1 DualCodec: A Low-Frame-Rate, Semantically-Enhanced Neural Audio Codec for Speech Generation Neural audio codecs form the foundational building blocks for language model (LM)-based speech generation. Typically, there is a trade-off between frame rate and audio quality. This study introduces a low-frame-rate, semantically enhanced codec model. Existing approaches distill semantically rich self-supervised (SSL) representations into the first-layer codec tokens. This work proposes DualCodec, a dual-stream encoding approach that integrates SSL and waveform representations within an end-to-end codec framework. In this setting, DualCodec enhances the semantic information in the first-layer codec and enables the codec system to maintain high audio quality while operating at a low frame rate. Note that a low-frame-rate codec improves the efficiency of speech generation. Experimental results on audio codec and speech generation tasks confirm the effectiveness of the proposed DualCodec compared to state-of-the-art codec systems, such as Mimi Codec, SpeechTokenizer, DAC, and Encodec. Demos and codes are available at: https://dualcodec.github.io 8 authors · May 19
- XY-Tokenizer: Mitigating the Semantic-Acoustic Conflict in Low-Bitrate Speech Codecs Speech codecs serve as bridges between speech signals and large language models. An ideal codec for speech language models should not only preserve acoustic information but also capture rich semantic information. However, existing speech codecs struggle to balance high-quality audio reconstruction with ease of modeling by language models. In this study, we analyze the limitations of previous codecs in balancing semantic richness and acoustic fidelity. We propose XY-Tokenizer, a novel codec that mitigates the conflict between semantic and acoustic capabilities through multi-stage, multi-task learning. Experimental results demonstrate that XY-Tokenizer achieves performance in both semantic and acoustic tasks comparable to that of state-of-the-art codecs operating at similar bitrates, even though those existing codecs typically excel in only one aspect. Specifically, XY-Tokenizer achieves strong text alignment, surpassing distillation-based semantic modeling methods such as SpeechTokenizer and Mimi, while maintaining a speaker similarity score of 0.83 between reconstructed and original audio. The reconstruction performance of XY-Tokenizer is comparable to that of BigCodec, the current state-of-the-art among acoustic-only codecs, which achieves a speaker similarity score of 0.84 at a similar bitrate. Code and models are available at https://github.com/gyt1145028706/XY-Tokenizer. 9 authors · Jun 29