for recommendation are not well understood. Existing work that adapts GCN to recommendation lacks thorough ablation analyses on GCN, which is originally designed for graph classification tasks and equipped with many neural network operations. However, we empirically find that the two most common designs in GCNs -- feature transformation and nonlinear activation -- contribute little to the performance of collaborative filtering. Even worse, including them adds to the difficulty of training and degrades recommendation performance. In this work, we aim to simplify the design of GCN to make it more concise and appropriate for recommendation. We propose a new model named LightGCN, including only the most essential component in GCN -- neighborhood aggregation -- for collaborative filtering. Specifically, LightGCN learns user and item embeddings by linearly propagating them on the user-item interaction graph, and uses the weighted sum of the embeddings learned at all layers as the final embedding. Such simple, linear, and neat model is much easier to implement and train, exhibiting substantial improvements (about 16.0\% relative improvement on average) over Neural Graph Collaborative Filtering (NGCF) -- a state-of-the-art GCN-based recommender model -- under exactly the same experimental setting. Further analyses are provided towards the rationality of the simple LightGCN from both analytical and empirical perspectives.
Glauber Generative Model: Discrete Diffusion Models via Binary Classification
We introduce the Glauber Generative Model (GGM), a new class of discrete diffusion models, to obtain new samples from a distribution given samples from a discrete space. GGM deploys a discrete Markov chain called the heat bath dynamics (or the Glauber dynamics) to denoise a sequence of noisy tokens to a sample from a joint distribution of discrete tokens. Our novel conceptual framework provides an exact reduction of the task of learning the denoising Markov chain to solving a class of binary classification tasks. More specifically, the model learns to classify a given token in a noisy sequence as signal or noise. In contrast, prior works on discrete diffusion models either solve regression problems to learn importance ratios, or minimize loss functions given by variational approximations. We apply GGM to language modeling and image generation, where images are discretized using image tokenizers like VQGANs. We show that it outperforms existing discrete diffusion models in language generation, and demonstrates strong performance for image generation without using dataset-specific image tokenizers. We also show that our model is capable of performing well in zero-shot control settings like text and image infilling.
Graph Transformers for Large Graphs
Transformers have recently emerged as powerful neural networks for graph learning, showcasing state-of-the-art performance on several graph property prediction tasks. However, these results have been limited to small-scale graphs, where the computational feasibility of the global attention mechanism is possible. The next goal is to scale up these architectures to handle very large graphs on the scale of millions or even billions of nodes. With large-scale graphs, global attention learning is proven impractical due to its quadratic complexity w.r.t. the number of nodes. On the other hand, neighborhood sampling techniques become essential to manage large graph sizes, yet finding the optimal trade-off between speed and accuracy with sampling techniques remains challenging. This work advances representation learning on single large-scale graphs with a focus on identifying model characteristics and critical design constraints for developing scalable graph transformer (GT) architectures. We argue such GT requires layers that can adeptly learn both local and global graph representations while swiftly sampling the graph topology. As such, a key innovation of this work lies in the creation of a fast neighborhood sampling technique coupled with a local attention mechanism that encompasses a 4-hop reception field, but achieved through just 2-hop operations. This local node embedding is then integrated with a global node embedding, acquired via another self-attention layer with an approximate global codebook, before finally sent through a downstream layer for node predictions. The proposed GT framework, named LargeGT, overcomes previous computational bottlenecks and is validated on three large-scale node classification benchmarks. We report a 3x speedup and 16.8% performance gain on ogbn-products and snap-patents, while we also scale LargeGT on ogbn-papers100M with a 5.9% performance improvement.
The Model Openness Framework: Promoting Completeness and Openness for Reproducibility, Transparency, and Usability in Artificial Intelligence
Generative AI (GAI) offers unprecedented opportunities for research and innovation, but its commercialization has raised concerns about transparency, reproducibility, and safety. Many open GAI models lack the necessary components for full understanding and reproducibility, and some use restrictive licenses whilst claiming to be ``open-source''. To address these concerns, we propose the Model Openness Framework (MOF), a ranked classification system that rates machine learning models based on their completeness and openness, following principles of open science, open source, open data, and open access. The MOF requires specific components of the model development lifecycle to be included and released under appropriate open licenses. This framework aims to prevent misrepresentation of models claiming to be open, guide researchers and developers in providing all model components under permissive licenses, and help individuals and organizations identify models that can be safely adopted without restrictions. By promoting transparency and reproducibility, the MOF combats ``openwashing'' practices and establishes completeness and openness as primary criteria alongside the core tenets of responsible AI. Wide adoption of the MOF will foster a more open AI ecosystem, benefiting research, innovation, and adoption of state-of-the-art models.
One-Nearest-Neighbor Search is All You Need for Minimax Optimal Regression and Classification
Recently, Qiao, Duan, and Cheng~(2019) proposed a distributed nearest-neighbor classification method, in which a massive dataset is split into smaller groups, each processed with a k-nearest-neighbor classifier, and the final class label is predicted by a majority vote among these groupwise class labels. This paper shows that the distributed algorithm with k=1 over a sufficiently large number of groups attains a minimax optimal error rate up to a multiplicative logarithmic factor under some regularity conditions, for both regression and classification problems. Roughly speaking, distributed 1-nearest-neighbor rules with M groups has a performance comparable to standard Theta(M)-nearest-neighbor rules. In the analysis, alternative rules with a refined aggregation method are proposed and shown to attain exact minimax optimal rates.
Graph Representation Learning for Road Type Classification
We present a novel learning-based approach to graph representations of road networks employing state-of-the-art graph convolutional neural networks. Our approach is applied to realistic road networks of 17 cities from Open Street Map. While edge features are crucial to generate descriptive graph representations of road networks, graph convolutional networks usually rely on node features only. We show that the highly representative edge features can still be integrated into such networks by applying a line graph transformation. We also propose a method for neighborhood sampling based on a topological neighborhood composed of both local and global neighbors. We compare the performance of learning representations using different types of neighborhood aggregation functions in transductive and inductive tasks and in supervised and unsupervised learning. Furthermore, we propose a novel aggregation approach, Graph Attention Isomorphism Network, GAIN. Our results show that GAIN outperforms state-of-the-art methods on the road type classification problem.
Graph Contrastive Learning with Augmentations
Generalizable, transferrable, and robust representation learning on graph-structured data remains a challenge for current graph neural networks (GNNs). Unlike what has been developed for convolutional neural networks (CNNs) for image data, self-supervised learning and pre-training are less explored for GNNs. In this paper, we propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data. We first design four types of graph augmentations to incorporate various priors. We then systematically study the impact of various combinations of graph augmentations on multiple datasets, in four different settings: semi-supervised, unsupervised, and transfer learning as well as adversarial attacks. The results show that, even without tuning augmentation extents nor using sophisticated GNN architectures, our GraphCL framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods. We also investigate the impact of parameterized graph augmentation extents and patterns, and observe further performance gains in preliminary experiments. Our codes are available at https://github.com/Shen-Lab/GraphCL.
Tired of Over-smoothing? Stress Graph Drawing Is All You Need!
In designing and applying graph neural networks, we often fall into some optimization pitfalls, the most deceptive of which is that we can only build a deep model by solving over-smoothing. The fundamental reason is that we do not understand how graph neural networks work. Stress graph drawing can offer a unique viewpoint to message iteration in the graph, such as the root of the over-smoothing problem lies in the inability of graph models to maintain an ideal distance between nodes. We further elucidate the trigger conditions of over-smoothing and propose Stress Graph Neural Networks. By introducing the attractive and repulsive message passing from stress iteration, we show how to build a deep model without preventing over-smoothing, how to use repulsive information, and how to optimize the current message-passing scheme to approximate the full stress message propagation. By performing different tasks on 23 datasets, we verified the effectiveness of our attractive and repulsive models and the derived relationship between stress iteration and graph neural networks. We believe that stress graph drawing will be a popular resource for understanding and designing graph neural networks.
PyKale: Knowledge-Aware Machine Learning from Multiple Sources in Python
Machine learning is a general-purpose technology holding promises for many interdisciplinary research problems. However, significant barriers exist in crossing disciplinary boundaries when most machine learning tools are developed in different areas separately. We present Pykale - a Python library for knowledge-aware machine learning on graphs, images, texts, and videos to enable and accelerate interdisciplinary research. We formulate new green machine learning guidelines based on standard software engineering practices and propose a novel pipeline-based application programming interface (API). PyKale focuses on leveraging knowledge from multiple sources for accurate and interpretable prediction, thus supporting multimodal learning and transfer learning (particularly domain adaptation) with latest deep learning and dimensionality reduction models. We build PyKale on PyTorch and leverage the rich PyTorch ecosystem. Our pipeline-based API design enforces standardization and minimalism, embracing green machine learning concepts via reducing repetitions and redundancy, reusing existing resources, and recycling learning models across areas. We demonstrate its interdisciplinary nature via examples in bioinformatics, knowledge graph, image/video recognition, and medical imaging.
Score-based Generative Modeling of Graphs via the System of Stochastic Differential Equations
Generating graph-structured data requires learning the underlying distribution of graphs. Yet, this is a challenging problem, and the previous graph generative methods either fail to capture the permutation-invariance property of graphs or cannot sufficiently model the complex dependency between nodes and edges, which is crucial for generating real-world graphs such as molecules. To overcome such limitations, we propose a novel score-based generative model for graphs with a continuous-time framework. Specifically, we propose a new graph diffusion process that models the joint distribution of the nodes and edges through a system of stochastic differential equations (SDEs). Then, we derive novel score matching objectives tailored for the proposed diffusion process to estimate the gradient of the joint log-density with respect to each component, and introduce a new solver for the system of SDEs to efficiently sample from the reverse diffusion process. We validate our graph generation method on diverse datasets, on which it either achieves significantly superior or competitive performance to the baselines. Further analysis shows that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule, demonstrating the effectiveness of the system of SDEs in modeling the node-edge relationships. Our code is available at https://github.com/harryjo97/GDSS.
FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset
The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.
Unleashing the Potential of Fractional Calculus in Graph Neural Networks with FROND
We introduce the FRactional-Order graph Neural Dynamical network (FROND), a new continuous graph neural network (GNN) framework. Unlike traditional continuous GNNs that rely on integer-order differential equations, FROND employs the Caputo fractional derivative to leverage the non-local properties of fractional calculus. This approach enables the capture of long-term dependencies in feature updates, moving beyond the Markovian update mechanisms in conventional integer-order models and offering enhanced capabilities in graph representation learning. We offer an interpretation of the node feature updating process in FROND from a non-Markovian random walk perspective when the feature updating is particularly governed by a diffusion process. We demonstrate analytically that oversmoothing can be mitigated in this setting. Experimentally, we validate the FROND framework by comparing the fractional adaptations of various established integer-order continuous GNNs, demonstrating their consistently improved performance and underscoring the framework's potential as an effective extension to enhance traditional continuous GNNs. The code is available at https://github.com/zknus/ICLR2024-FROND.
Towards Better Graph Representation Learning with Parameterized Decomposition & Filtering
Proposing an effective and flexible matrix to represent a graph is a fundamental challenge that has been explored from multiple perspectives, e.g., filtering in Graph Fourier Transforms. In this work, we develop a novel and general framework which unifies many existing GNN models from the view of parameterized decomposition and filtering, and show how it helps to enhance the flexibility of GNNs while alleviating the smoothness and amplification issues of existing models. Essentially, we show that the extensively studied spectral graph convolutions with learnable polynomial filters are constrained variants of this formulation, and releasing these constraints enables our model to express the desired decomposition and filtering simultaneously. Based on this generalized framework, we develop models that are simple in implementation but achieve significant improvements and computational efficiency on a variety of graph learning tasks. Code is available at https://github.com/qslim/PDF.
Compositional Deep Learning
Neural networks have become an increasingly popular tool for solving many real-world problems. They are a general framework for differentiable optimization which includes many other machine learning approaches as special cases. In this thesis we build a category-theoretic formalism around a class of neural networks exemplified by CycleGAN. CycleGAN is a collection of neural networks, closed under composition, whose inductive bias is increased by enforcing composition invariants, i.e. cycle-consistencies. Inspired by Functorial Data Migration, we specify the interconnection of these networks using a categorical schema, and network instances as set-valued functors on this schema. We also frame neural network architectures, datasets, models, and a number of other concepts in a categorical setting and thus show a special class of functors, rather than functions, can be learned using gradient descent. We use the category-theoretic framework to conceive a novel neural network architecture whose goal is to learn the task of object insertion and object deletion in images with unpaired data. We test the architecture on three different datasets and obtain promising results.
Compositional Feature Augmentation for Unbiased Scene Graph Generation
Scene Graph Generation (SGG) aims to detect all the visual relation triplets <sub, pred, obj> in a given image. With the emergence of various advanced techniques for better utilizing both the intrinsic and extrinsic information in each relation triplet, SGG has achieved great progress over the recent years. However, due to the ubiquitous long-tailed predicate distributions, today's SGG models are still easily biased to the head predicates. Currently, the most prevalent debiasing solutions for SGG are re-balancing methods, e.g., changing the distributions of original training samples. In this paper, we argue that all existing re-balancing strategies fail to increase the diversity of the relation triplet features of each predicate, which is critical for robust SGG. To this end, we propose a novel Compositional Feature Augmentation (CFA) strategy, which is the first unbiased SGG work to mitigate the bias issue from the perspective of increasing the diversity of triplet features. Specifically, we first decompose each relation triplet feature into two components: intrinsic feature and extrinsic feature, which correspond to the intrinsic characteristics and extrinsic contexts of a relation triplet, respectively. Then, we design two different feature augmentation modules to enrich the feature diversity of original relation triplets by replacing or mixing up either their intrinsic or extrinsic features from other samples. Due to its model-agnostic nature, CFA can be seamlessly incorporated into various SGG frameworks. Extensive ablations have shown that CFA achieves a new state-of-the-art performance on the trade-off between different metrics.
Graph Prompt Learning: A Comprehensive Survey and Beyond
Artificial General Intelligence (AGI) has revolutionized numerous fields, yet its integration with graph data, a cornerstone in our interconnected world, remains nascent. This paper presents a pioneering survey on the emerging domain of graph prompts in AGI, addressing key challenges and opportunities in harnessing graph data for AGI applications. Despite substantial advancements in AGI across natural language processing and computer vision, the application to graph data is relatively underexplored. This survey critically evaluates the current landscape of AGI in handling graph data, highlighting the distinct challenges in cross-modality, cross-domain, and cross-task applications specific to graphs. Our work is the first to propose a unified framework for understanding graph prompt learning, offering clarity on prompt tokens, token structures, and insertion patterns in the graph domain. We delve into the intrinsic properties of graph prompts, exploring their flexibility, expressiveness, and interplay with existing graph models. A comprehensive taxonomy categorizes over 100 works in this field, aligning them with pre-training tasks across node-level, edge-level, and graph-level objectives. Additionally, we present, ProG, a Python library, and an accompanying website, to support and advance research in graph prompting. The survey culminates in a discussion of current challenges and future directions, offering a roadmap for research in graph prompting within AGI. Through this comprehensive analysis, we aim to catalyze further exploration and practical applications of AGI in graph data, underlining its potential to reshape AGI fields and beyond. ProG and the website can be accessed by https://github.com/WxxShirley/Awesome-Graph-Prompt, and https://github.com/sheldonresearch/ProG, respectively.
Inductive Representation Learning on Large Graphs
Low-dimensional embeddings of nodes in large graphs have proved extremely useful in a variety of prediction tasks, from content recommendation to identifying protein functions. However, most existing approaches require that all nodes in the graph are present during training of the embeddings; these previous approaches are inherently transductive and do not naturally generalize to unseen nodes. Here we present GraphSAGE, a general, inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings for previously unseen data. Instead of training individual embeddings for each node, we learn a function that generates embeddings by sampling and aggregating features from a node's local neighborhood. Our algorithm outperforms strong baselines on three inductive node-classification benchmarks: we classify the category of unseen nodes in evolving information graphs based on citation and Reddit post data, and we show that our algorithm generalizes to completely unseen graphs using a multi-graph dataset of protein-protein interactions.
Forecasting Trajectory and Behavior of Road-Agents Using Spectral Clustering in Graph-LSTMs
We present a novel approach for traffic forecasting in urban traffic scenarios using a combination of spectral graph analysis and deep learning. We predict both the low-level information (future trajectories) as well as the high-level information (road-agent behavior) from the extracted trajectory of each road-agent. Our formulation represents the proximity between the road agents using a weighted dynamic geometric graph (DGG). We use a two-stream graph-LSTM network to perform traffic forecasting using these weighted DGGs. The first stream predicts the spatial coordinates of road-agents, while the second stream predicts whether a road-agent is going to exhibit overspeeding, underspeeding, or neutral behavior by modeling spatial interactions between road-agents. Additionally, we propose a new regularization algorithm based on spectral clustering to reduce the error margin in long-term prediction (3-5 seconds) and improve the accuracy of the predicted trajectories. Moreover, we prove a theoretical upper bound on the regularized prediction error. We evaluate our approach on the Argoverse, Lyft, Apolloscape, and NGSIM datasets and highlight the benefits over prior trajectory prediction methods. In practice, our approach reduces the average prediction error by approximately 75% over prior algorithms and achieves a weighted average accuracy of 91.2% for behavior prediction. Additionally, our spectral regularization improves long-term prediction by up to 70%.
Topology-Informed Graph Transformer
Transformers have revolutionized performance in Natural Language Processing and Vision, paving the way for their integration with Graph Neural Networks (GNNs). One key challenge in enhancing graph transformers is strengthening the discriminative power of distinguishing isomorphisms of graphs, which plays a crucial role in boosting their predictive performances. To address this challenge, we introduce 'Topology-Informed Graph Transformer (TIGT)', a novel transformer enhancing both discriminative power in detecting graph isomorphisms and the overall performance of Graph Transformers. TIGT consists of four components: A topological positional embedding layer using non-isomorphic universal covers based on cyclic subgraphs of graphs to ensure unique graph representation: A dual-path message-passing layer to explicitly encode topological characteristics throughout the encoder layers: A global attention mechanism: And a graph information layer to recalibrate channel-wise graph features for better feature representation. TIGT outperforms previous Graph Transformers in classifying synthetic dataset aimed at distinguishing isomorphism classes of graphs. Additionally, mathematical analysis and empirical evaluations highlight our model's competitive edge over state-of-the-art Graph Transformers across various benchmark datasets.
Breaking the Entanglement of Homophily and Heterophily in Semi-supervised Node Classification
Recently, graph neural networks (GNNs) have shown prominent performance in semi-supervised node classification by leveraging knowledge from the graph database. However, most existing GNNs follow the homophily assumption, where connected nodes are more likely to exhibit similar feature distributions and the same labels, and such an assumption has proven to be vulnerable in a growing number of practical applications. As a supplement, heterophily reflects dissimilarity in connected nodes, which has gained significant attention in graph learning. To this end, data engineers aim to develop a powerful GNN model that can ensure performance under both homophily and heterophily. Despite numerous attempts, most existing GNNs struggle to achieve optimal node representations due to the constraints of undirected graphs. The neglect of directed edges results in sub-optimal graph representations, thereby hindering the capacity of GNNs. To address this issue, we introduce AMUD, which quantifies the relationship between node profiles and topology from a statistical perspective, offering valuable insights for Adaptively Modeling the natural directed graphs as the Undirected or Directed graph to maximize the benefits from subsequent graph learning. Furthermore, we propose Adaptive Directed Pattern Aggregation (ADPA) as a new directed graph learning paradigm for AMUD. Empirical studies have demonstrated that AMUD guides efficient graph learning. Meanwhile, extensive experiments on 14 benchmark datasets substantiate the impressive performance of ADPA, outperforming baselines by significant margins of 3.96\%.
Online GNN Evaluation Under Test-time Graph Distribution Shifts
Evaluating the performance of a well-trained GNN model on real-world graphs is a pivotal step for reliable GNN online deployment and serving. Due to a lack of test node labels and unknown potential training-test graph data distribution shifts, conventional model evaluation encounters limitations in calculating performance metrics (e.g., test error) and measuring graph data-level discrepancies, particularly when the training graph used for developing GNNs remains unobserved during test time. In this paper, we study a new research problem, online GNN evaluation, which aims to provide valuable insights into the well-trained GNNs's ability to effectively generalize to real-world unlabeled graphs under the test-time graph distribution shifts. Concretely, we develop an effective learning behavior discrepancy score, dubbed LeBeD, to estimate the test-time generalization errors of well-trained GNN models. Through a novel GNN re-training strategy with a parameter-free optimality criterion, the proposed LeBeD comprehensively integrates learning behavior discrepancies from both node prediction and structure reconstruction perspectives. This enables the effective evaluation of the well-trained GNNs' ability to capture test node semantics and structural representations, making it an expressive metric for estimating the generalization error in online GNN evaluation. Extensive experiments on real-world test graphs under diverse graph distribution shifts could verify the effectiveness of the proposed method, revealing its strong correlation with ground-truth test errors on various well-trained GNN models.
Deep Layer Aggregation
Visual recognition requires rich representations that span levels from low to high, scales from small to large, and resolutions from fine to coarse. Even with the depth of features in a convolutional network, a layer in isolation is not enough: compounding and aggregating these representations improves inference of what and where. Architectural efforts are exploring many dimensions for network backbones, designing deeper or wider architectures, but how to best aggregate layers and blocks across a network deserves further attention. Although skip connections have been incorporated to combine layers, these connections have been "shallow" themselves, and only fuse by simple, one-step operations. We augment standard architectures with deeper aggregation to better fuse information across layers. Our deep layer aggregation structures iteratively and hierarchically merge the feature hierarchy to make networks with better accuracy and fewer parameters. Experiments across architectures and tasks show that deep layer aggregation improves recognition and resolution compared to existing branching and merging schemes. The code is at https://github.com/ucbdrive/dla.
InvGC: Robust Cross-Modal Retrieval by Inverse Graph Convolution
Over recent decades, significant advancements in cross-modal retrieval are mainly driven by breakthroughs in visual and linguistic modeling. However, a recent study shows that multi-modal data representations tend to cluster within a limited convex cone (as representation degeneration problem), which hinders retrieval performance due to the inseparability of these representations. In our study, we first empirically validate the presence of the representation degeneration problem across multiple cross-modal benchmarks and methods. Next, to address it, we introduce a novel method, called InvGC, a post-processing technique inspired by graph convolution and average pooling. Specifically, InvGC defines the graph topology within the datasets and then applies graph convolution in a subtractive manner. This method effectively separates representations by increasing the distances between data points. To improve the efficiency and effectiveness of InvGC, we propose an advanced graph topology, LocalAdj, which only aims to increase the distances between each data point and its nearest neighbors. To understand why InvGC works, we present a detailed theoretical analysis, proving that the lower bound of recall will be improved after deploying InvGC. Extensive empirical results show that InvGC and InvGC w/LocalAdj significantly mitigate the representation degeneration problem, thereby enhancing retrieval performance. Our code is available at https://github.com/yimuwangcs/Better_Cross_Modal_Retrieval
Ada-NETS: Face Clustering via Adaptive Neighbour Discovery in the Structure Space
Face clustering has attracted rising research interest recently to take advantage of massive amounts of face images on the web. State-of-the-art performance has been achieved by Graph Convolutional Networks (GCN) due to their powerful representation capacity. However, existing GCN-based methods build face graphs mainly according to kNN relations in the feature space, which may lead to a lot of noise edges connecting two faces of different classes. The face features will be polluted when messages pass along these noise edges, thus degrading the performance of GCNs. In this paper, a novel algorithm named Ada-NETS is proposed to cluster faces by constructing clean graphs for GCNs. In Ada-NETS, each face is transformed to a new structure space, obtaining robust features by considering face features of the neighbour images. Then, an adaptive neighbour discovery strategy is proposed to determine a proper number of edges connecting to each face image. It significantly reduces the noise edges while maintaining the good ones to build a graph with clean yet rich edges for GCNs to cluster faces. Experiments on multiple public clustering datasets show that Ada-NETS significantly outperforms current state-of-the-art methods, proving its superiority and generalization. Code is available at https://github.com/damo-cv/Ada-NETS.
Decoupling Weighing and Selecting for Integrating Multiple Graph Pre-training Tasks
Recent years have witnessed the great success of graph pre-training for graph representation learning. With hundreds of graph pre-training tasks proposed, integrating knowledge acquired from multiple pre-training tasks has become a popular research topic. In this paper, we identify two important collaborative processes for this topic: (1) select: how to select an optimal task combination from a given task pool based on their compatibility, and (2) weigh: how to weigh the selected tasks based on their importance. While there currently has been a lot of work focused on weighing, comparatively little effort has been devoted to selecting. This paper proposes a novel instance-level framework for integrating multiple graph pre-training tasks, Weigh And Select (WAS), where the two collaborative processes, weighing and selecting, are combined by decoupled siamese networks. Specifically, it first adaptively learns an optimal combination of tasks for each instance from a given task pool, based on which a customized instance-level task weighing strategy is learned. Extensive experiments on 16 graph datasets across node-level and graph-level downstream tasks have demonstrated that by combining a few simple but classical tasks, WAS can achieve comparable performance to other leading counterparts. The code is available at https://github.com/TianyuFan0504/WAS.