Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTEAL: Tokenize and Embed ALL for Multi-modal Large Language Models
Despite Multi-modal Large Language Models (MM-LLMs) have made exciting strides recently, they are still struggling to efficiently model the interactions among multi-modal inputs and the generation in non-textual modalities. In this work, we propose TEAL (Tokenize and Embed ALl)}, an approach to treat the input from any modality as a token sequence and learn a joint embedding space for all modalities. Specifically, for the input from any modality, TEAL first discretizes it into a token sequence with the off-the-shelf tokenizer and embeds the token sequence into a joint embedding space with a learnable embedding matrix. MM-LLMs just need to predict the multi-modal tokens autoregressively as the textual LLMs do. Finally, the corresponding de-tokenizer is applied to generate the output in each modality based on the predicted token sequence. With the joint embedding space, TEAL enables the frozen LLMs to perform both understanding and generation tasks involving non-textual modalities, such as image and audio. Thus, the textual LLM can just work as an interface and maintain its high performance in textual understanding and generation. Experiments show that TEAL achieves substantial improvements in multi-modal understanding, and implements a simple scheme for multi-modal generations.
LLaVaOLMoBitnet1B: Ternary LLM goes Multimodal!
Multimodal Large Language Models (MM-LLMs) have seen significant advancements in the last year, demonstrating impressive performance across tasks. However, to truly democratize AI, models must exhibit strong capabilities and be able to run efficiently on small compute footprints accessible by most. Part of this quest, we introduce LLaVaOLMoBitnet1B - the first Ternary Multimodal LLM capable of accepting Image(s)+Text inputs to produce coherent textual responses. The model is fully open-sourced along with training scripts to encourage further research in this space. This accompanying technical report highlights the training process, evaluation details, challenges associated with ternary models and future opportunities. Link to the model: https://huggingface.co/IntelLabs/LlavaOLMoBitnet1B
NExT-GPT: Any-to-Any Multimodal LLM
While recently Multimodal Large Language Models (MM-LLMs) have made exciting strides, they mostly fall prey to the limitation of only input-side multimodal understanding, without the ability to produce content in multiple modalities. As we humans always perceive the world and communicate with people through various modalities, developing any-to-any MM-LLMs capable of accepting and delivering content in any modality becomes essential to human-level AI. To fill the gap, we present an end-to-end general-purpose any-to-any MM-LLM system, NExT-GPT. We connect an LLM with multimodal adaptors and different diffusion decoders, enabling NExT-GPT to perceive inputs and generate outputs in arbitrary combinations of text, images, videos, and audio. By leveraging the existing well-trained highly-performing encoders and decoders, NExT-GPT is tuned with only a small amount of parameter (1%) of certain projection layers, which not only benefits low-cost training and also facilitates convenient expansion to more potential modalities. Moreover, we introduce a modality-switching instruction tuning (MosIT) and manually curate a high-quality dataset for MosIT, based on which NExT-GPT is empowered with complex cross-modal semantic understanding and content generation. Overall, our research showcases the promising possibility of building an AI agent capable of modeling universal modalities, paving the way for more human-like AI research in the community.
UniRAG: Universal Retrieval Augmentation for Multi-Modal Large Language Models
Recently, Multi-Modal(MM) Large Language Models(LLMs) have unlocked many complex use-cases that require MM understanding (e.g., image captioning or visual question answering) and MM generation (e.g., text-guided image generation or editing) capabilities. To further improve the output fidelity of MM-LLMs we introduce the model-agnostic UniRAG technique that adds relevant retrieved information to prompts as few-shot examples during inference. Unlike the common belief that Retrieval Augmentation (RA) mainly improves generation or understanding of uncommon entities, our evaluation results on the MSCOCO dataset with common entities show that both proprietary models like GPT4 and Gemini-Pro and smaller open-source models like Llava, LaVIT, and Emu2 significantly enhance their generation quality when their input prompts are augmented with relevant information retrieved by MM retrievers like UniIR models.
MIO: A Foundation Model on Multimodal Tokens
In this paper, we introduce MIO, a novel foundation model built on multimodal tokens, capable of understanding and generating speech, text, images, and videos in an end-to-end, autoregressive manner. While the emergence of large language models (LLMs) and multimodal large language models (MM-LLMs) propels advancements in artificial general intelligence through their versatile capabilities, they still lack true any-to-any understanding and generation. Recently, the release of GPT-4o has showcased the remarkable potential of any-to-any LLMs for complex real-world tasks, enabling omnidirectional input and output across images, speech, and text. However, it is closed-source and does not support the generation of multimodal interleaved sequences. To address this gap, we present MIO, which is trained on a mixture of discrete tokens across four modalities using causal multimodal modeling. MIO undergoes a four-stage training process: (1) alignment pre-training, (2) interleaved pre-training, (3) speech-enhanced pre-training, and (4) comprehensive supervised fine-tuning on diverse textual, visual, and speech tasks. Our experimental results indicate that MIO exhibits competitive, and in some cases superior, performance compared to previous dual-modal baselines, any-to-any model baselines, and even modality-specific baselines. Moreover, MIO demonstrates advanced capabilities inherent to its any-to-any feature, such as interleaved video-text generation, chain-of-visual-thought reasoning, visual guideline generation, instructional image editing, etc.
From Seconds to Hours: Reviewing MultiModal Large Language Models on Comprehensive Long Video Understanding
The integration of Large Language Models (LLMs) with visual encoders has recently shown promising performance in visual understanding tasks, leveraging their inherent capability to comprehend and generate human-like text for visual reasoning. Given the diverse nature of visual data, MultiModal Large Language Models (MM-LLMs) exhibit variations in model designing and training for understanding images, short videos, and long videos. Our paper focuses on the substantial differences and unique challenges posed by long video understanding compared to static image and short video understanding. Unlike static images, short videos encompass sequential frames with both spatial and within-event temporal information, while long videos consist of multiple events with between-event and long-term temporal information. In this survey, we aim to trace and summarize the advancements of MM-LLMs from image understanding to long video understanding. We review the differences among various visual understanding tasks and highlight the challenges in long video understanding, including more fine-grained spatiotemporal details, dynamic events, and long-term dependencies. We then provide a detailed summary of the advancements in MM-LLMs in terms of model design and training methodologies for understanding long videos. Finally, we compare the performance of existing MM-LLMs on video understanding benchmarks of various lengths and discuss potential future directions for MM-LLMs in long video understanding.
A Review of Multi-Modal Large Language and Vision Models
Large Language Models (LLMs) have recently emerged as a focal point of research and application, driven by their unprecedented ability to understand and generate text with human-like quality. Even more recently, LLMs have been extended into multi-modal large language models (MM-LLMs) which extends their capabilities to deal with image, video and audio information, in addition to text. This opens up applications like text-to-video generation, image captioning, text-to-speech, and more and is achieved either by retro-fitting an LLM with multi-modal capabilities, or building a MM-LLM from scratch. This paper provides an extensive review of the current state of those LLMs with multi-modal capabilities as well as the very recent MM-LLMs. It covers the historical development of LLMs especially the advances enabled by transformer-based architectures like OpenAI's GPT series and Google's BERT, as well as the role of attention mechanisms in enhancing model performance. The paper includes coverage of the major and most important of the LLMs and MM-LLMs and also covers the techniques of model tuning, including fine-tuning and prompt engineering, which tailor pre-trained models to specific tasks or domains. Ethical considerations and challenges, such as data bias and model misuse, are also analysed to underscore the importance of responsible AI development and deployment. Finally, we discuss the implications of open-source versus proprietary models in AI research. Through this review, we provide insights into the transformative potential of MM-LLMs in various applications.
MMICT: Boosting Multi-Modal Fine-Tuning with In-Context Examples
Although In-Context Learning (ICL) brings remarkable performance gains to Large Language Models (LLMs), the improvements remain lower than fine-tuning on downstream tasks. This paper introduces Multi-Modal In-Context Tuning (MMICT), a novel multi-modal fine-tuning paradigm that boosts multi-modal fine-tuning by fully leveraging the promising ICL capability of multi-modal LLMs (MM-LLMs). We propose the Multi-Modal Hub (M-Hub), a unified module that captures various multi-modal features according to different inputs and objectives. Based on M-Hub, MMICT enables MM-LLMs to learn from in-context visual-guided textual features and subsequently generate outputs conditioned on the textual-guided visual features. Moreover, leveraging the flexibility of M-Hub, we design a variety of in-context demonstrations. Extensive experiments on a diverse range of downstream multi-modal tasks demonstrate that MMICT significantly outperforms traditional fine-tuning strategy and the vanilla ICT method that directly takes the concatenation of all information from different modalities as input.
TinyEmo: Scaling down Emotional Reasoning via Metric Projection
This paper introduces TinyEmo, a family of small multi-modal language models for emotional reasoning and classification. Our approach features: (1) a synthetic emotional instruct dataset for both pre-training and fine-tuning stages, (2) a Metric Projector that delegates classification from the language model allowing for more efficient training and inference, (3) a multi-modal large language model (MM-LLM) for emotional reasoning, and (4) a semi-automated framework for bias detection. TinyEmo is able to perform emotion classification and emotional reasoning, all while using substantially fewer parameters than comparable models. This efficiency allows us to freely incorporate more diverse emotional datasets, enabling strong performance on classification tasks, with our smallest model (700M parameters) outperforming larger state-of-the-art models based on general-purpose MM-LLMs with over 7B parameters. Additionally, the Metric Projector allows for interpretability and indirect bias detection in large models without additional training, offering an approach to understand and improve AI systems. We release code, models, and dataset at https://github.com/ggcr/TinyEmo
MM-Ego: Towards Building Egocentric Multimodal LLMs
This research aims to comprehensively explore building a multimodal foundation model for egocentric video understanding. To achieve this goal, we work on three fronts. First, as there is a lack of QA data for egocentric video understanding, we develop a data engine that efficiently generates 7M high-quality QA samples for egocentric videos ranging from 30 seconds to one hour long, based on human-annotated data. This is currently the largest egocentric QA dataset. Second, we contribute a challenging egocentric QA benchmark with 629 videos and 7,026 questions to evaluate the models' ability in recognizing and memorizing visual details across videos of varying lengths. We introduce a new de-biasing evaluation method to help mitigate the unavoidable language bias present in the models being evaluated. Third, we propose a specialized multimodal architecture featuring a novel "Memory Pointer Prompting" mechanism. This design includes a global glimpse step to gain an overarching understanding of the entire video and identify key visual information, followed by a fallback step that utilizes the key visual information to generate responses. This enables the model to more effectively comprehend extended video content. With the data, benchmark, and model, we successfully build MM-Ego, an egocentric multimodal LLM that shows powerful performance on egocentric video understanding.
MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs
State-of-the-art retrieval models typically address a straightforward search scenario, where retrieval tasks are fixed (e.g., finding a passage to answer a specific question) and only a single modality is supported for both queries and retrieved results. This paper introduces techniques for advancing information retrieval with multimodal large language models (MLLMs), enabling a broader search scenario, termed universal multimodal retrieval, where multiple modalities and diverse retrieval tasks are accommodated. To this end, we first study fine-tuning an MLLM as a bi-encoder retriever on 10 datasets with 16 retrieval tasks. Our empirical results show that the fine-tuned MLLM retriever is capable of understanding challenging queries, composed of both text and image, but underperforms a smaller CLIP retriever in cross-modal retrieval tasks due to modality bias from MLLMs. To address the issue, we propose modality-aware hard negative mining to mitigate the modality bias exhibited by MLLM retrievers. Second, we propose to continually fine-tune the universal multimodal retriever to enhance its text retrieval capability while maintaining multimodal retrieval capability. As a result, our model, MM-Embed, achieves state-of-the-art performance on the multimodal retrieval benchmark M-BEIR, which spans multiple domains and tasks, while also surpassing the state-of-the-art text retrieval model, NV-Embed-v1, on MTEB retrieval benchmark. Finally, we explore to prompt the off-the-shelf MLLMs as the zero-shot rerankers to refine the ranking of the candidates from the multimodal retriever. We find that through prompt-and-reranking, MLLMs can further improve multimodal retrieval when the user queries (e.g., text-image composed queries) are more complex and challenging to understand. These findings also pave the way to advance universal multimodal retrieval in the future.
MM-Eval: A Multilingual Meta-Evaluation Benchmark for LLM-as-a-Judge and Reward Models
Large language models (LLMs) are commonly used as evaluators in tasks (e.g., reward modeling, LLM-as-a-judge), where they act as proxies for human preferences or judgments. This leads to the need for meta-evaluation: evaluating the credibility of LLMs as evaluators. However, existing benchmarks primarily focus on English, offering limited insight into LLMs' effectiveness as evaluators in non-English contexts. To address this, we introduce MM-Eval, a multilingual meta-evaluation benchmark that covers 18 languages across six categories. MM-Eval evaluates various dimensions, including language-specific challenges like linguistics and language hallucinations. Evaluation results show that both proprietary and open-source language models have considerable room for improvement. Further analysis reveals a tendency for these models to assign middle-ground scores to low-resource languages. We publicly release our benchmark and code.
Text-Augmented Multimodal LLMs for Chemical Reaction Condition Recommendation
High-throughput reaction condition (RC) screening is fundamental to chemical synthesis. However, current RC screening suffers from laborious and costly trial-and-error workflows. Traditional computer-aided synthesis planning (CASP) tools fail to find suitable RCs due to data sparsity and inadequate reaction representations. Nowadays, large language models (LLMs) are capable of tackling chemistry-related problems, such as molecule design, and chemical logic Q\&A tasks. However, LLMs have not yet achieved accurate predictions of chemical reaction conditions. Here, we present MM-RCR, a text-augmented multimodal LLM that learns a unified reaction representation from SMILES, reaction graphs, and textual corpus for chemical reaction recommendation (RCR). To train MM-RCR, we construct 1.2 million pair-wised Q\&A instruction datasets. Our experimental results demonstrate that MM-RCR achieves state-of-the-art performance on two open benchmark datasets and exhibits strong generalization capabilities on out-of-domain (OOD) and High-Throughput Experimentation (HTE) datasets. MM-RCR has the potential to accelerate high-throughput condition screening in chemical synthesis.
MM-SafetyBench: A Benchmark for Safety Evaluation of Multimodal Large Language Models
The security concerns surrounding Large Language Models (LLMs) have been extensively explored, yet the safety of Multimodal Large Language Models (MLLMs) remains understudied. In this paper, we observe that Multimodal Large Language Models (MLLMs) can be easily compromised by query-relevant images, as if the text query itself were malicious. To address this, we introduce MM-SafetyBench, a comprehensive framework designed for conducting safety-critical evaluations of MLLMs against such image-based manipulations. We have compiled a dataset comprising 13 scenarios, resulting in a total of 5,040 text-image pairs. Our analysis across 12 state-of-the-art models reveals that MLLMs are susceptible to breaches instigated by our approach, even when the equipped LLMs have been safety-aligned. In response, we propose a straightforward yet effective prompting strategy to enhance the resilience of MLLMs against these types of attacks. Our work underscores the need for a concerted effort to strengthen and enhance the safety measures of open-source MLLMs against potential malicious exploits. The resource is available at https://github.com/isXinLiu/MM-SafetyBench
MM-Eureka: Exploring Visual Aha Moment with Rule-based Large-scale Reinforcement Learning
We present MM-Eureka, a multimodal reasoning model that successfully extends large-scale rule-based reinforcement learning (RL) to multimodal reasoning. While rule-based RL has shown remarkable success in improving LLMs' reasoning abilities in text domains, its application to multimodal settings has remained challenging. Our work reproduces key characteristics of text-based RL systems like DeepSeek-R1 in the multimodal space, including steady increases in accuracy reward and response length, and the emergence of reflection behaviors. We demonstrate that both instruction-tuned and pre-trained models can develop strong multimodal reasoning capabilities through rule-based RL without supervised fine-tuning, showing superior data efficiency compared to alternative approaches. We open-source our complete pipeline to foster further research in this area. We release all our codes, models, data, etc. at https://github.com/ModalMinds/MM-EUREKA
Multimodal LLMs Can Reason about Aesthetics in Zero-Shot
We present the first study on how Multimodal LLMs' (MLLMs) reasoning ability shall be elicited to evaluate the aesthetics of artworks. To facilitate this investigation, we construct MM-StyleBench, a novel high-quality dataset for benchmarking artistic stylization. We then develop a principled method for human preference modeling and perform a systematic correlation analysis between MLLMs' responses and human preference. Our experiments reveal an inherent hallucination issue of MLLMs in art evaluation, associated with response subjectivity. ArtCoT is proposed, demonstrating that art-specific task decomposition and the use of concrete language boost MLLMs' reasoning ability for aesthetics. Our findings offer valuable insights into MLLMs for art and can benefit a wide range of downstream applications, such as style transfer and artistic image generation. Code available at https://github.com/songrise/MLLM4Art.
MM-VID: Advancing Video Understanding with GPT-4V(ision)
We present MM-VID, an integrated system that harnesses the capabilities of GPT-4V, combined with specialized tools in vision, audio, and speech, to facilitate advanced video understanding. MM-VID is designed to address the challenges posed by long-form videos and intricate tasks such as reasoning within hour-long content and grasping storylines spanning multiple episodes. MM-VID uses a video-to-script generation with GPT-4V to transcribe multimodal elements into a long textual script. The generated script details character movements, actions, expressions, and dialogues, paving the way for large language models (LLMs) to achieve video understanding. This enables advanced capabilities, including audio description, character identification, and multimodal high-level comprehension. Experimental results demonstrate the effectiveness of MM-VID in handling distinct video genres with various video lengths. Additionally, we showcase its potential when applied to interactive environments, such as video games and graphic user interfaces.
MM-Instruct: Generated Visual Instructions for Large Multimodal Model Alignment
This paper introduces MM-Instruct, a large-scale dataset of diverse and high-quality visual instruction data designed to enhance the instruction-following capabilities of large multimodal models (LMMs). While existing visual instruction datasets often focus on question-answering, they struggle to generalize to broader application scenarios such as creative writing, summarization, or image analysis. To address these limitations, we propose a novel approach to constructing MM-Instruct that leverages the strong instruction-following capabilities of existing LLMs to generate novel visual instruction data from large-scale but conventional image captioning datasets. MM-Instruct first leverages ChatGPT to automatically generate diverse instructions from a small set of seed instructions through augmenting and summarization. It then matches these instructions with images and uses an open-sourced large language model (LLM) to generate coherent answers to the instruction-image pairs. The LLM is grounded by the detailed text descriptions of images in the whole answer generation process to guarantee the alignment of the instruction data. Moreover, we introduce a benchmark based on the generated instruction data to evaluate the instruction-following capabilities of existing LMMs. We demonstrate the effectiveness of MM-Instruct by training a LLaVA-1.5 model on the generated data, denoted as LLaVA-Instruct, which exhibits significant improvements in instruction-following capabilities compared to LLaVA-1.5 models. The MM-Instruct dataset, benchmark, and pre-trained models are available at https://github.com/jihaonew/MM-Instruct.
Lumos : Empowering Multimodal LLMs with Scene Text Recognition
We introduce Lumos, the first end-to-end multimodal question-answering system with text understanding capabilities. At the core of Lumos is a Scene Text Recognition (STR) component that extracts text from first person point-of-view images, the output of which is used to augment input to a Multimodal Large Language Model (MM-LLM). While building Lumos, we encountered numerous challenges related to STR quality, overall latency, and model inference. In this paper, we delve into those challenges, and discuss the system architecture, design choices, and modeling techniques employed to overcome these obstacles. We also provide a comprehensive evaluation for each component, showcasing high quality and efficiency.
Enhancing Model Performance: Another Approach to Vision-Language Instruction Tuning
The integration of large language models (LLMs) with vision-language (VL) tasks has been a transformative development in the realm of artificial intelligence, highlighting the potential of LLMs as a versatile general-purpose chatbot. However, the current trend in this evolution focuses on the integration of vision and language to create models that can operate in more diverse and real-world contexts. We present a novel approach, termed Bottleneck Adapter, specifically crafted for enhancing the multimodal functionalities of these complex models, enabling joint optimization of the entire multimodal LLM framework through a process known as Multimodal Model Tuning (MMT). Our approach utilizes lightweight adapters to connect the image encoder and LLM without the need for large, complex neural networks. Unlike the conventional modular training schemes, our approach adopts an end-to-end optimization regime, which, when combined with the adapters, facilitates the joint optimization using a significantly smaller parameter set. Our method exhibits robust performance with 90.12\% accuracy, outperforming both human-level performance (88.4\%) and LaVIN-7B (89.41\%).
ShapeLLM: Universal 3D Object Understanding for Embodied Interaction
This paper presents ShapeLLM, the first 3D Multimodal Large Language Model (LLM) designed for embodied interaction, exploring a universal 3D object understanding with 3D point clouds and languages. ShapeLLM is built upon an improved 3D encoder by extending ReCon to ReCon++ that benefits from multi-view image distillation for enhanced geometry understanding. By utilizing ReCon++ as the 3D point cloud input encoder for LLMs, ShapeLLM is trained on constructed instruction-following data and tested on our newly human-curated evaluation benchmark, 3D MM-Vet. ReCon++ and ShapeLLM achieve state-of-the-art performance in 3D geometry understanding and language-unified 3D interaction tasks, such as embodied visual grounding.
Have the VLMs Lost Confidence? A Study of Sycophancy in VLMs
In the study of LLMs, sycophancy represents a prevalent hallucination that poses significant challenges to these models. Specifically, LLMs often fail to adhere to original correct responses, instead blindly agreeing with users' opinions, even when those opinions are incorrect or malicious. However, research on sycophancy in visual language models (VLMs) has been scarce. In this work, we extend the exploration of sycophancy from LLMs to VLMs, introducing the MM-SY benchmark to evaluate this phenomenon. We present evaluation results from multiple representative models, addressing the gap in sycophancy research for VLMs. To mitigate sycophancy, we propose a synthetic dataset for training and employ methods based on prompts, supervised fine-tuning, and DPO. Our experiments demonstrate that these methods effectively alleviate sycophancy in VLMs. Additionally, we probe VLMs to assess the semantic impact of sycophancy and analyze the attention distribution of visual tokens. Our findings indicate that the ability to prevent sycophancy is predominantly observed in higher layers of the model. The lack of attention to image knowledge in these higher layers may contribute to sycophancy, and enhancing image attention at high layers proves beneficial in mitigating this issue.
Pixtral 12B
We introduce Pixtral-12B, a 12--billion-parameter multimodal language model. Pixtral-12B is trained to understand both natural images and documents, achieving leading performance on various multimodal benchmarks, surpassing a number of larger models. Unlike many open-source models, Pixtral is also a cutting-edge text model for its size, and does not compromise on natural language performance to excel in multimodal tasks. Pixtral uses a new vision encoder trained from scratch, which allows it to ingest images at their natural resolution and aspect ratio. This gives users flexibility on the number of tokens used to process an image. Pixtral is also able to process any number of images in its long context window of 128K tokens. Pixtral 12B substanially outperforms other open models of similar sizes (Llama-3.2 11B \& Qwen-2-VL 7B). It also outperforms much larger open models like Llama-3.2 90B while being 7x smaller. We further contribute an open-source benchmark, MM-MT-Bench, for evaluating vision-language models in practical scenarios, and provide detailed analysis and code for standardized evaluation protocols for multimodal LLMs. Pixtral-12B is released under Apache 2.0 license.
m&m's: A Benchmark to Evaluate Tool-Use for multi-step multi-modal Tasks
Real-world multi-modal problems are rarely solved by a single machine learning model, and often require multi-step computational plans that involve stitching several models. Tool-augmented LLMs hold tremendous promise for automating the generation of such computational plans. However, the lack of standardized benchmarks for evaluating LLMs as planners for multi-step multi-modal tasks has prevented a systematic study of planner design decisions. Should LLMs generate a full plan in a single shot or step-by-step? Should they invoke tools directly with Python code or through structured data formats like JSON? Does feedback improve planning? To answer these questions and more, we introduce m&m's: a benchmark containing 4K+ multi-step multi-modal tasks involving 33 tools that include multi-modal models, (free) public APIs, and image processing modules. For each of these task queries, we provide automatically generated plans using this realistic toolset. We further provide a high-quality subset of 1,565 task plans that are human-verified and correctly executable. With m&m's, we evaluate 6 popular LLMs with 2 planning strategies (multi-step vs. step-by-step planning), 2 plan formats (JSON vs. code), and 3 types of feedback (parsing/verification/execution). Finally, we summarize takeaways from our extensive experiments. Our dataset and code are available on HuggingFace (https://huggingface.co/datasets/zixianma/mnms) and Github (https://github.com/RAIVNLab/mnms).