Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSuspicion-Agent: Playing Imperfect Information Games with Theory of Mind Aware GPT4
Unlike perfect information games, where all elements are known to every player, imperfect information games emulate the real-world complexities of decision-making under uncertain or incomplete information. GPT-4, the recent breakthrough in large language models (LLMs) trained on massive passive data, is notable for its knowledge retrieval and reasoning abilities. This paper delves into the applicability of GPT-4's learned knowledge for imperfect information games. To achieve this, we introduce Suspicion-Agent, an innovative agent that leverages GPT-4's capabilities for performing in imperfect information games. With proper prompt engineering to achieve different functions, Suspicion-Agent based on GPT-4 demonstrates remarkable adaptability across a range of imperfect information card games. Importantly, GPT-4 displays a strong high-order theory of mind (ToM) capacity, meaning it can understand others and intentionally impact others' behavior. Leveraging this, we design a planning strategy that enables GPT-4 to competently play against different opponents, adapting its gameplay style as needed, while requiring only the game rules and descriptions of observations as input. In the experiments, we qualitatively showcase the capabilities of Suspicion-Agent across three different imperfect information games and then quantitatively evaluate it in Leduc Hold'em. The results show that Suspicion-Agent can potentially outperform traditional algorithms designed for imperfect information games, without any specialized training or examples. In order to encourage and foster deeper insights within the community, we make our game-related data publicly available.
PokerGPT: An End-to-End Lightweight Solver for Multi-Player Texas Hold'em via Large Language Model
Poker, also known as Texas Hold'em, has always been a typical research target within imperfect information games (IIGs). IIGs have long served as a measure of artificial intelligence (AI) development. Representative prior works, such as DeepStack and Libratus heavily rely on counterfactual regret minimization (CFR) to tackle heads-up no-limit Poker. However, it is challenging for subsequent researchers to learn CFR from previous models and apply it to other real-world applications due to the expensive computational cost of CFR iterations. Additionally, CFR is difficult to apply to multi-player games due to the exponential growth of the game tree size. In this work, we introduce PokerGPT, an end-to-end solver for playing Texas Hold'em with arbitrary number of players and gaining high win rates, established on a lightweight large language model (LLM). PokerGPT only requires simple textual information of Poker games for generating decision-making advice, thus guaranteeing the convenient interaction between AI and humans. We mainly transform a set of textual records acquired from real games into prompts, and use them to fine-tune a lightweight pre-trained LLM using reinforcement learning human feedback technique. To improve fine-tuning performance, we conduct prompt engineering on raw data, including filtering useful information, selecting behaviors of players with high win rates, and further processing them into textual instruction using multiple prompt engineering techniques. Through the experiments, we demonstrate that PokerGPT outperforms previous approaches in terms of win rate, model size, training time, and response speed, indicating the great potential of LLMs in solving IIGs.
Are ChatGPT and GPT-4 Good Poker Players? -- A Pre-Flop Analysis
Since the introduction of ChatGPT and GPT-4, these models have been tested across a large number of tasks. Their adeptness across domains is evident, but their aptitude in playing games, and specifically their aptitude in the realm of poker has remained unexplored. Poker is a game that requires decision making under uncertainty and incomplete information. In this paper, we put ChatGPT and GPT-4 through the poker test and evaluate their poker skills. Our findings reveal that while both models display an advanced understanding of poker, encompassing concepts like the valuation of starting hands, playing positions and other intricacies of game theory optimal (GTO) poker, both ChatGPT and GPT-4 are NOT game theory optimal poker players. Profitable strategies in poker are evaluated in expectations over large samples. Through a series of experiments, we first discover the characteristics of optimal prompts and model parameters for playing poker with these models. Our observations then unveil the distinct playing personas of the two models. We first conclude that GPT-4 is a more advanced poker player than ChatGPT. This exploration then sheds light on the divergent poker tactics of the two models: ChatGPT's conservativeness juxtaposed against GPT-4's aggression. In poker vernacular, when tasked to play GTO poker, ChatGPT plays like a nit, which means that it has a propensity to only engage with premium hands and folds a majority of hands. When subjected to the same directive, GPT-4 plays like a maniac, showcasing a loose and aggressive style of play. Both strategies, although relatively advanced, are not game theory optimal.
PokerBench: Training Large Language Models to become Professional Poker Players
We introduce PokerBench - a benchmark for evaluating the poker-playing abilities of large language models (LLMs). As LLMs excel in traditional NLP tasks, their application to complex, strategic games like poker poses a new challenge. Poker, an incomplete information game, demands a multitude of skills such as mathematics, reasoning, planning, strategy, and a deep understanding of game theory and human psychology. This makes Poker the ideal next frontier for large language models. PokerBench consists of a comprehensive compilation of 11,000 most important scenarios, split between pre-flop and post-flop play, developed in collaboration with trained poker players. We evaluate prominent models including GPT-4, ChatGPT 3.5, and various Llama and Gemma series models, finding that all state-of-the-art LLMs underperform in playing optimal poker. However, after fine-tuning, these models show marked improvements. We validate PokerBench by having models with different scores compete with each other, demonstrating that higher scores on PokerBench lead to higher win rates in actual poker games. Through gameplay between our fine-tuned model and GPT-4, we also identify limitations of simple supervised fine-tuning for learning optimal playing strategy, suggesting the need for more advanced methodologies for effectively training language models to excel in games. PokerBench thus presents a unique benchmark for a quick and reliable evaluation of the poker-playing ability of LLMs as well as a comprehensive benchmark to study the progress of LLMs in complex game-playing scenarios. The dataset and code will be made available at: https://github.com/pokerllm/pokerbench.
Instruction-Driven Game Engine: A Poker Case Study
The Instruction-Driven Game Engine (IDGE) project aims to democratize game development by enabling a large language model (LLM) to follow free-form game descriptions and generate game-play processes. The IDGE allows users to create games simply by natural language instructions, which significantly lowers the barrier for game development. We approach the learning process for IDGEs as a Next State Prediction task, wherein the model autoregressively predicts the game states given player actions. The computation of game states must be precise; otherwise, slight errors could corrupt the game-play experience. This is challenging because of the gap between stability and diversity. To address this, we train the IDGE in a curriculum manner that progressively increases its exposure to complex scenarios. Our initial progress lies in developing an IDGE for Poker, which not only supports a wide range of poker variants but also allows for highly individualized new poker games through natural language inputs. This work lays the groundwork for future advancements in transforming how games are created and played.
"Pick-and-Pass" as a Hat-Trick Class for First-Principle Memory, Generalizability, and Interpretability Benchmarks
Closed drafting or "pick and pass" is a popular game mechanic where each round players select a card or other playable element from their hand and pass the rest to the next player. Games employing closed drafting make for great studies on memory and turn order due to their explicitly calculable memory of other players' hands. In this paper, we establish first-principle benchmarks for studying model-free reinforcement learning algorithms and their comparative ability to learn memory in a popular family of closed drafting games called "Sushi Go Party!", producing state-of-the-art results on this environment along the way. Furthermore, as Sushi Go Party! can be expressed as a set of closely-related games based on the set of cards in play, we quantify the generalizability of reinforcement learning algorithms trained on various sets of cards, establishing key trends between generalized performance and the set distance between the train and evaluation game configurations. Finally, we fit decision rules to interpret the strategy of the learned models and compare them to the ranking preferences of human players, finding intuitive common rules and intriguing new moves.
GAVEL: Generating Games Via Evolution and Language Models
Automatically generating novel and interesting games is a complex task. Challenges include representing game rules in a computationally workable form, searching through the large space of potential games under most such representations, and accurately evaluating the originality and quality of previously unseen games. Prior work in automated game generation has largely focused on relatively restricted rule representations and relied on domain-specific heuristics. In this work, we explore the generation of novel games in the comparatively expansive Ludii game description language, which encodes the rules of over 1000 board games in a variety of styles and modes of play. We draw inspiration from recent advances in large language models and evolutionary computation in order to train a model that intelligently mutates and recombines games and mechanics expressed as code. We demonstrate both quantitatively and qualitatively that our approach is capable of generating new and interesting games, including in regions of the potential rules space not covered by existing games in the Ludii dataset. A sample of the generated games are available to play online through the Ludii portal.
Regret-Minimizing Double Oracle for Extensive-Form Games
By incorporating regret minimization, double oracle methods have demonstrated rapid convergence to Nash Equilibrium (NE) in normal-form games and extensive-form games, through algorithms such as online double oracle (ODO) and extensive-form double oracle (XDO), respectively. In this study, we further examine the theoretical convergence rate and sample complexity of such regret minimization-based double oracle methods, utilizing a unified framework called Regret-Minimizing Double Oracle. Based on this framework, we extend ODO to extensive-form games and determine its sample complexity. Moreover, we demonstrate that the sample complexity of XDO can be exponential in the number of information sets |S|, owing to the exponentially decaying stopping threshold of restricted games. To solve this problem, we propose the Periodic Double Oracle (PDO) method, which has the lowest sample complexity among all existing double oracle methods, being only polynomial in |S|. Empirical evaluations on multiple poker and board games show that PDO achieves significantly faster convergence than previous double oracle algorithms and reaches a competitive level with state-of-the-art regret minimization methods.
Approximating Poker Probabilities with Deep Learning
Many poker systems, whether created with heuristics or machine learning, rely on the probability of winning as a key input. However calculating the precise probability using combinatorics is an intractable problem, so instead we approximate it. Monte Carlo simulation is an effective technique that can be used to approximate the probability that a player will win and/or tie a hand. However, without the use of a memory-intensive lookup table or a supercomputer, it becomes infeasible to run millions of times when training an agent with self-play. To combat the space-time tradeoff, we use deep learning to approximate the probabilities obtained from the Monte Carlo simulation with high accuracy. The learned model proves to be a lightweight alternative to Monte Carlo simulation, which ultimately allows us to use the probabilities as inputs during self-play efficiently. The source code and optimized neural network can be found at https://github.com/brandinho/Poker-Probability-Approximation